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Samenvatting

Dankzij het comfort, de flexibiliteit en de mobiliteit die digitale draadloze
communicatiesystemen, zoals laptops, tablet-pc’s en smartphones, de gebrui-

ker bieden, boomt de draadloze markt als nooit tevoren. Dit succes brengt
echter met zich mee dat een steeds groeiend aantal draadloze toepassingen

gebruik dient te maken van een eindig en beperkt spectrum. Om verdere

verzadiging van het beschikbare spectrum te vermijden, worden voortdurend
nieuwe en spectraal efficiënte technieken voorgesteld en onderzocht, met als

doel het debiet en de betrouwbaarheid van draadloze systemen te verhogen.

Het is bekend dat de betrouwbaarheid van draadloze communicatiesyste-

men sterk wordt beperkt door multipath fading. Dit fenomeen wordt veroor-
zaakt door reflecties en verstrooiingen van het uitgezonden signaal op (bewe-

gende) objecten in de omgeving, en resulteert in een tijdsafhankelijke attenu-
atie van het signaal tijdens de propagatie over het draadloze kanaal. Aan het

reeds verzwakte signaal wordt bovendien thermische ruis toegevoegd door

de ontvanger. Het spreekt voor zich dat wanneer het nuttig signaal sterk
geattenueerd wordt door fading, de ontvanger het moeilijk zal hebben om

de verstuurde informatie correct te reconstrueren uit het ontvangen signaal.
Meestal wordt de kwaliteit van het signaal uitgedrukt aan de hand van de
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SAMENVATTING

signaal-ruisverhouding (signal-to-noise ratio of SNR), die wordt gedefinieerd

als de verhouding van het vermogen van het nuttige signaal tot het vermogen

van de achtergrondruis. Aangezien een lage SNR rechtstreeks aanleiding geeft
tot een slechte performantie, wordt de betrouwbaarheid van draadloze trans-

missie vaak verhoogd door gebruik te maken van diversiteit. Op die manier
wordt de ontvanger voorzien van meerdere replica’s van hetzelfde signaal via

verschillende onafhankelijke paden, zodat de kans dat alle replica’s tegelijk

sterk geattenueerd worden, zo klein mogelijk wordt. De verschillende di-
versiteitspaden kunnen op verschillende manieren worden gegenereerd, bij-

voorbeeld in frequentie, tijd of ruimte. In dit proefschrift richten we ons
op multiple-input multiple-output (MIMO) systemen die de ruimtelijke diver-

siteit benutten met behulp van spatio-temporele codering. In het bijzonder

beschouwen we orthogonale spatio-temporele blokcodes (OSTBCs), die in staat zijn
om een maximale diversiteit van L = LtLr te behalen, waarbij Lt en Lr respec-

tievelijk het aantal zend- en ontvangstantennes voorstellen. Bovendien her-
leidt optimale detectie van OSTBCs zich tot eenvoudige symbool-per-symbool

detectie, enkel gebaseerd op lineaire signaalverwerking aan de ontvanger.

De belangrijkste maat om de performantie van een digitaal communi-

catiesysteem te evalueren is de gemiddelde bitfoutprobabiliteit (bit error rate of

BER), die wordt gedefinieerd als de verhouding van het aantal fout gede-
tecteerde bits tot het totaal aantal verzonden bits. Hoewel de BER kan wor-

den bepaald door het aantal bitfouten te tellen dat optreedt bij een stochas-
tische computersimulatie van het systeem, geniet deze aanpak niet altijd de

voorkeur. In geval van lage gemiddelde BER, bijvoorbeeld, zijn bijzonder veel

systeemrealisaties nodig om een voldoende aantal bitfouten te observeren en
een bepaalde nauwkeurigheid te garanderen. Omdat dit erg lange simulatie-

tijden tot gevolg heeft, is een elegant en efficiënt alternatief voor computer-
simulaties nodig. Aangezien orthogonale spatio-temporele blokcodering aan-

leiding geeft tot zeer lage BERs, zelfs voor matige SNR, voeren we in dit proef-

schrift een nauwkeurige analytische BER studie uit voor OSTBCs op fading
kanalen met een vlakke frequentiekarakteristiek. In de wetenschappelijke li-

teratuur is de performantie van OSTBCs reeds uitgebreid onderzocht in de
veronderstelling dat de toestand van het draadloze kanaal perfect gekend is

aan de ontvanger. Vermits deze veronderstelling niet opgaat in een realis-

tische draadloze omgeving, beschouwen we een OSTBC ontvanger die het
kanaal schat aan de hand van gekende pilootsymbolen. Bovendien laten we

ruimtelijke correlatie toe tussen de verschillende coëfficiënten van het MIMO
kanaal. Op die manier geven de berekende BER uitdrukkingen systeemont-

werpers de kans om nauwkeurig het effect te onderzoeken dat kanaalschat-

tingsfouten en correlatie tussen de verschillende MIMO paden hebben op de
performantie van OSTBCs. Hoewel de uitdrukkingen zijn verkregen voor de

spectraal efficiënte quadrature amplitude modulation (QAM) techniek, zijn ze ook
eenvoudig toepasbaar op pulse amplitude modulation (PAM). Om een nauwkeu-
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rige modellering van verschillende draadloze omgevingen mogelijk te maken,

omvat onze BER analyse meerdere fading distributies.

In geval van ongecorreleerde Rayleigh fading kanalen en linear minimum
mean square error (LMMSE) kanaalschatting, presenteren we gesloten uitdruk-

kingen voor de BER. Deze uitdrukkingen zijn exact voor vierkante OSTBCs
en blijken zeer nauwkeurig te zijn voor niet-vierkante OSTBCs. Ook de BER

degradatie veroorzaakt door imperfecte kanaalschatting is gegeven in geslo-

ten vorm. Voor gecorreleerde Rayleigh fading kanalen, geven we zeer nauw-
keurige benaderingen van de BER in gesloten vorm, die asymptotisch exact

zijn voor vierkante OSTBCs. Daarnaast leiden we een eenvoudige vuistregel
af die nuttig is als indicator van de BER degradatie veroorzaakt door imper-

fecte kanaalschatting, en het exacte resultaat oplevert in geval van hoge SNR,

vierkant OSTBCs, ongecorreleerde Rayleigh fading en constellaties met con-
stante energie.

Wanneer we willekeurig verdeelde MIMO kanalen met maximum likelihood
(ML) kanaalschatting veronderstellen, slagen we erin om de exacte BER te

reduceren tot een verwachtingswaarde over niet meer dan Ns discrete toe-

valsgrootheden en 2L + 3 reële continue toevalsgrootheden, waarbij Ns het
aantal informatiesymbolen in de beschouwde OSTBC matrix voorstelt. Voor

vierkante OSTBCs kan het aantal reële continue toevalsgrootheden geredu-
ceerd worden tot 4, ongeacht het aantal antennes. Ook tonen we hoe de

exacte BER uitdrukkingen efficiënt en nauwkeurig geëvalueerd kunnen wor-

den door middel van numerieke integratietechnieken, zoals de kwadratuur-
regel en Monte-Carlo integratie met importance sampling, of een combinatie

van beide. We gaan dieper in op de numerieke evaluatie van de exacte
BER uitdrukkingen voor het specifieke geval van gecorreleerde Nakagami-

m fading. De Nakagami-m distributie wordt beschouwd als een veelzijdige

distributiefunctie die niet enkel de Rayleigh distributie omvat voor m = 1,
maar ook verschillende andere fading omgevingen kan modelleren mits een

geschikte keuze van de fading parameter m. Naast de exacte uitdrukkingen

voor de BER, presenteren we ook een computationeel eenvoudige benadering
van de BER, gebaseerd op het beschouwen van de symboolinterferentie te

wijten aan imperfecte kanaalschatting als witte Gaussiaanse ruis. Hoewel de
resulterende uitdrukking in het algemeen niet asymptotisch exact is, leidt ze

tot zeer nauwkeurige BER resultaten wanneer de fading distributie niet al te

erg afwijkt van de Rayleigh distributie en wanneer voldoende pilootsymbolen
worden gebruikt.

Tot slot suggereren we hoe de gepresenteerde technieken en uitdrukkin-
gen kunnen worden uitgebreid naar een aantal interessante MIMO OSTBC

toepassingen die gebruik maken van andere of extra transmissie- of modula-

tietechnieken, zoals kanaalcodering, adaptieve modulatie en codering, of orthogonal
frequency division multiplexing (OFDM).
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Summary

Due to the comfort, flexibility, and mobility offered by digital wireless com-
munication systems, such as laptops, tablets, and smartphones, the wireless

market is booming and an exponentially growing amount of wireless appli-
cations is competing for finite bandwidth resources. In order to avoid further

saturation of the available spectrum, new and spectrally efficient techniques

which increase the data rate or improve the reliability of wireless systems are
continuously being proposed and investigated.

It is well-known that the reliability of wireless communication systems is

strongly limited by multipath fading. This phenomenon is caused by reflec-

tions and scatterings of the transmitted signal on (moving) objects in the envi-
ronment, and results in a time-varying attenuation of the information bearing

signal. Moreover, when captured by the receiver, the already attenuated signal
is further corrupted by thermal noise. It is readily verified that deep channel

fades impede the receiver’s ability to correctly retrieve the information from

the received signal. Usually, the signal quality is expressed in terms of the
signal-to-noise ratio (SNR), which is defined as the ratio of the power of the

useful signal to the power of the background noise. Since a low SNR gives
rise to bad system performance, the reliability of wireless transmission is of-
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ten increased by using a proper diversity scheme. In this way, the receiver is

provided with multiple replicas of the same signal through different indepen-

dent paths, such that the probability that all replicas simultaneously suffer
from severe fading is minimized. The different diversity paths can be gener-

ated in several ways, e.g., in frequency, time, or space. In this dissertation,
we focus on multiple-input multiple-output (MIMO) systems exploiting spatial

diversity by using space-time coding. More specifically, we consider orthogo-

nal space-time block codes (OSTBCs), which are able to achieve a full diversity
order of L = LtLr, with Lt and Lr denoting the number of transmit and receive

antennas, respectively. Moreover, because of the orthogonality of the OSTBC
matrices, the optimal detection algorithm reduces to symbol-by-symbol detec-

tion, based on linear signal processing at the receiver.

In digital communications, the principal figure of merit to evaluate the

system performance is the bit error rate (BER), which is defined as the ratio of

the number of erroneously received bits to the total number of bits. Although
the BER can be obtained using a stochastic computer simulation of the system

involving bit error counting, this approach is not always to be preferred. In
case of low average BER, for instance, many simulation runs are required to

observe a sufficient number of bit errors and ensure a given accuracy. Since

this results in undesirably long simulation times, an elegant and efficient al-
ternative for straightforward computer simulations is required. As, owing to

their high diversity order, OSTBCs achieve very low BERs, even for moderate
SNR, we provide in this dissertation an accurate analytical BER analysis for

OSTBCs on flat-fading channels. In the literature, the performance of OST-

BCs has been investigated extensively under the assumption that the channel
state information (CSI) is perfectly known by the receiver. Since in a realistic

wireless environment, the channel is a priori unknown and has to be esti-

mated, we consider an OSTBC receiver that estimates the channel by means
of known pilot symbols sent among the data. Moreover, we allow spatial

correlation between the different coefficients of the MIMO channel. In this
way, the presented BER expressions allow system designers to accurately ex-

amine the effect of channel estimation errors and fading correlation on the

performance of OSTBCs. Although our expressions have been obtained for
the spectrally efficient quadrature amplitude modulation (QAM) scheme, they

are also easily applicable to pulse amplitude modulation (PAM) schemes. In
order to enable an accurate modeling of different wireless environments, our

BER analysis incorporates several fading distributions.

In case of uncorrelated Rayleigh fading channels and linear minimum mean

square error (LMMSE) channel estimation, we present closed-form expressions

for the BER, which are shown to be exact for square OSTBCs and very ac-
curate for non-square OSTBCs. Also, a closed-form expression for the BER

degradation due to imperfect channel estimation is provided. For arbitrarily
correlated Rayleigh fading channels, we derive very accurate closed-form BER
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approximations, which are asymptotically exact for square OSTBCs. In addi-

tion, we provide a simple rule of thumb that serves as an indicator for the

BER degradation caused by imperfect channel estimation and yields the ex-
act result in case of high SNR, square OSTBCs, uncorrelated Rayleigh fading

channels, and equal-energy constellations.
Under the assumption of arbitrarily distributed MIMO channels with maxi-

mum likelihood (ML) channel estimation, we manage to reduce the exact BER to

an expectation over Ns discrete random variables (RVs) and 2L+ 3 real-valued
continuous RVs, with Ns denoting the number of information symbols in the

considered OSTBC matrix. For square OSTBCs, the number of real-valued
continuous RVs can be reduced to 4, regardless of the number of antennas. It

is also shown how the presented exact BER expressions can be efficiently and

accurately evaluated by means of numerical integration techniques, such as
the quadrature rule and Monte-Carlo integration with importance sampling,

or a combination thereof. We elaborate further on the numerical evaluation
of the exact BER expressions for the specific case of correlated Nakagami-m

fading channels. The Nakagami-m distribution is considered as a versatile

statistical distribution that not only includes the Rayleigh distribution but is
also able to accurately model a vast variety of fading environments by select-

ing a proper value for the fading parameter m. In addition to the exact BER
expressions, we provide a computationally simple approximation of the BER,

based on treating the symbol interference due to imperfect channel estimation

as white Gaussian noise. Although the resulting expression is in general not
asymptotically exact, it yields very accurate BER results when the fading dis-

tribution is similar to Rayleigh and when a sufficient number of pilot symbols
is used.

Finally, we suggest how the presented techniques and performance results

can be extended to a number of interesting MIMO OSTBC applications using
different or additional transmission or modulation techniques, such as channel

coding, adaptive modulation and coding, or orthogonal frequency division multiplex-

ing (OFDM).

xv





1
Introduction

In this doctoral thesis, we investigate the impact of imperfect knowledge of

the wireless channel on the performance of orthogonal space-time block codes
(OSTBCs). We derive closed-form bit error rate (BER) expressions for OST-

BCs operating over Rayleigh fading channels, whereas accurate and easy-to-
evaluate analytical BER expressions are obtained under generalized fading

conditions. In section 1.1, we provide some interesting background informa-

tion and explain why the presented research results are useful. An outline of
this dissertation is provided in section 1.2.

1.1 Background and Motivation

In general, the purpose of any communication system is to transfer infor-

mation from one point to another over a physical medium or link. In case
of digital communication, the information to be sent is represented by a se-

quence of binary digits (bits) that take on the values ‘0’ or ‘1’. Hence, digital
communication comprises any type of information that can be digitized, be it

1
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text, data, voice or video. In communication theory, the medium over which

the transmission takes place is called the channel. Examples of wired com-

munication channels include copper wires and optical fibres. In case of wire-
less communication, however, the channel consists of the (air) space between

the transmitter and receiver antennas. As opposed to wired communication,
wireless technologies and applications provide the user with a great sense of

comfort and mobility. For that reason, many important mobile technologies,

such as mobile telephony and wireless local area networks (WLANs), have
become indispensable and ubiquitous in our daily life. Moreover, due to the

recent success of smartphones and tablets, more and more wireless applica-
tions requiring high-rate data transfer are entering our information sharing

society. In order to satisfy the ever growing demand for bandwidth and at

the same time not to overload the available spectrum, new and spectrally ef-
ficient wireless communication techniques are continuously being proposed

and investigated.

Despite the appealing properties of digital wireless communication, sys-

tem designers have to cope with one major challenge which is called multi-
path fading. This phenomenon is caused by reflections and scatterings of the

transmitted signal on (moving) objects in the environment, and results in a

time-varying attenuation of the information bearing signal. In other words,
the wireless channel affecting the transmitted signal may vary considerably in

time and its status cannot be known a priori. When captured by the receiver,
the already attenuated signal is further corrupted by thermal noise. Usually,

the signal quality is expressed in terms of the signal-to-noise ratio (SNR), which

is defined as the ratio of the power of the useful signal to the power of the
background noise. It is readily verified that multipath fading has a detrimen-

tal effect on the SNR of the received signal and, hence, on the performance of

wireless communication systems. For example, when the channel is in a deep
fade, the useful signal will be severely attenuated, and the presence of noise

will make it impossible for the receiver to correctly retrieve the information
from the received signal. Often, the reliability of wireless transmission is in-

creased by using a proper diversity scheme, which provides the receiver with

multiple replicas of the same signal through different independent paths. In
this way, the probability that all replicas simultaneously suffer from severe

fading is minimized.

One way to provide the receiver with multiple copies of the same signal

consists of introducing multiple spatial paths between the transmitter and the
receiver. To this end, both sides of the transmission link are equipped with

multiple antennas. Although the first ideas on multiple-input multiple-output

(MIMO) communication date back to the seventies [1–3], exciting results re-
vealing the potential spectral efficiencies of MIMO systems were reported by

Winters [4], Foschini [5], and Telatar [6]. A schematic example of a MIMO
system with 2 transmit and 2 receive antennas is shown in Fig. 1.1. It is

2
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recovered
information bits

TRANSMITTER

CHANNEL

information bits

RECEIVER

Figure 1.1: A MIMO system with 2 transmit and 2 receive antennas.

important to note that the multiple virtual communication channels between
the transmitter and receiver can be used both to increase the throughput by

transmitting different data streams in parallel, a technique which is usually
referred to as spatial multiplexing, and to improve the reliability of the trans-

mission by exploiting spatial diversity; the latter technique requires the use of

proper space-time coding. However, the throughput and the diversity order
cannot be maximized simultaneously, as there exists a fundamental trade-off

between diversity and multiplexing gain [7]. In this dissertation, we focus
on the transmit diversity technique of orthogonal space-time block coding, which

was introduced in 1999 by Tarokh et al. [8] as a generalization of Alamouti’s

remarkable transmit diversity scheme [9]. By coding the information symbols
across different transmit antennas (space) and subsequent time slots (time),

OSTBCs manage to achieve a full diversity order of L = LtLr, with Lt and

Lr denoting the number of transmit and receive antennas, respectively, while
their optimal detection algorithm reduces to symbol-by-symbol detection. Be-

cause of these beneficial properties, OSTBCs are considered a particularly in-
teresting diversity technique.

Before technical advances as MIMO and OSTBCs are adopted in wireless

communication standards that pave the way for future technologies, their per-
formance needs to be carefully examined and compared with existing tech-

niques. In digital communications, the principal figure of merit to evaluate
and compare the system performance is the bit error rate, which is defined as

the ratio of the number of erroneously received bits to the total number of bits.

The BER of a system can be calculated either in an analytical fashion or using
stochastic computer simulations. The latter approach requires that the input

parameters of the system, such as the information symbols, the channel, and
the noise samples are generated according to their corresponding statistical

distributions. Consequently, the BER is obtained by applying the transmitter

and receiver operations to the generated parameters and counting the num-
ber of erroneously received bits. As a result, in case of low average BER,

extremely long simulation times are typically required to obtain a sufficient
number of bit errors and achieve a given accuracy. Hence, for reliable commu-

3
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nication systems achieving low BERs, efficient and easy-to-evaluate analytical

BER results offer a pleasing and necessary alternative for brute-force computer

simulations. However, in order to enable analytical performance analysis, a
relatively simple channel model and data source model must be assumed.

Because of their high diversity order, OSTBCs achieve very low BERs, even
for moderate SNR. Therefore, BER analysis through straightforward computer

simulations is usually not appropriate and analytical BER results are to be pre-
ferred. In the literature, the performance of OSTBCs has been investigated ex-

tensively. Most results, however, were obtained under the assumption that the

channel state information (CSI) is perfectly known by the receiver. In realistic
receivers, this is clearly not the case and system designers have to consider

the impact of imperfect channel estimation on the system performance. In
this dissertation, we derive accurate BER expressions for a wireless receiver

that estimates the channel by means of known pilot symbols sent among the

data. We also allow spatial correlation between the MIMO subchannels. Our
BER results allow to accurately examine the impact of both imperfect channel

estimation and fading correlation on the BER performance of OSTBCs. Not
only do our analytical BER expressions offer an elegant, accurate, and fast al-

ternative for brute-force computer simulations, and enable system designers

to select the optimal transmission parameters, they can also be used to ver-
ify the accuracy of the BER approximations that are currently available in the

literature.

1.2 Outline

This dissertation is organized as follows:

Chapter 2 provides an overview of the fundamental principles of estima-

tion and detection theory. This branch of statistics and signal processing is
particularly important in communication theory, since the receiver operations

required to extract the transmitted digital information and other unknown

transmission parameters from the received signal, rely on it.

Chapter 3 presents a single-input single-output (SISO) digital wireless

communication system and introduces the relevant terminology and nota-
tions. In this chapter, the different blocks of a conventional communication

system are explained in more detail. We show how the digital information
is modulated onto a continuous-time carrier wave and transmitted over the

channel. Finally, it is illustrated how the transmitted information is recovered

from the signal captured by the receiver and how the associated BER can be
obtained analytically.

Chapter 4 shows how the exploitation of spatial diversity enables to miti-
gate multipath fading and improve the performance of wireless systems. This

chapter presents the MIMO channel model that will be used throughout this
thesis and introduces the concept of orthogonal space-time block coding.

4
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Chapter 5 discusses two widespread pilot aided channel estimation meth-

ods. It also explains how pilot symbols are inserted in the data stream and

why there is a trade-off between resources dedicated to pilot and data sym-
bols.

Chapter 6 presents exact and approximate closed-form BER results for a
receiver that estimates the CSI by means of pilot aided channel estimation.

We also derive a simple rule of thumb that serves as an indicator for the

BER degradation caused by imperfect channel estimation and yields the exact
result under certain conditions.

Chapter 7 provides an exact BER analysis for square and non-square OST-
BCs, under the assumption of arbitrarily distributed flat-fading channels with

imperfect CSI. We show how the exact BER expressions can be efficiently and

accurately evaluated using numerical integration techniques, and elaborate
further on the case of correlated Nakagami-m fading channels.

Chapter 8 illustrates how the expressions and techniques derived in this
dissertation can be applied to assess the performance of MIMO OSTBC sys-

tems using different or additional transmission or modulation techniques. It

shows both preliminary performance results and interesting ideas for further
research.

Chapter 9 summarizes this dissertation and sums up the main conclusions.
This chapter is followed by a complete list of our publications.
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2
Estimation and Detection
Theory

In digital communications, the aim of the receiver is to recover the transmit-
ted digital information from the received signal, which can be regarded as a

probabilistic function of the transmitted signal. Moreover, before the receiver
can retrieve this information, it needs to obtain the value of several unknown

parameters, such as timing and channel parameters. Since the receiver oper-

ations for extracting both these signal parameters and the transmitted digital
information rely on estimation and decision theory, we present in this chap-

ter some fundamental definitions and principles of this particular branch of
statistics and signal processing.

In section 2.1, we introduce the relevant definitions and statistical distri-
butions. Using these distributions, we assess the estimation of continuous

parameters and the detection of discrete parameters in sections 2.2 and 2.3,
respectively. A chapter summary is given in section 2.4.
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2.1 Definitions

Let us assume that we have an observation y ∈ Y , which depends on an un-
known parameter x ∈ X in a probabilistic manner. The purpose of estimation

and detection theory is to derive an estimate x̂(y) of the unknown x as a func-

tion of the observation y. To this end, a statistical model is formulated for x

and y. When the parameter x is a discrete variable, i.e., it takes values from a

finite set X , estimation is called detection and the resulting estimate is called a
decision.

In this dissertation, two important applications of estimation and detec-

tion theory are encountered, i.e., channel estimation and data detection. Chap-
ter 5 is devoted to channel estimation and provides more details about the

derivation and performance of different types of channel estimators. In this

case, the unknown parameter x represents the channel state, and the observa-
tion y consists of the signals captured by the receiver during the transmission

of known pilot symbols. In the case of data detection, which is presented
in section 3.2.3.3, the receiver detects the unknown transmitted information

symbols based on the corresponding signals captured by the receiver. Here, x

represents the (discrete) information symbol vector, whereas y consists of the
corresponding received signals.

2.1.1 Likelihood Function

Since the unknown parameter x does not fully determine y, we consider the
probability density function (PDF)

p(y|x) (2.1)

of y conditioned on x. This PDF specifies how likely the parameter value x

gives rise to a given observation y. When considered as a function of x, this

PDF is called the likelihood function of x. It represents the knowledge we have
about x as a result of the observation y. The logarithm log(p(y|x)) of the

likelihood function is called the log-likelihood function of x.

2.1.2 Prior Distribution

Essentially, there are two ways to assess an estimation or detection problem.
The standard or non-Bayesian approach considers the unknown parameter x to

be deterministic and does not make any further a priori assumptions about it.
The Bayesian approach, on the other hand, assumes x to be random and asso-

ciates a prior distribution p(x) to it, which represents the fundamental statisti-

cal knowledge about x before observing y. Since the non-Bayesian approach
can easily be incorporated in the Bayesian framework by associating a uni-

form prior distribution to x, we will use the more general Bayesian approach
throughout this chapter.
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In principle, there is only one correct prior distribution p(x) that charac-

terizes the random parameter x, yet it may be hard to obtain. Because of this

argument the suitability of the Bayesian approach is sometimes questioned.
However, a useful and accurate approximation of p(x) can often be derived

from either the physical constraints of the situation or from empirical mea-
surements. In many situations it is preferred to represent the prior distribu-

tion by a standard distribution. This distribution should be chosen such that it

both reduces the mathematical complexity of the problem and still sufficiently
resembles the actual (empirical) distribution.

2.1.3 Posterior Distribution

The information about x provided by the prior distribution p(x) and the like-
lihood function p(y|x) can be combined through the application of Bayes’ rule

p(x|y) = p(y|x) p(x)

p(y)
, (2.2)

where the posterior distribution p(x|y) represents all available information about

x. Note that the normalization factor p(y) in (2.2) is given by

p(y) =
∫

x
p(y|x) p(x) dx, (2.3)

and ensures that
∫

x p(x|y) dx = 1.

2.2 Estimation

Let us consider in this section a continuous parameter x. Based on the sta-

tistical distributions considered in section 2.1, various estimators x̂(y) of the

unknown parameter x can be derived. A common measure to evaluate and
compare the performance of different estimators is the mean square error

(MSE), which is defined as the expectation of the squared norm of the differ-
ence between the the estimate x̂(y) and the actual parameter x

MSE = E

[
‖x − x̂(y)‖2

]
=
∫

x,y
‖x − x̂(y)‖2 p(x, y) dxdy. (2.4)

The MSE indicates how much x̂(y) and x differ on average. Although nu-
merous estimators are available from the literature, we give in this section an

overview of the most important ones.

Minimum Mean Square Error Estimation The estimator that minimizes the
MSE is called the minimum mean square error (MMSE) estimator. It is readily
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verified that the MMSE estimate is obtained by minimizing, for every possible

observation y, the posterior mean square error

x̂MMSE(y) = arg min
x̃∈X

∫

x
‖x − x̃‖2 p(x|y) dx. (2.5)

Moreover, (2.5) can be easily shown to reduce to

x̂MMSE(y) = E [x|y] =
∫

x
x p(x|y) dx, (2.6)

such that the MMSE estimate is given by the posterior mean of the unknown
parameter x.

In many cases, a closed-form expression for the MMSE estimator is hard

to obtain. A possible solution for this problem is to consider only the class

of linear estimators, i.e., estimators of the form x̂ = My1. The linear minimum
mean square error (LMMSE) estimator is the linear estimator that minimizes the

MSE. It follows from (2.4) that the LMMSE estimate is given by

x̂LMMSE(y) = Rxy

(
Ryy

)−1
y, (2.7)

where the cross-covariance matrix Rxy and the covariance matrix Ryy are de-

fined as

Rxy = E[xyH ], (2.8)

where the superscript H denotes the Hermitian transpose, and

Ryy = E[yyH]. (2.9)

It is known that the MMSE estimator is linear if x and y are jointly Gaussian.

Hence, in this case, the LMMSE and MMSE estimators coincide.

Maximum A Posteriori Estimation Another possibility to avoid the compu-

tational complexity associated with the MMSE estimate, is to use the maximum

a posteriori (MAP) estimator. The MAP estimate selects the value of the un-
known parameter x that maximizes its posterior distribution

x̂MAP(y) = arg max
x∈X

p(x|y)

= arg max
x∈X

p(y|x)p(x). (2.10)

The second equation follows from (2.2) and the fact that p(y) is independent

of x. It is easily understood that when the posterior distribution p(x|y) is
symmetric and unimodal, the MAP and MMSE estimators are identical.

1We hereby tacitly assume that x and y are zero-mean random vectors. If this is not the case,
a (linear) estimator of the form x̂ = My + b should be used
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Maximum Likelihood Estimation A third widespread estimator is the max-

imum likelihood (ML) estimator, which selects the value of the unknown pa-

rameter x that maximizes its likelihood function

x̂ML(y) = arg max
x∈X

p(y|x). (2.11)

In contrast to the MMSE and MAP estimators, the ML estimator is strictly

speaking not a Bayesian estimator, since it does not use any prior information
about x. However, the ML estimation rule (2.11) can be derived from the MAP

estimation rule (2.10) by associating a uniform prior distribution to x.

2.3 Detection

In detection problems, the parameter x belongs to a discrete set X , whereas the

observation y may be discrete or continuous. A typical application in digital
communications is the detection of the transmitted bits from the continuous

signal observed at the receiver.
Since a decision is either right or wrong, the MSE is no longer an ap-

propriate means to compare the performance of different detectors. A better

performance measure is the average probability of an erroneous decision

Perr = Pr [x̂(y) 6= x]

= 1 −∑
x

∫

y
I [x̂(y) = x] p(x, y) dy, (2.12)

where I[·] denotes the indicator function, whose value is 1 if its argument is
true and 0 otherwise.

Maximum A Posteriori Detection It is known that the error probability
(2.12) is minimized by the MAP detector, which returns the value of x with

the highest posterior probability

x̂MAP(y) = arg max
x∈X

p(x|y). (2.13)

Maximum Likelihood Detection The ML detector returns the value of x

that maximizes the likelihood function

x̂ML(y) = arg max
x∈X

p(y|x). (2.14)

When x is uniformly distributed, MAP and ML detection are equivalent.

2.4 Chapter Summary

In this chapter, we introduced the fundamental principles of estimation and
detection theory. Various widespread estimation and detection methods were
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presented. In communication theory, these methods are applied to recover the

transmitted digital information and other unknown transmission parameters

from the received signal.
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3
Conventional Digital
Communication

In this chapter, we present a conventional SISO digital wireless communica-

tion system and introduce the relevant terminology and notations. The more
advanced MIMO system model, which will be used throughout this thesis,

is presented in chapter 4. The purpose of any digital communication system

is to transfer digital information from one point to another over a physical
medium or channel. To this end, the digital information is modulated onto

a radio frequency (RF) carrier wave, which is transmitted over the channel.
As the transmitted electromagnetic or RF waves are band-pass signals, we de-

vote section 3.1 to the mathematical representation of band-pass signals and

systems. The different blocks of the communication system are explained in
more detail in section 3.2. Section 3.3 illustrates how the BER can be calcu-

lated both analytically and through computer simulations, whereas section 3.4
summarizes the chapter.
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3.1 Band-Pass Signals and Systems

3.1.1 Representation of Band-Pass Signals

A real-valued signal sBP(t) is considered a band-pass signal if its Fourier trans-

form or frequency response SBP( f ) satisfies SBP( f ) = 0 for || f | − fc| > B, with
fc > B. In other words, sBP(t) occupies an interval of length 2B on both the

positive and negative frequency axis. fc and 2B are called the center frequency
and the RF bandwidth of sBP(t); usually fc � B. Since sBP(t) is real-valued, it

follows that SBP( f ) = S∗
BP(− f ).

The band-pass signal sBP(t) can be related to an equivalent complex-valued

baseband or low-pass signal sLP(t), with SLP( f ) = 0 for | f | > B

sBP(t) =
√

2<
[

sLP(t) ej2π fct
]

(3.1a)

sLP(t) = {
√

2 sBP(t) e−j2π fct}LP (3.1b)

where <[·] denotes the real part and {s(t)}LP denotes the components of s(t)
that are in the frequency band [−B, B]. Because of the normalization factor√

2 in (3.1), the baseband signal sLP(t) and the band-pass signal sBP(t) have
the same power. Note that multiplying a time domain signal with ej2π fct cor-

responds to a shift of fc Hz in the frequency domain. Hence, for the frequency

responses of sBP(t) and sLP(t), we have

SBP(t) =

√
2

2
SLP( f − fc) +

√
2

2
S∗

LP(− f − fc) (3.2a)

SLP(t) =
√

2 SBP( f + fc) ΠLP( f ) (3.2b)

where ΠLP( f ) is the frequency response of an ideal unit-amplitude low-pass

filter with bandwidth B

ΠLP( f ) ,

{
1 if | f | ≤ B

0 otherwise
. (3.3)

3.1.2 Representation of Linear Band-Pass Systems

Each linear band-pass system is characterized by a linear real-valued band-

pass filter with impulse response hBP(t) and frequency response HBP( f ) =
0 for || f | − fc| > B. Let us now define a low-pass filter whose frequency
response HLP( f ) = 0 is given by

HLP(t) = HBP( f + fc) ΠLP( f ). (3.4)
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In this way, the impulse response hLP(t) of the equivalent low-pass filter is

related to hBP(t) as

hBP(t) = 2<
[
hLP(t) ej2π fct

]
(3.5a)

hLP(t) = {hBP(t) e−j2π fct}LP (3.5b)

Note that (3.5) is similar to (3.1) except for the normalization factor and that
the impulse response hLP(t) is in general complex-valued.

3.1.3 Response of a Linear Band-Pass System to a Band-Pass
Signal

If we apply the band-pass signal sBP(t) to a linear band-pass filter with im-

pulse response hBP(t), the signal rBP(t) at the output of the filter is also a
band-pass signal and is given by the convolution of sBP(t) and hBP(t)

rBP(t) =
∫

u
hBP(u) sBP(t − u) du. (3.6)

In the frequency domain, we have

RBP( f ) = HBP( f ) SBP( f ), (3.7)

such that RBP( f ) = 0 for || f | − fc| > B. Similar to the transmitted signal

sBP(t), the received signal rBP(t) can be represented by an equivalent baseband
signal rLP(t). Using (3.5), it is readily verified that (3.6) and (3.7) each have

their low-pass counterpart

rLP(t) =
∫

u
hLP(u) sLP(t − u) du, (3.8)

RLP( f ) = HLP( f ) SLP( f ). (3.9)

In section 3.2, it is shown how electromagnetic waves transfer digital in-

formation over a band-pass channel. However, we will derive a convenient

baseband system model which makes abstraction of the RF signals and uses
the baseband representations of the transmitted and received band-pass sig-

nals and the channel impulse response.

3.2 System Description

A conventional uncoded digital wireless communication system is depicted

in Fig. 3.1. In general, we recognize three main blocks:

• the transmitter

• the channel
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bits {bk}
UpconversionPulse ShapingMapping

sBP(t){sk} sLP(t)

TRANSMITTER

CHANNEL

Downconversion

Low-Pass Filter
Demapping Detection

Matched Filter

Samplingbits {b̂k} rBP(t){ŝk} {rk} rLP(t)

RECEIVER

Figure 3.1: A conventional uncoded digital wireless communication system.

• the receiver

These three blocks and their subsystems are described in more detail in the

following sections.

3.2.1 Transmitter

In digital communications, the information to be transferred over the channel

is usually represented by a sequence of bits. We assume that the bits are inde-
pendent and uniformly distributed, i.e., they take on the values 0 and 1 with

equal probability. This assumption is valid when an efficient compression or

source coding algorithm is applied to the data, and no channel coding is used.
The purpose of the transmitter is to convert the given bit sequence into a con-

tinuous waveform, which can be transmitted onto the channel. This process
is called digital modulation and consists of three stages: symbol mapping, pulse

shaping, and upconversion.

3.2.1.1 Symbol Mapping

A symbol mapper translates a bit sequence {bk} into a sequence of complex-
valued symbols {sk}. To this end, the bit sequence is split into blocks of mb

bits, which are mapped to symbols belonging to a constellation Ψ consist-
ing of M , 2mb constellation points. The parameter M is called the size or

order of the constellation. Denoting by the superscript T the transpose of a

vector or matrix, the symbol sequence s = [s1, s2, . . . , sNs ]
T of Ns symbols rep-

resents a bit sequence b = [b1, b2, . . . , bNb
]T of Nb bits, with Nb = log2(M)Ns.

When the mapping of a block of mb bits to a symbol sk does not depend
on previously transmitted symbols, the mapping is said to be memoryless.
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Hence, each symbol sk can be generated through a bijective mapping function

M : {0, 1}mb → Ψ:

sk = M
(

b(k−1)mb+1, . . . , bkmb

)
, k = 1, . . . , Ns. (3.10)

Moreover, we assume that the symbol constellation Ψ = {ψ1, ψ1, . . . , ψM} is

normalized, i.e.,

E[|ψi|2] =
1

M

M

∑
i=1

|ψi|2 = 1. (3.11)

In practice, the following memoryless mapping strategies are often used:

• M-ary Pulse Amplitude Modulation (M-PAM)

In case of M-PAM, the symbol constellation Ψ is real-valued and given
by

Ψ =
{
(2i − 1 − M)dPAM : i = 1, 2, . . . , M

}
, (3.12)

where dPAM denotes half the distance between adjacent constellation

points and is given by

dPAM =

√
3

M2 − 1
. (3.13)

• M-ary Quadrature Amplitude Modulation (M-QAM)

In case of M-QAM, the symbol constellation Ψ is complex-valued. We
consider square M-QAM constellations such that the real and imaginary

parts of the constellation points take values out of the set Ψ′, which is
given by

Ψ′ =
{
(2i − 1 −

√
M)dQAM : i = 1, 2, . . . ,

√
M
}

, (3.14)

where dQAM is given by

dQAM =

√
3

2(M − 1)
. (3.15)

Hence, the M-QAM constellation Ψ is given by

Ψ =
{

ψ : <[ψ],=[ψ] ∈ Ψ′
}

, (3.16)

where =[·] denotes the imaginary part. Due to its high spectral efficiency

(SE), M-QAM has been adopted in various standards, e.g., DVB [10],
WLAN [11] and LTE [12].
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01010100

0000 0001

01100111

0011 0010

10101011

1111 1110

10011000

1100 1101

Figure 3.2: 16-QAM constellation with Gray mapping.

• M-ary Phase Shift Keying (M-PSK)

In case of M-PSK, the symbol constellation Ψ is complex-valued and
given by

Ψ =

{
exp

(
j
2π(i − 1)

M

)
: i = 1, 2, . . . , M

}
. (3.17)

Usually, 2-PSK and 4-PSK are called BPSK (binary PSK) and QPSK

(quadrature PSK), respectively. Moreover, the BPSK and QPSK symbol
constellations are identical to the constellations for 2-PAM and 4-QAM

(rotated by 45◦), respectively.

The assignment of mb = log2(M) bits to M constellation points can be done
through many possible mapping functions. Because the mapping function

affects the overall system performance, however, the selection of a proper
mapping function is of particular importance. For uncoded transmission, it

can be shown that the bit error rate is minimized for a mapping function

which is such that constellation points at minimum Euclidean distance differ
in exactly one bit. This mapping is called Gray mapping. Since an erroneous

symbol detection due to noise will most likely result in the selection of an
adjacent constellation point, only one bit in the detected mb-bit sequence will

be incorrect in this case. An example of a 16-QAM constellation with Gray

mapping is shown in Fig. 3.2. Note that the two least significant bits specify
the real part of the constellation point, whereas the imaginary part depends

on the two most significant bits only. The least and most significant bits are
also called in-phase and quadrature bits, respectively.
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√
Es

{sk}
B−B

sLP(t)

Transmit Filter

√
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Figure 3.3: Pulse shaping.

3.2.1.2 Pulse Shaping

We consider linear digital modulation, such that the transmitted continuous-
time signal is a linear function of the discrete symbol symbol sequence {sk}.

To this end, a sequence of Dirac impulses at rate Rs = 1/T with weights
{√Es sk} is fed to a baseband transmit filter, as shown in Fig. 3.3; T is called

the symbol period. The transmit filter is characterized by an impulse response

p(t) and a frequency response P( f ), with P( f ) = 0 for | f | > B. The parameter
B is called the baseband bandwidth of the filter. At its output the transmit

filter produces a complex-valued baseband signal sLP(t), which is given by

sLP(t) =
√

Es ∑
k

sk p(t − kT), (3.18)

where Es is the energy per symbol, provided that p(t) has unit energy, i.e.,

∫
|p(t)|2dt =

∫
|P( f )|2d f = 1. (3.19)

How the transmit pulse p(t) should be selected is explained in section 3.2.3.2.

3.2.1.3 Upconversion

Since each wireless communication system is allowed to transmit within a

limited frequency band only, the complex-valued baseband signal (3.18) has
to be up-converted into a real-valued continuous-time band-pass signal. As

shown in Fig. 3.4, the baseband signal sLP(t) is modulated onto a sinusoidal

carrier wave with frequency fc > B according to the equivalence (3.1a), which
yields the following band-pass signal

sBP(t) =
√

2<
[

sLP(t)e
j2π fct

]
. (3.20)

This RF signal is fed to the transmit antenna and transmitted onto the channel.
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sBP(t)
√

2 exp(j2π fct)

sLP(t)
<[·]

Figure 3.4: Upconversion.

3.2.2 Channel

In wireless communications, the channel forms the physical medium over

which the electromagnetic waves propagate. The way how the transmitted
signal is affected along its way from the transmitter to the receiver is described

mathematically by the channel impulse response. Because of reflections and
scatterings on objects in the propagation environment, it is often assumed that

the transmitted signal reaches the receiver through N resolvable propagation

paths [13], which are each characterized by a real-valued attenuation factor γn

and a time delay τn, with n = 1, 2, . . . , N. In this way, the received band-pass

signal rBP(t) is given by1

rBP(t) =
N

∑
n=1

γn sBP(t − τn) + wBP(t), (3.21)

where the thermal noise term wBP(t) is assumed to be band-pass white noise

[13] with power spectral density (N0/2)|ΠBP( f )|2, with

ΠBP( f ) = ΠLP( f − fc) + ΠLP( f + fc), (3.22)

denoting the frequency response of an ideal unit-amplitude band-pass filter

centered around the carrier frequency fc with passband bandwidth 2B. Note
that in real communication systems, the bandwidth of the band-pass noise

will be larger than 2B. Nevertheless, we neglect all noise components outside
the considered frequency interval around fc, since they are rejected by the

receiver’s low-pass filter ΠLP( f ) (see section 3.2.3.1). A typical example of

a wireless multipath channel between a base station and a mobile user is
shown in Fig. 3.5. Clearly, the transmitted signal reaches the receiver through

different paths which experience different time delays and attenuations.

According to (3.1b), the received band-pass signal rBP(t) can be repre-
sented by its equivalent complex-valued baseband signal rLP(t)

rLP(t) =
√

2 {rBP(t)e
−j2π fct}LP. (3.23)

1In many textbooks, also a phase shift θn is associated to each path. These phase shifts can
be taken into account by defining αn in (3.25) as αn , γne−j2π fcτn+jθn , yet this modification of the
channel model will not affect its statistical modeling.
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BASE
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Figure 3.5: Multipath channel between base station and mobile user.
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Moreover, since it is easily seen from (3.21) that the channel acts as a linear

filter, the equivalences in section 3.1 allow us to derive a baseband system

model which makes abstraction of the band-pass nature of the electromag-
netic waves and describes the relation between the received and transmitted

baseband representations

rLP(t) =
∫

u
h(u) sLP(t − u) du + wLP(t), (3.24)

where wLP(t) =
√

2 {wBP(t)e
−j2π fct}LP denotes low-pass filtered white noise

with power spectral density N0|ΠLP( f )|2 and h(t) denotes the channel im-
pulse response. From (3.21) and (3.23), it follows that the impulse response of

the multipath channel can be written as

h(t) =
N

∑
n=1

αn δ(t − τn), (3.25)

where αn , γne−j2π fcτn . Hence, each resolvable path is characterized by a

complex attenuation αn and a time delay τn. Note that the frequency response

H( f ) of the channel (3.25) is not limited to the interval [−B, B]. However, since
the frequency response of sLP(t) is zero outside the interval [−B, B], only the

frequency components of H( f ) within the interval [−B, B] are relevant and

it does not matter whether we use the channel (3.25) or a low-pass filtered
version with frequency response HLP( f ) = H( f )ΠLP( f ) and corresponding

impulse response

hLP(t) = (2B)
N

∑
n=1

αn sinc(2B(t − τn)), (3.26)

where sinc(·) denotes the sinc function, which is defined as

sinc(x) =
sin(πx)

πx
. (3.27)

3.2.2.1 Frequency-Flat versus Frequency-Selective Channels

When the frequency response of a channel changes considerably over the fre-

quency interval occupied by the transmitted signal, the channel is said to be
frequency-selective. Frequency-flat or flat-fading channels, on the other hand, re-

main more or less constant over the considered interval.
The frequency response of the multipath channel (3.25) is given by

H( f ) =
N

∑
n=1

αn e−j2π f τn, (3.28)

which is clearly a function of the frequency because of the non-zero time
delays τn. Let us assume that the path with index n = 1 is the shortest path,
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such that the associated time delay τ1 < τn, with n = 2, . . . , N. In this way,

τ1 represents the propagation delay between transmitter and receiver and the

channel (3.28) can be regarded as the cascade of two filters; the first filter
is a unit-amplitude filter which accounts for the propagation delay and has

frequency response e−j2π f τ1, whereas the second filter’s frequency response is
given by

H̄( f ) =
N

∑
n=1

αn e−j2π f ∆τn, (3.29)

where ∆τn , τn − τ1 denotes the relative propagation delay of the n-th path

with respect to the shortest path. Note that ∆τ1 = 0 and ∆τn > 0 for
n = 2, . . . , N. The channel (3.29) can be considered to be frequency-flat when

H̄( f1) ≈ H̄( f2), for any two frequencies f1 and f2 belonging to the frequency
interval [−B, B] occupied by the transmitted signal (3.18). Obviously, this is

the case when e−j2π| f1− f2|∆τn ≈ 1, i.e., when | f1 − f2| � 1/∆τmax, where

∆τmax = max
n

∆τn (3.30)

is called the delay spread and denotes the time delay difference between the

longest and the shortest path. Usually, the coherence bandwidth Bcoh of the

channel is defined as the inverse of the delay spread

Bcoh ,
1

∆τmax
. (3.31)

Hence, a channel is said to be frequency-flat over the frequency interval [−B, B]
if 2B � Bcoh. Frequency-flat channels can be characterized by a frequency re-

sponse
Hflat( f ) = α e−j2π f τ, (3.32)

which has a flat amplitude response |H( f )| = |α| and a phase response which

is a linear function of the frequency. Note that the impulse response corre-

sponding to (3.32) corresponds to a multipath channel with one path only

hflat(t) = α δ(t − τ), (3.33)

3.2.2.2 Slow versus Fast Fading

In (3.25), the attenuations and time delays of the paths are assumed to be

fixed, such that the channel is time-invariant. In reality, however, the channel
parameters continuously vary over time, because of motion of the transmitter,

motion of the receiver or motion of objects in the environment. We incorpo-

rate the time-variant nature of the channel by denoting its impulse response
by h(u; t) and its frequency response by H( f ; t). It is well-known that a time-

varying channel affects the frequency content of the transmitted signal; this
phenomenon is known as the Doppler effect. The larger the mobility of the
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channel, the larger the Doppler frequency shift. For instance, if we assume a

fixed transmitter and propagation environment, and a receiver which is mov-

ing at speed v, the maximum Doppler shift can be shown to be fD = fc(v/c),
where fc and c ≈ 3 · 108 m/s denote the center frequency of the transmitted

signal and the speed at which electromagnetic waves travel through the air.

Taking into consideration that the maximum Doppler shift is related to the

mobility of the channel, it can be shown that H( f ; t) ≈ H( f ; t + ∆t) when
∆t � 1/ fD. Let us define the coherence time Tcoh of the channel as the inverse

of the maximum Doppler shift

Tcoh ,
1

fD
. (3.34)

In this way, a fading channel is considered to be time-invariant over a time
interval of length ∆t � Tcoh. When the symbol period T is much smaller than

the coherence time Tcoh, the channel is called a slowly fading channel and can
be modelled by a time-invariant impulse response. Note that many definitions

of Tcoh are available in the literature, yet the coherence time is always inversely

proportional to the maximum Doppler shift.

3.2.3 Receiver

The purpose of the receiver is to recover the transmitted bits from the received

band-pass signal rBP(t). To this end, the receiver performs several steps which

are depicted in Fig. 3.1 and are derived in the following sections under the
assumption of a frequency-flat slowly fading channel with impulse response

h(t) = h δ(t). (3.35)

3.2.3.1 Downconversion and Low-Pass Filtering

As already mentioned in section 3.2.2, the receiver first converts the received
band-pass signal rBP(t) into its equivalent complex-valued baseband repre-

sentation (3.23). To this end, rBP(t) is multiplied with
√

2 e−j2π fct and applied
to an ideal low-pass filter with baseband bandwidth B, as shown in Fig. 3.6.

The received baseband signal rLP(t) is related to the transmitted baseband

signal sLP(t) through (3.24).

3.2.3.2 Matched Filtering and Sampling

As illustrated in Fig. 3.7, the received baseband signal rLP(t) is fed to a receiv-

ing filter and then sampled at the symbol rate Rs = 1/T. We use a receiv-
ing filter which is matched to the transmit pulse p(t), i.e., the impulse and

frequency responses of the filter are given by p∗(−t) and P∗( f ), respectively.
Since by definition the matched filter and the ideal low-pass filter from Fig. 3.6
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rLP(t)−B B
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Figure 3.6: Downconversion and low-pass filtering.
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t = kT {rk}
B−B

rLP(t)

Matched Filter

rMF(t)

Figure 3.7: Matched filtering and sampling.

have the same bandwidth B, it follows that the frequency response of the cas-

cade of both filters yields ΠLP( f ) P∗( f ) = P∗( f ), such that the low-pass filter
can actually be omitted in a practical receiver.

From (3.18), (3.24), and (3.35), it follows that the signal at the output of the
matched filter is given by

rMF(t) =
√

Es h ∑
k

sk g(t − kT) + wMF(t), (3.36)

where wMF(t) =
∫

wLP(u) p∗(u − t) du, and the pulse g(t) is given by

g(t) =
∫

p(u) p∗(u − t) du. (3.37)

Note that taking the Fourier transform of (3.37) yields G( f ) = |P( f )|2, such

that G( f ) = 0 for | f | > B. After sampling rMF(t) at instants t = kT, we obtain
the received symbol vector {rk}

rk , rMF(kT) =
√

Es h ∑
n

sn g(kT − nT) + wMF(kT). (3.38)

Since it follows from (3.19) that g(0) = 1, we can rewrite rk as a function of

the transmitted symbol sk

rk =
√

Es h sk + ISIk + wk, (3.39)

where the disturbance terms wk , wMF(kT) and ISIk represent Gaussian noise

and inter-symbol interference (ISI), respectively, with

ISIk =
√

Es h ∑
n 6=k

sn g(kT − nT). (3.40)
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The ISI (3.40) is eliminated when we choose a transmit pulse p(t) which yields

g(nT) =

{
1 if n = 0

0 otherwise
. (3.41)

It is shown in [13, Sect. 9.2.1] that the condition (3.41) is equivalent to

∞

∑
m=−∞

G( f + m/T) = T, (3.42)

which is known as the Nyquist pulse-shaping criterion or the Nyquist condition

for zero ISI. According to (3.42), the sum of replicas of G( f ), separated by 1/T,
should be a constant function. It is readily verified that this is only possible

when B ≥ 1/(2T). A pulse g(t) which satisfies (3.42) is called a Nyquist pulse.

When B = 1/(2T), the Nyquist criterion (3.42) is satisfied by only one
G( f ), namely

G( f ) =

{
T if | f | ≤ B

0 otherwise
, (3.43)

which corresponds to the scaled frequency response of an ideal low-pass filter

with bandwidth B. The frequency response of the transmit pulse p(t) yielding

(3.43) is given by P( f ) =
√
|G( f )|. Hence, p(t) reduces to a (scaled) sinc pulse

p(t) =
1√
T

sinc(t/T). (3.44)

Although the sinc pulse achieves the theoretical maximum bandwidth effi-

ciency, it is not suited for practical filter design, because of its infinite length
and infinitely steep frequency response P( f ).

Therefore, in reality, B > 1/(2T) and numerous candidates for G( f ) that

satisfy the Nyquist criterion can be found. A particular spectrum that has
been widely used because of its beneficial time-decay properties and smooth

frequency characteristics is the raised cosine spectrum [13, Eq. (9.2-26)]. The
transmit pulse p(t) corresponding to this spectrum is called the square-root

raised cosine pulse.

Using a proper Nyquist pulse g(t) and corresponding transmit pulse p(t),
the received samples (3.39) reduce to

rk =
√

Es h sk + wk, (3.45)

where the noise samples wk can be shown to be zero-mean (ZM) circularly

symmetric complex Gaussian (CSCG) random variables (RVs), the real and
imaginary parts of which have variance N0/2. Note that (3.45) can be seen

as a discrete-time system model for a frequency-flat slowly varying fading
channel.
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3.2.3.3 Detection

According to (3.45), each received sample rk is a function of the corresponding
transmitted symbol sk, the channel h, and a white Gaussian noise term wk.

Since the symbols sk to be estimated are independent and no ISI is present at

the receiver, their detection can be performed symbol-by-symbol. Moreover,
because all constellation points have equal prior probability, ML detection is

optimal in the sense that it minimizes the error probability (2.12), which in
this case reduces to the symbol error rate (SER), i.e., the ratio of the number

of incorrectly detected symbols to the total number of transmitted symbols.

From (3.45), it follows that the likelihood function of sk is given by

p(rk|sk) =
1

πN0
exp

(
−|rk −

√
Es h sk|2

N0

)
. (3.46)

Maximizing (3.46) yields the following ML decision rule

ŝk = arg min
s̃∈Ψ

|uk − s̃|2 , (3.47)

where the minimization is over all symbols belonging to the considered con-
stellation Ψ and the decision variable uk is given by

uk =
rk√
Es h

. (3.48)

Taking (3.45) into account, the decision variable (3.48) can be written as

uk = sk + nk, (3.49)

where the noise term

nk =
wk√
Es h

, (3.50)

is a ZM CSCG RV with variance N0/(Es|h|2). Hence, the decision variable uk

is the sum of the transmitted symbol sk and a Gaussian noise term nk. In order

to obtain ŝk, the receiver selects the constellation point at minimum Euclidean

distance from the decision variable uk. This allows us to associate a decision
area Dm to each of the constellation points ψm, m = 1, . . . , M

Dm = {u : |u − ψm|2 ≤ |u − ψn|2 for n 6= m}. (3.51)

In this way, the constellation point ψm is selected when the decision variable

is located inside the corresponding decision area Dm. The decision areas of

a 16-QAM constellation are depicted in Fig. 3.8. Because of the noise term
nk in (3.49), the decision variable uk may be located in the decision area of a

constellation point different from the transmitted symbol sk, which results in
a symbol detection error.
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Figure 3.8: Decision areas for 16-QAM.

3.2.3.4 Demapping

Finally, the detected symbol sequence {ŝk} is converted into a bit sequence

{b̂k} by the inverse of the mapping function (3.10)

[
b̂(k−1)mb+1, . . . , b̂kmb

]
= M−1 (ŝk) , k = 1, . . . , Ns. (3.52)

In case of errorless transmission, the bit sequence (3.52) is identical to the
transmitted bit sequence. When a data symbol is detected erroneously, how-

ever, one or more of the associated bits will be incorrect.

3.3 Bit Error Rate

Since each data symbol represents a block of log2(M) bits, it would be conve-
nient to have a performance measure for the number of erroneously received

bits, rather than for the incorrect symbol decisions. To this end, we intro-

duce the bit error rate, which we define as the ratio of the average number of
erroneously received bits per symbol to the number of bits per symbol.

3.3.1 Analytical BER Calculation

Using the ML decision rule (3.47), the BER is given by

Pb =
1

log2(M)

M

∑
m,n=1
m 6=n

dH(ψm, ψn) Pr[ŝk = ψm|sk = ψn]Pr[sk = ψn], (3.53)
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where dH(ψm, ψn) denotes the Hamming distance between the bits associated

to the constellation points ψm and ψn, Pr[sk = ψn] is the a priori probability of

ψn, and Pr[ŝk = ψm|sk = ψn] is the probability that the symbol ψm is detected
when ψn is transmitted. Note that (3.53) does not depend on the value of

the time index k, such that k can be omitted for notational convenience in
the remainder of this section. Moreover, taking into account that all symbols

occur with equal probability, (3.53) reduces to

Pb =
1

M log2(M)

M

∑
m,n=1
m 6=n

dH(ψm, ψn) Pr[ŝ = ψm|s = ψn]. (3.54)

In order to obtain (3.54) analytically, the probabilities Pr[ŝ = ψm|s = ψn] have
to be calculated given a specific channel model.

3.3.2 Monte-Carlo Simulations

When an analytical BER calculation is not mathematically feasible, the BER

can also be obtained by straightforward Monte-Carlo simulations. In error
analysis, these simulations are also often used to confirm the analytical BER

curves. In order to obtain the BER for the system model (3.45) by Monte-Carlo

simulations, the input RVs of the system, i.e., the channel h, the information
symbols sk, and the noise samples wk, need to be generated repeatedly ac-

cording to their corresponding distributions. For each set of input RVs, the
receiver detects the information symbols from the received signal according

to (3.47). Finally, the BER is obtained as the ratio of the number of bit errors

to the total number of bits transmitted. Clearly, the smaller the number of ob-
served bit errors, the less accurate the BER result will be. Hence, the accuracy

of the BER can be improved by increasing the number of symbols transmit-
ted. Note that in case of low average BER, the number of transmitted symbols

required to obtain a certain accuracy may become very high, resulting in very

long simulation times.

3.3.3 Example

As an example, we explicitly derive an analytical expression for the BER in

case of M-QAM transmission. As will be shown in chapter 6, a similar ap-

proach can be used to obtain the BER in case of imperfect channel estimation.
Let us introduce the real and imaginary parts of ŝ and u as ŝR = <[ŝ], ŝI = =[ŝ],
uR = <[u], and uI = =[u]. In this way, it follows directly from (3.14) and (3.47)

that ŝR and ŝI can be obtained separately as

ŝR = arg min
s̃∈Ψ′

|uR − s̃|2 (3.55a)

ŝI = arg min
s̃∈Ψ′

|uI − s̃|2 , (3.55b)
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where Ψ′ is defined in (3.14) as the set consisting of the real (and imaginary)

parts of Ψ. Since ŝR and ŝI determine the in-phase and quadrature bits asso-

ciated to ŝ, respectively, the BER for M-QAM can be obtained as the average
of the BERs of the in-phase and quadrature bits. Moreover, owing to the rota-

tional symmetry of the QAM constellation and the circular symmetry of the
noise term in (3.49), the BERs of the in-phase and quadrature bits are identi-

cal. Let us consider a QAM symbol b = bR + jbI, with bR and bI denoting the

real and imaginary parts of b, respectively; we refer to the projections of the
decision area of b on the real and imaginary axis as the decision regions of bR

and bI, respectively. When a QAM symbol s is transmitted, a detection error
occurs when uq, with q = R or q = I, is located inside the decision area of

bq 6= sq. Taking into account that the BER for M-QAM can be written as the

BER of the in-phase bits, we have

Pb =
1√

M log2(
√

M)
∑

sR,bR∈Ψ′
sR 6=bR

dH(sR, bR) Pr[ŝR = bR|sR], (3.56)

where dH(sR, bR) is the Hamming distance between the (in-phase) bits associ-
ated to the real part sR of the transmitted symbol s and the real part bR of the

detected symbol b.

We introduce d1(bq) and d2(bq) as the boundaries of the decision area of
bq, with d1(bq) < d2(bq). For outer constellation points, we set d1(bq) → −∞

or d2(bq) → ∞. Using these boundaries, the conditional probability in (3.56)

is easily shown to reduce to

Pr[ŝR = bR|sR] = Pr[d1(bR) ≤ uR ≤ d2(bR)|sR]

= Q

(
d1(bR)− sR

σ

)
− Q

(
d2(bR)− sR

σ

)
(3.57)

where the second equality relies on (3.49), σ2 = N0/(2Es|h|2) is the variance

of the real part of the noise term (3.50), and Q(x) is the Gaussian Q-function

Q(x) =
∫ ∞

x

1√
2π

exp

(
−y2

2

)
dy. (3.58)

Note that the Q-functions in (3.57) can have a negative argument, which is un-
desirable in some situations. Therefore, we introduce the following equivalent

expression for (3.57)

Pr[ŝR = bR|sR] = Q

(
D1(sR, bR)

σ

)
− Q

(
D2(sR, bR)

σ

)
(3.59)
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where D1(sR, bR) > 0 and D2(sR, bR) > 0 are defined as

D1(sq, bq) ,

{
sq − d2(bq) if sq > bq

d1(bq)− sq otherwise
, (3.60a)

D2(sq, bq) ,

{
sq − d1(bq) if sq > bq

d2(bq)− sq otherwise
. (3.60b)

Note that D1(sq, bq) and D2(sq, bq) denote the distances between sq and the
boundaries of the decision area of bq, with D1(sq, bq) < D2(sq, bq); if bq is an

outer constellation point, we have D2(sq, bq) → ∞. Both (3.57) and (3.59) de-

pend on the channel h through σ. Hence, substituting (3.57) or (3.59) in (3.56)
yields an expression for the conditional BER, conditioned on the channel. A

more compact expression for the conditional BER can be straightforwardly

obtained from [14, Eq. (8.14)] or [15, Eq. (14)]. Usually, the BER is plotted ver-
sus the energy per information bit Eb, which is given by Eb = Es/ log2(M).
In case of 4-QAM, the conditional BER is shown to reduce to

Pb,4−QAM(h) = Q

(√

2
Eb

N0
|h|2

)
. (3.61)

It is easily understood that the BER will be large when |h|2 is very small,

i.e., when the channel is in a deep fade. When |h|2 approaches zero, the
BER equals 1/2; hence, the observation gives no useful information about the

transmitted bits.

In order to obtain the average BER, the conditional BER needs to be av-

eraged over the channel statistics. In section 4.3.2, the statistical modeling
of channel coefficients is assessed and several widespread fading distribu-

tions are provided. In this example, we use the common assumption that the
channel norm |h| is distributed according to the Rayleigh distribution, with

E[|h|2] = 1

p|h|(x) = 2 x exp
(
−x2

)
, (3.62)

such that the squared norm |h|2 has an exponential distribution

p|h|2(x) = exp (−x) . (3.63)

A closed-form solution for the BER for M-QAM under Rayleigh fading can

be found by using the following identity to average the Q-functions in (3.57)
over |h|2

∫ ∞

0
Q
(√

β x
)

exp(−x) dx =
1

2

(
1 −

√
β

2 + β

)
, (3.64)
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Figure 3.9: BER for M-QAM under Rayleigh fading, with M ∈ {4, 16, 64, 256}.

where the parameter β > 0, and by noting that Q(−x) = 1 − Q(x). In case of

4-QAM, the average BER reduces to

Pb,4−QAM =
1

2



1 −

√√√√
Eb
N0

1 + Eb
N0



 . (3.65)

For high Eb/N0, a series expansion of (3.65) yields Pb,4−QAM ≈ N0/(4Eb),
such that the asymptotic behavior of the BER is inversely proportional to

Eb/N0. Fig. 3.9 shows the analytical BER curves for M-QAM, with M ∈
{4, 16, 64, 256}. Also shown in the figure are the results from Monte-Carlo

simulation. Note that all BER curves are asymptotically inversely proportional

to Eb/N0. Exact and accurate approximate BER expression for M-QAM over
Rayleigh fading channels can be found in, e.g., [14, sec. 8.2.1.2] and [16, 17].

It is worth mentioning that in order to simplify the analytical averaging of

the conditional BER over the channel statistics, the Gaussian Q-functions are

often replaced by exponential functions according to the so-called Chernoff
bound [14]:

Q(x) ≤ 1

2
exp

(
−1

2
x2

)
. (3.66)
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For example, by applying the Chernoff bound to (3.61), an upper bound on

(3.65) is readily obtained as

Pb,4−QAM ≤ 1

2
(

1 + Eb
N0

) , (3.67)

which for high Eb/N0 differs from the exact result by a factor of 2. However, as

we aim to derive an accurate set of BER expressions, we maintain the Gaussian
Q-functions throughout our analysis.

3.4 Chapter Summary

In this chapter, we have presented the fundamentals of uncoded digital wire-

less communication. In general, a communication systems consists of three

main blocks: the transmitter, the channel, and the receiver.

• The transmitter maps the bits representing the digital information to
symbols, modulates the symbols onto a continuous-time carrier wave

and transmits the resulting RF signal on the channel.

• The channel is the physical transmission medium over which the RF

waves propagate. Because of scattering and reflections in the environ-
ment, the channel transforms the transmitted signal on its way to the re-

ceiver. The resulting variations of the received signal strength are called
fading. We distinguish between frequency-flat and frequency-selective

channels, and between slow and fast fading channels.

• The aim of the receiver is to extract the transmitted information from

the signal captured by the receive antenna. This process is called detec-
tion and consists of several steps: downconversion, low-pass filtering,

matched filtering, sampling, symbol detection and demapping.

Throughout this dissertation, we assume slow frequency-flat fading, in which
case we can make abstraction of many of the transmitter and receiver oper-

ations by using the straightforward discrete-time channel model (3.45). To

conclude this chapter, we introduced the bit error rate, which serves as an
important performance measure and can be obtained analytically or through

Monte-Carlo simulations.
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4
MIMO Communication

In chapter 3, we introduced a conventional uncoded SISO communication sys-

tem and assessed its error performance. It was shown in section 3.3.3 that the
probability of detection errors to occur is high when the channel is in a deep

fade. In section 4.1, we illustrate how the exploitation of spatial diversity
allows to tackle this problem and thus improves the performance of wire-

less systems. Furthermore, we introduce the appealing concept of orthogonal

space-time block coding in section 4.2. In section 4.3, we present the MIMO
channel model that will be used throughout this thesis, and discuss its statis-

tical properties. Section 4.4 wraps up this chapter.

4.1 Diversity

In wireless communications, the detrimental effect of deep channel fades on
the system performance can be tackled by using a proper diversity scheme

[14, 18], which provides the receiver with multiple replicas of the same sig-
nal through different propagation paths. Ideally, these paths are affected by
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independent fading such that the probability of the received replicas to simul-

taneously suffer from deep fading is minimized. At the receiver, the multiple

replicas are combined using a proper diversity combining scheme in order to
minimize the resulting error probability. In practice, there are several ways to

provide the receiver with L independent replicas of the same signal. The most
commonly used diversity techniques are the following:

• The L signal replicas are transmitted on L carriers which are separated
by at least the coherence bandwidth Bcoh of the channel. This technique

is called frequency diversity. Note that by applying frequency diversity
the occupied bandwidth increases by a factor L.

• A second method consists of employing time diversity, where the same
signal is transmitted in L different time slots which are separated by at

least the coherence time Tcoh of the channel. Consequently, the spectral
efficiency of the system decreases by a factor L.

• By using multiple antennas at the transmitter and/or receiver, spatial

diversity can be exploited. It is important to note that the multiple anten-

nas should be sufficiently separated in order for the different channels
between the transmit and receive antennas to undergo independent fad-

ing; usually, a separation in the order of one wavelength is sufficient.

• In case of frequency-selective fading, i.e., when the bandwidth of the
transmitted signal exceeds the coherence bandwidth Bcoh, multipath di-

versity can be exploited by resolving the multipath components arriving

with different delays. The optimum multipath receiver was invented by
Price and Green in 1958 and is called the RAKE demodulator [19].

In section 3.3.3, we have derived that in case of Rayleigh fading a con-
ventional uncoded digital communication system without diversity achieves

a BER which is asymptotically inversely proportional to Eb/N0. The exploita-
tion of diversity, however, allows to increase the rate of descent of the BER

curve. Therefore, in the context of error probability, the term diversity gain

or diversity order is often used to denote the increase in the slope of the error
probability curve. That is, when the BER of a reference system without diver-

sity behaves asymptotically as Pb ∝ (Eb/N0)
−ζ and exploiting diversity gives

rise to Pb ∝ (Eb/N0)
−ζGd , the exponent Gd represents the diversity gain. For a

conventional uncoded communication system without diversity, the diversity

gain Gd = 1, whereas the use of one or more diversity techniques gives rise
to a diversity gain Gd > 1. Moreover, we have illustrated in section 3.3.3 that

ζ = 1 in case of Rayleigh fading.

In this dissertation, we focus on the use of spatial diversity to enhance the

performance of wireless systems. Depending on whether the signal replicas
are produced by the receiver or the transmitter, we distinguish between re-
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ceive and transmit diversity. Eventually, receive and transmit diversity can be

combined to achieve maximal spatial diversity.

4.1.1 Receive Diversity

In chapter 3, we derived the discrete-time baseband system model (3.45) for
an uncoded SISO system without diversity. When extending this model to a

receiver equipped with Lr receive antennas, the received signal samples on

the n-th receive antenna are given by

rn =
√

Es hn s + wn, (4.1)

where n = 1, . . . , Lr. Note that we have omitted the time index k for notational

convenience. In (4.1), the complex-valued channel coefficient hn characteriz-

ing the link between the transmit antenna and the n-th receive antenna is
assumed to remain constant during a frame of Kfr symbols. The ZM CSCG

noise samples wn are assumed to be independent and identically distributed

(i.i.d.), the real and imaginary parts of which have variance N0/2. Let us
gather the received samples, the channel coefficients and the noise samples in

the Lr-dimensional column vectors

r = [r1, . . . , rLr ]
T , (4.2)

h = [h1, . . . , hLr ]
T , (4.3)

w = [w1, . . . , wLr ]
T . (4.4)

In this way, the single-input multiple-ouput (SIMO) system model can be writ-
ten as

r =
√

Es h s + w, (4.5)

where the SIMO channel h is assumed to be normalized

E

[
‖h‖2

]
= Lr. (4.6)

When the Lr received signal samples are combined in a proper way, the SIMO
receiver can take advantage of the spatial diversity and a better error perfor-

mance can be obtained as compared to SISO reception. When applying ML

detection to the received signal (4.5), the following optimal decision rule is
derived

ŝ = arg min
s̃∈Ψ

|u − s̃|2 , (4.7)

where the minimization is over all symbols belonging to the considered con-
stellation Ψ and the decision variable u is given by

u =
hHr√

Es ‖h‖2
. (4.8)

37



CHAPTER 4. MIMO COMMUNICATION

Diversity
Combiningh1

hLr

h2

s

r1

r2

rLr

u ŝ
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Figure 4.1: Discrete-time SIMO system model.

Since (4.8) stems from the ML decision rule, it represents the optimal diversity
combining scheme, which is known as maximal-ratio combining (MRC) [14].

Note that also other combining schemes, such as equal gain combining (EGC)

[20] or selection combining (SC) [21] could be used to combine the multiple
received signal samples, yet the resulting performance would be suboptimal.

In Fig. 4.1, an uncoded SIMO system with diversity combining is depicted. In

case of MRC, the decision variable (4.8) reduces to

u = s +
hHw√
Es ‖h‖2

, (4.9)

where the right term in the sum can be shown to be a ZM CSCG noise term

with variance N0/(Es‖h‖2). Since the only difference between (4.9) and (3.49)
is the additive noise term in the decision variable, the variance of which is

given by N0/(Es‖h‖2) in (4.9) and by N0/(Es|h|2) in (3.49), it is readily verified
that the BER for a SIMO receiver with MRC can be calculated in a similar way

as in the case of SISO communication. Hence, for QAM constellations, the

conditional BER is again obtained from (3.56) and (3.57), except that σ2 in
(3.57) is now given by N0/(2Es‖h‖2) and the resulting BER expression needs

to be averaged over the distribution of the squared channel norm ‖h‖2.

In order to get more insight in the effect that receive diversity has on the
system’s error performance, we calculate the average BER for an MRC system

operating over Lr i.i.d. Rayleigh fading channels, with E[|hn|2] = 1 for n =
1, . . . , Lr. In this case, the squared channel norm ‖h‖2 is distributed according
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to the χ2-distribution with 2Lr degrees of freedom [13, eq. (14.4-13)]

p‖h‖2(x) =
1

(Lr − 1)!
xLr−1 exp(−x). (4.10)

A closed-form solution for the BER for M-QAM under Rayleigh fading can
be found by using the following identity to average the Q-functions in (3.57)

over ‖h‖2 [13, eq. (14.4-15)]

1

(Lr − 1)!

∫ ∞

0
Q
(√

β x
)

xLr−1 exp(−x) dx

=

[
1

2

(
1 −

√
β

2 + β

)]Lr Lr−1

∑
k=0

(
Lr − 1 + k

k

)[
1

2

(
1 +

√
β

2 + β

)]k

, (4.11)

where β > 0. In case of 4-QAM, the average BER for an MRC receiver with Lr

receive antennas reduces to

Pb,4−QAM =


1

2


1 −

√√√√
Eb
N0

1 + Eb
N0






Lr

×
Lr−1

∑
k=0

(
Lr − 1 + k

k

)

1

2



1 +

√√√√
Eb
N0

1 + Eb
N0








k

. (4.12)

which for high Eb/N0 reduces to [13, Eq. 14.4-18]

P
(as)
b,4−QAM ≈

(
N0

4Eb

)Lr
(

2Lr − 1

Lr

)
(4.13)

such that the asymptotic behaviour of the BER is proportional to (Eb/N0)
−Lr .

Since the diversity gain Lr determines the slope of the error probability curve,
it is clear that exploiting receive diversity allows to improve the system per-

formance significantly. Moreover, by using multiple receive antennas, more

energy is captured by the receiver even though the transmit energy remains
unchanged. This so-called array gain further improves the performance of a

SIMO receiver. Whereas the diversity gain determines the slope of the BER
curve, the array gain determines the horizontal shift of the BER. In case of an

array of length Lr, the array gain equals Lr since on average Lr times more

energy is captured as compared to the SISO case. Hence, the BER curve is
shifted to the left over an amount of 10 log10(Lr) dB. Fig. 4.2 shows the BER

for an MRC receiver with Lr = 1, . . . , 5 and 4-QAM over i.i.d. Rayleigh fading
channels.
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Figure 4.2: BER for MRC with Lr = 1, . . . , 5 and 4-QAM over i.i.d. Rayleigh

fading channels.

4.1.2 Transmit Diversity versus Spatial Multiplexing

In the previous section, we have shown that using multiple antennas at the
receiver side enables to achieve spatial diversity and, thus, improves the reli-

ability without expanding the required transmission bandwidth or reducing

the spectral efficiency of the system. Employing multiple antennas at the
transmitter side in conjunction with a proper transmit diversity scheme, how-

ever, can also exploit spatial diversity. For example, using Alamouti’s code [9],
it is possible to achieve dual diversity with two transmit antennas and one re-

ceive antenna. In general, by introducing redundancy in the spatial and the

temporal domain, a MIMO system with Lt transmit and Lr receive antennas
can achieve a maximum diversity gain of Gd = LtLr [7], which corresponds

to the number of independently faded paths between the different transmit
and receive antennas. Note that unlike the case of receive diversity, the re-

dundancy resulting from space-time coding may have a negative impact on

the system’s spectral efficiency.

Except for providing diversity, multiple transmit antennas can also be ap-

plied to increase the system’s data rate. To this end, multiple independent
information streams are transmitted in parallel through different spatial chan-
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nels created by the multiple-antenna transmitter; this is often referred to as

spatial multiplexing. With Lt transmit and Lr receive antennas, e.g., it is possi-

ble to achieve an Lt-fold increase in the data rate along with a receive diversity
gain of Gd = Lr. Examples of practical spatial multiplexing schemes are the

diagonal Bell Labs space-time (D-BLAST) [5] and vertical Bell Labs space-time
(V-BLAST) [22] architectures. It is important to note that these schemes mainly

focus on maximizing the data rate and do not achieve full spatial diversity. In

general, it turns out to be impossible to maximize the data rate and the diver-
sity simultaneously. Intuitively, the reason for this is that transmit diversity

techniques require a certain redundancy in the space-time domain, whereas
high data rates can only be achieved when this redundancy is absent. The

fundamental trade-off between diversity and multiplexing gain is well docu-

mented by Zheng and Tse in their landmark paper [7].

In this dissertation, we are mainly interested in transmit diversity schemes

that minimize the error probability by taking advantage of the spatial diver-

sity. Early examples of transmit diversity techniques achieving full diver-
sity are the delay diversity schemes proposed by Wittneben [23, 24], and Se-

shadri and Winters [25], which date back to the early nineties. A few years
later, Tarokh et al. generalized these schemes to the so-called space-time trel-

lis codes (STTCs) [26], which combine trellis-coded modulation (TCM) with

transmit diversity. Although STTCs provide full diversity and perform very
well in terms of data rate and coding gain, their decoding complexity, which

is measured in number of trellis states in the decoder, can be relatively high.
Therefore, space-time block codes (STBCs) [8, 9, 27], which apply block cod-

ing across multiple transmit antennas, may be a good alternative for STTCs.

Although STBCs suffer from a small loss in performance (coding gain) com-
pared to STTCs, they also achieve full spatial diversity and are endowed with

a remarkably simple decoding scheme.

4.2 Orthogonal Space-Time Block Codes

In this section, we assess the construction and properties of orthogonal space-

time block codes, which have gained a lot of attention recently because of
their straightforward symbol-by-symbol decoding scheme and their ability to

provide full spatial diversity. We start this section with Alamouti’s transmit

diversity technique, which laid the foundation for the generalized OSTBCs
that followed soon in the literature.

4.2.1 Alamouti’s Code

In 1998, Alamouti [9] reported a simple transmit diversity technique, which
was designed for a system with two transmit antennas and transforms two
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independent information symbols s1 and s2 into a 2 × 2 coded symbol matrix

C =

[
s1 −s∗2
s2 s∗1

]
, (4.14)

where the rows and columns of C are related to the spatial and temporal
dimension, respectively. Hence, the transmitter applies the (`, k)-th element

of the code matrix C, which we denote by c`,k, to the `-th transmit antenna

during the k-th time slot. Since on average one information symbol is sent per
time slot, Alamouti’s code is said to achieve full rate. Note that the rows of

(4.14) are orthogonal, yielding

CCH = (|s1|2 + |s2|2)I2, (4.15)

where I2 denotes the 2 × 2 identity matrix. Extending the discrete-time SIMO

model (4.5) to the MIMO case, the received signals at the Lr receive antennas
can be represented by the Lr × 2 matrix

R =
√

Es HC + W, (4.16)

where the Lr × 2 matrix W represents additive spatially and temporally white
noise and consists of i.i.d. ZM CSCG RVs with variance N0, and the Lr × 2

channel matrix H comprises the channel coefficients hn,` characterizing the
channel link between the `-th transmit and n-th receive antenna:

H =




h1,1 h1,2
...

...

hLr,1 hLr,2


 . (4.17)

Furthermore, we assume that the channel is normalized:

E

[
‖H‖2

F

]
= 2Lr, (4.18)

where ‖ · ‖F denotes the Frobenius norm. According to (4.16), ML detection

of the information symbols [s1, s2] yields the following decision rule

[ŝ1, ŝ2] = arg min
s̃1,s̃2

‖R −
√

Es HC̃‖2
F, (4.19)

where C̃ is the Alamouti matrix consisting of the symbols s̃1 and s̃2. Expand-

ing the Frobenius norm in (4.19) yields

‖R −
√

Es HC̃‖2
F = ‖R‖2

F − 2<
[
tr[CHHHR]

]
+ tr[(CCH)(HHH)], (4.20)

where tr[·] denotes the trace. Due to the orthogonality condition (4.15), the

Frobenius norm (4.20) simplifies to a function of s̃1 and s̃2 without cross terms
involving both s̃1 and s̃2. In this way, the minimization in (4.19) reduces to two
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ŝ1

ŝ2
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Figure 4.3: Discrete-time model of a MIMO system employing Alamouti’s

code.

minimizations over s1 and s2 separately and ML detection of the information

symbols in the Alamouti matrix boils down to symbol-by-symbol decision for

both s1 and s2

ŝi = arg min
s̃∈Ψ

|ui − s̃|2 , i = 1, 2 (4.21)

where the minimization is over all symbols belonging to the considered con-

stellation Ψ. With H = [h1, h2] and R = [r1, r2], the decision variables u1 and
u2 are given by

u1 =
hH

1 r1 + hT
2 r∗2√

Es ‖H‖2
F

, (4.22)

u2 =
hH

2 r1 − hT
1 r∗2√

Es ‖H‖2
F

. (4.23)

Note that the receiver has to buffer the samples received on all antennas dur-
ing the two timeslots wherein the code matrix is transmitted, since the com-

putation of the decision variables requires the knowledge of r1 and r2. In

Fig. 4.3, a MIMO system employing Alamouti’s code is displayed. It is readily
verified that the decision variables ui, with i = 1, 2, can be written as the sum

of the transmitted information symbol si and a ZM CSCG noise term wi with
variance N0/(Es‖H‖2

F)
ui = si + wi. (4.24)

Due to the similarity between (4.24) and (4.9), the BER for Alamouti’s code
can be easily calculated along the lines provided for a SIMO MRC receiver
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in section 4.1.1. In case of i.i.d. Rayleigh fading, the squared Frobenius norm

‖H‖2
F is distributed according to the χ2-distribution with 2L degrees of free-

dom, with L = 2Lr being the product of the number of transmit and receive
antennas. It is also important to note that because of coding in the space-time

domain, the total average energy to transmit two information symbols is now
given by EsE[‖C‖2

F], such that the relation between Es and Eb becomes

Es =
1

2
log2(M)Eb. (4.25)

For example, in case of 4-QAM, the average BER for Alamouti’s code with ML
symbol-by-symbol detection and Lr receive antennas reduces to

Pb,4−QAM =



1

2



1 −

√√√√
Eb
N0

2 + Eb
N0








L

×
L−1

∑
k=0

(
L − 1 + k

k

)
1

2


1 +

√√√√
Eb
N0

2 + Eb
N0






k

. (4.26)

which for high Eb/N0 reduces to [13, Eq. 14.4-18]

P
(as)
b,4−QAM ≈

(
N0

2Eb

)L (2L − 1

L

)
(4.27)

such that the asymptotic behaviour of the BER is proportional to (Eb/N0)
−L

and the maximal diversity gain of L = 2Lr is indeed achieved. Although an

Alamouti scheme with N receive antennas achieves the same diversity gain
as a SIMO MRC system with 2N receive antennas, the BERs realized by both

systems are not identical, as can be observed from (4.12) and (4.26). To ex-
plain intuitively the reason for this difference, we consider a SIMO scheme

with dual-antenna MRC reception, and an Alamouti scheme with 1 receive

antenna. Furthermore, we assume that the same total amount of transmit
power is available in both scenarios. In the MRC scheme, one symbol is trans-

mitted per time slot and the total available energy is allocated to it. Hence,
both diversity channels benefit from full power. In the Alamouti transmit di-

versity scheme, however, on average also one symbol is transmitted per time

slot, yet the available transmit power is split equally between both transmit
antennas, such that only half of the available power is used on both diversity

channels. This results in a 3 dB loss of power efficiency, which is illustrated
in Fig. 4.4. From the figure, we observe that the BER curves for the Alam-

outi scheme are parallel to those of the equivalent MRC scheme and shifted 3

dB to the right. In other words, the MRC and Alamouti schemes achieve the
same diversity gain, yet the MRC receive diversity scheme benefits from an

additional array gain of 3 dB as compared to the Alamouti transmit diversity
scheme, as explained in section 4.1.1.
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Figure 4.4: Alamouti transmit diversity scheme versus receive diversity.

4.2.2 Generalization of Alamouti’s Code to Orthogonal Space-
Time Block Codes

As an extension of the theory of orthogonal designs studied by Radon and

Hurwitz [28], Tarokh et al. introduced the notion of generalized complex orthog-
onal designs, which allows to generalize Alamouti’s transmit diversity scheme

and construct orthogonal space-time block codes achieving full diversity for
any number of transmit antennas and any signal constellation [8].

Let us consider a MIMO wireless communication system with Lt trans-

mit and Lr receive antennas. In this dissertation, we consider OSTBCs from
complex orthogonal designs which transform Ns information symbols si, with

1 ≤ i ≤ Ns, into an Lt × Kc coded symbol matrix C, the entries of which are

linear combinations of si and s∗i

C =
Ns

∑
i=1

(
Ci si + C

′
i s∗i
)

, (4.28)

with Kc being the number of time slots required to transmit one OSTBC ma-

trix, and Ci and C
′
i denoting Lt × Kc matrices consisting of the coefficients of

the information symbols si and s∗i , respectively. For example, the coefficient
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matrices for Alamouti’s code are given by

C1 =

[
1 0

0 0

]
, C2 =

[
0 0

1 0

]
, C

′
1 =

[
0 0

0 1

]
, C

′
2 =

[
0 −1

0 0

]
. (4.29)

OSTBCs from complex orthogonal designs satisfy the following important or-

thogonality condition

CCH = C ‖s‖2 ILt , (4.30)

where C is a strictly positive constant and s = [s1, s2, . . . , sNs ]
T is the data

symbol vector. Since scaling of the OSTBC matrices does not affect their or-

thogonality, we assume without loss of generality that the OSTBC matrices
are normalized in such way that they satisfy

CCH = λ‖s‖2 ILt , (4.31)

where λ , Kc/Ns. In this way, using a normalized signal constellation Ψ,

such that E[|si|2] = 1, (4.31) yields

1

LtKc
E

[
‖C‖2

F

]
= 1. (4.32)

Various examples of OSTBCs can be found in, e.g., [8, 9, 27, 29]. It is shown

in [8] that OSTBCs achieving full diversity and a code rate 1/2 can be con-

structed for any number of transmit antennas and any signal constellation.
For 3 transmit antennas, e.g., we have

C3×8 =




s1 −s2 −s3 −s4 s∗1 −s∗2 −s∗3 −s∗4
s2 s1 s4 −s3 s∗2 s∗1 s∗4 −s∗3
s3 −s4 s1 s2 s∗3 −s∗4 s∗1 s∗2


 , (4.33)

which transmits 4 information symbols within 8 time slots and thus achieves
an effective rate of 1/2. It is also possible to construct OSTBCs with higher

rates than 1/2. For Lt = 2, Alamouti’s scheme achieves full rate, whereas for

Lt = 3 and 4, OSTBCs with rate 3/4 have been reported [8, Eqs. (39) and (40)].
As an example, we provide the rate 3/4 OSTBC for Lt = 3, which transmits 3

information symbols within 4 time slots

C3×4 =
2√
3




s1 −s∗2
s∗3√

2

s∗3√
2

s2 s∗1
s∗3√

2
− s∗3√

2
s3√

2

s3√
2

−s1−s∗1+s2−s∗2
2

s2+s∗2+s1−s∗1
2


 . (4.34)

Note that we apply the scaling factor 2/
√

3 in (4.34) in order that C3×4 satisfies
(4.31).
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From (4.28) and (4.31), the following properties can be derived for the

coefficient matrices Ci and C
′
i

CiC
H
n + C

′
nC

′
i

H
= λ δi−n ILt , (4.35a)

CiC
′
n

H
+ CnC

′
i

H
= 0Lt , (4.35b)

where 1 ≤ i, n ≤ Ns and δk denotes the discrete Dirac function. Moreover, for

square OSTBCs, i.e., when Lt = Kc, it is readily verified that

CHC = CCH , (4.36)

such that for square OSTBCs the coefficient matrices also satisfy

CH
i Cn + C

′
n

H
C

′
i = λ δi−n ILt , (4.37a)

CH
i C

′
n + CH

n C
′
i = 0Lt . (4.37b)

Examples of square OSTBCs are Alamouti’s code (4.14) and the 4 × 4 codes
given in [8, Eq. (40)], [27, Eq. (62)], and [30, Eq. (41)]. Uncoded SIMO systems

can be treated as a special case of square OSTBCs, with Lt = Ns = 1, and

coefficient matrices C1 = 1 and C
′
1 = 0.

Similar to the signal model (4.16) for Alamouti’s code, the received signals

corresponding to the transmitted OSTBC C can be represented by an Lr × Kc

matrix R

R =
√

Es HC + W (4.38)

where W consists of i.i.d. ZM CSCG RVs, the real and imaginary parts of

which have variance N0/2, and H denotes the Lr × Lt MIMO channel matrix

H =




h1,1 . . . h1,Lt

...
. . .

...

hLr,1 . . . hLr,Lt


 . (4.39)

Given the fact that Ns information symbols are sent within one OSTBC matrix
C and taking (4.31) into account, Es in (4.38) is given by

Es = ρ log2(M) Eb (4.40)

where ρ , Ns/(Lt Kc).

Using (4.28) and (4.31), it can be shown that ML detection of the informa-
tion symbols si in the OSTBC matrix reduces to symbol-by-symbol detection

ŝi = arg min
s̃∈Ψ

|ui − s̃| , i = 1, . . . , Ns (4.41)
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where the minimization is over the symbols s̃ belonging to the considered

constellation Ψ and the decision variables ui are given by

ui =
tr
(

CH
i HHR + RHHC

′
i

)

λ
√

Es‖H‖2
F

. (4.42)

By substituting (4.38) in (4.42), it follows from (4.28) and (4.35) that the de-
cision variables ui can be written as the sum of the transmitted information

symbol si and a ZM CSCG noise term wi with variance N0/(λEs‖H‖2
F)

ui = si + wi, (4.43)

such that the BER can be calculated in the same way as for SIMO and Alam-
outi’s transmit scheme. From (4.40) and the variance of wi in (4.43), we can

derive the important property that the BER curve plotted versus Eb/N0 only

depends on the number of transmit and receive antennas when a specific con-
stellation is considered. Therefore, different OSTBCs constructed for the same

number of transmit antennas, e.g., (4.33) and (4.34) achieve the same BER,
even though the corresponding code rates are not identical. For 4-QAM, e.g.,

the conditional BER of any OSTBC is given by

Pb,4−QAM(‖H‖2
F) = Q

(√
2

Lt

Eb

N0
‖H‖2

F

)
, (4.44)

such that in case of i.i.d. Rayleigh fading channels, the average BER reduces

to

Pb,4−QAM =



1

2



1 −

√√√√
Eb
N0

Lt +
Eb
N0








L

×
L−1

∑
k=0

(
L − 1 + k

k

)
1

2


1 +

√√√√
Eb
N0

Lt +
Eb
N0






k

. (4.45)

where L = LtLr. For high Eb/N0, (4.45) is shown to reduce to [13, Eq. 14.4-18]

P
(as)
b,4−QAM ≈

(
Lt

4

N0

Eb

)L (2L − 1

L

)
(4.46)

such that the asymptotic behaviour of the BER is proportional to (Eb/N0)
−L

and the maximal diversity gain of LtLr is indeed achieved.

4.3 MIMO Channel Model

In the previous section, we have introduced the slow flat-fading MIMO chan-
nel model (4.38) as an extension of the discrete-time SISO channel model
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(3.45). We have also shown that in order to obtain the average BER for OS-

TBCs, the conditional BER has to be averaged over ‖H‖2
F. So far, we have

assumed that the channel coefficients are i.i.d. ZM CSCG RVs, i.e., the norms
of the channel coefficients are Rayleigh distributed, whereas the phases are

uniformly distributed. This common assumption not only allows to simply
obtain a closed-form solution for the BER, it also represents an empirically

good fit for real-world MIMO channels as long as the environment consists of

a large number of reflectors and scatterers and sufficient antenna spacing is as-
sured. When the antennas are too closely spaced, however, fading correlation

may appear between adjacent antennas, such that the assumption of i.i.d. fad-
ing is no longer valid. Moreover, when a line-of-sight (LOS) path is present or

when an insufficiently rich scattering environment is considered, the Rayleigh

distribution may not be accurate enough to characterize the fading and other
fading distributions may be more appropriate.

4.3.1 Spatial Correlation

In general, diversity techniques rely on the assumption that all replicas of the

transmitted signal undergo independent fading, which minimizes the proba-
bility that all diversity branches are in a deep fade simultaneously. Hence, in

case of MIMO systems exploiting spatial diversity, fading correlation between
channel coefficients is highly undesirable as it deteriorates the diversity tech-

nique’s effectiveness. In practice, the correlation between channel coefficients

depends both on antenna spacing and angle-of-arrival spread [31, 32]. In a
rich scattering environment, where the angular spread is large, a widely used

rule of thumb is that an antenna separation of a half wavelength is sufficient to
obtain independent fading channels. However, when the angular spread be-

comes small, e.g., at a base station on a high structure with few local scatterers,

the antennas should be separated by several wavelengths to obtain decorrela-
tion. When these physical requirements are not met, the channel coefficients

in the MIMO channel matrix cannot be treated as i.i.d. RVs. Therefore, we
establish in this section a model that describes the spatial correlation between

the channel coefficients.

Let us introduce the vector equivalent

h , vec(H) (4.47)

of the channel matrix H, where vec(X) denotes the vec-operator, which stacks
the columns of the M × N matrix X in one column vector of dimension MN.

Hence, h = [h1, . . . , hL]
T is an L-dimensional column vector, with L = LtLr.

Note that hk+(`−1)Lr
= hk,`. The channel covariance matrix R of the MIMO

channel is a positive semi-definite Hermitian matrix that captures the corre-

lation between the different spatial paths between transmitter and receiver.
For a discrete-time frequency-flat slow fading channel with ZM channel coef-
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ficients, the L × L matrix R is defined as

R , E

[
h hH

]
. (4.48)

In this dissertation, we will regularly use the Kronecker model, which as-

sumes that the effect of fading correlation induced at the transmitter and re-
ceiver side can be decoupled. In this way, the channel covariance matrix is

given by

R = Rt ⊗Rr, (4.49)

which is the Kronecker product of the Lt × Lt transmit covariance matrix Rt

and the Lr × Lr receive covariance matrix Rr. The Kronecker product of an

M × N matrix X and a P × Q matrix Y is the MP × NQ block matrix Z, given
by

Z = X ⊗ Y ,




x1,1Y · · · x1,NY
...

. . .
...

xM,1Y · · · xM,NY


 . (4.50)

The entries of Rt and Rr in (4.49) are defined as

(Rt)i,n , E

[
hk,i, h∗k,n

]
, 1 ≤ k ≤ Lr (4.51a)

(Rr)i,n , E

[
hi,k, h∗n,k

]
, 1 ≤ k ≤ Lt. (4.51b)

Hence, Rt describes the correlation between the fading of the different trans-
mit antennas, which is assumed to be independent of the considered receive

antenna. Likewise, Rr describes the receive correlation, irrespective of the
particular transmit antenna. In this way, the correlation between two arbitrary

channel coefficients is given by the product of the corresponding transmit and

receive correlation coefficients

E
[
hk,` h∗i,n

]
= (Rt)`,n(Rr)k,i. (4.52)

Note that if the entries of Hw are independent ZM RVs with unit variance, the

covariance matrix of the channel

H = R
1/2
r Hw

(
R

1/2
t

)T
, (4.53)

where (·)1/2 denotes any matrix square root satisfying X1/2(X1/2)H = X, will

be given by (4.49). Although the Kronecker model has become popular owing
to its simple analytical treatment, it is not always valid, in particular when

large antenna arrays are considered [33, 34]. In these cases, more elaborate
channel models may yield more accurate results [35].
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In addition to the covariance matrix R, we also define the L × L power

correlation matrix Σ. With α` = |h`| denoting the fading envelope of the

channel coefficient h`, the entries of Σ are defined as [14, Eq. (9.195)]

(Σ)i,n ,
cov(α2

i , α2
n)√

var(α2
i ) var(α2

n)
(4.54)

where var(x) and cov(x, y) denote the variance of x and the covariance of x

and y, respectively, and i, n = 1, 2, . . . , L. Using the MIMO Kronecker model
proposed in [36], Σ is decomposed as

Σ = Σt ⊗ Σr, (4.55)

where Σt and Σr are the Lt × Lt transmit and Lr × Lr receive power correlation
matrices, respectively. With αk,` = |hk,`| denoting the envelope of the channel

coefficient hk,`, the elements of Σt and Σr are defined as

(Σt)i,n ,
cov(α2

k,i, α2
k,n)√

var(α2
k,i) var(α2

k,n)
1 ≤ k ≤ Lr. (4.56a)

with i, n = 1, 2, . . . , Lt, and

(Σr)i,n ,
cov(α2

i,k, α2
n,k)√

var(α2
i,k) var(α2

n,k)
1 ≤ k ≤ Lt, (4.56b)

with i, n = 1, 2, . . . , Lr. According to (4.56), Σt and Σr are independent of the

index of the considered receive antenna and transmit antenna, respectively.

From the Kronecker model (4.55), it follows that the normalized covariance
between the fading powers α2

k,` and α2
i,n equals (Σt)`,n (Σr)k,i.

4.3.2 Fading Distributions

According to the MIMO channel model (4.38), the received power is deter-
mined by the fading envelopes, which depend on the positions of the transmit-

ter and the receiver, and on the presence of absorbing, reflecting, and scatter-

ing objects in the propagation environment. In general, we make abstraction
of path loss and shadowing effects [31], and assume a normalized channel

matrix affected by small-scale fading only. This fading phenomenon stems
from the fact that in reality each channel coefficient represents a cluster of

multipath components with almost identical time delays but different ampli-

tudes and phases. Small time variations in the phases may cause the different
signals to add either constructively or destructively, causing large amplitude

changes in the received signal. Since the statistical behavior of the envelope of
the fading coefficients depends on the nature of the propagation environment,
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an appropriate statistical model has to be selected in order to ensure a satis-

factory empirical fit. In this section, we provide an overview of a number of

widespread (marginal) fading distributions that model the statistical behavior
of the individual channel coefficients.

4.3.2.1 Rayleigh Fading

In a dense scattering environment with no LOS components, each channel
coefficient comprises a large number of independent multipath components

within a very short time window. In this way, it follows from the central

limit theorem that the channel coefficients can be modeled as a ZM CSCG
RVs. When for a ZM CSCG channel coefficient h, E[|h|2] = Ω, we denote

h ∼ Nc(0, Ω) and it can be shown that the channel fading amplitude α = |h|
is distributed according to the Rayleigh distribution

pα(x) =
2x

Ω
exp

(
− x2

Ω

)
, x ≥ 0. (4.57)

Consequently, the squared fading amplitude α2 is distributed according to the
exponential distribution

pα2(x) =
1

Ω
exp

(
− x

Ω

)
, x ≥ 0. (4.58)

Note that Ω = 1 in case of a normalized channel.

4.3.2.2 Rice Fading

When the channel consists of both a LOS path not affected by fading and

a cluster of multipath components subjected to Rayleigh fading, the channel
coefficients can be written as

h =

√
κ

κ + 1

√
Ω exp(−jθ) +

√
1

κ + 1
y, (4.59)

where y ∼ Nc(0, Ω) and κ denotes the Rician K-factor, which ranges from 0 to
∞. It follows from (4.59) that E[|h|2] = Ω and that κ indicates the ratio of the

power of the LOS component to the power of the Rayleigh multipath compo-
nent. When κ = 0, the LOS component can be neglected and the Rice fading

channel becomes a Rayleigh fading channel. When κ → ∞, the Rayleigh mul-

tipath component can be neglected and the Rice fading channel becomes an
additive white Gaussian noise (AWGN) channel.

In case of Rice fading channel, the fading amplitude α = |h| is distributed

according to the Rice distribution, also known as the Nakagami-n distribution

pα(x) =
2(1+ κ) exp(−κ) x

Ω
exp

(
− (1 + κ) x2

Ω

)
I0

(
2x

√
κ(1 + κ)

Ω

)
, x ≥ 0

(4.60)
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where I0(·) is the zeroth-order modified Bessel function of the first kind.

4.3.2.3 Nakagami-m Fading

The Nakagami-m distribution [37] is considered as a versatile statistical distri-

bution that accurately models a variety of fading environments by selecting

a proper value for the fading parameter m ≥ 1/2. It includes the Rayleigh
(m = 1) and the one-sided Gaussian (m = 1/2) distributions as special cases.

Moreover, for m → ∞, the fading channel converges to an AWGN channel.
Denoting by α the magnitude of a complex-valued channel coefficient, its PDF

in case of Nakagami-m fading is given by

pα(x) =
2

Γ(m)

(m

Ω

)m
x2m−1 exp

(
−m

Ω
x2
)

, x ≥ 0 (4.61)

with Ω = E[α2] being the average fading power and Γ (·) being the Gamma

function

Γ(x) =
∫ ∞

0
tx−1 exp(−t)dt. (4.62)

Equivalently, the fading power α2 follows a Gamma distribution with shape
parameter m and mean Ω

pα2(x) =
1

Γ(m)

(m

Ω

)m
xm−1 exp

(
−m

Ω
x
)

, x ≥ 0. (4.63)

In Fig. 4.5, the Nakagami-m distribution is depicted for Ω = 1 and m =
0.5, 1, 2, 5. It is shown in [14] that for m > 1, a one-to-one mapping can be

obtained between the m parameter of the Nakagami-m distribution and the
Rician K-factor. In this way, the Rice distribution can be closely approximated

by the mathematically less complicated Nakagami-m distribution. The map-
ping function is given by

m =
(1 + κ)2

1 + 2κ
, κ ≥ 0 (4.64a)

κ =

√
m2 − m

m −
√

m2 − m
, m ≥ 1. (4.64b)

In Fig. 4.6, both the Rice distribution and the corresponding Nakagami-m

distribution are depicted for several values of the Rician K-factor κ.

4.3.2.4 Other

Other distributions that are sometimes used to describe small-scaling fading
are the Hoyt distribution, also known as the Nakagami-q distribution, and the

Weibull distribution. It is shown in [14] that both distributions can be closely
approximated by the Nakagami-m distribution.
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Figure 4.5: Nakagami-m distribution with Ω = 1 and m = 0.5, 1, 2, 5.

4.3.3 Generating Correlated MIMO Channels

When the BER is obtained through Monte-Carlo simulation, numerous real-

isations of the MIMO channel have to be generated according to a particu-
lar fading distribution. In this section, we explain how spatially correlated

Rayleigh and Nakagami-m channels can be obtained from easy-to-generate
i.i.d. Gaussian RVs.

4.3.3.1 Rayleigh Fading

A channel vector h with Rayleigh fading envelopes α` = |h`| and covariance
matrix R can simply be obtained as

h = P x, (4.65)

where the L-dimensional column vector x consists of i.i.d. Gaussian RVs with

ZM and unit variance and the L × L matrix P results from the Cholesky de-
composition of the covariance matrix R, i.e., R = PPH.
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Figure 4.6: Rice distribution versus approximate Nakagami-m distribution.

4.3.3.2 Nakagami-m Fading

Usually, arbitrarily correlated Nakagami-m RVs are generated from either
Gamma RVs [38–40] or Gaussian RVs [41–45]. An efficient method for gener-

ating bivariate Nakagami-m samples based on the rejection method is given
in [46], for arbitrary values of m ≥ 0.8. For integer and identical fading param-

eters, i.e., m` = m, ∀`, it is shown in [44] that L correlated Nakagami-m RVs

α`, can be obtained from 2m i.i.d. real-valued ZM Gaussian random vectors
yk = [yk,1, yk,2, . . . , yk,L]

T , with k = 1, 2, . . . , 2m. In particular, by defining

α2
`
,

2m

∑
k=1

y2
k,` , (4.66)

it is readily verified that α`’s are correlated Nakagami-m RVs with E[α2
`
] = Ω`

and power correlation matrix Σ, if the covariance matrix Q = E[yk yT
k ] of the

column vectors yk is given by

Q =
1

2m

√
Ω ΣG

√
Ω (4.67)

where the L × L diagonal matrix Ω is given by Ω = diag {Ω1, Ω2, . . . , ΩL}
and ΣG =

√
Σ, with

√
X denoting the element-wise square root of a matrix X.
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4.3.4 PDF of the Squared Channel Norm

Since it follows from (4.43) that the analytical computation of the BER for

OSTBCs requires averaging of the conditional BER over ‖H‖2
F, we present in

this section the PDF of ‖H‖2
F for i.i.d. and correlated Rayleigh and Nakagami-

m channels. Note that ‖h‖2 = ‖H‖2
F.

4.3.4.1 Rayleigh Fading

i.i.d. Rayleigh Fading Let us consider a MIMO channel H with L = LtLr

i.i.d. channel coefficients hk,`, the envelopes of which are Rayleigh distributed

with E
[|hk,`|2

]
= σ2. Assuming uniformly distributed phases for all channel

coefficients, the channel vector h is a vector consisting of L i.i.d. ZM CSCG

RVs h`, with E
[|h`|2

]
= σ2 for ` = 1, . . . , L. It can easily be derived that

‖h‖2 = ∑
L
`=1 |h`|2 is distributed according to a scaled χ2-distribution with 2L

degrees of freedom [13, Eq. 2.1-110]:

p‖h‖2(x) =
1

(σ2)
L (L − 1)!

xL−1 exp
(
− x

σ2

)
, x ≥ 0. (4.68)

Similarly, ‖h‖ follows a scaled χ-distribution with 2L degrees of freedom.

Note that the χ and χ2-distributions are special cases of the Nakagami-m and
Gamma distributions, respectively. Exact BER expressions for OSTBCs on

i.i.d. Rayleigh fading channels can be found in [47] for M-PSK and in [48] for

M-QAM constellations.

Arbitrarily Correlated Rayleigh Fading We consider a Rayleigh MIMO

channel with an arbitrary positive semi-definite covariance matrix R. Us-
ing a moment generating function (MGF) approach, it is readily verified that

the PDF of ‖h‖2 is given by [49]

p‖h‖2(x) =
κ

∑
i=1

ci

∑
q=1

Di,q

(λi)
q (q − 1)!

xq−1 exp

(
− x

λi

)
, x ≥ 0 (4.69)

where λi, i = 1, 2, . . . , κ, are the distinct eigenvalues of the channel covariance
matrix R, with corresponding algebraic multiplicities ci. Note that (4.69) is

a finite weighted sum of χ2-distributions with 2q degrees of freedom; the
coefficients Di,q are given by

Di,q =
(λi)

q−ci

(ci − q)!

[
dci−q

dsci−q F(s) (1 + λis)
ci

] ∣∣∣
s=− 1

λi

(4.70)

where

F(s) =
κ

∏
n=1

1

(1 + λns)cn
. (4.71)

56



4.3. MIMO CHANNEL MODEL

Exact BER expressions for OSTBCs in correlated Rayleigh channels are pro-

vided in [50]. In case of i.i.d. Rayleigh fading with R = IL, there is only one

distinct eigenvalue λ1 = 1 with multiplicity c1 = L, such that the coefficients
(4.70) are given by

D1,q ,

{
1

(L−1)!
if q = L

0 otherwise
, (4.72)

and the PDF (4.69) reduces to (4.68).

4.3.4.2 Nakagami-m Fading

i.i.d. Nakagami-m Fading Let us consider an i.i.d. MIMO channel H with
corresponding channel vector h. When the fading envelopes α` = |h`| are

i.i.d. Nakagami-m distributed RVs with arbitrary and identical m` = m and
Ω` = Ω, ∀`, the PDF of ‖h‖ is shown to be distributed according to the

Nakagami-m distribution with parameters Lm and LΩ [51]. Accordingly, ‖h‖2

follows a Gamma distribution with parameters Lm and LΩ. Exact analytical
expressions for the SER of OSTBCs in i.i.d. Nakagami-m fading channel are

given in [52]

Arbitrarily Correlated Nakagami-m Fading In case the Nakagami-m MIMO

channel is correlated, the fading envelopes α` are distributed according to

(4.61) with parameters m` and Ω` possibly depending on the index `.

In the past, different approaches have been presented for deriving analyti-

cal expressions for the distribution of ‖h‖2 in the case of arbitrarily correlated

Nakagami-m fading channels, e.g., see [38–44] and references therein. Analyt-
ical expressions for the MGF of ‖h‖2 have been derived for integer m` = m,

∀`, [41, 42, 44], integer m` [43] and arbitrary m` [40]. Although the obtained
expressions in [41, 42, 44] can be straightforwardly used for the derivation of

p‖h‖2(x), this seems complicated using the MGF expression presented in [43]

and rather difficult with that in [40]. On the other hand, the PDF-based
approach has been used for deriving the distribution of ‖h‖2 for arbitrary

m` = m, ∀`, [38] and for integer m` with the restriction that Ω`/m` 6= Ωk/mk

if k 6= ` [39].

For integer and identical m` = m, ∀`, and E[α2
`
] = Ω`, the PDF of ‖h‖2 is

given by [41, 42]

p‖h‖2(x) =
κ

∑
i=1

cim

∑
q=1

Di,q

(2λi)
q (q − 1)!

xq−1 exp

(
− x

2λi

)
, x ≥ 0 (4.73)

where λi’s, i = 1, 2, . . . , κ, are the distinct eigenvalues of Q given by (4.67),
with corresponding algebraic multiplicities ci. In (4.73), the parameters Di,q
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Figure 4.7: PDF of squared channel norm ‖h‖2 in case of correlated

Nakagami-m channels.

are given by

Di,q =
(2λi)

q−cim

(cim − q)!

[
dcim−q

dscim−q F(s) (1 + 2λis)
cim
] ∣∣∣

s=− 1
2λi

(4.74)

where

F(s) =
κ

∏
n=1

1

(1 + 2λns)cnm . (4.75)

Alternatively, by applying a tridiagonal decomposition to (ΣG)
−1 for in-

teger m` = m and Ω` = Ω, ∀`, p‖h‖2 (x) can be obtained from [44] as fast
convergent infinite summations. For arbitrary and identical m` = m, ∀`, the

PDF of ‖h‖2 can be easily obtained from [38, Eq. (5)] as an infinite summa-
tion. For arbitrary and non-identical m`, the PDF of ‖h‖2 is given in [53] as

an infinite summation and a good truncation of the PDF’s infinite summation

is proposed.
In Fig. 4.7, we show the PDF of the squared channel norm ‖h‖2 for a 2 × 2

MIMO channel with transmit and receive power correlation matrices given by

Σt = Σr =

[
1 ρ

ρ 1

]
, (4.76)
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where the correlation coefficient ρ takes on the values 0, 0.2, and 0.5. The

PDFs are shown for m = 1 (Rayleigh fading) and m = 5. Note that because of

fading correlation small values of ‖h‖2 are more likely to occur.
Exact analytical expressions for the SER of OSTBCs operating over corre-

lated Nakagami-m fading can be found in [54] for PSK and QAM constella-
tions and in [55] for PAM/PSK/QAM modulation. Analytical BER expres-

sions are provided in [56].

4.4 Chapter Summary

In this chapter, we have shown how using multiple receive antennas enables

to exploit spatial diversity and mitigate the effect of multipath fading without

extending the required bandwidth or decreasing the spectral efficiency. When
the signals received at each of the Lr antennas are combined by MRC, both a

diversity gain of Lr and an array gain of Lr can be achieved. Multiple transmit
antennas, on the other hand, can be used not only to exploit spatial diver-

sity by applying proper space-time coding, but also to increase the system’s

data rate by transmitting different data streams in parallel; the latter trans-
mit technique is usually referred to as spatial multiplexing. Nevertheless, it

is impossible to maximize the diversity and the data rate simultaneously, as
there exists a fundamental trade-off between diversity and multiplexing gain.

In this dissertation, we focus on the appealing transmit diversity technique

of orthogonal space-time block coding. When combined with receive diver-
sity, orthogonal space-time block codes achieve a full spatial diversity gain

of L = LtLr, with Lt denoting the number of transmit antennas, whereas
ML data detection reduces to symbol-by-symbol detection based only on sig-

nal processing at the receiver side. Furthermore, we introduced a slow flat-

fading MIMO channel model and discussed its statistical properties. Various
widespread fading distributions were presented and we illustrated how cor-

relation between fading coefficients can be taken into account.
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5
Channel Estimation

In chapters 3 and 4, we have assumed that the receiver detects the data sym-

bols under the assumption that perfect channel state information (PCSI) is
available at the receiver. In practical wireless scenarios, however, the chan-

nel is not a priori known because of its random nature so the assumption of
PCSI is not valid. Typically, the receiver estimates the channel with the aid of

known pilot symbols sent among the data [57], although blind or semi-blind

joint channel estimation and detection techniques can also be applied [58,59].
This chapter discusses two widespread pilot aided channel estimation meth-

ods. In section 5.1, we show how pilot symbols are inserted in the data stream,

whereas sections 5.2 and 5.3 deal with ML and LMMSE channel estimation,
respectively. Section 5.4 concludes the chapter.

5.1 Insertion of Pilot Symbols

To facilitate pilot aided channel estimation, we organize the data transmission
in frames consisting of Kfr = K + Kp time slots; Kp time slots are associated to
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Figure 5.1: A data frame with a 2× 4 pilot matrix and five 2× 2 code matrices.

pilot symbols, whereas the other K time slots are reserved for the transmission

of OSTBC matrices. Hereby, we assume that K is a multiple of Kc, such that

K/Kc code matrices C(k), with k denoting the matrix index, are sent within
one frame. In Fig. 5.1, we show a data frame for a dual-antenna transmitter

employing Alamouti’s code, consisting of a 2× 4 pilot matrix Cp (Kp = 4) and
a sequence of five 2× 2 code matrices C(k) (K = 10). Furthermore, we assume

orthogonal and normalized pilot sequences, i.e., CpCH
p = KpILt . In this way,

the average energy of the entries of Cp is given by

1

LtKp
E

[∥∥Cp

∥∥2

F

]
= 1. (5.1)

Assuming that the length of one frame of Kfr symbols does not exceed the
channel coherence time, the channel remains constant during the transmission

of one frame (block fading), and the receiver separately observes the Lr × Kc

matrices

R(k) =
√

Es HC(k) + W(k), (5.2)

with k = 1, . . . , K/Kc, and the Lr × Kp matrix

Rp =
√

Ep HCp + Wp, (5.3)

where the noise matrices W(k) and Wp affecting the transmission of data and

pilot symbols, respectively, consist of i.i.d. ZM CSCG RVs with variance N0.
Because of (4.32) and (5.1), Es and Ep in (5.2) and (5.3) can be considered as the

average data and pilot energy, respectively. In the remainder of this chapter,

we will omit the matrix index k for notational convenience.

When spatially correlated channels are considered, we often use the chan-

nel vector notation (4.47). It is possible, however, to derive an equivalent
vector model for (5.2) and (5.3), which uses the channel vector h instead of

H. To this end, we introduce the L-dimensional column vectors r , vec(R),
w , vec(W), rp , vec(Rp), and wp , vec(Wp). Using these vectors, the

received signal matrices (5.2) and (5.3) are shown in [60] to be equivalent to

r =
√

Es Bh + w, (5.4)
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rp =
√

Ep Bph + wp, (5.5)

where B , CT ⊗ ILr and Bp , CT
p ⊗ ILr . It follows from (4.31) that for OSTBCs

the following criterion is met

BHB = λ‖s‖2IL, (5.6)

whereas for square OSTBCs, (4.36) yields

BBH = BHB = λ‖s‖2IL, (5.7)

The equivalent pilot matrix Bp in (5.5) satisfies BH
p Bp = KpIL.

Given a total amount of energy per data frame, increasing the energy KpEp

allocated to pilot symbols allows to improve the channel estimate, but also

reduces the symbol energy Es available for data transmission. Hence, the
optimal number of pilot symbols minimizing the BER will be a trade-off be-

tween accurate channel estimation on the one hand, and sufficient energy
for data transmission on the other hand. With Eb denoting the average en-

ergy per information bit, so that the total energy per frame is constrained to

Etot =
K
Kc

Ns log2(M)Eb, we have [61]

Es =
K

K + ηKp
ρ log2(M) Eb (5.8)

where η , Ep/Es denotes the ratio of Ep to Es, M is the constellation size, and

ρ = Ns/(LtKc). Clearly, Es is a decreasing function of Kp. Note that increasing

Kp also decreases the information bit rate. Denoting by Rs the symbol rate per
transmit antenna, the resulting information bit rate is given by

Rb =
K

K + Kp

Ns

Kc
log2(M)Rs, (5.9)

which indicates that the addition of pilot symbols reduces the bandwidth

efficiency.

Although numerous definitions of the SNR are used in the literature when
MIMO communication is considered, we use the following simple definition

SNR ,
Es

N0
. (5.10)

Throughout this dissertation, the SNR refers to the above definition, unless
otherwise mentioned.

5.2 ML Channel Estimation

Channel estimation consists of deriving an estimate Ĥ from the observed re-
ceived signal matrix (5.3). As shown in chapter 2, various estimators are avail-
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able from the literature. A popular MIMO channel estimator is the maximum-

likelihood estimator (2.11), which does not use any a priori information about

the channel. From (5.3) the likelihood function of the matrix H is obtained as

p(Rp|H) =
1

(πN0)L
exp

(
−
∥∥Rp −√Ep HCp

∥∥2

F

N0

)
, (5.11)

where L = LtLr. Maximizing (5.11) results in the Lr × Lt ML channel estimate

ĤML, which is given by [61]

ĤML =
1

Kp
√

Ep
RpCH

p , (5.12)

such that ĤML can be decomposed into the following sum of two statistically
independent contributions

ĤML = H + N. (5.13)

The entries of the Lr × Lt estimation noise matrix N =
[
1/(Kp

√
Ep)
]

WpCH
p

are i.i.d. ZM CSCG RVs, the real and imaginary parts of which have variance

[61]

σ2
N = N0/(2KpEp). (5.14)

Hence, when conditioned on H, the estimated channel coefficients (ĤML)`,k

are CSCG RVs with mean h`,k and variance 2σ2
N.

Note that, using (5.5), the vector equivalent to the ML channel estimate
(5.12) is given by

ĥML =
BH

p rp

Kp
√

Ep
. (5.15)

Obviously, similar conclusions can be drawn for the components of ĥML as for
the entries of (5.12).

5.3 LMMSE Channel Estimation

Under the assumption that the channel coefficients are ZM RVs, it follows
from (5.5) that the LMMSE channel estimate (2.7) is given by [60]

ĥLMMSE =

√
Ep

N0

(
IL +

KpEp

N0
R

)−1

RBH
p rp, (5.16)

which is a function of the channel covariance matrix R = E[hhH]. It is readily

verified that for high SNR, the LMMSE and ML estimates coincide. Moreover,
in case of Rayleigh fading channels, the LMMSE, MMSE, and MAP channel
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estimators are identical. For i.i.d. channels with R = IL, the LMMSE channel

estimate (5.16) is easily shown to reduce to

ĥLMMSE =

√
Ep

N0 + KpEp
BH

p rp =
KpEp

N0 + KpEp
ĥML, (5.17)

where ĥML is defined by (5.15). Hence, the LMMSE estimate reduces to a

scaled version of the ML estimate.

Let us now define the channel estimation error as ε , h − ĥ. In case of
LMMSE channel estimation, it can be shown that the estimation error ε and

the channel estimate ĥ are uncorrelated. Moreover, the following properties

can be derived for ε and ĥ:

• The covariance matrix of ĥ is given by

Rĥ , E

[
ĥĥH

]
=

KpEp

N0
R

(
IL +

KpEp

N0
R

)−1

R. (5.18)

In case of i.i.d. fading with R = IL, the estimated channel coefficients
are i.i.d. ZM RVs with variance KpEp/(KpEp + N0), since (5.18) reduces

to

Rĥ =
KpEp

KpEp + N0
IL. (5.19)

• The covariance matrix of ε is given by

Rε , E[εεH ] =

(
IL +

KpEp

N0
R

)−1

R. (5.20)

In case of i.i.d. fading with R = IL, the elements of ε are i.i.d. ZM RVs

with variance N0/(KpEp + N0), since (5.20) reduces to

Rε =
N0

KpEp + N0
IL. (5.21)

Furthermore, when the components of h are ZM CSCG RVs, which is the

case for Rayleigh fading, ĥ and ε are statistically independent and their com-
ponents are ZM CSCG RVs. Moreover, for high SNR, the elements of the

channel noise vector ε can be considered as i.i.d. ZM CSCG RVs with vari-
ance N0/(KpEp), irrespective of the channel covariance matrix R, since Rε

becomes

Rε ≈
N0

KpEp
IL,

KpEp

N0
� 1. (5.22)

This result is in correspondence with the fact that the LMMSE and ML channel
estimates coincide for high SNR.
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Figure 5.2: MSE of ML and LMMSE channel estimators.

To compare the performance of the ML and LMMSE channel estimators,

we compute the MSE of both estimators, yielding

MSEML = L
N0

KpEp
, (5.23)

where L = LtLr, and

MSELMMSE = tr(Rε), (5.24)

where Rε is given by (5.20). Note that the MSE of the LMMSE estimator

depends on the channel covariance matrix R, whereas the MSE of the ML
estimator does not depend on any a priori information about the channel. In

case of i.i.d. fading with R = IL, it follows from (5.21) that (5.24) reduces to

MSELMMSE = L
N0

N0 + KpEp
. (5.25)

In Fig. 5.2, we show the MSE curves for both the ML and LMMSE channel es-

timators in case of a 2× 2 MIMO channel with transmit and receive covariance

matrices

Rt = Rr =

[
1 ρ

ρ 1

]
. (5.26)
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The results are shown for ρ ∈ {0, 0.8} and for Kp ∈ {2, 20}. As expected,

the MSE curves converge for high SNR, whereas for low SNR, the LMMSE

channel estimator outperforms the ML channel estimator in terms of MSE.

5.4 Chapter Summary

In this chapter, we have presented two widespread pilot based channel esti-
mation techniques, i.e., ML and LMMSE channel estimation. Both estimators

allow the receiver to obtain an estimate of the MIMO channel, which is a pri-

ori unknown due to its random character. Also, we established a data frame
model that incorporates both pilot and data symbols.
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6
BER Analysis of OSTBCs in

Rayleigh Fading

In chapter 4, we showed that ML detection of the different information sym-

bols in an OSTBC matrix reduces to symbol-by-symbol detection, based on lin-
ear signal processing at the receiver. More specifically, the decision variables

corresponding to the transmitted information symbols are given by (4.42). Be-
cause the results from chapter 4 were obtained for a system with PCSI, they

do not represent the realistic situation where the channel has to be estimated

by the receiver, as illustrated in chapter 5.

Under the assumption of Rayleigh fading, the impact of imperfect channel
state information (ICSI) on the performance of OSTBCs has been investigated

extensively in the literature. In [62], the effect of channel estimation errors

on the BER was demonstrated by means of Monte-Carlo simulations. As in-
dicated in section 3.3.2, however, this approach requires that all input RVs of

the system, i.e., the L complex-valued entries of the channel matrix H, the in-
formation symbols in the data frame, and the AWGN channel noise matrices
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are generated repeatedly according to their corresponding distributions. For

each set of input RVs, the channel is estimated, the data symbols are recovered

from the received signal, and the number of bit errors is counted. Finally, the
BER is approximated as the ratio of the total number of bit errors to the total

number of bits transmitted. Since the full diversity gain achieved by OSTBCs
results in very low BERs, very long simulation times are usually necessary to

obtain accurate BER results, even at moderate SNR. Therefore, Monte-Carlo

simulations are, in general, inappropriate for accurate and efficient BER com-
putations for OSTBCs, and analytical performance results provide a powerful

alternative. Analytical SER expressions for OSTBCs in absence of PCSI were
presented in [63] and [64]. In the case of M-PSK constellations, exact closed-

form BER expressions as well as tight upper bounds were given in [65] for

pilot-based MMSE channel estimation. In [66], the effect of ML channel es-
timation on the performance of Alamouti’s scheme was examined for QPSK

modulation in rapid i.i.d. Rayleigh fading channels. High-SNR expressions for
the pairwise error probability (PEP) were derived under quite general condi-

tions in [67], using an eigenvalue approach. In [68], an exact closed-form ex-

pression for the PEP of both orthogonal and non-orthogonal space-time codes
in the case of least-squares channel estimation was obtained by means of char-

acteristic functions. In [69], this result was extended to the case of correlated
Rayleigh fading with receive correlation only. However, from the PEP one can

compute only an upper bound on the BER, which in a fading environment

does not converge to the true BER at high SNR.

In order to investigate the impact of ICSI on the BER of OSTBCs, we con-
sider in this chapter a receiver that uses the estimated channel in the same way

as an ML receiver would apply the true channel; this type of receiver is usually

called a mismatched ML receiver. In section 6.1, we present a simple rule of
thumb that serves as an indicator for the BER degradation caused by imperfect

channel estimation and yields the exact result for high SNR under certain con-
ditions. Assuming LMMSE channel estimation and i.i.d. Rayleigh fading, we

derive in section 6.2 an exact closed-form BER expression for square OSTBCs

and an accurate approximation of the BER for non-square OSTBCs. In section
6.3, we present accurate BER approximations for both square and non-square

OSTBCs under the assumption of arbitrarily correlated Rayleigh fading. The
chapter is summarized in section 6.4. Although all BER expressions in this

chapter are derived for QAM constellations, they can be easily modified to

the case of PAM constellations.

6.1 Rule of Thumb

When the mismatched receiver and the PCSI receiver achieve some target BER

at Eb/N0 = (Eb/N0)ICSI and Eb/N0 = (Eb/N0)PCSI, respectively, the BER
degradation of the mismatched receiver as compared to the PCSI receiver is
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expressed as

∆BER =
(Eb/N0)ICSI

(Eb/N0)PCSI
. (6.1)

Usually, the BER degradation is expressed in dB: ∆BER,dB = 10 log10(∆BER).
In case of PCSI, the information symbols included in the OSTBC matrix C

are detected from the received signal

R =
√

EsHC + W, (6.2)

using the decision variables (4.42). Defining the channel estimation error ma-

trix E as E , H − Ĥ, we can rewrite (6.2) for a mismatched receiver that
assumes Ĥ to be the correct channel matrix as

R =
√

EsĤC +
√

EsEC + W, (6.3)

where
√

EsĤC is the useful component and
√

EsEC is an interference term

caused by imperfect channel estimation. If the useful term
√

EsĤC and the

disturbance term
√

EsEC+W in (6.3) are uncorrelated and have similar statis-
tics as the useful term

√
EsHC and the noise term W in (6.2), respectively,

the mismatched and PCSI receiver will achieve the same BER when operating
at the same SNR, where the SNR is defined as the ratio of the energy of the

useful term to the energy of the disturbance term. Since the noise term W con-

sists of i.i.d. ZM CSCG RVs with variance N0, we can adjust the SNR in (6.2)
and (6.3) by selecting a proper symbol energy Es. Hence, for both receivers to

achieve the same SNR, Es should be selected such that

E[‖
√
(Es)ICSI ĤC‖2

F]

E[‖
√
(Es)ICSI EC + W‖2

F]
=

E[‖
√
(Es)PCSI HC‖2

F]

E[‖W‖2
F]

. (6.4)

Since the BER degradation is given by (6.1) and N0 is kept fixed for both

receivers, it follows from (4.40), (5.8), and (6.4) that

∆BER =
(Eb)ICSI

(Eb)PCSI
=

(
1 +

ηKp

K

)
(Es)ICSI

(Es)PCSI

=

(
1 +

ηKp

K

)
E[‖HC‖2

F]

E[‖ĤC‖2
F]

E[‖
√
(Es)ICSI EC + W‖2

F]

E[‖W‖2
F]

, (6.5)

which is a function of
√
(Es)ICSI. Before we further simplify the expression

(6.5), we take a look at the conditions for which (6.5) is exact.

• The useful term
√

EsĤC and the disturbance term
√

EsEC + W in (6.3)
must be uncorrelated. Clearly, this is the case when we use LMMSE

channel estimation, for which the channel estimate Ĥ and the estimation
error E are known to be uncorrelated.
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• The useful terms in (6.2) and (6.3) must have similar statistical proper-

ties. Since Ĥ is a linear function of both the channel H and the noise

matrix Wp, this condition will be satisfied when the channel coefficients

are Rayleigh distributed, such that both H and Ĥ consist of ZM CSCG
RVs. Moreover, it follows from (5.18) that Rĥ is proportional to R only

when R = IL. Hence, (6.5) is exact for i.i.d. Rayleigh fading only.

• The interference term
√

EsEC must consist of i.i.d. ZM CSCG RVs, with a
variance that does not depend on the values of the information symbols.

Since it follows from (5.21) that the estimation error E consist of i.i.d. ZM
CSCG RVs with variance N0/(KpEp + N0) in case of i.i.d. Rayleigh fad-

ing, the entries of the interference term are ZM CSCG RVs. The correla-

tion between the entries of the interference term is given by

E

[
(
√

EsEC)m,k(
√

EsEC)∗m′,k′
]
=

EsN0

KpEp + N0
δm−m′(CHC)k′,k. (6.6)

Hence, the components of
√

EsEC are spatially uncorrelated but a tem-
poral correlation might exist, unless CHC is a diagonal matrix, which is

the case for square OSTBCs. Because of (4.36), however, the variance of

the interference term is still a function of the symbol vector s, unless the
symbols belong to a PSK constellation. Hence, for square OSTBCs and

PSK constellations, we have

E

[
(
√

EsEC)m,k(
√

EsEC)∗m′,k′
]
=

EsN0Lt

KpEp + N0
δm−m′δk−k′ . (6.7)

Assuming LMMSE channel estimation, i.i.d. Rayleigh fading, and PSK con-

stellations, the different factors in (6.5) are easily obtained:

E[‖HC‖2
F] = E

[
tr
(

HCCHHH
)]

= LtE[‖H‖2
F] = KcLtLr, (6.8)

E[‖ĤC‖2
F] = KcLtLr

KpEp

KpEp + N0
, (6.9)

E[‖
√
(Es)ICSI EC + W‖2

F] = KcLtLr
(Es)ICSIN0

KpEp + N0
+ KcLrN0, (6.10)

E[‖W‖2
F] = KcLrN0. (6.11)

Using (6.8)-(6.11), the BER degradation (6.5) reduces to

∆BER =

(
1 +

ηKp

K

)(
1 +

Lt

ηKp
+

N0

KpEp

)
, (6.12)

which is a function of Ep/N0. Note that (6.12) is only exact for square OST-
BCs, yet it can be used as an approximation for other OSTBCs as well. Since it

72



6.1. RULE OF THUMB

follows from (5.17) that for i.i.d. fading, LMMSE and ML channel estimation

differ only by a scale factor, which does not affect the detection in case of PSK

symbols, the BER degradation (6.12) can also be used for ML channel estima-
tion. Moreover, in case of spatial multiplexing MIMO systems transmitting Lt

independent uncoded symbol streams over i.i.d. Rayleigh fading channels us-
ing a PSK constellation, C reduces to an Lt × 1 vector and CHC = Lt, such that

(6.12) also holds for spatial multiplexing and uncoded SIMO communication

(Lt = 1). For high SNR, (6.12) reduces to

∆BER =

(
1 +

ηKp

K

)(
1 +

Lt

ηKp

)
, (6.13)

which is a function of the structure of the data frames (Lt, K, Kp) and the ratio

of pilot to symbol energy (η) only. Let us recall that the simple yet impor-
tant expression (6.13) yields the asymptotic BER degradation due to channel

estimation errors, for square OSTBCs with PSK symbols under i.i.d. Rayleigh

fading. For non-square OSTBCs, PAM or QAM constellations, or arbitrary
fading distributions, (6.13) is useful to approximate the actual BER degrada-

tion and to estimate the optimal number of pilot symbols. Note that the first
factor in (6.13) grows with Kp, since adding pilot symbols decreases the en-

ergy available for the transmission of data symbols, whereas the second term

decreases with growing Kp, since using more pilot symbols improves channel
estimation. Because of this trade-off, it is possible, for given K, to find an

optimal value for Kp that minimizes the BER degradation of the mismatched
receiver with respect to the PCSI receiver. It is easily derived that the optimal

value for Kp is given by

Kp,opt =

√
LtK

η
, (6.14)

such that the minimal BER degradation becomes

∆BER,min =

(
1 +

√
Lt

K

)2

, (6.15)

which for large K asymptotically approaches 1 (or 0 dB). For best performance

we should take K as high as possible, taking into account that the frame length

must not exceed the coherence time of the channel. When η = 1, i.e., when
the pilot energy Ep equals the symbol energy Es, the optimal number of pilot

symbols is given by
√

LtK. If we allow η to be higher than 1, however, this
degree of freedom can be used to reduce the number of pilot symbols Kp be-

low
√

LtK in order to increase the information bit rate without increasing the

BER degradation. However, the lower Kp, the larger Ep to maintain optimal
performance, such that higher peak transmit powers are needed at the trans-

mitter side. Also, in order that the rows of Ap be orthogonal, Kp should not
be less than Lt.
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6.2 BER Analysis for i.i.d. Rayleigh Fading

Since the mismatched receiver uses the estimated channel Ĥ in the same way

as an ML receiver would apply H, its detection algorithm is given by

Ĉ = arg min
C̃

∥∥∥R −
√

EsĤC̃
∥∥∥

2

F
, (6.16)

where the minimization is over the valid code matrices C̃ satisfying (4.28). In
this way, the detection algorithm still reduces to symbol-by-symbol detection

ŝi = arg min
s̃∈Ψ

|ui − s̃| , 1 ≤ i ≤ Ns (6.17)

where the minimization is over the symbols s̃ belonging to the considered

constellation Ψ and the decision variables ui are obtained by replacing the

channel H in (4.42) by Ĥ

ui =
tr
(

CH
i ĤHR + RHĤC

′
i

)

λ
√

Es

∥∥Ĥ
∥∥2

F

. (6.18)

According to (6.3), we can write the signal R captured by a mismatched

receiver as a function of the estimated channel Ĥ. As compared to a receiver
with PCSI, the detection performance of the mismatched receiver is clearly

degraded: the total noise variance is increased, because of the presence of the

interference term
√

EsEC, whereas the useful component is reduced, since it
follows from (5.19) that the variance of the estimated channel coefficients is

smaller than the unit variance that characterizes a normalized channel. By
substituting R in (6.18) by (6.3), the decision variable can be shown to reduce

to

ui = si + ni, (6.19)

which is the sum of the transmitted symbol si and a disturbance term ni. Un-
like the case of PCSI, however, the disturbance term ni contains contributions

not only from the channel noise W but also from the channel estimation error

E. It is readily verified that ni is given by ni = ei + wi, with

ei ,
tr
(

CH
i ĤHEC + CHEHĤC

′
i

)

λ
∥∥Ĥ
∥∥2

F

, (6.20)

wi ,
tr
(

CH
i ĤHW + WHĤC

′
i

)

λ
√

Es

∥∥Ĥ
∥∥2

F

. (6.21)

In case of QAM constellations, the real and imaginary parts of si can be de-
tected separately from the real and imaginary parts of the decision variable
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ui, respectively

ŝi,R = arg min
s̃∈Ψ′

|ui,R − s̃|2 , (6.22a)

ŝi,I = arg min
s̃∈Ψ′

|ui,I − s̃|2 , (6.22b)

where Ψ′ is defined in (3.14) as the set consisting of the real (and imaginary)

parts of the QAM symbols, ŝi,R = <[ŝi], ŝi,I = =[ŝi ], ui,R = <[ui], and ui,I =
=[ui]. Hence, the average BER can be calculated as

Pb =
1

2Ns

Ns

∑
i=1

[Pb,i,R + Pb,i,I] , (6.23)

where Pb,i,R and Pb,i,I denote the BERs of the in-phase bits and quadrature bits

corresponding to the information symbols si, respectively. Using a similar
approach as in section 3.3.3, Pb,i,R and Pb,i,I can be obtained from the variances

of the real and imaginary parts of ni, respectively. To this end, we introduce

the Lt × Lt matrices Ci,R(s) and Ci,I(s) as

Ci,R(s) , C
(

Ci + C
′
i

)H
, (6.24a)

Ci,I(s) , C
(

Ci − C
′
i

)H
, (6.24b)

which depend on the information symbol vector s through the code matrix C.

Using (6.24), we show in appendix 6.A.1 that, when conditioned on Ĥ and s,
ni is a ZM non-circularly symmetric complex Gaussian RV, the variances of

the real and imaginary parts of which are given by

σ2
i,R(Ĥ, s) , E[(<[ni])

2|Ĥ, s] =
N0

2λEs‖Ĥ‖2
F



1 +
‖ĤCH

i,R(s)‖2
F

λ‖Ĥ‖2
F

(
ηKp + N0

Es

)



 ,

(6.25a)

σ2
i,I(Ĥ, s) , E[(=[ni])

2|Ĥ, s] =
N0

2λEs‖Ĥ‖2
F


1 +

‖ĤCH
i,I(s)‖2

F

λ‖Ĥ‖2
F

(
ηKp + N0

Es

)


 .

(6.25b)

Since (6.25a) and (6.25b) are obtained for a given Ĥ and s, we can easily calcu-
late the conditional BERs of the in-phase and quadrature bits corresponding

to the information symbols si, conditioned on Ĥ and s. Taking into account
that a decision error occurs when ui,q, with q = R or q = I, is located in-

side the decision area of the projection bq of a symbol b, with bq 6= si,q, the

conditional BER of the bits allocated to si,q is given by

Pb,i,q(Ĥ, s) =
1

log2(
√

M)
∑

bq∈Ψ′
dH(si,q, bq) Pr[ŝi,q = bq|Ĥ, s], (6.26)
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where dH(si,q, bq) denotes the Hamming distance between the bits associated

to si,q and bq, respectively. Using the distances D1(si,q, bq) and D2(si,q, bq)
between si,q and the boundaries of the decision area of bq, as defined in (3.60),
the conditional probability in (6.26) is easily shown to reduce to

Pr[ŝi,q = bq|Ĥ, s] = Pr[d1(bq) ≤ ui,q ≤ d2(bq)|Ĥ, s]

= Q



√√√√D2

1(si,q, bq)

σ2
i,q(Ĥ, s)


− Q



√√√√D2

2(si,q, bq)

σ2
i,q(Ĥ, s)


 (6.27)

where the variances σ2
i,q(Ĥ, s) are given by (6.25) and Q(x) is the Gaussian

Q-function (3.58).

In order to obtain Pb,i,q, the conditional BER (6.26) must be averaged over

the statistics of Ĥ and s; the latter operation reduces to a finite summation

over all MNs possible realisations of s:

Pb,i,q =
1

MNs
∑

s∈ΨNs

EĤ[Pb,i,q(Ĥ, s)]. (6.28)

Because of the summation over s, the computational complexity of the BER
expression (6.28) is proportional to MNs , which may become quite large in

case of large symbol constellations and OSTBC matrices comprising many in-
formation symbols. If the associated computational complexity is too high,

however, the summation over s can always be accurately approximated by

Monte-Carlo integration, as will be shown in section 7.3.1.2. The expectation
over Ĥ of the conditional BER in (6.28) requires averaging the Q-functions in

(6.27) over the statistics of Ĥ. Because of the second factor in the right-hand

sides of (6.25a) and (6.25b), however, the Q-functions are generally a compli-
cated function of all entries of Ĥ and a closed-form BER expression is hard

to derive. Although the average BER can be obtained by numerically averag-
ing the Q-functions in (6.27) over Ĥ through, e.g., Monte-Carlo integration,

we present in this section an exact closed-form expression for the special case

of square OSTBCs as well as an approximate closed-form BER expression for
non-square OSTBCs.

Considering the BER analysis in section 4.2.2 for OSTBCs in case of PCSI,
it is understood that a closed-form BER expression for ICSI can be easily ob-

tained if the following two conditions are satisfied:

• the variances (6.25a) and (6.25b) are a function of Ĥ through an inverse
proportionality to the squared Frobenius norm ‖Ĥ‖2

F of the channel es-

timate only;

• ‖Ĥ‖2
F is distributed according to a (scaled) χ2-distribution.
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Clearly, the first condition is met when

CH
i,R(s)Ci,R(s) =

(
Ci + C

′
i

)
CHC

(
Ci + C

′
i

)H
= βi,R(s) ILt , (6.29a)

CH
i,I(s)Ci,I(s) =

(
Ci − C

′
i

)
CHC

(
Ci − C

′
i

)H
= βi,I(s) ILt , (6.29b)

since in this way the variances (6.25a) and (6.25b) reduce to

σ2
i,R(Ĥ, s) =

N0

2λEs‖Ĥ‖2
F


1 +

βi,R(s)

λ
(

ηKp + N0
Es

)


 , (6.30a)

σ2
i,I(Ĥ, s) =

N0

2λEs‖Ĥ‖2
F


1 +

βi,I(s)

λ
(

ηKp + N0
Es

)


 . (6.30b)

The second condition is also satisfied, since it follows from (5.19) that, in case

of i.i.d. Rayleigh fading and LMMSE channel estimation, the PDF of ‖Ĥ‖2
F is

given by (4.68), with σ2 = KpEp/(KpEp + N0). Hence, when (6.29) is satisfied,
a closed-form BER expression can be easily found, since (4.11) yields

1

(σ2)L(L − 1)!

∫ ∞

0
Q
(√

β x
)

xL−1 exp
(
− x

σ2

)
dx

=
1

(L − 1)!

∫ ∞

0
Q

(√
βσ2x

)
xL−1 exp(−x) dx

= ΩL(βσ2), (6.31)

where β > 0 and ΩL(θ) is defined as

ΩL(x) ,

[
1

2

(
1 −

√
x

2 + x

)]L L−1

∑
k=0

(
L − 1 + k

k

) [
1

2

(
1 +

√
x

2 + x

)]k

. (6.32)

6.2.1 Exact BER for Square OSTBCs

Taking (4.36) into account, it is readily verified that (6.29) holds for square
OSTBCs

CH
i,R(s)Ci,R(s) = CH

i,I(s)Ci,I(s) = λ2‖s‖2 ILt . (6.33)

In this way, the variances of the real and imaginary part of ni are given by

σ2
i,R(Ĥ, s) = σ2

i,I(Ĥ, s) =
N0

2λEs‖Ĥ‖2
F

(
1 +

λ‖s‖2

ηKp + N0
Es

)
, (6.34)

such that ni is a ZM CSCG RV, the variance of which does not depend on the

index i. Hence, the BERs of the in-phase and quadrature bits allocated to the

information symbols si are identical and (6.23) reduces to

Pb = Pb,i,q, (6.35)
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for arbitrary i and q. Again, Pb,i,q is obtained from (6.26)-(6.28), the only

difference being that σ2
i,q(Ĥ, s) in (6.27) is now given by (6.34), such that the

argument of the Q-functions in (6.27) is proportional to the squared Frobe-

nius norm ‖Ĥ‖2
F of the channel estimate. According to (6.31), averaging the

Q-functions in (6.27) over (4.68), with σ2 = KpEp/(KpEp + N0), yields the

following closed-form expression

EĤ


Q




√√√√D2
j (si,q, bq)

σ2
i,q(Ĥ, s)




 = ΩL




2λD2
j (si,q, bq)

1 + λ‖s‖2

ηKp
+ 1

ηKp

N0
Es

Es

N0


 , (6.36)

where j ∈ {1, 2} and ΩL(·) is defined in (6.32). Note that the right-hand side

of (6.36) is a function of the transmitted symbol vector s through the squared
norm ‖s‖2 only, such that s, s∗, −s, and −s∗ yield the same result. Hence,

taking the symmetry of the QAM constellation into account, it follows that
the BERs of the bits allocated to si,q and −si,q are identical, and independent

of the sign of the real and imaginary parts of all symbols in the symbol vector

s. Therefore, we can restrict the summation over s to constellation points with
positive real and imaginary parts only. To this end, we introduce Ψ′

0 as the set

consisting of the positive elements of the set Ψ′, which was defined in (3.14):

Ψ′
0 =

{
(2i − 1)dQAM : i = 1, . . . ,

√
M/2

}
, (6.37)

where dQAM is given by (3.15). Consequently, the set consisting of the QAM
symbols with positive real and imaginary parts is given by

Ψ0 =
{

ψ : <[ψ],=[ψ] ∈ Ψ′
0

}
. (6.38)

Taking the above considerations into account, it follows from (6.26)-(6.28) and
(6.36) that the BER (6.35) for square OSTBCs on i.i.d. Rayleigh fading channels

with LMMSE channel estimation can be written in closed-form as

Pb =

(
4

M

)Ns 1

log2(
√

M)
∑

s∈Ψ
Ns
0

∑
bq∈Ψ′

dH(si,q, bq)

×

ΩL


 2λD2

1(si,q, bq)

1 + λ‖s‖2

ηKp
+ 1

ηKp

N0
Es

Es

N0


− ΩL


 2λD2

2(si,q, bq)

1 + λ‖s‖2

ηKp
+ 1

ηKp

N0
Es

Es

N0




 , (6.39)

such that the computational complexity scales with (M/4)Ns . Since it follows
from (3.65) that for large x (6.32) reduces to

ΩL(x) ≈
(

1

2x

)L (2L − 1

L

)
, (6.40)
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it is readily verified that the asymptotic behavior of the BER expression (6.39)

is given by

P
(as)
b ≈

(
4

M

)Ns (4λ)−L

log2(
√

M)

(
2L − 1

L

)(
Es

N0

)−L

× ∑
s∈Ψ

Ns
0

ξL(si,q)

(
1 +

λ‖s‖2

ηKp

)L

, (6.41)

where the function ξL(sq) is defined as

ξL(sq) , ∑
bq∈Ψ′

dH(sq, bq)

(
1

D2L
1 (sq, bq)

− 1

D2L
2 (sq, bq)

)
. (6.42)

Note that, in case of 4-QAM, ‖s‖2 = Ns, such that the dependence of the terms

in (6.39) and (6.41) on the full symbol vector s reduces to a dependence on si,q

only. In this way, the summation over all possible symbol vectors s reduces to

a summation over si,q only, which significantly simplifies the computational
complexity of the BER calculation. Furthermore, it follows from (6.41) that

LMMSE channel estimation does not affect the achieved diversity gain, which

is also observed in [61]. Hence, the BER curves for perfect and imperfect CSI
are parallel for large SNR and the degradation due to pilot-based LMMSE

channel estimation can be obtained. Taking (5.8) and the high-SNR approxi-
mation (6.41) into account, the ratio of the BER of the mismatched receiver to

the BER of the PCSI receiver is easily derived (at high Eb/N0):

P
(as)
b,LMMSE

P
(as)
b,PCSI

=

(
1 +

ηKp

K

)L ( 4

M

)Ns− 1
2

×
∑s∈Ψ

Ns
0

[
ξL(si,q)

(
1 + λ‖s‖2

ηKp

)L
]

∑sq∈Ψ′
0

[
ξL(sq)

] . (6.43)

As stated before, the mismatched receiver must have a larger Eb/N0 ratio
than the PCSI receiver, in order that both receivers have the same BER. Given

that a diversity order of L = LrLt is achieved, the amount (in dB) by which

the Eb/N0 ratio of the mismatched receiver should be increased to obtain the
same BER as the PCSI receiver is given by

∆BER,dB =
10

L
log10


P

(as)
b,LMMSE

P
(as)
b,PCSI


 . (6.44)

In case of 4-QAM, (6.44) is easily shown to reduce to

∆BER,dB = 10 log10

[(
1 +

ηKp

K

)(
1 +

Lt

ηKp

)]
, (6.45)
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which corresponds to the result from (6.13).

6.2.2 Approximate BER for Non-Square OSTBCs

For non-square OSTBCs, (6.29) is not satisfied and an exact closed-form BER

expression can not be obtained. However, an approximate closed-form ex-
pression can still be derived if we substitute ‖ĤCH

i,R(s)‖2
F and ‖ĤCH

i,R(s)‖2
F in

(6.25) by their expectations over Ĥ, conditioned on the Frobenius norm ‖Ĥ‖F:

EĤ|‖Ĥ‖F

[
‖ĤCH

i,R(s)‖2
F

]
=

‖Ci,R(s)‖2
F

Lt
‖Ĥ‖2

F, (6.46a)

EĤ|‖Ĥ‖F

[
‖ĤCH

i,I(s)‖2
F

]
=

‖Ci,I(s)‖2
F

Lt
‖Ĥ‖2

F. (6.46b)

Note that averaging over Ĥ, conditioned on the Frobenius norm ‖Ĥ‖F, implies

that the entries of Ĥ are considered to be i.i.d. ZM CSCG RVs with variance
‖Ĥ‖2

F/(LtLr). From (6.46), it follows that the variances of the real and imagi-

nary parts of ni reduce to

σ2
i,R(Ĥ, s) ≈ N0

2λEs‖Ĥ‖2
F



1 +
‖Ci,R(s)‖2

F

λLt

(
ηKp + N0

Es

)



 , (6.47a)

σ2
i,I(Ĥ, s) ≈ N0

2λEs‖Ĥ‖2
F


1 +

‖Ci,I(s)‖2
F

λLt

(
ηKp + N0

Es

)


 . (6.47b)

Using the approximate variances in (6.47), the BER for non-square OSTBCs is
given by (6.23), where Pb,i,q, with q = R or q = I, is given by

Pb,i,q ≈ 1

MNs

1

log2(
√

M)
∑

s∈ΨNs

∑
bq∈Ψ′

dH(si,q, bq)

×


ΩL




2λD2
1(si,q, bq)

1 +
‖Ci,q(s)‖2

F
λLtηKp

+ 1
ηKp

N0
Es

Es

N0


− ΩL




2λD2
2(si,q, bq)

1 +
‖Ci,q(s)‖2

F
λLtηKp

+ 1
ηKp

N0
Es

Es

N0





 ,

(6.48)

with ΩL(·) being given by (6.32). For large SNR, (6.48) reduces to

P
(as)
b,i,q ≈ 1

MNs

(4λ)−L

log2(
√

M)

(
2L − 1

L

)(
Es

N0

)−L

× ∑
s∈ΨNs


ξL(si,q)

(
1 +

‖Ci,q(s)‖2
F

λLtηKp

)L

 , (6.49)
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where ξL(·) is given by (6.42).

In appendix 6.A.2, we derive ‖Ci,q(s)‖2
F for various non-square OSTBCs.

Due to the symmetry observed in these expressions for different i and q, the
BERs for the in-phase and quadrature bits are readily verified to be identical

and independent of the index i. Moreover, similar to the case of square OST-
BCs, the summation in (6.48) over s can be reduced to a summation over the

symbols with positive real and imaginary parts only. Hence, for the OSTBCs

considered in appendix 6.A.2, the complexity of the BER calculation can be
reduced by a factor of 2Ns4Ns , as the BER reduces to

Pb ≈
(

4

M

)Ns 1

log2(
√

M)
∑

s∈Ψ
Ns
0

∑
bq∈Ψ′

dH(si,q, bq)

×


ΩL




2λD2
1(si,q, bq)

1 +
‖Ci,q(s)‖2

F
λLtηKp

+ 1
ηKp

N0
Es

Es

N0


− ΩL




2λD2
2(si,q, bq)

1 +
‖Ci,q(s)‖2

F
λLtηKp

+ 1
ηKp

N0
Es

Es

N0





 ,

(6.50)

which for high SNR reduces to

P
(as)
b ≈

(
4

M

)Ns (4λ)−L

log2(
√

M)

(
2L − 1

L

)(
Es

N0

)−L

× ∑
s∈Ψ

Ns
0


ξL(si,q)

(
1 +

‖Ci,q(s)‖2
F

λLtηKp

)L

 , (6.51)

where the function ξL(·) is defined in (6.42). From (6.51), the ratio of the BER

of the mismatched receiver to the BER of the PCSI receiver is easily derived
(at high Eb/N0):

P
(as)
b,LMMSE

P
(as)
b,PCSI

=

(
1 +

ηKp

K

)L ( 4

M

)Ns− 1
2

×
∑s∈Ψ

Ns
0

[
ξL(si,q)

(
1 +

‖Ci,q(s)‖2
F

λLtηKp

)L
]

∑sq∈Ψ′
0

[
ξL(sq)

] . (6.52)

The amount (in dB) by which the Eb/N0 ratio of the mismatched receiver

should be increased to obtain the same BER as the PCSI receiver is obtained
by substituting (6.52) in (6.44).

6.2.3 Numerical Results

In this section, we illustrate the closed-form BER expressions derived for OS-
TBCs with LMMSE channel estimation operating over i.i.d. Rayleigh fading
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Figure 6.1: BER of Alamouti’s code with 4-QAM.

channels, under the assumption that Ep = Es.

Fig. 6.1 shows the BER curves resulting from the exact closed-form ex-

pression (6.39), for a system employing Alamouti’s code (4.14) along with
4-QAM transmission. Both results for the PCSI and the mismatched receiver

are shown. Using data frames consisting of K = 100 time slots for data trans-
mission, it follows from (6.14) that the optimal number of pilot symbols is

given by Kp = 14, which results in a BER degradation of 1.15 dB, irrespec-

tive of Lr. Also shown in the figure are computer simulation results for the
mismatched receiver that confirm the analytical result.

Fig. 6.2 displays the approximate BER curves resulting from (6.50) for the

3 × 4 non-square OSTBC given by (4.34). Using a 16-QAM symbol constella-
tion, results are shown for the PCSI receiver (exact result) and the mismatched

receiver (analytical approximation and simulation result). The simulations in-

dicate that the closed-form BER expression for the mismatched receiver is very
accurate. From (6.44) and (6.52), it follows that the BER degradation amounts

to 1.08 dB, 1.10 dB or 1.12 dB when Lr equals 1, 2 or 3, respectively, whereas
the rule of thumb yields a degradation of 1.08 dB.
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Figure 6.2: BER of OSTBC given by (4.34) with 16-QAM.

6.3 BER Analysis for Correlated Rayleigh

Fading

In this section, we extend the results from section 6.2 to arbitrarily correlated

Rayleigh fading channels. Using a high-SNR approximation of the channel er-
ror covariance matrix, we derive accurate closed-form BER approximations for

a mismatched ML receiver that obtains the channel state information through
pilot-based LMMSE channel estimation. Moreover, we show that the pre-

sented expression yields very accurate BER results for both LMMSE and ML

channel estimation, over a wide range of SNRs. As opposed to the BER anal-
ysis in section 6.2, we make use of the vector signal model (5.4) in order

to derive the BER expressions for correlated fading. In this way, an equiva-

lent vector model can be constructed for ML detection of the matrix B and
the resulting decision variables corresponding to the transmitted information

symbols. From (5.4), it follows that mismatched ML detection of the matrix
B , CT ⊗ ILr is given by

B̂ = arg min
B̃

‖r −
√

Es B̃ĥ‖2
F, (6.53)
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which is shown to reduce to symbol-by-symbol detection

ŝi = arg min
s̃∈Ψ

|ui − s̃| , i = 1, . . . , Ns (6.54)

where the vector counterpart of the decision variable (6.18) is given by

ui =
ĥH
(
C∗

i ⊗ ILr

)
r + rH

(
C

′
i

T ⊗ ILr

)
ĥ

λ
√

Es‖ĥ‖2
. (6.55)

Using the channel decomposition

h = ĥ + ε, (6.56)

where ĥ denotes the LMMSE channel estimate (5.16), the received signal (5.4)

can be written as
r =

√
Es Bĥ +

√
Es Bε + w, (6.57)

where
√

Es Bĥ is the useful component, w is the Gaussian channel noise, and√
Es Bε is additional noise caused by the channel estimation error; note that ĥ

and ε are independent. Since the channel is assumed to consist of correlated

ZM CSCG RVs with covariance matrix R, the elements of the error vector ε

are ZM CSCG RVs with covariance matrix (5.20). Hence, the additional noise

vector
√

Es Bε is Gaussian when conditioned on the data symbol vector s.

Using (6.57), the decision variable (6.55) reduces to

ui = si + ni, 1 ≤ i ≤ Ns, (6.58)

where the disturbance term ni contains contributions from the channel noise

w and the channel estimation error ε. It is readily verified that ni = ei + wi,
with

ei =
ĥH
(
C∗

i CT ⊗ ILr

)
ε + εH

(
C∗C

′
i

T ⊗ ILr

)
ĥ

λ‖ĥ‖2
(6.59)

wi =
ĥH
(
C∗

i ⊗ ILr

)
w + wH

(
C

′
i

T ⊗ ILr

)
ĥ

λ
√

Es‖ĥ‖2
(6.60)

Note that ni is Gaussian when conditioned on s and ĥ. In case of PCSI, the
channel estimation error ε = 0 and ni is a ZM CSCG RV independent of s

with variance N0/(λEs ‖h‖2). Using (6.24), we show in appendix 6.A.3 that,

when conditioned on ĥ and s, ni is a ZM non-circularly symmetric complex

Gaussian RV, the variances of the real and imaginary parts of which are given
by

σ2
i,R(ĥ, s) =

N0

2λEs‖ĥ‖2

×
(

1 +
Es

λN0‖ĥ‖2
ĥH
(

CT
i,R(s)⊗ ILr

)
Rε

(
C∗

i,R(s)⊗ ILr

)
ĥ

)
, (6.61a)
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σ2
i,I(ĥ, s) =

N0

2λEs‖ĥ‖2

×
(

1 +
Es

λN0‖ĥ‖2
ĥH
(

CT
i,I(s)⊗ ILr

)
Rε

(
C∗

i,I(s)⊗ ILr

)
ĥ

)
, (6.61b)

where the covariance matrix Rε of the channel estimation error ε is given by

(5.20).

Similar to the case of i.i.d. Rayleigh fading, the BER can be written as

Pb =
1

2Ns

Ns

∑
i=1

[Pb,i,R + Pb,i,I] , (6.62)

where Pb,i,R and Pb,i,I denote the BERs of the in-phase and quadrature bits
corresponding to the information symbols si, respectively. Since (6.61a) and

(6.61b) are obtained for a given ĥ and s, we can easily calculate the conditional

BERs of the in-phase and quadrature bits corresponding to the information
symbols si, conditioned on ĥ and s.

Pb,i,q(ĥ, s) =
1

log2(
√

M)
∑

bq∈Ψ′
dH(si,q, bq) Pr[ŝi,q = bq|ĥ, s], (6.63)

where dH(si,q, bq) denotes the Hamming distance between the bits associated

to si,q and bq, respectively, and Pr[ŝi,q = bq|ĥ, s] is given by

Pr[ŝi,q = bq|ĥ, s] = Pr[d1(bq) ≤ ui,q ≤ d2(bq)|ĥ, s]

= Q



√√√√D2

1(si,q, bq)

σ2
i,q(ĥ, s)


− Q



√√√√D2

2(si,q, bq)

σ2
i,q(ĥ, s)


 (6.64)

with D1(si,q, bq) and D2(si,q, bq) being given by (3.60). Finally, Pb,i,R and Pb,i,I

in (6.62) are obtained by averaging the corresponding conditional BERs (6.63)

over ĥ and s

Pb,i,q =
1

MNs
∑

s∈ΨNs

Eĥ[Pb,i,q(ĥ, s)]. (6.65)

Note that (6.61a) and (6.61b) are complicated functions of the channel es-

timate ĥ, such that the resulting exact conditional BER expressions Pb,i,q(ĥ, s)

can be evaluated by numerical integration over ĥ only. However, if we can
approximate (6.61a) and (6.61b) so that they are a function of ĥ through an in-

verse proportionality to ‖ĥ‖2 only, a closed-form BER expression can be easily

found, since it follows from (4.69) that the PDF of ‖ĥ‖2 is a weighted sum of
χ2-distributions, with λi, i = 1, 2, . . . , κ, being the i-th distinct eigenvalue of

(5.18), with corresponding algebraic multiplicity ci. It is easily seen that if
we replace Rε in (6.61) by its high-SNR approximation (5.22), the variances
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(6.61a) and (6.61b) reduce to

σ2
i,R(ĥ, s) ≈ N0

2λEs‖ĥ‖2


1 +

ĥH
(

CT
i,R(s)C

∗
i,R(s)⊗ ILr

)
ĥ

ληKp‖ĥ‖2


 , (6.66a)

σ2
i,I(ĥ, s) ≈ N0

2λEs‖ĥ‖2



1 +
ĥH
(

CT
i,I(s)C

∗
i,I(s)⊗ ILr

)
ĥ

ληKp‖ĥ‖2



 , (6.66b)

which is the vector equivalent to the variances (6.25a) and (6.25b) for high
SNR. Hence, closed-form BER expressions for correlated Rayleigh fading can

be obtained in a similar way as in section 6.2. For correlated Rayleigh fading,
however, (6.66a) and (6.66b) are not exact because of the high-SNR approxi-

mation of Rε, whereas there is no approximation involved in the derivation

of (6.25a) and (6.25b) for i.i.d. Rayleigh fading.

6.3.1 Approximate BER for Square OSTBCs

Taking (6.33) into account, it follows that for square OSTBCs the variances
(6.66a) and (6.66b) of the real and imaginary part of ni reduce to

σ2
i,R(ĥ, s) = σ2

i,I(ĥ, s) ≈ N0

2λEs‖ĥ‖2
F

(
1 +

λ‖s‖2

ηKp

)
, (6.67)

such that ni is a ZM CSCG RV, the variance of which does not depend on the
index i. Hence, the BERs of the in-phase and quadrature bits allocated to the

information symbols si are identical and (6.23) reduces to

Pb = Pb,i,q, (6.68)

where Pb,i,q is obtained from (6.63)-(6.65), with σ2
i,q(ĥ, s) in (6.64) being given

by (6.67). In this way, it follows from (6.31) and (4.69) that averaging the

Q-functions in (6.64) over ĥ yields the following closed-form expression

Eĥ


Q




√√√√D2
j (si,q, bq)

σ2
i,q(ĥ, s)




 =

κ

∑
m=1

cm

∑
n=1

Dm,n Ωn




2λλmD2
j (si,q, bq)

1 + λ‖s‖2

ηKp

Es

N0


 ,

(6.69)

where j ∈ {1, 2}, Ωn(·) is defined in (6.32), λm is the m-th distinct eigenvalue
of (5.18) with algebraic multiplicity cm, and the parameters Dm,n are given by

(4.70). Hence, taking (6.39) into account, the BER (6.68) for square OSTBCs on
correlated Rayleigh fading channels with LMMSE channel estimation can be
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written in closed-form as

Pb ≈
(

4

M

)Ns 1

log2(
√

M)

κ

∑
m=1

cm

∑
n=1

Dm,n ∑
s∈Ψ

Ns
0

∑
bq∈Ψ′

dH(si,q, bq)

×

Ωn


2λλmD2

1(si,q, bq)

1 + λ‖s‖2

ηKp

Es

N0


− Ωn


2λλmD2

2(si,q, bq)

1 + λ‖s‖2

ηKp

Es

N0




 , (6.70)

where Ψ0 is defined in (6.38). Note that ‖s‖2 = Ns in case of 4-QAM, such
that the summation over all possible symbol vectors s reduces to a summation

over si,q only.

6.3.2 Approximate BER for Non-Square OSTBCs

For non-square OSTBCs, (6.29) is not satisfied and, according to the analysis
provided in section 6.2.1, a closed-form BER expression can be obtained by

approximating (6.66a) and (6.66b) by their expectations over ĥ, conditioned
on the norm ‖ĥ‖

σ2
i,R(ĥ, s) ≈ N0

2λEs‖ĥ‖2
F

(
1 +

‖Ci,R(s)‖2
F

λLtηKp

)
, (6.71a)

σ2
i,I(ĥ, s) ≈ N0

2λEs‖ĥ‖2
F

(
1 +

‖Ci,I(s)‖2
F

λLtηKp

)
. (6.71b)

For the non-square OSTBCs assessed in appendix 6.A.2, the BERs for the in-

phase and quadrature bits are shown to be identical and independent of the
index i. Moreover, the summation in (6.48) over s can be reduced to a sum-

mation over the symbols with positive real and imaginary parts only. Hence,
using (6.71), the BER approximation for the non-square OSTBCs in appendix

6.A.2 can be written as

Pb ≈
(

4

M

)Ns 1

log2(
√

M)

κ

∑
m=1

cm

∑
n=1

Dm,n ∑
s∈Ψ

Ns
0

∑
bq∈Ψ′

dH(si,q, bq)

×


Ωn




2λλmD2
1(si,q, bq)

1 +
‖Ci,q(s)‖2

F
λLtηKp

Es

N0


− Ωn




2λλmD2
2(si,q, bq)

1 +
‖Ci,q(s)‖2

F
λLtηKp

Es

N0





 . (6.72)

6.3.3 Numerical Results

In this section, we present numerical results from evaluating the presented

closed-form BER expressions under the assumption that Ep = Es. Addition-
ally, Monte-Carlo simulations indicate that the BER expressions yield very
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Figure 6.3: BER for Alamouti’s code under i.i.d. (ρ = 0) and correlated (ρ ∈
{0.99, 0.999, 1}) Rayleigh fading, with and without PCSI.

accurate BER results for square and non-square OSTBCs, for low to moderate

SNR, and for both LMMSE and ML channel estimation.

In Fig. 6.3, the impact of highly correlated channels on the BER perfor-

mance is shown for Alamouti’s code (4.14) using 4-QAM over a 2 × 1 MIMO
channel. The covariance matrix R of the channel is given by

R =

[
1 ρ

ρ 1

]
, (6.73)

where ρ is assumed to be a positive real-valued correlation coefficient. The

BER curves are shown for ρ ∈ {0, 0.99, 0.999, 1}, and for PCSI and ICSI. In
case of ICSI, it is assumed that K = 100 and Kp = 14, and that LMMSE chan-

nel estimation is used. For BPSK and 4-QAM constellations under PCSI, it is
shown in appendix 6.A.4 that as long as the smallest eigenvalue λmin of R is

strictly positive, a full diversity gain of L is achieved in the high-SNR region,

i.e., where Eb/N0 � 1/(λλmin). Hence, taking into account that λ = 1 for
Alamouti’s code and that the eigenvalues of (6.73) are given by λ1 = 1+ ρ and

λ2 = 1 − ρ, it is expected that a full diversity gain of 2 will be achieved for
high SNR, i.e., Eb/N0 � 1/(1− ρ), as long as the correlation coefficient ρ < 1.
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Figure 6.4: Piecewise linear approximation of the BER for Alamouti’s code

under i.i.d. (ρ = 0) and correlated (ρ ∈ {0.99, 0.999, 1}) Rayleigh fading, with
PCSI.

Indeed, it is observed from Fig. 6.3 that for highly correlated channels, i.e.,
ρ → 1, the BER curves are shown to coincide with the BER for the fully corre-

lated MIMO channel, i.e., ρ = 1, in case of low to moderate SNR, whereas they

achieve full spatial diversity in case of high SNR. In case of full correlation,
however, the achieved diversity gain decreases from 2 to 1, since both MIMO

channel coefficients are completely identical and spatial diversity is lost. It is
also appreciated from the figure that ICSI results in a shift of the BER curves

over an amount which is essentially independent of the correlation coefficient

and can be estimated from the rule of thumb (6.13). Hence, although it is
shown in Fig. 5.2 that, for low to moderate SNR, the MSE on the LMMSE

channel estimate decreases if the correlation coefficient ρ increases, this effect
has no significant impact on the BER degradation due to ICSI. Furthermore,

it follows from (6.106) in appendix 6.A.4 that, on a logarithmic scale, the BER

curves for PCSI in Fig. 6.3 can be roughly approximated by piecewise linear
functions, as shown in Fig. 6.4. For low SNR, i.e., Eb/N0 < 1/(1 + ρ), the BER

can be considered to be 1/2 and communication fails completely. For mod-
erate SNR, i.e., 1/(1 + ρ) < Eb/N0 < 1/(1 − ρ), the BER is proportional to
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(Eb/N0)
−1 such that an effective diversity gain of 1 is achieved. Finally, in the

high-SNR region, i.e., Eb/N0 > 1/(1 − ρ), full diversity is achieved. Similar

to the BER degradation (6.1) due to ICSI, we define the BER degradation due
to spatial correlation as

∆BER,corr =
(Eb/N0)corr

(Eb/N0)i.i.d.
(6.74)

where it is assumed that a target BER is achieved at Eb/N0 = (Eb/N0)i.i.d. and

Eb/N0 = (Eb/N0)corr in case of i.i.d. and spatially correlated MIMO channels,

respectively. For BPSK and 4-QAM constellations under PCSI, we show in
appendix 6.A.4 that in the high-SNR region, where the BER curves are parallel,

∆BER,corr is approximately given by

∆BER,corr ≈
(

L

∏
i=1

λi

)− 1
L

(6.75)

where λi are the eigenvalues of the covariance matrix R of the channel. Note

that the BER degradation due to spatial correlation is the inverse of the ge-

ometric mean of the eigenvalues of R and that (6.75) is not valid for values
of Eb/N0 smaller than 1/(λλmin), which is particularly important when λmin

becomes very small, i.e., in case of highly correlated channels.

In the next example, we illustrate the tremendous computation time sav-
ings that can be achieved by using the presented closed-form BER expressions

instead of direct Monte-Carlo simulations. We consider Alamouti’s code (4.14)
employing M-QAM transmission, with M ∈ {4, 16, 64, 256}, on a 2× 1 MIMO

channel with covariance matrix

R =

[
1 0.2

0.2 1

]
. (6.76)

Furthermore, we assume that K = 100 and Kp = 14, and that the channel

is recovered through LMMSE channel estimation. In order to guarantee a
certain accuracy for the simulated BER results, we require that the ratio of the

variance of the simulated BER to the square of its expectation is less or equal

than a prescribed value ε2

var[P̂b](
E[P̂b]

)2
≤ ε2, (6.77)

where P̂b denotes the simulated BER, which is given by

P̂b =
1

N

N

∑
l=1

Xl . (6.78)

Note that N and Xl in (6.78) denote the number of simulated data frames and
the ratio of the number of bit errors counted in the l-th frame to the total
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Figure 6.5: BER for Alamouti’s code employing M-QAM transmission, with

M ∈ {4, 16, 64, 256}, on a correlated 2 × 1 MIMO channel with ICSI.

number of bits within one frame, respectively. Since all RVs in the successive

data frames are independently generated, Xl’s are independent and var[P̂b] =
1
N var[Xl ], where var[Xl ] can be approximated by

var[Xl ] ≈
1

N

N

∑
l=1

X2
l −

(
1

N

N

∑
l=1

Xl

)2

. (6.79)

Taking (6.79) into account and replacing E[P̂b] in (6.77) by P̂b, it follows that
for a given accuracy ε2, N needs to satisfy

N ≥ var[Xl ]

ε2P̂2
b

. (6.80)

Using the minimal number of frames N required to assure the accuracy as-

sociated with ε2 = 0.0001, the BER obtained from Monte-Carlo simulations

is shown in Fig. 6.5, along with the curves resulting from the closed-form
BER expressions presented in section 6.3.1. It is observed that the simu-

lated BER results are in perfect agreement with the analytically obtained BER
curves. The computation times corresponding to the different BER results in
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Figure 6.6: Comparison of computation times corresponding to closed-form

BER expressions and direct Monte-Carlo simulations.

Fig. 6.5 are shown in Fig. 6.6. It follows from the figure that the computa-

tion time increases exponentially with the SNR in case of Monte-Carlo sim-
ulations, whereas the computation time associated with the closed-form BER

expressions is essentially independent of the SNR. Also, because the compu-
tational complexity related to (6.65) is proportional to MNs , the computation

time corresponding to the closed-form BER expressions increases significantly

for larger constellation size M. For the case of Monte-Carlo simulations, on
the other hand, the computation time decreases for increasing M, because

the higher resulting BER requires less frames to be simulated in order to ob-
tain a sufficient number of bit errors to assure a certain accuracy. Hence, the

computation time savings achieved by the presented closed-form BER expres-

sions are most significant in case of high SNR and small symbol constellations.
However, when larger diversity gains are achieved, the difference in computa-

tion time between simulations and closed-form BER expressions will be even
more dramatic.
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Figure 6.7: BER for the 4 × 4 OSTBC given by (6.81), with M-QAM transmis-

sion, correlated and i.i.d. Rayleigh fading, and LMMSE channel estimation.

Fig. 6.7 displays the BER for the 4 × 4 OSTBC given by [70]

C4×4 =
2√
3




s1 −s∗2 −s∗3 0

s2 s∗1 0 −s∗3
s3 0 s∗1 s∗2
0 s3 −s2 s1


 , (6.81)

where the scaling factor 2/
√

3 is applied in order that (6.81) satisfies (4.31).

The BER curves are shown for 4-QAM and 64-QAM constellations under cor-

related and uncorrelated Rayleigh fading, for K = 200 and Kp = 16. Also
shown are the BER results for PCSI. We consider a single-antenna receiver

and a covariance matrix R, which in case of correlated fading is given by

R =




1 0.7 0.5 0.3
0.7 1 0.7 0.5

0.5 0.7 1 0.7
0.3 0.5 0.7 1


 . (6.82)

Note that R has a Toeplitz structure, which corresponds to the practical situ-
ation of an equally spaced linear antenna array without mutual coupling [44].
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Figure 6.8: BER for the 3 × 4 OSTBC given by (4.34), with M-QAM transmis-

sion, correlated Rayleigh fading, and LMMSE and ML channel estimation.

Monte-Carlo simulations for the mismatched receiver with LMMSE channel
estimation confirm the accuracy of the presented BER expression (6.70). From

the figure, we observe that antenna correlation and ICSI both give rise to a

horizontal shift of the BER curve at high SNR, and that the amount of degra-
dation due to ICSI is more or less independent of the antenna correlation and

the constellation size.

Fig. 6.8 shows the approximate analytical BER results for the 3 × 4 OSTBC

given by (4.34). Assuming a dual-antenna receiver (Lr = 2), Fig. 6.8 shows
the BER curves for square M-QAM transmission, with M ∈ {4, 16, 64}, under

correlated Rayleigh fading, for K = 200 and Kp = 24. Also shown are the BER

results for PCSI. For correlated fading, the covariance matrix R is assumed to
be given by R = Rt ⊗Rr, where Rt and Rr are given by

Rt =




1 0.5 + j0.2 0.2 − j0.1

0.5 − j0.2 1 0.4 − j0.3

0.2 + j0.1 0.4 + j0.3 1



 , (6.83a)

Rr =

[
1 0.4 − j0.6

0.4 + j0.6 1

]
. (6.83b)
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Monte-Carlo simulations conducted for a mismatched receiver performing ei-

ther LMMSE or ML channel estimation, indicate that the presented BER ex-

pression (6.72) yields very accurate BER results for LMMSE and ML channel
estimation, in the range from low to high SNR.

6.4 Chapter Summary

In this chapter, we investigated the impact of ICSI on the BER of OSTBCs in

Rayleigh fading channels. To this end, we considered a mismatched receiver

using LMMSE channel estimation that applies the channel estimate Ĥ in the
same way as an ML receiver would apply the channel H.

We derived a simple rule of thumb that serves as an indicator for the

BER degradation caused by imperfect channel estimation and yields the exact
result for high SNR, square OSTBCs with PSK symbols, and i.i.d. Rayleigh

fading. Moreover, for square OSTBCs and i.i.d. Rayleigh fading channels, we
derived exact closed-form expressions for the BER and the BER degradation

due to imperfect channel estimation. For non-square OSTBCs, a very accurate

closed-form approximation was provided. For arbitrarily correlated Rayleigh
fading channels, we presented closed-form BER approximations for square

and non-square OSTBCs which yield very accurate BER results in the low-
to-moderate SNR region for both LMMSE and ML channel estimation. For

square OSTBCs, the BER expression is asymptotically exact.
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6.A Appendix

6.A.1 Derivation of the Variance of ni for i.i.d. Rayleigh Fad-
ing

Since E and W are uncorrelated, the terms (6.20) and (6.21) are uncorrelated

when conditioned on Ĥ, such that the variance of the real/imaginary part of

ni in (6.19) equals the sum of the variances of the real/imaginary parts of ei

and wi. According to (6.20), the real part of ei is given by

<[ei] =
<
[
tr
(

CH
i ĤHEC + CHEHĤC

′
i

)]

λ‖Ĥ‖2
F

=
tr
(

CH
i ĤHEC + CHEHĤCi + CHEHĤC

′
i + C

′
i

H
ĤHEC

)

2λ‖Ĥ‖2
F

=
1

2λ‖Ĥ‖2
F

tr
(
(Ci + C

′
i)

HĤHEC + CHEHĤ(Ci + C
′
i)
)

=
1

λ‖Ĥ‖2
F

<
[
tr
(

C(Ci + C
′
i)

HĤHE
)]

. (6.84)

Taking (6.24a) into account, the real part (6.84) of the disturbance term ei

reduces to

<[ei] =
1

λ‖Ĥ‖2
F

<
[
tr
(

Ci,R(s)Ĥ
HE
)]

. (6.85)

Since it follows from (5.21) that in case of i.i.d. Rayleigh fading, the entries of

E in (6.20) are i.i.d. ZM CSCG RVs with variance N0/(KpEp + N0), it is readily

verified that <[ei] is a ZM Gaussian RV with variance

E[(<[ei])
2|Ĥ, s] =

N0

KpEp + N0

‖ĤCH
i,R(s)‖2

F

2λ2‖Ĥ‖4
F

. (6.86)

Similarly, the imaginary part of (6.20) can be shown to be given by

=[ei] =
=
[
tr
(

CH
i ĤHEC + CHEHĤC

′
i

)]

λ‖Ĥ‖2
F

=
1

λ‖Ĥ‖2
F

=
[
tr
(

Ci,I(s)Ĥ
HE
)]

, (6.87)

where the matrix Ci,I(s) is given by (6.24b). Hence, =[ei] is a ZM Gaussian RV

with variance

E[(=[ei])
2|Ĥ, s] =

N0

KpEp + N0

‖ĤCH
i,I(s)‖2

F

2λ2‖Ĥ‖4
F

. (6.88)
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In general, according to (6.86) and (6.88), the variances of the real and imagi-

nary parts of ei are not identical such that ei is not circularly symmetric.

Because the entries of W in (6.21) are i.i.d. ZM CSCG RVs with variance
N0, it is readily verified that wi is also a ZM CSCG RV, the variance of the real

and imaginary parts of which is given by

E[(<[wi])
2|Ĥ] = E[(=[wi])

2|Ĥ] =
N0

2λEs‖Ĥ‖2
F

. (6.89)

Since the total disturbance term ni in (6.19) is the sum of two uncorrelated

terms, i.e., the ZM non-circularly symmetric complex Gaussian RV ei and the

ZM CSCG RV wi, ni is a ZM non-circularly symmetric complex Gaussian RV.
From (6.86), (6.88), and (6.89), the variances of the real and imaginary parts of

ni are easily derived as

E[(<[ni])
2|Ĥ, s] =

N0

2λEs‖Ĥ‖2
F


1 +

‖ĤCH
i,R(s)‖2

F

λ‖Ĥ‖2
F

(
ηKp + N0

Es

)


 , (6.90a)

E[(<[ni])
2|Ĥ, s] =

N0

2λEs‖Ĥ‖2
F



1 +
‖ĤCH

i,R(s)‖2
F

λ‖Ĥ‖2
F

(
ηKp + N0

Es

)



 . (6.90b)

6.A.2 Derivation of ‖Ci,q(s)‖2
F for Various Non-Square

OSTBCs

In this section, we compute ‖Ci,R(s)‖2
F and ‖Ci,I(s)‖2

F for various well-known

non-square OSTBCs.

• For the 3 × 8 OSTBC given by (4.33), we have

‖C1,R(s)‖2
F = 12 s2

1,R + 8
(

s2
2,R + s2

3,R + s2
4,R

)
(6.91a)

‖C1,I(s)‖2
F = 12 s2

1,I + 8
(

s2
2,I + s2

3,I + s2
4,I

)
(6.91b)

‖C2,R(s)‖2
F = 12 s2

2,R + 8
(

s2
1,R + s2

3,R + s2
4,R

)
(6.91c)

‖C2,I(s)‖2
F = 12 s2

2,I + 8
(

s2
1,I + s2

3,I + s2
4,I

)
(6.91d)

‖C3,R(s)‖2
F = 12 s2

3,R + 8
(

s2
1,R + s2

2,R + s2
4,R

)
(6.91e)

‖C3,I(s)‖2
F = 12 s2

3,I + 8
(

s2
1,I + s2

2,I + s2
4,I

)
(6.91f)

‖C4,R(s)‖2
F = 12 s2

4,R + 8
(

s2
1,R + s2

2,R + s2
3,R

)
(6.91g)

‖C4,I(s)‖2
F = 12 s2

4,I + 8
(

s2
1,I + s2

2,I + s2
3,I

)
(6.91h)
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• For the 3 × 4 OSTBC given by (4.34), we have

‖C1,R(s)‖2
F =

16

3

[
s2

1,R + s2
2,I +

2

3

(
s2

1,I + s2
2,R + s2

3,R + s2
3,I

)]
(6.92a)

‖C1,I(s)‖2
F =

16

3

[
s2

1,I + s2
2,R +

2

3

(
s2

1,R + s2
2,I + s2

3,R + s2
3,I

)]
(6.92b)

‖C2,R(s)‖2
F =

16

3

[
s2

2,R + s2
1,I +

2

3

(
s2

1,R + s2
2,I + s2

3,R + s2
3,I

)]
(6.92c)

‖C2,I(s)‖2
F =

16

3

[
s2

2,I + s2
1,R +

2

3

(
s2

1,I + s2
2,R + s2

3,R + s2
3,I

)]
(6.92d)

‖C3,R(s)‖2
F =

16

3

[
s2

3,R + s2
3,I +

2

3

(
s2

1,R + s2
1,I + s2

2,R + s2
2,I

)]
(6.92e)

‖C3,I(s)‖2
F =

16

3

[
s2

3,I + s2
3,R +

2

3

(
s2

1,I + s2
1,R + s2

2,I + s2
2,R

)]
(6.92f)

• For the 3 × 4 OSTBC given by [27, eq. (99)]

C3×4 =
2√
3




s1 −s∗2 −s∗3 0

s2 s∗1 0 −s∗3
s3 0 s∗1 s∗2


 , (6.93)

we have

‖C1,R(s)‖2
F =

16

3

[
|s1|2 +

2

3

(
|s2|2 + |s3|2

)]
(6.94a)

‖C1,I(s)‖2
F =

16

3

[
|s1|2 +

2

3

(
|s2|2 + |s3|2

)]
(6.94b)

‖C2,R(s)‖2
F =

16

3

[
|s2|2 +

2

3

(
|s1|2 + |s3|2

)]
(6.94c)

‖C2,I(s)‖2
F =

16

3

[
|s2|2 +

2

3

(
|s1|2 + |s3|2

)]
(6.94d)

‖C3,R(s)‖2
F =

16

3

[
|s3|2 +

2

3

(
|s1|2 + |s2|2

)]
(6.94e)

‖C3,I(s)‖2
F =

16

3

[
|s3|2 +

2

3

(
|s1|2 + |s2|2

)]
(6.94f)

• For a four-antenna transmitter, we present the following 4× 8 OSTBC [8,

eq. (38)]

C3×8 =




s1 −s2 −s3 −s4 s∗1 −s∗2 −s∗3 −s∗4
s2 s1 s4 −s3 s∗2 s∗1 s∗4 −s∗3
s3 −s4 s1 s2 s∗3 −s∗4 s∗1 s∗2
s4 s3 −s2 s1 s∗4 s∗3 −s∗2 s∗1


 , (6.95)
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which yields

‖C1,R(s)‖2
F = 16

(
s2

1,R + s2
2,R + s2

3,R + s2
4,R

)
(6.96a)

‖C1,I(s)‖2
F = 16

(
s2

1,I + s2
2,I + s2

3,I + s2
4,I

)
(6.96b)

‖C2,R(s)‖2
F = 16

(
s2

1,R + s2
2,R + s2

3,R + s2
4,R

)
(6.96c)

‖C2,I(s)‖2
F = 16

(
s2

1,I + s2
2,I + s2

3,I + s2
4,I

)
(6.96d)

‖C3,R(s)‖2
F = 16

(
s2

1,R + s2
2,R + s2

3,R + s2
4,R

)
(6.96e)

‖C3,I(s)‖2
F = 16

(
s2

1,I + s2
2,I + s2

3,I + s2
4,I

)
(6.96f)

‖C4,R(s)‖2
F = 16

(
s2

1,R + s2
2,R + s2

3,R + s2
4,R

)
(6.96g)

‖C4,I(s)‖2
F = 16

(
s2

1,I + s2
2,I + s2

3,I + s2
4,I

)
(6.96h)

Taking into account that all QAM symbols are equally likely and, thus, all

si,q have equal probability, it follows from the symmetry observed in ‖Ci,q(s)‖2
F

for different i and q, that the resulting BERs for the in-phase and quadrature

bits are identical and independent of the index i, for the non-square OST-
BCs considered in this appendix. Moreover, since ‖Ci,q(s)‖2

F is given by a

weighted sum of s2
i,q, we can restrict the summation over s to a summation

over the symbols with positive real and imaginary parts only when averaging
the conditional BERs over s.

6.A.3 Derivation of the Variance of ni for Correlated Rayleigh
Fading

Since ε and w are uncorrelated, the terms (6.59) and (6.60) are uncorrelated

when conditioned on ĥ, such that the variance of the real/imaginary part of

ni in (6.58) equals the sum of the variances of the real/imaginary parts of ei

and wi. According to (6.59), the real part of ei is given by

<[ei] =
1

2λ‖ĥ‖2

[
ĥH
(

C∗
i CT ⊗ ILr

)
ε + εH

(
C∗Ci

T ⊗ ILr

)
ĥ

+ εH

(
C∗C

′
i

T ⊗ ILr

)
ĥ + ĥH

(
C∗

i CT ⊗ ILr

)
ε

]

=
1

2λ‖ĥ‖2

[
ĥH
(
(Ci + C

′
i)
∗CT ⊗ ILr

)
ε + εH

(
C∗(Ci + C

′
i)

T ⊗ ILr

)
ĥ
]

=
1

λ‖ĥ‖2
<
[
ĥH
(

CT
i,R(s)⊗ ILr

)
ε
]

. (6.97)

where Ci,R(s) is defined in (6.24a). Since it follows from (5.20) that in case of
correlated Rayleigh fading, the entries of ε are ZM CSCG RVs with covariance
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matrix Rε, it is readily verified that <[ei] is a ZM Gaussian RV with variance

E[(<[ei])
2|ĥ, s] =

1

2λ2‖ĥ‖4

[
ĥH
(

CT
i,R(s)⊗ ILr

)
Rε

(
C∗

i,R(s)⊗ ILr

)
ĥ
]

. (6.98)

Similarly, the imaginary part of ei is given by

=[ei] =
1

2jλ‖ĥ‖2

[
ĥH
(
(Ci − C

′
i)
∗CT ⊗ ILr

)
ε − εH

(
C∗(Ci − C

′
i)

T ⊗ ILr

)
ĥ
]

=
1

λ‖ĥ‖2
=
[
ĥH
(

CT
i,I(s)⊗ ILr

)
ε
]

. (6.99)

where Ci,I(s) is defined in (6.24b). Hence, =[ei] is a ZM Gaussian RV with
variance

E[(=[ei])
2|ĥ, s] =

1

2λ2‖ĥ‖4

[
ĥH
(

CT
i,I(s)⊗ ILr

)
Rε

(
C∗

i,I(s)⊗ ILr

)
ĥ
]

. (6.100)

Similar to the case of i.i.d. Rayleigh fading, the variances of the real and imag-

inary parts of ei are not identical such that ei is not circularly symmetric.

Since the entries of w in (6.21) are i.i.d. ZM CSCG RVs with variance N0, it
is readily verified that wi is also a ZM CSCG RV, the variance of the real and

imaginary parts of which is given by

E[(<[wi])
2|ĥ] = E[(=[wi])

2|ĥ] = N0

2λEs‖ĥ‖2
. (6.101)

From (6.98), (6.100), and (6.101), it follows that, in case of correlated Rayleigh

fading, ni is a ZM non-circularly symmetric complex Gaussian RV, the vari-
ances of the real and imaginary parts of which are given by

E[(<[ni])
2|ĥ, s] =

N0

2λEs‖ĥ‖2

×
(

1 +
Es

λN0‖ĥ‖2
ĥH
(

CT
i,R(s)⊗ ILr

)
Rε

(
C∗

i,R(s)⊗ ILr

)
ĥ

)
, (6.102a)

E[(=[ni])
2|ĥ, s] =

N0

2λEs‖ĥ‖2

×
(

1 +
Es

λN0‖ĥ‖2
ĥH
(

CT
i,I(s)⊗ ILr

)
Rε

(
C∗

i,I(s)⊗ ILr

)
ĥ

)
. (6.102b)

6.A.4 Impact of Spatial Correlation on the BER

Assuming BPSK or 4-QAM constellations under PCSI, it is easily obtained
from (3.61) and (4.43) that the conditional BER for OSTBCs, conditioned on
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the channel vector h, is given by

Pb(h) = Q

(√
2λ

Eb

N0
|h|2

)
. (6.103)

Using the Chernoff bound (3.66), the conditional BER (6.103) is bounded by

Pb(h) ≤
1

2
exp

(
λ

Eb

N0
|h|2

)
. (6.104)

Since the channel vector h consists of L correlated ZM CSCG RVs with covari-

ance matrix R = E[hhH], the joint distribution of the channel coefficients is
given by

p(h) =
1

πL det(R)
exp

(
−hH

R
−1h

)
, (6.105)

where det(X) denotes the determinant of X. Using (6.104) and (6.105), a bound

on the average BER for OSTBCs using BPSK or 4-QAM constellations under
PCSI is easily obtained as

Pb ≤ 1

2πL det(R)

∫

h
exp

[
−hH

(
λ

Eb

N0
IL +R

−1

)
h

]
dh

=
1

2 det
(

IL + λ
Eb
N0

R

)

=
1

2 ∏
L
i=1

(
1 + λ

Eb
N0

λi

) , (6.106)

where λi are the eigenvalues of R. Note that λi are real-valued and positive,
since R is a positive semi-definite Hermitian matrix. Defining the high-SNR

region as the region where
Eb

N0
� 1

λλmin
, (6.107)

with λmin denoting the smallest eigenvalue of the covariance matrix R, it

follows from (6.106) that, in the high-SNR region, the BER for OSTBCs using
BPSK or 4-QAM constellations under PCSI is bounded as follows

Pb ≤ 1

2 ∏
L
i=1

(
λ

Eb
N0

λi

) , (6.108)

which indicates that a diversity gain of L is obtained for high SNR as long

as λmin > 0. Taking the slope of the BER curves in the high-SNR region into

account, it is easily obtained from (6.108) that the BER degradation (6.74) due
to spatial correlation is given by

∆BER,corr ≈
(

L

∏
i=1

λi

)− 1
L

. (6.109)
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7
BER Analysis of OSTBCs in

Arbitrary Fading

In chapter 6, we have derived exact and approximate closed-form BER expres-

sions for a mismatched OSTBC receiver under Rayleigh fading. In many real-
istic situations, however, Rayleigh fading does not accurately model the true

channel, and other more versatile distributions, such the Nakagami-m distri-
bution, are more suitable. For these distributions, the channel is not Gaus-

sian, and closed-form BER expressions are hard to obtain. Instead, the BER

can be calculated through Monte-Carlo simulation, as mentioned in section
3.3.2. However, OSTBCs achieve very low BERs thanks to spatial diversity,

such that extremely long simulation times are usually necessary. Moreover,
the required simulation time increases dramatically with the SNR, making

Monte-Carlo simulations, in general, inappropriate for accurate and efficient

BER computations of OSTBCs.

The impact of imperfect channel estimation on the performance of OST-
BCs under generalized fading conditions has been studied analytically in [71],
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where the SER as well as the decoding error probability (DEP) of square OST-

BCs have been examined for M-PSK constellations. However, in [72], we have

shown that the method in [71] to compute the error performance includes an
approximation and cannot easily be generalized to QAM and PAM constella-

tions. In this chapter, we provide an exact analytical BER analysis for square
and non-square OSTBCs with M-ary QAM constellations and ML channel es-

timation, under the assumption of flat-fading channels with an arbitrary joint

PDF. We also show how the exact expressions can be efficiently and accurately
evaluated using numerical integration techniques. As the high diversity order

resulting from the application of OSTBCs gives rise to small BER values, the
numerical evaluation of the presented BER expressions is much faster than

straightforward Monte-Carlo simulations. Furthermore, we provide a simple

approximate BER expression based on treating the symbol interference due to
imperfect channel estimation as white Gaussian noise. Although the resulting

BER is in general not asymptotically exact, it yields quite accurate BER results
in many practical applications.

This chapter is organized as follows. In section 7.1, we explain briefly

how approximate BER curves for OSTBCs under generalized fading condi-
tions can be easily obtained from the rule of thumb, which was derived for

i.i.d. Rayleigh fading in section 6.1. The exact BER expressions for OSTBCs
under arbitrary fading with ML channel estimation are presented in section

7.2. Section 7.3 deals with the efficient and accurate evaluation of the exact

BER expressions, and outlines a method for Monte-Carlo integration with im-
portance sampling. In section 7.4, Monte-Carlo simulations of the receiver

operations confirm our efficient numerical evaluation methods and the im-
pact of several system and channel parameters on the BER performance is

investigated. Moreover, the accuracy and complexity of the presented BER

expressions is discussed. Finally, conclusions are drawn in section 7.5.

7.1 Approximate BER Analysis

The BER curve for a PCSI receiver under arbitrary fading conditions can be

obtained from the literature, or from averaging the conditional BER resulting
from (4.43) over the PDF of the squared channel norm ‖H‖2

F. The BER of a

mismatched OSTBC receiver can be easily approximated by shifting the BER

curve for PCSI to the right over an amount given by the rule of thumb (6.13),
which was derived for i.i.d. Rayleigh fading:

∆BER,dB = 10 log10

[(
1 +

ηKp

K

)(
1 +

Lt

ηKp

)]
. (7.1)

However, it is important to note that for non-Rayleigh fading channels, the

channel estimation error E = H − Ĥ and, consequently, the interference term√
EsEC in (6.3) are not Gaussian. Moreover, the useful terms in (6.2) and (6.3)
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do not have similar statistical properties, as Ĥ is a linear function of both the

channel H and the Gaussian noise matrix Wp. Hence, the more the fading

‘differs’ from i.i.d. Rayleigh fading, the less accurate the BER resulting from
(7.1) will be.

7.2 Exact BER Analysis

In this section, we derive exact BER expressions for square QAM constellations

with Gray mapping. Since square M-QAM with Gray mapping reduces to√
M-PAM for both the in-phase and quadrature information bits, the BER

computation for PAM follows the same lines as the BER computation for the

in-phase bits in case of QAM.

By substituting R in (6.18) by (6.3), we have decomposed in chapter 6 the
decision variable ui for the mismatched receiver into the sum of two terms,

i.e., the transmitted symbol si and a disturbance term ni, which contains con-
tributions from the channel noise W and the channel estimation error E. Since

the estimation error E is not Gaussian in case of non-Rayleigh fading, the

disturbance term ni in (6.19) is not Gaussian either, and the BER analysis pre-
sented in chapter 6 can not straightforwardly be extended to arbitrary fading

conditions. Instead, we substitute R in (6.18) by (6.2), such that the decision
variable (6.18) reduces to the sum of a signal u′

i = u′
i,R + ju′

i,I, with u′
i,R and

u′
i,I denoting the real and imaginary parts of u′

i, respectively, and a Gaussian

noise term wi

ui = u′
i + wi, (7.2)

where wi is defined in (6.21), and u′
i is a function of the transmitted symbol

vector s through the code matrix C

u′
i ,

tr
(

CH
i ĤHHC + CHHHĤC

′
i

)

λ
∥∥Ĥ
∥∥2

F

. (7.3)

In appendix 6.A.1, we have shown that, when conditioned on the estimated

channel Ĥ, wi is a ZM CSCG RV, the real and imaginary parts of which have
variance N0/(2λEs‖Ĥ‖2

F). Taking (4.28) into account, it follows that u′
i con-

tains a useful term proportional to si and interference terms containing the

data symbols sn, with n 6= i. If PCSI is available, i.e., Ĥ = H, (7.3) reduces to
u′

i = si because of (4.35), indicating that only a useful signal term is present.

Due to the rotational symmetry of the M-QAM constellation and the uniform
distribution of the symbol vector s, it follows that the BERs related to the

in-phase and quadrature bits of si are identical and irrespective of i in case of

PCSI. In case of imperfect channel estimation, however, the BER can be written
as

Pb =
1

2Ns

Ns

∑
i=1

[Pb,i,R + Pb,i,I] , (7.4)
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where Pb,i,R and Pb,i,I denote the BERs of the in-phase bits and quadrature

bits corresponding to the information symbols si, respectively. Since u′
i is a

function of s, H, and Ĥ, we can easily obtain the conditional BERs of the
in-phase and quadrature bits corresponding to the information symbols si,

conditioned on s, H, and Ĥ

Pb,i,q(s, H, Ĥ) =
1

log2(
√

M)
∑

bq∈Ψq

dH(si,q, bq)Pr[ŝi,q = bq|s, H, Ĥ], (7.5)

where q = R or q = I, and dH(si,q, bq) denotes the Hamming distance between

the bits associated to si,q and bq. It follows from (3.57) that Pr[ŝi,q = bq|s, H, Ĥ]
is given by

Pr[ŝi,q = bq|s, H, Ĥ] = Pr[d1(bq) ≤ ui,q ≤ d2(bq)|s, H, Ĥ]

= Qi,q,1 − Qi,q,2, (7.6)

where d1(bq) and d2(bq) denote the boundaries of the decision area of bq, with

d1(bq) < d2(bq), and the quantities Qi,q,k, with k = 1 and 2, are given by

Qi,q,k , Q

{√

2λ
Es

N0

∥∥Ĥ
∥∥2

F

[
dk(bq)− u′

i,q

]}
. (7.7)

Note that Qi,q,k is a function of s, H, and Ĥ through u′
i,q. Finally, Pb,i,R and

Pb,i,I in (7.4) are obtained by averaging the corresponding conditional BERs
(7.5) over s, H, and Ĥ

Pb,i,q =
1

MNs
∑

s∈ΨNs

EH,Ĥ[Pb,i,q(s, H, Ĥ)]. (7.8)

From (7.8), it follows that the evaluation of the BER requires averaging over 4L

real-valued continuous RVs, i.e., the real and imaginary parts of the elements

of H and Ĥ, and over Ns discrete RVs, i.e., the Ns symbols contained in s.
In order to reduce the computational complexity related to the numeri-

cal evaluation of the BER, we will decrease the number of RVs involved in
the expectation (7.8) by using an appropriate coordinate transformation. To

this end, we introduce the 2L × 1 real-valued column vectors ĝ and g, which

contain all elements of Ĥ and H, respectively, as

ĝ ,
[
ĥT

1,R, ĥT
1,I, ĥT

2,R, ĥT
2,I, . . . , ĥT

Lt,R
, ĥT

Lt,I

]T
, (7.9a)

g ,
[
hT

1,R, hT
1,I, hT

2,R, hT
2,I, . . . , hT

Lt,R
, hT

Lt,I

]T
, (7.9b)

with ĥi,R + jĥi,I and hi,R + jhi,I denoting the i-th column of Ĥ and H, respec-

tively. It can be easily seen that ‖ĝ‖ = ‖Ĥ‖F and ‖g‖ = ‖H‖F. Using (7.9), the
coordinate transformation derived in appendix 7.A.1 shows that, under the
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assumption of ML channel estimation, the real and imaginary parts of (7.3)

reduce to

u′
i,q =

1

λ(x2
1 + x2

2 + z2)

(
λx1si,q ‖g‖+ x2‖Mi,qg‖) , (7.10)

where q = R or q = I, and the 2L × 2L matrix Mi,q, given by (7.43), incorpo-
rates the interference from the signal components different from si,q. When

conditioned on g, the real-valued RVs x1, x2, and z are independent and dis-

tributed as follows:

• x1 is a Gaussian RV with mean ‖g‖ and variance σ2
N = N0/(2KpEp);

• x2 is a ZM Gaussian RV with variance σ2
N;

• z/σN is distributed according to the chi-distribution with 2L − 2 degrees
of freedom [73].

Hence, by substituting u′
i,q and ‖Ĥ‖2

F in (7.7) by (7.10) and (7.47), respectively,

the conditional BER given by (7.5) can be rewritten as a function that de-
pends on the actual channel H through the random vector g and on the esti-

mated channel Ĥ through only 3 RVs: x1, x2, and z; we denote this function
by Bi,q,1(s, g, x1, x2, z). Note that the dependence on g is through ‖g‖ and

‖Mi,qg‖, with Mi,q depending on s. Due to this substitution, the BER expres-

sion given by (7.4) reduces to

Pb =
1

2Ns

1

MNs

Ns

∑
i=1

∑
s∈ΨNs

Eg,x1,x2,z

[
Bi,R,1(s, g, x1, x2, z)

+Bi,I,1(s, g, x1, x2, z)
]
, (7.11)

which is an expectation over 2L + 3 real-valued continuous RVs, i.e., the 2L

components of g, x1, x2, and z, and Ns discrete RVs, i.e., the components of s.

In the case of square OSTBCs, i.e., Lt = Kc, the BER expression can be

considerably simplified. For these OSTBCs, it is shown in appendix 7.A.2 that
the magnitude of Mi,qg used in (7.10) is given by

‖Mi,qg‖ = λ‖g‖
√
‖s‖2 − s2

i,q. (7.12)

Hence, by substituting ‖Mi,qg‖ in Bi,q,1(s, g, x1, x2, z) by (7.12), the conditional

BER Bi,q,1(s, g, x1, x2, z) can be rewritten as a function that depends on g

through only the norm ‖g‖ of the channel vector; we denote this function
by Bi,q,2(s, ‖g‖, x1, x2, z). It follows from (7.12) that, for square OSTBCs, the

dependence of (7.10) on i and q is through si,q only. Since the statistical prop-
erties of si,q depend neither on i nor on q, the BERs related to the in-phase
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and quadrature bits of si are identical and irrespective of i, such that (7.11)

reduces to

Pb =

(
4

M

)Ns

∑
s∈Ψ

Ns
0

E‖g‖,x1,x2,z

[
Bi,q,2(s, ‖g‖, x1, x2, z)

]
, (7.13)

where we have restricted the summation over s to constellation points with

positive real and imaginary parts only, since because of (7.12), the symbol

vectors s, s∗, −s, and −s∗ yield the same BER result. Note that (7.13) involves
the expectation over only 4 real-valued continuous RVs, i.e, the channel norm

‖g‖ = ‖H‖, x1, x2, and z, and Ns discrete RVs, i.e., the components of s.

7.3 Evaluation of the BER

In section 7.2, we provided an exact analysis of the BER for OSTBCs on fading
channels with ICSI, regardless of the fading distribution. In particular, it has

been shown that for any OSTBC, the BER can be written as an expectation
over 2L + 3 real-valued continuous RVs and Ns discrete RVs, as can be seen

from (7.11). Moreover, for square OSTBCs, the BER can be further reduced

to an expectation over only 4 real-valued continuous RVs and Ns discrete
RVs, as can be seen from (7.13). In this section, we deal with the efficient

and accurate numerical evaluation of the exact BER expressions (7.11) and
(7.13). To this end, two numerical integration techniques will be envisaged:

the quadrature rule [74, Sec. 4.1] and Monte-Carlo integration [74, Sec. 7.7] with

importance sampling [74, Sec. 7.9.1].

7.3.1 Efficient Evaluation of (7.11) and (7.13)

By numerically evaluating (7.11) and (7.13), the BER for OSTBCs can be ef-
ficiently obtained with a computation time that increases only very slowly

with the SNR. In this section, we briefly describe the quadrature rule and

Monte-Carlo integration with importance sampling, point out their benefits
and limitations, and apply them to evaluate (7.11) and (7.13).

Let us represent (7.11) and (7.13) by the following generic expectation

BER = Ep[B(v)] (7.14)

where B(v) is a function of a random vector v = [sT , uT]T consisting of the

symbol vector s and a random column vector u, and the subscript p refers to
the joint PDF p(v) = p(s) p(u) of v, with s being uniformly distributed over

ΨNs . As far as the evaluation of (7.11) is considered, we define

{
u , [gT, x1, x2, z]T

B(v) , 1
2Ns

∑
Ns
i=1 [Bi,R,1(v) + Bi,I,1(v)]

(7.15)
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such that the expectation (7.11) is given by the following sum of a J-fold inte-

gral, with J = 2L + 3 denoting the dimension of u,

Ep[B(v)] =
1

MNs
∑

s∈ΨNs

∫

u
B(s, u) p(u) du. (7.16)

Note that the computational complexity associated with the summation in

(7.16) is proportional to MNs , which increases prohibitively for large constel-
lation size M and/or large number of information symbols Ns.

For square OSTBCs, we define
{

u , [‖g‖, x1, x2, z]T

B(v) , Bi,q,2(v)
(7.17)

with q = R or q = I, such that the expectation (7.13) is defined by the following

sum of a J-fold integral, with J = 4 denoting the dimension of u,

Ep[B(v)] ,

(
4

M

)Ns

∑
s∈Ψ

Ns
0

∫

u
B(s, u) p(u) du. (7.18)

7.3.1.1 The Quadrature Rule

In principle, the J-fold integral in (7.16) and (7.18) can be evaluated by repeat-

edly applying the quadrature rule to each of the integrals, in which case the
J-fold integral is replaced by a J-fold sum. Assuming that each element of v

takes I values in this sum, the computational complexity for computing the

J-fold integral is proportional to I J , which is prohibitively large for large J.
Therefore, numerical integration is only of practical interest for square OST-

BCs, where u , [‖g‖, x1, x2, z]T and J = 4. In this case, the joint PDF of u is
easily obtained as the product of the PDFs p(x1

∣∣‖g‖), p(x2), and p(z), which

have been specified in section 7.2, and the PDF of ‖g‖, which can be available

as an analytical expression or in the form of a histogram (e.g., as the result of
a measurement), since ‖g‖ is to be discretized.

7.3.1.2 Monte-Carlo Integration with Importance Sampling

The exponential dependency of the computational complexity related to (7.16)

and (7.18) on Ns and J can be avoided by using Monte-Carlo integration com-
bined with importance sampling. In this way, the expectation in the right-

hand side of (7.14) is approximated as

GN ({vν}) =
1

N
N
∑
ν=1

B(vν)
p(vν)

q(vν)
(7.19)

where {vν, ν = 1, 2, . . . ,N} are independent samples generated according to a
biased PDF q(v). Note that we use the term Monte-Carlo integration for both
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discrete and continuous variables, i.e., the symbol vector s and the vector u,

respectively. In case q(vν) = p(vν), (7.19) reduces to conventional Monte-

Carlo integration without importance sampling. Defining eN , GN ({vν})−
Ep[B(v)], it can be shown that E[eN ] = 0 and

E[e2
N ] =

1

N

{
Eq

[(
B(v)p(v)

q(v)

)2
]
− E

2
p[B(v)]

}
(7.20)

where Eq[·] refers to the expectation over the biased PDF q(v). It follows from
(7.20) that E[e2

N ] can be made arbitrarily small by taking N sufficiently large.

However, the smaller the second factor in (7.20), the smaller is the value of N
required to achieve a certain value of E[e2

N ]. By making a judicious choice of
q(v), we try to minimize this factor, so that reasonably large values of N yield

very good accuracy. It can be easily verified that q(v) = B(v) p(v)/Ep[B(v)]
is the optimum biased PDF, as it yields E[e2

N ] = 0. However, this choice

is not practical, since the optimum q(v) depends on the unknown Ep[B(v)].
Nevertheless, the optimum q(v) inspires us to take

q(v) = Bapp(v) p(v)/Ep[Bapp(v)] (7.21)

where Bapp(v) is a suitable approximation of B(v), i.e., it is chosen in such

way that the resulting q(v) allows us to easily generate i.i.d. vectors {vν}.
Let us apply Monte-Carlo integration with importance sampling for evalu-

ating the BER in the case of non-square OSTBCs, where v , [sT, gT , x1, x2, z]T.
For many fading distributions, the vector g can easily be generated as a trans-

formation g = φ(γ) of a vector γ of auxiliary RVs, distributed according to a

joint PDF p(γ) which is such that the PDF of g = φ(γ) is the desired distribu-
tion of the real and imaginary parts of the channel coefficients contained in g.

Therefore, we redefine v in terms of the vector of auxiliary RVs instead of the

channel vector, i.e., v , [sT , γT , x1, x2, z]T, such that

B(v) ,
1

2Ns

Ns

∑
i=1

{
Bi,R,1[s, φ(γ), x1, x2, z] + Bi,I,1[s, φ(γ), x1, x2, z]

}
(7.22)

and
p(v) = p(s) p(x1

∣∣‖g‖ = ‖φ(γ)‖) p(x2) p(z) p(γ). (7.23)

In order to identify an approximate Bapp(v) in (7.21), we will consider

B(v) assuming PCSI, in which case u′
i,R from (7.10) is the sum of si,R and

a noise term with variance N0/[2λEs‖φ(γ)‖2]. Denoting by 2d the distance

between adjacent QAM constellation points, we approximate the conditional
BER assuming PCSI by the following simple expression

BPCSI(v) ≈
Nmin

log2(M)
Q



√

2λEsd2‖φ(γ)‖2

N0


 , (7.24)
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with Nmin being given by

Nmin =
1

M

M

∑
i=1

Nmin(ψi), (7.25)

where Nmin(ψi) denotes the number of neighbors at minimal distance 2d from

a constellation point ψi. Hence, Nmin denotes the average number of constel-

lation points at minimal distance 2d, given a constellation Ψ. Considering the
bound Q(x) ≤ (1/2) exp(−x2/2), we select

Bapp(v) =
Nmin

2 log2(M)
exp

(
−λd2 Es

N0
‖φ(γ)‖2

)
. (7.26)

Since Bapp(v) depends only on γ, the corresponding biased PDF (7.21) is given

by

q(v) = p(s) p(x1

∣∣‖g‖ = ‖φ(γ)‖) p(x2) p(z) q(γ), (7.27)

with

q(γ) = C p(γ) exp

(
−λd2 Es

N0
‖φ(γ)‖2

)
, (7.28)

where C is a normalization constant. From (7.27), it follows that only the joint

PDF q(γ) of the vector γ of auxiliary RVs is biased. Hence, s, x1, x2, and z are
generated according to their respective distributions, whereas the auxiliary

RVs are generated according to the biased joint PDF given by (7.28), which
depends on the considered transformation φ(γ).

Note that also a combination of the quadrature rule and Monte-Carlo in-

tegration can be used. For example, for square OSTBCs, the integral over
u , [‖g‖, x1, x2, z]T can be evaluated using the quadrature rule, whereas the

summation over the symbol vector s can be evaluated through Monte-Carlo
integration. In order to further reduce the computational complexity related

to the evaluation of (7.16), B(v) can be approximated by retaining only one

term in the summation in (7.22), i.e., Bi,q,1[s, φ(γ), x1, x2, z], with q = R or
q = I, instead of taking the average over all 2Ns terms. As we have shown

that this approximation yields the exact result in case of Rayleigh fading for
the non-square OSTBCs considered in appendix 6.A.2, it could be expected

that also for non-Rayleigh fading very accurate results could be obtained. In

section 7.4, comparisons between analytical BER results and computer simu-
lations confirm this assumption.

In principle, importance sampling can also be used for direct Monte-Carlo
simulations of the BER, involving bit error counting. However, finding a suit-

able biased PDF according to which the RVs (i.e., the data symbols to be

transmitted, the channel and the additive Gaussian channel noise) need to be
generated in order to decrease the variance of the resulting BER will be much

more complicated than what we have shown for the numerical evaluation of
(7.16). In the latter case, the integrand is given by a summation of Q-functions
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and can be approximated by the exponential function (7.26), which allows us

to easily find a suitable biased PDF. In the case of direct Monte-Carlo simula-

tions, however, the integrand consists of a summation of indicator functions
that indicate whether or not the detected symbols equal the transmitted sym-

bols. These indicator functions will be functions of the data symbols, the
channel, the channel estimate and the additive channel noise. Therefore, it

is easily understood that finding a suitable approximation of the integrand

from which an optimal or suboptimal biased PDF can be found will be a very
complicated task.

7.3.2 Correlated Nakagami-m Fading Channels

In this section, we apply the theory shown in section 7.3.1 for the evaluation

of the BER of OSTBCs with ICSI to the particular case of arbitrarily correlated
Nakagami-m fading channels.

7.3.2.1 The Quadrature Rule

In section 4.3.2.3, we introduced the Nakagami-m distribution (4.61) as a ver-
satile statistical distribution that accurately models a variety of fading en-

vironments by selecting a proper value for the fading parameter m ≥ 1/2.

Moreover, the Nakagami-m distribution includes the Rayleigh (m = 1) and
the one-sided Gaussian (m = 1/2) distributions as special cases. The PDF of

the squared channel norm ‖H‖2
F, which is required to average (7.18) over

‖g‖ = ‖H‖F by means of the quadrature rule, is given in section 4.3.4.2

for i.i.d. and correlated Nakagami-m channels. Assuming PCSI, it follows

from [75] that the BER of an OSTBC operating over L i.i.d. Nakagami-m fad-
ing channels is proportional to (Eb/N0)

−mL for large Eb/N0, which indicates

that the BER performance improves with increasing m and/or diversity order

L.

7.3.2.2 Monte-Carlo Integration with Importance Sampling

In section 7.3.1, we showed that the expectation over g in (7.11) can be effi-

ciently evaluated by means of Monte-Carlo integration with importance sam-
pling, provided that the vector γ of auxiliary RVs that is used to obtain the

channel vector g is generated according to the sampling distribution given by
(7.28). For integer and identical fading parameters m` = m, ∀`, we showed

in section 4.3.3 how L correlated Nakagami-m RVs α`, with E[α2
`
] = Ω` and

power correlation matrix Σ, can be obtained from 2m i.i.d. random vectors
yk = [yk,1, yk,2, . . . , yk,L]

T , with k = 1, 2, . . . , 2m. The random vectors yk consist

of real-valued ZM Gaussian auxiliary RVs and have a covariance matrix Q

given by (4.67).
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In this section, we derive the sampling distribution (7.28) for the auxil-

iary RVs, in order to enable efficient numerical evaluation of the expectation

in (7.11) in case of correlated Nakagami-m fading channels with integer and
identical m` = m, ∀`, E[α2

`
] = Ω`, and power correlation matrix Σ. To this

end, we select γ = [θT, yT ]T as the vector of auxiliary RVs, where θ contains
the phases of the L channel coefficients and y = [yT

1 , yT
2 , . . . , yT

2m]
T . Taking into

account that g = φ(γ) and that the L channel coefficient magnitudes α` are
obtained from y according to (4.66), we have ‖g‖2 = ‖φ(γ)‖2 = ‖α‖2 = ‖y‖2.

Hence, with q(θ, y) = p(θ|y) q(y), it follows from (7.28) that the biased joint

PDF of y is given by

q(y) = C p(y) exp

(
−λd2 Es

N0
‖y‖2

)
. (7.29)

Taking into account that p(y) is the joint PDF of 2m i.i.d. ZM Gaussian vectors

{yk}, each having a covariance matrix Q given by (4.67), we show in appendix
7.A.3 that q(y) is a similar PDF, but now the vectors {yk} have a covariance

matrix Q′ given by

Q′ = Q

(
IL + 2λd2 Es

N0
Q

)−1

. (7.30)

Moreover, using (7.29) and (7.30), it is readily verified that the ratio p(v)/q(v)
to be used in (7.19) depends only on y and is given by

p(v)

q(v)
=

exp
(

λd2 Es
N0

‖y‖2
)

[
det

(
IL + 2λd2 Es

N0
Q
)]m . (7.31)

7.4 Numerical Results

In this section, BER results are presented for correlated Nakagami-m fading
channels, under the assumption that Ep = Es and that the Kronecker channel

model (4.55) is valid [34, 36], although the analysis is also applicable to arbi-

trary power correlation matrices. The phases of the channel coefficients are
assumed to be uniformly distributed. The accuracy of the curves resulting

from the numerical evaluation of the exact BER expressions (7.11) and (7.13)
using the tools provided in section 7.3, is illustrated by means of straightfor-

ward Monte-Carlo simulation results, which are added to some of the figures

for relatively high BER. In Figs. 7.1 and 7.2, the BER curves resulting from
the high-SNR approximation given in section 7.1 are also shown, in order to

illustrate their accuracy under different fading circumstances.

7.4.1 Square OSTBCs

Let us consider Alamouti’s code (Lt = Kc = Ns = 2), which is given by (4.14).
In order to obtain the BER curves for this OSTBC, we evaluate the expectation
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over ‖g‖, x1, x2, and z in (7.13) by means of the quadrature rule, with the

distribution of ‖g‖ being derived from (4.73) in the case of correlated fading

and from (4.61) in the case of i.i.d. fading; the expectation over s is exactly
obtained by means of a finite summation.

In Fig. 7.1(a), we show the BER curves for a 2× 1 Alamouti MIMO scheme
with ML channel estimation under i.i.d. Nakagami-m fading. Also the ap-

proximate BER curves, resulting from treating the symbol interference due to

ICSI as white Gaussian noise, are shown in the figure. The data frames consist
of K = 40 coded data symbols and Kp = 4 pilot symbols per transmit antenna,

whereas the symbols belong to a 4-QAM constellation. The BER approxima-
tion turns out to be relatively accurate, although it is clearly not asymptotically

exact when the fading is not Rayleigh distributed, i.e., for m > 1. The differ-

ence between the Gaussian approximation and the exact result is even larger
when BPSK transmission is considered, as shown in Fig. 7.1(b).

Fig. 7.2 shows the BER of Alamouti’s code under correlated identically
distributed Nakagami-m channels with m = 4 and Ω = 1. We assume that

there is no antenna correlation at the transmitter side, whereas the correlation

between the receive antennas (Lr = 3) can be described by means of a constant
correlation model [44] determined by the following power correlation matrix

Σr =




1 0.8 0.8

0.8 1 0.8
0.8 0.8 1


 . (7.32)

For M ∈ {4, 16, 64, 256}, the BER results are shown for a PCSI receiver and a

receiver using ML channel estimation with K = 80 and Kp ∈ {2, 4, 12}. For the
receiver with ICSI, both the exact and approximate BER curves are displayed.

It follows from the figure that the accuracy of the approximate BER curves de-
pends on different parameters, such as the constellation size and the number

of pilot symbols Kp. The larger Kp is, the smaller the asymptotic difference

will be between the approximate and the exact BER curves. This is due to the
fact that for large Kp, the joint PDFs of Ĥ and H are quite similar such that

the useful terms in (6.2) and (6.3) will have similar statistical properties and
the approximation from section 7.1 is very accurate.

Fig. 7.3 displays the performance curves resulting from the exact BER ex-

pression (7.13) for Alamouti’s code along with 4-QAM signaling, operating
over correlated identically distributed Nakagami-m channels with Ω = 1 and

Lr = 3. The results are shown for both a PCSI receiver and a receiver using
ML channel estimation with K = 200 and Kp = 20, and for m ∈ {1, 3}. While

no antenna correlation occurs at the transmitter side, three different correla-

tion scenarios are considered at the receiver side. More specifically, the case
of uncorrelated fading is compared with two practical receive antenna config-

urations which are described in more detail in [42]. The correlation matrices
corresponding to the considered antenna configurations were obtained in [42]
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Figure 7.1: Exact and approximate BER versus Eb/N0 for a 2 × 1 Alamouti

scheme with ML channel estimation under i.i.d. Nakagami-m fading.
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Figure 7.2: Exact and approximate BER versus Eb/N0 for a 2 × 3 Alamouti

scheme with ML channel estimation under correlated identically distributed
Nakagami-m fading, with K = 80, Kp ∈ {2, 4, 12}, and M ∈ {4, 16, 64, 256}.

using the empirical curves of Lee [76, p. 203]. Briefly, the three correlation

scenarios at the receiver side can be described as follows:

i) uncorrelated fading (unc), with Σr = ILr ,

ii) a linear antenna array (lin), the configuration of which, along with the

angle of arrival, is depicted in [42, Fig. 4(b)], with power correlation

matrix Σr given by [42, Eq. (38)]

Σr =




1 0.795 0.605

0.795 1 0.795

0.605 0.795 1



 , (7.33)

iii) a triangular antenna array (tri), the configuration of which, along with
the angle of arrival, is depicted in [42, Fig. 4(a)], with power correlation

matrix Σr given by [42, Eq. (37)]

Σr =




1 0.727 0.913

0.727 1 0.913

0.913 0.913 1



 . (7.34)
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Figure 7.3: BER versus Eb/N0 for Alamouti’s code with 4-QAM signaling and

ML channel estimation under correlated identically distributed Nakagami-m
fading channels with m ∈ {1, 3} and Ω = 1, for uncorrelated (unc), linear

(lin), and triangular (tri) correlation matrices at the receiver side (Lr = 3).

In Fig. 7.3, it is shown how m, ICSI, and the antenna correlation model affect
the BER performance of Alamouti’s code. As it is expected, the BER perfor-

mance improves when m increases. As compared to the case of PCSI and

zero correlation, both ICSI and antenna correlation degrade the BER through
a horizontal shift of the BER curve for large Eb/N0, indicating that, for the

correlations considered, the relation BER ∝ (Eb/N0)
−mL still holds at large

Eb/N0. Note that antenna correlation has no significant impact on the BER
degradation caused by ICSI only, and that for highly correlated channels, e.g.,

the triangular correlation model, the BER degradation as compared to zero
correlation is much larger than the degradation due to ICSI only.

7.4.2 Non-Square OSTBCs

Let us consider the 3 × 4 OSTBC (Lt = Ns = 3, Kc = 4) given by (4.34).

The BER curves for this OSTBC are obtained by evaluating the expectation
over s, g, x1, x2, and z in (7.11) by means of Monte-Carlo integration with
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importance sampling. In (7.19), however, B(v) is approximated by retaining

only the term B1,R,1[s, φ(γ), x1, x2, z] in the summation in (7.22). Moreover,

the auxiliary Gaussian RVs yielding the channel coefficients are generated
according to (7.29).

Fig. 7.4 shows BER performance evaluation curves in case of a Nakagami-
m MIMO channel with m = 2 that is recovered through ML channel estimation

with K = 200 and Kp = 16. The power correlation matrix Σt at the transmitter
side equals the matrix (7.33), whereas the power correlation matrix Σr of the

dual-antenna receiver (Lr = 2) is given by

Σr =

[
1 0.4

0.4 1

]
. (7.35)

The BER performance evaluation results are shown for M-QAM signaling,
with M ∈ {4, 16, 64, 256} and a 3 × 2 Nakagami-m MIMO channel satisfying

{
Ω`,1 = Ω`,2 = 1

Ω`,3 = t
(7.36)

with Ω`,k = E
[|(H)`,k|2

]
, ` ∈ {1, 2}, and t ∈ {1, 0.5}. Note that halving the

average energy transfer between the third transmit antenna and the receiver
causes a BER degradation through a horizontal shift of the BER curve. In

order to compare the proposed BER expressions versus direct simulations in
terms of accuracy and efficiency, we use (6.77), which requires that the ratio of

the variance of the calculated or simulated BER to the square of its expectation

is less or equal than a certain prescribed value ε2. Note that the BER estimate
P̂b in (6.77) is given by (6.78), and that N and Xl denote the number N of

generated sample vectors (vν) and the summand in (7.19), respectively, in case
the proposed BER expressions are evaluated through Monte-Carlo integration,

whereas for direct simulations, N and Xl denote the number of simulated data

frames and the ratio of the number of bit errors counted in the l-th frame to
the total number of bits within one frame, respectively. Since Xl ’s are inde-

pendently generated, the minimum N required to obtain a certain accuracy
ε2 for the resulting BER satisfies (6.80). Under the assumption of M = 4,

t = 1, and a given accuracy of ε2 = 0.01, Fig. 7.5 displays the minimum N

as a function of the SNR for both direct simulations and the evaluation of the
BER expressions presented in section (7.2) through Monte-Carlo integration.

To illustrate the impact of importance sampling, we consider both the case
with and without importance sampling, applying the sampling distribution

derived in section 7.3.2.2 for arbitrarily correlated Nakagami-m fading both to

Monte-Carlo integration and direct simulations. Although the latter sampling
distribution does not guarantee optimal performance in case of direct simu-

lations, as mentioned in the last paragraph of section 7.3.1.2, it follows from
the figure that importance sampling results in a significant reduction of the
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Figure 7.4: BER versus Eb/N0 for the 3 × 4 OSTBC given by (4.34) operat-

ing over a 3 × 2 correlated Nakagami-m MIMO fading channel with m = 2,
Ω`,1 = Ω`,2 = 1, and Ω`,3 = t. The results are shown for M-QAM, with

M ∈ {4, 16, 64, 256}, and for t ∈ {1, 0.5}.

computation time for both direct simulations and numerical evaluation of the

exact BER espressions through Monte-Carlo integration. For moderate to high

SNR, the number of required sample vectors vν in case of Monte-Carlo inte-
gration with importance sampling is much less than the number of generated

frames in case of direct simulations. However, for low SNR, where the BER
is high, it might be more efficient to apply direct simulations. It is also im-

portant to note that generating a data frame and detecting it after it has been

affected by fading and channel noise, is a much more complex task than eval-
uating the summand in (7.19). In Fig. 7.4, the BER results from Monte-Carlo

integration with importance sampling have been obtained with N = 5000
sample vectors vν. Note also that retaining only one term in the summation

in (7.22) yields very accurate BER results, i.e., the BERs related to the in-phase

and quadrature bits of si are nearly identical and irrespective of i. Because the
number of pilot symbols is relatively high (Kp = 16), the approximate BER

curves resulting from the high-SNR approximation in section 7.1 also provide
very accurate BER results. Only for 4-QAM, a clear deviation from the exact
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Figure 7.5: Minimum N for both direct simulations and the evaluation of

the proposed BER expressions through Monte-Carlo integration for a given
accuracy of ε2 = 0.01.

BER can be observed for SNRs below 10 dB. In order not to overload Fig. 7.4,

however, the approximate BER curves are omitted in the figure.

Fig. 7.6 illustrates the BER performance versus the number of pilot sym-

bols for the 3 × 4 OSTBC given by (4.34), operating over correlated identically
distributed Nakagami-m fading channels with m = 2 and Ω = 1, under the

assumption that Eb/N0 = 10 dB. The power correlation matrix Σr of the
dual-antenna receiver (Lr = 2) is assumed to be given by (7.35), the channel

is recovered through ML channel estimation, and the transmitted informa-

tion symbols belong to a 16-QAM constellation. The results are shown for
K ∈ {100, 400, 1000} information symbols and for the power correlation ma-

trix Σt at the transmitter side being given by either (7.33) (lin) or the identity
matrix (unc). From Fig. 7.6, we observe that the optimal number of pilot

symbols grows with the number of information symbols K and that antenna

correlation does not affect this optimal number. We also notice that for large
K, obtaining the optimal number of pilot symbols is not very critical as the

BER grows only slowly when more pilot symbols are added. According to
(6.14), the optimal number of pilot symbols in case of i.i.d. Rayleigh fading
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Figure 7.6: BER versus Kp for the 3 × 4 OSTBC given by (4.34) with 16-QAM,

operating over identically correlated Nakagami-m fading channels, with m =
2 and Ω = 1. The results are shown for Eb/N0 = 10 dB, for uncorrelated

(unc) and linear (lin) correlation matrices at the transmitter side, and for K ∈
{100, 400, 1000}.

channels, square OSTBCs, and PSK signaling is given by Kp,opt ∈ {17, 35, 55}
for K ∈ {100, 400, 1000}, respectively (where we have rounded Kp,opt to the
nearest integer). From Fig. 7.6, it follows that these approximate optimal

values are also useful in case of different fading conditions or transmission
parameters.

7.5 Chapter Summary

In this chapter, we have investigated the effect of ICSI on the BER performance
of OSTBCs under flat-fading channels. For non-square OSTBCs, the resulting

exact BER expression can be written as an expectation over Ns discrete RVs

and 2L + 3 real-valued continuous RVs, whereas for square OSTBCs, the re-
sulting exact BER expression reduces to an expectation over Ns discrete RVs

and 4 real-valued continuous RVs, regardless of the number of antennas. The
exact BER expressions can be efficiently and accurately evaluated by means of
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numerical integration techniques, i.e., the quadrature rule and Monte-Carlo

integration with importance sampling, or a combination thereof. Addition-

ally, we provided a simple approximation of the BER based on treating the
symbol interference due to imperfect channel estimation as white Gaussian

noise. Although the resulting expression is in general not asymptotically ex-
act, it yields very accurate BER results when the fading distribution is similar

to Rayleigh and when a sufficient number Kp of pilot symbols is used. For

the case of correlated Nakagami-m fading channels, we elaborated further on
the numerical evaluation of the exact BER expressions. Our numerical results

illustrate the effect of channel estimation errors and of fading correlation on
the BER performance of OSTBCs in the case of Nakagami-m fading.
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7.A Appendix

7.A.1 Proof of (7.10)

In (7.3), we have defined u′
i as

u′
i ,

tr
(

CH
i ĤH H C + CH HH Ĥ C

′
i

)

λ
∥∥Ĥ
∥∥2

F

. (7.37)

With q = R and q = I referring to the BER computation for the in-phase and
quadrature bits, respectively, it can be shown that the real and imaginary parts

of (7.37) can be rewritten as

u′
i,q =

1

λ‖ĝ‖2

Ns

∑
n=1

{(
ĝTg

(i,q)
n,R

)
sn,R +

(
ĝTg

(i,q)
n,I

)
sn,I

}
, (7.38)

where the 2L × 1 column vectors g
(i,q)
n,p , with p = R or p = I, are given by

g
(i,q)
n,p ,

(
M

(i,q)
n,p ⊗ ILr

)
g, (7.39)

and the 2Lt × 2Lt matrices M
(i,q)
n,p are defined as

M
(i,q)
n,p ,




M
(i,q)
n,p (1, 1) . . . M

(i,q)
n,p (1, Lt)

...
. . .

...

M
(i,q)
n,p (Lt, 1) . . . M

(i,q)
n,p (Lt, Lt)


 . (7.40)

For all possible combinations of p and q, the 2 × 2 matrices M
(i,q)
n,p (k, `) in

(7.40), with 1 ≤ k, ` ≤ Lt, are defined as follows

M
(i,R)
n,R (k, `) ,

[
α
(i,R)
n,R (k, `) −β

(i,R)
n,R (k, `)

β
(i,R)
n,R (k, `) α

(i,R)
n,R (k, `)

]
, (7.41a)

with α
(i,R)
n,R (k, `) and β

(i,R)
n,R (k, `) being the real and imaginary parts of [(Cn +

C
′
n)(Ci + C

′
i)

H ]`,k, respectively;

M
(i,R)
n,I (k, `) ,

[
−β

(i,R)
n,I (k, `) −α

(i,R)
n,I (k, `)

α
(i,R)
n,I (k, `) −β

(i,R)
n,I (k, `)

]
, (7.41b)

with α
(i,R)
n,I (k, `) and β

(i,R)
n,I (k, `) being the real and imaginary parts of [(Cn −

C
′
n)(Ci + C

′
i)

H ]`,k, respectively;

M
(i,I)
n,R (k, `) ,

[
β
(i,I)
n,R (k, `) α

(i,I)
n,R (k, `)

−α
(i,I)
n,R (k, `) β

(i,I)
n,R (k, `)

]
, (7.41c)
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with α
(i,I)
n,R (k, `) and β

(i,I)
n,R (k, `) being the real and imaginary parts of [(Cn +

C
′
n)(Ci − C

′
i)

H ]`,k, respectively;

M
(i,I)
n,I (k, `) ,

[
α
(i,I)
n,I (k, `) −β

(i,I)
n,I (k, `)

β
(i,I)
n,I (k, `) α

(i,I)
n,I (k, `)

]
, (7.41d)

with α
(i,I)
n,I (k, `) and β

(i,I)
n,I (k, `) being the real and imaginary parts of [(Cn −

C
′
n)(Ci − C

′
i)

H ]`,k, respectively.

Note that α
(i,q)
i,q (k, `) = λδk−` and β

(i,q)
i,q (k, `) = 0, such that g

(i,q)
i,q = λg.

Under the assumption that q̆ = I or q̆ = R when q = R or q = I, respectively,

it follows from (4.35) that, for any given i, the vectors g
(i,q)
n,q , with n 6= i, and

g
(i,q)
n,q̆ are orthogonal to g

(i,q)
i,q

[
g
(i,q)
i,q

]T
g
(i,q)
n,q = λ2‖g‖2δi−n, (7.42a)

[
g
(i,q)
i,q

]T
g
(i,q)
n,q̆ = 0. (7.42b)

In (7.38), the term in si,q is the useful term, whereas the terms in sn,q,

with n 6= i, and the terms in sn,q̆ represent interference from the symbol
components different from si,q. In case of PCSI, i.e., ĝ = g, it is readily verified

that u′
i,q = si,q. Let us now introduce the 2L × 2L matrix Mi,q as

Mi,q ,






Ns

∑
n=1
n 6=i

sn,q M
(i,q)
n,q +

Ns

∑
n=1

sn,q̆ M
(i,q)
n,q̆





⊗ ILr , (7.43)

which is a function of the transmitted symbol vector s and the coefficient

matrices Cn and C
′
n, with 1 ≤ n ≤ Ns. In this way, (7.38) reduces to

u′
i,q =

1

λ ‖ĝ‖2

(
λsi,qĝTg + ĝTMi,qg

)
. (7.44)

From (7.39) and (7.42), it follows that Mi,qg is orthogonal to g. Hence, we can

define an orthonormal coordinate system with 2L unit vectors

{
e
(i,q)
n , n = 1, 2, . . . , 2L

}
, (7.45)

where e
(i,q)
1 and e

(i,q)
2 are directed along g and Mi,qg, respectively. Let us

introduce the RVs x
(i,q)
n as the projections of ĝ on e

(i,q)
n

x
(i,q)
n , ĝTe

(i,q)
n . (7.46)
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Assuming ML channel estimation, it follows from (5.13) that the statistical

properties of x
(i,q)
n are independent of i and q. Therefore, we may drop the

superscript (i, q), resulting in

‖ĝ‖2 = x2
1 + x2

2 + z2, (7.47)

with

z =

√√√√
2L

∑
n=3

x2
n. (7.48)

Taking the specific choice of e
(i,q)
1 and e

(i,q)
2 into account, it follows from (7.46)-

(7.48) that (7.44) reduces to

u′
i,q =

1

λ(x2
1 + x2

2 + z2)

(
λx1si,q ‖g‖+ x2‖Mi,qg‖) . (7.49)

7.A.2 Proof of (7.12)

For square OSTBCs, i.e., Lt = Kc, it follows from (4.36) that the vectors g
(i,q)
n,q

and g
(i,q)
n,q̆ , given by (7.39), are mutually orthogonal, such that the orthogonality

conditions given by (7.42) reduce to
[
g
(i,q)
n,p

]T
g
(i,q)
n′,p = λ2‖g‖2δn−n′ , (7.50a)

[
g
(i,q)
n,q

]T
g
(i,q)
n′,q̆ = 0. (7.50b)

Using the above properties, it can be shown that ‖Mi,qg‖ which appears in

(7.10), with Mi,q given by (7.43), reduces to

‖Mi,qg‖ = λ‖g‖
√
‖s‖2 − s2

i,q. (7.51)

7.A.3 Derivation of Biased PDF q(y)

Since the random vectors yk consist of real-valued ZM Gaussian RVs with

covariance matrix Q, their joint PDF is given by

p(yk) =
1

(2π)
L
2

√
det(Q)

exp

(
−1

2
yT

k Q−1yk

)
, (7.52)

where det(Q) denotes the determinant of Q. Because the 2m vectors yk are

i.i.d., the joint PDF of the vector y = [yT
1 , yT

2 , . . . , yT
2m]

T is given by

p(y) =
2m

∏
k=1

p(yk)

∝
2m

∏
k=1

exp

(
−1

2
yT

k Q−1yk

)
. (7.53)
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Taking into account that ‖y‖2
F = ∑

2m
k=1 ‖yk‖2

F, it follows from (7.29) that the

biased PDF q(y) is given by

q(y) ∝
2m

∏
k=1

exp

(
−1

2
yT

k Q−1yk

)
exp

(
−λd2 Es

N0
yT

k yk

)

=
2m

∏
k=1

exp

[
−1

2
yT

k

(
Q−1 + 2λd2 Es

N0
IL

)
yk

]
. (7.54)

Hence, it follows from the biased PDF (7.54) that the elements of the i.i.d. aux-

iliary random vectors yk should be generated as correlated ZM Gaussian RVs
with a covariance matrix Q′ given by

Q′ =
(

Q−1 + 2λd2 Es

N0
IL

)−1

. (7.55)

Taking the PDFs p(yk) and q(yk) of the 2m i.i.d. random vectors yk into ac-

count, it follows that the ratio p(v)/q(v) in (7.19) depends only on y and is
given by

p(v)

q(v)
=

exp
(

λd2 Es
N0

‖y‖2
)

[
det

(
IL + 2λd2 Es

N0
Q
)]m . (7.56)
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8
Food for Future Thought

In this chapter, we illustrate how the expressions and techniques derived in

this dissertation can be applied to assess the performance of MIMO OSTBC
systems using different or additional transmission or modulation techniques.

In section 8.1, we show how the PEP of wireless systems combining orthog-
onal space-time block coding with channel coding can be obtained using the

techniques described in chapter 7. Preliminary performance results of OSTBC

systems employing adaptive modulation and coding (AMC) on Rayleigh fading
channels are presented in section 8.2. In section 8.3, we briefly touch upon the

performance of OSTBC systems using orthogonal frequency division multiplexing

(OFDM). A summary of this chapter is provided in section 8.4.

8.1 Channel Coding

In uncoded communication, the information bit sequence is modulated onto

a carrier wave, transmitted over the channel, and detected by the receiver. In
this way, a detection error due to ICSI or channel noise always results in one
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or more bit errors. In order to provide additional protection against bit errors,

wireless communication systems often use channel coding, which adds con-

trolled redundancy to the information bit sequence. More specifically, each
Nb-bit information sequence b is encoded into a unique Nc-bit coded bit se-

quence c, with Nc > Nb, before it is mapped to a symbol sequence s. The
redundancy in the input bit stream allows the decoder to detect and correct a

number of bit errors in the received data stream.

The PEP is defined as the probability that the likelihood of a codeword c

which differs from c0 is higher than the likelihood of c0. Let us assume that

the symbol vectors s0 and s corresponding to the codewords c0 and c, respec-
tively, consist of K subvectors s0,k and sk, with k = 1, . . . , K, each consisting

of Ns symbols s0,k,i and sk,i, with i = 1, . . . , Ns, respectively. In this way, the

subvectors s0,k and sk are transformed into the OSTBC matrices C0,k and Ck,
respectively. Assuming that all OSTBC matrices are sent within the same data

frame A0 , [C0,1, C0,2, . . . , C0,K] and are affected by the same channel matrix
H, the received signal is given by

R =
√

EsHA0 + W0, (8.1)

and the PEP in case of imperfect channel estimation is given by

PEP(s0, s) = Pr
[
‖R −

√
EsĤA‖2

< ‖R −
√

EsĤA0‖2
]

, (8.2)

where A , [C1, C2, . . . , CK]. Using a similar coordinate transformation as
described in appendix 7.A.1, it can be shown that the conditional PEP reduces

to

PEP(s0, s|x1, x2, z, g) = Pr

[
w > λ

√
Es

(
x2

1 + x2
2 + z2

) (
‖s‖2 − ‖s0‖2

)

−2
√

Es

{
λx1<[sH

0 (s − s0)] ‖g‖+ x2

K

∑
k=1

Ns

∑
i=1

‖Mk,ig‖
}]

, (8.3)

where the vector g and the RVs x1, x2, and z are introduced in section 7.2, w
is a zero-mean Gaussian RV with variance

σ2 = 2λN0

(
x2

1 + x2
2 + z2

)
‖s − s0‖2, (8.4)

and Mk,i is given by

Mk,i = (sk,i,R − s0,k,i,R)




Ns

∑
n=1
n 6=i

s0,k,n,RM
(i,R)
n,R +

Ns

∑
n=1

s0,k,n,IM
(i,R)
n,I


⊗ ILr

+ (sk,i,I − s0,k,i,I)




Ns

∑
n=1

s0,k,n,RM
(i,I)
n,R +

Ns

∑
n=1
n 6=i

s0,k,n,IM
(i,I)
n,I


⊗ ILr , (8.5)
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where s0,k,i = s0,k,i,R + js0,k,i,I and sk,i = sk,i,R + jsk,i,I, and the 2Lt × 2Lt matri-

ces M
(i,R)
n,R , M

(i,R)
n,I , M

(i,I)
n,R and M

(i,I)
n,I are obtained from (7.40) and (7.41). From

the conditional PEP (8.3), it follows that the PEP is given by averaging the
following Q-function over g, x1, x2 and z:

PEP(s0, s) = E

[
Q

(√
Es

2λN0

(
x2

1 + x2
2 + z2

) ‖s − s0‖2

[
λ
(

x2
1 + x2

2 + z2
) (

‖s‖2 − ‖s0‖2
)
− 2λx1<[sH

0 (s − s0)] ‖g‖

+2x2

K

∑
k=1

Ns

∑
i=1

‖Mk,ig‖
])]

. (8.6)

Unfortunately, unlike the BER computation in chapter 7, the number of RVs
in the expectation (8.6) cannot be further decreased for square OSTBCs, since

‖Mk,ig‖ in (8.6) does not reduce to a function of ‖g‖ only. The reason for this
is that the orthogonality conditions in (7.50) cannot be extended with

[
g
(i,q)
n,q

]T
g
(i,q̆)
n′,p = 0, (8.7)

where q and p may refer to R or I.

8.2 Adaptive Modulation and Coding

In spite of the outstanding average BER performance achieved by OSTBCs,

their instantaneous performance is still poor when the channel is in a deep
fade. To tackle this problem, we consider the technique of AMC [77], which

guarantees a given performance level by adapting one or more transmission

parameters, e.g., the constellation size, the coding rate or the transmit power,
based on information about the current channel state. In many AMC schemes,

the receiver estimates the CSI, updates the transmission parameters accord-
ingly, and sends them to the transmitter via a low-rate feedback channel. Be-

cause of the latency introduced by the feedback channel, however, the channel

may have changed at the time the updated transmission parameters are ap-
plied by the transmitter, a phenomenon which is called outdated feedback.

Therefore, in case of rapid fading, channel prediction is sometimes used to
avoid this.

In [78], closed-form expressions for the average BER and SE are derived

for a rate-adaptive M-QAM system employing orthogonal space-time block
coding with outdated, finite-rate feedback over i.i.d. flat Rayleigh fading chan-

nels. Closed-form expressions for the average SE of two rate-adaptive MIMO
schemes, i.e., OSTBCs and spatial multiplexing with zero-forcing receiver
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were derived in [79] for i.i.d. Rayleigh fading channels with ICSI. In [80], a

similar analysis was given for the case of spatially correlated Rayleigh fad-

ing channels with transmit correlation and PCSI. Closed-form expressions of
the average BER, SE and outage probability of rate-adaptive OSTBC systems

were given in [81] for spatially correlated Rayleigh channels with and without
PCSI. However, in [81] the instantaneous BER is approximated by an expo-

nential function, which simplifies the analysis significantly but can be not

sufficiently accurate for the performance evaluation in fading channels.

Based on the results from chapter 6, we derive a novel and accurate closed-

form expression for the average BER of a rate-adaptive MIMO OSTBC system

with ICSI in arbitrarily correlated Rayleigh fading channels. For the case of
i.i.d. Rayleigh fading channels, an exact closed-form expression is provided.

In addition, we provide a simple approximate closed-form expression for the

average BER, which yields more accurate results than the approximate ex-
pression from [81]. To guarantee a fair comparison between different channel

estimation scenarios, the performance is compared given a fixed total energy
for both data and pilot symbols, and the achieved spectral efficiency (ASE)

is considered rather than the SE. Our analysis enables system designers to

choose appropriate system parameters considering the trade-off between SE
and outage for a given target BER.

8.2.1 Adaptive Modulation Schemes

Let us consider a rate-adaptive MIMO OSTBC system, where the receiver

selects a constellation size Mj to be used by the transmitter from a finite set
of candidates M = {M0, M1, . . . , MJ} with Gray mapping, and sends this

information back to the transmitter over a perfect feedback channel without

delay. When fast adaptive modulation (FAM) is applied, the constellation size
Mj is chosen depending on the value of the estimated instantaneous SNR

γ̂ = ‖ĥ‖2 Es

N0
. (8.8)

Another approach consists in adapting Mj based on tracking of large-scale

fading. Analysis of fast and slow adaptive modulation (SAM) with diversity
is given in [82]. Here, FAM is applied and the modulation level Mj is selected

when γ̂ falls in the interval [γ̂?
j , γ̂?

j+1), where γ̂?
J+1 = ∞ and the switching

thresholds γ̂?
j , j = 0, . . . , J, are chosen to provide a given instantaneous target

BER P?
b

Pb,Mj
(γ̂?

j ) = P?
b (8.9)

where Pb,Mj
(γ̂) denotes the BER for Mj-QAM with imperfect channel estima-

tion as a function of the estimated instantaneous SNR γ̂. The instantaneous

BER Pb,Mj
(γ̂) is shown in Fig. 8.1 for Mj-QAM, with Mj ∈ {4, 16, 64}. When
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Figure 8.1: Instantaneous BER versus γ̂ in case of ICSI and Mj-QAM, with

Mj ∈ {4, 16, 64}. The thick line shows the instantaneous BER when FAM with

target BER P?
b = 10−6 is applied.

FAM is applied, the modulation level Mj is chosen such that the instantaneous

BER is always lower than the target BER. The thick line in Fig. 8.1 shows the
instantaneous BER for a target BER of P?

b = 10−6. When even the smallest

constellation size M0 does not meet the target BER, i.e., when γ̂ < γ̂?
0 , no

data are transmitted and the system is in outage. The general behavior of the

performance of multidimensional constellation signaling systems is analyzed

in [83].

8.2.2 Performance Evaluation

In chapters 6 and 7, the performance curves of fixed-rate systems with and
without PCSI were plotted as a function of Eb/N0, with Eb denoting the en-

ergy per information bit. However, since the relation (5.8) between Es and Eb

holds for a specific constellation only, Eb cannot be used as reference energy in
case of rate-adaptive systems that switch between different constellation sizes.

To this end, we introduce Ed as the average total energy required to transmit
one information symbol. Because a data frame reserving Kp time slots for
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pilot symbols and K time slots for coded data symbols contains NsK/Kc in-

formation symbols, the average total energy devoted to the transmission of

one data frame is given by Etot , (NsK/Kc)Ed. As indicated in section 5.1,
very accurate channel estimation can be obtained by allocating a large frac-

tion of Etot to pilot symbols. However, the more energy is devoted to pilot
symbols, the less energy remains available for data transmission, calling for a

trade-off between resources dedicated to pilot and data symbols for a set of

target performance metrics [60, 84]. The relation between Es and Ed is given
by

Es =
K

K + ηKp
ρEd, (8.10)

where η , Ep/Es and ρ , Ns/(LtKc).
Based on the BER expressions obtained in section 6 for fixed-rate systems

under Rayleigh fading channels, we derive closed-form expressions for the
resulting average BER, ASE, and bit error outage (BEO) of a rate-adaptive

MIMO OSTBC system with LMMSE channel estimation. For square OSTBCs

and M-QAM transmission, it follows from sections 6.2.1 and 6.3.1 that the
instantaneous conditional BER Pb,j(γ̂), conditioned on the estimated instanta-

neous SNR γ̂, is given by

Pb,M(γ̂) =

(
4

M

)Ns 1

log2 (
√

M)
∑

s∈Ψ
Ns
0

∑
bq∈Ψ′

dH(si,q, bq)Pr[ŝi,q = bq|γ̂, s], (8.11)

with i ∈ {1, . . . , Ns} and q being given by R or I. In (8.11), Pr[ŝi,q = bq|γ̂, s] is

given by

Pr[ŝi,q = bq|γ̂, s] = Q





√√√√D2
1(si,q, bq)

σ2
i,q(γ̂, s)



− Q





√√√√D2
2(si,q, bq)

σ2
i,q(γ̂, s)



 . (8.12)

In case of i.i.d. Rayleigh fading, it follows from (6.34) that σ2
i,q(γ̂, s) is given by

σ2
i,q(γ̂, s) =

1

2λγ̂

(
1 +

λ‖s‖2

N0
Es

+ ηKp

)
, (8.13)

whereas it follows from (6.67) that for arbitrarily correlated Rayleigh fading

and ηKp
Es
N0

� 1, σ2
i,q(γ̂, s) is approximately given by

σ2
i,q(γ̂, s) ≈ 1

2λγ̂

(
1 +

λ‖s‖2

ηKp

)
. (8.14)

Note that for non-square OSTBCs, a similar analysis can be provided using
the BER expressions resulting from sections 6.2.2 and 6.3.2. For a given target
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BER, the switching thresholds can be computed off-line by substituting (8.11)

into (8.9) and numerically solving the resulting equation.

Since the constellation size is selected based on the estimated instanta-

neous SNR γ̂, the average BER is given by

BER =
∑

J
j=0 Rj

∫ γ̂?
j+1

γ̂?
j

Pb,Mj
(x) pγ̂(x) dx

∑
J
j=0 Rj

∫ γ̂?
j+1

γ̂?
j

pγ̂(x) dx
. (8.15)

where Rj , log2(Mj) and pγ̂(x) is the PDF of γ̂. The ASE is defined as µ times

the SE, where µ , K/(K + Kp) represents the fraction of the resources that

is used for the transmission of the data-dependent portion of the frame [85].
Hence, the average ASE (in bits/s/Hz) is obtained as

ASE =
K

K + Kp

Ns

Kc

J

∑
j=0

Rj

∫ γ̂?
j+1

γ̂?
j

pγ̂(x) dx. (8.16)

Since the BEO is given by the probability that the BER corresponding to the
smallest constellation size M0 exceeds a target value P?

b [81, 86, 87], it results

in

BEO =
∫ γ̂?

0

0
pγ̂(x) dx. (8.17)

It is easily derived from (4.69) that the PDF pγ̂(x) of the estimated instanta-
neous SNR is given by

pγ̂(x) =
κ

∑
m=1

cm

∑
n=1

Dm,n

(n − 1)!
(

λm
Es
N0

)n xn−1 exp

(
− x

λm
Es
N0

)
, x ≥ 0 (8.18)

where λm, m = 1, 2, . . . , κ, denotes the m-th distinct eigenvalue of the covari-

ance matrix (5.18) of ĥ, with corresponding algebraic multiplicity cm, and the
parameters Dm,n are given by (4.70).

In order to obtain the numerator of (8.15), we derive the following closed-
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form solution

1

cn(L − 1)!

∫ b

a
Q
(√

βy
)

yL−1 exp
(
−y

c

)
dy

= Q
(√

βa
)

exp
(
− a

c

) L−1

∑
k=0

1

k!

( a

c

)k
− Q

(√
βb
)

exp

(
− b

c

) L−1

∑
k=0

1

k!

(
b

c

)k

−
√

βc

2 + βc
(Q(t1)− Q(t2))

L−1

∑
k=0

1

2k

(
2k

k

)
1

(2 + βc)k

− 1√
2π

√
βc

2 + βc

[
L−1

∑
k=1

1

2k

(
2k

k

)
1

(2 + βc)k

×
k

∑
i=1

2i−1 (i − 1)!

(2i − 1)!

(
exp

(
− t2

1

2

)
t2i−1
1 − exp

(
− t2

2

2

)
t2i−1
2

)]
. (8.19)

where t1 and t2 are defined as

t1 ,
√

βa + 2a/c, (8.20a)

t2 ,
√

βb + 2b/c. (8.20b)

In this way, a neat closed-form expression for the integral in the numerator
of (8.15) can be obtained from (8.11)-(8.14) and (8.18)-(8.19). Using (8.18),

closed-form expressions for the integrals in the denominator of (8.15) and in
(8.16)-(8.17) are easily obtained as

∫ γ̂?
j+1

γ̂?
j

pγ̂(x) dx =
κ

∑
m=1

cm

∑
n=1

Dm,n

(n − 1)!

[
γ

(
n,

γ̂?
j+1

λm
Es
N0

)
− γ

(
n,

γ̂?
j

λm
Es
N0

)]
, (8.21)

∫ γ̂?
0

0
pγ̂(x) dx =

κ

∑
m=1

cm

∑
n=1

Dm,n

(n − 1)!
γ

(
n,

γ̂?
0

λm
Es
N0

)
, (8.22)

where γ(s, x) denotes the lower incomplete gamma function, which is defined
as

γ(s, x) ,
∫ x

0
ts−1 exp (−t) dt. (8.23)

The complexity of the resulting closed-form expression for the average
BER can be further reduced by replacing ‖s‖2 in (8.13) or (8.14) by its ex-

pectation E[‖s‖2] = Ns. In this way, the summation over the data symbol

vector s in (8.11) reduces to a summation over si,R, which reduces the compu-
tational complexity of both the instantaneous and average BER considerably.

The impact of this approximation on the accuracy of the resulting average
BER expression is illustrated in section 8.2.3.
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Figure 8.2: Average BER of Alamouti’s code under correlated Rayleigh fading,

for both a target BER of P?
b = 10−3 and P?

b = 10−4.

8.2.3 Numerical results

We report numerical results for a rate-adaptive MIMO OSTBC system using

Alamouti’s code (4.14). We assume that Ep = Es, and that the constellation
set is given by M = {4, 16, 64}. To maximize the ASE for a given target BER,

the number of pilot symbols Kp is optimized with respect to the number of

coded data symbols K. With larger Kp, more accurate CSI can be obtained,
which reduces the BEO and enables larger constellations to meet the target

BER. However, increasing Kp also reduces Es and the ASE, according to (8.16),
because more resources are wasted on pilot symbols. Hence, Kp needs to be

carefully selected. We choose K = 20 and Kp = 4, which can be shown to be

a good trade-off between BEO and SE.

In section 8.2.2, we have shown how the average BER can be derived from
the instantaneous BER and the PDF of the estimated instantaneous SNR γ̂.

In Fig. 8.2, several analytical average BER curves are presented, correspond-

ing to different approximations of the instantaneous BER Pb,M(γ̂): (a) the
closed-form expression (8.11) using the approximation in (8.14); (b) the ap-

proximation of (8.11) discussed in the last paragraph of section 8.2.2; and (c)
the exponential approximation of Pb,M(γ̂), as used in [81]. The dots in the
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figure represent brute-force simulation results, which show a good agreement

with the analytical curves. We consider a mismatched receiver with one an-

tenna (Lr = 1) and assume a covariance matrix R given by

R =

(
1 0.6

0.6 1

)
. (8.24)

The results are shown for both a target BER of P?
b = 10−3 and P?

b = 10−4. From

the brute-force simulation results, it follows that the presented average BER (a)
resulting from (8.11) and (8.14) is very accurate for moderate to high average

SNR, whereas the approximations of the instantaneous BER used to obtain (b)

and (c) cause a shift of the resulting average BER curves. For a target BER of
P?

b = 10−4, the average BER curve from (b) turns out to be more accurate than

the BER (c) from [81], while both expressions have a similar computational
complexity. For low average SNR, the average BER curves from (a), (b), and (c)

diverge from the simulations because of the high-SNR approximations used to

obtain (8.14) or (8.11). In case of a rate-adaptive system, however, the low SNR
region is not of particular interest, as the BEO is very high and, consequently,

the resulting average ASE very low. Note that the average BER can be much
lower than the given target BER. This is due to the fact that the considered

AMC scheme guarantees that the instantaneous BER is always lower than the

target BER.

For the remaining numerical results, we will apply a target BER of P?
b =

10−4. Fig. 8.3 shows the average BER, ASE, and BEO curves for several values

of Lr under the assumption of i.i.d. Rayleigh fading with R = I2Lr . Using

(8.11) and (8.13), the exact average BER can be obtained. The performance
results are shown for both a receiver with PCSI and a mismatched receiver

with LMMSE channel estimation. The non-monotonic behavior of the average
BER results from the strong peaks in the instantaneous BER, as shown in

Fig. 8.1. Also, it is observed from the figure that both ICSI and the number of

receive antennas Lr have a considerable impact on the ASE and the BEO. ICSI
reduces the ASE significantly since channel estimation errors and the energy

devoted to pilot symbols give rise to a degradation of the instantaneous BER,
such that, compared to the case of PCSI, often a smaller constellation has

to be selected in order to satisfy the target BER constraint. Moreover, the

transmission of pilot symbols reduces the ASE by a factor K/(K+Kp) because
part of the resources that could be used for data symbols are now occupied by

pilot symbols. On the other hand, increasing the number of receive antennas

increases the ASE since the provided spatial diversity mitigates fading, such
that often a larger constellation can be selected which still satisfies the target

BER constraint.

Fig. 8.4 shows the average BER, ASE and BEO for a dual-antenna receiver
(Lr = 2) under correlated Rayleigh fading with R = Rt ⊗Rr, where Rt and
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Figure 8.3: Average BER, ASE and BEO of Alamouti’s code under

i.i.d. Rayleigh fading, for perfect and imperfect CSI, and for Lr ∈ {1, 2, 3}.
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Figure 8.4: Average BER, ASE and BEO of Alamouti’s code under correlated
Rayleigh fading with ρ ∈ {0, 0.3, 0.8}, and for perfect and imperfect CSI.
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Rr are given by

Rt = Rr =

(
1 ρ

ρ 1

)
(8.25)

and ρ denotes the correlation factor. The results are shown for both a receiver

with PCSI and a mismatched receiver with LMMSE channel estimation, and
for ρ ∈ {0, 0.3, 0.8}. Note that ρ = 0 corresponds to the case of i.i.d. fading. We

observe that for low correlation levels, i.e., ρ < 0.3, the impact of correlation

on the ASE and BEO is fairly negligible. For high correlation, however, e.g.,
ρ = 0.8, the ASE and BEO are clearly negatively affected by fading correlation.

8.3 MIMO-OFDM

In section 3.2.1, we have outlined how complex information symbols produced
by the mapper can be converted into a real-valued continuous signal which

can be transmitted over the channel. More specifically, it was shown how the
successive information symbols are shaped onto a transmit pulse and mod-

ulated on a carrier wave with RF frequency fc. As the information bearing

signal is modulated on a single carrier wave, this type of communication is
called single-carrier communication. Single-carrier technology is particularly

appealing on frequency-flat fading channels where the absence of ISI allows
to construct low-complexity transmitters and receivers. Note that all BER ex-

pressions presented in sections 6 and 7 were derived for single-carrier commu-

nication over flat-fading channels. When the channel is frequency-selective,
however, the spectrum of the transmitted signal is distorted and computation-

ally complex equalizing techniques are usually required to counter the effect

of ISI. Moreover, analytical error analysis becomes vastly complicated and the
obtained BER expressions cannot be applied.

By splitting up the information symbol sequence into N low-rate sequences
which are modulated on N different subcarriers and transmitted in parallel,

the distortion due to frequency-selective fading can be largely avoided. In par-

ticular, longer transmit pulses can be used for the N low-rate sequences such
that the bandwidth of each of the signals can be made relatively small and the

channel can be regarded as frequency-flat over each of the N subbands. The

technique where a symbol sequence is modulated on N different subcarriers
is called multi-carrier communication.

The most common multi-carrier technique is called orthogonal frequency
division multiplexing (OFDM) [88]. As OFDM uses orthogonal subcarriers,

inter-carrier interference (ICI) can be avoided and the receiver structure can

be kept relatively simple. In combination with MIMO, OFDM is considered
an appealing candidate for wireless applications requiring high data rates on

frequency-selective channels [89]. Recently, MIMO-OFDM has been adopted
in several standards, e.g., IEEE 802.16 (WiMAX) [90] and LTE [12]. In this
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section, we briefly explain how the MIMO-OFDM system model reduces to

N parallel single-carrier MIMO systems under frequency-flat fading. In this

way, the techniques used in chapters 6 and 7 to obtain the presented BER ex-
pressions, can also be useful to investigate the performance of MIMO-OFDM

systems.
For notational convenience, we assess OFDM for a SISO system. As will be

shown later on, the extension of OFDM to MIMO is pretty straightforward. As

opposed to a single-carrier system transmitting information symbols at rate
1/T, a regular OFDM system uses N subcarriers each transmitting in parallel

at a symbol rate 1/((N + ν)T), yielding a total symbol rate of

Rs,tot =
N

N + ν

1

T
. (8.26)

The subcarriers are complex exponentials with frequency fn = n/(NT), with

n = 0, 1, . . . , N − 1, such that they are orthogonal over an interval of duration

NT. Although realistic OFDM systems require transmit pulses with finite
bandwidth, we use rectangular transmit pulses p(t) with unit energy for the

sake of simplicity

p(t) ,






1√
(N+ν)T

if − νT ≤ t ≤ NT

0 otherwise
. (8.27)

Hence, by introducing s(k) = [s0(k), . . . , sN−1(k)] as the k-th block of N infor-

mation symbols, the complex-valued OFDM signal is given by

s(t) =
√

Es ∑
k

N−1

∑
n=0

sn(k)p(t − k(N + ν)T) exp(j2π fnt). (8.28)

The contribution of the n-th subcarrier to the transmitted signal (8.28) is shown
in Fig. 8.5(a) for k ∈ {−1, 0, 1}. Note that the time intervals [k(N + ν)T, k(N +
ν)T + NT] of length NT are the observation intervals, whereas the intervals
[k(N + ν)T− νT, k(N + ν)T] of length νT are called guard intervals. Assuming

that the signal s(t) is transmitted over a frequency-selective channel with im-

pulse response hch(t) = 0 if t < 0 or t > Tch, and frequency response Hch( f ),
it can be shown that within the observation intervals the received signal is

given by

r(t) =

√
Es

(N + ν)T ∑
k

N−1

∑
n=0

sn(k)Hch( fn) exp(j2π fnt) + w(t), (8.29)

provided that νT ≥ Tch. In Fig. 8.5(b), the received signal corresponding to
the signal transmitted on the n-th subcarrier is displayed. It is easily seen

from the figure that by making the guard intervals longer than the channel
impulse response, inter-block interference (IBI) is avoided in the observation
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k = −1 k = 0 k = 1

NT

νTνTνT

t

√
Es

(N+ν)T
sn(0)

0

(a) Transmitted OFDM signal.

νTνTνT

TchTchTch

NT t

√
Es

(N+ν)T
Hch( fn) sn(0)

0

(b) Received OFDM signal.

Figure 8.5: Transmitted and received OFDM signals.

intervals. Moreover, due to the specific shape of the pulse, the signals mod-

ulated on the different subcarriers are not distorted within the observation
intervals, yet only scaled by a complex-valued factor Hch( fn). Because of the

orthogonality of the subcarriers, ICI can be avoided between the contributions
corresponding to the different subcarriers in (8.29). To this end, we introduce

the variables rn(k), with n = 1, . . . , N, as

rn(k) =
1√
NT

∫ k(N+ν)T+NT

k(N+ν)T
r(t) exp(−j2π fnt)dt. (8.30)

Note that the receiver obtains rn(k) by multiplying the received signal r(t) by

exp(−j2π fnt) and integrating the result over the k-th observation interval. By
substituting (8.29) in (8.30), the variables rn(k) reduce to

rn(k) =
√

Es

√
N

N + ν
Hch( fn) sn(k) + wn(k), (8.31)

where wn(k) can be shown to be i.i.d. ZM CSCG RVs with variance N0. Hence,
the noise contributions corresponding to the different subcarriers are uncor-

related and rn(k) is a function of the corresponding information symbol sn(k)
only. Introducing the channel coefficients hn as hn ,

√
N/(N + ν)Hch( fn),
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with n = 1, . . . , N, the system model (8.31) further reduces to

rn(k) =
√

Es hn sn(k) + wn(k). (8.32)

Hence, considering the system model (3.45), it is readily verified that OFDM

reduces to N parallel single-carrier systems operating over frequency-flat fad-

ing channels. In realistic OFDM systems, the modulation of the information
symbols on the subcarriers is usually implemented by means of the inverse

fast Fourier transform (IFFT), whereas the demodulation relies on the fast
Fourier transform (FFT) [88]. However, the system model (8.32) is valid irre-

spective of the specific OFDM implementation.

To enable OFDM on a frequency-selective Lr × Lt MIMO channel, a multi-
antenna system must be equipped with Lt OFDM modulators and Lr OFDM

demodulators [91]. Although MIMO-OFDM can be easily combined with or-

thogonal space-time block coding by associating to each of the N subcarriers
an Lt × Kc OSTBC matrix, this strategy introduces a lot of latency as the re-

ceiver has to wait for Kc successive OFDM blocks before it can decode the OST-
BCs. Therefore, MIMO-OFDM systems usually employ space-frequency cod-

ing instead of space-time coding [92, 93]. Orthogonal space-frequency block

codes (OSFBCs) use identical code matrices as OSTBCs, yet the Kc columns of
the code matrix are associated to Kc adjacent subcarriers instead of Kc succes-

sive time slots. In this way, N/Kc code matrices can be transmitted during one

OFDM block. Assuming that the frequency response of the channel remains
constant over the Kc adjacent subcarriers used to transmit the n′-th OSFBC

matrix Cn′ , with n′ = 1, . . . , N/Kc, the system model corresponding to Cn′

reduces to

Rn′ =
√

Es Hn′ Cn′ + Wn′ , (8.33)

where the Lr × Lt matrix Hn′ consists of the channel coefficients representing
the channel on the subcarriers used to transmit Cn′ . Note that (8.33) is equiv-

alent to the system model (4.38) for single-carrier MIMO communication on

flat-fading channels. This result suggests that the techniques presented in this
dissertation could also be useful to investigate the performance of MIMO-

OFDM systems using orthogonal space-frequency block coding on frequency-
selective fading channels with ICSI. However, it is important to note that the

resulting expressions will depend on the specific strategy used to estimate the

channel coefficients Hn′ in (8.33) [89, 94–97].

8.4 Chapter Summary

In this chapter, we showed how we can extend and have already extended the
techniques and performance results described in chapters 6 and 7 to a num-

ber of interesting MIMO OSTBC applications using different or additional
transmission or modulation techniques. Preliminary analytical performance
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results were shown for MIMO OSTBC systems using additional channel cod-

ing. Furthermore, we investigated the effect of imperfect channel estimation

and fading correlation on the performance of rate-adaptive MIMO OSTBC
systems. Assuming finite-rate feedback without delay, we presented accurate

closed-form expressions for the average BER, ASE, and BEO, which enable
the design of such adaptive communication systems. Finally, we indicated

that the performance results obtained for single-carrier systems could also be

extended to MIMO-OFDM systems employing orthogonal space-frequency
block coding.
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9
Summary and Conclusions

In order to tackle the detrimental impact of multipath fading on the perfor-

mance of wireless communication, most wireless systems apply one or more
diversity techniques. In this way, the receiver is provided with multiple repli-

cas of the same signal through different, preferably independent, paths, which
can be generated in, e.g., frequency, time, or space. In this dissertation, we fo-

cused on the exploitation of spatial diversity by systems using multiple anten-

nas at both the transmitter and receiver side. More specifically, these so-called
MIMO systems are able to achieve a full diversity order of L = LtLr, with Lt

and Lr denoting the number of transmit and receive antennas, respectively,
provided that a proper space-time coding scheme is used. All results in this

dissertation were obtained for orthogonal space-time block codes, which are

considered to be a very appealing transmit diversity technique, since they
combine full diversity with a remarkably simple symbol-by-symbol optimal

detection algorithm.

In digital communications, the principal figure of merit to evaluate the

system performance is the bit error rate, which is defined as the ratio of the
number of erroneously received bits to the total number of bits. Since BER
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analysis through straightforward Monte-Carlo simulations involves bit error

counting, the accuracy of the BER result directly depends on the number of

observed bit errors. In case of low average BER, however, extremely long sim-
ulation times may be required to generate a sufficient number of bit errors.

Therefore, efficient and easy-to-evaluate analytical BER results are to be pre-
ferred for communication techniques achieving low BERs at moderate SNRs,

such as OSTBCs. Since an elegant analytical performance analysis of OST-

BCs is facilitated by their simple symbol-by-symbol detection, we provided in
this dissertation several useful BER expressions of OSTBCs under generalized

fading conditions, assuming imperfect CSI at the receiver side. To this end,
we considered a mismatched receiver using pilot aided channel estimation,

which applies the channel estimate in the same way as a receiver with perfect

CSI would apply the true channel.

For square OSTBCs and i.i.d. Rayleigh fading channels, we presented exact

closed-form expressions for the BER and the BER degradation due to imper-
fect channel estimation. For non-square OSTBCs, a very accurate closed-form

approximation was provided. For arbitrarily correlated Rayleigh fading chan-

nels, we derived closed-form BER approximations for square and non-square
OSTBCs, yielding very accurate BER results in the low-to-moderate SNR re-

gion. For square OSTBCs, the BER approximation is asymptotically exact. In
addition, we derived a simple rule of thumb that serves as an indicator for the

BER degradation caused by imperfect channel estimation and yields the exact

result in case of high SNR, square OSTBCs, PSK symbols, and i.i.d. Rayleigh
fading.

Under the assumption of arbitrarily distributed flat-fading channels with
ML channel estimation, we have reduced the exact BER expression to an ex-

pectation over Ns discrete RVs and 2L+ 3 real-valued continuous RVs, with Ns

denoting the number of information symbols in the considered OSTBC matrix.

For square OSTBCs, the resulting exact BER expression reduces further to an

expectation over Ns discrete RVs and 4 real-valued continuous RVs, regardless
of the number of antennas. The exact BER expressions can be efficiently and

accurately evaluated by means of numerical integration techniques, i.e., the

quadrature rule and Monte-Carlo integration with importance sampling, or a
combination thereof. The numerical evaluation of the exact BER expressions

was specified for the case of correlated Nakagami-m fading channels. Ad-
ditionally, we provided a computationally simple approximation of the BER

based on treating the symbol interference due to imperfect channel estimation

as white Gaussian noise. Although the resulting expression is in general not
asymptotically exact, it yields very accurate BER results when the fading dis-

tribution is similar to Rayleigh and when a sufficient number of pilot symbols
is used.

The BER expressions derived in this dissertation allow system designers
to assess the effect of channel estimation errors and fading correlation on the
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performance of OSTBCs. Moreover, we showed how the presented techniques

and performance results can be extended to a number of interesting MIMO

OSTBC applications using different or additional transmission or modulation
techniques. Preliminary analytical BER results were shown for MIMO OSTBC

systems using either additional channel coding or adaptive modulation and
coding. Finally, we suggested that the performance results obtained for single-

carrier systems could also be extended to OFDM systems.
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publications: 5 refereed international journal publications and 10 conference
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• IEEE Transactions on Communications: [72, 99]

• IEEE Transactions on Signal Processing: [100]
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