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Abstract

Uncoded space-time labeling diversity (USTLD) is a relatively new proposed multiple-input, multiple-

output (MIMO) scheme for two transmit antennas. The fundamental idea of USTLD is to transmit two

different mapped symbols pair in two consecutive time slots.

In this thesis, the first objective is to develop USTLD with three transmit antennas. Such a scheme

has not been reported in open literature to date. Hence, a heuristic algorithm is proposed to design the

second and third mappers for square quadratic amplitude modulation (QAM). An analytical

expression for a tight bound of the average bit error probability (ABEP) of the proposed system with

three transmit antennas over independent and identically distributed (i.i.d) Rayleigh fading channels

is derived and the accuracy of this bound is verified by Monte Carlo simulation results which shows

superior error performance compared with the existing two transmit antenna USTLD. Moreover,

complexity reduction analysis of the low-complexity (LC) detector is proposed. It is shown that the

proposed LC algorithm achieves near-maximum likelihood detection accuracy, while reducing

complexity by 51% and 96.5% for 16QAM and 64QAM, respectively.

Motivated by the nonlinear channels typical of digital broadcasting systems, M-ary amplitude

phase-shift keying (M-APSK) is a modulation scheme that has become widely adopted for the second

generation of digital video broadcasting for satellites (DVB-S2) and its extension (DVB-S2X) which

offers an attractive combination of spectral and energy efficiency. The second objective of this thesis

is to investigate the design of labeling mappers for USTLD with three transmit antennas based on

amplitude and phase shift keying (APSK) modulation. The proposed USTLD schemes are DVB-S2

and DVB-S2X standards compatible for both Rician fast frequency-flat fading and quasi-static

frequency-flat fading channels. Numerical analysis of the proposed schemes are derived based on

pairwise error probability. The analytical results are validated by Monte Carlo simulations, which

converge accurately at high signal-to-noise ratio (SNR). Furthermore, by adapting constellation

structure between square QAM modulations and concentric rings of APSK modulations, the authors

proposed mapper design for 16-APSK, 32-APSK and 64-APSK modulations for USTLD scheme

vii
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using heuristic algorithm. Finally, the proposed USTLD schemes show bit error rate (BER)

improvement over the existing two transmit USTLD schemes with error performance gain of 1.2 dB

and 2.8 dB at a BER of 10−6 for 16-APSK and 64-APSK USTLD scheme, respectively.

In addition, square QAM USTLD scheme has been widely used due to its high power and bandwidth

efficiency. However, square QAM does not provide satisfying requirements for a system where the

number of bits per symbol is odd. In this scenario, the peak and the average power of transmission

can be reduced by using cross QAMs (XQAMs) instead. The third objective of this thesis is to

investigate the design of XQAM labeling mappers for USTLD with three transmit antennas over i.i.d.

Nakagami-m fading channels. The theoretical ABEP is derived based on pairwise error probability.

This expression is validated by Monte Carlo simulation results, which converge accurately at high

SNR. Since channels are not i.i.d in practical sense, the authors further investigate XQAM USTLD

scheme in correlated channels. The ABEP for the proposed system is derived and served to validate

the Monte Carlo simulation results. Finally, the impact of channel correlation are demonstrated by

comparing the BER results in correlated channels with that of i.i.d channels.
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1. INTRODUCTION TO WIRELESS COMMUNICATION

1 Introduction to Wireless Communication

The rapid growth in wireless communication technology has led to an increasing demand for high

data rate communication systems. This is feasible in technological progression from first generation

communication systems (1G) through fourth generation systems (4G) until the current fifth

generation systems (5G) with gradual and substantial shift towards the use of higher, less congested

frequencies band [1], [2], [3]. Besides, as 5G is currently in the final phase of developing and close to

its massive commercialization as a result of increasing demand for cellular network [4], there is new

research and industrial efforts towards development of the sixth generation (6G) wireless

communication technologies [5].

Recent research in wireless communication systems have shown that large gains in the throughput

and reliability of communication schemes over wireless channels can be achieved by utilizing

multiple antennas in the transmission as well as reception of wireless communication systems,

known as multiple-input multiple-output (MIMO) techniques. MIMO is an appealing technology that

promises to achieve improved spectral efficiency and reliability without adding bandwidth and

ultimately enhances system performance gains by reducing bit error rate [1] - [3], [6] [7] [8]. As a

result, it has drawn much attention in both academia and industry.

MIMO schemes are efficient techniques for enhancing the error performance gain of a system, but

in order to exploit the huge potential of MIMO techniques, it is necessary to resort to new transmit

strategies, referred to as Space-Time Coding (STC), which utilize the spatial domain between the

transmitter and the receiver in addition to the time and spectral domain [6].

STC is a relatively recent scheme that is broadly used in wireless communication systems as a result

of enhancements in reliability and spectral efficiency of MIMO techniques [9]. STC transmits signal

across the spatial and time domain concurrently in order to achieve diversity gain while conserving

bandwidth resources. Hence, STC has been studied in both coded and uncoded wireless

communications. Uncoded space-time labeling diversity scheme (USTLD) which is the main goal of

this research has recently been introduced in the literature as a MIMO technique whereby two

transmit signal paths with bit-to-constellation labeling mappers are created, each of which

experiences independent fading paths [10].

In this thesis, we extend the original USTLD in [10] to a new USTLD scheme with three transmit

antennas for square M-ary quadrature amplitude modulation (M-QAM) in Rayleigh fading channels

in order to improve the error performance gain over the existing scheme. In addition, we present

USTLD scheme with three transmit antennas for other transmission techniques in M-ary amplitude

2



i
i

“output” — 2020/6/25 — 18:38 — page 3 — #25 i
i

i
i

i
i

1. INTRODUCTION TO WIRELESS COMMUNICATION

and phase shift keying (APSK) modulation, Cross-QAM (XQAM) and Rectangular QAM for

different modulation schemes that are applicable to next-generation wireless communication

technology. Moreover, there are different small-scale fading distributions that describe the statistical

behaviour of the multipath fading envelope. As such, we also investigate USTLD with three transmit

antennas scheme in Nakagami ( -q,−m,−n) fading channels.

1.1 Review of Fading Channel Models

Due to the existence of a great variety of fading environments, several statistical models are used

to describe the probability distribution of the received signal amplitude. In this study, we consider

Rayleigh fading, Nakagami ( -q,−m,−n) fading channels. Nakagami-n is otherwise known as Rician

fading channels.

1.1.1 The Rayleigh fading channel

The Rayleigh fading channel model is used to describe propagation paths where there is no strong line-

of-sight (LOS) path between the transmitter and the receiver [11] [12]. This statistical distribution is

often used to model multipath fading in urban areas where there exist a large number of reflectors

with no LOS component. Based on central limit theorem, the fading coefficient of the in-phase and

quadrature-phase components of the received signal in independent and identically distributed (i.i.d)

Gaussian random variables (RVs) with unit variance and zero mean can be expressed as:

α = αI + jαQ (1)

where αI denotes the in-phase component and αQ represents the quadrature component. Both αI and

αQ are Gaussian RVs with zero mean and variance of 1
2 . The fading amplitude is expressed as [13]:

A =
√
|αI |2 + |αQ|2 (2)

The fading amplitude A is said to be Rayleigh distributed with probability density function (PDF)

which can be expressed as [13]:

f(A) =
A

σ2
exp

(−A2

2σ2

)
(3)

where σ2 is the variance of A.

1.1.2 The Nakagami-q fading channel

The Nakagami-q fading channel is widely applied in the literature to model fading conditions more

severe than Rayleigh distribution [14], [15]. Nakagami-q distribution shows good ability to describe

3
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1. INTRODUCTION TO WIRELESS COMMUNICATION

the statistics of real-world fading channels and models scintillation effects for signal propagation in

satellite links. The fading parameter, q, lies in the range 0 ≤ q ≤ 1. Thus, Nakagami-q fading

distribution ranges from one sided Gaussian distribution (that is, q = 0) to Rayleigh distribution (that

is, q = 1).

In Nakagami-q fading channels, the Gaussian RVs distributed with unit variance and zero mean is

model as in-phase aI∼N (0, 1
1+q2

) and quadrature aQ∼N (0, q2

1+q2
). The PDF is defined as [13]:

fγ(γ) =
1 + q2

2qγ̄
exp

[
− (1 + q2)2γ

4q2γ̄

]
Io

[
(1− q4)γ

4q2γ̄

]
γ ≥ 0 (4)

Note that Io is the modified zeroth-order Bessel function of the first kind.

1.1.3 The Nakagami-m fading channel

Nakagami-m distribution was a novel fading channel first proposed in the 1940’s to model rapid fading

in long-distance wireless channels [16]. Nakagami-m channels model fading scenarios whereby the

received signal has contributions from both scattered and specular components, that is, the electric field

is the sum of a strong component (which is not necessarily LOS) and several components with less

amplitude [17]. Both of these components are random, that is, circularly symmetric complex Gaussian

RVs. The shape factor, m, refers to the relationship between the amplitudes of strong component and

that of weak component, and ranges from 1
2 to∞. Rayleigh fading is obtained from the Nakagami-m

model when m=1. In a single cluster, the phases of individual reflected waves are random, but the

time delays are approximately equal for all waves. As a result, the envelope of each cluster signal is

Rayleigh distributed given by [18]:

g(t) =
1√
NR

NR∑
n=1

exp[j(wdt cosαn + ϕn)] (5)

where g(t) is the baseband signal of the normalized Clarke’s 2-D isotropic scattering Rayleigh fading

models. NR andwd correspond to the number of propagation paths and the maximum angular Doppler

frequency, respectively. αn and ϕn denote the angle of arrival and initial phase of nth propagation

path, respectively whereby αn and ϕn are both uniformly distributed over [−π, π].

Unlike most fading distributions that model certain conditions, the Nakagami-m fading model is

capable of modeling a wide range of fading channel conditions and it fits well the empirical data [12].

Thus, Nakagami-m distribution is a generalized fading model that is very similar to Rician fading

distribution. However, the specular (strong) component in the Rician distribution is deterministic. In

addition, the Nakagami-m PDF has a closed-form analytical expression that is simpler to evaluate

4



i
i

“output” — 2020/6/25 — 18:38 — page 5 — #27 i
i

i
i

i
i

1. INTRODUCTION TO WIRELESS COMMUNICATION

numerically and fits better some measurements than Rician or Nakagami-q fading channels. It is to

be noted that Nakagami-m PDF does not contain Bessel functions.

Moreover, there is a mathematical relationship which exists between the Rician distribution K-factor

and Nakagami-m m-parameter, and is given as [11].

m =
(K + 1)2

(2K + 1)
(6)

1.1.4 The Nakagami-n fading channel

The Nakagami-n statistical distribution is frequently used to describe propagation paths which

consists of one strong direct LOS component and many random weaker components [12]. The PDF

for Nakagami-n fading amplitude is modelled as [16]:

fγ(γ) =
2(1 + n2)e−n

2
γ

γ̄
exp

[
− (1 + n2)γ2

γ̄

]
× I0

(
2nγ

√
(1 + n2)

γ̄

)
(7)

Note that n denotes the Nakagami-n fading parameter which ranges from 0 to ∞ and is related to

Rician K factor by K = n2. On the other hand, the K-factor refers to the ratio of the average signal

power of dominant specular component for LOS and the average signal power of the weaker diffused

component. Mathematically, K-factor could be expressed as [12]:

K =
(hID)2 + (hQD)2

2σ2
(8)

where hID and hQD are constant values for in-phase and quadrature component of LOS. Thus,

Nakagami-n fading model is also known as Rician distribution.

1.2 Wireless Channel Impairments

Due to natural and constructive obstacles, the signals transmitted through radio propagation are

restricted in bit error performance gain. Some of the impairments that affects the wireless

communication systems are discussed in the subsections below:

1.2.1 Noise

Noise refers to the unwanted random components of an electrical signal that tend to disturb the

transmission and processing of the signal [11]. Generally, noise arises from several natural

phenomena, such as the fluctuation of electrical characteristics in physical components due to

temperature (that is, thermal noise) and black body noise from celestial sources such as Sun [19]. On

the other hand, noise also describes any signal present in the receiver other than the desired

5
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1. INTRODUCTION TO WIRELESS COMMUNICATION

signal [20]. Hence, thermal noise at the receiver is modelled as additive white Gaussian noise

(AWGN).

1.2.2 Path loss

Path loss refers to the loss in power on the way of its propagation as the radio signal travels in the

space [11]. In other words, path loss describes how the received signal power decreases with

increasing distance between two communicating nodes of a wireless system, and this depends on the

type of environment the radio signal is deployed [21]. Path loss could also be described as the mean

attenuation of the radio signal and it happens due to the dissipation of power radiated by the

transmitter between the mobile station and the base unit as well as the effects of propagation channel.

In general, it is assumed that path loss is the same at a given transmit and receive distance whereby

the effect of shadowing is not taken into consideration [22].

1.2.3 Shadowing

Shadowing is due to the presence of obstructions between the transmitter and the receiver in a radio

signal path [23]. Shadowing is caused by obstructions as a result of absorption, reflection, scattering

and diffraction of radio wave attenuated in the propagation path [11]. When the mean attenuation is

strong, the signal is blocked. This shadowing behaviour is determined based on the nature of the terrain

surrounding the base station, mobile unit and the height of the transmitting antenna. As a result, the

received power variation due to path loss takes place over long distances, whereas variation as a result

of shadowing takes place over distances that are proportional to the length of the obstructing object

[24]. The variation in distances occur more in outdoor environments than in indoor environments.

1.2.4 Fading

Fading in a channel combines the effect of multiple propagation paths, high speed movement of mobile

units and reflectors on both forward and reverse link [25]. Fading occurs in a channel whereby two or

more variants of the radio signals propagated, that is multipath signals, arrive at the receiving nodes

of the communication system at slightly different times interval while producing signals that vary

significantly in amplitude and phase. The arriving signals reduce the received power to zero (or very

near zero) by adding up destructively.

In other words, the multipath signals have a small-scale effect on propagation and cause a rapid change

in signal strength, random frequency modulation and time echoes as a result of propagation delay [26].

Signal duplications due to different paths of wave propagation undergoes different mean attenuation

6
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1. INTRODUCTION TO WIRELESS COMMUNICATION

in terms of distortion, delays and phase shifts.

In fading channels, the received signal power varies randomly over distance or time as a result of

shadowing for large-scale fading or multipath fading for small-scale effect [11]. The bit error

performance gain of a wireless communication system can be severely degraded by fading. In order

to combat fading, diversity techniques are applied.

1.3 Diversity Techniques

Signal power in a wireless channel fluctuates with time, frequency and space [27]. As a result of the

fluctuation, the signal power drops dramatically and the channel is said to be in fade. Diversity

technique is a communication scheme used to compensate for fading channel impairments by

providing wireless link enhancements at a relatively low cost [28]. Diversity scheme is broadly used

to reduce the depth and duration of the fades experienced by a receiver in a flat fading channel [29].

Diversity technique utilizes the random nature of signal transmission by finding independent path for

radio signal communication. In other words, this techniques provides two or more inputs at the

receiver such that the fading phenomena among these inputs are i.i.d, that is, the channel is

uncorrelated. If one radio path undergoes deep fade, another i.i.d path may have a strong signal at

that input. In this instance, the information that is transmitted several times will have the replicas that

will not undergo severe fading. Generally, the mean power available for each branch in diversity

techniques are approximately equal [30]. Examples of diversity techniques include:

1.3.1 Space diversity

Space diversity is a technique for multiple antennas transmission or reception, or both, whereby the

effects of fading are minimized by physical separation of the antennas by one half or more wavelengths

[31], [32], [33]. This physical distance of antennas separation determines the channel correlation

among the branch signals and the amount of mutual coupling between the adjacent branch antennas,

and the main goal is to avoid both criteria in wireless system. Fig. 1 is a space diversity scheme for

different antenna configurations where both T× andR× correspond to the transmitter and the receiver,

respectively. Spatial diversity provides significant error performance gain without sacrificing any extra

bandwidth on the transmitted power resources and is best suitable for wireless system because it is cost

effective, very simple and easy to implement [29], [34].

7
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Figure 1: Space Diversity Reception with (A) SISO, (B) SIMO, (C) MISO, and (D) MIMO [31]
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1. INTRODUCTION TO WIRELESS COMMUNICATION

1.3.2 Polarization diversity

This scheme describes diversity technique whereby two radio signals are propagated or received with

orthogonal polarization, and the fading in the radio signals is partially correlated or uncorrelated [35].

Polarization diversity uses two antennas of different polarization in both horizontal and vertical

direction to constitute two-branched diversity schemes [36], [37]. Polarization diversity has an

advantage over space diversity in terms of small size design and cost reduction as a single

dual-polarized can be used to achieve polarization diversity, whereas more than one antenna

separated by spaces are required for implementation of space diversity [38], [39]. Another advantage

is that polarization diversity performs well as compared to space diversity in a non LOS scenario with

random terminals orientation [40].

1.3.3 Frequency diversity

Fading is also frequency dependent since the effects of reflection, refraction and diffraction on signal

propagation are frequency dependent. Thus, frequency diversity is sometimes used to combat the

likelihood of deep fade by taking advantage of the frequency-dependent nature of fading, and

transmitting multiple duplicates of information signal at different frequency bands [41], [42].

In general, the information signals are modulated through different carriers in frequency diversity

scheme. It is important that different replicas of the radio signals undergo independent fading and this

requires extra energy to transmit the signals over different frequency bands [31]. In this scenarios,

the probability of simultaneous fading is the product of the separate antenna fading probabilities that

employs frequency division multiplexing mode (FDM) [43].

1.3.4 Time diversity

Time diversity exploits coding of channel and interleaving to combat fading at a cost of added delay

and loss of bandwidth efficiency [44], [45]. In this diversity scheme, information is transmitted at

the time spacing that exceeds the coherence time of the channel. Multiple replicas of the signals

are received with independent fading version of the same transmitted signals in different time slots,

thereby providing full diversity advantages [31]. If the interval between the time slots is sufficient,

the sequential amplitude samples of the fading signals will be i.i.d, that is uncorrelated, and the time

interval should be at least the reciprocal of the fading bandwidth [46]. Redundancy could also be

introduced into the transmitted signals in order to achieve time diversity in the temporal domain by

repetition of channel coding.

9
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1.4 Classification of Diversity

Diversity techniques can be classified into two schemes based on the antenna separation, namely

macro diversity and micro diversity [31].

1.4.1 Macro diversity

Macro diversity is used to combat the slower fading variations caused by shadowing in large-scale

fading [47]. The mitigation of shadowing requires the use of multiple base stations, that is, the use

of a group of geographically distributed base stations in the cell [48]. Since each base station applies

a micro diversity technique to combat fading, the concurrent application of multiple base stations

coupled with the processing radio signals from these multiple base stations provides an advantage in

macro diversity scheme for improved bit error rate in shadowed fading channels [49].

1.4.2 Micro diversity

Micro diversity is a diversity technique employed to mitigate rapid fading variations in the received

signals caused by multipath fading whereby multiple antennas are used at the base stations [50]. Small-

scale fading results from multipath fading propagation and is characterized by deep and high speed

amplitude fluctuations that occur as the mobiles moves over distances of just a few wavelengths. Micro

diversity technique has been very efficient to mitigate small-scale fadings [51]. The most popular

microdiversity techniques in the literature are equal gain combining, selection combining and maximal

ratio combining.

2 Space-time Coding

STC is a power and spectrally efficient channel code that is widely adopted for MIMO schemes

without sacrificing the diversity gains over wireless channels. This coding scheme employs the

combination of conventional channel coding techniques, modulation schemes and MIMO diversity

schemes in their design criteria.

Space–time coded scheme introduces spatial and temporal correlation into signals propagated from

different antennas in order to provide diversity gain at the receiver as well as coding gain over an

uncoded scheme without sacrificing additional bandwidth resources [52]. Space-time coded scheme

also gives an improved error performance rate as compared with an uncoded space-time scheme [53].

However, uncoded scheme avoids delay involved in frame-by-frame detection since no interleaving is

required thereby minimizing system computational complexity [10]. Various forms of STC schemes

10
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that can be adopted for MIMO techniques are highlighted below.

2.1 Layered Space-Time Code

The layered space-time (LST) architecture is a technique for processing space-time signals whereby a

layered transmission scheme is combined with iterative multi-user detection techniques [54].

The LST scheme is a channel code that is constructed and processed according to the LST

architecture and is designed by assembling one-dimensional constituent coding technology. The

constituent channel codes can be separated and then detected using conventional detection algorithm

designed for one-dimensional constituent codes based on the use of interference suppression and

interference cancellation in the receiver. This approach leads to a much lower detection complexity

as compared to maximum likelihood detection. Other possible methods with low detection

complexity techniques include sequential detection (SD) [55] and multistage detection [53], [56].

The encoded codewords used in the LST architecture can either be assigned diagonally, that is,

diagonally layered space-time (DLST) or assigned horizontally, that is, horizontally layered

space-time (HLST) [57], [58]. Based on truncated multi-dimensional effective code length and the

truncated multi-dimensional product distance of the constituent code, DLST codes can achieve

improved error performance gain as compared to HLST [57].

2.2 Space-Time Trellis Code

Space-time trellis code (STTC) is a simple and effective signaling technique of error control coding,

modulation, transmit and receive diversity, which is able to mitigate the impacts of channel fading.

STTC was proposed in [53] as a type of STC scheme employed in MIMO wireless systems. This

kind of codes combines signal processing with a multiple antenna system to produce a scheme with a

better error performance gain over the previously proposed transmit diversity schemes in the literature

[59]. STTC scheme transmits multiple, redundant replicas of a generalized Trellis Coded Modulation

(TCM) signal distributed over successive time interval and a number of space. TCM is a spectrally

efficient scheme that combines coding and modulation techniques, without sacrificing extra bandwidth

resources [60].

The multiple data transmitted in STTC are used by the receiver to attempt to reconstruct the actual

data being propagated. For the STC scheme to be applied, there should be multiple transmit

antennas, but only a single receive antennas is required. However, multiple receive antennas can

often be used since the error performance of the system is improved by the resulting spatial

diversity [52]. STTC takes advantage of the coding gain provided by trellis codes and the advantage
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of diversity gain provided by STC for an improved error performance gain. STTCs are difficult to

design at both the encoder and decoder due to the fact that the scheme combine single channel

successive time coding with the signaling protocol being used, and extend that with a multi-antenna

framework [61]. This technique depends on a Viterbi decoder for detection at the receiver whereby

STBCs require only linear processing.

For STTC, therefore, the decoder uses Viterbi algorithm to perform maximum likelihood detection

and select the path with the minimum path metric as decoded sequence based on the assumption that

perfect CSI is available at the receiver. STTC concatenating with STBC provides improved coding

gain as well as a reasonable increase in detection complexity.

2.3 Super-Orthogonal Space-Time Trellis Code

Super-orthogonal space-time trellis code (SOSTTC) is a class of STCs that employs sets of super-

orthogonal block code (SOBC) and sets of partitioning technique in its construction [62] [63] [64].

These codes are improvements over both STTC and STBC in order to provide full diversity and better

coding gain. The transmission matrices of SOSTTC for two transmit antenna can be expressed as [53].

C(x1, x2, θ) =

 x1e
jθ x2

−x∗2ejθ x∗1

 (9)

where signals x1 and x2 are selected by input bits and can be represented by e(j2π/M) for M-PSK signal

constellations. θ is the rotation angle which can be expressed as θ = 2πl
M , where l = 0, 1, . . . ,M − 1.

θ = 0 or π for BPSK signal constellation and θ = 0 or π
2 or π or 3π

2 for QPSK signal constellation.

Alamouti STBC is obtained when θ = 0. In equation (9), the two rows correspond to the symbols

transmitted in two time slots, that is, time slots 1 and 2, respectively. Likewise, the two columns

correspond to the symbols transmitted by two antennas, that is, antennas 1 and 2, respectively.

2.4 Space-Time Block Code

Space-time block coding (STBC) is a relatively simple technique used in wireless communication

systems to combat the effects of channel impairments due to multipath fading, and hence enhance the

link reliability of MIMO systems.

STBC exploits the redundancy for several transmission between the transmitter and receiver by

sending diverse versions of information signals with high probability that some of the signals are less

attenuated than the others [65]. Thus, the system provides higher chances of being able to use one or

more copies of the received signals for improved data rate and link reliability.
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A simple and novel transmit diversity scheme was proposed by Alamouti [41]. The Alamouti STBC

scheme is a full-rate two antennas scheme that transmit symbols in two consecutive time slots. Also,

Alamouti achieves full-diversity error performance with symbol rate of one.

The modulated radio signal is propagated with additive white Gaussian noise (AWGN) over quasi-

static multipath fading channels, while constant fading coefficients are assumed over the pair of time

slots and different values from one pair of time slots to another. In this scheme, there is no channel

state information (CSI) at the transmitter but perfect CSI is assumed at the receiver. Mathematically,

Alamouti STBC transmission matrix can be expressed as [41]:

X =

 x1 x2

−x∗2 x∗1

 (10)

where x1 and x2 are either M-QAM or M-PSK constellation symbols. These symbols pair imply

that STBC transmit symbols both in space, that is, across two antennas and also in time, that is, two

successive transmission intervals. In the first time slot, antenna one transmits symbols x1 and antenna

two transmits symbols x2. In the second time slot, antenna one transmits symbols −x∗2 and antenna

two transmits symbols x∗1. The Alamouti STBC is the only orthogonal full-rate STBC, such that

XHX = (|x1|2 + |x2|2)I2 [41].

2.5 Space-Time Labeling Diversity

Space-time labeling diversity (STLD) is a relatively new scheme broadly used in wireless

communication systems due to the enhancements in spectral efficiency and link reliability of MIMO

techniques [9]. STLD has been studied in both coded and uncoded communication systems.

2.5.1 Coded STLD

In coded communication systems, research on maximizing the asymptotic coding gain has attracted

significant interest in the literature [9], [66], [67], [68], [69]. Huang and Ritcey [9] proposed an optimal

constellation diversity technique forNR×NT bit-interleaved STCM (BI-STCM). Furthermore, Huang

and Ritcey [9] investigated a labeling design criterion for BI-STCM. Besides, Huang and Ritcey [66]

introduced an enhanced 16-ary quadrature amplitude modulation (QAM) labeling diversity scheme

for BI-STCM iterative decoding using Alamouti STBC. In the time, STLD has been applied to 2× 2

wireless local area network (WLAN) coded networks [67]. An improved version of the labeling

diversity scheme has been introduced in Krasicki and Szulakiewicz [68] - [69] that maximizes the

asymptotic coding gain. Coded modulation scheme requires ID for channel modeling and thus incurs

high system complexity which results in increased energy consumption and higher latencies. This

13
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Figure 2: USTLD with two transmit antennas scheme [10]

motivated application of labeling diversity to uncoded modulation scheme which has become more

attractive in the literature.

2.5.2 Uncoded STLD

In uncoded communication systems, the same concept of labeling mapping using constellation

rearrangement was adopted to enhance bit error rate of STLD systems by mapping same information

bits into different signal constellations for transmissions and has been adopted in multiple packet

transmission systems [70], OFDM [71] and wireless relay networks [72].

In the recent time, authors in [10] applied labeling diversity to STBC systems, which was named as

uncoded space-time labeling diversity (USTLD) as shown in Fig. 2. USTLD achieves a significant

signal-to-noise ratio (SNR) gain in comparing to STBC scheme. Nonetheless, there exist a significant

high detection complexity for the optimal detector used in performing joint symbol detection for the

two transmit antennas USTLD scheme.

3 Research Motivation and Contributions

Uncoded space-time labeling diversity (USTLD) is a recently proposed two transmit MIMO scheme

[73] that achieves improved error performance compared to Alamouti STBC [41]. In this scheme,
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the basic idea is to map a block of data bits to symbols using two labeling mappers without the need

for coding and bit-interleaving thereby allowing for more flexibility, low complexity detection and

bandwidth optimization.

Motivated by error performance gains of USTLD scheme as a bandwidth efficient wireless

communication scheme over STBC, the major focus of the research presented in this thesis is to

enhance the link reliability of the conventional USTLD for square M-QAM transmission by

developing a new three transmit antennas USTLD scheme for square M-QAM transmission for

improved error performance rate and robustness in the presence of noise and multipath fading. Since

the existing USTLD scheme is carried out in Rayleigh fading distributions and limited to i.i.d

channels, this study further derives analytical expressions for three transmit antennas schemes in

M-APSK schemes for fast frequency-flat and quasi-static frequency-flat Rician fading channels that

are well suited for digital broadcasting systems as well as X-QAM three transmit antennas schemes

in Nakagami-m channels for both i.i.d and correlated channels. Therefore, the major contributions of

this research are detailed in paper A, paper B and paper C as follows:

3.1 Paper A:

D. Ayanda, H. Xu and N. Pillay, "Uncoded M-ary quadrature amplitude modulation space-time

labeling diversity with three transmit antennas" International Journal of Communication Systems,vol.

31, no. 18: e3818, Dec. 2018. The summary of this paper is as follows:

Uncoded space-time labeling diversity (USTLD) is a recent scheme that improves the error

performance of space-time block-coded wireless communication links. However, the existing

space-time labeling diversity technique used in USTLD only employs two transmit antennas. To

further improve error performance in USTLD systems, this paper investigates USTLD systems with

three transmit antennas. A heuristic approach is proposed to design the second and third mappers.

Simulation results show superior error performance compared with the existing two transmit antenna

USTLD. Furthermore, an analytical expression for a tight bound of the average bit error probability

of the proposed system with three transmit antennas is derived. Moreover, complexity reduction

analysis of the low-complexity (LC) detector is proposed. It is shown that the proposed LC algorithm

achieves near-maximum likelihood detection accuracy, while reducing complexity by 51% and

96.5% for 16QAM and 64QAM, respectively.
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3.2 Paper B:

Performance Analysis of M-ary APSK Uncoded Space-time Labeling Diversity with Three Transmit

Antennas in Rician Broadcast Channels (in preparation for submission to a journal). The summary of

this paper is as follows:

This paper investigates the design of labeling mappers for uncoded space-time labeling diversity with

three transmit antennas (USTLD) based on amplitude and phase shift keying (APSK) modulation.

The proposed USTLD schemes are DVB-S2 and DVB-S2X standards compatible in both Rician

frequency-flat fast and quasi-static fading channels. Numerical analysis of the proposed schemes are

derived based on pairwise error probability. The analytical results are validated by Monte Carlo

simulations, which converge accurately at high SNR. Furthermore, by adapting constellation

structure between square QAM modulations and concentric rings of APSK modulations, the authors

proposed mapper design for 16-APSK, 32-APSK and 64-APSK modulations for USTLD using

heuristic algorithm. Finally, the proposed USTLD schemes show bit error rate (BER) improvement

over the existing two transmit USTLD schemes with error performance gain of 1.2 dB and 2.8 dB at

a BER of 10−6 for 16-APSK and 64-APSK USTLD scheme, respectively.

3.3 Paper C:

Symbol Mapping Design and Error Analysis of Cross-QAM Uncoded Space-Time Labeling Diversity

with Three Transmit Antennas (in preparation for submission to a journal). The summary of this paper

is as follows:

Uncoded space-time labeling diversity (USTLD) is a recent scheme that improves the error

performance of space-time block code by using labeling mappers to transmit information bits. In this

scheme, square quadratic amplitude modulation (QAM) has been widely used due to its high power

and bandwidth efficiency. However, square QAM does not provide satisfying requirements for a

system where the number of bits per symbol is odd. In this scenario, the peak and the average power

of transmission can be reduced by using cross QAMs (XQAMs) instead. Hence, authors in this paper

investigate the design of XQAM labeling mappers for USTLD with three transmit antennas over

independent and identically distributed (i.i.d) Nakagami-m fading channels. The analytical average

bit error probability (ABEP) are derived based on pairwise error probability. This expression is

validated by Monte Carlo simulation results, which converge accurately at high signal-to-noise ratio.

Since channels are not i.i.d in practical sense, the authors further investigate XQAM USTLD scheme

in correlated channels. The ABEP for the proposed system are derived and served to validate the

Monte-Carlo simulation results. Finally, the impact of channel correlation are demonstrated by
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comparing the BER results with BER of i.i.d channels.

4 Structure of the Thesis

The work covered in this thesis has been detailed in paper A, paper B and paper C and are presented

in Part II, Part III and Part IV. Part V is the conclusion and suggestions for possible future research

directions.
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1. ABSTRACT

1 Abstract

Uncoded space-time labeling diversity (USTLD) is a recent scheme that improves the error

performance of space-time block–coded wireless communication links. However, the existing

space-time labeling diversity technique used in USTLD only employs two transmit antennas. To

further improve error performance in USTLD systems, this paper investigates USTLD systems with

three transmit antennas. A heuristic approach is proposed to design the second and third mappers.

Simulation results show superior error performance compared with the existing two transmit antenna

USTLD. Furthermore, an analytical expression for a tight bound of the average bit error probability

of the proposed system with three transmit antennas is derived. Moreover, complexity reduction

analysis of the low-complexity (LC) detector is proposed. It is shown that the proposed LC algorithm

achieves near-maximum likelihood detection accuracy, while reducing complexity by 51% and

96.5% for 16QAM and 64QAM, respectively.
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2. INTRODUCTION

2 Introduction

Space-time coded modulation (STCM) is a recent scheme widely employed in wireless

communication systems as a result of improvements in reliability and spectral efficiency of

multiple-input multiple-output (MIMO) techniques [1]. This coding scheme provides three forms of

error performance enhancement - labeling diversity, time diversity, and antenna diversity. Labeling

diversity has been studied in both coded and uncoded communication systems.

In coded communication systems, research effort on maximizing the asymptotic coding gain has

gained attention [1], [2], [3], [4], [5], [6], [7]. Huang and Ritcey [1] proposed an optimal

constellation diversity technique for NR × NT bit-interleaved STCM (BI-STCM). Huang and

Ritcey [1] further discussed a labeling design criterion for BI-STCM. Meanwhile, Huang and

Ritcey [2] proposed an improved 16-ary quadrature amplitude modulation (QAM) labeling diversity

scheme for BI-STCM iterative decoding using Alamouti space-time block coding (STBC). Recently,

labeling was also discussed for 2 × 2 wireless local area network (WLAN) coded networks [3]. An

improved version of the labeling diversity scheme has been introduced in Krasicki and

Szulakiewicz [4] - [7] that maximizes the asymptotic coding gain.

In uncoded communication systems, the constellation rearrangement (CR), which is the same

concept of labeling diversity was used to improve the error performance of systems that employ

transmissions of the same information bits in multiple packet transmission systems and relay

networks [8], [9] [10]. The labeling diversity technique maps the same information bits into different

constellations for transmissions and has been employed in multiple packet transmission systems, [8]

OFDM, [9] and wireless relay networks [10].

Very recently, Xu et al [11] applied labeling diversity to STBC systems, which was named as uncoded

space-time labeling diversity (USTLD). USTLD achieves a significant signal-to-noise ratio (SNR)

gain in comparing with STBC scheme. However, the optimal maximum likelihood (ML) detection

principle has the highest computational complexity, since the detector performs joint symbol detection

for USTLD.

Govindasamy et al [12] also applied labeling diversity scheme to STBC spatial modulation

(STBC-SM), named as STBC-SM labeling diversity (STBC-SM-LD). STBC-SM-LD shows

improved bit error rate (BER) when compared with the conventional STBC-SM. Also, Pillay and

Xu [13] further applied media-based modulation (MbM) with radio frequency (RF) mirrors to

USTLD, which is termed USTLD-STCM. USTLD-STCM exhibits a significant performance in BER

over USTLD [11] and space-time channel modulation [14].
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3. SYSTEM MODEL

In this paper, we focus on USTLD systems. The USTLD systems in both Xu et al [11] and

Govindasamy et al [12] are limited to only two transmit antennas. To further improve error

performance of USTLD, we propose to extend the USTLD system to three transmit antennas. In the

proposed system, the main work is to find the second and third mappers, which maximize the

minimum product distance. A heuristic approach is adopted to design the second and third mappers

in the proposed system. In addition, we also employ the union bound to derive the analytical error

performance of the system. Since the complexity of ML detection is very high, the orthogonal

projection (OP) detection algorithm used in Govindasamy et al [12] is also employed in the proposed

system to reduce the detection complexity.

The remainder of this paper is structured as follows: Section 3 describes the existing system model

of two transmit antenna USTLD and presents the proposed three transmit antenna USTLD system

model. The analytical expression for error performance is presented in Section 4. Section 5 proposes

a new mapper design based on a heuristic algorithm. In Section 6, detection schemes, computational

complexities, and analysis are presented. Section 7 discusses numerical results. The final conclusion

is discussed in Section 8.

In terms of notation, NT and NR denote the number of transmit and receive antennas, respectively.

Boldface letters represent the vectors and matrices, and italics are used for scalars. | · |, [·]T , (·)H , and

‖ · ‖F denote the Euclidean norm, transpose, transpose and conjugate, and Frobenius norm,

respectively. Q(·), (·)! and E{·} denote Gaussian Q-function, factorial, and statistical expectation

operator, respectively. argmaxw(·) and argminw(·) are used for maximum and minimum of the

argument with respect to w. j is a complex number.

3 System Model

In this section, we first describe the system model of existing 2×NR USTLD MIMO scheme. On the

basis of increase in number of transmit antennas, we then discuss the proposed system model.

3.1 Existing USTLD system model

The conventional USTLD is a MIMO technique [11] with transmit and receive antennas NT and NR

where NT = 2. Message bits are partitioned into two bit streams, m1 = [m1,1,m1,2, · · · ,m1,r]

and m2 = [m2,1,m2,2, · · · ,m2,r] each of length r = log2 M. The two bit streams are fed into two

USTLD mappers - Mapper 1 (ΩM
1 ) and Mapper 2 (ΩM

2 ). Mapper 1 uses Gray-coded M-ary QAM

(MQAM) constellation points in the Argand plane and maps m1 onto two symbols, x1
q1 = ΩM

1 (m1)
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3. SYSTEM MODEL

and x1
q2 = ΩM

1 (m2), where qi ∈ [1 : M ] , i ∈ [1 : 2]

Mapper 2 uses optimized labeling maps in the Argand plane and maps m2 onto two symbols, x2
q1 =

ΩM
2 (m1) and x2

q2 = ΩM
2 (m2). Assume E(|xkqi |

2) = 1, k ∈ [1 : 2]. After the mapping, two symbols

x1
q1 and x1

q2 are transmitted by antenna 1 simultaneously in the first time slot. Likewise, two symbols

x2
q2 and x2

q1 are transmitted by antenna 2 simultaneously in the second time slot.

The received signal vector as given as NR × 1 in time slot k, is thus defined as:

yk =

√
ρ

2
Hkxk + ηk, k ∈ [1 : 2] (A.1)

where x1 = [x1
q1x

1
q2 ]T , x2 = [x2

q2x
2
q1 ]T . yk = [ y1,k, y2,k, · · · , yNR,k]T

ρ
2 is the average SNR of the

transmission antenna. On the whole, labeling diversity codeword is defined as X = [x1 x2] and the set

of symbol pairs of (x1, x2) is contained in χ2. Hk is the NR× 2 channel fading for time slot k defined

as Hk = [h1
k h2

k], and ηk is an NR × 1 additive white Gaussian noise (AWGN) vector. hk and ηk are

independent and identically distributed (i.i.d) complex Gaussian random variables (RVs) distribution

according to CN(0, 1) and CN(0, σ2), respectively.

At the receiver, optimal maximum-likelihood (ML) detection principle is used to estimate the

transmitted symbols, thus given by

[x1
q̂1 , x

1
q̂2 , x

2
q̂2 , x

2
q̂1 ] = argmin

(x1,x2)∈χ2

( 2∑
k=1

∥∥∥yk −
√
ρ

2
Hkxk

∥∥∥2

F

)
(A.2)

3.2 Proposed USTLD system model

In this subsection, the authors consider NR × NT USTLD MIMO system, as shown in Figure A.1,

which is an extension of the system in Xu et al, [11] where NT = 3. Information bits are partitioned

into three bit streams, mi = [mi,1, · · · ,mi,r] , i ∈ [1 : 3], where r = log2 M, where M = 16 or 64.

Let qi = 1 +
∑r

k=1 2k−1mi,k, which is the index of bit stream mi. Bit stream mi is fed into three

mappers, mapper 1 (ΩM
1 ), mapper 2 (ΩM

2 ) and mapper 3 (ΩM
3 ). ΩM

1 (mi) maps bit stream mi into

MQAM constellation points in the Argand plane and gives xkqi = ΩM
k (mi) , i ∈ [1 : 3] and k ∈ [1 : 3] .

In the proposed system, mapper 1 ΩM
1 is Gray mapper; mappers 2 and 3 will both be designed with

the objective of maximizing the minimum product distance. It is assumed that E[|xlqi |
2] = 1. After

the mapping, symbol transmission takes place simultaneously in antennas 1, 2 and 3. In antenna 1,

x1
q1 , x1

q2 , and x1
q3 are transmitted in the first time slot; in antenna 2, x2

q1 , x2
q2 , and x2

q3 are transmitted

in the second time slot; and in antenna 3, x3
q1 , x3

q2 , and x3
q3 are transmitted in the third time slot. Let
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3. SYSTEM MODEL
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Figure A.1: System model of three transmit antenna uncoded space-time labeling diversity (USTLD). RF, radio frequency
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4. ERROR PERFORMANCE ANALYSIS OF USTLD WITH THREE TRANSMIT ANTENNAS

the overall transmitted USTLD codeword vector be defined as xk = [xkq1 , x
k
q2 , x

k
q3 ] T , k ∈ [1 : 3] . For

convenience of the following discussion, let χ be the set of symbol pair combinations of (x1, x2, x3).

Then, the received signal vector in time slot k, k ∈ [1 : 3] is given by

yk =

√
ρ

3
Hkxk + nk, k ∈ [ 1 : 3] (A.3)

where yk ∈ CNR×1 is the kth received signal vector. ρ
3 is the total average SNR of the transmission

antenna. Hk = [ h1
k,h

2
k,h

3
k] , where hik ∈ CNR×1 is the kth channel fading vector for the ith transmit

antenna. nk ∈ CNR×1 is an NR × 1 AWGN vector. The authors assumed that hik and nk are i.i.d

complex Gaussian RVs according to CN(0, 1) and CN(0, 1), respectively.

4 Error Performance analysis of USTLD with Three Transmit

Antennas

The bit error performance of USTLD with two transmit antennas has been studied in Xu et al. [11].

In the derivation of error performance of USTLD in Xu et al. [11], it is assumed that only one pair

of symbols is detected with errors while the other pair of symbols is detected correctly at high SNR.

In this paper, we extend above assumption to three transmit antennas and also assume that only one

triad of symbols is detected with errors, while the other two triads of symbols are detected correctly

at high SNR. Assuming at high SNR, two triads of symbols, xkqi , i ∈ [ 2 : 3] , k ∈ [ 1 : 3] are detected

correctly while xkq1 is detected with errors. Based on the above assumption, (A.3) can equivalently be

written as

yk =

√
ρ

3
h1
kx

k
q1 + nk, k ∈ [ 1 : 3] (A.4)

Based on the equivalent model in (A.4), the average bit error probability (ABEP) is defined as [13]:

ABEP (ρ) ≤ 1

Mr

M∑
q1=1

M∑
q̂1 6=q1

∆(q1, q̂1)P (X→ X̂) (A.5)

where ∆(q1, q̂1) is the number of bit errors for the associated pairwise error probability (PEP) event

P (X → X̂) between the transmitted codeword X and the received codeword X̂, represented as X =

[x1
q1x

2
q1x

3
q1 ] and X̂ = [ x̂1

q1 x̂
2
q1 x̂

3
q1 ] .

The conditional PEP on h1
k, k ∈ [ 1 : 3] can be formulated as

P (X→ X̂|h1
1, h1

2, h1
3) = P

(
3∑

k=1

∥∥∥yk −
√
ρ

3
h1
kx̂

k
q1

∥∥∥2

F

<
3∑

k=1

∥∥∥yk −
√
ρ

3
h1
kx

k
q1

∥∥∥2

F

)
(A.6)
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4. ERROR PERFORMANCE ANALYSIS OF USTLD WITH THREE TRANSMIT ANTENNAS

Substituting (A.4) into (A.6), (A.6) becomes

P (X→ X̂|h1
1, h1

2, h1
3) = P

(
3∑

k=1

∥∥∥nk +

√
ρ

3
h1
k(x

k
q1 − x̂

k
q1)
∥∥∥2

F
<

3∑
k=1

∥∥∥nk
∥∥∥2

F

)
(A.7)

Let dk = xkq1 − x̂
k
q1 . (A.7) can be further simplified as

P (X→ X̂|h1
1, h1

2, h1
3) = P

(
3∑

k=1

Re

{√
ρ

3
h1
kdknHi

}
>

1

2

3∑
k=1

δk

)
(A.8)

where δk =
∥∥∥√ρ

3h1
kdk

∥∥∥2

F
. δk can be further simplified as δk = ρ

3 |dk|
2
∥∥h1

k

∥∥2

F
.

Since h1
k, xkq1 and x̂kq1 are given in (A.8),

√
ρ
3h1

k(x
k
q1 − x̂

k
q1)nHk is also a complex Gaussian RV with

zero mean and variance of δk.

P (X→ X̂|h1
1, h1

2, h1
3) = Q

(√
1

2
(δ1 + δ2 + δ3)

)
(A.9)

where δk, k ∈ [ 1 : 3] , are central chi-squared RVs with the probability density function (PDF) in

(A.10).

fδk(vk) =
1

(2σ2
αk

)NR(NR − 1)!
exp

(
− vk

2σ2
αk

)
(A.10)

where σ2
αk

= ρ
12 |dk|

2.

By averaging three i.i.d RVs δk, k ∈ [ 1 : 3] the PEP can be expressed as

P (X→ X̂) =

∫ ∞
0

∫ ∞
0

∫ ∞
0

P (X→ X̂|h1
1, h1

2, h1
3)fδ1(v1)fδ2(v2)fδ3(v3)dv1dv2dv3 (A.11)

Using trapezoidal transformation of the Q-function∫ b

a
f(x)dx =

b− a
n

[
f(a) + f(b)

2
+

n−1∑
k=1

f
(
a+

k(b− a)

n

)]
(A.12)

PEP can be verified as

P (X→ X̂) =
1

2n

[1

2

3∏
k=1

Mk

(1

2

)
+

n−1∑
l=1

3∏
k=1

Mk

( 1

2 sin2( lπ2n)

)]
(A.13)

where Mk(s) is the moment generating function defined as:

Mk(s) =

∫ ∞
0

fδk(vk)(γ)e−svkdvk =
( 1

1 + 2σ2
αk
s

)NR
(A.14)

We finally have the PEP:

P (X→ X̂) =
1

2n

[1

2

3∏
k=1

(
1 +

ρ

12
δk

)−NR
+

n−1∑
l=1

3∏
k=1

(
1 +

ρ

12
δk

1

sin2( lπ2n)

)−NR]
(A.15)
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At high SNR, ρ
12δk � 1, P (X→ X̂) can be approximated as

P (X→ X̂) ≈ 1

2n

[1

2

3∏
k=1

( ρ
12
δk

)−NR
+
n−1∑
l=1

3∏
k=1

( ρ
12
δk

1

sin2( lπ2n)

)−NR]
(A.16)

Equation (A.16) will be used to guide the design of mappers. The overall diversity gain d attained by

the scheme in Equation (A.16) can be defined as [15]

lim
SNR→∞

logPe(SNR)

log(SNR)
= −d, (A.17)

where Pe(SNR) denotes overall probability of error as a function of SNR.

Given Pe(SNR) = P (X→ X̂) as given in (A.16), Equation (A.17) becomes

− d = lim
SNR→∞

log(P (X→ X̂))

log(SNR)
(A.18)

On the basis of (A.18), we can derive the diversity gain d as

d = 3NR

Detail of the derivation is shown in Appendix A.

5 Design of the Second and the Third M-QAM Mapper in USTLD with

three transmit antennas

It is shown in (A.16) that the error performance of USTLD system depends on the minimum product

distance
∏3
k=1 δk. Maximizing the minimum product distance will minimize the error performance

of USTLD system. Maximizing the minimum product distance can be achieved through the design of

three mappers in USTLD system. Since Mapper 1 is Gray mapper the optimization can be formulated

as

(ΩM
2 ,ΩM

3 ) = argmax
(xkq1 ,x̂

k
q1

)∈χ

{
min

xkq1 6=x̂
k
q1
∈χ

3∏
k=1

δk

}
(A.19)

In designing the mappers, research efforts have been focused towards maximizing the minimum

product distance [4], [5], [8] - [11]. In Krasicki and Szulakiewicz, [4], [5], for instance, a pair of

labels assigned to adjacent symbols in one mapping is fed to symbols spaced further apart in

subsequent mappings. In Xu et al [11], a heuristic approach is proposed to design the mappers. The

approach first regards 16QAM or 64QAM constellation points as a 4 × 4 or 8 × 8. This method is

then followed by rearranging the rows and the columns of the matrix to ensure that any two adjacent

rows in the source constellation matric are nonadjacent. The approach finally swaps constellation
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Table A.1: Mapping for two transmit antenna systems

points in different quadrature. In this paper, we also propose another heuristic approach to design the

mappers. In the MQAM constellation, the Euclidean distance between any two different symbols

xiand xk is defined as

dED = (xIi − xIk)2 + (xQi − x
Q
k )2 (A.20)

where xi = xIi + jxQi and xk = xIk + jxQk , xi 6= xk, dED is the sum of (xIi − xIk)2, and (xQi − x
Q
k )2,

which are the real part distance and imaginary part distance. Since squared MQAM constellation is

symmetric in terms of real and imaginary parts, the mapper design of squared MQAM in USTLD is

equivalent to the real component mapper design or the imaginary component mapper design.

For example, the real or imaginary component of 16QAM is 4-ary pulse amplitude modulation

(4PAM) while the real or imaginary component of 64QAM is 8PAM. The proposed approach to

design mappers is based on swapping different amplitude in symmetric way. There are three different

mappers in 4PAM. These three mappers are shown in Figure A.2(A − C). For convenience

discussion, we regard these three mappers as different transforms, f1,f2 and f3. For two transmit

antenna systems, one of the mappers in Krasicki and Szulakiewicz, [4], [5] is selected for the second

mapper, which provides the best error performance, to the best knowledge of the authors. This

mapper can be designed based on transform f1 and f3, which is shown in Table A.1. For three

transmit antenna systems, the third mapper is also designed based on transform f1 and f3 which is

shown in Table A.2.

For 64QAM, there are three different mappers shown as Figure A.3(A − C), which can also be

regarded as f4, f5 and f6. Transforms f4 and f5 can be combined as a single transform, while f6 is

selected as the second mapper. For ease of analysis, each quadrant is partitioned into a single 16QAM

equivalent with two and three transmit antennas, respectively.
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Figure A.2: Three transform of 4-ary pulse amplitude modulation
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Figure A.3: Mappers of 8-ary pulse amplitude modulation
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Table A.2: Mapping for three transmit antenna systems

Based on design of mappers in Tables A.1 and A.2, we illustrate Gray-coded labeling map

ΩM
1 ,optimized maps ΩM

2 and ΩM
3 for 16-QAM in Figure A.4 and for 64-QAM in Figure A.5.
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Figure A.4: 16-quadrature amplitude modulation Gray-coded labeling map Ω16
1 , optimized maps Ω16

2 , and Ω16
2
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Figure A.5: 64-quadrature amplitude modulation Gray-coded labeling map Ω64
1 , optimized maps Ω64

2 , and Ω64
2
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6. DETECTION SCHEMES

6 Detection Schemes

6.1 ML detection

Assuming that perfect channel state information (CSI) at the receiver, the transmitted symbols are

estimated by minimizing the ML expression as given by

[q̂1, q̂2, q̂3] = argmin
qk∈[1:M ],
k∈[1:3]

( 3∑
k=1

∥∥∥yk −
√
ρ

3
Hkxk

∥∥∥2

F

)
(A.21)

The complexity of the optimal detection is proportional to ′(M3), which is very high-order

modulation. In the next subsection, we will discuss a low complexity (LC) detection scheme for the

proposed USTLD with three transmit antennas.

6.2 Proposed LC detection scheme for USTLD

To reduce the computational complexity of the optimal ML USTLD detector, this section proposes a

near-ML LC detector based on OP [16]. First, we express the received signal vector in time slot k,

k ∈ [1 : 3] as (A.3). The algorithm for the OP has four steps as

Step 1 – Compute the projection matrices Pik and projection spaces rik,qi .

We define projection matrices Pik, i, k ∈ [1 : 3] that project a signal on the subspace orthogonal to hik,

respectively, such that Pik is given by

Pik = INR − Tik (A.22)

where INR is an identity matrix, Tik = Hi
k((Hi

k)
HHi

k)
−1(Hi

k)
H and Hi

k = [h1
k h2

k h3
k]\[hik], where

[h1
k h2

k h3
k]\[hik] denotes excluding hik from [h1

k h2
k h3

k]. For example, H2
1 = [h1

1 h2
1 h3

1]\[h2
1] = [h1

1 h3
1].

Let the projection spaces be rik,qi , which is given by

rik,qi = yk −
√
ρ

3
hikx

k
qi , i, k ∈ [1 : 3] (A.23)

Step 2 - Based on OP, compute the metric for given i, i ∈ [1 : 3].

zqi =

3∑
k=1

∥∥∥Pik(rik,qi)
∥∥∥2

F
, qi ∈ [1 : M ], i ∈ [1 : 3] (A.24)

Step 3 - Determine the indices of l possible transmitted symbols for each i, i ∈ [1 : 3].

Sort the metric sets zq1 = {zq1,1 , zq1,2 , · · · , zq1,M }, zq2 = {zq2,1 , zq2,2 , · · · , zq2,M } and

zq3 = {zq3,1 , zq3,2 , · · · , zq3,M } in ascending order, where qi,j , i ∈ [1 : 3], j ∈ [1 : 3]. For

convenience, let Φi,l = {qi,1, qi,2, · · · , qi,l}, where q̂i, i ∈ [1 : 3], is the estimated indices for the
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6. DETECTION SCHEMES

transmitted symbols.

Step 4 - Perform joint detection.

Finally, the joint detection is given by

[q̂1, q̂2, q̂3] = argmin
qi,v∈Φi,l

( 3∑
k=1

∥∥∥yk −
√
ρ

3
hikx

k
qi,v

∥∥∥2

F

)
(A.25)

6.3 Complexity derivations of LC detection scheme for USTLD

The authors carry out complexity derivation of optimal ML USTLD in this subsection by analyzing

and evaluating the decision metric similar to Rajashekar [17] using the number of floating point

operations for each of MNT possible vector pairs. For a given vector xkqi , i, k ∈ [1 : 3], the following

three steps derive the complexity of calculating vector norm
∥∥∥yk − hikxkqi

∥∥∥2

F
.

Step 1 - Matrix product hikxkqi : NTNR complex multiplications, NTNR −NR complex additions.

Step 2 - Vector subtraction yk − hikxkqi : NR complex subtractions.

Step 3 - Vector norm
∥∥∥yk − hikxkqi

∥∥∥2

F
: 4NR − 1 real operations.

Matrix product hikxkqi is given for h1
kx

k
q1 , h2

kx
k
q2 , and h3

kx
k
q3 with adding effective real operations

3(7NTNR − NR) + 2. Vector norm is performed for three real operations with two additions. The

number of possible combinations of x1
q1 , x2

q1 and x3
q1 is dependent on the size of the constellation

used, M . Each of the NT elements in the transmitted vector could take one of M possible values.

Therefore, the overall complexity of ML detection is given as

σUSTLD−ML = MNT (63NTNR + 9NR + 5) (A.26)

Since the complexity of LC near-ML detector scheme for STLD is an extension of two mappers design

in Govindasamy et al, [12] the algorithm for 3×NR USTLD scheme is analyzed in three steps:

Step 1 – Computing the projection matrices.

The number of complex operations required in evaluating and computing the projection matrices are

based on (A.22). The argument of the inverse operation is a real scalar quantity R, where quantity

R = |Hi
k|2F = ((Hi

k)
HHi

k). Since the argument operates on a quantity R, the authors ignore the

inverse operation. The analysis requires NR complex multiplications and (NR − 1) complex

additions. Furthermore, the second term becomes Hi
k.

1
R .(Hi

k)
H , which requires only N2

R + NR

complex multiplications. Finally, the remaining complex operation is the subtraction of an NR ×NR

matrix resulting in N2
R complex additions. Given that we require nine projection matrices, the overall

number of complex operations required for computation is thus

σpm = 9N2
R + 14NR + 6 (A.27)
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Step 2 - Computing the metric sets zqi , where qi ∈ [1 : M ], i ∈ [1 : 3].

The number of complex operations required in evaluating and computing the metric for given i, i ∈

[1 : 3]. Given the complex operation in (A.24) that are equal, each of the computation of P1
1(r1

1,q1
),

P2
1(r2

1,q1
), and P3

1(r3
1,q1

) is a multiplication of a NR × NR matrix and a NR × 1 vector. This gives

a NR × 1 vector, which requires N2
R complex multiplications and NR(NR − 1) complex addition.

The computation of r1
1,q1

, r2
1,q1

and r3
1,q1

contain redundant calculations
√

ρ
3h1

1,
√

ρ
3h1

2, and
√

ρ
3h1

3,

respectively, that can be evaluated and stored. Thus, the overall metric sets gives

σset = M(21N2
R + 36NR − 4) (A.28)

Step 3 - Computing the joint ML detection The final step requires performing joint ML search

through the candidate sets in (A.25) and determining the number of complex operations σML−LC

performed through the search. The argument of each operator in the Frobenius norm is 2NR complex

multiplications and NR complex additions. In the said (A.25), each Frobenius norm requires NR

complex multiplications and (NR − 1) complex additions. Given that the norm operator contains

three norms and is evaluated over l3 possible transmitted symbol combination, we arrive at

σML−LC = 45l3NR − 6l3 − 4 (A.29)

The overall computational complexity for LC is

σUSTLD−LC = σpm + σset + σML−LC (A.30)

σUSTLD−LC = N2
R(9 + 21M) +NR(14 + 36M + 45l3) + (2− 4M − 6l3)

6.4 Computational complexity comparison

The computational complexities for ML and LC OP detectors for the proposed three mappers are

evaluated and compared in this section. The tabulated result in Table A3 outlines complexity

comparison for 16QAM and 64QAM. The percentage reduction in complexity between the two

detectors is thus given as

% Reduction σUSTLD−LC = 1− σUSTLD−LC
σUSTLD−ML

× 100% (A.31)

7 Simulation and Discussion

The Monte Carlo simulation outputs and the theoretical BER expressions for the proposed 3 × NR

USTLD scheme for 16-QAM and 64-QAM are presented in this section. We consider simulation
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Table A.3: Computational complexities between ML and proposed LC detectors for USTLD

Configuration ML Detector Proposed LC Detector Percentage Drop in Complexity

M = 16, L=9 201728 98854 51%

M = 64, L=9 3227648 112918 96.5%

using Monte Carlo techniques in this research since the average BER performance is plotted against

the average SNR per received antenna for different systems configuration. In this study, we assume

NR = 4 received antennas in all cases.

Further, the authors assume perfect CSI at the receiver and an ideal feedback link to the transmitter

exists. NT antennas are separated wide enough from NR antennas in order to avoid correlation, while

maximal ration combining reception is considered with NR received signal. We also assume that the

total NT power is the same at the transmitter.

Performance comparisons for 16QAM are made for proposed 3 × NR mappers USTLD, existing

2 × NR mappers USTLD [11] and Samra [8]. However, performance comparisons for 64QAM are

made only for proposed 3×NR mappers USTLD and 2×NR mappers USTLD [11], since Samra [8]

is limited to 16QAM simulation. The results for 16QAM USTLD and 64QAM 2 ×NR and 3 ×NR

USTLD and are depicted in Figure A6 and Figure A7, respectively.

In the first set of investigation, performance comparisons for 16QAM model for existing USTLD [11],

proposed USTLD and 16QAM mapping proposed by Samra [8] are evaluated at a BER gain of 10−5.

The proposed 3×NR USTLD exhibits an SNR performance gain of approximate value 0.8 dB when

compared with Samra [8] and 3 dB over USTLD of existing Xu et al. [11].

Secondly, the simulation outputs and analytical expression for the proposed USTLD BER at 64QAM

match very closely at high SNR and show an approximate SNR gain of 4.8 dB when compared with

existing USTLD [11] at a BER value of 10−5.

The ABEP expression is evaluated for a tight analytical bound with the simulation results for

USTLD. Again, the formulated LC detector for both 16QAM and 64QAM USTLD approach near

ML performance with considerable lower complexity than the ML detector.

The labeling maps design in this paper are based on heuristic algorithm whose determination has the

merit of requiring an exhaustive computer search.

40



i
i

“output” — 2020/6/25 — 18:38 — page 41 — #63 i
i

i
i

i
i

7. SIMULATION AND DISCUSSION

0 2 4 6 8 10 12 14 16

Average SNR (dB)

10-4

10-3

10-2

10-1

100

A
v
e
ra

g
e
 B

E
R

2x4 USTLD-Sim

2x4 USTLD-Theory

3x4 Samra's Second Mapper

3x4 Samra's Second Theory

3x4 Proposed USTLD Sim

3x4 Proposed USTLD Theory

3x4 Low Complexity USTLD

Figure A.6: Bit error rate (BER) performance of uncoded space-time labeling diversity (USTLD) systems for 16-quadrature

amplitude modulation using maximum likelihood and low-complexity detectors. SNR, signal-to-noise ratio
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Figure A.7: Bit error rate (BER) performance of uncoded space-time labeling diversity (USTLD) systems for 64-quadrature

amplitude modulation using maximum likelihood and low-complexity detectors
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8. CONCLUSION

8 Conclusion

This paper introduces three transmit antennas USTLD scheme to further improve error performance

of the existing two transmit antennas USTLD scheme. The scheme requires designing a new mapper

for the third symbol mapping using heuristic approach to mapper design. The heuristic algorithm is

designed to maximize the minimum product distance.

The analytical union bound was derived that tightly matched the Monte Carlo simulation results for

different M-ary constellation systems. Moreover, the effect of high computational payload, which

exists in the ML detection scheme, was mitigated by proposing a near-ML OP LC scheme.

Compared with the existing two mapper USTLD, the performance of the proposed three-mapper

USTLD improved significantly while reducing computational complexity by 51% and 96.5% for

16QAM and 64QAM respectively.
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9. APPENDIX A

9 Appendix A

P (X→ X̂) DIVERSITY GAIN DERIVATION

Where ρ = SNR, Equation (A.18) becomes

− d = lim
ρ→∞

log

(
1

2n

[
1
2

∏3
k=1

(
ρ
12δk

)−NR
+
n−1∑
l=1

(
1

sin2
(
lπ
2n

))−3NR 3∏
k=1

( ρ
12
δk

)−NR])
log(ρ)

(A.32)

Simplify further, −d is given as

− d = lim
ρ→∞

log(βρ−3NR)

log(ρ)
(A.33)

where β = 1
2n

[
1
2 +

n−1∑
l=1

(
1

sin2
(
lπ
2n

))−3NR
]

3∏
k=1

(
δk
12

)−NR

Since lim
ρ→∞

log(β)
log(ρ) = 0, therefore, d = 3NR.

The diversity order d of the system in Equation (A.16) with three transmit antennas is 3NR.
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1. ABSTRACT

1 Abstract

This paper investigates the design of labeling mappers for uncoded space-time labeling diversity with

three transmit antennas (USTLD) based on amplitude and phase shift keying (APSK) modulation.

The proposed USTLD schemes are DVB-S2 and DVB-S2X standards compatible and provide

robustness against nonlinear distortion for both Rician fast frequency-flat fading and quasi-static

frequency-flat fading channels. Numerical analysis of the proposed schemes are derived based on

pairwise error probability. The analytical results are validated by Monte Carlo simulations, which

converge accurately at high SNR. Furthermore, by adapting constellation structure between square

QAM modulations and concentric rings of APSK modulations, the authors proposed mapper design

for 16-APSK, 32-APSK and 64-APSK modulations for USTLD using heuristic algorithm. Finally,

the proposed USTLD schemes show bit error rate (BER) improvement over the existing two transmit

USTLD schemes with error performance gain of 1.2 dB and 2.8 dB at a BER of 10−6 for 16-APSK

and 64-APSK USTLD scheme, respectively.
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2. INTRODUCTION

2 Introduction

The growing demand for higher spectral efficiency and receiver error performance has led to

evolution of standards for digital communications. By exploiting efficient transmission techniques,

new standards for digital broadcasting are emerging. The second-generation digital video

broadcasting for satellites (DVB-S2) has been improved upon and extended without fundamentally

changing its original structure [1]. This updated standard with the name DVB-S2 extensions

(DVB-S2X) is an improvement in data rates over a wide range of signal-to-noise ratios (SNRs) to

DVB-S2 standard [2].

Specifically, these extensions to DVB-S2X include the design of new high order constellations up to

256-APSK as opposed to 32-APSK of DVB-S2, the design of new low density parity check (LDPC)

codes, the adoption of advanced receiver architectures, the application of the faster-than-Nyquist

technique, or its extension known as time packing, and an optimization of the bandwidth and the

baud rate of the transmitted signals [3].

On the other hand, the design of higher order modulation scheme for improved spectral efficiency in

digital broadcasting has received a significant attention in the recent time. Modulation and coding

configurations adopting constellations of orders 64-APSK, 128-APSK and 256-APSK are employed

in DVB-S2X standard [2]. There is a foreseeable demands for larger constellations in near future

knowing fully well that the traffic demand for satellite broadband is expected to grow six-fold by

2020 [4].

Several modern wireless communication schemes use M-ary quadrature amplitude modulation (M-

QAM) constellations as transmission techniques as a result of their square structure. However, M-

QAM do not provide satisfying robustness to amplitude and phase noise distortion effects due to the

increase in the number of constellation points. This leads to increasing peak to average power ratio

(PAPR) that is not well suited for long distance satellite communications [5]. Also, M-QAM requires

a cost ineffective power amplifier and oscillator at the transmitter in order to guarantee low distortion

which complicate the application of dense transmission techniques in realistic high-data rate digital

broadcasting systems.

Due to its nonlinear channels typical of digital broadcasting communications, M-ary amplitude

phase-shift keying (M-APSK) is a modulation technique that has become widely adopted for

DVB-S2 and DVB-S2X that offers an attractive combination of spectral and energy efficiency. The

APSK constellation design approaches considered recently in the literature follow two main

optimization criteria [6], [7], [8]. These criteria are maximization of the minimum Euclidean distance
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(MED), and maximization of the channel mutual information (MI). Unlike the former optimization

criterion which refers to the high SNR asymptotic case, channel MI provides an optimum M-APSK

constellation for each SNR operating point.

Constellation labeling design for M-APSK scheme in coded and uncoded modulations have become an

attractive research topic for digital broadcasting [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16].

In this area, maximizing the MI between the channel input and output signals is a popular criterion.

Based on MI criterion, both the radii and phases of each concentric circle as well as the number of

points on each circle can be optimized for high capacity error performance and robustness to phase

noise.

Authors in [9] showed that M-APSK performs better in terms of MI, particularly for the cases of

16-APSK and 64-APSK considering the peak power limited Gaussian complex channels. MI

provides the maximum transmission rate (in bits per channel use) at which error-free transmission is

possible with a given signal set. The design optimization analysis and results obtained for 64-APSK

modulation schemes based on the MI maximization criterion are presented in [8]. Optimization of

64-APSK constellation was made by maximizing MI criteria, which ensures that the maximum

amount of information par symbol is transmitted over communication channel.

The problem of designing constellations that maximize the MI of a memoryless phase noise channel

was addressed in the literature [13]. In this study, the approximate MI for the channel was derived, and

optimal constellations were obtained by maximizing the MI using a simulated annealing algorithm.

The author in [14] proposed two methods of improving the average MI based on phase and amplitude

in bit-interleaved coded modulation and the improvement were verified by bit error rate. Other authors

have proposed multi-level coded modulation scheme with low detection complexity and competitive

error performance [5].

The impact of nonlinear distortion in the framework of single-carrier signal has been investigated and

a new modeling approach for its compensation proposed in uncoded and coded modulation [15]. For

coded modulation, recently developed metrics that can be adjusted to the statistical characteristics of

nonlinear channel distortion was proposed in [15]. For uncoded modulation, optimal decision region

as well as suboptimal ones that may exhibit error performance gains close to the optimal in the case of

low SNR was equally developed in [15]. Also, authors in [16] derived error rate bounds for 16-APSK

and 32-APSK in DVB-S2 standard in uncoded modulation scheme and determined the optimal input

power level for the soft-limiter channel.

Recently, multiple-input multiple-output (MIMO) scheme has been considered as one of the key next-
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generation technologies for hybrid satellite-terrestrial broadcasting systems [17], [18], [19], [20], [20].

Due to its potential multiplexing gain or diversity gain and increased coverage area, or a trade-off

between them, MIMO can provide higher data rates than single antenna systems without any extra

bandwidth consumption or propagation power usage. For instance, the second generation Digital

Video Broadcasting - Terrestrial (DVB-T2) [21] has recently employed multiple-input single-output

(MISO) scheme, while Digital Video Broadcasting - Next Generation Handheld (DVB-NGH) [22]

employed 2× 2 MIMO scheme.

Uncoded space-time labeling diversity is a MIMO scheme that achieves improved diversity gain over

Alamouti STBC [23]. The majority of transmission scheme applied for USTLD both in coded [24],

[25], [26], [27] and uncoded modulation [28], [29], [30], [31], [32] has been M-QAM constellation.

A new mapper design using heuristic algorithm for USTLD in Nakagami-q fading channel has been

proposed for APSK digital broadcasting [33]. The authors derive a set of possible metrics based on

MED for evaluating mappers design in two transmit antennas USTLD scheme. In addition, authors in

[34] proposed a new genetic algorithm for USTLD applicable to M-QAM, M-ary Phase Shift Keying

(M-PSK) and M-APSK.

In this study, we introduce APSK-based USTLD scheme for three transmit antennas (A-USTLD)

in nonlinear Rician fading channel where the transmission of line-of-sight (LOS) component is not

obstructed by obstacles [35] [36]. Moreover, Rician fading channel has attracted interest in digital

broadcast channels recently [37], [38], [39]. Therefore, the significance of this research lies in the

study of bit error rate analysis of the proposed A-USTLD scheme for broadcast communication in

independent and identically distributed channel (i.i.d) for fast frequency-flat Rician fading and quasi-

static frequency-flat Rician fading channel.

2.1 Contributions

The adaptation of MIMO USTLD scheme for digital broadcasting system using APSK transmission

model has just been introduced in the literature [33] [34]. Motivated by the transmit diversity gain

and spectrally efficient error performance of three transmit antennas USTLD scheme [31] over two

transmit antennas USTLD scheme [23] in M-QAM constellations, this paper introduces the design

of new constellation mappers for 16-APSK, 32-APSK and 64-APSK USTLD with three transmit

antennas and its application to DVB-S2 and DVB-S2X satellite standards.

Therefore, the original contributions of this study are as follows: (1) An APSK-based USTLD with

three transmit antennas (A-USTLD) for a digital broadcasting is proposed for Rician fast and quasi-

static fading channel. (2) Closed-form error performance analysis of the proposed A-USTLD are
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derived based on trapezoidal approximation and Gaussian Q-function. The numerical expressions

converge accurately in the high SNR range. (3) In addition, designing the first and second optimized

mappers that is well suited to nonlinear digital broadcasting schemes for DVB-S2 and DVB-S2X is a

major factor. Thus, a heuristic algorithm that explores the similarity in structure between the square M-

QAM and concentric rings M-APSK constellations are adapted for this study taking into consideration

the nonlinear effect that models amplitude and phase distortions on the input signals. (4) Moreover,

error performance comparison of the proposed schemes are carried out with the existing USTLD

APSK with two transmit antennas based on rate one for link reliability.

2.2 Notations

Throughout this paper, vectors are denoted in bold small letters, while matrices are denoted in bold

capital letters. [·]T , (·)H , ‖ · ‖F and | · | are used for the transpose, Hermitian transpose, Frobenius

norm and Euclidean norm, respectively. E(·) is the expectation operator. Q(·) is the Gaussian Q-

function. (·)! represents factorial. INR() is the modified NR-order Bessel functions of the first kind.

j is the complex number. The superscript operators (·)I /(·)Q correspond to the in-phase/quadrature

components. The minimum and maximum of the argument with respect to w are denoted by operators

argminw(·) and argmaxw(·).

3 System Model

This section discusses the transmitter model, channel model and maximum likelihood (ML) detection

for the nonlinear ASPK signals in Rician fading USTLD with three transmit antennas.

3.1 Transmitter Model

The M-ary APSK constellation are composed of L concentric contours, each with uniformly spaced

PSK points. Mathematically, the set on the `th ring, for ` = 0, 1, · · · , L− 1, can be expressed as [7]:

Ψ` =

{
r`e

j
(
φ`+k

2π
N`

)
: k∈[0 : N` − 1]

}
, (B.1)

where r` and φ` correspond to the radius and phase shift, respectively. N` is used for the number of

points on the `th ring. It is assumed that Ψ0, Ψ1,· · · ,ΨL−1 are mutually exclusive. Thus, the entire

set of signal constellations can be expressed as Ψ =
⋃L−1
`=0 Ψ` and N = |Ψ| =

∑L−1
`=0 N` [15]. For

gray code, the radii of APSK rings r` are arranged in a descending order, that is, r`−1 < r` < r`+1,

and are defined as r` = ρ`r0 with r0 =
√

N
(N0+

∑L−1
`=1 ρ2`N`)

, where ρ` = r`
r0

is the ring ratio of the `th

ring. It is assumed that r0 is chosen such that the average energy is normalized to unity.
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𝑛1 

𝑛2 
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𝒘1,𝒘2,𝒘3 

Figure B.1: System model of the proposed A-USTLD

The authors propose A-USTLD MIMO system equipped with NT = 3 and NR transmit and receive

antennas, respectively as shown in Figure B.1. At the beginning of a transmission interval, a block of

c = 3 log2M bits, where M=16, 32 or 64 is the order of M-ary APSK modulation (M-APSK), is split

into three w = log2M -tuple vectors wu = [wu,1wu,2 · · · wu,w], u ∈ [1 : 3], which are injected into

Mapper 1, Mapper 2 and Mapper 3 simultaneously. Mappers ΩM
v (wu), u ∈ [1 : 3] and v ∈ [1 : 3] map

bit stream wu into M-APSK constellation points in the Argand plane that produces xvqu = ΩM
v (wu).

qu is an index of wu given as qu = 1 +

w∑
v=1

2v−1wu,v.

3.2 Rician Channel Model

In the proposed A-USTLD scheme, the authors represent Mapper 1 ΩM
1 as a Gray coded mapper, while

Mapper 2 and Mapper 3 are the optimized labeling mappers designed to MED [31]. It is assumed

that E(|xvqu |
2) = 1. After the mapping, antennas 1, 2 and 3 simultaneously transmit the modulated

symbols x1
q1 , x1

q2 and x1
q3 in time slot 1. Symbols x2

q2 , x2
q3 and x2

q1 are simultaneously transmitted by

antennas 1, 2 and 3 in time slot 2 and in time slot 3, antennas 1, 2 and 3 simultaneously transmit x3
q3 ,

x3
q1 and x3

q2 , respectively. TheNR × 1 received signal vector over Rician fading channels in time slots
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1, 2 and 3 may be expressed as:

z1 =

√
τ

3
(h1

1x
1
q1 + h2

1x
1
q2 + h3

1x
1
q3) + n1 (B.2a)

z2 =

√
τ

3
(h1

2x
2
q2 + h2

2x
2
q3 + h3

2x
2
q1) + n2 (B.2b)

z3 =

√
τ

3
(h1

3x
3
q3 + h2

3x
3
q1 + h3

3x
3
q2) + n3 (B.2c)

where zv ∈ CNR×1, v ∈ [1 : 3] are received signal vector. τ
3 are the average SNR at each receive

antenna. huv , u ∈ [1 : 3] are the NR × 1 channel matrix modeled as a fast frequency-flat Rician

distribution, where it is assumed that the channel gains remain constant during a time slot, but assume

independent values from one time slot to another defined as huv = [h1,u
v h2,u

v · · · hNR,uv ]T . A quasi-

static frequency-flat Rician distribution is also taken into consideration in this study which corresponds

to the case of h1
1 = h1

2 = h1
3, h2

1 = h2
2 = h2

3 and h3
1 = h3

2 = h3
3. The entries of fading matrix huv can

be modeled as:

hp,uv =

√
K

1 + K
¯̄hp,uv +

√
1

1 + K
h̄p,uv , [p ∈ 1 : NR], [u ∈ 1 : 3] (B.3)

where K is the Rician factor defined as the ratio of the power of the dominant specular components

to the average power of the random components. ¯̄hp,uv are entries of normalized constant vectors that

represent the LOS components, and h̄p,uv are entries of symmetric Gaussian random variables. Note

that h̄p,uv entries are i.i.d Gaussian distribution CN(0, 1). nv ∈ CNR×1 is an NR × 1 additive white

Gaussian noise (AWGN) vector and nv entries are i.i.d complex Gaussian random variables (RVs)

according to CN(0, 1).

3.3 ML Detection

In this study, the authors assume complete knowledge of the channel at the receiver. The A-USTLD

receiver uses an ML detector, which may be expressed as:

[q̂1, q̂2, q̂3] = argmin
q1,q2,q3∈[1:M ]

(∥∥∥z1 − (h1
1x

1
q1 + h2

1x
1
q2 + h3

1x
1
q3)
∥∥∥2

F
+
∥∥∥z2 − (h1

2x
2
q2 + h2

2x
2
q3 + h3

2x
2
q1)
∥∥∥2

F

+
∥∥∥z3 − (h1

3x
3
q3 + h2

3x
3
q1 + h3

3x
3
q2)
∥∥∥2

F

)
(B.4)

4 Error Performance Analysis

In this section, the authors present a closed-form analysis of A-USTLD for Rician fading channels by

using conditional pairwise error probability (PEP) and the trapezoidal approximation to Q-function.
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We assume two triads of symbols are correctly detected while only one triad of symbols is erroneously

detected at high SNR [31].

4.1 Rician fading error analysis

It is to be noted that two triads of symbols, xvqu , u ∈ [2 : 3], v ∈ [1 : 3] are correctly detected in the

high SNR, while xvq1 is detected with errors. Therefore, (B.2a) - (B.2c) can be further expressed as:

z1 =

√
τ

3
h1

1x
1
q1 + n1 (B.5a)

z2 =

√
τ

3
h3

2x
2
q1 + n2 (B.5b)

z3 =

√
τ

3
h2

3x
3
q1 + n3 (B.5c)

by applying the transmit model in (B.5a) - (B.5c), the average bit error probability (ABEP) can be

expressed as:

PABEP (τ) ≤ 1

Mw

M∑
q1=1

M∑
q̂1 6=q1

∆(q1, q̂1)P (X→ X̂) (B.6)

where ∆(q1, q̂1) is the number of bit errors for the associated pairwise error probability (PEP) event.

P (X → X̂) is the PEP when X is transmitted and X̂ is detected, represented as X = [x1
q1x

2
q1x

3
q1 ] and

X̂ = [x1
q̂1
x2
q̂1
x3
q̂1

]. The conditional PEP P (X→ X̂|h1
1, h3

2, h2
3) may be formulated as:

P (X→ X̂|h1
1, h3

2, h2
3) =P

(∥∥∥z1 −
√
τ

3
h1

1x
1
q̂1

∥∥∥2

F

+
∥∥∥z2 −

√
τ

3
h3

2x
2
q̂1

∥∥∥2

F

+
∥∥∥z3 −

√
τ

3
h2

3x
3
q̂1

∥∥∥2

F

<
∥∥∥z1 −

√
τ

3
h1

1x
1
q1

∥∥∥2

F

+
∥∥∥z2 −

√
τ

3
h3

2x
2
q1

∥∥∥2

F

+
∥∥∥z3 −

√
τ

3
h2

3x
3
q1

∥∥∥2

F

)
(B.7)

The PEP can be given as (refer to Appendix B):

P (X→ X̂|h1
1, h3

2, h2
3) = Q

(√√√√ 3∑
v=1

δv

)
(B.8)

where δ1 = τ
6‖h

1
1‖2F |d1|2, δ2 = τ

6‖h
3
2‖2F |d2|2 and δ3 = τ

6‖h
2
3‖2F |d3|2. Note that dv = xvq1 − x

v
q̂1

,

v ∈ [1 : 3]. δv can be simplified in terms of pth-received antennas as:

δv =
τ

6
|dv|2

NR∑
p=1

|hp,1v |2 (B.9)

For MRC with NR diversity branches, the combiner output is given as: γv =
∑NR

p=1 γp, where γp is

the instantaneous SNR given as: γp = τ
6 |h

p,1
v |2. The average SNR is then computed as:

γ̄p = E[γp] =
τ

6
E[|hp,1v |2] (B.10)
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Further computation of γ̄p in terms of ¯̄hp,1v and h̄p,1v gives:

γ̄p =
τ

6
E

[∣∣∣∣∣
√

K
1 + K

¯̄hp,1v +

√
1

1 + K
h̄p,1v

∣∣∣∣∣
2]

(B.11)

Since E[|h̄p,1v |2] = 1 and E[|h̄p,1v |] = 0, the average SNR can then be computed as:

γ̄p =
τ

6

∣∣∣∣∣
√

K
1 + K

¯̄hp,1v

∣∣∣∣∣
2

+
τ

6

∣∣∣∣∣
√

1
1 + K

∣∣∣∣∣
2

The probability density function (pdf) of instantaneous SNR for vth-transmit antennas over i.i.d Rician

fading channel can be written as [40]:

fδv(δv) =

(
NR + K
γ̄p

)[
(NR + K)δv

Kγ̄p

]NR−1

2

×exp

[
−(NR + K)δv + Kγ̄p

γ̄p

]
×INR−1

[
2

√
K(NR + K)δv

γ̄p

]
(B.12)

where fδv(δv) is the combined pdf for NR-diversity. By averaging the conditional PEP over RVs δv,

the expression becomes:

P (X→ X̂) =

∫ ∞
0

∫ ∞
0

∫ ∞
0

P (X→ X̂|h1
1, h3

2, h2
3)

3∏
v=1

fδv(δv)dδv (B.13)

based on trapezoidal approximation to Q-function in (B.8), we obtain:

P (X→ X̂|h1
1, h3

2, h2
3) =

1

2g

[
1

2

3∏
v=1

exp
(
− δv

2

)
+

g−1∑
l=1

3∏
v=1

exp
(
− δv

2 sin2
(
lπ
2g

))] (B.14)

where g is the total number of iterations. In terms of moment generating function (MGF), the final

PEP for Rician fading channels can be expressed as:

P (X → X̂) =
1

2g

[
1

2

3∏
v=1

Mδv

(1

2

)
+

g−1∑
l=1

3∏
v=1

Mδv

(
1

2 sin2( lπ2g )

)]
(B.15)

whereMδv(·) is the MGF defined asMδv(δv)E(e−δvγ) [36], the corresponding MGF for Rician fading

channels is given as [36]:

Mδv(δv) =

[
1 + K

1 + K + γ̄δv
exp

(
− Kγ̄δv

1 + K + γ̄δv

)]NR
, K ≥ 0 (B.16)

5 Mapper Design

In this section, we discuss the designs of labeling mappers for 16-APSK, 32-APSK and 64-APSK

USTLD schemes with three transmit antennas based on heuristic algorithm. The choice of APSK

modulation schemes for this study are from the latest draft standard for DVB-S2X [2] as indicated in

Table B.1.
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Table B.1: USTLD APSK Modulation Scheme for DVB-S2X Standard [2]

Modulation Order Structure Definition in Draft Standard

16 4+12-APSK Tables 11a and 11b, pg. 26

32 4+12+16-APSK Tables 12a, 12b and 12c, pg. 29

64 4+12+20+28-APSK Tables 13e and 13f, pg. 33

A heuristic algorithm is a technique in Mathematical optimization for finding an approximate

solution for a class of NP-complete decision problems [41]. A heuristic algorithm for USTLD

mapper design has been applied in square M-QAM constellation for the second and third mappers

and the optimization metric to mapper design formulated as [31]:

(ΩM
2 ,ΩM

3 ) = argmax
{

min
xvq1 6=x̂

v
q1

3∏
v=1

δv

}
(B.17)

By applying three different transforms which represent three mappers for designing second and third

mappers in [31], the symmetric-based heuristic algorithms re-arranged the rows as well as the columns

of the matrices to ensure two adjacent rows in the constellation matrices are non-adjacent and finally

swaps alternate pairs of diametrically opposite constellation points across the origin. In this instance,

16-QAM constellation points are considered as 4 × 4 matrix with three different modulo values as

indicated in Figure B2(A). In this Figure, the constellation points 0 and 5 are swapped with 15 and

10. Likewise, constellation points 8 and 13 are swapped with points 7 and 2.

By adapting the square 16-QAM constellations for USTLD with three transmit antennas, the

constellations of 16-APSK USTLD can be designed by re-positioning the symbols as concentric

rings with two kinds of different modulo values as shown in Figure B2(B) where square

constellation points 5, 4, 0 and 1 are designed as ring structures 5 for the first ring and 4, 0 and 1 for

the second ring. The 16-APSK constellation diagram and the associated bit allocation for USTLD

with three transmit antennas discussed here refers to 4+12-APSK in which 4 symbols are uniformly

spaced on the inner ring with radius R1, and 12 symbols are uniformly spaced on the outer ring with

radius R2. The ratio of the outer and inner radii can be expressed as: β0 = R2
R1

.

On the other hand, 32-QAM is constructed as a Rectangular QAM which is an adaptive modulation

with square QAM constellations as shown in Figure B3(A). Similarly, heuristic algorithms are

applied for the second and third mappers for 32-QAM USTLD where constellation points 4 and 13

are swapped with diametrically opposite constellation points 31 and 22. Likewise, constellation

points 20 and 29 are swapped with opposite constellation points 15 and 6. The constellations
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Figure B.2: Constellation Mappers for: (A) existing 16-QAM, (B) proposed 16-APSK USTLD

structure for 32-APSK USTLD are designed from 32-QAM USTLD by arranging the symbols in

circles as shown Figure B3(B). The 32-APSK discussed here is 4+12+16-APSK and the ratios in

the 32-APSK constellation are represented as: β1 = R2
R1

and β2 = R3
R1

.

For square 64-QAM USTLD, the constellation points are considered as 8-ary pulse amplitude

modulation represented as a quadrant in Figure B4(A). Following similar patterns for designing

16-APSK, 64-APSK concentric rings equivalent of a single quadrant as four different rings is shown

in Figure B4(B). In 64-APSK constellation models, the concentric rings combinations are

4+12+20+28-APSK as indicated in Figure B4(C). The radii are denoted as: β1 = R2
R1

, β2 = R3
R1

and

β3 = R3
R1

. The modulation scheme consists of 4 rings where 4, 12, 20 and 28 symbols are allocated in

the first to the fourth rings, respectively. The radii are: β1 = 2, 4, β2 = 4, 3 and β3 = 7, respectively.

The phase angle is φ = π
28 , according to the standard Draft ETSI [2].

6 Results and Discussion

This section presents Monte Carlo simulation outputs of the proposed A-USTLD schemes in nonlinear

Rician fading channels for 16-APSK, 32-APSK and 64-APSK, respectively in i.i.d channels. We set

the number of iterations g = 10, Rician factor, K = 2 and number of received antennas, NR = 4.

In both proposed models, we assume a complete channel state information at the receiver. The first

Monte Carlo simulations are performed to validate the tightness of the proposed closed-form error

performance for Rician broadcast channels in (B.15) for both fast frequency-flat fading and quasi-static

frequency-flat fading channels. We also present simulation results for error performance comparison

of the proposed A-USTLD with the existing two transmit antennas APSK-based USTLD scheme [33].
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Figure B.3: Constellation Mappers for: (A) 32-RQAM, (B) proposed 32-APSK USTLD

It is to be noted that only 16-APSK and 64-APSK simulation results are considered as standards for

DVB-S2X in the existing two transmit antennas APSK USTLD scheme.

6.1 Validation of Analytical Results in quasi-static and fast fading channels

The results for analytical expressions in (B.15) and the Monte Carlo simulation outputs are shown

in Figure B.5 for Rician fast frequency-flat fading and quasi-static frequency-flat fading channels.

The modulation order are 16-APSK, 32-APSK and 64-APSK for A-USTLD where 16-APSK and

32-APSK are modulation schemes for DVB-S2 standard while 16-APSK and 64-APSK represent

modulation order for DVB-S2X standard. In Figure B.5, simulation results tightly match the derived

numerical expressions for Rician fast fading channels. On the other hand, Rician quasi-static fading

channels exhibit slightly inferior simulation outputs at high SNRs.
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Figure B.4: Constellation Mappers for: (A) one quadrant of 64-QAM, (B) equivalent one quadrant of 64-APSK, (C)

proposed 64-APSK USTLD
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Figure B.5: Validation of BER for APSK modulation with M=16-APSK, 32-APSK and 64-APSK in Rician broadcast

channel

6.2 BER Comparison for Rate One with existing APSK USTLD NT = 2

In this subsection, three transmit antennas A-USTLD scheme is compared with the existing

APSK-based USTLD with two transmit antennas [33]. For simplicity of explanation, we compare

modulation order of 16-APSK and 64-APSK with concentric rings combination 4+12APSK and

4+12+20+28APSK, respectively as shown in Figure B.6. For 16-APSK, the proposed A-USTLD

exhibits SNR gain of 1.2 dB gain over 2 × NR APSK-based USTLD at a BER of 10−6. Also, an

exact SNR gain of 2.8 dB could be observed for A-USTLD scheme as compared to 2 × NR

APSK-based USTLD for 64-APSK. It can be inferred from the simulation outputs that BER of the

system can be improved by introducing more transmit antennas from the existing two transmit

APSK-based USTLD scheme to a new three transmit antennas A-USTLD scheme in order to

improve the robustness of the scheme in the presence of noise and multipath fading. Hence, link

reliability of the existing USTLD can be further enhanced with the proposed A-USTLD system.
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Figure B.6: BER Comparison for USTLD APSK modulation schemes with M=16-APSK and 64-APSK in Rician

broadcast channel

7 Conclusion

The recent technical advancement in digital broadcasting has necessitated the exploitation of

spectrally efficient and optimal power modulation schemes designed to operate in nonlinear fading

channel environments. As a result, this paper introduced APSK transmission techniques for three

transmit antennas USTLD scheme in nonlinear Rician distributions for fast frequency-flat fading and

quasi-static frequency-flat fading channels. The modulation order are 16-APSK, 32-APSK and

64-APSK which are the specifications adopted by DVB-S2 and DVB-S2X standards.

Monte Carlo simulation and theoretical results further showed that the proposed A-USTLD with three

transmit antennas can achieve error performance gain of 1.2 dB and 2.8 dB at a BER of 10−6 for

16-APSK and 64-APSK as compared to the existing two transmit antennas USTLD schemes under

the same channel conditions.
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8 Appendix B

The conditional PEP on h1
1, h3

2 and h2
3 is given as:
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3) =P
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Based on the assumption that (x1
q1 , x

2
q1 , x

3
q1) are detected in error while other symbols are detected

correctly, (B.17) becomes:
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Let A =
√

τ
3 h1

1(x1
q1 − x

1
q̂1

), B =
√

τ
3 h3

2(x2
q1 − x

2
q̂1

), and C =
√

τ
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3(x3
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3
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). By expanding the

square of the Frobenius as a binomial expressions yields:
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3) =P
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‖A‖2F + 2Re{nH1 A}+ ‖n1‖2F + ‖B‖2F + 2Re{nH2 B}+ ‖n2‖2F

+ ‖C‖2F + 2Re{nH3 C}+ ‖n3‖2F < ‖n1‖2F + ‖n2‖2F + ‖n3‖2F
)

(B.19)

= P
(
Re{nH1 A}+Re{nH2 B}+Re{nH3 C} >

‖A‖2F + ‖B‖2F + ‖C‖2F
2

)
(B.20)

Let dv = xvq1 − x
v
q̂1

, further simplification gives:
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Let ñ1 = nH1
√

τ
3 h1

1d1, ñ2 = nH2
√

τ
3 h3

2d2 and ñ3 = nH3
√

τ
3 h2

3d3. Given h1
1, h3

2 and h2
3, then ñ1, ñ2

and ñ3 are Gaussian RVs with independent entries according to:

ñ1 ∼ CN(0,
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F
|d1|2) (B.22)
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ñ3 ∼ CN(0,
τ
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∥∥2

F
|d3|2) (B.24)

Let the decision variable ñ be defined as:

ñ = ñ1 + ñ2 + ñ3 (B.25)
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The decision variable ñ is distributed according to:

ñ ∼ CN(0,
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Note that Re{ñ} = Re{ñ1}+Re{ñ2}+Re{ñ3}, where Re{ñ} is distributed according to:

Re{ñ} ∼ N (0,
τ

6

∥∥h1
1

∥∥2

F
|d1|2 +

τ

6

∥∥h3
2

∥∥2

F
|d2|2 +

τ

6

∥∥h2
3

∥∥2

F
|d3|2) (B.27)

Thus, (B.21) becomes:
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It is to be noted that for a Gaussian RVs Z with zero mean and unit variance, the expression becomes:

P (Z > z) =
1√
2π

∫ ∞
z

e
−t2
2 dt (B.29)

= Q(z)

Hence,
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1, h3

2, h2
3) = Q

(√
δ1 + δ2 + δ3

)
(B.32)

= Q

(√√√√ 3∑
v=1

δv

)
where δv are central chi-squared RVs with 2NR degrees of freedom, defined as:

δv =

2NR∑
y=1

[
(κIvy)

2 + (κQvy)
2
]
, v ∈ [1 : 3] (B.33)

Note that κIvy , κ
Q
vyN (0, σ2

κv), where σ2
κv = τ

12 |dv|
2.
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1. ABSTRACT

1 Abstract

Uncoded space-time labeling diversity (USTLD) is a recent scheme that improves the error

performance of space-time block code by using labeling mappers to transmit information bits. In this

scheme, square quadratic amplitude modulation (QAM) has been widely used due to its high power

and bandwidth efficiency. However, square QAM does not provide satisfying requirements for a

system where the number of bits per symbol is odd. In this scenario, the peak and the average power

of transmission can be reduced by using cross QAMs (XQAMs) instead. Hence, authors in this paper

investigate the design of XQAM labeling mappers for three transmit antennas USTLD scheme over

independent and identically distributed (i.i.d) Nakagami-m fading channels. The analytical average

bit error probability (ABEP) are derived based on pairwise error probability. This expression is

validated by Monte Carlo simulation results, which converge accurately at high signal-to-noise ratio.

Since channels are not i.i.d in practical sense, the authors further investigate XQAM USTLD scheme

in correlated channels. The ABEP for the proposed system are derived and served to validate the

Monte-Carlo simulation results. Finally, the authors demonstrate the effects of correlation by

comparing BER results of correlated channels with that of i.i.d channels.
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2. INTRODUCTION

2 Introduction

Uncoded space-time labeling diversity (USTLD) is a recently proposed multiple-input,

multiple-output (MIMO) techniques for two transmit antennas scheme similar to Alamouti [1]. In

this scheme, the authors use symmetric-based heuristic algorithm to design signal constellations for

M-QAM and M-PSK USTLD modulation schemes for two different bits-to-constellation point

mappers in two time slots.

More recently, authors in [2] proposed a new genetic algorithm for labeling mapper design for square

quadrature amplitude modulation (QAM), circular M-ary phase shift keying (M-PSK) and A-PSK in

USTLD with two transmit antennas. The proposed scheme matches the best heuristic designs for

16-QAM and 64-QAM USTLD in [1]. Other authors have applied heuristic algorithm for labeling

mapper design to circular 16-APSK and 64-APSK in USTLD with two transmit antennas [3] which

are DVB-S2X standard compatible for digital broadcasting channels.

In order to further improve USTLD for transmit antenna diversity gain in downlink channels, Ayanda

et al. [4] proposed USTLD scheme with three transmit antennas using heuristic algorithm. In this

approach, the authors propose 16-QAM and 64-QAM techniques for the second and third mappers

in USTLD scheme. Morever, the authors further extend the heuristic algorithm for mapper design to

high density 256-QAM and 1024-QAM USTLD schemes which have become promising modulation

schemes for next-generation wireless communication [5].

Obviously, recently proposed USTLD schemes with three transmit antennas in the literature [4] [5]

are designed more for square QAM where the number of bits per symbol is even. Square QAM

schemes are broadly employed in wireless communication as a result of its high power and bandwidth

efficiency. However, for a scheme where the number of bits per symbol is odd, cross QAM (XQAM)

is a preferred signal constellation scheme which achieves greater power efficiency over square QAM

by reducing the average energy of the signal set [6].

As a result, XQAM has found use in adaptive modulation schemes where the constellation size m

increments from 2m to 2m+1 and allows for more granularity [7]. XQAM has also been used in blind

equalization that minimize the dispersion of the equalizer output with respect to single or multiple

cross-shaped zero error contour(s) [8]- [9]. XQAM with constellations from 5 bits to 15 bits have

been used in ADSL [10] and VDSL [11] while 32-XQAM and 128-XQAM have been adopted in

practical systems in DVB-C [12] [13] as well.

Authors in [14] derived approximate and generic analytical expressions for bit error rate (BER) of
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2. INTRODUCTION

X-QAM signal constellations under Smith-style pseudo-Gray coding. The numerical results

compared the approximate BER expressions with Smith’s approximation and have found that Smith’s

approximation is a simple and close approximation, especially for high signal-to-noise ratio (SNR)

values, over AWGN channels.

Furthermore, exact analytical expressions for the average symbol error probability (SEP) of 32-XQAM

signal constellation in AWGN has been derived in the literature [15] as an improvement over the

existing scheme [14]. The authors then derive exact closed-form expressions for the average SEP of

32-XQAM in slow and flat Nakagami -m fading with maximal ratio combining (MRC) diversity.

Closed-form theoretical expressions for average SEP and bit error probability (BEP) of arbitrary M-

ary XQAM signaling with MRC diversity reception over independent but not necessarily identical

η − µ fading channels have been derived in the literature [16]. The authors presented results for

Rayleigh and Nakagami-m channels based on finite sum of trigonometric functions and the analytical

expressions tightly match the Monte Carlo simulation outputs.

In addition, the effect of channel correlation was taken into consideration in the error performance

analysis of XQAM for single-input multiple-output (SIMO) scheme in [17]. The authors derived

arbitrarily closed-form analytical expressions in the form of Gaussian Q-function and moment

generating function (MGF) over dual correlated Rayleigh, Nakagami-m, Nakagami-n and

Nakagami-q fading channels. Monte Carlo simulation outputs tightly match the derived analytical

expressions.

In the context of USTLD, XQAM for two transmit antennas USTLD with improved bandwidth

efficiency has recently been proposed in Rayleigh fading channels [18]. The proposed system is a

combination of USTLD with XQAM and MPSK modulation that improved data rate by introducing

extra bits to a USTLD system via a 16PSK phase component.

Motivated by transmit antennas diversity gain of USTLD with three transmit antennas over the

existing USTLD scheme [4], this study presents labeling mapper designs for 32-XQAM and

128-XQAM USTLD scheme with three transmit antennas using heuristic algorithm over independent

and identically distributed (i.i.d) Nakagami-m fading channels. A closed-form bound on the average

bit error probability (ABEP) of the proposed scheme in Nakagami-m distribution for i.i.d channels

are formulated.

Moreover, in channels where the conditions for i.i.d are not satisfied, the channels become correlated.

Hence, it is necessary to investigate the impacts of channel correlation on BER of XQAM in three

transmit antennas USTLD scheme which is another major contribution of this study. A closed-form
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3. SYSTEM MODEL

error analysis based on characteristic function is derived for Nakagami-m fading channels which

converges accurately at high SNR.

The remainder of this paper is organized as follows: The model description of the proposed XQAM

signal modulation techniques for three transmit antennas USTLD schemes for both uncorrelated and

correlated Nakagami-m channels are presented in Section 3. In Section 4, approximate analytical

expressions for error performance are derived for both uncorrelated and correlated channels. Section

5 discusses the proposed labeling mapper design for 32-XQAM and 128-XQAM using heuristic

algorithm. Section 6 presents the numerical results that demonstrate the tightness and validity of the

analytical results. Section 7 is the conclusion for the study.

Notation: Throughout this paper, bold lowercase are used for vectors, while uppercase letters are used

for matrices. The operators [·]T , (·)H , ‖ · ‖F and | · | respectively correspond to transpose, Hermitian

transpose, Frobenius norm and Euclidean norm. | · |−1 is the inverse of a matrix. Γ(·) is the Gamma

function and⊗ is the Kronecker product. E(·) is the expectation operator and Q(·) is the Gaussian Q-

function. J0(·) is the modified Bessel function of the first kind of order zero. vec(·) and tr(·) are vector

operator and trace element, respectively. argminw(·) is the minimum of the argument with respect to

w. rank(·) is the rank of a matrix with respect to the dimension of the vector space generated by its

columns.

3 System Model

In this section, the authors present system models for both uncorrelated and correlated Nakagami-m

fading channels.

3.1 Uncorrelated Channel Modeling

Consider a USTLD MIMO system equipped with NT = 3 and NR transmit and receive antennas,

respectively as shown in Figure C.1. Message bits is split into three r = log2M -tuple vectors

ri = [ri,1 ri,2 · · · ri,r], i ∈ [1 : 3], which are injected into Mapper 1, Mapper 2 and Mapper 3

simultaneously. Mappers ΩM
k (ri), i ∈ [1 : 3] and k ∈ [1 : 3] map bit stream ri into M-QAM

constellation points in the Argand plane that produces xkqi = ΩM
k (ri). qi is an index of ri given as

qi = 1 +
r∑

k=1

2k−1ri,k. In the USTLD system, Mapper 1 ΩM
1 represents a Gray coded mapper, while

Mapper 2 and Mapper 3 are the optimized labeling mappers designed to maximize the minimum

Euclidean distance [4]. The authors assume that E(|xkqi |
2) = 1.

After the mapping, antennas 1, 2 and 3 simultaneously transmit the modulated symbols x1
q1 , x1

q2 and
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3. SYSTEM MODEL

𝑛1 

𝑛2 

𝑛3 

𝑛𝑁𝑅
 

USTLD

Encoder
USTLD

Receiver

 Nakagami-m fading 
Channel

Symbol Vector

XQAM 
Information bits

Binary 
Mappers

𝑁𝑅 

3

2

11

2

3

𝒓1,𝒓2,𝒓3 

Figure C.1: System model of the proposed XQAM-USTLD

x1
q3 in time slot 1. Symbols x2

q2 , x2
q3 and x2

q1 are simultaneously transmitted by antennas 1, 2 and

3 in time slot 2 and in time slot 3, antennas 1, 2 and 3 simultaneously transmit x3
q3 , x3

q1 and x3
q2 ,

respectively. Accordingly, the received signal vectors y1, y2 and y3 over Nakagami-m fading channels

in time slots 1, 2 and 3 may be given as:

y1 =

√
ρ

3
(h1

1x
1
q1 + h2

1x
1
q2 + h3

1x
1
q3) + n1 (C.1a)

y2 =

√
ρ

3
(h1

2x
2
q2 + h2

2x
2
q3 + h3

2x
2
q1) + n2 (C.1b)

y3 =

√
ρ

3
(h1

3x
3
q3 + h2

3x
3
q1 + h3

3x
3
q2) + n3 (C.1c)

where yk = [y1,k y2,k · · · yNR,k]T is the NR × 1 dimensional received signal vector. ρ3 is the average

SNR at the receive antenna. The NR × 1 channel gain matrix hik is modeled as fast frequency-flat

Nakagami-m fading channel. In this scenario, the channel remains constant during each time slot and

takes on independent values in time slot 1, time slot 2 and time slot 3, respectively. The channel

fading vector for the kth transmit antennas is defined as hik = [h1,i
k h2,i

k · · · h
NR,i
k ]T . nk ∈ CNR×1 is

an NR × 1 additive white Gaussian noise (AWGN) vector. Both entries of hik and nk are independent

and identically distributed (i.i.d) complex Gaussian random variables (RVs) distributed according to

CN(0, 1).

3.2 Correlated Channel Modeling

Spatial correlation takes place in channels where there exist closed physical separation in the antennas

spacing. In this instance, the wavelength is half of the transmission carrier. For the correlated channel,
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4. ERROR PERFORMANCE ANALYSIS

Kronecker correlation model is adopted to describe the relationship between correlated channel matrix

(¯̄hik) and uncorrelated channel matrix, hik ∈ CNR×1, with entries CN(0, 1) which can be expressed

as [19]:

¯̄hik =
[
R

1
2
NR

]
hik
[
xiqk

]T
2 (C.2)

where RNR represents the channel correlation matrices at the receiver with dimension NR ×NR. In

order to exploit full antenna diversity based on the arbitrarily correlated channel at the receiver, the

transmit antennas are assumed to be uncorrelated at half-wavelength of the carrier transmission [20].

Therefore, xiqk is taken as an identity matrix and (C.2) reduces to:

¯̄hik =
[
R

1
2
NR

]
hik (C.3)

The normalized correlation matrix RNR at the receiver is given as [21]:

RNR =


1 ρ1,2 · · · ρ1,NR

ρ2,1 1 · · · ρ2,NR

...
...

. . .
...

ρNR,1 ρNR,2 · · · 1

 (C.4)

where ρi,k, i, k ∈ [1 : NR] is the correlation coefficient of an electric-field component observed in a

homogeneous scattering environment given in the form of [22] [23]:

ρi,k = J0

(
2π
d

λ

)
(C.5)

where d denotes antenna spacing and λ corresponds to the wavelength of the transmission carrier

frequency of a mobile system.

3.3 Maximum Likelihood Detection (ML)

In this study, the authors assume perfect knowledge of the channel at the receiver. The optimal ML

detector for i.i.d receiver may be defined as:

[q̂1, q̂2, q̂3] = argmin
q1,q2,q3∈[1:M ]

(∥∥∥y1 − (h1
1x

1
q1 + h2

1x
1
q2 + h3

1x
1
q3)
∥∥∥2

F
+
∥∥∥y2 − (h1

2x
2
q2 + h2

2x
2
q3 + h3

2x
2
q1)
∥∥∥2

F

+
∥∥∥y3 − (h1

3x
3
q3 + h2

3x
3
q1 + h3

3x
3
q2)
∥∥∥2

F

)
(C.6)

4 Error Performance Analysis

This section presents a closed-form theoretical ABEP of three transmit antennas USTLD scheme in the

form of conditional pairwise error probability (PEP) and the trapezoidal approximation to Q-function.

76



i
i

“output” — 2020/6/25 — 18:38 — page 77 — #99 i
i

i
i

i
i

4. ERROR PERFORMANCE ANALYSIS

The analysis is based on the assumption that only one triad of information bits is erroneously detected

while the other two triads of information bits are correctly detected [4].

4.1 Uncorrelated Error Analysis

It is assumed that two triads of symbol bits, xiqu , u ∈ [2 : 3], i ∈ [1 : 3] are correctly detected in the at

high SNR, while xiq1 is detected with errors. (C.1a) - (C.1c) can be further expressed as:

y1 =

√
ρ

3
h1

1x
1
q1 + n1 (C.7a)

y2 =

√
ρ

3
h3

2x
2
q1 + n2 (C.7b)

y3 =

√
ρ

3
h2

3x
3
q1 + n3 (C.7c)

Based on the transmit model in (C.7a) - (C.7c), the theoretical union bound expression is given as:

PABEP (ρ) ≤ 1

Mr

M∑
q1=1

M∑
q̂1 6=q1

∆(q1, q̂1)P (X→ X̂) (C.8)

where M= 32-XQAM or 128-XQAM, r = log2 M, ∆(q1, q̂1) denotes the number of bits erroneously

detected for the given pairwise error probability (PEP) event. P (X → X̂) corresponds to the PEP

when X is transmitted and X̂ is detected, represented as X = [x1
q1x

2
q1x

3
q1 ] and X̂ = [x1

q̂1
x2
q̂1
x3
q̂1

]. The

conditional PEP, P (X→ X̂|h1
1, h3

2, h2
3), may be formulated as:

P (X→ X̂|h1
1, h3

2, h2
3) =P

(∥∥∥y1 −
√
ρ

3
h1

1x
1
q̂1

∥∥∥2

F

+
∥∥∥y2 −

√
ρ

3
h3

2x
2
q̂1

∥∥∥2

F

+
∥∥∥y3 −

√
ρ

3
h2

3x
3
q̂1

∥∥∥2

F

<
∥∥∥y1 −

√
ρ

3
h1

1x
1
q1

∥∥∥2

F

+
∥∥∥y2 −

√
ρ

3
h3

2x
2
q1

∥∥∥2

F

+
∥∥∥y3 −

√
ρ

3
h2

3x
3
q1

∥∥∥2

F

)
(C.9)

The PEP can be given as (refer to Appendix C):

P (X→ X̂|h1
1, h3

2, h2
3) = Q

(√√√√ 3∑
k=1

δk

)
(C.10)

where δ1 = ρ
6‖h

1
1‖2F |d1|2, δ2 = ρ

6‖h
3
2‖2F |d2|2 and δ3 = ρ

6‖h
2
3‖2F |d3|2. Note that dk = xkq1 − x

k
q̂1

,

k ∈ [1 : 3]. δk can be simplified in terms of vth-received antennas as:

δk =
ρ

6
|dk|2

NR∑
v=1

|hv,1k |
2 (C.11)
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For MRC with NR diversity branches, the combiner output is given as: γk =
∑NR

v=1 γv, where γv is

the instantaneous SNR given as: γv = ρ
6 |h

v,1
k |

2. The average SNR is then computed as:

γ̄v = E[γv] =
ρ

6
E[|hv,1k |

2] (C.12a)

γ̄v =
ρ

6
(C.12b)

The probability density function (pdf) in Nakagami-m distribution may be defined as [22]:

fδk(δk) =

(
m

γ̄v

)mNR
δmNR−1
k

Γ(mNR)
exp

(
− m

γ̄v
δk

)
δk ≥ 0, γ̄v ≥ 0, m ≥ 0 (C.13)

The PEP in uncorrelated channel may be given as:

P (X→ X̂) =

∫ ∞
0

∫ ∞
0

∫ ∞
0

P (X→ X̂|h1
1, h3

2, h2
3)

3∏
k=1

fδk(δk)dδk (C.14)

by applying trapezoidal approximation to Q-function, we obtain:

P (X→ X̂|h1
1, h3

2, h2
3) =

1

2n

[
1

2

3∏
k=1

exp
(
− δk

2

)
+
n−1∑
`=1

3∏
k=1

exp
(
− δk

2 sin2
(
`π
2n

))] (C.15)

where n is the total number of iterations. Based on moment generating function (MGF), the PEP can

be written as:

P (X→ X̂) =
1

2n

[
1

2

3∏
k=1

Mδk

(1

2

)
+

n−1∑
`=1

3∏
k=1

Mδk

(
1

2 sin2( `π2n)

)]
(C.16)

where Mδk(·) is the MGF. By expressing the MGF as Mδk(s)E(e−sγ) [22], the MGF of Nakagami-m

fading channel may be expressed as:

Mδk(δk) =

(
1 +

γ̄

m
δk

)−mNR

(C.17)

Hence, the PEP can be verified as:

P (X→ X̂) =
1

2n

[
1

2

3∏
k=1

(
m

m+
(
ρ
6

)
dk

)mNR
+

n−1∑
`=1

3∏
k=1

(
m

m+
(
ρ
6

)
dk

1

sin2

(
`π
2n

)
)mNR]

(C.18)

4.2 The special case of m = 1 for Nakagami-m in i.i.d channels

Nakagami-m fading distribution is a generalized fading distribution that captures Rayleigh distribution

as a special case (that is, m=1). Thus, by substituting m=1 into (C.18), we arrive at:

P (X→ X̂) =
1

2n

[
1

2

3∏
k=1

(
1

1 +
(
ρ
6

)
dk

)NR
+
n−1∑
`=1

3∏
k=1

(
1

1 +
(
ρ
6

)
dk

1

sin2

(
`π
2n

)
)NR]

(C.19)

Note that (C.19) is the closed-form expression for PEP in Rayleigh fading distribution as verified in [4]

using Real Analysis technique [21].
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4.3 Correlated Error Analysis

In this subsection, we carry out analytical analysis in correlated Nakagami-m channels. Following

the analysis for error performance in uncorrelated fading channel in (C.8), the PEP in the correlated

channel can be written as:

P (X→ X̂) =

∫ ∞
0

∫ ∞
0

∫ ∞
0

P (X→ X̂|¯̄h1
1,

¯̄h3
2,

¯̄h2
3)

3∏
k=1

f¯̄δk
(¯̄δk)d

¯̄δk (C.20)

where ¯̄δk are the RVs for correlated channels. By applying eigenfilter-based signal analysis approach

[23], the pdf of the average SNR for correlated channels with ith received antennas can be expressed

as:

f¯̄δk
(¯̄δk) =

(
m

βi,iγ̄k

)mNR ¯̄δk
mNR−1

Γ(mNR)
exp

(
− m

βi,iγ̄k
¯̄δk

)
¯̄δk ≥ 0, γ̄k ≥ 0, m ≥ 0 (C.21)

where βi,i denotes the eigenvalue of the ith received antennas and γ̄k is the average SNR. The MGF

for correlated Nakagami-m fading channel may be given as [22]:

M¯̄δk
(s) =

∫ ∞
0

ss
¯̄δkf¯̄δk

(¯̄δk)d
¯̄δk (C.22)

Using characteristic function of Hermitian quadratic forms and based on the concept of a virtual

channel and a diagonalizing argument [21] - [24], the MGF can be further expressed as:

M¯̄δk
(s) =

∣∣∣INRNT − s(R 1
2
¯̄Hk

)H(INR ⊗ dkdHk
)
R

1
2
¯̄Hk

∣∣∣−1
(C.23)

where I is the identity matrix of orderNR×NT . Since
(
R

1
2
¯̄Hk

)H ·R 1
2
¯̄Hk

= R ¯̄Hk
and R ¯̄Hk

= RNT ⊗RNT ,

(20) becomes:

M¯̄δk
(s) =

∣∣∣INRNT − s(RNR ⊗ RNT )(INR ⊗ dkdHk )
∣∣∣−1

=
∣∣∣INRNT − sRNR ⊗

(
dkdHk RNT

)∣∣∣−1

M¯̄δk
(s) =

NR∏
i=1

(
1− s∇k,kβi,i

)−1 (C.24)

The non-zero eigenvalue of dkdHk RNT is denoted by∇k,k and the eigenvalue of RNR is βi,i. In order to

exploit full antenna diversity, the channel must remain fixed over NT transmit symbol durations [20].

In this case,∇k,k becomes unitary and dkdHk =
3∑

k=1

∣∣∣xkq1 − xkq̂1∣∣∣2. Thus (21) becomes:

M¯̄δk
(s) =

NR∏
i=1

(
1− sβi,i

)−1 (C.25)

Hence, the PEP in correlated Nakagami-m fading channel can be verified as:

P (X→ X̂) =
1

2n

[
1

2

3∏
k=1

NR∏
i=1

(
m

m+ (ρ6)dkβi,i

)m
+
n−1∑
`=1

3∏
k=1

NR∏
i=1

(
m

m+ (ρ6)dkβi,i 1
sin2( `π

2n
)

)m]
(C.26)
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5 Design of the Labeling Mappers

The output in (C.18) shows that, at high SNRs, ABEP is dominated by the product Euclidean distance,∏3
k=1 dk. In this study, we extend the optimization metric to mapper design in [4] to three transmit

antennas XQAM USTLD scheme given by:

(ΩM
2 ,ΩM

3 ) = argmax
{

min
xkq1 6=x̂

k
q1

3∏
k=1

dk
}

(C.27)

As shown in Figure C.2 and Figure C.3 for 32-XQAM and 128-XQAM, respectively, the optimal

decision regions are not square. The 32-XQAM constellations can be constructed by 8 × 8 square

block array with the 4 corner blocks deleted. Likewise, 128-XQAM constellations can be designed by

16× 16 square block array with the 7th and 8th rows in the 4 corner blocks deleted.

In
-P

h
a

se
 

Quadrature 

  0 1 0 1 0
  1 0 1 0 0
  1 1 1 0 0 

  1 1 0 1 0
  0 1 0 0 1
  0 0 1 0 0

  0 1 1 0 0
  1 0 1 1 1
  1 0 1 1 1

  1 1 1 0 0
  0 1 0 1 0
  0 1 0 1 0

  0 1 0 0 1
  1 0 1 1 1
  1 1 1 1 1

  0 1 1 1 0
  1 0 0 0 0
  1 1 0 0 0

 1 1 0 0 1
 0 1 0 1 0
 0 0 1 1 1

  1 1 0 1 1
  0 1 1 0 1
  0 1 1 0 1

  0 1 1 1 1
  1 0 1 0 0 
  1 0 1 0 0

  0 1 0 1 1
  1 0 0 0 0
  1 0 0 0 0

  0 1 0 0 0
  1 0 0 1 1
  1 0 0 1 1

  1 1 0 0 0
  0 1 1 1 0
  0 1 1 1 0

 1 1 1 1 0
 0 1 1 0 1
 0 0 0 0 0

  0 0 0 0 0
  1 0 1 1 0 
  1 0 1 1 0

  0 0 0 0 1
  1 0 0 1 0
  1 1 1 1 1

 0 0 0 1 0
 1 0 0 0 1
 1 1 1 0 0

  0 0 0 1 1
  1 0 1 0 1
  1 0 1 0 1

 0 0 1 0 1
 1 0 1 0 1
 1 1 0 1 1

  0 0 1 1 1
 1 0  0 0 1
 1 0  0 0 1

  1 0 0 0 1
  0 1 0 1 0
  0 0 1 1 1

 1 0 0 0 0
  0 1 0 1 0
  0 1 0 1 1

  1 0 1 0 1
  0 1 1 1 0
  0 0 0 1 1

 1 0 1 1 1
 0 1 1 0 0 
 0 1 1 0 0

  1 0 0 1 0
  0 1 1 0 0
  0 0 1 0 0 

  1 0 0 1 1
  0 1 0 0 0 
  0 1 0 0 0 
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 0 1 1 0 1 
 1 0 0 1 1 
 1 0 1 1 0 

 0 0 1 1 0 
 1 0 1 0 1 
 1 1 1 0 1 

 1 0 1 1 0 
 0 1 0 0 0 
 0 1 1 0 1 

 1 0 1 0 0 
 0 1 1 1 0 
 0 1 1 1 1 

 0 0 1 0 0 
 1 0 0 1 0 
 1 1 1 1 1 

 1 1 1 0 1 
 0 1 1 1 0 
 0 0 1 1 0 

 1 1 1 1 1 
 0 1 0 0 1 
 0 0 1 0 0 

Figure C.2: 32-XQAM constellations and optimized mappers for three transmit antennas USTLD scheme

A heuristic algorithm is then applied using the existing square-QAM USTLD with three transmit

antennas for 8×8 matrix [4] and 16×16 matrix constellation points [5] to 32-XQAM and 128-XQAM

for the second and third mappers. This is achieved by rearraging the rows and then the columns of

the matrix to ensure that any two adjacent rows (columns) in the source constellation matrix are non-

adjacent [4]. In 32-XQAM USTLD, for instance, heuristic algorithms are applied for the second and

third mappers whereby constellation points 4 and 13 are swapped with opposite constellation points
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In-Phase 

Quadrature 

 00 0 0 0 0 0
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 0 1 0 1 1 0 0

 1 0 1 1 0 1 0
 1 0 1 1 0 1 0
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 1 0 1 1 0 1 1
 1 1 1 1 1 1 1
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 1 0 1 1 1 1 1
 1 0 1 1 1 1 1
 0 1 0 1 1  0 1
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 1 1 0 0 0 1 1 
 1 1 0 0 0 1 1
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 0 0 0 1 1 0 0
 1 0 0 1 1 1 1

 1 1 0 1 0 0 1 
 0 0 0 1 1 0 1
 1 1 0 1 0 0 1

 1 1 0 1 0 1 1 
 0 1 1 1 1 0 1
 1 0 0 1 1 1 1

 1 1 0 1 0 1 0 
 0 1 1 1 1 0 1
 1 1 0 1 0 1 0

 1 1 0 1 1 1 0 
 0 0 1 0 1 0 1
 0 0 0 1 0 1 0

 1 1 0 1 1 1 1 
 0 0 0 0 1 0 1
 0 1 0 1 0 0 0

 1 1 0 1 1 0 0 
 0 0 1 1 1 1 0
 1 1 0 1 1 0 0

 1 1 0 1 1 0 1 
 0 1 1 1 0 1 1
 1 0 0 1 1 0 1

 1 1 1 0 0 0 0 
 0 1 1 0 1 0 0
 1 1 1 0 1 1 1

 1 1 1 0 0 0 1 
 0 0 0 0 1 0 1
 1 1 1 0 0 0 1

 1 1 1 0 0 1 0 
 0 0 1 0 1 0 1
 1 1 1 0 0 1 0

 1 1 1 0 0 1 1 
 0 1 0 0 1 0 1
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 1 1 1 0 1 1 0 
 0 1 1 0 1 0 1
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 1 1 0 0 1 0 0
 0 1 1 0 0 1 0
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 1 1 1 1 0 0 0 
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 1 1 1 1 0 0 1
 0 1 1 1 1 0 1
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 1 1 1 1 0 1 1
 0 0 0 1 0 0 1
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Figure C.3: 128-XQAM constellation and optimized mapper for three transmit antennas USTLD scheme

31 and 22. On the other hand, constellation points 20 and 29 are swapped with constellation points 15

and 6.

6 Numerical Results and Discussion

In this section, Monte Carlo simulation results of the proposed XQAM USTLD schemes in both

uncorrelated and correlated Nakagami-m fading channels are presented with M = 32 and M = 128.

We set the number of iterations n = 10 and NR = 4. In both proposed modulation schemes, we

assume a complete channel state information at the receiver.
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The first simulations are performed in i.i.d fading channels to validate the tightness of the proposed

closed-form error performance in (C.18) and (C.19). In addition, extensive simulations are carried out

to validate theoretical BER expressions in the correlated fading channel in (C.27).

6.1 BER validation in uncorrelated USTLD Nakagami-m channel

This sub-section demonstrates theoretical ABEP outputs for three transmit antennas USTLD schemes

in uncorrelated Nakagami-m fading channel as verified in (C.18) and (C.19). The ABEP is analyzed in

order to show the tightness of Monte Carlo simulation outputs with the theoretical results. Figure C.4

shows results for 32-XQAM and 128-XQAM. At BER of 10−6, the proposed USTLD scheme shows a

tight match for the theory with simulation for m = 1, m = 2 and m = 4. Moreover, there is SNR gain

of 1 dB for m = 4 over m = 2 and likewise SNR gain of 2 dB for m = 2 over m = 1 in 32-XQAM.

Similar results could be observed in 128-XQAM with approximately 1 dB gain for m = 4 over m = 2

and SNR gain of 3 dB for m = 2 over m = 1.

0 5 10 15 20 25

SNR (dB)

10-6

10-5

10-4

10-3

10-2

10-1

100

 B
E

R

Theory m =1

Sim m =1

Theory m =2

Sim m =2

Theory m =4

Sim m =4

32-XQAM

128-XQAM

Figure C.4: Validation of BER for CrossQAM modulation with M=32, 128-XQAM, in i.i.d Nakagami-m fading channel

6.2 Average BER in correlated channels with antenna spacing

This sub-section demonstrates the impact of antenna spacing on the average BER of a correlated

USTLD system in (C.27). The configuration of the antennas at the receiver is varied as a result of

physical distance of separation between them and this determines the severity of correlation.

Generally, the study assumes a linear array of antennas configurations with a uniform angle of arrival
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distribution in a correlation model. Figure C.5 shows the average BER with varied antenna spacings

of d = 0.2λ and d = 0.4λ at a BER of 10−6. Simulation results are provided to validate the

analytical expression for the two different antenna spacings, which agree well with the the theoretical

BER expressions at high SNR.

In both 32-XQAM and 128-XQAM, simulation outputs show that higher errors which correspond to

more correlated channel take place for a closed set antenna spacing of d = 0.2λ, and then followed

by and d = 0.4λ that correspond to the lower channel correlation. BER output for d = 0.2λ is

degraded by approximately 1 dB when compared to d = 0.4λ for 32-XQAM and approximately 0.8

dB in 128-XQAM. This output for d = 0.4λ as the lower channel correlation can be insightfully

observed from the fact that the spacing is close to half a wavelength, which is the assumed condition

for i.i.d.

Figure C.6 compares the effects of channel correlation on BER of the proposed USTLD scheme over

i.i.d channel. For 32-XQAM, 1.5 dB gain could be observed in i.i.d channel over correlated channel

with antenna spacing, c = 0.2λ and for 128-XQAM, 3.5 dB gain could be observed in i.i.d channel

over correlated channel with similar conditions.
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Figure C.5: Validation of BER for CrossQAM modulation with M=32, 128XQAM, m=2 in Correlated Nakagami-m fading

channel
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Figure C.6: BER Comparison for CrossQAM modulation with M=32, 128-XQAM, m=2, c = 0.2λ in i.i.d and Correlated

Nakagami-m fading channel

7 Conclusion

This paper introduced labeling mapper design of USTLD with three transmit antennas for 32-XQAM

and 128-XQAM modulation schemes. A heuristic algorithm that employed features of square QAM

is adapted for XQAM constellation design. The authors proposed closed-form expressions and

asymptotically tight bounds for bit error rates and average conditional probability in an i.i.d

Nakagami-m fading channels. In addition, we investigated XQAM USTLD scheme in an arbitrarily

correlated Nakagami-m fading channel. A closed-form error analysis based on characteristic function

was derived for the correlated channels which converged accurately at high SNR. In addition, impact

of channel correlation were demonstrated by comparing the BER results with BER of i.i.d channels.
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8 Appendix C

The conditional PEP on h1
1, h3

2 and h2
3 is given as:

P (X→ X̂|h1
1, h3

2, h2
3) =P
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3
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1x
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3
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F
(C.28)

Based on the assumption that (x1
q1 , x

2
q1 , x

3
q1) are detected in error while other symbols are detected

correctly, (C.28) becomes:
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) (C.29)

Let A =
√

ρ
3h1

1(x1
q1 − x

1
q̂1

), B =
√

ρ
3h3

2(x2
q1 − x

2
q̂1

), and C =
√

ρ
3h2

3(x3
q1 − x

3
q̂1

). By expanding the

square of the Frobenius as a binomial expressions yields:

P (X→ X̂|h1
1, h3

2, h2
3) =P
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= P
(
Re{nH1 A}+Re{nH2 B}+Re{nH3 C} >

‖A‖2F + ‖B‖2F + ‖C‖2F
2

)
(C.31)

Let dk = xkq1 − x
k
q̂1

, further simplification gives:
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(C.32)

Let ñ1 = nH1
√

ρ
3h1

1d1, ñ2 = nH2
√

ρ
3h3

2d2 and ñ3 = nH3
√

ρ
3h2

3d3. Given h1
1, h3

2 and h2
3, then ñ1, ñ2

and ñ3 are Gaussian RVs with independent entries according to:

ñ1 ∼ CN(0,
ρ

3

∥∥h1
1

∥∥2

F
|d1|2) (C.33)

ñ2 ∼ CN(0,
ρ
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F
|d3|2) (C.35)
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Let the decision variable ñ be defined as:

ñ = ñ1 + ñ2 + ñ3 (C.36)

The decision variable ñ is distributed according to:

ñ ∼ CN(0,
ρ

3
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Note that Re{ñ} = Re{ñ1}+Re{ñ2}+Re{ñ3}, where Re{ñ} is distributed according to:

Re{ñ} ∼ N (0,
ρ

6
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Thus, (C.32) becomes:
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It is to be noted that for a Gaussian RVs W with zero mean and unit variance, the expression becomes:

P (W > w) =
1√
2π

∫ ∞
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e
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2 dt (C.40)
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Hence,
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Let δ1 = ρ
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where δk are central chi-squared RVs with 2NR degrees of freedom, defined as:

δk =

2NR∑
y=1

[
(κIky)

2 + (κQky)
2
]
, k ∈ [1 : 3] (C.44)
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1. CONCLUSION

1 Conclusion

The main research contributions and outcomes presented in this thesis may be summarized as follows:

Paper A proposed an enhanced USTLD scheme with three transmit antennas in Rayleigh fading

channels. A heuristic algorithm was applied to design the second and third mappers for square

quadratic amplitude modulation (QAM). Monte Carlo simulation results demonstrated superior error

performance compared with the conventional two transmit USTLD. In addition, OP complexity

reduction technique was proposed which achieved lower computational complexity of 51% and

96.5% for 16QAM and 64QAM, respectively.

Paper B proposed labeling mapper design for USTLD scheme with three transmit antennas using

APSK modulation. The proposed APSK transmission scheme for A-USTLD were based on adaptation

of square QAM USTLD scheme to concentric ring structures of 16-APSK, 32-APSK and 64-APSK for

A-USTLD scheme using heuristic algorithm. In particular, A-USTLD scheme are standard compatible

with DVB-S2 and its latest extension (DVB-S2X) over Rician fast frequency-flat fading and quasi-

static frequency-flat fading channels. An analytical bound for the average BEP for the proposed A-

USTLD scheme was also derived, and the accuracy of the theoretical results was verified by Monte

Carlo simulation results for both fast fading and quasi-static fading Rician channels. In addition, A-

USTLD scheme was capable of achieving error performance gain of 1.2 dB and 2.8 dB at a BER

10−6 for 16-APSK and 64-APSK, respectively when compared to USTLD scheme with two transmit

antennas.

Paper C proposed XQAM USTLD scheme with three transmit antennas for both i.i.d Nakagami-m and

correlated Nakagami-m fading channels. A Mathematical optimization algorithm for the design of the

second and third mappers were proposed using heuristic algorithm. In addition, analytical expressions

for the ABEP of XQAM USTLD over i.i.d Nakagami-m and correlated Nakagami-m fading channels

were derived and the accuracy of the theoretical expressions were verified by Monte Carlo simulation

results. Moreover, a comparison between i.i.d and correlated Nakagami-m fading channels with shape

factor m = 2 and NR = 4, led to the following findings: (i) i.i.d channels achieved 1.5 dB gain at a

BER of 10−6 as compared to correlated channels with antenna spacing 0.2 λ for 32-XQAM USTLD

scheme; (ii) i.i.d channels exhibited 3.5 dB gain at a BER of 10−6 as compared to correlated channels

with antenna spacing 0.2 λ for 128-XQAM USTLD scheme.
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2 Future Research

USTLD schemes with three transmit antennas presented in this thesis can be further improved and

extended to other areas of wireless communications. This study identified the following areas or

topics of interest for possible future work.

2.1 Higher Order Mapper Design for USTLD Scheme

USTLD schemes with three transmit antennas are the main contributions of this research to the

literature. To this end, a heuristic algorithm for designing the second and third labeling mappers are

adopted. Motivated by transmit antenna diversity gain, future research should focus on improvement

of this thesis by investigating higher order USTLD schemes such as 4 × 4 scheme as well as

investigating other optimization algorithms such as genetic algorithm for such future ideas.

2.2 Optimization Algorithm using Artificial Intelligence Concept

In USTLD scheme with three transmit antennas, the mappers are manually designed from a

bits-to-symbol constellation map based on hand crafted heuristic algorithm. Application of Artificial

intelligence concept especially deep learning for mapper designs should be investigated in the future

research.

2.3 Large Scale Fading for USTLD Scheme with Transmit Antennas

In this thesis, small scale fading that describes the signal level at the receiver after encountering

obstacles for USTLD scheme with three transmit antennas are investigated. In practice, these channel

models do not cover various types of fading [1]. Large scale fading is characterized by average path

loss and shadow fading as a result of signal attenuation due to signal propagation over large distances

and diffraction around large objects. Thus, large scale fading provides generalized fading that holds

the promise to offer higher data rates and good quality of service for next-generation wireless

systems [2] [3]. Hence, future research should investigate large scale fading for USTLD scheme with

three transmit antennas.

2.4 Further Application of USTLD Scheme to Digital Broadcasting

The Digital Video Broadcasting (DVB) standards cover all aspects of digital television from

transmission through interfacing, conditional access and interactivity for digital video, audio and

data [4]. In this thesis, USTLD transmission scheme are developed for both the conventional

standard DVB-S2 system and the latest extension approved in 2014 identified as DVB-S2X.
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Motivated by the added additive modulation and coding (MODCOD)s scheme for DVB-S2X as an

improvement over the conventional DVB-S2 standard, DVB-S2X is a technological standard that

promotes high spectrum efficiency and offers the ability to operate with very-low carrier-to-noise and

carrier-to-interference ratios for consumer electronics [4]. Hence, high-density APSK transmission

schemes for USTLD with three transmit antennas become more attractive as possible future research

for the latest DVB-S2X standard [5]. Besides, maximizing mutual information criteria for the

transmission amplitude and phase should be further investigated in order to achieve lower

peak-to-average power ratio.

2.5 Application of USTLD Scheme to Hybrid Satellite-Terrestrial MIMO

Hybrid Satellite-Terrestrial Communication for MIMO scheme has developed rapidly in the recent

time due to the practical advantages for high speed data rate, wide coverage and ability to relief the

terrestrial traffic congestion in urban areas [6], [7], [8] .

Motivated by the successful application of MIMO scheme for hybrid Satellite-Terrestrial networks as

one of the most important enabling technologies for the future space-ground integrated technologies,

future research should focus at applications of USTLD scheme for hybrid Satellite-Terrestrial network

using generalized fading due to obstacles and shadowing between the satellite and terrestrial resulting

in masking effect that led to difficulties in LOS communication components [8]. On the other hand,

a combination of both large scale fading for satellite land mobile and small scale fading for terrestrial

networks can be applied to MIMO scheme for hybrid Satellite-Terrestrial communication [9]. Hence,

USTLD scheme should be investigated in this research focus for possible future ideas.

2.6 Application of Index Modulation for USTLD Scheme with three Transmit

Antennas

Media-based modulation (MbM) with radio frequency (RF) mirror is a new technique in wireless

communication system that has attracted significant attentions in the literature [10] [11] [12] [13].

In such literature, researchers have identified the following practical application of MbM to wireless

communication systems: improves error performance by converting static multi-path fading channels

into additive white Gaussian noise (AWGN); increases the number of channel realisations without

requiring extra power; and significantly improves error performance by selecting a subset of channel

realisations.

Motivated by the superior error performance application of recently proposed USTLD scheme and

MbM with RF mirrors for two transmit antennas [14] over the conventional USTLD scheme [15],
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future research should be aimed at investigating both MbM with RF mirrors for USTLD scheme with

three transmit antennas.

2.7 Impact of Channel Estimation Error on USTLD Scheme with three Transmit

Antennas

In this research, USTLD scheme with three transmit antennas have been introduced by assuming a

known perfect channel state information (CSI) at the receiver. In practical wireless communication

systems, a degradation in error performance is unavoidable when these systems are subjected to

imperfect CSI [16] and hence impacted negatively link reliability. Future research should investigate

various channel estimation error approaches for USTLD scheme with three transmit antennas.
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