33 research outputs found

    Bit error rate evaluation for orthogonal space-time block codes in the presence of channel estimation errors

    Get PDF

    Wireless multiuser communication systems: diversity receiver performance analysis, GSMuD design, and fading channel simulator

    Get PDF
    Multipath fading phenomenon is central to the design and analysis of wireless communication systems including multiuser systems. If untreated, the fading will corrupt the transmitted signal and often cause performance degradations such as increased communication error and decreased data rate, as compared to wireline channels with little or no multipath fading. On the other hand, this multipath fading phenomenon, if fully utilized, can actually lead to system designs that provide additional gains in system performance as compared to systems that experience non-fading channels.;The central question this thesis tries to answer is how to design and analyze a wireless multiuser system that takes advantage of the benefits the diversity multipath fading channel provides. Two particular techniques are discussed and analyzed in the first part of the thesis: quadrature amplitude modulation (QAM) and diversity receivers, including maximal ratio combining (MRC) and generalized selection combining (GSC). We consider the practical case of imperfect channel estimation (ICE) and develop a new decision variable (DV) of MRC receiver output for M-QAM. By deriving its moment generating function (MGF), we obtain the exact bit error rate (BER) performance under arbitrary correlated Rayleigh and Rician channels, with ICE. GSC provides a tradeoff between receiver complexity and performance. We study the effect of ICE on the GSC output effective SNR under generalized fading channels and obtain the exact BER results for M-QAM systems. The significance of this part lies in that these results provide system designers means to evaluate how different practical channel estimators and their parameters can affect the system\u27s performance and help them distribute system resources that can most effectively improve performance.;In the second part of the thesis, we look at a new diversity technique unique to multiuser systems under multipath fading channels: the multiuser diversity. We devise a generalized selection multiuser diversity (GSMuD) scheme for the practical CDMA downlink systems, where users are selected for transmission based on their respective channel qualities. We include the effect of ICE in the design and analysis of GSMuD. Based on the marginal distribution of the ranked user signal-noise ratios (SNRs), we develop a practical adaptive modulation and coding (AMC) scheme and equal power allocation scheme and statistical optimal 1-D and 2-D power allocation schemes, to fully exploit the available multiuser diversity. We use the convex optimization procedures to obtain the 1-D and 2-D power allocation algorithms, which distribute the total system power in the waterfilling fashion alone the user (1-D) or both user and time (2-D) for the power-limited and energy-limited system respectively. We also propose a normalized SNR based GSMuD scheme where user access fairness issues are explicitly addressed. We address various fairness-related performance metrics such as the user\u27s average access probability (AAP), average access time (AAT), and average wait time (AWT) in the absolute- and normalized-SNR based GSMuD. These metrics are useful for system designers to determine parameters such as optimal packet size and delay constraints.;We observe that Nakakagami-m fading channel model is widely applied to model the real world multipath fading channels of different severity. In the last part of the thesis, we propose a Nakagami-m channel simulator that can generate accurate channel coefficients that follow the Nakagami-m model, with independent quadrature parts, accurate phase distribution and arbitrary auto-correlation property. We demonstrate that the proposed simulator can be extremely useful in simulations involving Nakagami-m fading channel models, evident from the numerous simulation results obtained in earlier parts of the thesis where the fading channel coefficients are generated using this proposed simulator

    Diversity receiver design and channel statistic estimation in fading channels

    Get PDF
    The main goal of this thesis is to provide an in-depth study of two important techniques that are effective in improving the performance, data rate, or bandwidth-efficiency in wireless communication systems. The two techniques are, first, diversity combining equipped with quadrature amplitude modulation (QAM), and second, the estimation of fading channel statistical properties;To effectively combat the adverse effect of fading and to improve the error rate performance in wireless communications, one of the major approaches is to employ diversity combining techniques. In the first part of this thesis, we focus on the equal gain combining (EGC) and hybrid-selection equal gain combining (HS/EGC) for bandwidth-efficient wireless systems (i.e. QAM systems). For EGC QAM systems, we propose the receiver structure and the corresponding decision variables, and then study the effects of imperfect channel estimation (ICE) and quantify the loss of the signal-to-noise ratio (SNR) gain caused by ICE. For HS/EGC QAM system, we develop a general approach to derive unified error rate and outage probability formulas over various types of fading channels based on the proposed HS/EGC receiver. The main contribution of this work lies in that it provides effective hybrid diversity schemes and new analytical approaches to enable thorough analysis and effective design of bandwidth efficient wireless communication systems which suffer from ICE and operate in realistic multipath channels;Channel statistic information is proven to be critical in determining the systems design, achievable data rate, and achievable performance. In the second part of this thesis, we study the estimation of the fading channel Statistics and Probability; We propose several iterative algorithms to estimate the first- and second-order statistics of general fading or composite fading-shadowing channels and derive the Cramer-Rao bounds (CRBs) for all the cases. We demonstrate that these iterative methods are efficient in the sense that they achieve their corresponding CRBs. The main contribution of this work is that it bridges the gap between the broad utilization of fading channel statistical properties and the lack of systematic study that makes such statistical properties available

    A General Framework for Performance Analysis of Space Shift Keying (SSK) Modulation for MISO Correlated Nakagami-m Fading Channels

    No full text
    International audienceIn this paper, we offer an accurate framework for analyzing the performance of wireless communication systems adopting the recently proposed Space Shift Keying (SSK) modulation scheme. More specifically, we study the performance of a Nt×1 MISO (Multiple–Input–Single–Output) system setup with Maximum–Likelihood (ML) detection and full Channel State Information (CSI) at the receiver. The exact Average Bit Error Probability (ABEP) over generically correlated and non–identically distributed Nakagami–m fading channels is computed in closed–form when Nt=2, while very accurate and asymptotically tight upper bounds are proposed to compute the ABEP when Nt>2. With respect to current literature, our contribution is threefold: i) the ABEP is computed in closed–form without resorting to Monte Carlo numerical simulations, which, besides being computationally intensive, only yield limited insights about the system performance and cannot be exploited for a systematic optimization of it, ii) the framework accounts for arbitrary fading conditions and is not restricted to identically distributed fading channels, thus offering a comprehensive under standing of the performance of SSK modulation over generalized fading channels, and iii) the analytical framework could be readily adapted to study the performance over generalized fading channels with arbitrary fading distributions, since the Nakagami–m distribution is a very flexible fading model, which either includes or can closely approximate several other fading models. Numerical results show that the performance of SSK modulation is significantly affected by the characteristics of fading channels, e.g., channel correlation, fading severity, and power imbalance among the Nt transmit–receive wireless links. Analytical frameworks and theoretical findings are also substantiated via Monte Carlo simulations

    Diversity with practical channel estimation in arbitrary fading environments

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2004.Includes bibliographical references (p. 79-83).This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.This thesis presents a framework for evaluating the bit error probability of Nd-branch diversity combining in the presence of non-ideal channel estimates. The estimator structure is based on the maximum likelihood (ML) estimate and arises naturally as the sample mean of Np pilot symbols. The framework presented requires only the evaluation of a single integral involving the moment generating function of the norm square of the channel gain vector, and is applicable to channels with arbitrary distribution, including correlated fading. Analytical results show that the practical ML channel estimator preserves the diversity order of an Nd-branch diversity system, contrary to conclusions in the literature based upon a model that assumes a fixed correlation between the channel and its estimate. Finally, the asymptotic signal-to-noise ratio (SNR) penalty due to estimation error is investigated. This investigation reveals that the penalty has surprisingly little dependence on the number of diversity branches.by Wesley M. Gifford.S.M

    Uncoded space-time labeling diversity with three transmit antennas: symbol mapping designs and error performance analysis.

    Get PDF
    Doctoral Degrees. University of KwaZulu-Natal, Durban.Abstract available in PDF.Publications on page iii

    Comments on "Proving Reliability of Anonymous Information in VANETs" by Kounga et al.

    Get PDF

    Performance analysis of MIMO-OFDM systems using complex Gaussian quadratic forms

    Get PDF
    En este trabajo se proponen aportaciones originales para el análisis de prestaciones en sistemas multiantena con múltiples portadoras, mediante el desarrollo de nuevas técnicas matemáticas para el cálculo de probabilidades de error. Así, ha sido posible analizar el efecto de no idealidades (estimación de canal imperfecta, offset de continua, desbalanceo I/Q…) en las prestaciones de sistemas de comunicaciones móviles e inalámbricas

    QoS-driven adaptive resource allocation for mobile wireless communications and networks

    Get PDF
    Quality-of-service (QoS) guarantees will play a critically important role in future mobile wireless networks. In this dissertation, we study a set of QoS-driven resource allocation problems for mobile wireless communications and networks. In the first part of this dissertation, we investigate resource allocation schemes for statistical QoS provisioning. The schemes aim at maximizing the system/network throughput subject to a given queuing delay constraint. To achieve this goal, we integrate the information theory with the concept of effective capacity and develop a unified framework for resource allocation. Applying the above framework, we con-sider a number of system infrastructures, including single channel, parallel channel, cellular, and cooperative relay systems and networks, respectively. In addition, we also investigate the impact of imperfect channel-state information (CSI) on QoS pro-visioning. The resource allocation problems can be solved e±ciently by the convex optimization approach, where closed-form allocation policies are obtained for different application scenarios. Our analyses reveal an important fact that there exists a fundamental tradeoff between throughput and QoS provisioning. In particular, when the delay constraint becomes loose, the optimal resource allocation policy converges to the water-filling scheme, where ergodic capacity can be achieved. On the other hand, when the QoS constraint gets stringent, the optimal policy converges to the channel inversion scheme under which the system operates at a constant rate and the zero-outage capacity can be achieved. In the second part of this dissertation, we study adaptive antenna selection for multiple-input-multiple-output (MIMO) communication systems. System resources such as subcarriers, antennas and power are allocated dynamically to minimize the symbol-error rate (SER), which is the key QoS metric at the physical layer. We propose a selection diversity scheme for MIMO multicarrier direct-sequence code- division-multiple-access (MC DS-CDMA) systems and analyze the error performance of the system when considering CSI feedback delay and feedback errors. Moreover, we propose a joint antenna selection and power allocation scheme for space-time block code (STBC) systems. The error performance is derived when taking the CSI feedback delay into account. Our numerical results show that when feedback delay comes into play, a tradeoff between performance and robustness can be achieved by dynamically allocating power across transmit antennas
    corecore