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Abstract

This thesis presents a framework for evaluating the bit error probability of Nd-branch
diversity combining in the presence of non-ideal channel estimates. The estimator structure
is based on the maximum likelihood (ML) estimate and arises naturally as the sample
mean of Np pilot symbols. The framework presented requires only the evaluation of a single
integral involving the moment generating function of the norm square of the channel gain
vector, and is applicable to channels with arbitrary distribution, including correlated fading.
Analytical results show that the practical ML channel estimator preserves the diversity order
of an Nd-branch diversity system, contrary to conclusions in the literature based upon a
model that assumes a fixed correlation between the channel and its estimate. Finally, the
asymptotic signal-to-noise ratio (SNR) penalty due to estimation error is investigated. This
investigation reveals that the penalty has surprisingly little dependence on the number of
diversity branches.
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Chapter 1

Introduction

Diversity techniques can significantly improve the performance of wireless communication

systems [1–4]. Among the various forms of diversity techniques, perfect coherent maximal-

ratio combining (MRC) plays an important role as it provides the maximum instantaneous

signal-to-noise ratio (SNR) at the combiner output. The performance of MRC over flat

fading channels has been extensively investigated in the literature. For example, multipath

diversity using Rake reception with MRC has played an increasingly important role in

spread spectrum multiple-access systems [5–7] and more recently in third generation wireless

systems [8–10], as well as in ultra-wide bandwidth (UWB) systems [11–14]. These results

assume perfect channel knowledge; however, practical receivers must estimate the channel,

thereby incurring estimation error which needs to be accounted for in the performance

analysis.

The problem of weighting error in what is essentially a maximal-ratio combiner was

examined in [15, 16]. The system was assumed to be operating in independent identically

distributed (i.i.d.) Rayleigh fading channels, and estimates of the channel were derived from

a pilot tone. The pilot tone was transmitted at a frequency offset from the data channels

and used to provide appropriate weighting for combining. Expressions for the distribution of

the instantaneous SNR1 as well as the error probability of both non-coherent and coherent

binary orthogonal signaling schemes were developed in [15, 16]. Similarly, [17, 18] analyzed

the distribution of the SNR in the presence of complex Gaussian weighting errors for MRC.

In these studies, the weighting errors were characterized by a correlation coefficient between

1Throughout this paper, we use the term SNR to refer to instantaneous SNR. The term average SNR is
explicitly used to describe the SNR averaged over the fading ensemble.
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the channel gain and its estimate.

While the SNR is a meaningful measure for analog systems, it does not completely

describe the performance of a digital system. A more meaningful measure for digital systems

is the bit error probability (BEP). In [19–21], the BEP was derived for MRC systems by

averaging the conditional BEP, conditioned on the SNR. Note however, that these results

can be misleading as they do not truly reflect the actual BEP [15, 22]. The averaging

in [19–21] was performed over a distribution developed from the SNR distribution given

in [15–18]. The studies in [19–21] considered a model where the correlation coefficient

between the channel estimate and the true channel is independent of the SNR, that is, the

BEP was parameterized by fixed values of correlation.

Regardless of the choice of the model, one expects the accuracy of the estimator to

improve as the SNR increases. Along these lines, [23–25] considered a different model for

analyzing error probability in digital transmission systems using pilot signals in which the

correlation coefficient between the channel estimate and the true channel is dependent on

the SNR. This model reflects the fact that as the SNR increases the estimator is capable

of achieving a higher level of accuracy. Pilot symbol assisted modulation for single antenna

systems in time varying Rayleigh fading channels has been analyzed assuming frequency-

flat and frequency-selective channels in [26] and [27], respectively. Note that the work

in [15–21,23,24] was applicable only to i.i.d. Rayleigh fading environments.

This thesis develops an analytical framework that enables the evaluation of the perfor-

mance of Nd-branch diversity systems with practical channel estimation. This framework is

applicable to any environment, provided that its fading can be characterized by a moment

generating function (m.g.f.). Our methodology, requiring only the evaluation of a single

integral with finite limits, is valid for channels with arbitrary distribution, including cor-

related fading. To illustrate the proposed methodology, we consider Nakagami-m fading

channels that have been shown to accurately model the amplitude distribution of the UWB

indoor channel [28].2 We also examine the case of Ricean fading, as it is appropriate for

channels with line of sight components, such as satellite communication channels [3,29]. We

consider a channel estimator structure in which the correlation between the estimate and

the true channel is a function that is dependent on the SNR. The SNR penalty, arising from

degradation due to practical channel estimation, is quantified and we reveal a surprisingly

2Note that the special case of m = 1 reduces to the classical Rayleigh fading channel.
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small dependence on Nd.

This thesis is organized as follows. In the next chapter, the models for both the system

and estimator are presented. Chapter 3 examines the mean and normalized standard devi-

ation (NSD) of the decision variable to provide initial insights into the behavior of diversity

systems with practical channel estimation. In Chapter 4 the BEP of Nd-branch diversity

for channels with arbitrary fading distributions is evaluated and some special cases are dis-

cussed. The BEP expressions are applied to a few common independent fading channel

models and asymptotic expressions are developed in Chapter 5. Chapter 6 investigates per-

formance in correlated fading channels. Chapter 7 discusses important aspects of practical

diversity systems including the correlation coefficient between the true channel gain and

its estimate and the SNR penalty due to practical channel estimation. Numerical results

are given for the BEP of systems operating in Nakagami and Ricean fading environments,

including correlated fading. Finally, Chapter 8 presents concluding remarks.

13



14



Chapter 2

Model

We consider an Nd-branch diversity system utilizing a binary phase-shift keying (BPSK)

signaling scheme. In the interval (0, T ) we transmit signals of the form1

sm(t) = R
{

am g(t) ej2πfct
}

, m = 0, 1, (2.1)

where am denotes the data symbols taking on the values ±1 with equal probability. Here

the signal pulse shape, g(t), is a real-valued waveform that has energy Es = 1
2

∫ T
0 |g(t)|2 dt

and support (0, T ). The received signal on the kth branch is then modeled as

rk(t) = hksm(t) + nk(t), 0 ≤ t ≤ T, 1 ≤ k ≤ Nd. (2.2)

Such a diversity system is depicted in Fig. 2-1.

The receiver demodulates rk(t) using the matched filter with impulse response 1√
2Es

g∗(T−
t).2 Sampling the output yields

rk = hksm + nk, (2.3)

where sm ∈ {+√
2Es,−

√
2Es} represents the message symbol, hk is a complex, multiplica-

tive gain introduced by fading in the channel, and nk represents a sample of the additive

noise on the kth branch. The additive noise is modeled as a complex Gaussian random vari-

able (r.v.) with zero mean and variance N0 per dimension and is assumed to be independent

among the diversity branches. We consider slowly fading channels, so h = [h1, h2, . . . , hNd
]

1R{·} is used to denote the real part.
2The complex conjugate is denoted by (·)∗.
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Figure 2-1: A diversity system employing multiple antennas.

is effectively constant over a block of symbols, without making any assumptions about the

distribution of h. Note also that there are no restrictions placed on the correlation between

individual branch fading gains, hk, that is, our analysis is valid for channels with arbitrary

correlation matrix.

If h were known at the receiver, the optimal combiner that maximizes the output SNR

is well known to be MRC,

r =
Nd∑
k=1

h∗
krk.

In practice, however, h must be estimated; thus the combiner output is

r =
Nd∑
k=1

ĥ∗
krk, (2.4)

where ĥk is an estimate of the multiplicative gain, hk, on the kth branch. Clearly, the

performance of this combining scheme greatly depends on the quality of the estimate ĥk.3

3This receiver structure is the same as studied in [23–25] and is referred to as “fixed-reference coherent
detection” in [15].
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As in [23–25], information can be derived from a pilot transmitted in previous signaling

intervals to form an estimate of the channel. Without loss of generality, all pilot symbols

are considered to be +1. The received pilot, after demodulation, matched filtering and

sampling can be represented by

pk,i =
√

2Ephk + nk,i , (2.5)

where pk,i and nk,i denote the pilot symbol and noise samples, respectively, received on

the kth branch during the ith previous signaling interval and Ep is the energy of the pilot

symbol. Then, the linear estimate based on the previous Np pilot transmissions is given by

ĥk =
∑Np

i=1 cipk,i√
2Ep

∑Np

i=1 ci

= hk +
∑Np

i=1 cink,i√
2Ep

∑Np

i=1 ci

, (2.6)

where ci is an estimator weighting coefficient [30, 31]. The maximum likelihood estimate

arises if we let ci = 1, ∀i, which gives4

ĥk = hk +
∑Np

i=1 nk,i√
2EpNp

.

Note that this particular estimator structure is the sample average of Np pilot transmissions.

Furthermore, this estimator is both unbiased and efficient, with E

{̂
hk

}
= hk and variance

E

{∣∣∣ĥk − hk

∣∣∣2} = N0
EpNp

, achieving the Cramér-Rao lower bound with equality. It is also

important to realize that both the pilot energy and the number of pilot symbols play a

critical role in the performance of this estimator. As the pilot energy and/or the number

of pilot symbols increase, the estimate becomes more accurate. That is, the estimate, and

hence its correlation with the true channel gain, depends on both the average pilot SNR

and the number of pilots, Np, used to form the estimate [32]. Figure 2-2 shows the diversity

combining system utilizing practical channel estimation in detail.

4In reality, knowledge of Ep is not needed since scaling ĥk by any positive scalar does not affect the
performance of the decision process in (3.1).
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Figure 2-2: A diversity system utilizing practical channel estimation.
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Chapter 3

Analysis of the Mean and Variance

of the Decision Variable

The performance of diversity systems in fading channels can be characterized by various

performance measures. These measures include average output SNR, symbol error probabil-

ity (SEP), symbol error outage (SEO), outage probability, and outage capacity. Depending

on the nature of the traffic (type of data), operating environments, etc., some measures are

more meaningful than others, with a varying degree of difficulty in their evaluation. Among

them, SEP is one of the most commonly used measures, since it provides insights into the

performance of digital communication systems.

Occasionally one encounters diversity combining systems operating in environments that

do not lend themselves to tractable SEP analysis. In such cases, one may resort to other

performance measures, such as the average output SNR, averaged over the fast fading

[33, 34]. The notion of the normalized standard deviation (NSD) of the instantaneous

output SNR was introduced in [35] to assess the effectiveness of diversity systems in the

presence of fading.

In the case of diversity systems with practical channel estimation, where knowledge of

the channel is derived from imperfect estimates, the mean and NSD of the decision variable

can be used to provide insights into the behavior of the system. Using the decision variable’s

characteristic function (c.f.), we first derive the mean and variance of the decision variable

for arbitrary fading channels. The NSD is then computed using these quantities and, along

with the mean, is used to examine the effectiveness of diversity systems with practical

19



channel estimation.

3.1 Characteristic Function of the Decision Variable

The decision variable, on which the receiver bases its decision, is given by D = R{r}. Using

(2.4), we can rewrite D as

D =
Nd∑
k=1

dk,

where

dk = R
{

ĥ∗
krk

}
=

1
2

(h∗
k + e∗k) (hksm + nk) +

1
2

(hk + ek) (h∗
ksm + n∗

k) , (3.1)

and ek =
PNp

i=1 nk,i√
2EpNp

is the complex Gaussian estimation error.

In general, if the diversity branches are correlated, the variables, dk, in (3.1) will not

be independent. However, conditioned on the channel gain vector, h, the branches are

conditionally independent and (3.1) can be viewed as a Hermitian quadratic form involving

complex normal random variables [36, 37]. Conditioned on hk and given that a1 = +1 was

transmitted,1 we can write2

dk = v†kQvk ,

where

vk =

⎛
⎝ hk + ek

√
2Eshk + nk

⎞
⎠ , E{vk|hk} =

⎛
⎝ hk

√
2Eshk

⎞
⎠ , and Q =

⎛
⎝0 1

2

1
2 0

⎞
⎠ . (3.2)

Using the result of [37], the c.f., conditioned on hk, is

φdk|hk
(t) = E

{
ejtdk

∣∣∣hk

}
= |I − jtLQ|−1 exp

(
−E{vk|hk}† L−1

[
I − (I − jtLQ)−1

]
E{vk|hk}

)
, (3.3)

1Unless otherwise stated, we assume that a1 = +1 was transmitted. Of course, since we are using BPSK
with equiprobable symbols, the analyses are symmetric.

2(·)† denotes Hermitian transpose.
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where

L = E

{
(vk − E{vk|hk})(vk − E{vk|hk})†

∣∣∣hk

}
=

⎛
⎝ N0

EsNp ε 0

0 2N0

⎞
⎠

is the covariance matrix, and ε � Ep

Es
is the ratio of pilot energy to data energy. After some

simplification, (3.3) can be written as

φdk|hk
(t) =

2EsNp ε

N2
0 t2 + 2EsNpε

exp

(
Es |hk|2

(
2j
√

2EsNp ε t − N0 (Np ε + 1) t2
)

N2
0 t2 + 2EsNp ε

)
.

Since each dk is conditionally independent, the conditional c.f. of D is given by the product

of the individual c.f.’s

φD|h(t) =
Nd∏
k=1

φdk|hk
(t)

=
[

2EsNp ε

N2
0 t2 + 2EsNpε

]Nd

exp

(
Es ‖h‖2 (2j

√
2EsNp ε t − N0 (Np ε + 1) t2

)
N2

0 t2 + 2EsNp ε

)
, (3.4)

where ‖h‖2 =
∑Nd

k=1 |hk|2 is the norm square of the channel gain vector.

3.2 Statistics of the Decision Variable

Using (3.4) and properties of c.f.’s one can evaluate the first and second moments of D

when conditioned on h:

E{D|h} =
1
j

d

dt
φD|h(t)

∣∣∣∣∣
t=0

=
√

2Es ‖h‖2 (3.5)

E
{
D2|h} =

(
1
j

)2 d2

dt2
φD|h(t)

∣∣∣∣∣
t=0

= 2Es ‖h‖4 +
Nd N2

0 + Es ‖h‖2 N0(Np ε + 1)
EsNp ε

. (3.6)

To find E{D} we simply average E{D|h} over h

E{D} = Eh

{
E{D|h}} =

√
2Es E

{
‖h‖2

}
. (3.7)
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Using the law of total variance [38], the variance of the decision variable is

Var{D} = E{Var{D|h}} + Var{E{D|h}}

= 2Es

(
E

{
‖h‖4

}
− E

2
{
‖h‖2

})
+

Nd N2
0 + EsE

{
‖h‖2

}
N0(Np ε + 1)

EsNp ε
. (3.8)

Using (3.7) and (3.8) we define the NSD of the decision variable as

σ̌D � 10 log10

[√
Var{D}
E{D}

]

= 10 log10

⎡
⎢⎣
√√√√√Var

{
‖h‖2

}
E2
{
‖h‖2

} +
Nd

2Np ε

N2
0

E2
s E2

{
‖h‖2

} +
Np ε + 1
2Np ε

N0

EsE

{
‖h‖2

}
⎤
⎥⎦

= 10 log10

⎡
⎢⎣
√√√√√Var

{
‖h‖2

}
E2
{
‖h‖2

} +
Nd

2Np ε

(
1

Γtot

)2

+
Np ε + 1
2Np ε

(
1

Γtot

)⎤⎥⎦ , (3.9)

where we have defined Γtot � E

{
‖h‖2

}
Es
N0

as the average total SNR. Note that this expres-

sion makes no assumption about the distribution of the fading. In Chapter 7 the NSD of

the decision variable is evaluated for Nakagami fading channels.
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Chapter 4

Analysis of the Bit Error

Probability

In this chapter we determine the BEP via a m.g.f. approach. We develop a methodology

that requires evaluation of a single integral with finite limits and is applicable to channels

with arbitrary distribution, including correlated fading.

4.1 Bit Error Probability Conditioned on h

In Chapter 3 the c.f. of the decision variable conditioned on the channel gain vector was

derived as

φD|h(t) =
[

2EsNp ε

N2
0 t2 + 2EsNpε

]Nd

exp

(
Es ‖h‖2 (2j

√
2EsNp ε t − N0 (Np ε + 1) t2

)
N2

0 t2 + 2EsNp ε

)
,

given that a1 = +1 was transmitted. In this case, a bit error will occur if D < 0. Thus, to

evaluate the BEP, we need to determine

Pr{e |h} = Pr{D < 0 |h} =
∫ 0

−∞
1
2π

∫ ∞

−∞
φD|h(t)e−jtDdt dD ,

where the inner integral is the inversion of the conditional c.f. The order of integration

can be exchanged, and the integration over D performed, provided that a small imaginary
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constant, jε, is added to avoid the singularity at t = 0

Pr{e |h} = − 1
2πj

∫ ∞+jε

−∞+jε

φD|h(t)
t

dt

= − 1
2πj

∫ ∞+jε

−∞+jε

⎡
⎣ 2EsNp ε

N2
0

t
(
t2 + 2EsNpε

N2
0

)
⎤
⎦

Nd

× exp

⎛
⎝ 2EsNp ε

N2
0

(
j
√

2Es ‖h‖2 t − N0
2

Np ε+1
Np ε ‖h‖2 t2

)
t2 + 2EsNp ε

N2
0

⎞
⎠ dt . (4.1)

Note that the integral in (4.1) is of the form

−(v1v2)
L

2πj

∫ ∞+jε

−∞+jε

1
t(t + jv1)L(t − jv2)L

exp
(

v1v2(jtα2 − t2α1)
(t + jv1)(t − jv2)

)
dt , (4.2)

with

L = Nd

v1 = v2 =

√
2EsNp ε

N0

α1 =
N0

2
Np ε + 1

Np ε
‖h‖2

α2 =
√

2Es ‖h‖2 .

Such an integral was evaluated in [23,25] as

Q1(a, b) − I0(ab) exp
[
−1

2
(a2 + b2)

]

+
I0(ab) exp

[−1
2(a2 + b2)

]
(1 + v2/v1)(2L−1)

L−1∑
k=0

(
2L − 1

k

)(
v2

v1

)k

+
exp

[−1
2(a2 + b2)

]
(1 + v2/v1)(2L−1)

L−1∑
n=1

In(ab)
L−1−n∑

k=0

(
2L − 1

k

)

×
[(

b

a

)n(v2

v1

)k

−
(a

b

)n
(

v2

v1

)2L−1−k
]

, (4.3)
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where Q1(·, ·) is the Marcum Q-function, In(·) is the modified Bessel function of the nth

order, and

a =
[
2v2

1v2(α1v2 − α2)
(v1 + v2)2

]1/2

, b =
[
2v2

2v1(α1v1 + α2)
(v1 + v2)2

]1/2

. (4.4)

Using (4.3) in (4.1), in conjunction with the fact that v2
v1

= 1, we obtain the conditional

error probability, conditioned on the channel vector h, as

Pr{e |h} = Q1(ζb, b) − 1
2
I0(ζb2) exp

(
−b2

2
(1 + ζ2)

)

+
1

2(2Nd−1)

Nd−1∑
n=1

In(ζb2) exp
(
−b2

2
(1 + ζ2)

)

×
Nd−1−n∑

k=0

(
2Nd − 1

k

)[
ζ−n − ζn

]
, (4.5)

where, as in [39], we define ζ � a
b , 0 < ζ ≤ 1, and

a =
√

Es ‖h‖
∣∣√Np ε − 1

∣∣
√

2N0
(4.6)

b =
√

Es ‖h‖ (
√

Np ε + 1)√
2N0

. (4.7)

Now we make use of the following expressions for Q1(ζb, b) and In(z) [39, 40],

Q1(ζb, b) =
1
4π

∫ π

−π

{
exp

(
−b2

2
(1 + 2ζ sin θ + ζ2)

)

+ exp
(
−b2

2

[
(1 − ζ2)2

1 + 2ζ sin θ + ζ2

])}
dθ (4.8)

In(z) =
1
2π

∫ π

−π
cos

(
n
(
θ +

π

2

))
e−z sin θdθ . (4.9)

Application of (4.8) and (4.9) to (4.5) and further simplification yields

Pr{e |h} =
1
4π

∫ π

−π

{
exp

(
−b2

2

[
(1 − ζ2)2

g(θ; ζ)

])
+ f(θ; ζ) exp

(
−b2

2
g(θ; ζ)

)}
dθ , (4.10)
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where

f(θ; ζ) =
1

2(2Nd−2)

Nd−1∑
n=1

cos
(
n
(
θ +

π

2

)) [
ζ−n − ζn

]Nd−1−n∑
k=0

(
2Nd − 1

k

)
(4.11)

g(θ; ζ) = 1 + 2ζ sin θ + ζ2 . (4.12)

Now, we note that

b2 =
Es ‖h‖2 (

√
Np ε + 1)2

2N0
=

Γtot ‖h‖2 (
√

Np ε + 1)2

2 E

{
‖h‖2

} (4.13)

ζ =

∣∣√Np ε − 1
∣∣√

Np ε + 1
. (4.14)

Substitution of (4.13) and (4.14) into (4.10) yields the simplified expression for the BEP

when conditioned on the channel

Pr{e |h} =
1
4π

∫ π

−π

⎧⎨
⎩exp

⎛
⎝−Γtot ‖h‖2 (

√
Np ε + 1)2

4 E

{
‖h‖2

} [
(1 − ζ2)2

g(θ; ζ)

]⎞⎠

+ f(θ; ζ) exp

⎛
⎝−Γtot ‖h‖2 (

√
Np ε + 1)2

4 E

{
‖h‖2

} g(θ; ζ)

⎞
⎠
⎫⎬
⎭ dθ . (4.15)

The advantage of (4.15), compared to the original equation (4.5), is now apparent in that

averaging over h is a simple process because it lies only in the exponents. In addition, (4.15)

only depends on ‖h‖2, that is, it is sufficient to only condition on a single r.v., namely the

norm square of the channel gain vector, as opposed to conditioning on the entire vector,

involving Nd r.v.’s.

4.2 Bit Error Probability for Arbitrary Fading Channels

We now determine the BEP of our practical diversity system in arbitrary fading channels

by averaging (4.15) over the channel ensemble:

Pe = Eh

{
Pr{e |h}}.

26



In [19–21] the conditional BEP, conditioned on the SNR, is averaged over the distribu-

tion of the SNR. Our derivation shows that one must average Pr{e |h} in (4.15) over the

distribution of the fading ensemble to get the exact BEP. This is in agreement with the

observation made recently in [22]. A similar observation was also made more than four

decades ago in [15], “Since we do not have exact coherent detection one can not average

over the nonfading coherent detection error probability . . . to obtain the error probability

of fixed-reference coherent detection.”

Since the Nd terms that we are averaging over appear only as ‖h‖2 in the exponents of

Pr{e |h} in (4.15), we obtain the exact BEP expression as

Pe(Γtot) =
1
4π

∫ π

−π

⎧⎨
⎩M‖h‖2

⎛
⎝−Γtot(

√
Np ε + 1)2

4E

{
‖h‖2

} (1 − ζ2)2

g(θ; ζ)

⎞
⎠

+ f(θ; ζ)M‖h‖2

⎛
⎝−Γtot(

√
Np ε + 1)2

4E

{
‖h‖2

} g(θ; ζ)

⎞
⎠
⎫⎬
⎭ dθ, (4.16)

where M‖h‖2(s) � Eh

{
e+s‖h‖2

}
is the m.g.f. of the norm square of the channel gain vector.

Thus, we have an exact BEP expression for practical diversity systems in the presence of

channel estimation error, for arbitrary channels. All we require is the evaluation of a single

integral with finite limits and an integrand involving only the m.g.f. of the norm square of

the channel gain vector.

4.3 Special Cases

In this section we consider some special cases of the BEP expression. From (4.16) we see

that the BEP depends on Np and ε through the quantity Np ε. Here, we investigate the

cases where Np ε is large, Np ε → 1, and Np ε = 0.

4.3.1 Large Np ε

Since Np and ε represent the number of pilot symbols used to form the estimate of the

channel and the ratio of pilot energy to data energy, respectively, with increasing Np ε we

expect to see performance approach that of perfect channel knowledge. For a particular
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value of θ ∈ (−π, π) we consider the limit of the integrand in (4.15),

lim
Np ε→∞

⎧⎨
⎩exp

⎛
⎝−Γtot ‖h‖2 (

√
Np ε + 1)2

4 E

{
‖h‖2

} [
(1 − ζ2)2

g(θ; ζ)

]⎞⎠

+ f(θ; ζ) exp

⎛
⎝−Γtot ‖h‖2 (

√
Np ε + 1)2

4 E

{
‖h‖2

} g(θ; ζ)

⎞
⎠
⎫⎬
⎭ . (4.17)

From (4.14), as Np ε → ∞, we note that ζ → 1. This causes f(θ; ζ) in (4.11) to go to

zero. Furthermore, for large Np ε the exponent in the second term of (4.17) tends to −∞,

hence the limit of the second term is zero. Thus, we need only consider the limit of the first

term

lim
Np ε→∞

exp

⎛
⎝−Γtot ‖h‖2 (

√
Np ε + 1)2

4 E

{
‖h‖2

} [
(1 − ζ2)2

g(θ; ζ)

]⎞⎠

= lim
Np ε→∞

exp

⎛
⎜⎜⎜⎝− Γtot ‖h‖2

4 E

{
‖h‖2

}
⎡
⎢⎢⎢⎣
(

(
√

Np ε + 1) − (
√

Np ε−1)2

√
Np ε+1

)2

g(θ; ζ)

⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠

= lim
Np ε→∞

exp

⎛
⎜⎜⎜⎝− Γtot ‖h‖2

4 E

{
‖h‖2

}
⎡
⎢⎢⎢⎣
(

4
√

Np ε√
Np ε+1

)2

g(θ; ζ)

⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠ = exp

⎛
⎝− 2 Γtot ‖h‖2

E

{
‖h‖2

}
(1 + sin θ)

⎞
⎠

(4.18)

Using (4.18) in (4.15), averaging over the fading ensemble, and simplifying gives

Pe(Γtot) =
1
π

∫ π
2

0
M‖h‖2

⎛
⎝− Γtot

E

{
‖h‖2

}
sin2 θ

⎞
⎠ dθ, (4.19)

as Np ε → ∞. We recognize (4.19) as the BEP for BPSK with perfect channel knowledge [39,

p. 268].

4.3.2 Np ε → 1

This case is of interest as it includes the simplest estimator, namely the case where Np = 1

and ε → 1. From (4.14), when Np ε → 1, ζ → 0. In order to evaluate the BEP performance

in this case, we begin with (4.5) and apply the small argument form of the modified Bessel
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function of the nth order [39, p. 84],

In(z) ≈
(

z
2

)n
n!

, z small,

where we have assumed that n is a non-negative integer. Assuming that ζ is small, we have

Pr{e |h} = Q1(ζb, b) − 1
2

exp
(
−b2

2
(1 + ζ2)

)

+
1

2(2Nd−1)

Nd−1∑
n=1

1
n!

(
ζb2

2

)n [
ζ−n − ζn

]
exp

(
−b2

2
(1 + ζ2)

)

×
Nd−1−n∑

k=0

(
2Nd − 1

k

)
.

Simplifying gives

Pr{e |h} = Q1(ζb, b) − 1
2

exp
(
−b2

2
(1 + ζ2)

)

+
1

2(2Nd−1)

Nd−1∑
n=1

1
n!

[(
b2

2

)n

−
(

ζ2b2

2

)n]
exp

(
−b2

2
(1 + ζ2)

)

×
Nd−1−n∑

k=0

(
2Nd − 1

k

)
.

Now, we take the limit as ζ → 0. Noting that Q1(0, b) = exp
(
− b2

2

)
, after careful simplifi-

cation we have

Pr{e |h} =
1

22Nd−1

Nd−1∑
n=0

1
n!

(
b2

2

)n

exp
(
−b2

2

)Nd−1−n∑
k=0

(
2Nd − 1

k

)
,

where, from (4.13), b2

2 = Γtot‖h‖2

E{‖h‖2} . Using the fact that for a random variable X,

E
{
XnesX

}
=

dn

dsn
MX(s) ,

we obtain the unconditional BEP expression as

Pe(Γtot) =
1

22Nd−1

Nd−1∑
n=0

1
n!

⎛
⎝ Γtot

E

{
‖h‖2

}
⎞
⎠

n

dn

dsn
M‖h‖2(s)

∣∣∣∣
s=− Γtot

E{‖h‖2}

Nd−1−n∑
k=0

(
2Nd − 1

k

)
.
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4.3.3 Np ε = 0

In this case, no channel estimation is performed, so we expect performance to degrade

completely. From (4.14), when Np ε = 0 we have ζ = 1. This causes f(θ; ζ) to equal zero

for all θ, hence the second term in (4.16) does not contribute to the integral. Also, note

that the argument of the m.g.f. in the first term of (4.16) is zero. Using the fact that

M‖h‖2(0) = 1, we have

Pe(Γtot) =
1
4π

∫ π

−π
dθ =

1
2

.

As expected, without performing any estimation the receiver achieves the worst possible

performance.
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Chapter 5

BEP for Independent Fading

Using the analytical framework developed in the previous chapter, which is valid for arbi-

trary fading distributions, this chapter evaluates the BEP for some common independent

non-identically distributed (i.n.i.d.) channel models.1 First, Nakagami-m distributed chan-

nels with arbitrary m parameters are considered. Next, the case of Rayleigh fading is

presented. The case of Ricean distributed channels is also considered. Asymptotic results

for the special case of i.i.d. fading are obtained to determine the diversity order of systems

with practical channel estimation operating in these channels.

5.1 Nakagami and Rayleigh Fading Environments

Nakagami-m fading channels have received considerable attention in the study of various

aspects of wireless systems [41,42]. In particular, it was shown recently that the amplitude

distribution of the resolved multipath components in ultra-wide bandwidth (UWB) indoor

channels can be well-modeled by the Nakagami-m distribution [28]. The Nakagami-m family

of distributions, also known as the “m-distribution,” contains Rayleigh fading (m = 1) as a

special case; along with cases of fading that are more severe than Rayleigh (1/2 ≤ m < 1)

as well as cases less severe than Rayleigh (m > 1).

In a Nakagami fading environment, the probability density function (p.d.f.) of each |hk|
is given by the Nakagami distribution

f|hk|(x) =
2

Γ(mk)

(
mk

Ωk

)mk

x2mk−1e−mkx2/Ωk , x ≥ 0 , (5.1)

1This generalizes the case of i.i.d. fading; that is, it includes i.i.d. fading as a special case.
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where Ωk = E

{
|hk|2

}
. The nth moment of |hk| can be expressed as

E{|hk|n} =
Γ
(
mk + 1

2n
)

Γ (mk)

(
Ωk

mk

)n
2

, (5.2)

where Γ(·) is the gamma function,23

Γ(p) =
∫ ∞

0
tp−1e−tdt , p > 0

Γ(p) = (p − 1)! , p ∈ Z
+

Γ
(

1
2

)
=

√
π Γ

(
3
2

)
=

1
2
√

π .

Here, we are interested in the squared-magnitude of the fading gains, |hk|2, whose p.d.f. is

given by the chi-square distribution with 2mk degrees of freedom

f|hk|2(y) =
1

Γ(mk)

(
mk

Ωk

)mk

ymk−1e−mky/Ωk , y ≥ 0 . (5.3)

The p.d.f. of ‖h‖2 is given by the (Nd − 1)-fold convolution of f|hk|2(·)

f‖h‖2(z) = f|h1|2(z) ∗ f|h2|2(z) ∗ · · · ∗ f|hNd |2(z) , z ≥ 0 . (5.4)

The expression for the BEP of diversity systems with practical channel estimation,

(4.16), relies on the m.g.f. of ‖h‖2. In an i.n.i.d. Nakagami fading environment, this m.g.f.

is given by

M‖h‖2(s) =
Nd∏
k=1

[
1

1 − s Ωk
mk

]mk

. (5.5)

The m.g.f. for a Rayleigh fading environment is obtained by setting mk = 1, ∀k in the

Nakagami-m model above.

Using (5.5) in (4.16), the BEP of diversity systems with practical channel estimation

2Note that Γ(·) is used to denote the gamma function, while Γtot denotes the average total SNR.
3
Z

+ denotes the set of positive integers.
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operating in an i.n.i.d. Nakagami fading environment is given by

Pe(Γtot) =
1
4π

∫ π

−π

⎧⎨
⎩

Nd∏
k=1

⎡
⎣1 +

Γtot(
√

Np ε + 1)2

4E

{
‖h‖2

} Ωk

mk

(1 − ζ2)2

g(θ; ζ)

⎤
⎦
−mk

+ f(θ; ζ)
Nd∏
k=1

⎡
⎣1 +

Γtot(
√

Np ε + 1)2

4E

{
‖h‖2

} Ωk

mk
g(θ; ζ)

⎤
⎦
−mk

⎫⎬
⎭ dθ . (5.6)

5.2 Ricean Fading Environment

The Rice distribution is appropriate for modeling communication environments where there

are line of sight components, such as satellite channels [3, 29]. In a Ricean fading envi-

ronment environment, each hk has a complex Gaussian distribution with nonzero mean.

Correspondingly, the p.d.f. of each |hk|2 is given by the non-central chi-square distribution

f|hk|2(y) =
κk

|µk|2
exp

(
−(|µk|2 + y)κk

|µk|2
)

I0

(
2
√

y
κk

|µk|
)

, y ≥ 0 , (5.7)

where µk = E{hk} and κk � |µk|2
E{|hk|2}−|µk|2 is the Rice factor. Note that µk is complex in

general, but the p.d.f. of |hk|2 does not depend on the phase of µk. The p.d.f. of ‖h‖2 is

given by the (Nd − 1)-fold convolution of f|hk|2(·)

f‖h‖2(z) = f|h1|2(z) ∗ f|h2|2(z) ∗ · · · ∗ f|hNd |2(z) , z ≥ 0 . (5.8)

The m.g.f. of ‖h‖2 is given by

M‖h‖2(s) =
Nd∏
k=1

[
κk

κk − s |µk|2
]

exp

(
sκk |µk|2

κk − s |µk|2
)

. (5.9)

Using (5.9) in (4.16), the BEP for diversity systems with practical channel estimation
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operating in i.n.i.d. Ricean channels is given by

Pe(Γtot) =
1
4π

∫ π

−π

⎧⎨
⎩

Nd∏
k=1

⎡
⎣ 4E

{
‖h‖2

}
g(θ; ζ)κk

4E

{
‖h‖2

}
g(θ; ζ)κk + Γtot(

√
Np ε + 1)2(1 − ζ2)2 |µk|2

× exp

⎛
⎝ −Γtot(

√
Np ε + 1)2(1 − ζ2)2 κk |µk|2

4E

{
‖h‖2

}
g(θ; ζ)κk + Γtot(

√
Np ε + 1)2(1 − ζ2)2 |µk|2

⎞
⎠
⎤
⎦

+ f(θ; ζ)
Nd∏
k=1

⎡
⎣ 4E

{
‖h‖2

}
κk

4E

{
‖h‖2

}
κk + Γtot(

√
Np ε + 1)2g(θ; ζ) |µk|2

× exp

⎛
⎝ −Γtot(

√
Np ε + 1)2g(θ; ζ)κk |µk|2

4E

{
‖h‖2

}
κk + Γtot(

√
Np ε + 1)2g(θ; ζ) |µk|2

⎞
⎠
⎤
⎦
⎫⎬
⎭ dθ .

(5.10)

5.3 Asymptotic Results

5.3.1 Nakagami Fading

We now consider the behavior of the expressions in (4.16) and (4.19) as the SNR increases

asymptotically for the case of i.i.d. Nakagami fading channels with Ω = 1. In this case, the

m.g.f. becomes

M‖h‖2(s) =
(

1
1 − s

m

)mNd

≈
(
−m

s

)mNd

, (5.11)

where the approximation is for large s. Using (5.11) in (4.16), one can obtain the asymptotic

behavior for the case of imperfect channel knowledge as Γtot → ∞,

Pe, Asym-I
Nakagami

(Γtot) =
1
4π

∫ π

−π

⎧⎪⎨
⎪⎩
⎡
⎣ m E

{
‖h‖2

}
g(θ; ζ)

Γtot
4 (

√
Np ε + 1)2(1 − ζ2)2

⎤
⎦

mNd

+f(θ; ζ)

⎡
⎣ m E

{
‖h‖2

}
Γtot
4 (

√
Np ε + 1)2g(θ; ζ)

⎤
⎦

mNd
⎫⎪⎬
⎪⎭ dθ

= KI, Nakagami (m, Nd, Np, ε)
(

1
Γtot

)mNd

, (5.12)
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where we have defined

KI,Nakagami (m, Nd, Np, ε) � 1
4π

[
4mNd

(
√

Np ε + 1)2

]mNd

×
∫ π

−π

{[
g(θ; ζ)

(1 − ζ2)2

]mNd

+
f(θ; ζ)

[g(θ; ζ)]mNd

}
dθ . (5.13)

In (5.13) we have used the fact that E

{
‖h‖2

}
= Nd Ω = Nd. The subscript Asym-I is used

to denote the asymptotic behavior with imperfect channel knowledge.

Using (5.11) in (4.19), one can similarly derive the asymptotic behavior for the case of

perfect channel knowledge as

Pe, Asym-P
Nakagami

(Γtot) = KP, Nakagami (m, Nd)
(

1
Γtot

)mNd

, (5.14)

where

KP, Nakagami (m, Nd) �
(mNd)mNdΓ(1

2 + mNd)
2
√

π Γ(1 + mNd)
. (5.15)

The subscript Asym-P is used to denote the asymptotic behavior with perfect channel knowl-

edge.

5.3.2 Rayleigh Fading

For the special case of Rayleigh fading, the asymptotic results can be derived by setting

m = 1 in (5.12) and (5.14). In doing this we have,

Pe, Asym-I
Rayleigh

(Γtot) = KI, Rayleigh (Nd, Np, ε)
(

1
Γtot

)Nd

, (5.16)

where KI,Rayleigh (Nd, Np, ε) � KI,Nakagami (1, Nd, Np, ε). Similarly,

Pe, Asym-P
Rayleigh

(Γtot) = KP, Rayleigh (Nd)
(

1
Γtot

)Nd

, (5.17)

where KP, Rayleigh (Nd) � KP, Nakagami (1, Nd).
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5.3.3 Ricean Fading

Similar to the case above, we consider the asymptotic behavior of (4.16) and (4.19) in i.i.d.

Ricean fading with E

{
|h|2

}
= 1. In this case the m.g.f. becomes

M‖h‖2(s) =
[

1 + κ

1 + κ − s

]Nd

exp
(

sNd κ

1 + κ − s

)
(5.18)

≈
[
−1 + κ

s

]Nd

exp (−Nd κ) , (5.19)

where κ is the Rice factor and the approximation is valid for large s. Using (5.19) in (4.16),

one can obtain the asymptotic behavior for the case of imperfect channel knowledge in

Ricean fading as Γtot → ∞,

Pe,Asym-I
Ricean

(Γtot) =
[
Nd(1 + κ)e−κ

Γtot

]Nd 1
4π

[
4

(
√

Np ε + 1)2

]Nd

×
∫ π

−π

{[
g(θ; ζ)

(1 − ζ2)2

]Nd

+
f(θ; ζ)

[g(θ; ζ)]Nd

}
dθ

= KI, Ricean (κ, Nd, Np, ε)
(

1
Γtot

)Nd

, (5.20)

where we have defined

KI, Ricean (κ, Nd, Np, ε) � 1
4π

[
4Nd(1 + κ) e−κ

(
√

Np ε + 1)2

]Nd

×
∫ π

−π

{[
g(θ; ζ)

(1 − ζ2)2

]Nd

+
f(θ; ζ)

[g(θ; ζ)]Nd

}
dθ . (5.21)

A similar calculation using (5.19) in (4.19) yields the asymptotic behavior for perfect

channel knowledge in Ricean fading,

Pe,Asym-P
Ricean

(Γtot) =
[
Nd(1 + κ) e−κ

Γtot

]Nd Γ(1
2 + Nd)

2
√

π Γ(1 + Nd)

= KP, Ricean (κ, Nd)
(

1
Γtot

)Nd

, (5.22)
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where

KP, Ricean (κ, Nd) �
[Nd(1 + κ) e−κ]Nd Γ(1

2 + Nd)
2
√

π Γ(1 + Nd)
. (5.23)

Note that the results in (5.20) and (5.22) differ from their counterparts in Rayleigh fading,

(5.16) and (5.17), by only the multiplicative factor [(1 + κ) e−κ]Nd .

For the case of Nakagami fading, it is clear from (5.12) and (5.14) that regardless of the

number of pilot symbols used in the formation of an estimate of the channel, a diversity

order of mNd is still maintained as in the case of ideal MRC. Similarly, for the case of

Ricean fading, (5.20) and (5.22) show that a diversity order of Nd is preserved. This

behavior, arising purely from the analytical asymptotic expressions given in this chapter,

is also evident from numerical results as will be shown in Chapter 7. These results are

in contrast to the analytical results presented in [19–21] which showed that, even with the

estimate arbitrarily close to the ideal one, the asymptotic BEP is proportional to 1
Γtot

. That

is, even with an arbitrarily good estimate, diversity order is that of a single branch system.

For example, the expression [19, eq. (20)] shows that the diversity order is equal to that of

a single branch system.
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Chapter 6

BEP for Correlated Fading

Using the analytical framework developed in Chapter 4, which is valid for arbitrary fading

distributions, the BEP is evaluated for some common correlated fading models. We consider

the case of Nakagami-m distributed channels with arbitrary m parameters. Then, the case

of Rayleigh fading is presented. The case of Ricean distributed channels is also considered.

6.1 Correlated Nakagami Fading Environment

Correlated Nakagami-m fading channels have received considerable attention in the study

of various aspects of wireless systems [43,44]. To investigate this environment, we consider

a correlated fading channel with Nd diversity branches, whose squared fading gains are

specified by [|h1|2 , |h2|2 , . . . , |hNd
|2]. Each |hi| has a Nakagami distribution with parameter

mi ∈ Z
+. As in [45], it is assumed that the mi’s are integers, noting that the measurement

accuracy of the channel is typically only of integer order. In a correlated Nakagami fading

environment, the marginal p.d.f. of each |hi|2 is given by the chi-square distribution with

2mi degrees of freedom

f|hi|2(x) =
1

Γ(mi)

(
mi

Ωi

)mi

xmi−1e−mix/Ωi , x ≥ 0 . (6.1)

where Ωi = E

{
|hi|2

}
. In general the joint p.d.f. of |h1|2 , |h2|2 , . . . , |hNd

|2,

f|h1|2, |h2|2,..., |hNd |2
(
{xi}Nd

i=1

)
�=

Nd∏
i=1

f|hi|2(xi) , {xi}Nd
i=1 > 0 . (6.2)
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That is, the joint p.d.f. is not equal to the product of the marginals because the |hi|2’s are

correlated. However, one can transform the dependent physical branch variables into a new

set of independent virtual branches and express the norm square of the channel gain vector

as a linear function of the independent virtual branch channel gains.

Let Xi be the 1 × 2mi vector defined by

Xi �
[
Xi,1 Xi,2 · · · Xi,2mi

]
, i = 1, 2, . . . , Nd , (6.3)

where the elements of Xi, Xi,k’s, are i.i.d. Gaussian random variables with zero mean and

variance E

{
X2

i,k

}
= Ωi

2mi
. It can be shown that each |hi|2 is infinitely divisible [46–48]. The

infinite divisibility has implications on the statistical representation of |hi|2 as1

|hi|2 L= XiX
t
i , (6.4)

where the notation “ L ”= denotes “equal in their respective distributions” (or “equal in their

respective Laws”).2 Therefore,

‖h‖2 L=
Nd∑
i=1

XiX
t
i = XXt , (6.5)

where X is the 1 × DT vector defined by

X �
[
X1 X2 · · · XNd

]
, (6.6)

and DT =
∑N

i=1 2mi denotes twice the sum of the Nakagami parameters.

The statistical dependence among the Nd correlated branches can be related to the

statistical dependence among the elements of X, by carefully constructing X. When there

is only second-order dependence, it suffices to construct the covariance matrix of X given

by KX = E
{
XtX

}
. Without loss of generality, one can assume that the |hi|’s are indexed in

increasing order of their Nakagami parameters, i.e., m1 ≤ m2 ≤ . . . ≤ mNd
. We construct

1(·)t denotes transpose.
2It is important to stress that, in general |hi|2 �= XiX

t
i and the notation

“ L ”
= is used to merely indicate

that only the respective distributions (or Laws) are equal [46–48]. One can view XiX
t
i as a statistical

representation of |hi|2, and both forms can be used interchangeably in performing statistical analyses.
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the covariance among the elements X such that

E{Xi,kXj,l} =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ωi
2mi

, if i = j and k = l

ρi,j

√
Ωi Ωj

2mi 2mj
, if i �= j and k = l = 1, 2, . . . , 2min{mi, mj}

0, otherwise

. (6.7)

This construction implies that the kth entries of Xi and Xj , with i �= j, are correlated for

k = 1, 2, . . . , 2 min{mi, mj}. However, all the entries of Xi are mutually independent, and

all other entries are independent. As shown in Appendix A.2, the coefficient ρi,j is related

to the branch correlation, ρ|hi|2,|hj |2 , in the following way

ρ|hi|2,|hj |2 �
√

min{mi, mj}
max{mi, mj} ρ2

i,j .

The lower and upper bounds for the correlation between the two Nakagami branches are

given by 0 ≤ ρ|hi|2,|hj |2 ≤
√

min{mi,mj}
max{mi,mj} .3 Note in passing that a given correlation model of

diversity branches does not uniquely determine KX .

Then, as described in Appendix B, the m.g.f. of ‖h‖2 is given by

M‖h‖2(s) = E

{
es‖h‖2

}
=

L∏
l=1

[
1

1 − s2λl

] νl
2

. (6.8)

Here {λl} is the set of L distinct eigenvalues of KX where each λl has algebraic multiplicity

νl such that
∑L

l=1 νl = DT =
∑Nd

i=1 2mi.

6.2 Correlated Rayleigh Fading Environment

To evaluate the performance in a Rayleigh fading environment, we need to characterize the

m.g.f. of ‖h‖2 and evaluate (4.16). The m.g.f. for Rayleigh fading is given by the Nakagami-

m model above when we set mi = 1, ∀i. In this case KX = E
{
XtX

}
is a 2Nd×2Nd matrix,

3The fact that two Nakagami branches with different fading parameters mi and mj can not be completely
correlated (i.e., ρ|hi|2,|hj |2 < 1) is not a drawback in our statistical representation; it is just a manifestation

of the basic fact that two r.v.’s with different distributions can not be completely correlated.
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whose elements are given by

E{Xi,kXj,l} =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ωi
2 , if i = j and k = l

ρi,j

√
Ωi Ωj

4 , if i �= j and k = l

0, otherwise

, (6.9)

where

ρ|hi|2,|hj |2 � ρ2
i,j .

The m.g.f. for the norm square of the channel gain vector is then given by (6.8) where {λl}
is the set of L distinct eigenvalues of the matrix KX, as determined by (6.9), where each λl

has algebraic multiplicity νl such that
∑L

l=1 νl = DT = 2Nd.

6.3 Correlated Ricean Fading Environment

The Rice distribution is appropriate for modeling communication environments where there

are line of sight components, such as satellite channels [3, 29]. Using a procedure similar

to [49] we can derive the m.g.f. of the norm square of the channel gain vector in a Ricean

fading environment. In such an environment, each hk has a complex Gaussian distribution

with nonzero mean. The m.g.f. of the norm square of the channel gains, ‖h‖2, is given by

M‖h‖2(s) = [det (I − sK)]−1 exp

{
−µ

(
K − I

s

)−1

µ†
}

, (6.10)

where K = E
{
(h − µ)†(h − µ)

}
is the covariance matrix and µ = [µ1, µ2, . . . , µNd

] = E{h}
is the vector of (complex) means. For a Ricean environment, the Rice factor is given by

κi � |µi|2
E{|hi|2}−|µi|2 . In Appendix A.3 it is shown that the elements of the correlation matrix,

K, can be expressed as

Cov{hi, hj} = −R
{
µiµ

∗
j

}±
√

R2
{

µiµ∗
j

}
+
√

Var
{
|hi|2

}
Var

{
|hj |2

}
ρ|hi|2, |hj |2 . (6.11)
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Note that, as in the case for correlated Nakagami fading, a given correlation model of

diversity branches does not uniquely determine K.
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Chapter 7

Discussion and Numerical Results

In this chapter we discuss aspects of the correlation coefficient between the true channel gain

and its estimate, including the relation of this correlation coefficient to the SNR and the

number of pilot symbols. The mean and NSD of the decision variable are first examined, as

they provide initial insights into the performance of diversity systems with practical channel

estimation. Then, performance in terms of BEP is analyzed for the case of independent,

as well as correlated fading channels. We also examine the SNR penalty due to channel

estimation error and give some numerical results.

7.1 Relationship Between Estimate Correlation, SNR, and

Number of Pilot Symbols, Np

The correlation coefficient of the channel gain estimate with the true channel gain plays

a crucial role in the performance of diversity systems with practical channel estimation.

Here we have used an estimator structure that employs pilot symbol transmission. The

45



correlation coefficient that arises from such an estimator is given by

ρk =
E

{
hkĥ

∗
k

}
− E{hk}E

{̂
h∗

k

}
√

E

{
|hk − E{hk}|2

}
E

{∣∣∣ĥk − E

{̂
hk

}∣∣∣2}

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
Np εq

Np ε+ 1
Γk

, Nakagami-m fading
√

Np εr
Np ε+

1+κk
Γk

, Ricean fading

where Γk � E

{
|hk|2

}
Es
N0

is the average SNR on the kth diversity branch. It is important to

note here that ρk is a function of the average branch SNR, Γk, as well as the number of pilot

symbols, Np. As Γk tends toward the high SNR regime, the correlation approaches one.

This fact makes intuitive sense, if a system is operating under high SNR, it should be able

to achieve better accuracy in its estimate. This model is significantly different from other

correlation models [17–21], where the correlation coefficient is explicitly set to a particular

value, irrespective of the branch SNR. Similarly, as the number of pilot symbols used to

form the estimate increases, the correlation approaches one. Naturally, as the number of

channel measurements increases we expect our knowledge of the channel to become more

accurate.

Choosing the number of pilot symbols to use in the channel estimation is an important

aspect of system design. Clearly, the number of pilot symbols cannot be arbitrarily large.

The choice is governed foremost by the coherence time of the channel, and then by the

requirements of the communication system in terms of bit rates and transmission power.

Throughout, we have considered slowly fading channels in which a block of symbols expe-

riences the same fading condition. Provided that the data symbols and the corresponding

pilot symbols used to form an estimate are within the coherence time, the performance

should follow what we have given above.

7.2 Normalized Standard Deviation

In this section the mean and NSD of the decision variable for diversity with practical channel

estimation are examined for the case of i.i.d. Nakagami fading channels. Recall that the

46



mean of the decision variable is given by (3.7) as

E{D} =
√

2Es E

{
‖h‖2

}
=
√

2EsNdΩ ,

where we have used the fact that E

{
‖h‖2

}
= NdΩ for i.i.d. Nakagami channels. This

indicates that the mean of the decision variable increases with signal energy and the number

of diversity branches. Thus, as the SNR’s and/or number of diversity branches increases,

we expect receiver performance to improve, because the mean of the distribution of the

decision variable is moving away from the decision boundary (i.e. D = 0).

Recall that the expression for the NSD in (3.9) depends on the quantity
Var{‖h‖2}
E2{‖h‖2} . For

i.i.d. Nakagami fading we have

Var
{
‖h‖2

}
= NdVar

{
|h|2

}
= Nd

(
E

{
|h|4

}
− E

2
{
|h|2

})
= NdΩ2

[
(m + 1)m

m2
− 1

]
=

NdΩ2

m
,

where we have made use of (5.2). Thus,

Var
{
‖h‖2

}
E2
{
‖h‖2

} =
NdΩ2

Nd
2Ω2

(
1
m

)
=

1
mNd

. (7.1)

Using (3.9) and (7.1), the NSD for Nakagami fading is given by

σ̌D = 10 log10

⎡
⎣
√

1
mNd

+
Nd

2Np ε

(
1

Γtot

)2

+
Np ε + 1
2Np ε

(
1

Γtot

)⎤⎦ .

Figures 7-1 – 7-3 evaluate the NSD of the decision variable for Nakagami fading channels

with m = 0.5, m = 1, and m = 4, respectively, for varying Nd and Np. In each case, note

that the NSD is reduced as the number of diversity branches, Nd, increases. This is expected

because the receiver can better mitigate the effects of fading and improve its performance

using a larger number of diversity branches. Increasing the number of branches effectively

increases the diversity order. For Nakagami fading environments, the diversity order is

given by m Nd. Compared to Fig. 7-1, Figs. 7-2 and 7-3 exhibit lower NSD as the diversity
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Figure 7-1: Normalized standard deviation of the decision variable for BPSK in i.i.d. Nak-
agami fading with m = 0.5, for various Nd, Np.

order is increased from 0.5Nd (Fig. 7-1) to Nd (Fig. 7-2) and 4Nd (Fig. 7-3). A lower NSD

corresponds to less uncertainty in the decision variable, indicating that the distribution of

the decision variable is becoming more concentrated at its mean. The reduced uncertainty

present in the decision variable translates directly to better receiver performance; that is,

the receiver is less likely to make an error in the decision process.

It is also interesting to note that some combinations of Nd and Np outperform systems

with larger Nd with smaller Np for certain ranges of SNR. For example, in Fig. 7-2, the curve

corresponding to Nd = 2, Np = 8 performs better than the case where Nd = 4, Np = 2 for

average branch SNR’s less than about −6 (dB).
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Figure 7-2: Normalized standard deviation of the decision variable for BPSK in i.i.d. Nak-
agami fading with m = 1 (Rayleigh fading), for various Nd, Np.
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Figure 7-3: Normalized standard deviation of the decision variable for BPSK in i.i.d. Nak-
agami fading with m = 4, for various Nd, Np.
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Figure 7-4: Performance of BPSK in i.i.d. Nakagami fading with m = 0.5, for various Nd,
Np.

7.3 Performance in Independent Fading

Figures 7-4 – 7-6, show the BEP for Nakagami fading for the cases where m = 0.5, m =

1, and m = 4, respectively, and ε = 1. In each case, note that the diversity order is

preserved, regardless of the number of pilot symbols used in the estimation process. Also,

note that as Np increases, performance approaches that of perfect channel knowledge. These

results are in agreement with our asymptotic analytical results in (5.12), (5.16), and (5.20),

respectively. Previous numerical results in [15, 16, 19–21] were only valid for i.i.d. Rayleigh

fading environments, and showed that the diversity order was not preserved. For example,

in [19] numerical results with ρ = 0.9, 0.99, 0.999 (ρ = 1 corresponds to an ideal estimate)

all display asymptotic behavior of a single branch system. Similar behavior can also be

found in [21, Fig. 6].

Results for a Ricean fading environment are shown in Figs. 7-7 and 7-8, with κ = 5 dB

and κ = 10 dB, respectively, and ε = 1. Note that the results for Ricean fading, exhibit a

“skirt” where the curve becomes less steep and begins to follow the slope of the diversity
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Figure 7-5: Performance of BPSK in i.i.d. Nakagami fading with m = 1 (Rayleigh fading),
for various Nd, Np.

order. This behavior is caused by the line of sight component, or mean, present in Ricean

fading environments. Also note that performance in Ricean is better than that of Rayleigh

fading because of the line of sight component. This is confirmed by comparing Figs. 7-7

and 7-8 with Fig. 7-5.
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Figure 7-6: Performance of BPSK in i.i.d. Nakagami fading with m = 4, for various Nd,
Np.
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Figure 7-7: Performance of BPSK in i.i.d. Ricean fading with κ = 5 dB, for various Nd, Np.
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Figure 7-8: Performance of BPSK in i.i.d. Ricean fading with κ = 10 dB, for various Nd,
Np.
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Figure 7-9: Performance of BPSK in correlated Nakagami fading with m = 1 (Rayleigh
fading), η = 0.6, for various Nd and Np.

7.4 Performance in Correlated Fading

Using the analytical framework developed in the previous chapters, which is valid for ar-

bitrary fading distributions, we can evaluate the BEP for some common correlated fading

models. We consider Nakagami-m and Ricean channels under an exponential correlation

model, where the correlation between diversity branches is given by

ρ|hi|2,|hj |2 = η|i−j|.

Using this correlation model with (6.8) we can analyze the BEP given by (4.16) for

correlated Nakagami fading. Figures 7-9 and 7-10 show the BEP for the cases where η = 0.6

and η = 0.9, respectively for Rayleigh fading (m = 1) and ε = 1. Figures 7-11 and 7-12

show the BEP for the cases where η = 0.6 and η = 0.9, respectively for Nakagami fading

with m = 2 and ε = 1. Similarly, results for the case of Ricean fading under this correlation

model are shown in Figs. 7-13–7-16.
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Figure 7-10: Performance of BPSK in correlated Nakagami fading with m = 1 (Rayleigh
fading), η = 0.9, for various Nd and Np.

In each case, note that the diversity order of the system with practical channel estima-

tion matches that of an ideal system operating in the same correlated fading environment,

regardless of the number of pilot symbols used in the estimation process. That is, the slope

of the performance curves for practical channel estimation matches the slope of the curves

for perfect channel knowledge (ideal MRC). Also, note that as Np increases, performance

approaches that of perfect channel knowledge.

In comparison to Fig. 7-5, Figs. 7-9 and 7-10 show that diversity systems with practical

channel estimation perform worse in correlated fading environments. This result is expected,

as increased branch correlation reduces the effective diversity order, thereby limiting the

benefits of diversity reception. This is further verified by the fact that a diversity system

performs worse in an environment with η = 0.9 than when η = 0.6, as indicated by Figs.

7-9 and 7-10. Similar results can be observed by comparing Figs. 7-11 and 7-12.

Figs. 7-13–7-16 show that correlation has a similar effect on the performance in Ricean

fading environments. Also note that performance in correlated Ricean fading is better
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Figure 7-11: Performance of BPSK in correlated Nakagami fading with m = 2, η = 0.6, for
various Nd and Np.

than in correlated Rayleigh fading because of the line of sight component present in Ricean

channels. This can be seen by comparing Figs. 7-13 and 7-15 with Fig. 7-9, and Figs. 7-14

and 7-16 with Fig. 7-10.
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Figure 7-12: Performance of BPSK in correlated Nakagami fading with m = 2, η = 0.9, for
various Nd and Np.
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Figure 7-13: Performance of BPSK in correlated Ricean fading with κ = 5 dB, η = 0.6, for
various Nd and Np.
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Figure 7-14: Performance of BPSK in correlated Ricean fading with κ = 5 dB, η = 0.9, for
various Nd and Np.
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Figure 7-15: Performance of BPSK in correlated Ricean fading with κ = 10 dB, η = 0.6,
for various Nd and Np.
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Figure 7-16: Performance of BPSK in correlated Ricean fading with κ = 10 dB, η = 0.9,
for various Nd and Np.

63



7.5 SNR Penalty

In comparison to ideal MRC, diversity with practical channel estimation will incur a loss

in SNR, due to the fact that completely coherent combining is not possible. For analog

systems, the SNR penalty is defined in terms of the degradation in the SNR. Instead, as

in [50], we consider a measure that is more suitable for digital systems; the SNR penalty

required to maintain a target BEP.

For a digital communication system, we define the SNR penalty, β, as the increase in

SNR required for a diversity system with practical channel estimation to achieve the same

target BEP as ideal MRC. Implicitly, we have

Pe,I(βΓtot) = Pe,MRC(Γtot),

where Pe,I(·), Pe,MRC(·), β, and Γtot are the BEP for diversity combining with imperfect

channel knowledge, the BEP for ideal MRC, the SNR penalty, and the total average SNR,

respectively.

Note that the SNR penalty is a function of the target BEP, and therefore a function of

the average SNR; that is, β = β(Γtot). A closed form expression for β is difficult to obtain,

if at all possible. However, using (5.12) - (5.15) we can derive the asymptotic SNR penalty,

βA, for large SNR, such that

Pe,Asym-I(βAΓtot) = Pe,Asym-P(Γtot).

Solving this relation for the specific case of Nakagami fading channels gives

βA =
[
KI,Nakagami (m, Nd, Np, ε)

KP, Nakagami (m, Nd)

] 1
mNd

=
4

(
√

Np ε + 1)2

{
Γ(1 + mNd)

2
√

π Γ(1
2 + mNd)

∫ π

−π

{[
g(θ; ζ)

(1 − ζ2)2

]mNd

+
f(θ; ζ)

[g(θ; ζ)]mNd

}
dθ

} 1
mNd

.

(7.2)

Clearly, the asymptotic SNR penalty for Rayleigh fading is given by (7.2) when m = 1.

A similar expression for Ricean fading can be derived using (5.20) – (5.23). Since (5.21)

and (5.23) only differ by a multiplicative constant from (5.13) and (5.15) when m = 1, the
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Figure 7-17: Comparison of exact performance with asymptotic performance of BPSK in
i.i.d. Nakagami fading with m = 1 (Rayleigh fading), for various Nd, Np.

asymptotic SNR penalty in Ricean fading is given by (7.2) with m = 1.

Figures 7-17 and 7-18 show1 the asymptotic BEP given by (5.12) and (5.20). These

figures provide further confirmation that the practical channel estimation scheme preserves

the diversity order. From these figures we see that the performance given by the asymptotic

expressions quickly approaches the exact error probability, indicating the efficiency of the

asymptotic BEP expressions.

Figure 7-19 shows the asymptotic SNR penalty βA as a function of Np ε in Nakagami-m

fading for several values of m and Nd. Several important observations can be made from

looking at these graphs. First, note that curves are clustered according to m parameter,

with better performance (lower penalty) occurring for more benign environments, m > 1.

More importantly there is surprising lack of dependence on Nd, if any. In particular, for

m > 1 increasing Nd slightly increases the SNR penalty. However, for the case where

1Figs. 7-17 and 7-18 show the BEP for error rates as low as 10−10 only to illustrate the asymptotic behavior
and to further provide numerical confirmation that the practical channel estimation scheme preserves the
diversity order; these extremely low BEP’s are not practical, especially for wireless mobile communications.
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Figure 7-18: Comparison of exact performance with asymptotic performance of BPSK in
i.i.d. Ricean fading with κ = 5 dB, for various Nd, Np.

1
2 ≤ m < 1, the effect is reversed; increasing Nd decreases the penalty. In all the cases

investigated, the difference in SNR penalties between Nd = 1 and Nd = 8 does not exceed

0.2 dB. For the case of Rayleigh or Ricean fading, where m = 1, changes in Nd have no

effect on the SNR penalty. This can be seen from the m = 1 curve in figure 7-19, where

the curves line up for all Nd. These results are surprising because one could expect that,

as the number of diversity branches increases, the error due to practical channel estimation

would also increase, thereby incurring a larger SNR penalty. These results show that this

is not the case.
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67



68



Chapter 8

Conclusion

This thesis develops a general framework for evaluating the exact BEP of BPSK in Nd-

branch diversity systems utilizing practical channel estimation. The methodology, requiring

only the evaluation of a single integral with finite limits, is applicable to channels with

arbitrary distribution, including correlated fading, provided that the norm square of the

channel gain vector can be characterized by a m.g.f. The results of this thesis show that the

pilot symbol estimation technique, appropriate for digital communication systems, preserves

the diversity order of an Nd-branch diversity system. This is in contrast to the results

of [15,16,19–21], where the BEP was analyzed for fixed values of correlation. The asymptotic

SNR penalty, arising from practical channel estimation, was quantified. The results show

that the penalty has little dependence on the the diversity order of the system.
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Appendix A

Covariance Relationships

In this appendix we derive the relationships between ρ|hi|2, |hj |2 and the covariance of the

underlying complex Gaussian r.v.’s for the case of correlated Nakagami and Ricean fading.

A.1 Preliminaries

We begin by reviewing and deriving some basic relations.

Lemma: For two Gaussian r.v.’s, X and Y ,

Var
{
X2

}
= 4E

2{X}Var{X} + 2Var{X}2 (A.1)

and

Cov
{
X2, Y 2

}
= E

{
X2Y 2

}− E
{
X2
}

E
{
Y 2
}

= 2Cov{X, Y }
(
2E{X}E{Y} + Cov{X, Y }

)
. (A.2)

Proof: The joint c.f. of the bivariate Gaussian distribution [36] is given by

φ(t, u) = exp
(

j (E{X} t + E{Y}u) − 1
2
(
µ20t

2 + 2µ11tu + µ02u
2
))

, (A.3)
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where µij = E

{
(X − E{X})i (Y − E{Y})j

}
. It can be shown that

E{XmY n} =
1

jm+n

∂m+n

∂tm∂un
φ(t, u)

∣∣∣∣∣
t=0, u=0

. (A.4)

Applying the above relation, the moments of interest are easily computed as

E
{
X2
}

= E
2{X} + µ20

E
{
Y 2
}

= E
2{Y} + µ02

E
{
X4
}

= E
4{X} + 6E

2{X}µ20 + 3µ2
20

E
{
X2Y 2

}
= E

2{X}E
2{Y} + E

2{X}µ02 + E
2{Y}µ20 + µ02µ20 + 4E{X}E{Y}µ11 + 2µ2

11 .

Thus,

Var
{
X2

}
= E

{
X4
}− E

2
{
X2
}

= 4E
2{X}µ20 + 2µ2

20

= 4E
2{X}Var{X} + 2Var{X}2

Cov
{
X2, Y 2

}
= E

{
X2Y 2

}− E
{
X2
}

E
{
Y 2
}

= 4E{X}E{Y}µ11 + 2µ2
11

= 2Cov{X, Y }
(
2E{X}E{Y} + Cov{X, Y }

)
.

For the special case where E{X} = E{Y} = 0, (A.1) and (A.2) simplify to

Var
{
X2

}
= 2Var{X}2 = 2E

2
{
X2
}

(A.5)

Cov
{
X2, Y 2

}
= 2Cov{X, Y }2 = 2E

2{XY} , (A.6)

which is in agreement with [51, (7.37)].

A.2 The Nakagami Case

In Section 7.4, our numerical results are parameterized by the correlation coefficient between

the squared magnitude of the channel gains on each diversity branch. In Section 6.1, each

squared fading gain, |hi|2, is represented by the sum of 2mi i.i.d. r.v.’s, X2
i,k. In this appendix

we derive the relation between the correlation of |hi|2 and |hj |2 and the correlation of the
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elements of X for i �= j, as follows

ρ|hi|2,|hj |2 �
E

{(
|hi|2 − Ωi

)(
|hj |2 − Ωj

)}
√

Var
{
|hi|2

}
Var

{
|hj |2

}

=
E

{∑2mi
k=1

(
X2

i,k − Ωi
2mi

)∑2mj

l=1

(
X2

j,l − Ωj

2mj

)}
√

Ω2
i

mi

Ω2
j

mj

=

∑2 min{mi,mj}
k=1 E

{(
X2

i,k − Ωi
2mi

)(
X2

j,k − Ωj

2mj

)}
√

Ω2
i

mi

Ω2
j

mj

. (A.7)

The second equality follows from the representation of each |hi|2 as a sum of 2mi i.i.d. r.v.’s.

The fact that Xi,k and Xj,k are only correlated for k = l = 1, . . . , 2 min{mi, mj}, gives rise

to the third equality.

For zero mean Gaussian r.v.’s Xi,k and Xj,k, (A.7) can be further reduced, using (A.6),

to

ρ|hi|2,|hj |2 =
∑2 min{mi,mj}

k=1 2E
2{Xi,kXj,k}√

Ω2
i

mi

Ω2
j

mj

=
4 min{mi, mj}ρ2

i,j
Ωi
2mi

Ωj

2mj√
Ω2

i
mi

Ω2
j

mj

=

√
min{mi, mj}
max{mi, mj} ρ2

i,j . (A.8)

A.3 The Ricean Case

In Section 7.4, our numerical results are parameterized by the correlation coefficient between

the squared magnitude of the channel gains on each diversity branch. On the other hand,

in Section 6.3, the expression for the m.g.f. of correlated Ricean fading is written in terms

of the covariance matrix of h. Therefore, we need to determine the relationship between

the two quantities Cov{hi, hj} and ρ|hi|2, |hj |2 .

We consider four Gaussian r.v.’s X, Y, V, W all with non-zero means and define two

complex fading gains of a Ricean channel as hi = X +jY and hj = V +jW . The correlation
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coefficient is then given by

ρ|hi|2, |hj |2 =
Cov

{
|hi|2, |hj |2

}
√

Var
{
|hi|2

}
Var

{
|hj |2

}

=
Cov

{
X2, V 2

}
+ Cov

{
X2, W 2

}
+ Cov

{
Y 2, V 2

}
+ Cov

{
Y 2, W 2

}
√

Var
{
|hi|2

}
Var

{
|hj |2

} . (A.9)

We seek to relate the quantity in (A.9) to the covariance between the underlying complex

Gaussian r.v.’s. We assume that there is correlation between the in-phase components of hi

and hj . Similarly, we assume that the quadrature components of hi and hj are correlated,

but there is no correlation between the in-phase and quadrature components. Furthermore,

hi and hj are circularly symmetric complex Gaussian r.v.’s, with means µi = µi,R + jµi,I

and µj = µj,R + jµj,I , respectively. Mathematically,

Cov{X, Y } = Cov{V, W} = 0 Cov{X, W} = Cov{Y, V } = 0

Cov{X, V } = Cov{Y, W} = ξ

E{X} = µi,R E{V} = µj,R

E{Y} = µi,I E{W} = µj,I

Var{X} = Var{Y } = σ2
i Var{V } = Var{W} = σ2

j .

Using the relations in (A.1) and (A.2), (A.9) reduces to

ρ|hi|2, |hj |2 =
Cov

{
X2, V 2

}
+ Cov

{
Y 2, W 2

}
√

Var
{
|hi|2

}
Var

{
|hj |2

}

= 4
ξ (µi,Rµj,R + µi,Iµj,I) + ξ2√

Var
{
|hi|2

}
Var

{
|hj |2

} . (A.10)

Solving for ξ gives

ξ = −µi,Rµj,R + µi,Iµj,I

2

± 1
2

√
(µi,Rµj,R + µi,Iµj,I)

2 +
√

Var
{
|hi|2

}
Var

{
|hj |2

}
ρ|hi|2, |hj |2 . (A.11)
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Thus,

Cov{hi, hj} = Cov{X, V } + Cov{Y, W} = 2ξ

= − (µi,Rµj,R + µi,Iµj,I)

±
√

(µi,Rµj,R + µi,Iµj,I)
2 +

√
Var

{
|hi|2

}
Var

{
|hj |2

}
ρ|hi|2, |hj |2

= −R
{
µiµ

∗
j

}±
√

R2
{

µiµ∗
j

}
+
√

Var
{
|hi|2

}
Var

{
|hj |2

}
ρ|hi|2, |hj |2 . (A.12)

If hi and hj are identically distributed, (A.12) reduces to

Cov{hi, hj} = − |µi|2 ±
√
|µi|4 + Var

{
|hi|2

}
ρ|hi|2, |hj |2 . (A.13)

Using (A.1), we can express the variance of |hi|2 as

Var
{
|hi|2

}
= Var

{
X2 + Y 2

}
= Var

{
X2

}
+ Var

{
Y 2
}

+ 2Cov
{
X2, Y 2

}
= 4E

2{X}Var{X} + 2Var{X}2 + 4E
2{Y}Var{Y } + 2Var{Y }2

= 4 |µi|2 σ2
i + 4σ4

i . (A.14)
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Appendix B

Virtual Branch Transformation

In this appendix, Karhunen-Loève (KL) expansion is used to represent the vector X, of

Section 6.1, in terms of a linear combination of independent, zero mean, unit variance

Gaussian r.v.’s. This allows the expression of the norm square of the channel gain vector,

‖h‖2, as a linear function of the independent virtual branch channel gains and facilitates

characterization by its m.g.f.

Let {λl} be the set of L distinct eigenvalues of KX = E
{
XtX

}
where each λl has algebraic

multiplicity νl such that
∑L

l=1 νl = DT =
∑N

i=1 2mi. The corresponding orthonormal

eigenvectors are denoted by {φl,k}. Then the KL expansion of the vector X is [52]

X =
L∑

l=1

√
λl

νl∑
k=1

Wl,kφl,k , (B.1)

where the {Wl,k}’s are independent, zero mean, unit variance Gaussian r.v.’s. A similar

technique employing a frequency domain KL expansion was used in [53] to study diversity

combining in a frequency-selective Rayleigh fading channel. Another technique similar to

KL expansion was also used in [54] to study the reception of noncoherent orthogonal signals

in Rician and Rayleigh fading channels.

Recall that the norm square of the channel gain vector is given by

‖h‖2 L= XtX . (B.2)
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Using (B.1), ‖h‖2 can be described in a statistically equivalent representation as

‖h‖2 L=

(
L∑

l=1

√
λl

νl∑
k=1

Wl,kφl,k

) (
L∑

n=1

√
λn

νn∑
m=1

Wn,mφt
n,m

)

=
L∑

l=1

L∑
n=1

√
λl

√
λn

νl∑
k=1

νn∑
m=1

Wl,kWn,mφl,kφ
t
n,m

=
L∑

l=1

λl

νl∑
k=1

W 2
l,k

=
L∑

l=1

λlVl , (B.3)

where the third equality follows from the orthonormality of {φl,k} and the virtual branch

variables, Vl’s, are defined by

Vl �
νl∑

k=1

W 2
l,k . (B.4)

Exploiting the fact that the {Wl,k}’s in the KL expansion are independent, zero mean,

unit variance Gaussian r.v.’s, it can be shown that the Vl’s are independent chi-square r.v.’s

with νl degrees of freedom. The m.g.f. of Vl is given by

MVl
(s) � E

{
e+sVl

}
=
[

1
1 − 2s

] νl
2

. (B.5)

Therefore the m.g.f. of ‖h‖2 is

M‖h‖2(s) = E

{
e+s‖h‖2

}
= E

{
e+s

PL
l=1 λlVl

}

=
L∏

l=1

MVl
(sλl)

=
L∏

l=1

[
1

1 − s2λl

] νl
2

. (B.6)
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