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Abstract

In this thesis, the performance analysis of wireless communication systems affected by differ-
ent impairments is addressed. The BER calculation is accomplished by means of modelling
the decision variable at the receiver as a particular case of quadratic form D in complex
Gaussian random variables. Relevant results are obtained when circularly-symmetric RVs are
considered, providing exact as well as approximate closed-form expressions for Pr{D < 0}.
The general case of non circularly-symmetric RV is also considered, which had not been
previously analyzed in the literature, obtaining novel exact (and approximate) closed-form
expressions for Pr{D < 0}.

Additionally, a general framework for the probability calculation in QAM system is pre-
sented, which allows to express the BER as a weighted sum of components of error probability.
Closed-form expressions for these weights are given for QAM constellations with arbitrary
independent bit-mapping, which include previous results in the literature as particular cases.

With these tools, the BER of a number of MIMO-OFDM systems in non ideal conditions
has been obtained in exact closed form. Particularly, the following system model have been

analyzed:

e A 1x Nr QAM system with MRC reception, affected by Ricean fading, Ricean-faded

interferences and ICSI.

e A 2x Nr QAM system with Alamouti transmission and MRC reception, affected by
Ricean fading and ICSI.

e A 1x Nr OFDM system with MRC reception, affected by Rayleigh fading, CFO, ICSI
and DC offset.

e An OFDM system affected by Rayleigh fading, ICST and I/Q imbalances.

X1



x11

e A Ny x Ngp OFDM system with transmit beamforming and MRC reception, affected
by Rayleigh fading and ICSI.



Resumen

En esta tesis se aborda el problema del analisis de prestaciones en sistemas de comunica-
ciones inalambricas afectados por diferentes no idealidades. El calculo de la BER se lleva
a cabo modelando la variable de decisién en el receptor como una forma cuadratica D de
variables aleatorias Gaussianas complejas. Se han obtenido resultados relevantes para el caso
de variables aleatorias circularmente simétricas, proporcionando expresiones cerradas (tanto
exactas como aproximadas) para el célculo de Pr{D < 0}. También ha sido considerado
el caso general de variables aleatorias no circularmente simétricas, que no habia sido anal-
izado con anterioridad en la bibliografia, obteniendo expresiones expresiones cerradas (tanto
exactas como aproximadas) para Pr{D < 0}

Ademads, se presenta un marco analitico para el calculo de probabilidades en sistemas
basados en QAM, que permite expresar la BER como una suma ponderada de componentes
de probabilidad de error. Se deriva una expresion cerrada para los coeficientes de esta suma
ponderada, que son validos para constelaciones QAM arbitrarias con mapeo independiente
de los bits, y que incluye resultados previos como casos particulares.

Con estas herramientas, se han obtenido expresiones exactas y cerradas para la BER de
diferentes sistemas MIMO-OFDM no ideales. En particular, se han analizado los siguientes

modelos de sistema:

e Un sistema 1 x Ng QAM con recepcion MRC, afectado por desvanecimientos tipo Rice,

interferencias tipo Rice y estimacién de canal imperfecta (ICSI)

e Un sistema 2 X Nz QAM con transmision de Alamouti y recepciéon MRC, afectado por

desvanecimientos tipo Rice e ICSI.

e Un sistema 1 x Ngp OFDM con recepcion MRC, canal Rayleigh, offset de frecuencia de
portadora (CFO), ICSI y offset de continua (DC).

xiii
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e Un sistema OFDM afectado por desvanecimientos tipo Rayleigh, ICSI y desbalanceos
1/Q.

e Un sistema Ny x Ng OFDM con beamforming en transmision y recepcion MRC, canal

Rayleigh e ICSI.



Chapter 1

Introduction

HIS chapter introduces the reader into the main motivations of this thesis. The state
of the art in performance analysis is reviewed, and some open problems of interest are
identified. Then, the aims and organization of this thesis are presented, and the publications

obtained within this work are summarized.

1.1 Motivation

The measurement of the performance in communication systems has always been a matter of
extreme interest since their very origin [1-3]. Besides the channel capacity, which basically
provides information about the limiting error-free information rate that can be achieved, this
performance is usually quantified in terms of the Symbol Error Rate (SER) or the Bit Error
Rate (BER). Depending on the characteristics of the channel fading and the modulation
scheme, the performance analysis can be conducted following different approaches.

One of the milestone reference works in this area was published by Simon and Alouini [4],
where the performance of a number of digital communication systems under different fading
conditions was analyzed following a common strategy. Most of the results provided in this
paper allowed to obtain the SER in exact closed-form, whereas in other cases a numerical
integration was necessary.

The appearance of new digital communication systems that employ new modulation
or transmission schemes leads to the necessity of evaluating their performance in order to

enable a fair comparison with the existing techniques. Some examples are the use of multiple
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antennas, usually referred to as multiple-input multiple-output (MIMO) systems, or the
orthogonal frequency division multiplexing (OFDM) technique. Both MIMO and OFDM
have been incorporated in many commercial and under-development wireless communication

technologies.

The analytical performance of most of wireless communication systems under different
fading conditions has already been accomplished when perfect channel state information
(CSI) is assumed to be known at the receiver side (or even at the transmitter side, if required)
[5, 6]. These results hence are useful to determine the maximum achievable performance of
these systems under ideal conditions. However, in practice there exist many factors which
may limit their performance: the appearance of interfering signals, the consideration of
imperfect CSI, or non-idealities due to physical implementation such as carrier frequency
offset (CFO), in-phase/quadrature (I1/Q) imbalance and direct-current (DC) offsets are valid

examples.

In these situations, the system model becomes more complicated than the originally
considered in [4] due to the different natures of the random variables (RVs) involved in the
process. This implies not only that the analytical performance evaluation may result more
difficult, but that the simulation of these scenarios becomes unfeasible. Thus, the derivation
of exact closed-form expressions for the performance analysis of these systems is of utmost
necessity, in order to be able to efficiently determine how these impairments affect the system

performance.

There exist different approaches for the BER calculation in these scenarios: the derivation
of the probability density function (PDF) or the cumulative distribution function (CDF) of the
decision variable, the moment generating function (MGF) method [7] and the characteristic
function method are the most extended strategies. However, many of these systems allow
to express the decision variable as a particular case of a general quadratic form; hence, the

performance analysis can be conducted by following a common procedure.
In this line, the probability calculation in quadratic form receivers when complex Gaus-
sian circularly-symmetric RVs are considered was studied in [6, 8]. These results have enabled

the analysis of different scenarios [9, 10] where the involved RVs have non-zero mean, in which
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the BER calculation following other approaches was not feasible. Therefore, the possibility
of expressing the decision variable as a quadratic form provides an efficient way to evaluate

the BER in exact closed-form in a number of scenarios.

Recently, Di Renzo [11] generalized the results given by Proakis, providing a means
to obtain the characteristic function of a general quadratic form for a number of fading
conditions (i.e., different natures of RVs). However, all the analyses in the literature assume
that the RVs have circular symmetry, which means that their real and imaginary parts are
not correlated and have the same variance. Since the condition of circular symmetry [12, 13]
may not be always fulfilled, it seems interesting to analyze general quadratic forms where

the RVs lack from circular symmetry.

Another matter that arises when evaluating the performance of a communication system
is related with the error probability calculation for a family of constellations. The calcu-
lation of the BER must take into account that different symbols may have different error
probabilities. This may be due to some factors, e.g. the decision regions vary for the symbols
located in the outer zone of the constellation, or the equivalent noise affects differently to

the I and QQ components.

Many analyses in the literature, tough of unquestionable interest, usually are performed
for particular constellations such as Binary Phase-Shift Keying (BPSK), 4-Quadrature Am-
plitude Modulation (4-QAM) or 16-QAM [9, 14, 15]. As the constellation size is increased,
the calculation is often carried out by explicitly deriving the different probabilities of the re-
ceived symbol to be above or below a number of decision boundaries, and then these individ-
ual probabilities are combined accordingly. It seems hence desirable the use of a systematic

method which allows for a generic BER calculation, independently of the constellation size.

There exist some previous works in the literature devoted to this task, that allow for
the BER calculation in particular scenarios, such as additive white Gaussian noise (AWGN)
channels [16] and fading channels [17]. These results are based on the empirical observa-
tion of regular patterns in the constellation mapping, and hence lack from a mathematical
background. Besides, some assumptions are taken both in the constellation mapping (Gray

mapping) and in the RVs (circular symmetry). Thus, there are some scenarios which cannot
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be analyzed using these approaches.

The motivation of this thesis is twofold: On the one hand, to provide a general method
for the BER calculation in QAM based systems with arbitrary constellation size; on the other
hand, to obtain exact-closed form expressions for the BER of MIMO and OFDM systems in
non-ideal conditions, by means of a general analysis of Gaussian quadratic forms in complex

RVs.

1.2 Aims and organization

According to the motivation of this thesis, the following aims have been defined

a. The provision of a general framework for the BER calculation in M-QAM systems. In-
dependent bit mapping for the I and Q components will be assumed, which includes the

common case of Gray mapping.

b. The derivation of exact closed-form expressions for the BER of MIMO and OFDM systems
in some scenarios of interest. The analyzed scenarios will include one or several of the
following effects:

e Imperfect CSI (ICSI).
e Rayleigh and Ricean fading.
e Rayleigh and Ricean faded interferences.
e Transmit beamforming.
e Alamouti transmit diversity technique.
e Multibranch reception with maximal ratio combining (MRC).
e DC offset.
e 1/Q Imbalance.
c. The derivation of approximate closed-form expressions for the BER of MIMO and OFDM

systems in some scenarios of interest, which allow the provision of a better insight into

the system performance.
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The analyzed scenarios must allow that the decision metric may be expressed in terms
of a general quadratic form in complex Gaussian RVs. Hence, a common procedure can be
used for the analysis of the different scenarios which are to be considered in this thesis.

With these aims, the contents of this thesis are structured as follows. The first two chap-
ters are devoted to introduce the mathematical tools which have been used and developed

in this work. Particularly,
e Chapter 2 presents the general framework for the BER calculation of M-QAM systems.

e Chapter 3 illustrates some key aspects related with the problem of probability calcula-
tion, and provides analytical results when general quadratic forms in complex Gaussian

RVs with and without circular symmetry are considered.

Chapters 4 to 6 use these tools to analyze different MIMO and OFDM systems, which had
not been previously analyzed in exact closed-form in the literature. Additional approximate

expressions are provided for particular scenarios of interest.

e In Chapter 4, two scenarios considering MIMO configurations in Ricean fading chan-
nels and ICSI are considered: (1) MRC reception in the presence of Ricean-faded

Interferences, and (2) Alamouti transmission with MRC reception.

e In Chapter 5, the effects of two major impairments associated with OFDM systems
with direct conversion are analyzed: (1) DC-offset and (2) I/Q imbalance. Rayleigh

fading and ICSI are considered in both scenarios.

e Chapter 6 analyzes a MIMO-OFDM system under Rayleigh fading with ICSI at both
the transmitter and receiver sides, where transmit beamforming and MRC reception

are used.

Finally, the main conclusions and the future work are outlined in Chapter 7.

1.3 Publications
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Chapter 2

Generalized BER analysis of QAM
systems

T HIS chapter presents a general framework for the performance analysis of M-QAM
systems. This methodology is valid for any QAM system with independent bit map-
ping for the in-phase (I) and quadrature (QQ) components, and includes previous analyses in

the literature as particular cases.

This framework allows for the separation of the analysis in two main tasks, which can
be performed independently: the calculation of elementary coefficients, which values depend
only on the constellation mapping, and the calculation of components of error probability,

which values depend on the probability distribution of the random variables.

Firstly, the related work in the literature is briefly outlined in Section 2.1. Then, the
proposed framework is introduced in Section 2.2, providing expressions for a general case
(where no assumptions about the statistical distributions of the RVs are made) as well as
for some simplified scenarios of interest in communications. Finally, the calculation of the
elementary coefficients is accomplished in Section 2.3, for an arbitrary constellation mapping.
Compact expressions for the elementary coefficients are also provided for the usual case of

Gray mapping.



2.1. RELATED WORK

2.1 Related Work

QAM is today the most extended modulation scheme in modern communication systems
[23], either in monocarrier transmission or in combination with other schemes: adaptive
modulation [24], multicarrier transmission [15] or MIMO systems [10]. BER analysis in

QAM systems has been widely studied by many authors.

For AWGN channels, closed-form expressions for arbitrary QAM with Gray mapping are
obtained in [16], based on the empirical observation of regular patterns in the constellation
mapping. In [25], an exact expression for the BER in QAM systems with arbitrary bit-
mapping is proposed, based on the Hamming distance between symbols. This technique
requires to calculate the probability of a received symbol to be within a square region in the

two-dimensional Euclidean space formed by the I and Q components.

In the case of fading channels, different results have been obtained. In [14], approximated
expressions for the BER in Rayleigh fading channels with imperfect CSI (ICSI) are obtained
when 16/64-QAM modulation is used. Closed-form expressions for different scenarios are
obtained in [9, 15, 26], and [27], but their results are calculated separately for particular
QAM constellations. Finally, Najafizadeh and Tellambura [17] present a general expression
for the BER of an arbitrary QAM constellation with Gray mapping. Similarly to [16], the
analysis is based on the observation of a regular pattern in the constellation mapping. This
result is used to analyze the BER in systems with MRC diversity with ICSI in generalized

Ricean fading channels.

Previous results allow for the exact BER computation in QAM systems for many sce-
narios, but under some restrictions. Particularly, the analysis presented in [16] is valid in
scenarios with Gray mapping, perfect channel state information (PCSI) and noise with cir-
cularly symmetric PDF. On the other hand, the analysis in [17] assumes Gray mapping and

equivalent noise with circularly symmetric PDF.

Here, we propose a new framework which allows to unify the BER calculation in QAM

based systems. This methodology is valid for any QAM-based system, independently of the
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constellation mapping or the distribution of the channel gain and the noise. The only restric-
tion in our analysis is that in-phase and quadrature components can be detected separately,
that is, independent bit mapping. The BER expression obtained in our analysis is expressed
as a weighted sum of components of error probability (CEPs) which depend on the proba-
bility distribution of the random variables in the scenario under analysis. The calculation
of these weights (namely elementary coefficients) depends on the particular constellation
mapping, so it can be tackled separately.

In contrast to [16] and [17], where the final expressions are derived attending to the
observation of regular patterns in the bit mapping, our method provides a mathematical
background to the analysis. Unlike [25], our method only needs to calculate the probability
of a received symbol to be within a half-plane in the I-Q plane, which is generally easier to

derive.

2.2 Generalized BER Analysis
2.2.1 Analytical Framework

Let us consider the general problem of the BER calculation when the symbol y to be detected

can be expressed in the following canonical form
y=az+C(, (2.2.1)

where a (gain mismatch) and ¢ (equivalent noise) are complex random variables in the
most general case. In this model, the gain mismatch a accounts for the effect of imperfect
channel compensation, whereas the equivalent noise ( includes the effect of additive noise,
interferences and other receiver impairments.

Let z be the transmitted symbol, belonging to a rectangular QAM constellation which
consists on the composition of two L-PAM and L,-PAM constellations associated with the
in-phase and quadrature signal components, respectively. Since different bits are mapped
onto I and Q components for this family of constellations, both the I and Q components can
be detected separately. Thus, the only restriction in the forthcoming analysis relies in the

consideration of independent bit mapping for I and Q components.
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Fig. 2.1 shows an example of a 64-QAM constellation, useful to present the adopted nota-
tion. The set of complex symbolsis {s,, = (2u — L1 — 1)d + j(2v — Ly — 1)d}y=1,. Lyv=1,.. Los
where 2d is the minimum distance between symbols. Every s, , symbol has associated a set of
bits of the I component {57 (u)}i—1.._1og,(z,) and a set of the Q component {b2(v)}ic1 _og,(Ls)-
The set of decision boundaries for the I and Q components are {Bz(k) = (2k—L1)d}x=1,. 1,-1
and {Bg(k) = j(2k — Ly)d}k=1,. 1,—1 respectively.

CONSTELLATION ENCODING

010000:010010;011000:011010§111010;111000;110010:110000

7d o o o o o o o o
By(7)

010001:010011:011001;:011011§111011:111001:110011;110001
5d u] o o o o o o =]
B,(6)

010100{010110;011100:011110§111110{111100:110110{110100
3d o o o o o o o o
B,(5)

010101, 010111:011101{011111J111111{111101; 110111110101
d o o m] =] o u] o o
B,(4)

000101{000111:001101{001111J101111{101101:100111:{100101
-d o o o o o o o o
B,(3)

000100;000110;001100:001110§101110{101100;100110:100100
-3d o o o o (n] o o o
B,(2)

000001:000011:001001:001011§101011:101001:100011;:100001
_5d o o o o o (u] o o

S6.2

B, (1)

000000 000010:001000:001010)101010;101000;100010i100000
-7d s o u] o o o o o o

11

v "o7d -5d -3d -d d 3d 5d 7d
, U B,(1) B,(2) B,(3) B, (4) B,(5) B,(6) B,(7)

Figure 2.1: 64-QAM constellation with independent mapping of I and Q component. The
bits for I and Q components are mapped as {b%(u); b (v); b3 (u); b$(v); b (1);b2(v)}, e.g.
S6,2 = 101001.

The BER of the considered rectangular QAM constellations can be expressed as the

average, over all the bits and transmitted symbols, of the error probability of a given bit

10
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conditioned on a given transmitted symbol

Ly L» logy(L1) logy(L2)

1 1
BE R - Pr(1 Po(1 2.2.2
RQAM L1L2 ; ; IOgQ(LlLQ) Z I(Z7 u’ /U) + Z Q(Z7 u’ /U) ? ( )

i=1 i=1

where Pz(i,u,v) = Pr{error in b (u)| z = s,,} and Pg(i,u,v) = Pr{error in b2(v)| z = sy},
respectively. Each term Pr(i,u,v) can be calculated as a linear combination of probabili-
ties of the real part of the received symbol y to be above or below of a variable number of
decision boundaries. This assert is also valid for the QQ component terms, when considering
the imaginary part of y. For example, the error probability of bit {bZ(1)} of the symbol y
conditioned on transmitted symbol z = s ; is (considering the bit mapping used in Fig. 2.1)

expressed as
Pr(2,1,1) =Pr{R{y — Bz(2)} > 0| z =511} — Pr{R{y — Bz(6)} > 0]z =s11}. (2.2.3)

The idea underlying the example in (2.2.3) can be formalized in order to write the BER

expression (2.2.2) as

L1 Lo logQ(Ll) u—1 L1—-1
1 1
BER =T 7. T a, (1, k)L, (k +§ ot (i k) - I, (k
A L1L2;§10g2(L1L2) ZZ {Z (.5) »F) (i, ) ol )}

logy(L2) (v—1 Lo—1
+ {Zﬁv(z’,k) - Qu (k) + > B k) - %Uf)} ,

where the components of error probability (CEP) are defined as

Z,(k) =Pri{R{y = Bz(k)} < 0| 2z = suo}, Z,(K)
Quo(k) =Pr{S{y — Bo(k)} <0z = suu}, Qj,(k)

Pr{R{y — Bz(k)} > 0| 2 = sy},

Pr{S{y — Bo(k)} > 0] = = 54,0}
(2.2.5)

The values of the elementary coefficients ot (i, k) and B (i, k) belong to the set {—1,0, 1}

and represent changes in the corresponding value of bit ¢ across the k-th decision boundary
for the s,, symbol: 0 indicates no bit value change, 1 indicates a bit change from the
correct value to a wrong one, and -1 from the wrong value to the correct one. For the

example presented in (2.2.3), the values for the elementary coefficients are af (2,2) = 1,

11
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7(2,6) = —1 and af (2,m) =0, for m € {1,3,4,5,7} . Note that o and Z are associated
with the I component, whereas § and Q are associated with the () component. The sign on
the super index of «, 3, Z and Q indicates if the k-th decision boundary is below or above
(respectively - or +) either the real part (for v and Z) or imaginary part (for 5 and Q) of

the symbol s, ,. The calculation of these elementary coefficients is tackled in Section 2.3.

Since o (i, k) and 5= (i, k) are the only constants that depend on the bit i, they can be

grouped in the following way

log, (L) logy (L)

ot (k) = Z =(i,k), Bk Z BE(i, k). (2.2.6)

This leads to the final BER expression

L1 Lo u—1 L1—1
LT +01) . T+
BERgaw = ZZlogQ L) |2 ) Tual) + 3 0l ) T8
o1 Lot (2.2.7)
+ >0k Quu (k) + D BE(k) - QF (k)
k=1 k=v

Hence, expression (2.2.7) allows for the exact BER calculation in any scenario which
can be reduced to the canonical form y = az + (, independently of the distribution of the
random variables a and (. Thus, the derivation of the BER expression is reduced to two
main calculations: the elementary coefficients, whose value only depends on the constellation
mapping, and the CEPs, whose expression is determined only by the distribution of the

random variables a and (.

Although expression (2.2.7) is general, some simplifications can be done for particular
scenarios of interest in order to obtain more compact expressions. For the sake of clarity
and without loss of generality, square M-QAM is considered (M = L?) in the forthcoming
analysis. However, equivalent expressions for rectangular QAM or PAM can be obtained by

following the same procedure.

12
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2.2.2 Arbitrarily distributed gain mismatch and circularly sym-
metric noise

Preliminary definitions

Definition 1. A random variable z is said to be circularly symmetric with respect to p if
z—p and 2 = (2 — p) &% have the same distribution ¥0. In case p = 0, it is usual to omit
the center of symmetry in the definition of circular symmetry [15].

Corollary 1. Let z £ z + jy be a complex continuous circularly symmetric RV. Then x and
y are identically distributed RVs, and the PDF's of x and y are even functions.

Proof. Let the PDF of z be denoted as fz(z) = fxy(z,y). According to Definition (1), we
have 2’ = ze/? = 2/ + jy/. Therefore,

z = gi(a,y) =2’ cosh + 1y siné, (2.2.8)
y= g2, y) = —2'sinf + ¢/ cos . (2.2.9)

Then, the function fysy/(2',y’) can be calculated as

fX/,Y,<x/7 y/) = fX7Y(x7 y) ’z:gl(x’7y’),y:gQ(1:’,y’) ‘\7‘ ) (22]‘0)

where |J| is the Jacobian of the transformation of random variables defined as

MEIR (2.2.11)
oz’ Oy
Due to the circular symmetry of z, we have fy/ y/(2',y') = fxy(2/,vy). Hence,
Ixy (@' cos+ 1y sinf, —a'sinf + y' cosb) = fxy(z',y). (2.2.12)
For different values of 6, we have
T / / / /
0= 9 = fxy (¥, —2) = fxy (@ y); (2.2.13)
0= T, — fX7y<—$/, —y/) = fX7y($/, y,), (2214)
3m
0= 7, — ny(—y’, .’L’/) = fxy(.’]j/, y’). (2215)
Using these symmetries, it is easy to see that
fx(x) :/ fxy(z,y)dy :/ fxy(—z, —y)dy = fx(—z); (2.2.16)
fx(x) = / fxy(z,y)dy :/ fxy(y, —z)dy = fy(—z) = fyr(z). (2.2.17)
]

13
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Simplified BER expression

Let us consider a scenario where the equivalent noise ( is a circularly symmetric RVs with
respect to zero.

Due to the circular symmetry, the real and imaginary parts of ( are identically distributed,
and hence the quadrature CEPs are equivalent to the in-phase CEPs, i.e Z7, (k) = Qf_wlm(k).
Besides, as the PDF of the real and imaginary parts of ( are assumed to be even functions,
the CEPs also present the following symmetry Z.7 (k) = Z;_, ., 1, 1(L — k). Summarizing,

we can write

L L L-1
BERqam = » Y > wu(k)- I}, (k), (2.2.18)
u=1 v=1 k=u
where
11
wy(k) = M log, (M) [ (k) +ap_ (L= k) + 85 (k) + B 1 (L= k)] (2.2.19)

Therefore, the derivation of a closed-form expression for the BER is reduced to the
calculation of the CEP I;f ,(k). For the particular case of Gray mapping, the resultant

expression (2.2.18) is formally equivalent to that given in [17].

2.2.3 No gain mismatch and circularly symmetric noise

Another typical scenario in communications is presented when ideal channel compensation
is assumed at the receiver (i.e. a = 1). This consideration allows for the application of
additional simplifications. Thus, assuming that there is no gain mismatch, consequently
there is no cross-quadrature interference. Hence, the (3 component of the transmitted symbol
z has no influence on the in-phase CEP, and vice versa. Thereby, equivalent CEPs can be

defined

u

TEH(k) 2 TE5,(k),  Of(k) = OF, (k). (2.2.20)

Moreover, the CEPs depend both on the distance between the transmitted symbol z

and the decision boundary and on the fact that z is above or below a certain boundary.

14
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Therefore, e.g. Z.7 (k) can be expressed as

k) =Pr{R{y — Bz(k)} > 0|z = sup} = Pr{R{y — sus} > R{Br(k) — su,}}

(2.2.21)
=Pr{R{¢} > (2(k—u)+1)d}.
Thus, we can exploit these symmetries to define
TH(m) 2 I (u+m—1), 1<m<L-—u,
Q*(m) 2 Qf (v+m — 1), L<m<L-uv,
A (2.2.22)
I (m)=17,(u—m), 1<m<u-—1,
Q_(m)éQ;(v—m), 1<m<uv—1.
Considering that PDF of ( is circularly symmetric, we can write:
It(m)=Z (m)=Q"(m)=Q (m)=Pr{R{¢} > 2m —1)d}. (2.2.23)

Under these assumptions, the previous definitions allow us to obtain the following com-

pact BER expression

L—1
BERgam = w(m)Z*(m), (2.2.24)
m=1
where
L—m
w(m) = S Zoﬁ(u—l—m—l)—l—a— (w)+ B (u+m—1)+ 6, (u)
MlOgQ(M) — u u+m u u+m
(2.2.25)
An equivalent expression can be derived for a L-PAM
L—1
BERpam = Y w(m)I*(m), (2.2.26)
m=1
where
1 L—m
w(m) = ——— at(u+m—1)+a,,,,(u)l. 2.2.27

In the particular case of Gray mapping, expressions (2.2.24) and (2.2.26) are formally
equivalent to the expression obtained in [16]. In the special case of BPSK, it is easy to show
that (2.2.24) reduces to

BERgpsk = Z7(1). (2.2.28)

15
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Figure 2.2: Definition of the mapping sequence of Fig. 2.1 as a set of discrete time signals.
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2.3 Calculation of Elementary Coefficients

The closed-form expressions for the BER calculated in the previous Section are reduced to
a weighted sum of CEPs. The weights or elementary coefficients, namely o and [ in (2.2.7),
are constants which value only depends on the constellation mapping. In this Section, we
tackle the calculation of these constants from a novel point of view, based on the definition
of the constellation mapping as a set of discrete time signals. Firstly, we illustrate the
calculation procedure for a generic constellation mapping, and then we particularize for the

relevant case of Gray mapping.

2.3.1 General Case

Let the bit sequence to be mapped in the QAM constellation (either in / or ¢) components) be
expressed, for instance, as depicted in Fig. 2.2, where the index ¢ = 1...log, L addresses the
bits within each symbol whereas m = 1... L points the symbol along the I or () components.
Note that the bit sequence in Fig. 2.2 is coincident with the constellation in Fig. 2.1, and
corresponds to a 64-QAM with independent bit mapping (although not Gray mapping).
Let us consider the bit sequence as a set of ¢ discrete time signals denoted as b;(m), in

order to mathematically represent the binary values in the i-th bit of the m-th symbol. From

16
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this definition, the discrete derivative of the bit sequence in the k-th boundary is given by

b(k) =bi(k+1)—bi(k), 1<k<L-1. (2.3.1)

Note that b;(mm) may represent either b7 (u) or b2(v) according to the notation in Fig. 2.1.
Expression (2.3.1) provides us the information about the bit error occurrence after boundary
crossing. In this case, according to the constellation mapping in the example, the expression
for the bit ¢ = 2 is by(k) = [0,1,0,0,0,—1,0]. The interpretation of b;(k) values is done as
follows: 0 indicates no bit value change, 1 indicates a bit change from 0 to 1, and -1 indicates
a change from 1 to 0.

Since the elementary coefficients o (4, k) and 3F (i, k) represent changes in the detected
value of bit ¢ across the k-th decision boundary, we can directly express the elementary

coefficients (e.g. o) as:

o (i, k) = (1 — 2b;(u))b;(k), (2.3.2)

where (1 — 2b,(7)) operation is performed to translate the values of b;(u) from the set {0, 1}

to {1,—1}. The calculation of oy, (i, k) and 3F (i, k) is performed in a similar way

g (i, k) = —(1 — 2b,(w)bi (k).
B (i, k) = (1 — 20:(0)B (k). (2.3.3)
By (i, k) = — (1 — 2b,(0) B (k).

2.3.2 Gray Mapping

For the relevant case of Gray mapping, an explicit expression for the calculation of elementary
coefficients can be derived. First, we will focus on the case of the coefficients ot (7, k)
associated with the T component. The remainder coefficients o, (i, k), B (i, k) and 3, (i, k)
are deduced in a similar way.

Let us observe the sequence b;(u) of the bits with Gray mapping for square M-QAM
along the I component, for the case of M = 256, as depicted in figure 2.3. The index
1t =1...log, L addresses the bits within each symbol whereas u = 1... L points the symbol

along the I component. If the bit sequence is considered as a set of i discrete time signals,

17
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Figure 2.3: Definition of a 256-QAM Gray mapping sequence as a set of discrete time signals.

we can easily deduce the following mathematical representation for the binary value in the

1-th bit of the u-th symbol

bi(ut) — % (1-9Q(i,u)), (2.3.4)
where Q(i, x) is defined in (2.3.5) as
Q (i,z) 2 sign {cos (wi(z — 1/2))}, (2.3.5)

and the frequency w; = 23% accounts for the periodicity of the discrete signal b;(u).

Otherwise, the discrete derivative of the bits sequence in the k-th boundary is given by

bi(k) = bk + 1) — bi(k) = = (6, k) — Qi k + 1)) = = (i, k) — Q (i, —k)), (2.3.6)

N —
N —

where k = 1... L—1. Hence, combining (2.3.4) and (2.3.6) we obtain the following expression

a3, k) = (1 — 20;(u))by(k) = %Q (i,m) [Q (i, k) — Q (4, —k)]. (2.3.7)

The remainder coefficients o, (i, k), B (i, k) and 3, (i, k) can be deduced following the

same procedure, yielding

o (i, k) = B (i k) = i%Q (i.m) [ (6, k) — Q (i, k)] (2.3.8)
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where m = u or m = v for a® or 3+ coefficients, respectively.
As previously stated, aF (i, k) and 3F (i, k) are the only constants in (2.2.4) that depend

on the bit ¢. Therefore, they can be grouped as

log, (L)

TIOEDS i%Q(i,m) Q30 k) — Q (6, — k)] = BE (k). (2.3.9)

2.4 Discussion

In this chapter, a general framework for the BER analysis of QAM systems with independent
bit-mapping has been presented. Using the proposed methodology, the BER is expressed
as a weighted sum of components of error probability, where the values of the weights or
elementary coefficients only depends on the constellation mapping.

A closed-form expression is given for a general scenario (2.2.7), and additional simplified
expressions are provided for two particular scenarios of interest in communications: (1) circu-
larly symmetric equivalent noise (2.2.18), and (2) perfect channel estimation with circularly
symmetric equivalent noise (2.2.24).

Additionally, a systematic procedure for the calculation of the elementary coefficients is
presented, which enables an easy computation for any constellation mapping (2.3.3). Com-
pact results are also given for the relevant case of Gray mapping (2.3.8).

The proposed framework is to be used in Chapters 4 to 6 to obtain closed-form expressions
for the BER in a number of scenarios. The main contributions of this section have been

published in [19].
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Chapter 3

BER analysis using quadratic forms in
complex Gaussian RVs

I N this chapter, we tackle the problem of the error probability calculation in systems
where the decision variable at the receiver side can be expressed in terms of a general

quadratic form in complex Gaussian RVs.

The contents of this chapter can be summarized as follows: Firstly, the most usual
strategies for probability calculation in the literature are presented. Then, we focus on the
probability calculation using complex Gaussian quadratic forms, which is the approach to be
used in this thesis. Separate analyses are provided depending whether the involved RVs are
circularly symmetric or not. In both cases, exact expressions for the calculated probabilities

are obtained, as well as approximate expressions for some particular scenarios of interest.

In the following, we use * to denote the complex conjugate operation, |- | to indicate
the modulus of a complex number, and E{-} to represent the expectation operation. The
superindex 7 is used to indicate the transpose operation, and ™ denotes conjugate transpose

operation.

3.1 Formulation

In most scenarios, the major difficulty in carrying out performance analysis of communica-

tion systems is to calculate the probability that a random variable X is greater (or smaller,
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equivalently) than a certain value Xj, i.e., Pr{X < Xy}. Hence, depending on the statis-
tical distribution of X, the calculation of Pr{X < Xy} may be conducted under different
approaches.

The more direct strategy is the calculation of the cumulative distribution function (CDF)
Fx(x), which represents the probability that the random variable X takes on a value less
than or equal to X, i.e., Fx(Xo) = Pr{X < X;}. Unfortunately, the CDF calculation may
result unfeasible for many practical statistical distributions of X, and therefore alternative

approaches must be taken in order to calculate analytical expressions for these probabilities.

3.1.1 Probability Density Function

The probability density function (PDF) of a random variable X, namely fy(z), describes
the probability of a random variable to take a certain value within the observation space.
The probability of a X to fall within a given range of values is given by the integral of its

PDF over this range, as

b
Pr{a <z <b} = / fx(x)dx. (3.1.1)
Hence, the relationship between the PDF and CDF is clearly established as
Xo
Fx(Xy) = fx(z)dx. (3.1.2)

3.1.2 Moment Generating Function

The moment generating function (MGF) of a random variable X is defined as
Mx(t) 2 E{e™} = / e dFx (z). (3.1.3)

The MGF is often used as a calculation tool, since its m'* derivative evaluated at t = 0
provides the m™ moment of X. Besides, it allows to compute the PDF (in case this PDF is
a continuous function) by taking the inverse two-sided Laplace transform of M (¢). How-
ever, the calculation of the PDF when the MGF is known is usually performed through

identification, since there exist a uniqueness relationship between Mx (¢) and fx(x).
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3.1.3 Characteristic Function

The characteristic function @ x(w) of a random variable X is defined as
dx(w) £ E{e/X} = / e dFx (). (3.1.4)

In case the PDF exists, the characteristic function is related with the PDF via the
Fourier transform. In some scenarios, either the moments or the MGF may not exist, since
the involved integrals are not convergent. On the contrary the characteristic function always

exists, and hence it is used instead.

3.1.4 Conditional Probability

In some cases the probability Pr{X < X} cannot be calculated in closed-form, specially

when the RV X is composed by a combination of individual RVs with different statistical

distributions, i.e., X = g(Xi,..., X,,). In this situation, it may result more appropriated to

generate an auxiliary RV, namely Y, conditioned to a particular value of a set of X;, i.e.,

{Y(X;) £ X |X;}. Hence, Pr{Y(X;) < X;} is referred to as the conditional probability.
Thus, the probability Pr{X < X} can be calculated as

Pr{X < X,} = /OO Fr(Xo, X)p(X:)dX,, (3.1.5)

where p(X;) is the PDF of the RV set Xj.

3.1.5 General Quadratic Forms

In many communication systems, it is very usual that the decision variable can be expressed

as a special case of the general quadratic form D, as

L
D £ AIXi + BIYi® + CXiYy + C* X} Vi, (3.1.6)

k=1
where A, B € R and C' € C are constant values, and X, and Yj are in general pairs of
arbitrarily distributed complex RVs. In this thesis, we will focus on the special case of general
quadratic forms in complex Gaussian RVs, which naturally appear in many scenarios when

evaluating the performance analysis in terms of the BER.
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3.2 Quadratic forms in circularly symmetric complex
Gaussian RVs

3.2.1 Exact analysis

Let us consider a general quadratic form (3.1.6), in complex valued Gaussian RVs. In the

following, we will use the compact notation for quadratic forms introduced in [10], as

L
D =) x/Qx;, (3.2.1)
k=1
where the RV vector x; and the quadratic form matrix Q are given by
X A C
xp=| " |;Q= (3.2.2)
Y C* B

In [6] it is presented a general exact closed-form expression for Pr{D < 0}, under some

restrictions:
e The X}, and Y}, are a pair of correlated complex-valued Gaussian RVs.
e The { Xy, Y.} L pairs are mutually statistically independent and identically distributed.

e The RVs {X; — E{X\}} and {Y, — E{Y}}} are circularly symmetric, i.e., their real

and imaginary parts are independent and have the same variance [13].

In this scenario, the probability Pr{D < 0} can be calculated as
1 0 o ]
P, 2Pr{D <0} = 2—/ dD/ P (w)e P dw, (3.2.3)
T™J-—x —0o0

where ®(w) is the characteristic function of D.
In [28], the characteristic function of a quadratic form in complex Gaussian RVs in the

form x] Qx;, is expressed as

exp (mI'R™! [T— (I- jw 1 my,
™

where I is the identity matrix, mj, £ E{x;} and R £ E {(x; — my)(x}{ — m}!)} are the

mean vector and the covariance matrix of xy, respectively.
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After some algebra, the terms in (3.2.4) can be rearranged, leading the characteristic

function to be expressed as

1 A mR™
D(w) = : —_exp (‘wm’f Qumy. " Ao m’“) , (3.2.5)

(1 —jwAy) (1 — jwls) (1 — jwAy) (1 — jwls)

where \; are the eigenvalues of RQ matrix.
By means of changing the order of integration in (3.2.3), we can express
1 [>T 9
P - ——,/ ) 4. (3.2.6)
27TJ —oo+je W

where ¢ > 0 is a small number inserted to avoid the singularity at w = 0 in the integration
path [6].
The final expression for P, is given in exact closed-form [10] by

P, =Q1(a,b) + i Cn(a,b,n) 1, (ab) x exp {—@}, (3.2.7)

where Q1 (a,b) is the Marcum Q-function, I,,(x) is the m'* order Bessel function of the first

kind, and a, b, n and C,,(-) parameters are calculated using the expressions in Table 3.1.

3.2.2 Approximate expression

Expression (3.2.7) allows for the exact calculation of Pr{D < 0} probability in closed-form.
However, it may result useful to find an approximate expression which enables the provision
of a better insight into the system performance. Here, we will use some asymptotical rela-
tionships between the special functions in (3.2.7) and the well-known Gaussian () function,
in order to derive approximate expressions for Pr{D < 0}.

Particularly, we can use the asymptotic relations [5]

1(a,b) \/>Qb—a when b — o0,
(3.2.8)

(ab)
Ln(ab) ~ exp(ab)

vV 2mab ’

when a - b — oo,

to express, after some algebra

Pr{D<O}~\/>Q b—a)+ a;‘exf/;_;b_“ ZCmabn). (3.2.9)

25
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RVS
Table 3.1: Probability computation of Gaussian quadratic form.
FUNCTIONS AND DEFINITIONS
PARAMETERS
{Ai}icis L(RQ) + (-1)y/ (3 2(RQ))’ — det(RQ)
A1
. 2X (S m} [Q — MR my)
(M — )’
) 21 (S m} [Q — MR my)
(A — Ao)?
1 LI/2n-1)
S
Cm(a7 ba 77) TIL,1, =0 m
1 Zm 2L -1 b - <§>mn2L—1—n m# 0
(1+n)*"" = n a b 7

22
Finally, using the asymptotic relation for the Gaussian Q function, Q(z) ~ exf/%j) , when

(b — a) — oo, we obtain the final approximate expression
Pr{D <0}~ T -Q(b—a), (3.2.10)

where T is a constant value defined as

A b b—a &
T&y[-+ N > Cula,b,n). (3.2.11)
m=0
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3.3 Quadratic forms in non-circularly symmetric com-
plex Gaussian RVs

3.3.1 Notation and preliminary concepts

Let x € C® and A € C™*P. Then, we use the mappings x — X and A — A defined in [29],

R(x) ] _ [Xr
F(x) Xi

Let y € C be a complex RV. The real covariance matrix [13] of the composite real RV ¥

where

= € R, Q= € R¥mx%, (3.3.1)

e

is denoted by

2
S, 2 E{y¥7} = [ T Turws ] , (3.3.2)

2
UyT Yi O-yi

and the variance of y is given by o = 07 + 07 . According to (3.3.2), the RV y is said to be

2

circularly symmetric if o7 = o

- and oy, = 0.

3.3.2 Exact analysis

In Section 3.2.1, a detailed analysis of general quadratic forms in complex-valued Gaussian
RVs was presented, providing expressions for the calculation of Pr{D < 0} in terms of
Marcum-@ and modified Bessel functions of the first kind. Nevertheless, these expressions
are not valid when non-circularly symmetric RVs are considered. Here, we introduce the
analysis of general quadratic forms in complex-valued non circularly-symmetric Gaussian
RVs, for the particular case of zero-mean.

Let D = A|X|? + B|Y|? + CXY* + C*X*Y be a general quadratic form, which can be

compactly expressed as

D = xi Qxy, (3.3.3)
where
X Q A C (3.3.4)
Ty c* B

Let us consider that the involved RVs are complex-valued non-circularly symmetric Gaus-

sian RVs which real and imaginary parts are treated separately. Hence, adopting the notation
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and the mappings presented in (3.3.1), we can express
D = xI'Qx,. (3.3.5)
In this scenario, the probability Pr{D < 0} can be calculated as

Pr{D <0} = / dD/ e P dw, (3.3.6)

where @ (w) is the characteristic function of D. By means of changing the order of integration,

Wwe can express
1 otIE @
Pr{D < 0} = ——,/ ) 4. (3.3.7)
27T] —oo+je w

where € > 0 is a small number inserted to avoid the singularity at w = 0 in the integration

path [6]. The characteristic function of D is given by

300 P ——— (3.3.9)

H \/1 - 2])\lw

=1

where ); are the eigenvalues of RQ matrix [30].

Since Q is an indefinite matrix, its two eigenvalues hold that gA; > 0 and gAs < 0.
Using the properties of mapping Q — Q given in [29], Q matrix is also indefinite and
its eigenvalues are double, such as Q)\l’g = QA1 and Q)\3,4 = qA2. Therefore, as R is a
positive-definite matrix, the resultant eigenvalues of RQ matrix hold that {\y > Ay > 0}
and {\3 < Ay < 0} under Sylvester’s law of inertia [31]. Note that \; = Ay and A3 = A4 only
in the limit case of circular symmetry!.

Combining (3.3.7) and (3.3.8), we obtain

co+je co+j€e

2”130045 - H \/7 OOL T(w (3.3.9)

where w; £ % This integral can be calculated by contour integration as depicted in Fig.

Pr{D < 0} =

3.1, where (3.3.9) is denoted as the integral along C..

1For the particular case of circular symmetry, a 2 x 2 covariance matrix can be calculated as R¢ £
E {x;x]'}. The eigenvalues of R¢ are A, = A\; = Ay and Ay = A3 = Ay, respectively.
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()

Figure 3.1: Contour integration for Pr{D < 0} calculation around the branch cuts.

Since [, T(w)dw — 0as R — oo, the integral in (3.3.9) is equivalent to the calculation

of four integrals around the branch cuts of w3 and wy, as follows

Pr{D <0} = T(w)dw + T(w)dw + T(w)dw + T(w)dw. (3.3.10)

Cs1 Cso Ca Cp

The integration paths can be parameterized as

Cs1 = {jws + 0/t € [0,7m) }; (3.3.11)
Csy = {jws — 6e’";t € [m,2m) } ; (3.3.12)
Ca = {jws —tds4 + 9;t € [0,1]}; (3.3.13)
Cp = {jws — tdys — 0;t € [0,1]} . (3.3.14)

When 6 — 0, the integrals around Cj, and Cj, also tend to zero. The integral along the
ascending path Cy can be expressed as

1

/'ﬂ@@:ZP/‘ ?“ﬁ . (3.3.15)
s (s —tdaa
Ca J 0 J(ws —tdsa) H 1 +jw

Wi
i=1
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After some algebra, we have

1 1 1
1 W1WaWy / 1 1 ( d34)_1 ( d:«;4)_§ ( d34)_§
T(w)dw = —,|———— [t 2(1—t) 2 (1—-t— 1+t— 1+t— dt.
/CA ( ) 27\ wady 3da3 s ( ) w3 di3 da3
(3.3.16)
This equation can be re-expressed in terms of the Lauricella Fp function, using its integral

form [32] as

1
1 11 1
FD (57 ]-7 §a 57 17 a, ba C) = ; /t_l/Q(l - t>_1/2(1 - at)_l (]. — bt)_l/Q (1 — Ct>_1/2 dt.
(3.3.17)

Hence, the final expression for the integral along C'4 yields

1 W1Walyg < 1 11 d3 4 dd 4 d3 4)
YT(w)dw = = |22 Fp (2,1, 2,51 =2 -3 84 3.3.18
Ca ( ) 2 d1,3d273w3 b 2 2°2 w3 dl’g dz’g ( )

It can be shown that the integral along the descending path Cp is equal to (3.3.18). There-
fore, the final expression for Pr{D < 0} is given by

[ Wiwawy I 11 d3y dzs d3g
Pr{D =, /————Fp|=,1,=, =31, — ——— —— | . 3.1
I'{ < O} d173d2,3W3 D (27 ) 27 27 ) w3 ) d1’37 d2’3 (3 3 9)
3.3.3 Approximate expressions

Approximation 1

Let the Lauricella function be expressed in integral form of Euler type [32] as

Fp(a, {bi}i ;e {xi}l,) = %/{) o1 (1 — ¢)ee! iIiIl(l — z;t)Ydt,  (3.3.20)

where I'(+) is the Gamma function. According to the definitions in subsection 3.3.2, the w;
can be grouped into pairs Q5 £ {w;,ws} and Q34 = {ws,w,}. Hence, it holds that
{diﬂ‘ /wi,wj S QZ‘J} = ’di,]" << ]wk\, ke {1, .. ,4}, (3321)
{di,jydl,m /wi CWj > O, Wy - Wy < O} = |dl,m| >> |dl7]| (3322)

With these considerations, we have d;3 ~ d3 and hence o ~ x3 = x. Thus, the

following relationship between Lauricella function and Appell hypergeometric function can
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be found from (3.3.20), as

1 11 1
— Lz, 2, 7) EFl(E,l,l;l;a:l,x). (3.3.23)

Fp(=,1,-
D(2a 7272

Hence, the probability Pr{D < 0} can be approximated by the following closed-form

W1Waly 1 ds s dsa
PriD<0}~,/—F"—F | 31,11, —, = 3.3.24
r{ } d173d2’3w3 1 (27 y Ly by w3 ) d ) ) ( )

A diz+da s
=

expression

where F|(-) is the Appell hypergeometric function, and d

Approximation 2

From (3.3.21) and (3.3.22), it is easy to see that |ws| << |d1 3] and |ds 4| <<< |d; 3|, respec-
tively. Hence, it can be expected that © — 0 in (3.3.24). Using some of the relationships
given in [33, eq. 9.121], it yields

1
vV 1— T -

Finally, after some algebra it is easy to obtain the following approximate expression

1
Fl(i,l,l;l;a:l,az—>0) ~ (3.3.25)

PriD <0} ~ —Y1¥2 (3.3.26)
w3

_ witwa”
2

3.4 Discussion

In this chapter, relevant expressions for the calculation of the probability of a general
quadratic form D in complex Gaussian random variables to be less than zero are presented.
Of special interest is the analysis of quadratic forms in non-circularly symmetric complex
RVs, which had not been previously accomplished in the literature.

For the particular case of circularly symmetric RVs with arbitrary mean, an exact closed-
form expression for this probability (3.2.7) is given in [6, 10|, and an approximate closed-
form expression (3.2.10) is proposed in this thesis. When non circularly symmetric RVs with
zero mean are considered, exact (3.3.19) and approximate (3.3.24, 3.3.26) expressions are

calculated here.
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These results, in conjunction with the general framework presented in chapter 2, will be
used in this thesis for the BER calculation in different scenarios using a common procedure.

The main contributions in this chapter have been published in [19, 21] and [22].
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Chapter 4

Analysis of MIMO systems in Ricean
Fading

N this chapter, we use the general framework presented in chapter 2 and the mathemat-
I ical results introduced in chapter 3 to perform a BER analysis of QAM systems with
multiple antennas affected by Ricean fading, in the presence of different impairments: first, a
QAM system with MRC reception is analyzed, when Ricean-faded interferences and ICSI are
considered. Then, a MIMO system employing Alamouti transmit diversity in conjunction

with MRC reception and ICSI is investigated.

4.1 MRC reception with Ricean Interferences

4.1.1 Related Work

In the previous sections, we have presented a general framework which enables the analysis
of QAM based systems as well as a method for calculating probabilities in scenarios where
the decision variable may be expressed in terms of a general quadratic form in complex
Gaussian RVs. Here, we illustrate the applicability of these tools to derive an exact closed-
form expression for the BER of a QAM system when MRC diversity is used in Ricean fading
channels with Ricean interference, under channel estimation errors. In this scenario, the
PDF of the equivalent noise is not circularly symmetric with respect to zero, since its mean

is different to zero due to the line-of-sight (LOS) component of the interfering signal.
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Some authors have dealt with the analysis of QAM-based systems in the presence of in-
terferences: In [34], the outage probability is calculated for some antenna reception strategies
in the presence of interfering signals with arbitrary average powers, under different fading
scenarios. For BPSK constellation, closed-form expressions for the BER are obtained in the
case of Rayleigh [35, 36] and Ricean faded co-channel interference [37]. Particularly, the
results in [37] were not exact since a saddlepoint approximation was considered. Therefore,
a general BER analysis for QAM systems in the presence of Ricean-faded interferences has
not been accomplished in the literature in exact closed-form, to the best of our knowledge.

In the investigated scenario, the signal of interest (SOI) is a generic QAM signal with
independent bit-mapping, whereas the interferences may belong to any bidimensional con-
stellation. Ricean fading is considered both for the SOI and interfering signals, with arbitrary
average power, arbitrary Rice K parameter and equal scattering power, and MRC reception
with ICSI is assumed. We obtain an exact closed-form expression for the BER in this gen-
eral scenario. Additionally, we calculate a closed-form expression for a simplified scenario of
interest, like PCSI in the presence of Rayleigh faded interferences, which provides a better
insight into the problem.

4.1.2 System Model

Let us denote the received signal on the k-th branch as
Tk :gkz+hk,0i+wk, (411)

where z is the transmitted symbol belonging to a M-QAM constellation, g and h; are
complex Gaussian random variables with means mg, , m;, and variances 02, o7 respectively,

pi is the interfering symbol belonging to a set & and wy is AWGN with zero mean and

2
w*

variance o.. For the sake of simplicity, yet without loss of generality, we consider one

interfering signal per branch. However, the same analysis can be performed for an arbitrary
number of interfering signals per branch.
When MRC is performed at the receiver, the decision metric y can be expressed as
NIRRT (]
k'k kIk 2+ Z E\"'k

pi + W)
7 2 "
il 4 |8l =1

g

y = (4.1.2)
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where Ng is the number of diversity branches at the receiver side and g is the channel
estimation vector. We denote the components of g as g, = gx +¥x, where 1, is the Gaussian
error in channel estimation with zero-mean and variance o7, [38]. Thus, according to the
canonical form y = az 4 ¢ given in 2.2.1, we can use the general expression (2.2.7) for the

BER.

4.1.3 BER analysis

Exact analysis

BER calculation in this scenario is performed as follows: first, we calculate the CEPs condi-
tioned to a certain interfering symbol p;, and then we average this conditional probability for
all the possible interfering symbols. Finally, we compute the elementary coefficients a: (k)
and $E(k) in order to obtain the final BER expression.

In this scenario the PDF of the equivalent noise is not circularly symmetric with respect to
zero. Therefore, we have to calculate separately the probabilities for the I and Q components.
The conditioned CEPs to be calculated are Z7, (m|p;) and Q5 (m|p;). Then, the final CEPs
are obtained averaging the conditional CEPs over the entire set S of interfering symbols

Ir,(m) =Y Ii (mlp), Qr,(m)=>_ Qr, (m|p). (4.1.3)
VpeS VpeS

Let us define a random variable D as a quadratic form as follows

Ngr
= Dl = ZXZ;—(QZXk‘ (414)
k=1

NIE]

oy

[NE]
3

le—j

The quadratic form matrix Q; and the random variable vector x;, are defined as
0 Leigt
2 ] , (4.1.5)
2

A Tk A
X = Q=
’ [g] l L B(m)

where [ £ {0, 1,2, 3} is used to index the CEPs {Z (m|p;), Q... (m|p:), L.}, (m|p:), O ,(m|p:) }

to be calculated, respectively, and B(m) are the decision boundaries defined in Section 2.2,
whose sign is coincident with the sign of the considered CEP.
The calculation of P, £ Pr{D; < 0} can be tackled through Proakis’ analysis of complex

Gaussian quadratic forms [6, eq. B-21], or using the alternative expression given in (3.2.7)
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and Table 3.1. Thus, if we expand (4.1.4) and (4.1.5), we have

Nr
1 - 1 x
P, =Pr {Z [irkg}ie_]zl - §T’Z§kejfl+ |gn|” B(m)} < O} : (4.1.6)

k=1

For the different values of [ index, we identify the relationship between (4.1.6) and the CEPs

as
Po =Pr {Do < 0} = I;V(m\pl), P1 =Pr {Dl < 0} = Q;V(m|pi), (4 ) 7)
P, =Pr{Dy; <0} = I:“,V(m\pi), P3=Pr{D; <0} = in(m|pi).

The mean vector my = E{x;} and the covariance matrix R £ E {(x;, — my,)(x}' — m]f)}

are expressed, after some calculations, as

o Mg, Suw + Mh,,Pi
my = )

Mg,

(4.1.8)

(03 — O'i)sz,v 03 — ai

2 2
R [ 73 Isuol” + o} |l + 0% (0] = 0F)sus ] |
Once my, and R are known, the parameters 7;, a; and b; are calculated using the expres-
sions in Table 3.1, for a certain Q;. Finally, the value of P, is given by

Np—1

1
B = Z C’m(al, bl, m)]m(albl) exp {—5((112 + b?)} -+ Ql(al, bl), (419)
m=0

where @ (a, b) is the first order Marcum Q function, 7,,(z) is the m-th order modified Bessel
function of first kind, and C,,(a, b, ¢) is defined in Table 3.1. We calculate the final expression
by substituting in (2.2.7), thus obtaining the exact closed-form BER expression as

1 L L
pERa =~ S 2 |

u=1 v=1 VpeS

i
L

Np—1

ay (n) |Q1(ag, bo) + Y- Culag, by, no)Inm(aobo) exp {—5(ad + b3) } |+
n=1 N m=0 i
L—1 r Np—1 -
> (n) |Qilaz,ba) + Y Cral(as, ba, m2)Im(ashs) exp {—2(a3 + b3)} |+ (4.1.10)
n=u L m=0 _
v—1 i NR—l ]
B, (n) |Qilar,br) + 35 Colar, bi,m)In(arb) exp { —3(af +07) } | +
n=1 L m=0 i

T
)

3
I
S

B (n) |Qi(as, bs) + Ni_fol Cn(as, bs, 1) I (asbs) exp { —3 (a3 + bg)}] } :
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Note that a;, b; and 7; coefficients also depend on u and v, although this dependence
has been omitted for notational simplicity. In the case of considering Gray mapping, the
elementary coefficients o (n) and $(n) are calculated from (2.2.6) and (2.3.8). Otherwise,
they may be calculated following the procedure described in Section 2.3.1.

Although the exact BER expression in (4.1.10) is easily computed with Matlab or other
mathematical tools, the provision of a good insight into the system performance is not
obvious. However, it is possible to simplify this expression by means of asymptotic analysis

as in [39].
Approximate analysis: Strong LOS, PCSI and Rayleigh-faded interferences.

Let us consider PCSI (i.e. § = g) at the receiver side, and let us assume a line of sight
(LOS) component only for the SOI. Therefore, a Rayleigh fading channel (i.e. my, =0) is
considered for the interfering signals. In this scenario, we observe no gain mismatch and an
equivalent noise with circularly symmetric PDF. Hence, this situation is coincident with the
particular scenario considered in Section 2.2.3, and only the calculation of Z*(n|p;) CEP is

required. If we define

o) 3Es(2n—1)
o2 +of|p* 2AM—1) "

where Ey is the transmitted constellation energy, we can express after some algebra

(4.1.11)

Cp =

1 1 Ch,
an:(§_§ c +1) \/QNRKSOH
- " (4.1.12)
C
b= =4 = " V2NrKsor,
(2+2 cn—|—1> RSOt

where Kso; = 101log(|mgx|*/0;) is the Ricean K factor for the SOL From (4.1.12), it is clear

that a,,b, — oo when Kgo; — o0, and b,, > a,,. Hence, it is shown in (3.2.10) that

c
TH(nlp)) ~ T, - " 9NpKsor ), 41.13
(n|p:) Q (\/0n+1 R 501) ( )

where
Np—1

T = /il +Vic, Y C(na), (4.1.14)
m=0
and 1, = b,/a, =1+ 2¢, + 2\/cp(c, + 1).
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Taking into account that the o, 3F coefficients can be grouped attending to expression

(2.2.25), the closed-form expression for the BER is given by

=Y Llen w(n) - Q (\/%Ci 12NRKSOI>. (4.1.15)

VpeS n=1

4.1.4 Numerical Results

We use the closed-form expressions obtained in Section 4.1.3 to evaluate the BER in different
scenarios. Gray mapping is considered for QAM constellations. As in [40], we consider the
interfering signal p; belonging to a square M-QAM constellation, with the same M value that
the SOI and E[|p;|’] = 1. For the sake of simplicity, we assume equal mean for the Ricean
channel and interferences for all the reception branches, i.e. mgy, = mgy, mp, = my; Vk.

We denote the signal-to-interference ratio (SIR) as y; = Eg/FEr, where E; = o7 + |my,|?
is the energy of the interfering signal. Similarly, we denote the signal-to-channel estimation
error ratio (SCER) as yop = Eg/o}, and the signal to noise ratio (SNR) as vy = Eg/os,.
We define the Ricean K factor for the interference as K = 10log(|ms|?/o3).

Evaluation of exact expression

Fig. 4.1 illustrates the BER performance according to expression (4.1.10) as a function of
1, for different constellations (16/64-QAM) and different number of reception branches Ng.
The SOI and the interference are affected by Ricean fading with Kso;=10 dB and K;=0 dB,
respectively. The remainder parameters are vy=20 dB and ycr=20 dB.

It is seen that the Monte Carlo simulations and the analytical results are in excellent
agreement. As expected, BER performance is improved as the number of reception branches
Np is increased, and when the constellation size M is reduced. It is interesting to highlight
the appearance of an irreducible floor in the BER, for high SIR values. This floor is due to
the noise as well as to ICSI, when either SCER or SNR values become comparable to the
current SIR.

For convenience of discussion, we will particularize the following results for the case of an

interference-limited system, which corresponds to a typical case of wireless cellular systems
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F —NR:2, 16-QAM

- -NRZZ, 64-QAM
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Figure 4.1: BER vs SIR, for different number of reception branches Ng, 16/64-QAM con-
stellations, yv=7cr=20 dB, Kgo;=10 dB, K;=0 dB.

(i.e vy — ©00). Besides, we will consider PCSI (i.e. ycg — o0) in order to avoid the
appearance of an error floor due to ICSI.

In Figures 4.2 to 4.5, the influence of every single parameter of the system in the BER is
studied, when the rest of the parameters remain unchanged. Fig. 4.2 shows the BER results
for different values of K; factor.

It is interesting to observe that for low SIR values, the LOS component of the interference
provokes the received symbol to be shifted beyond the correct decision boundaries. Since
the magnitude of this shift grows with K;, we appreciate that the BER grows with K; value.
On the opposite, when the SIR is very low the received symbol is likely to be shifted beyond
more than just one boundary. Hence, we can have more than one erroneous bit per symbol.
In this case, we appreciate that the BER decays with K; value due to the effect of the NLOS
component of the interference. Finally, for high SIR values it is observed that the BER is
increased when K decreases.

Fig. 4.3 shows the BER performance for different values of Kgo; factor, when K;=0 dB,

16-QAM constellation and Nr = 2 reception branches are considered. The same assumptions
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[ K0 (Rayleigh) |
.| a-k=0dB i
oK =5dB

-a-K=10dB
4 K=20B

25 30

Figure 4.2: BER vs SIR, for different values of interference Ricean K factor, Np=2, 16-QAM
constellation, PCSI, vy — 0o, Kso;=10 dB.

about channel estimation error and noise that in Fig. 4.2 are taken. As expected, better
values of BER correspond with greater values of Kgoy factor, i.e. a stronger LOS component.

The effect of SNR is studied in Fig. 4.4. Simulation parameters in this case are 16-
QAM constellation, Np = 2 reception branches, PCSI, Kgo; =10 dB and K; =0 dB. We
observe the appearance of an error floor in the BER for those ranges of 4; comparable to the
fixed vy values. In this case, the noise dominates the interference so that the assumption
of interference-limited system becomes invalid. When the SIR is much lower than the SNR
(e.g. yw=30 dB), the BER is very close to the 7y — oo scenario.

Now, the influence of an imperfect channel estimation is showed in Fig. 4.5, when 16-
QAM constellation, Ng = 2 reception branches, Kso;=10 dB and K;=0 dB are assumed.
Similarly to Fig. 4.4, an error floor in the BER is appreciated when the SCER and SIR are

of similar magnitudes.
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: —e—KSOIZOdB i

0 5 10 15
7, (dB)

Figure 4.3: BER vs SIR, for different values of SOI Ricean Kgo; factor, Ng=2, 16-QAM
constellation, PCSI, vy — oo, K;=0 dB.

—e—yNZIOdB ;
-7, =13 4B :
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Figure 4.4: BER vs SIR, for different values of SNR, Np=2, 16-QAM constellation, PCSI,
K;=0dB, Kso;= 10 dB.
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E oYy = 10dB
By, = 15dB
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Figure 4.5: BER vs SIR, for different values of SCER, Ng=2, 16-QAM constellation, vy —
oo, K]ZO dB, KSO[:lo dB.

Evaluation of approximate expression

Once the BER results for the general scenario of Ricean fading channel in the presence of
Ricean-faded interferences with ICSI and MRC reception have been presented (according
to expression (4.1.10)), we will focus on the particular case of Rayleigh-faded interferences,
when PCSI is considered. In this scenario, we provide a simplified closed-form expression in
(4.1.15), with the only assumption of a strong LOS component for the SOI.

Fig. 4.6 shows the exact and approximate BER given by (4.1.15), for different values
of Kso; and constellation sizes. We observe an excellent match between the approximate
and exact curves, either for 16 and 64-QAM constellations, for values of Kgo;r in the range
of 10 dB. It is observed that as the relative power of the LOS component is increased, the
accuracy of the approximation is also improved.

Finally, Fig. 4.7 shows the BER performance in the Rayleigh-faded interference scenario,
for different number of reception branches N and constellation sizes, when no noise influence
and Kgor =10 dB are considered. The approximate expression provides an accurate BER

value for the different configurations of constellation sizes and number of receive antennas.
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Figure 4.6: BER vs SIR (exact and approximate) for different values of SOI Ricean Kgos-
factor, Ng=2, 16/64-QAM constellations, vy =— oo, PCSI and Rayleigh-faded interference.
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Figure 4.7 BER vs SIR (exact and approximate) for different reception branches Ng,
Ksor= 10 dB, 16/64-QAM constellations, vy =— oo, PCSI and Rayleigh-faded interfer-
ence.
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4.1.5 Discussion

We have illustrated the applicability of the proposed analysis method for the exact closed-
form BER calculation in a M-QAM system with MRC reception in Ricean fading channel
and Ricean-faded interferences, when imperfect channel estimation is considered. Besides,
we also propose an approximate closed-form expression for the particular case of Rayleigh-
faded interferences and perfect channel estimation, in terms of a weighted sum of elementary
Gaussian Q functions. This approximate expression is valid for strong LOS scenarios in our
particular case, although may be used in other scenarios involving Gaussian quadratic forms.

Numerical results show how imperfect channel estimation leads to an irreducible BER
floor. This error floor is also to appear when SNR and SIR have similar values. It is
appreciated that the effect of K value on the BER varies depending of the magnitude of
the SIR. We can also observe a very good match between the exact closed-form and the
approximate expression when a strong LOS component is considered.

The main contributions in this section have been published in [19].

4.2 Alamouti transmission with MRC reception

4.2.1 Related Work

The use of multiple antennas for transmission or reception, usually referred to as multiple-
input multiple-output (MIMO), is nowadays an extended strategy for improving the capacity
and coverage in wireless communication systems. One of the simpler MIMO configurations
relies on the use of space time block codes (STBCs), since they do not require the knowledge
of channel state information (CSI) at the transmitter side.

Alamouti [41] proposed a coding scheme for two transmit antennas, which was demon-
strated to provide full diversity order when perfect CSI is available at the receiver side. This
technique has been incorporated in many wireless communication standards such as IEEE
802.11, 802.16 and 3GPP-LTE, and it also has recently been considered for cooperative
transmission [42, 43]. The performance of Alamouti’s like schemes has widely been analyzed

by many authors, in different scenarios and configuration. Most analyses in the literature
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however assume perfect CSI at the receiver side [42-47].

It is known that the effect of imperfect CSI (ICSI) at the receiver side results in a
performance degradation of Alamouti’s scheme [48]. The effect of ICSI has also been analyzed
in [49-52], when Rayleigh fading is considered. However, to the best of author’s knowledge,
analytical results for Alamouti’s transmission schemes impaired by ICSI in Ricean fading
channels are largely unknown.

In this section, we present an exact closed-form BER analysis of a MIMO system that
employs Alamouti transmission in conjunction with MRC reception with Ny receive anten-
nas in a Ricean fading channel, when ICSI is considered, for a generic M-ary quadrature
amplitude modulation (QAM) constellation. An approximate expression is also obtained
for the case of a strong line of sight (LOS) path, in terms of the Gaussian @) function. We
demonstrate that the investigated scenario can be reduced to an equivalent 1 x 2Np MRC
reception scheme, where the equivalent noise term is affected by the loss of orthogonality
of Alamouti’s code due to ICSI. The final expressions are used to study how the different
parameters (e.g., number of receive antennas, constellation size, channel estimation error,
Ricean K factor) affect the BER performance, and to evaluate the degradation compared to
a conventional 1 x 2Nr MRC reception [9].

The remainder of this section is organized as follows: In (4.2.2), it is presented the sys-
tem model considered in our analysis: M-QAM modulation, Alamouti transmission, MRC
reception with ICSI and Ricean fading channel. Then (4.2.3), the exact and approximate
closed-form expressions for the BER in this scenario are calculated. Numerical results are
given in (4.2.4) in order to determine how the different parameters affect the BER perfor-

mance. Finally, main conclusions are presented in (4.2.5).

4.2.2 System Model

We consider a MIMO 2 x Ng system, where Alamouti scheme is applied at the transmitter,
and MRC with Ngi antennas is performed at the receiver. During two consecutive symbol
intervals, the symbols z; and zy belonging to a square M-QAM constellation are transmitted

according to the block code described in [41]. The set of complex symbols is Syr = {s,, =
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(2u — VM — 1)d + j(2v — VM — D)} —. /ifwe1..var> Where 2d is the minimum distance
between symbols, and independent bit mapping is assumed for in-phase (I) and quadrature
(Q) components.

The received signals in the i-th reception branch, during two consecutive symbol intervals,

can be expressed as

Ti = g1,i21 + g2,i%2 + Wi, (4.2.1)

)

Toi = —g1i% + G221 + Way, (4.2.2)

where * denotes complex conjugation, {g;;};=1,2i=1..n, is the complex channel gain between
the j-th transmit antenna and the i-th receive antenna, and {wj;};—12i-1.n, denote the
additive white Gaussian noise (AWGN) terms. We assume that {g;,} are independent com-
plex random variables (RVs) with m,, ; mean and o variance, i.e., g;; ~ CN(my, ,07), where
~ means “statistically distributed as”, and w;; ~ CN(0,02). After using the combination
method given in [41], the decision metrics along the block code interval in the i-th reception

branch can be expressed as:

Y = G171 + G273 4 (4.2.3)
Y2, = G371 — Gl (4.2.4)
where §;; = g;; + ©¥;; denotes the estimate of the channel gain, and ¥;; ~ CN(0,0i)
represents the channel estimation error according to the channel model proposed in [38]

(ie., Eg;i¥j,] = 0). Finally, the decision metrics per receive branch are combined using

MRC, providing the final j-th decision metrics as

Ngr
Z Yji
=1

yj = (4.2.5)

Ne ooy
;(|gu| + 12, )
4.2.3 BER analysis

Exact analysis

Due to the existing symmetry in the decision metrics in (4.2.5), it is equivalent to calculate

the BER for z; and z, symbols. Hence, in the following we focus our analysis on z; symbol.
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Let us express the BER as the average, over all the transmitted z; and zy symbols, of a

weighted sum of components of error probability

1 vVM-1
BER = M Z Z wu(n)z.um,u’,v’ (TL), (426)

Vsu,u,su/‘v/GSJ\/[ n=u

where the coefficients w,(n) are given in (2.2.19), and Z, ,, . .+ (n) is defined as the component

of error probability conditioned on a particular value of z; and zs, i.e.,

Tuarar(n) = Pr{R{ys = B(n)} > 0] 1z amis | (4.2.7)

where B(n) = (2n — v/ M)d are the decision boundaries for the M-QAM constellation.

Expanding (4.2.5), and after some algebra, Z,,, .,»(n) can be expressed as

Ngr
Lupwr (n) = PT{Z {(|glz|2 + |g2,i|2) R (sup — B(n))
i=1

(4.2.8)
+R {Qiml,i} + ¥ {£72,i77§,i}} > 0}7
where {n;,} are the equivalent noise terms defined as
M, = (wl,z‘ - ‘I’l,isu,u - ‘112,i8u',v') ) (4-2-9)
N = <w2’i + \Ijl,isz/,v/ - \Ij277;8:;7v) . (4210)

Note that although {n;,;} depend on W, ; and U, ;, it can be shown that 7;; and 7, ; are
independent zero-mean complex Gaussian RVs with equal variance. Hence, we can express
(4.2.8) compactly by redefining the sum indices as

2Ng

~ 1 A~k 1 N %
Ty () = Pr {Z{ 98" R (B(n) = su0) = 530 = 30 p< 0} , (4.2.11)

k=1
where k =1,..., Ng represents {j = 1, =1,..., Ng}, and k = Ngp + 1, ...,2Ng represents
{j =2i=1,...,Ng}. The term nx ~CN (0,07 + 07, (]su,UIQ + ]su/’U/\Q)) accounts for the

joint effect of noise and block code interference due to ICSI.
2Ng
This expression (4.2.11) can be seen as a particular case of quadratic form D = Y x'Qxy,
k=1
where 7 denotes complex conjugate transpose operation, and the quadratic form matrix Q
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and the random variable vector x; are defined as

Xké [gk], Qé B<n)_%{5u,v} —%]

Mk -3 0

(4.2.12)

Hence, in this scenario, the calculation of Pr{D < 0} can be performed either using anal-
ysis of complex Gaussian quadratic forms [6, eq. B-21], or the alternative expression (3.2.7).
If the mean vector my = E {x;} and the covariance matrix R £ E {(x, — my,)(x}' — m]f)}

are calculated as

2 2 0
my=| |, R =|% % ; e (4.2.13)
0 0 o2 + ai (|su7v| + [Sur o] )

the component of error probability (4.2.7) can be expressed in exact closed-form as

2Np—1

2
Lot (n) =Q1 (1, Apt) + Z Cin( ©?) exp {—%(1 + )\2)}, (4.2.14)

where @ (a, b) is the first order Marcum @ function, I,,(z) is the m-th order modified Bessel
function of first kind, and A, p, and C,,(\) are defined in Table 4.1. Note that A and p
also depend on u, v, v/, v' and n indices, although it is not explicitly stated for notational
simplicity.

Finally, the exact expression for the BER is given in closed-form by

1 Vi
BER =+ > D wa(n)x

vSu,'u ?Su’,v’ ESJW n=u

(Q1(#, Apt) + i Co( M) 1 (Ap?) exp {—%2(1 + )\2)}> .

m=0

(4.2.15)

After some algebra, we can find a simple expression for x (and hence, for A\) and pu as

1 ol ! _
2— o2 §R uv B 2
oo =) (e B0 , (4.2.17)

(02 + 7% (Isual” + 5w "))
’2

where K = - 2N Z |

is the average Ricean K factor, which accounts for the power ratio
between the LOS and non-LOS components of the channel gain, and « is defined in Table
4.1.
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Table 4.1: Probability computation of Gaussian quadratic form.

FUNCTIONS AND DEFINITIONS
PARAMETERS
tr(RQ)2
K Tdet(RQ)
A 142k +2y/k(k+1)
2N
1 kZTmHmk A
K A1 2 Ra u‘Ru - 1 O]
2NR 1 4 k
-1+ (H—MTRl A m=20
Cm<)‘) 2Np—1—-m 4NR 1 AN 1k
(1+)\)+NR—1 ( ) )\m+k )\ e m]: m # 0
k=0

The derived closed-form expression (4.2.15) for the BER is exact. However, it is possible
to provide a simpler approximate expression for a particular scenario of interest by means

of asymptotic analysis.

Approximate analysis: Strong LOS component.

From (4.2.16), it is noted that the arguments in Marcum () function are directly proportional
to VK, ie., u = aV K. Hence, assuming K — oo (due to a strong LOS component), we can

use the Marcum () function approximation in terms of the Gaussian ) function [5] given by
O (1, M) ~ f@( “1aVE ) R — . (4.2.18)

Otherwise, the m-th order Bessel functions of first kind are approximated by exponentials

when its argument tends to infinity as

-
K _
M, K — . (4.2.19)
aV2TAK

This latter approximation, combined with the asymptotic relation for the Gaussian )

I (0P AK) ~
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function given by
exp {_ ()\712)204}_(}

V2rK (A —1)a

leads to an approximate expression for the component of error probability (4.2.7) in terms

~Q((A—1)a?VEK), K — oo, (4.2.20)

of the Gaussian @) function

Ty () = Cy(n)Q R (% _14Nf( (4.2.21)
u,v,u’ v ~ Yq K + 1 0_3 R 5 /N
where Cy(n) coeflicients are calculated as
y 1 2Nact
Cy(n) 2 VA + = Con(N). (4.2.22)
q 7

Substituting (4.2.17) into (4.2.21), the CEP can be finally expressed as

Iu,v,u/,v/ (n) ~ Cq(n)Q (\/#) , (4223)

vi+1-T,"

where the I'y; and I'y, are defined as

aé%(sw — B(n))2

Iy = > = (4.2.24)
02+ 02 (|suol” + [swwl”)
2
g
r,=-%. (4.2.25)
9y

From (4.2.24), it is easy to see that I'y; depends on u, v, ', v’ and n, although this depen-
dence has been omitted for notational simplicity. Finally, the approximate BER expression

for K — oo is obtained as

BER .y ~ ~ bl C ANRK 4.2.26
(R—o0) ™ 37 > > wu(n)Cy(n)Q e (4.2.26)

Vsu,v,su/yv/eSM n=u P

4.2.4 Numerical Results

In this section, we evaluate how the BER is affected by the variation of the parameters in
our system model. For simplicity, equal mean for the Ricean channel for all the k£ branches is

assumed, i.e., my, = my,, Vk. Besides, Gray mapping is considered for QAM constellations.
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The signal-to-noise ratio (SNR) is defined as v = Eg/02, where Eg is the average trans-
mitted symbol energy. In a similar way, we denote the signal-to-channel estimation error

ratio (SCER) as v, = Eg/oj. We also define the Ricean K factor as K = 10log(|my|*/o?).
Evaluation of exact expression

Fig. 4.8 illustrates the BER performance as function of v, for different values of Ricean K
factor and number of reception branches Ni. 4-QAM modulation is considered, and the
channel estimation error is set to v, = 20dB. It is observed that a stronger LOS component
results in a better BER performance. Similarly, it is appreciated that BER performance is
improved when the number of reception branches N is increased. It is seen that the Monte

Carlo simulations and the analytical results are in excellent agreement.

4-QAM, Ty~ 20dB

107 ¢ \ i \ T I T T
10'2;—><—K: 5dB, NR:1
F| ~—K=5dB, No=2
[ K= 5dB, N_=4
fh10°H 'R
@ F) x-K=0dB, N =1
[ -«-K=0dB, NR=2
-4
1075 +-K=0dB, Ny=4 |
Flox K=0, NR=1
10‘5? - K= O, NR:2
—+-K=0, N;=4
s« L © MC Simulations
10‘ T |
-20 -15 -10

0
¥ (dB)

Figure 4.8: BER vs SNR for different values of Ricean K factor and number of reception
branches N, 4-QAM constellation and 7y, = 20dB.

In Fig. 4.9, the BER for different constellation sizes and channel estimation error values
vy is evaluated. Two reception branches and a K = 5dB Ricean factor are assumed. As
expected, more dense constellations are more sensitive to channel estimation error. For 64-
QAM, the minimum achievable BER is worse than 1073 for the considered values of 7, due

to the effect of ICSI.
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Figure 4.9: BER vs SNR for different values of 7, and constellation sizes, KX = 5dB Ricean
factor and Ng = 2 reception branches.

Fig. 4.10 represents the BER as a function of 7, considering 16-QAM modulation,
two reception branches, and different SNR constraints and K values. When the channel
estimation error is under 10 — 12dB, the BER performance is very similar and independent

of the value of K.

It is observed that in the presence of a strong LOS component (K = 5dB), the BER
performance (7 = 20dB) for high values of v, is under 107%, whereas it is over 10~° when
non-LOS is considered (i.e., Rayleigh channel). In the case of v — oo, the BER values
represent the irreducible BER floor due to ICSI.

In Fig. 4.11, the BER performance of the 2 x Nz Alamouti-MRC scheme is compared to
a conventional 1 x 2Nr MRC system [9], in the presence of ICSI. It is appreciated that both
systems have equal BER performance when perfect CSI is considered. However, Alamouti-
MRC scheme suffers a more severe performance degradation due to the effect of ICSI, which
causes a noise enhancement through block code interference. When the channel estimate
becomes worse (i.e., lower values of v,), the performance gap is reduced, since the channel

estimation error becomes the dominant factor in the BER, compared to equivalent noise.
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Figure 4.10: BER vs SCER for different values Ricean K factor and v, Nr=2 reception
branches and 16-QAM.

The different impact of ICSI in 2 x Nz Alamouti-MRC and conventional 1 x 2Nr MRC
is also appreciated in Fig. 4.12, where the BER is evaluated as a function of v, for a fixed

value of SNR. In this figure, three different regions can be identified:

1. When the magnitude of the channel estimation error is considerable (i.e., low values of
vy ), both Alamouti-MRC and conventional MRC behave similarly, since the dominant

effect in the BER is the error in the channel estimation.

2. When the channel estimation error decreases (i.e., 15dB < v, < 7), a performance gap
between Alamouti-MRC and conventional MRC is observed. This effect is provoked by
the block code interference due to ICSI that appears in Alamouti-MRC scheme, which
can be seen as an equivalent noise enhancement (see 7, term in Section 4.2.3). The
magnitude of this gap grows in the presence of a LOS component, as well as when the

number of receive antennas Npg is increased.

3. Finally, when the SNR is the dominant factor compared to -, (i.e., 74 > =), both

schemes tend to behave similarly.
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Figure 4.11: Comparison of 2 x Ng Alamouti-MRC and 1 x 2Nz MRC. BER vs SNR for
different values of v,, K = 5dB Ricean factor and 16-QAM.
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Figure 4.12: Comparison of 2 x Nr Alamouti-MRC and 1 x 2Nr MRC. BER vs SCER for
different values of receive antennas N and Ricean K factor, v = 30dB and 16-QAM.
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Evaluation of approximate expression

The exact (4.2.15) and approximate (4.2.26) BER expressions are evaluated in Fig. 4.13,
for different combinations of Ricean K factor, and number of reception branches Ng. It is
observed that the approximate and exact curves become more similar when Ni and K are
increased. In fact, for values of K > 10dB the approximate expression provides an excellent

match with the exact BER values.

16-QAM, yw=16 dB

107 ¢ T T T T T T

—Exact, K=15dB
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---Exact, K=10 dB
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Figure 4.13: BER vs SNR (Exact and approximate) for different values of Ricean K factor
and number of reception branches Ng, v, = 16dB, 16-QAM.

4.2.5 Discussion

Closed-form BER expressions have been obtained for a MIMO 2 x Ng system that combines
Alamouti transmission and MRC reception in Ricean fading channels, when imperfect chan-
nel estimation is considered. The exact expression is given in terms of a finite sum of special
functions, which can be easily evaluated. Additionally, an approximate expression in terms
of Gaussian ) function is provided for strong LOS scenarios.

Results show that an appreciable performance gap between the investigated configuration

and the conventional 1 x 2Nz MRC system is appeared due to the noise enhancement caused
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by block code interference. Ir is also appreciated that the magnitude of this performance
gap grows either when the diversity order is increased, or in the presence an stronger LOS
component.

The main contributions of this section have been published in [21].
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Chapter 5

Analysis of OFDM systems under RF
impairments

His chapter is devoted to the performance analysis of OFDM systems affected by dif-
T ferent non idealities. Particularly, we focus on two major impairments associated with
direct conversion receivers (DCRs), which are being extensively used for the development of
low-cost integrated radio front-ends in wireless communication systems: the direct-current

(DC) offset and the in-phase/quadrature (IQ) imbalance.

First, we calculate an exact closed-form expression for the BER of OFDM systems with
direct conversion that employ MRC reception in multipath Rayleigh fading channels, using
binary phase-shift keying (BPSK) modulation. We assume a realistic system model where

DC offset, carrier frequency offset (CFO) and ICSI are simultaneously considered.

Then, we analyze the effect of the transmit and receive IQ imbalances in OFDM systems
that employ M-QAM modulation, when ICSI is considered in multipath Rayleigh fading
channels. Since in this scenario the equivalent channel gain is modelled as a non circularly
symmetric RV, the real and imaginary parts of the decision variable are not independent.

Hence, this aspect must be taken into account for a proper analysis.
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5.1. OFDM SYSTEMS AFFECTED BY DC-OFFSET

5.1 OFDM systems affected by DC-offset
5.1.1 Related Work

Direct conversion receivers have become the preferred solution for the implementation of
low-cost wireless radio frequency (RF) integrated circuits [53]. Unlike heterodyne receivers,
DCRs are not affected by image frequency problems, thus reducing the complexity in off-chip
components. Besides, RF front-end in DCRs is suitable for the implementation of multi-
standard software radios required in next generation wireless systems. However, DCRs are
known to be affected by direct current (DC) offset due to the non ideal behaviour of analog

components [54], among other impairments.

Most part of modern wireless communication systems use orthogonal frequency division
multiplexing (OFDM) as transmission technique, thanks to its inherent ability to compensate
the effects of multipath fading [55]. This performance is degraded in the presence of carrier
frequency offset (CFO), which may cause inter carrier interference (ICI). Since the CFO
compensation process requires a multiplication with a complex exponential, the DC offset
is spread over all the OFDM subcarriers [56]. Hence, every data subcarrier is affected by a

DC offset interference, whose value depends on the subcarrier index and the CFO.

Therefore, the CFO must be accurately estimated and compensated in the OFDM re-
ceiver. Although DC offset may affect the quality of CFO estimation through classical
correlation algorithms [57], there exist different mechanisms to accurately estimate the CFO
in the presence of DC offset [58, 59]. In many cases (e.g IEEE 802.16 [60], Long Term Evo-
lution (LTE) [61] and others), DC subcarrier is not used for data transmission in OFDM

systems since it is expected to be affected by DC offsets in the transceiver.

The analysis of non-ideal OFDM systems has been tackled in the literature from different
perspectives. The effect of ICI [62] in the BER was studied in [63] and [64], both assuming
perfect channel state information (PCSI). The effect of imperfect channel state information
(ICSI) on the performance of OFDM systems was incorporated in [15] and [65]. Less lit-
erature is available when residual DC offset is considered: In [66], a bit error rate (BER)

analysis of OFDM systems in the presence of DC offset and CFO under CLT approximation
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was accomplished, for the particular case of binary phase-shift keying (BPSK) modulation,
and was further extended to other modulation formats in [67]. However, the calculated ex-
pressions are not given in closed-form and assume PCSI in the receiver side, which is not a
realistic approach since the estimate of the channel frequency response may be affected by
the residual DC offset [68].

In this section, we derive an exact closed-form expression for the BER of a non-ideal
OFDM system with residual DC offset, CFO and ICSI, for an arbitrary number of receive
antennas and considering maximal ratio combining (MRC) reception. Therefore, the con-
tribution of this work may be summarized as: (1) the final BER expression is exact and is
given in closed-form, (2) the number of receive antennas is arbitrary, and (3) the effect of
ICST is included in our analysis. Additionally, (4) we obtain a simple yet accurate expression

for the maximum allowable DC offset in a DCR, for a target signal-to-noise ratio (SNR).

5.1.2 System Model

Let us consider a discrete time OFDM system with Npi reception branches. The received
baseband signal in the v-th branch y,[n| can be expressed as

N/2-1

1 j2mn(m-+te)
N = —— H, . Xn,e ~ + Ny + wy|n|, 5.1.1
Wl =75 3 M o+ w, (5.1.1)

where N is the number of OFDM subcarriers, n = 0... N — 1 is the discrete time index
of the OFDM symbol, X, represents the BPSK symbol with energy F; transmitted at the
m-th OFDM subcarrier, 7, is the complex-valued DC offset, € is the normalized CFO, w,[n]
is the additive white Gaussian noise (AWGN) with zero mean and o2, variance and H, , is
the channel frequency response at the m-th subcarrier for the v-th reception branch.

In this model, we assume the length of the channel impulse response to be less than the
cyclic prefix size and the H,,, coefficients of the channel frequency response are complex
Gaussian RVs with zero mean and unity variance, independently distributed for every recep-

tion branch, i.e. E {Hvl,mH*

v m) =0,Yv1 # vy, where E{-} denotes expectation operation.

We also consider 7, to remain invariant within one OFDM symbol.

After the cyclic prefix removal and CFO compensation, the OFDM received signal is
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passed back to frequency domain by means of a discrete Fourier transform (DFT). Mathe-

matically, this process results in
Yo = Hyp X + Wy + 10Ck(€), (5.1.2)

where &k = —N/2..N/2 — 1 is the subcarrier index, (;(¢) = m%eﬁ”(k“)w_”m,
sinc(x) = %, and W, is the AWGN term.

In order to separate the effects of ICSI and ICI in our analysis, we assume perfect CFO es-
timation in the receiver side, which can be achieved considering the method proposed in [59].

However, the effect of ICI can be incorporated in our analysis through CLT approximation

as in [63] and [65-67, 69].

5.1.3 BER analysis

In this subsection, we calculate an exact closed-form expression for the BER of an OFDM-
MRC system impaired by DC-offset and ICSI, for an arbitrary number of receive antennas.
Then, we particularize our results for the case of single branch reception and PCSI, in order

to allow for a better insight into the effect of the DC-offset in the BER.

General case

When MRC is performed at the receiver, the decision metric r, can be expressed as

NR A* A*
H, X H Wk + nuCr(€)) H,
S (s | (VoG
|[hl] |[hl]

(5.1.3)

v=1
where h is the channel estimation vector. Following the channel model introduced in 38],
we denote the components of has H, = H, + 1, where 1, is the Gaussian error in channel
estimation with zero mean and cri variance, and ), is independent of H,. In this scenario,

the BER in the k-th subcarrier can be expressed as

PkZPY{%{Tk}>0!Xk=—\/E}. (5.1.4)

Let us define a random variable D as a quadratic form

Ngr
D =) xlQx,. (5.1.5)
v=1
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The quadratic form matrix Q and the random variable vector x, ; are defined as

Yok

AL
X,k =

~

Hv,lc

If we expand (5.1.5) and (5.1.6), we have

Nr
P, =Pr {Z (n,kﬁf;k n Y;jkﬁfv,k) < 01X = —\/Es} . (5.1.7)

v=1

a| 0 =3
,Q_[ s 0]. (5.1.6)

The calculation of P, can be tackled through Proakis’ analysis of complex Gaussian quadratic
forms [6, eq. B-21], or using the alternative expression given in (3.2.7). Here, the mean vector

m,; = E {x,,} and the covariance matrix R £ E {(x,x — m,;)(x}, —m’,)} yield

m, ;= 7,G(e)u,

R 2 [7“11 T'12 ] _ [ (Xel* + 07 (1-02)X; ] 7 (5.1.8)
To1 Tao (1-— ai)X;; 1— 03)

where u’ = [1,0]. According to the general expression (3.2.7), in this scenario we have

a £ a = b. Hence, we can use the relationship between Marcum-Q function and the v — th

order modified Bessel function of the first kind 7,(z) given in [4, eq. 4.17]
1+ exp (—a?)Ip(a?)

Q1(a,a) = 5 ) (5.1.9)
to express the BER in exact closed-form as
| Net
Pk:5 + Z Co(N) L, (20®) exp [—72a?] (5.1.10)
v=0
where 7. = v/ 207 17,6 (€)]2, and A, a and C,()\) are defined in Table 5.1.
After some algebra, we find an easy expression for A and « in this scenario
r —02
oo L o nm/0e) (5.1.11)
2E, 1ry/(1-02)
where I' = %, and ¥ = E, /02 is the average SNR. From expression (5.1.10) it is appreci-

ated that the phase of 7, does not affect the BER, since Hy, is a circularly symmetric random
variable. Interestingly, it is observed that the effect of DC offset, and ICSI are separated:
7. term is only present in the argument of I,(-) and exponential functions, whereas 03) only

affects the C,(+) coefficients through A.
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Table 5.1: Parameters and definitions for BER calculation.

PARAMETER \ DEFINITION
\ (tr(RQ)+\/tr(RQ)2—4 det(RQ))
(tr(RQ)f\/tr(RQ)2f4 det(RQ))
1 r
« \/ 2 tr(RQ)LZ2 det(RQ)
C ()\) K NRil—'U 2NR—1 [)\l_)\QNR—l—l} X K— 1/2, U:O
° (142Nt 5 l PRI L w0

Perfect CSI and single branch reception

Additional insights can be extracted for some scenarios of interest. In the particular case of

Ngr =1 and PCSI, the BER can be expressed in the following compact form

2 2
P, = % [1 —TI, (Iﬂ%) exp {—F2%H . (5.1.12)

Note that in the limit case of zero DC offset, the BER expression reduces to P, = 3 (1 —T)
given in [6, Eq. 13.3-7]. From expression (5.1.12), considering a first order Taylor approxi-
mation, the irreducible BER floor due to CFO and residual DC offset in the k-th subcarrier

can be easily calculated, i.e. considering ¥ — oo and |77ka(5)\2 << B

EGIE
P o MO 1.1
b AE, (5-1.13)

Hence, in this scenario the BER floor is approximately one quarter of the DC offset to signal
ratio. Combining (5.1.13) and the BER expression in the absence of DC offset P, = 5 (1 —T),
we can derive a rule of thumb for the maximum allowable residual DC offset in a receiver

for a particular %, value,

2 2K B Vih
ns(maz)|> = B (1 1/H%h) : (5.1.14)

where [ is a constant value designed for a particular SNR degradation. If we consider a

maximum degradation due to DC offset of 0.5dB, we obtain 3 & 4.
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5.1.4 Numerical Results

We use the expressions calculated in Section 5.1.3 to evaluate the BER in different particular
scenarios. As in [66], we consider an OFDM system with N=64 subcarriers with BPSK
modulation, and the same parameters for multipath Rayleigh fading. We assume that the
channel does not vary within one OFDM symbol, and k£ = 0 subcarrier is not used for data
transmission. For convenience of discussion, we assume equal DC offset in all the reception
branches (i.e. 7, = n). In the following, we denote the signal-to-channel estimation error
ratio (SCER) as yor = Es /o3,

Figure 5.1 illustrates the effect of DC offset in the BER for all subcarriers which compose
the OFDM symbol, for different values of vor and n,. Two reception branches (i.e. Ngr=2)
are considered. As expected, the BER in the subcarriers near DC is worse than in higher
frequencies (|k| — N/2), since the DC offset leakage decays with |k| index. When channel
estimation error grows (i.e. lower ycg values), the BER in low and high frequencies tends

to behave similarly, and the BER floor is increased.

10 T I ' ' !
Solid line: Theory o m, = 0.02/E

Markers: Simulation

—— T]" =0.05 EH

k index

Figure 5.1: BER vs subcarrier index k, with Nr=2 receive antennas, BPSK modulation,
e = 0.4, and 4 = 30dB for different values of vog and 7.
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Figure 5.2 shows the average BER for the OFDM symbol defined as

k=N/2—1
BER=w5 Y P (5.1.15)
k=—N/2,k40
as a function of the SNR, for different scenarios in the case of a single reception branch. In the
case of dominant channel estimation error, similar BER values are obtained independently
of the DC offset ,. When the SCER grows, a BER floor due to DC offset interference is
appreciated. When PCSI is assumed, the BER floor due to DC offset is accurately calculated

by (5.1.13).

BER

Figure 5.2: Average BER vs SNR, with Ng=1 receive antenna and BPSK modulation, for
different values of n, and vog.

5.1.5 Discussion

We performed an exact closed-form BER analysis of an OFDM system with BPSK modula-
tion, in the presence of CFO, DC offset and non-ideal channel estimation, for an arbitrary

number of receive antennas, when multipath Rayleigh fading is considered. Results show
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that channel estimation error in combination with DC offset and CFO provokes the ap-
pearance of an irreducible BER floor. Additionally, we provided a simple rule of thumb to

determine the maximum allowable residual DC offset in a receiver for a target SNR.

The main contributions of this section have been published in [20)]

5.2 OFDM systems affected by I1Q-imbalance
5.2.1 Related Work

In section 5.1, it was stated that DCRs are a feasible alternative for the implementation of
low-cost wireless radio RF front-ends. Despite its appealing characteristics, these structures
are more sensitive to different impairments associated with a non ideal behaviour of analog
components. One of the major impairments in DCRs is the enhancement of amplitude and
phase mismatch between the in-phase (I) and quadrature (Q) carriers, usually referred to
as 1Q imbalance. The effect of these mismatches results on a performance degradation due
to the appearance of an interference term due to the loss of orthogonality between I and Q
components.

In the case of orthogonal frequency division multiplexing (OFDM) systems, the effect of
IQ imbalance is the appearance of a mirror carrier interference (MCI), since the received
signal at the frequency index k is both affected by the transmitted symbol z_, and the
channel frequency response H_j; at the mirror index. In the literature, the effects of IQ
imbalance have been mostly addressed from the perspective of compensation schemes [70—
77] or pilot design [78-80]. On the contrary, analytical results covering the impact of 1Q
imbalance in the system performance are much scarcer [81-83].

Particularly, the bit error rate of an OFDM system affected by 1Q imbalance at the re-
ceiver side was treated in [81], assuming that the channel frequency responses Hy and H_j,
were independent, as well as perfect channel state information (PCSI) at the receiver side.
These results were further extended in [82] introducing some other receiver impairments in
the analysis such as imperfect channel estimation, but the BER expression required a two-

fold numerical integration. The effects of transmit (TX) and receive (RX) IQ imbalances
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were tackled in [83], considering a multiple-input multiple-output (MIMO) OFDM system.
However, the same assumptions that in [81] were taken, the closed-form results were approx-
imate, and an expression accounting for the joint effect of TX and RX 1Q imbalances was
not provided.

A realistic system model of an OFDM system impaired by TX and RX IQ imbalances
must consider that the equivalent channel gain is a complex random variable (RV) that lacks
from circular symmetry, i.e., the real and imaginary parts of the equivalent channel gain are
not independent and have different variances [12, 13]. Hence, the non-circular symmetry of
the RVs involved in the process must be taken into account for an exact analysis.

In this section, we calculate an exact closed-form expression for the bit error rate (BER)
of an OFDM system impaired by TX and RX IQ imbalances, when imperfect channel state
information (ICSI) is considered, in Rayleigh fading channels. The probability calculation is
accomplished by means of the general analysis of quadratic forms introduced in section 3.3,
which considers complex-valued non-circularly symmetric zero-mean Gaussian RVs.

We demonstrate that the BER in this scenario can be expressed in terms of the Lauricella
function Fp(-), which has recently been used in a great number of publications in the area
of performance analysis of wireless communication systems [84-88]. Additionally, we derive
two approximate yet accurate expressions for the BER: the first one is given in terms of the
Appell hypergeometric function Fj(-), which is included in many mathematical packages such
as Mathematica, and the second one does not require for the evaluation of special functions.
The former approximation provides an excellent match with the exact BER values for a wide
range of IQQ imbalances, whereas the latter expression is very accurate for practical values of
IQ imbalances.

Hence, the contribution of this work is twofold: First, an exact closed-form expression for
the BER in the investigated scenario is obtained; and secondly, two approximate yet highly

accurate expressions for the BER are provided.

5.2.2 Preliminaries

Proposition 1. Let x and y be two correlated circularly-symmetric complex RVs with zero

mean, o? variance and p = E{xy*}. The RV z £ ax + by* is in general a non circularly
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symmetric RV, where a,b € C are arbitrary constants values.

Proof. Using the definitions in (3.3.1) and (3.3.2), the terms in the real covariance matrix of
Z can be calculated as

2
o2 = % (laf? + [b? + 2R{pab}) , (5.2.1)
o2

o2 = — (la]* + |b]* — 2R{pab 5.2.2

Zq 2 (| | p Y
0., = 0°I{pab}. (5.2.3)
Clearly, according to the circular symmetry condition given in section 3.3.1, z is a non
circularly symmetric RV when a, b and p are different to zero. O

5.2.3 System Model

In the following, we consider an OFDM system where the cyclic prefix size is larger than
the maximum delay spread. It is also assumed that time and frequency synchronization is
perfectly accomplished at the receiver side. Hence, an equivalent frequency-domain system
model as in [77, 83] can be used, where the received signal in the k' subcarrier 7}, can be
expressed as

e = grzk + h_pz_p + Wy, (5.2.4)

where k € {—N/2,...,N/2 -1}, N is the number of subcarriers of the OFDM symbol, and
2, and z_j represent the transmitted symbols in the k' and —k' subcarriers respectively
(namely desired signal and MCI), belonging to an M-ary quadrature amplitude modula-
tion (M-QAM) constellation. The set of M complex symbols is denoted as Sy = {8, €
C/Rsu0} = Qu— VM —1)d; {50} = 2v — VM — 1)d; {u,v} € 1,...,v/M}, where 2d
is the minimum distance between symbols, and independent bit mapping is assumed for I
and Q components.

The remainder terms in (5.2.4) gx and h_j represent the equivalent channel gains for
the desired signal and the MCI respectively, whereas wy, is an equivalent noise term. These

latter terms can be expressed as

gr = K1G1Hy, + KoGoH™ (5.2.5)
hey = KoGiHY, + K GLH,, (5.2.6)
wy = Kyng + Kon™ (5.2.7)
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where H; and H_; are correlated complex Gaussian RVs with zero-mean and 03 variance
which denote the channel frequency response in the £t and —k*" subcarriers respectively, ny,
and n_j, represent the additive white Gaussian noise with zero-mean and o2 variance, and
the G; and K; terms (i = 1, 2) are used to model the TX and RX I(Q) imbalances respectively,

through the following expressions

1 Jpt 1 — —Jpt
Gy = &7 Gy = M (5.2.8)
2 2
1 . —Jer 1— . Jer
K, = % Ky = % (5.2.9)

Hence, the amplitude and phase imbalances are given by a; and ¢, at the transmitter side,
and by «, and ¢, at the receiver side, respectively.

According to proposition (1), the equivalent gain g; in this system model is a non-
circularly symmetric complex Gaussian RV with zero-mean, which can be characterized by

a 2 X 2 covariance matrix [13] as

A
Ef]k:E{

Note that in the absence of 1Q) imbalances (i.e., oy = a,. = 1 and ¢; = ¢, = 0), we have

S ] [%(gk) 3 (9x) ]} - l Roo  Thoosta . (5.2.10)

2 2
S (gr) OR(gr)S(gr)  TS(gr)

G, = K; =1 and Gy = Ky = 0, and the equivalent gain terms are expressed as g = Hj
and h_j = 0. Therefore, this leads to circular symmetry in g, RV, and 3, = ngg%g., where
Io.o is the identity matrix.

We also denote the channel estimate at the receiver side as gr = g + Vi, where Wy
is in general a non-circularly symmetric complex Gaussian RV that represents the channel
estimation error, with zero-mean and covariance matrix E@k. Finally, the decision metric

after channel compensation is expressed as

. ka]z:
Yk

=GP (5.2.11)
k

5.2.4 BER analysis

The probability calculation in this scenario is accomplished as follows: First, the BER is

expressed as the average, over all the transmitted z, and z_; symbols, of a weighted sum of
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CHAPTER 5. ANALYSIS OF OFDM SYSTEMS UNDER RF IMPAIRMENTS

components of error probability. These weights only depend on the constellation mapping,
and their calculation is tackled in section 2.3. Then, the probability calculation for the
investigated scenario is carried out by making use of a general analysis of non circularly-
symmetric Gaussian quadratic forms in complex RVs.

According to these premises, the BER expression is hence given by

1 u—1 vVM—-1 v—1

BER= o 3y > g (I, )+ Y af(m)I,(n) +) 8 (n)Q,,(n) +

VSu,v,8y/ o, €ESM | =1 n—u 1
*( +
Z B (n)Qf,(n)

(5.2.12)
where the o (n) and 3 (n) coefficients are defined in (2.3.2), and Z; (n) and Q3 (n) are

the components of error probability (CEPs) conditioned on a particular value of z;, and z_y,

ie.,

Iiv(n) =Pr{+R{yr — Bz(n)} < 0| 2k = Suw; 2k = Swa'}, (5.2.13)
in(n) = Pr{£3{yr — Bo(n)} < 0| zx = Suv; 2—k = Sw' } - (5.2.14)

where Bz(n) = (2n — vV M)d and Bg(n) = j(2n — v/ M)d are the decision boundaries for the
I and Q components in the M-QAM constellation, respectively.
With these definitions, we proceed to calculate Z,;,(n) probability. The remainder CEPs

can be calculated using the same procedure. Combining (5.2.11) and (5.2.13), we have

1 1
T, (n) = Pr {ﬁrkﬁ,’; + 57k — okl Bi(n) < o} — Pr{D < 0}. (5.2.15)

In expression (5.2.15), D can be seen as a particular case of a general quadratic form denoted
as D= A|X]> + B|Y|? + CXY* + C*X*Y, where A = 0, B = —B(n), C = C,+jC; = 1/2,
X =rgand Y = g. The values of A, B and C parameters for the remainder CEPs are given
in Table 5.2.

Using the matrix expression of a quadratic form introduced in (3.2.1), and adopting the

notation presented in (3.3.1), we can express

D = %1 Qx, (5.2.16)
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CEP |[A] B | C

Z7(n) | 0| —B(n) | 1/2
IZt(n) | 0| Br(n) | —1/2
Q (n) | 0| =Bo(n) | j/2
Q'(n) | 0| Bo(n) | —j/2

Table 5.2: Quadratic form matrices for the different CEPs

where

(5.2.17)

e )

(@
~

Note that a simple rearrangement of rows and columns has been performed in X; and Q,
in order to allow the covariance matrix of X; to be expressed in terms of the individual

covariance matrices of ¥y, g, and its cross correlation matrix in Appendix 5.2.7.

For convenience of notation, we introduce a superindex where necessary to denote the

corresponding CEP. The X; vector is a real Gaussian RV, with zero mean and covariance
. A [VRY) . . . . . . . .

matrix R = E {xkxf}. The covariance matrix R for this scenario is derived in Appendix

5.2.7. Finally, with R and Q matrices, the probability (5.2.15) is calculated using (3.3.19)

as
-, I, I 7N 7 /o
wi wy w
Tpy(n) = | e F | =2, — 22 -2 ] (5.2.18)
dy gy 3w3 W3 dig  dyy
where wl | , = % are the poles of the characteristic function of D, \; are the eigenvalues
of RQ?" matrix, dij = wi —wj, F(,+,) 2 Fp(3,1,4,3;1;+,-,+) and Fp is the Lauricella
function.

The calculation of Z,] (n) and QF ,(n) can be performed following the same procedure,

since it is only necessary to modify Q matrix according Table 5.2. Therefore, the exact
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closed-form expression for the BER is given by

1 = wi wl Wl di,  di,  di,
BER = MZloga M Z Z ay, (n) o dl ol F -0 gZI.0 4I. +
Vsu,v8,0 o €ESM Ln=1 1,342,3W3 3 1,3 2,3
M1 WITLTT It art dzt azt
Z at (n) 1wy wy 3,4 3,4 54 ) 4
u aZtazt It
1,3%2,3

T+ Lzt T Tt
n—u 3 w3 d1,3 d2,3

(5.2.19)

v—1 — — — o o- o-
Z /8, (n) wIQ w2Q OJQ F d3,4 _ d3,4 _ d3,4 +
v Q49— QT Q1 Q— 9~
n=1 d1,3 d2,3 w3 w3 d1,3 d2,3

VM-l T ot ot ot ot ot
S B n) wf wP WP g (A dsa d5a
v ot ;,0t+ ot ot ot o+ 9
n=v diig d3'g w3 ws d d

1,3 2,3

where af(n) and B£(n) coefficients are calculated in (2.3.2) for an arbitrary bit-mapping,
and in (2.3.7) for the particular case of Gray mapping.

The calculated expression (5.2.19) is exact, and consists of a finite sum of Lauricella
functions. However, it is possible to simplify this expression by means of some considerations
in (5.2.19).

Using the results of expression (3.3.24), the BER can be approximated by the following

expression

| Sy [T e el o (B
BER:W Z Zau(n) dz_dz—_z_G = g +
1,3 43 3 W3 w3

Vsu,v,su/,v/GSM n=1
vVM-1 + T+ 7+ Tt 7+
S at(n) of w3 wi o Fa B4 +
u dI+ dz+ wI+ wz+7 JI+
n=u 1,392,3%W3 3
_ _ _ (5.2.20)
v—1 o— o— o— dQ dQ
> By () [2ei G (B - ) +
v - o- o- = T To—
n=1 d1Q,3 d2Q,3 ng W:),Q e
VM-1 T ot ot ot ot
IR O E A e Y i PO ]
v ) T b
n=uv de,S d2Q,3 w?)Q W3Q dQ

where G(-,-) Fl(%, 1,1;1;-,-), and d £ %. The only assumptions in (3.3.24) can be

summarized as

e The magnitudes of the distances between w;,w; with equal sign are much lower than

the magnitudes of the distances between w;,w; with different sign 3.3.21.

e The magnitudes of the distances between w;,w; with equal sign are much lower than

the magnitudes of the w; 3.3.22.
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Another approximate expression can be obtained according (3.3.26), as follows

u—1 vVM—-1
BER = ) S | Seatn- V“;ﬁ + 3 ain LA A

— MZ3loa> M +
MZlogs M N e i It wﬁi
vl _ \/wl w2 VM- + \/“’1 w2
Z ﬂfu ( ) + Z ﬂ ( ) ot ot
-1 74«)1 +w + Wy +w
n w p) w 2

(5.2.21)

In this case, we assumed that the values of IQQ imbalances are moderate, which means
that the non-circular symmetry in g is reduced. Since the w; are double in the case of
circularly symmetric RVs (see section 3.3.2), ws and wy are close to each other as the non-
circular symmetry is reduced. This implies, in conjunction with (3.3.21) and (3.3.22), that

d3 % tends to zero more rapidly than * when moderate 1Q imbalances are considered.

5.2.5 Numerical Results

In this section, we use the closed-form expressions obtained in section 5.2.4 to evaluate the
BER performance in different scenarios. Gray mapping is considered for the M-QAM con-
stellations. We define the signal-to-noise ratio (SNR) as v = E/02, where Fj is the average
transmitted constellation energy. Similarly, we denote the signal-to-channel estimation error
ratio as v, = E, /o7, where 0], = tr(Xy ) and By £ 2 E{¥, 97, } =0. 507, Iaxa, according
to the channel estimation model given in [38]. We also define the correlation between the
channel frequency response Hj, and the mirror index H_j as p = E{IzIkIzIf ko

Fig. 5.3 illustrates the BER as a function of v, for a general scenario including TX
and RX IQ imbalances, imperfect channel estimation, non-independent channel frequency
responses at k and —k indices, as well as different modulation schemes. Monte Carlo simula-
tions have been included in order to show the validity of the calculated expression (5.2.19).
It is appreciated the appearance of a irreducible error floor due to ICSI, for the different con-
stellations. When perfect channel estimation is considered, an error floor is still appreciated
due to the effect of 1Q) imbalances.

For convenience of discussion, in order to separate the effects of ICSI and I(Q) imbalances
we will assume PCSI in the forthcoming figures. In Fig. 5.4 and 5.5, it is investigated the

effect of transmit and receive IQ imbalances, respectively.
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Figure 5.3: BER vs SNR for different values of channel estimation error and constellation
sizes, oy = 0.9, = 4, a,, = 0.95,¢, = 2, p = 0.5.
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Figure 5.4: BER vs SNR for different values of TX IQ imbalance and constellation sizes,
a, = 1,0, =0, p=0.5, PCSL
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It is observed in Fig. 5.4 that the effect of TX IQ imbalance, either in amplitude or
phase, does not severely degrade the BER performance. In fact, an irreducible BER floor is
not appreciated for the considered SNR values, even for large values of phase IQQ imbalances.
It can also be stated how denser constellations (i.e., 64-QAM) suffer from a more important
performance degradation in the presence of TX IQ imbalance.

On the contrary, the effect of RX IQQ imbalance results in the appearance of an irreducible
floor in the BER, as observed in Fig. 5.5. For the particular case of amplitude RX IQ
imbalance (e.g., o, = 0.9), it is appreciated how the performance is dramatically reduced,
leading to BER floors above 1072 and 1072 when 16-QAM and 64-QAM are considered,
respectively. Similarly, the phase RX IQ imbalance also leads to an irreducible BER, even

when low imbalances are considered.

OLI=O.9, ¢t=40’ T, p=0.5

7 (dB)

Figure 5.5: BER vs SNR for different values of RX IQ imbalance and constellation sizes,
ap = 0.9,(;515 = 4, p = 05, PCSI.

The effect of the correlation between the channel frequency response at the desired fre-
quency index Hj and the mirror index H_j is studied in Fig. 5.6. It is observed that the
effect of 1QQ imbalance varies depending on the magnitude of the correlation p, resulting in

a better performance when the correlation between the desired and mirror carrier frequency
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responses grows. Hence, the assumption of statistical independence between Hp and H_
[81, 83] leads to a considerable underestimation in the achievable BER. In the limit case of
p = 1, it is interesting to remark that TX and RX IQ imbalances become mathematically

equivalent, which can be extracted from (5.2.5) and (5.2.6) by considering Hy = H_.

at=0.9, ¢t=40’ ar=0.95, ¢r=2°, T,

i I
0 5 10 15 20 25 30 35 40 45 50
¥ (dB)

Figure 5.6: BER vs SNR, for different values of correlation and constellation sizes,
oy = 0.9,¢0, =4, o, = 0.95,¢, = 2, PCSI.

In Fig. 5.7, we compare the accuracy of the approximated BER expressions (5.2.20)
and (5.2.21) with the exact BER expression given by (5.2.19). It is observed that when
the IQ imbalance is moderate, both approximations provide an excellent match with the
exact expressions. As the IQ imbalance is increased, the accuracy of approximation (5.2.20)
is still excellent, whereas the differences between the approximation (5.2.21) and the exact
expression become more appreciable. For 64-QAM it is observed that the differences between
the exact and approximate expression (5.2.21) grow. In this case, the decision regions are
smaller and therefore the different contributions in the BER of the real and imaginary parts

of the decision statistic (due to non-circular symmetry) are more evident.
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Figure 5.7: BER vs SNR (exact and approximate) for different values of TX-RX IQ imbal-
ances and constellation sizes, p = 0.5, PCSI.

5.2.6 Discussion

An exact BER analysis of OFDM systems impaired by transmit and receive 1Q imbalances
has been presented, when ICSI is considered under Rayleigh fading. The calculated ex-
pression is obtained using a novel general analysis of quadratic forms in complex-valued
non-circularly symmetric Gaussian RVs with zero mean, and is given in terms of a weighted
sum of Lauricella Fp functions. Two additional BER expressions are provided, which allow
for accurately calculating the BER for a wide range of 1) imbalances, even preventing the
need of evaluating special functions when moderate 1QQ imbalances are considered. Results
show that performance loss due to RX IQ) imbalance is in general more severe, compared to
TX IQ imbalance. This degradation becomes more important when denser constellations are
considered, and when the correlation between the desired and the mirror channel frequency
responses is decreased.

The main contributions of this section have been published in [22].
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5.2.7 Appendix: Calculation of the covariance matrix R
Let R be the covariance matrix defined as E {)“()‘iT}, where X vector is

= [ Ry} S{n) R S| (5.2.22)

and y1, Yo are complex-valued non-circularly symmetric Gaussian RVs, with zero-mean, co-

variance matrices Xy, and Xy,, and cross covariance matrix Xy, y,. Hence, R can be ex-

pressed as
Yy, Xy
R=| 7 7 (5.2.23)
2915’2 25’2

The complex-valued RVs y; and y, are identified with r, and g, in our system model,

respectively. If we re-elaborate the expressions for r; and g from Section 5.2.3, we have

T = ArHy + AgHY 4 wy; (5.2.24)

Ok = AgHy + AgH” ) + 9y, (5.2.25)
where A; parameters are defined as

Al = KlGlzk + KlGZZ,k; Ag = KlGl; (5226)
Ay = KoGozy, + KQGTZ,M Ay = Ko7G,s. (5227)

After some algebra, the following expressions for the correlation matrices are obtained

S (3 = AT
Sp=1A A ]| D | e (5.2.28)
| =T 3y | | @AT
U 'zy 3, | [ AT ] y
Ypaga =L Ar Ae® ] par | T ATt 8@, (5.2.29)
L <p H ] L 4
U 2y 3, | [ AT ]
S =4 A@]| 0 Lo | +e+eT+xy, (5.2.30)
| 3T 3y | | ®AT

where A; matrices are defined from A; according to the mapping defined in section 3.3.1,

and some auxiliary matrices have been used

® (5.2.31)
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and

. Yy X AT
S, =[ A A ]| DT SO > (5.2.33)
| =T 3, | | ®AT |
L 2y =, | [ AT
Yy = [ A1 M@ ]| oo | (5.2.34)
| ST 3y | | AT |
N (x5 3, | [ AT ]
Sy, =[A; A@]| 27 N (5.2.35)
Y P s omy || ®AT
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Chapter 6

Analysis of MIMO-OFDM systems
with transmit beamforming

N this chapter, it is analyzed the effect of ICSI in a MIMO-OFDM system that employs
transmit beamforming and MRC reception. Since in this scheme it is required the
knowledge of the CSI at both the transmitter and receiver sides, the objective of this analysis

is to determine the degradation in the system performance due to ICSI.

6.1 Related Work

In the previous chapters, the performance analysis of MIMO (chapter 3) and OFDM (chapter
4) systems using quadratic forms was accomplished. Finally, in this chapter we proceed to
apply the mathematical tools derived in this thesis to the analysis of a MIMO-OFDM system.
It is known that when MIMO techniques are used in conjunction with orthogonal frequency
division multiplexing (OFDM), the benefits of employing multiple antennas are extended to
multipath environments. Clearly, the performance of a MIMO-OFDM system depends on
the accuracy in the estimation of the channel response, in order to compensate the effects of
the frequency-selective time-varying channel for every frequency subcarrier at every symbol
time.

The effect of channel estimation errors on the bit error rate (BER) performance in fading
channels has been widely studied by many authors. Since the analysis of pilot symbol assisted

modulation (PSAM) was introduced in [89], different analyses have been done: approximate
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BER expressions in Rayleigh fading channels with imperfect channel estimation for quadra-
ture amplitude modulation (QAM) were given in [14], and exact closed-form expressions
for QAM systems with antenna diversity in Rayleigh [90] and Ricean fading channels were
obtained in [9, 17].

When OFDM is used, several strategies can be used for channel estimation [91], but
the most extended mechanisms are based on pilot arrangement [92]. In [15], an exact BER
analysis for OFDM systems under imperfect channel state information (CSI) in Ricean fading
channels is performed, considering different reception branches for maximal ratio combining
(MRC).

For the general case of precoded multiple antenna systems, exact closed-form BER expres-
sions which account for the effect of channel estimation errors have recently been obtained
in different scenarios: transmit beamforming and MRC with channel prediction errors with
fixed [10] and adaptive modulation [93] in Rayleigh fading, and singular value decomposi-
tion (SVD) MIMO systems [27] with channel estimation error and feedback delay in Ricean

fading channels.

In the case of precoded MIMO-OFDM systems, less analyses are available in the lit-
erature. Recently, a lower bound for channel prediction and interpolation errors has been
proposed in [94]. Under the assumption of perfect CSI knowledge in both the transmitter and
receiver sides, a performance analysis of coded MIMO-OFDM systems over Ricean fading
channels was tackled in [95]. In [96], space-frequency block coded OFDM (SFBC-OFDM)
systems are analyzed, considering the effects of channel estimation errors only in the re-
ceiver side. A closed form analysis covering the effect of channel estimation errors in both
transmitter and receiver sides has not been accomplished yet, to the author’s knowledge. In
this chapter, exact closed-form BER expressions for MIMO-OFDM beamforming with MRC
under imperfect CSI due to prediction and interpolation errors are derived. Particularly, our
analysis is valid for any square M-ary QAM constellation to be mapped onto the OFDM

subcarriers.

The remainder of this section is organized as follows. Section 6.2 describes the system

model considered in our analysis. In Section 6.3 exact closed-form BER expressions are
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Figure 6.1: System model for MIMO-OFDM Beamforming with MRC and imperfect CSI

derived. Section 6.4 presents some numerical results which exploit the analytical expressions

derived in previous section. Finally, main conclusions are exposed in Section 6.5.

6.2 System Model

Figure 6.1 shows the system model for MIMO-OFDM beamforming with MRC assumed
in this work. We consider Ny transmit antennas and Ny receive antennas. In this system
model, the symbol z is spread among the set of transmit antennas by means of a beamforming
vector v, which is retrieved from the receiver using a feedback channel with 7p delay.

For every signal path between transmitter and receiver, we assume a channel impulse
response (CIR) with exponential multipath profile, mean delay spread denoted as 7, nor-
malized gain, and time variation according to Jakes’ correlation model [97], with maximum
Doppler shift fp.

For this analysis, we consider the following usual assumptions [15, 98] with respect to

the OFDM transmission:

1. Channel state changes from symbol to symbol, but it does not significantly change

within one OFDM symbol period T
2. CIR length L is shorter than cyclic prefix (CP) size

3. Time and frequency synchronization is perfectly accomplished in the receiver side.
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Therefore, the effect of intersymbolic interference (ISI) and intercarrier interference (ICI)
are neglected. Under these assumptions, we can consider an equivalent channel model in
the frequency domain so that the received signal, for the kth subcarrier of the nth OFDM

symbol, can be expressed as

y(n, k) = H(n, k)x(n, k) + w(n, k), (6.2.1)

where the transmitted signal after beamforming x(n, k) is an Ny x 1 vector, the received
signal before MRC y(n, k) is an Ng x 1 vector, w(n, k) is an Nr x 1 vector representing
noise, and the channel gain is modelled by an Ng x Ny complex matrix H(n, k), so that each
entry H; ;(n, k) is the channel gain between the jth transmit and the ith receive antennas.
For simplicity, in the following analysis we omit indices n, k unless they are necessary.

The entries H; ; are assumed independent identically distributed (i.i.d) complex circularly
symmetric normal RVs, with zero-mean and unity-variance, i.e. H;; ~ CN(0,1), where the
symbol ~ means statistically distributed as. The entries of noise vector, namely w,,, are i.i.d.
complex circularly symmetric normal RVs ~ CN (0, Ny).

Since we assume an exponential distribution of the multipath time delay, the two-

dimensional correlation function of H; ; entries is given in [15, 98] as
JO [QWEF(AH)]

An,Ak) 2 E[H, ;(n,k)H} . An, k+ Ak)] = 6.2.2
pur(An, Ak) £ E[Hy(n ) H (n+ A,k + AR)] = 752070, (6.2.2)

where * denotes complex conjugation, Jy is the zeroth order Bessel function of the first kind,
er = fpT represents the maximum Doppler shift fp normalized to the OFDM symbol period
T, and er = 7/T represents the normalized mean delay spread.

In the transmitter side, pilot subcarriers with energy £, are transmitted on certain posi-
tions within the OFDM discrete time-frequency grid [92], in order to facilitate the estimation
of the channel frequency response. These pilot subcarriers are uniformly distributed along
this grid, with spacing AN in the discrete time-domain and spacing AK in the discrete
frequency-domain. Hence, an initial channel estimate H at pilot positions is obtained, since

both the value and position of pilot subcarriers is known in the receiver side.
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The predicted channel H is employed to obtain the beam-steering vector v which must
be fed back to the transmitter, and can be expressed as
Np—1
A A . .
H(n+no.k+k) = ) epH(n— AN(i +7p), k), (6.2.3)
=0

where Np is the number of taps of the prediction filter, cp, are the coefficients of the prediction
filter, ng = 0... AN — 1 indicates a shift from the position where the pilot is allocated in the
symbol index, kg =0... AK — 1 denotes a shift in the discrete frequency grid, relative to
the position of pilot subcarriers, and 7p is the feedback delay expressed in units of discrete
time intervals between pilots. Note that, in order to reduce feedback information, cp, are
considered independent of ng and k.

The interpolated channel H is needed to carry out the MRC at the receiver, and is given

by
(N7 —1)/2

H(n + no, k + ko) 2 Z cr Hn, k —iAK), (6.2.4)

i=—(N;—1)/2

where N; is the number of taps of the interpolation filter, c;, are the coefficients of the
interpolation filter. Note that in this case, since channel interpolation is needed to be
accurately calculated for every frequency subcarrier, the value of ¢;, varies for every ko
although for notational simplicity this dependence has not been stated.

Both channel estimates are obtained by filtering the previous channel estimate H. In
our receiver model, we define the estimation E, prediction Z and the interpolation E error
matrices as

H-H, (6.2.5)

where the prediction and interpolation errors depend on the magnitude of the estimation
error E, and the coefficients of the prediction and interpolation filters, respectively.

Using the predicted channel ﬂ, the optimal beam-steering vector v is the Np-dimensional
unitary eigenvector corresponding to the largest eigenvalue A of matrix H*H [99], which is
given by A = vMH"Hv. The receiver feeds vector v back to the transmitter to perform
beamforming, so that the transmitted vector becomes x = vz. The effective channel gain is

an Npi-dimensional vector defined as h 2 Hv and the predicted effective channel gain is the
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vector h 2 FI¥, whose square Euclidean norm is ||| = X. The effective channel gain can
also be expressed as h 2 HY = (H+E2)v = h + v, where 1) is the channel gain prediction
error.

At the receiver, the effective channel gain vector h is estimated to perform MRC. Using
the interpolated channel H and the beam-steering vector v sent to the transmitter, according

to our system model, the estimation of h is

h2Av=H-89v=H+E-5)v=h+¢ -, (6.2.6)
where 1,[; is the channel gain interpolation error.
The symbol r which results from applying MRC to received vector y is given by
h't h"h b
ra 2y W gz + ', (6.2.7)

2 e’ BT 2
1> [m[> [k
where z is the transmitted symbol with average energy Fg, ¢ is the gain mismatch and w’ is
the resultant noise after MRC, whose pdf is circularly symmetric since w is a vector whose

entries are circularly symmetric and independent of h.

6.3 BER analysis

We consider square M-QAM modulation with independent bit mapping for the in-phase (I)
and quadrature (Q) components for every OFDM subcarrier, so that the set of complex sym-
bols of the constellation is {s,, = (2u — VM — 1)d + j(2v — VM — 1)d}, -1, var Where
2d is the minimum distance between symbols.

In this scenario, taking advantage of the circular symmetry in the pdf of the noise, the

BER can be expressed as

g
g

VM-1
BER = wy(m) - Ly (M), (6.3.1)

U

Il
—
Il
—

v m=u

where w,(m) coefficients are constant values given in [17] for the case of Gray mapping,
and Z,,(m) are called components of error probability (CEP), according to the notation

introduced in [10]. These CEP are defined as the probability of the received symbol to
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be above a decision boundary {B(m) = (2m — vM)d}, _, -1, When z = s,, was

77777

transmitted, i.e.

Zuo(m)=Pr{R{r} —B(m) > 0] z=su.,}. (6.3.2)

In the forthcoming analysis, we calculate the CEP conditioned to a predicted channel
state H (section 6.3.1), and then we obtain both the conditional BER and the BER averaged

over all the predicted channel states (section 6.3.2).

6.3.1 Conditional CEP

In this section we derive, for our system model, the CEP of the nth symbol in the kth

subcarrier, conditioned on a predicted channel state (CCEP), i.e.
Ty o(m; L) = Pr {?R{r} —B(m)>0|H,z= s} . (6.3.3)

The calculation of CCEP is performed in two steps: firstly, we obtain the joint Gaussian
pdf of channel gain prediction and interpolation error conditioned on the predicted channel.
Then, analysis of complex Gaussian quadratic forms [6] is used for the derivation of the
CCEP; more specifically, the compact expressions presented in [10] are adopted. Let ¢ be a

random variable defined as

L

® [901 ®, r» (6.3.4)

where

1]z

A7 A 2
pr=H,; , p= [ i Zij ] : (6.3.5)

Since the entries of the channel matrix H and the estimation error matrix  are circularly
symmetric Gaussian variables i.i.d. with zero mean, it can be shown that ¢ ~ CN(0,C,),

whose covariance matrix is

C’11 ClZ

C,2E [‘PQOH} - G C
21 O

: (6.3.6)

where the elements of the covariance matrix depend on the prediction and interpolation

filter coefficients, the correlation function of the channel py in (6.2.2), and the power of
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the estimation error Z. In expression (6.3.6), the matrix C,, is partitioned into four sub-
matrices as depicted in (6.3.7), in order to facilitate the next calculations. The prediction
and interpolation filter coefficients are expressed in vector notation, denoted as cp and cy,

respectively.

CPWCP,

. R - A
[ wep — cbWep  wep — bW } =Cf,

Q
S
> 1>

o, A 1+ C%VAVCP — 2Wcep 14+ chVVVCI — Wep — Wep
22 — - ~ 5
1+ cbWep — wep — wep 1+ ctWep — 2wy,
W = pr((m+7p)AN — ng,0), (6.3.7)

Wy = pu (0, (m+ (N; — 1)/2)AK — k),
Wim = pu((m —1)AN, 0) + (No/Ep) [m — 1],
WZm = pu(0,(m — )AK) + (No/Ep) 6[m — 1],
= pu((l+7p)AN, (m + YL)AK) + (No/Ep) 8]l + 7p] - 8[m + YL

Conditioning on the predicted channel matrix ﬂ, we obtain a new circularly symmetric

Gaussian variable 0, ; = PL | 1= [éi,j, Em-]t | I:Ii,j, whose mean and covariance matrix can
be calculated from C,

Taking into account that {b = Bv, Y = BV and V is a unitary vector that remains
constant conditioned on ﬂ, we can define an equivalent circularly symmetric Gaussian vari-

able defined as the vector ¥; = [zﬂl,@@} H, representing the channel gain prediction and

interpolation error, conditioned on the predicted channel. Using the analysis presented in
[100] for conditioned Gaussian random variables, the mean and covariance matrix of ¥; can

be expressed as
my, = B8] = h,C,'Can, (6.3.8)

Cy, 2 Cyp — C'CiCys = Co. (6.3.9)

Once the joint Gaussian pdf of channel gain prediction and interpolation error conditioned

on the predicted channel is obtained, the second step is the calculation of the CCEP.
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Table 6.1: Probability computation of Gaussian quadratic form.

PARAMETER ‘ DEFINITION
(6:}icro 14:(C,Q,,) + 1/ (3 1(C.Q,,))° — det(C.Q,,)
o
26 (24 [Q — 0:C, " m, )
a
(01— 82)°

20) (S5 m [Qy — 0:C, ' my,)

(61— bo)°
Nr—1 1
Pr{D < 0} Qi(a,b) + Z Cp(a,b,n)I,(ab) exp {—2((12 + bQ)}
p=0
1 Nel/ 9Np — 1
Cp(a’7 b777) " =0

ol

1 Nel=p [ 2Np —1 b\”
o & (k) -G e

Let us define a random variable D as a quadratic form

Nr
D =) x"Qux, (6.3.10)
i=1

where Np is the number of diversity branches in the receiver side. The quadratic form matrix

Q.. and the random variable vector x; are defined as:

9 L B | (6.3.11)

where B(m) are the decision boundaries. Thus, if we expand (6.3.10) and (6.3.11), we have

p=3

Therefore, from (6.3.12) and (6.3.3) we find the equivalence between the CCEP and the

hi

" B(m) — %(yﬁj) } . (6.3.12)
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quadratic form as

7, ,(m; HI) = Pr {D <0 ‘ 2 = s, } : (6.3.13)

The calculation of this probability (6.3.13) can be tackled through Proakis’ analysis of
complex Gaussian quadratic forms [6, eq. B-21], or using the alternative expression used
in (3.2.7) and restated in table 6.1. According to our system model, the entries of received

vector y; and the entries of interpolated effective channel gain vector h; can be expressed as

~ ~

Y; = hlz +w; = (hl + ¢1)Z + W,

L (6.3.14)
hi +; + 4y,

hs

Thus, x; conditioned on a certain transmitted symbol z = s,,,, and a predicted channel matrix
H , can be expressed as a linear combination of the complex and jointly normal variables
1@ and 1;2 and the independent complex normal variable w;. Hence, x; is a complex normal

vector whose mean vector and covariance matrix are
my, 2E [xi] = hip = h; (A +OC'Cy), (6.3.15)

A

Cx = E [(x;, — my,) (x; — my,)"] = ©@C40™ + @N,, (6.3.16)

where p = A + @C’ilcgl and

u,v u,v 0 1 O
AL @l | @2 . (6.3.17)
| 11 0 0

With the mean vector in (6.3.15), the covariance matrix in (6.3.16) and the quadratic

form matrix in (6.3.11), we can calculate the CCEP by using the expressions in table 6.1 as

) Np—1 o
Zoo(m;H) = Q4(a,b)+ E Cpla,b,n)I,(ab)e” =, (6.3.18)
p=0

where Q1 (-) is the Marcum Q function, I,(-) is the modified Bessel function, and the param-
eters a, b, n and C, are obtained using the expressions that appear in table 6.1, where d;
and J, are the eigenvalues of the matrix C,Q,, and d; > &5 by definition.

The CCEP dependence on H in expression (6.3.18) is contained in the parameters a and

b, specifically, in the term h; that appears in the expression of my, (6.3.15). Substituting
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expression (6.3.15) in the expression in table (6.1), the parameter a results

2, (Z;V_q i ) (17 (Qun — 6:C51) )
a= (5, — 03)2 - (6.3.19)
252 ( (Qm - 51 ) ) )\
\/ AL = Qyp(M) \/X

In (6.3.19), A represents the largest eigenvalue of the matrix HH™. Since the elements
of HH" are complex Gaussian RVs, it is said to be a Wishart matrix [101].

In the same way, the parameter b can be expressed as
b= byo(m) VA, (6.3.20)

Therefore, it is shown that the CCEP dependence on ;\, so H can be expressed as a
CCEP dependence on ), ie.
I, (m; H) = IF (m; V). (6.3.21)

6.3.2 Conditional and average BER expressions

The CCEP calculated in the previous section allows for the derivation of the conditional
BER (CBER). This probability represents the BER conditioned on the predicted effective
channel gain ), i.e, the BER under imperfect channel state information (CSI). This CBER
can be expressed as

VM
CBER(\ Wy (M) - Ly o (M A). (6.3.22)
1

2
3

[y

3
I

u=1 v u

The BER is obtained by averaging the CBER over the predicted eigenvalue ) as
VM VM VM-1

BER=3"3"S" w.u(m / Lo (m: Mp(V)dA. (6.3.23)

u=1 v=1 m=u
Using the fact that the pdf of the largest eigenvalue of the complex Wishart matrices can
be expressed as a weighted sum of elementary Gamma pdfs [102], the pdf of A is given by

N1 (Na+Ni—2m)m

X —I\
B ,— —_— .3.24
3> e (). 320

= r=Ng—
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where N, 2 min {Nr,Ngr}, Ny 2 max {Nr, Ng}, C1; = E[|ﬁ”|2} is defined in (6.3.6), and

the constants B;, are

é Al,r
(N = DY (N = )Y

and coefficients A;, can be exactly computed by the algorithm proposed in [102].

Bl,r (le NQ)

(6.3.25)

Substituting (6.3.24) and (6.3.25) in expression (6.3.23), and using the expressions and

integrals given in [33, 103], a final expression for the BER is given as

VM VM VM—1 Ni (N2+N1—2m)m 2 r l
pen- 5SSt sy e {1 B (2
1 v=1

u= u =1 r=No— euyv(m) 1=0 eu,v(m)

[ (m;ZFl <l:2 43, 4au,y( )bi,v<m>> L. (l+1 Z+2_1_4ai,v(m)bi,@(m))]}
2

euv(m 2 7T e (m) 1+ 2 2 T e (m)

" <au,v<n(£;;,jz}n>>r“l—1! (Pt DW (%>

puv(m> -1 r+1
Fy (= —r 004 1; Pt = 2 2 (m) -1
2471 ( T, =T+ ’pu;u(m) + 1> \/(pu,v(m) ) } )

(6.3.27)
where o F} is the Gauss hypergeometric function and
euw(m) = al ,(m) + b, ,(m) + 2m, (6.3.28)
a2 (m)b2  (m —1/2
Pup(m) = (1 = M e )) : (6.3.29)

Note that function o F} in (6.3.27) can be expressed as a finite sum of elementary functions

for the values of its arguments, although it is not shown here for compactness reasons.

6.4 Numerical Results

In this section, we use the closed-form expression obtained in Section 6.3.2 to evaluate the
BER for different particular scenarios.

For the numerical evaluation of the results, we assume the following default configuration:
2x2 MIMO scheme with 16-QAM constellation mapped onto the OFDM subcarriers, and

equal power for pilot and data subcarriers (Ep = Eg). The same number of taps has been
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Figure 6.2: BER as a function of the average SNR (), for a 16-QAM OFDM system over
Rayleigh fading channel, with sinc and Wiener filters, and a NyxNi antenna configuration.

considered both for the prediction and interpolation filters, i.e. Np = Ny =9. In the case
of sinc-type filters, Hamming windowing is performed. We further consider a feedback delay
Tp = 4, position of data subcarrier relative to pilot allocation ny = kg = 1, and a frequency-
domain pilot spacing and time-domain pilot spacing AK = AN = 4. The normalized mean
delay spread er as well as the normalized maximum Doppler shift ez are both set to 0.02.

BER curves in this section are represented as a function of the average signal to noise ratio

(SNR), namely v = Eg/Np.

In Figure 6.2, the influence of antenna configuration on the BER is studied, for Wiener
and sinc filters. Monte Carlo simulations for the 2x2 case and minimum mean square error
(MMSE) filtering are included, which correctly match with the theoretical results. Due to the
huge number of random variables involved in the analyzed scenario, it is not computationally

feasible to simulate the remainder configurations. The performance loss due to non-optimal
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Figure 6.3: BER vs. v, for BPSK, QPSK and 16-QAM constellations in a 2x2 MIMO-OFDM
system over Rayleigh fading channel, with sinc and Wiener filters, for different values of the
normalized delay spread ep

filtering, for a BER = 1074, is in the range of 1.5-2 dB for the studied antenna configurations.
It is interesting to highlight that the BER performance for 2x4 MIMO is approximately 3 dB
better compared to 4x2 configuration, whereas their performance is coincident when perfect

channel estimation is considered [10].

Figures 6.3 to 6.5 represent the BER evolution when different channel parameters are
varied, for a 2x2 antenna configuration. In Figure 6.3, it can be appreciated how a longer
channel impulse response (i.e. greater values of er) produces a more important BER degra-

dation when dense constellations are used.

In Figure 6.4, the effect of the Doppler shift on the BER performance is evaluated.
Since larger values of €5 correspond to more rapidly varying channels, the BER performance

decreases when € is increased. When working at low SNR, the performance of sinc filtering
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is barely affected under different Doppler shifts, since this scheme does not take advantage

of the knowledge of CSI.
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BER
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Figure 6.4: BER vs. v, for BPSK, QPSK and 16-QAM constellations in a 2x2 MIMO-OFDM
system over Rayleigh fading channel, with sinc and Wiener filters, for different values of the
normalized maximum Doppler shift e

Finally, Figure 6.5 shows the effect of the feedback delay on the BER performance. In
general terms, when the feedback delay grows, the performance gap between MMSE and

sinc filtering is also increased.

6.5 Discussion

An exact BER analysis for MIMO-OFDM systems with transmit beamforming and MRC
reception in multipath Rayleigh fading channels, under channel prediction and interpolation
errors, was presented. The resulting exact closed-form expression was showed to be composed

by a finite sum of elementary functions.
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Figure 6.5: BER vs. «, for a 16-QAM constellation and 2x2 MIMO-OFDM system over
Rayleigh fading channel, with sinc and Wiener filters, for different values of the feedback
delay 7p

This expression was used to evaluate the system performance under different channel
configurations and number of antennas, with Wiener and sinc filter schemes for both channel
prediction and interpolation. Although Wiener filtering outperforms sinc-type filtering, the
latter is shown to be a reasonable approach for implementation in a real system, since it
offers a good trade-off between performance and complexity.

The main contributions of thus section have been published in [18].
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Chapter 7

Conclusion and future work

N this final chapter, the main conclusions which arise from the contributions of this
work are outlined. Besides, some future lines and applications regarding to the work

developed in this PhD thesis are suggested.

7.1 Conclusion

In this thesis, the problem of performance analysis in wireless communication systems under
non ideal conditions has been addressed. The main contributions of this work in this field
can be grouped into two principal points:

Firstly, a tool for the performance analysis of QAM systems has been developed. The
proposed general framework can be utilized in many scenarios, and includes previous results
in the literature as particular cases. By using this analysis method, the computation of
the elementary coefficients (which only depends on the constellation mapping) is separated
from the probability calculation (which only depends on the statistical distributions of the
RVs). Besides, this methodology may be useful to extend previous results in the literature
calculated only for particular constellations into general expressions.

On the other hand, the probability calculation in systems where the decision variable
can be expressed in terms of a general quadratic form D in complex Gaussian RVs has
been tackled, from different perspectives. Previous closed-form results given in [6, 10] for
calculating Pr{D < 0} have been used to analyze those scenarios where the involved RVs

were circularly symmetric. Additionally, approximate expressions for this probability have
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been obtained in terms of the Gaussian () function. For the general case of non circularly
symmetric Gaussian RVs, an exact expression for Pr{D < 0} has been obtained in terms
of the Lauricella function Fp(-), as well as two approximate expressions in terms of Appell
hypergeometric function Fj(-) and in terms of rational functions.

Thus, the utilization of the proposed general framework for the performance analysis
of QAM systems in conjunction with the probability calculation using quadratic forms in
complex Gaussian RVs has enabled the analysis of a number of wireless communication
systems under a common approach. By means of a proper system modelling, it has been
demonstrated that this methodology is a feasible alternative for the analysis of MIMO and
OFDM systems affected by different impairments.

Regarding to the analysis of MIMO systems with ICSI in Ricean fading channels, two
scenarios which have not been previously analyzed in exact closed-form in the literature been

studied:

e A QAM system with MRC reception affected by Ricean-faded interferences. We show
that the effect of the LOS component of the interfering signal in the BER varies

depending of the value of the Ricean K factor of the interfering signal.

e A MIMO 2 x Npg system employing Alamouti diversity with MRC reception. We show
that this scheme can be reduced to an equivalent 1 x 2Ny system where the noise term

is enhanced by the appearance of a block code interference due to ICSI.

In these scenarios, approximate expressions for the BER are also provided in terms of
the Gaussian () function which are valid mainly for Ricean channels with a strong LOS
component.

Then, the effect of different impairments which affect OFDM systems that make use

direct conversion receivers has been analyzed:

e An OFDM system with MRC reception affected by ICSI, CFO and DC-offset. For
the particular case of PCSI and single branch reception, a simple expression for the
irreducible BER floor due to DC-offset is given. As a rule of thumb, we provide a

simple expression for the maximum DC offset allowable in a direct conversion receiver.
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e An OFDM system affected by ICSI and IQ imbalances both at the transmitter and
receiver sides. We show that the non circular symmetry of the equivalent channel gain
must be taken into account for a proper analysis. It is observed that RX IQ imbalance
is in general more detrimental that TX IQ imbalance; we also appreciate that the
correlation between the channel response at the desired frequency and at the mirror

frequency has an important effect in the performance degradation due to I1QQ imbalance.

Finally, a MIMO-OFDM system that combines transmit beamforming and MRC recep-
tion has been considered, in order to determine the effects of ICSI at the transmitter and
receiver sides. In this scenario, the BER conditioned to a particular channel state is calcu-
lated using the analysis of quadratic forms, and then the BER is obtained by averaging the
conditioned BER over all the channel states. It is found that ICSI at the transmitter side

has a greater impact in the BER compared to ICSI at the receiver side.

7.2 Future work

After the work developed in this thesis, there exist a number of applications where the
proposed methodology may be exploited. They involve either new scenarios, new fading
conditions or new impairments. Some examples are indicated below.

Firstly, in this thesis we have identified some scenarios where the classical analysis using
quadratic forms in complex Gaussian RVs was not applicable, thus making necessary the
calculation of Pr{D < 0} under new assumptions (i.e., non circular symmetry). It may also
result interesting the study of new kinds of quadratic forms which enable the analysis of

different systems. According to the expression of a general quadratic form given by

L
D £ AIX ] + BIYi* + CX0Y) + C* X} Yi, (7.2.1)
k=1

one valid example may be the consideration of correlated pairs of random variables X}, and Y
with arbitrary mean and variance, i.e., E{X;X;} # 0, E{Y;Y;*} # 0 for any j # k. This will
enable the analysis of multi-branch reception over correlated fading channels with quadratic

forms.
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In OFDM systems, it is usual to consider that synchronization is perfectly accomplished
at the receiver side. However, imperfect time and frequency synchronization may lead to the
appearance of inter symbol interference (ISI) and inter carrier interference (ICI), respectively.
It may result interesting to analyze the effect of these impairments from the perspective
exposed in this thesis, i.e., the use of quadratic forms.

Within this thesis, a number of MIMO systems affected by ICSI have been analyzed,
which mainly employed MRC reception in the receiver side. The proposed methodology is
directly applicable to other reception combining strategies such as equal gain combining or
selection combining. As well, it is also feasible the study of MIMO multiplexing systems
with the proposed methodology.

Finally, multicarrier systems based on OFDM have been analyzed in this thesis. However,
there are other strategies which are being considered for multicarrier transmission. One
valid example is Single-Carrier Frequency Division Multiple Access technology (SC-FDMA)
[104], which has been selected as transmission scheme for the uplink of 3GPP-LTE radio
technology. Since the exact BER calculation of these systems remains as an open problem
in some scenarios, it may result interesting to use the proposed methodology in this thesis

for the performance analysis.
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Appendix A

Resumen en castellano

A.1 Motivaciones de la tesis

La medida de prestaciones en sistemas de comunicaciones ha sido siempre un asunto de ex-
tremo interés desde sus origenes [1-3]. Ademads de la capacidad del canal, que bésicamente
proporciona informacion sobre la maxima tasa de informacién libre de errores que puede lo-
grarse, estas prestaciones suele cuantificarse en términos de probabilidad de error de simbolo
(SER, Symbol Error Rate) o de probabilidad de error de bit (BER, Bit Error Rate). Dependi-
endo de las caracteristicas del canal y del esquema de modulacion, el andlisis de prestaciones
puede llevarse a cabo de diferentes maneras.

Uno de los trabajos de referencia en este drea fue publicado por Simon y Alouini [4],
en el que se analizan las prestaciones de diversos sistemas de comunicaciones afectados
por distintos tipos de desvanecimientos siguiendo una estrategia comun. La aparicion de
nuevos sistemas de comunicaciones digitales que emplean nuevos tipos de modulacion o de
esquemas de transmision hace necesaria la evaluacion de sus prestaciones, de modo que
puedan compararse con las técnicas existentes. Algunos ejemplos son el uso de multiples
antenas (MIMO, multiple-input multiple-output) o la técnica de multeplexacién por divisién
en frecuencias ortogonales (OFDM, Orthogonal Frequency Division Multiplexing). Tanto
MIMO como OFDM estan integrados en la mayor parte de tecnologias inaldmbricas presentes
y futuras.

El cédlculo analitico de las prestaciones de los sistemas de comunicaciones inalambricas
afectados por distintos tipos de desvanecimientos ya ha sido llevado a cabo, suponiendo que

el estado del canal (CSI, Channel State Information) es conocido de manera perfecta en
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el receptor (e incluso en el transmisor, si es necesario) [5, 6]. Estos resultados son ttiles
para determinar las prestaciones maximas que pueden alcanzarse en condiciones ideales.
Sin embargo, en la prética existen muchos factores que pueden limitar dichas prestaciones:
la aparicion de senales interferentes, el conocimiento imperfecto del CSI, o no idealidades
relacionadas con la implementacion fisica de los componentes tales como offset de frecuencia
de portadora, desbalanceo de las componentes en fase (1) y cuadratura (@) u offset de continua

son algunos ejemplos.

En estas situaciones, el modelo de sistema es mas complicado que el originalmente con-
siderado en [4], debido a la diferente naturaleza de las variables aleatorias (RVs, Random
Variables) que aparecen. Esto implica no sélo que los calculos analiticos a realizar sean mas
complicados, sino que la simulacion de estos escenarios puede llegar a ser inviable. Por tanto,
la obtencién de expresiones cerradas que permitan evaluar de manera exacta las prestaciones
de estos sistemas es de vital necesidad, con el fin de poder determinar de manera eficiente

cémo estas imperfecciones afectan a las prestaciones del sistema.

Aunque existen distintas alternativas para el cdlculo analitico de la BER en estos esce-
narios, en ocasiones es posible expresar la variable de decisién como una forma cuadratica;

asi, el calculo de probabilidades puede realizarse siguiendo una estrategia comun.

El céalculo de probabilidades empleando formas cuadraticas fue introducido por Proakis
[6, 8] para el caso de RVs Gaussianas circularmente simétricas, posibilitando el andlisis de
diferentes escenarios [9, 10] en los que la utilizacién de otras alternativas para el cdlculo
de la BER era inviable desde un punto de vista practico. Recientemente, los resultados de
Proakis han sido generalizados [11], proporcionando un modo de obtener la funcién carac-
teristica de una forma cuadrética general para distintos tipos de desvanecimientos (es decir,
RVs de diferente naturaleza). Sin embargo, tanto [6] como [11] asumen que las RVs son
circularmente simétricas, es decir, que sus partes reales e imaginarias son independientes y
tienen igual varianza. Dado que la condicién de circularidad simétrica [12, 13] no siempre
se satisface, parece interesante analizar las formas cuadraticas en las que las RVs carecen de
esta propiedad.

Otro problema que se presenta a la hora de evaluar las prestaciones de un sistema de
comunicaciones estd relacionado con el calculo de la probabilidad para distintas constela-

ciones. Un gran nimero de anélisis en la bibliografia, aun de incuestionable interés, realizan
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de manera individual el andlisis para cada constelacién, ya sea BPSK (Binary Phase-Shift
Keying) o del tipo M-QAM (Quadrature Amplitude Modulation) [9, 14, 15]. Conforme el
tamano de la constelaciéon aumenta, el cdlculo se hace mas tedioso, ya que se obtienen de
manera explicita las diferentes probabilidades asociadas a que cada bit del simbolo recibido
se encuentre dentro de una determinada region de decision, y luego estas probabilidades
individuales se combinan. Por tanto, parece deseable el uso de un método sistematico que
permita realizar los cdlculos de una manera genérica, independientemente del tamano de la
constelacion.

Las motivaciones de esta tesis pueden resumirse en dos objetivos principales:

e Proporcionar un método general para el calculo de la BER en sistemas basados en

QAM para cualquier tamano de constelacién.

e Analizar sistemas MIMO y OFDM afectados por ciertas no idealidades, mediante el

uso del célculo de probabilidades basados en formas cuadraticas Gaussianas.

A.2 Analisis generalizado de la probabilidad de error

En esta seccion se presenta una metodologia general para el andlisis de prestaciones de
sistemas QAM. El inico requisito es que el mapeo de los bits en las partes en fase y cuadratura
se realice de manera independiente, e incluye andlisis previos de la bibliografia como casos
particulares [16, 17].

La técnica propuesta permite separar el andlisis en dos tareas principales, que pueden
llevarse a cabo de manera independiente: el calculo de los coeficientes elementales, cuyo
valor depende sélo del mapeo elegido para la constelacion, y el calculo de las componentes
de probabilidad de error, cuyo valor depende unicamente de la distribucion de las variables

aleatorias en el escenario considerado.

A.2.1 Marco Analitico

Consideremos el problema general del céalculo de la BER cuando la variable de decision
se puede expresar mediante la forma canénica y = az + ¢, donde a (desajuste de ganan-
cia) y ¢ (ruido equivalente) son en general RVs complejas. En este modelo, el desajuste

de ganancia a incorpora el efecto de la compensacién imperfecta de canal en recepcion,
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mientras que el ruido equivalente ¢ incluye los efectos del ruido aditivo, interferencias y
otras imperfecciones del receptor. En esta forma candnica z es el simbolo transmitido
perteneciente a una constelacion QAM rectangular, compuesta de dos constelaciones L1-
PAM y Ly-PAM asociadas con las componentes I y Q. El conjunto de simbolos complejos es
{Suw=Q2u—Ly —1)d+ j(2v — Ly — 1)d}y—1. . 1,:0=1.. .L,, donde 2d es la minima distancia
entre simbolos. Cada simbolo s, , tiene asociado un conjunto de bits de la componente I
{bF (u) }iz1, . togy (1) ¥ Otro de la componente Q {b2(v) }iz1, _ tog,(L,)- Los limites de las regiones
de decisién para las componentes Iy Q se denotan como {Bz(k) = (2k — L1)d} k=1, 1,1y
{Bo(k) = j(2k — Ly)d} k=1, . 1,1 respectivamente.

La BER puede expresarse como el promedio, sobre todos los bits y simbolos transmitidos,
de la probabilidad de error de un bit determinado condicionada a la transmisién de un simbolo

determinado:

Ly Lo logy(L1) logy(L2)

BERoaw = 71— ZZIOgQLLQ Y Pr(iuv)+ Y Poliyuv)p, (A2.1)

i=1 i=1

donde Pr(i,u,v) = Pr{error en b (u)| 2 = s, } v Po(i,u,v) = Pr{error en b2(v)| 2z = 84},
respectivamente. Cada término Pr(i, u,v) puede expresarse como una combinacion lineal de
probabilidades de que la parte real de la variable de decision y esté por encima o por debajo
de un nimero determinado de limites de decisién; igualmente ocurre para la componente Q),

considerando la parte imaginaria de y. Esta idea puede formalizarse como

Ly Lo 1 logo(L1) Li—1
BERqav = — ar (i k) - T, (k at(i,k) - T, (k
QAM L1L2 ZZ “ logy(L1Lo) ; {Z (k) + ; w (k) - ( )}

logo(L2) ((v—1 Lo—1
+ ) {Zﬁvzk ol +Zﬂ+m Q;U(k)} ,

k=1

(A2.2)

donde las componentes de probabilidad de error (CEP) se definen como

L, (k) =Pr{R{y — Br(k)} <0z =suo}, I, (k) =Pr{R{y —Br(k)} > 0| z = sy},

u,v

Quo(k) =Pr{S{y —Bo(k)} <0z =suu}, Qf,(k)=Pr{S{y—Bo(k)} >0z =suu}
(A.2.3)

Los coeficientes elementales o= (i, k) y B (i, k) toman los valores {—1,0, 1} y representan

cambios en el valor correspondiente del bit i a través del k-ésimo limite de decisién para el
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simbolo s,,: 0 indica que el valor del bit no cambia, 1 indica que el bit cambia del valor
correcto al incorrecto, y -1 indica un cambio de un valor incorrecto a otro correcto. Tanto
a como Z estan asociados con la compenete I, mientras que 3y Q estdn asociados con la
componente Q. El signo en el superindice indica que si el k-ésimo limite de decisién esta
por debajo o por encima (respectivamente - 6 +) de la parte real (para o e Z) o de la parte
imaginaria (para §y Q) del simbolo s, .

Agrupando los coeficientes o (i, k) v 8T (i, k) del siguiente modo

logy (L) log, (L)

ap(k)= Y af(ik), Bk Z BE@, k), (A.2.4)

i=1
se obtiene la expresién final de la probabilidad de error.
Li Lo Li—1
Hk)-Th (K
L1L2) Z:Oé )+k_ au( ) u,v( )
- - (A.2.5)

Ly—1

S AT UEDILHUREHE

Esta expresién (A.2.5) permite calcular la BER en cualquier escenario que pueda reducirse

BERQAM =

a la forma canonica y = az + (, independientemente de la distribucién de las RVs a y (. De
este modo, el célculo de la BER se reduce a dos operaciones fundamentales: los coeficientes
elementales, cuyo valor depende tinicamente del mapeo de la constelacion, y las componentes
de probabilidad de error cuya expresion vendra determinada por la distribucién de las RVs
ay(.

Ademas de esta expresion general, es posible usar expresiones simplificados para ciertos
casos de interés, habituales en comunicaciones. Por ejemplo, si se considera por simplicidad
una constelacién cuadrada Ly = Ly = L, y el ruido equivalente ( es circularmente simétrico,

es posible aplicar ciertas simetrias para expresar la BER como

L L L-1
BERqav = » ) > wulk)- I}, (k), (A.2.6)
u=1 v k=u

=1 k=

donde

k) = o (o () + oy (L= B)+ B0 + B (L= B)] . (A2T)

— |
M log, (M) [ u
Si ademads se considera que la compensacién de canal en recepcién es perfecta (es decir

a = 1), podemos expresar la BER de manera atin mas compacta como
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BERgam = y w(m)Z*(m), (A.2.8)
donde N
It (m)=Pr{R{¢} > 2m+ 1)d}. (A.2.9)
y
) = STl | 2 50+ =)+ 1)+ B 1) 5 0
(A.2.10)

A.2.2 Calculo de coeficientes

En esta tesis, se propone el cédlculo de los coeficientes elementales a partir de la expresion
de la secuencia de bits que se mapean en las componentes I/QQ como senales discretas. Asi,
se expresa dicha secuencia como un conjunto de i senales discretas b;(m) que representan
los valores binarios del bit ¢-ésimo del simbolo m-ésimo. Usando esta definicién, la derivada

discreta de la secuencia de bits en el limite de decisién k-ésimo viene dada por

by(k) = bi(k+1) —b(k), 1<k<L-1. (A.2.11)
Esta expresién (A.2.11) ofrece informacién sobre los errores de bit al pasar un limite de
decisién. Esta derivada discreta b;(k) puede interpretarse del siguiente modo: 0 indica que
el valor del bit no cambia, 1 indica que el bit cambia de 0 a 1, y -1 indica que el bit cambia
de 1 a0.
Como los coeficientes o (i, k) y 3F (i, k) representan cambios en el valor detectado del

bit ¢ a través del limite de decisién k-ésimo, pueden expresarse (p.ej. o) como:
ot (i, k) = (1 — 265(u)) (k) (A.2.12)

donde (1 — 2b,(7)) traduce los valores de b;(u) del conjunto {0,1} a {1,—1}. El célculo de

a; (i, k) y B (i, k) se realiza de una manera similar

a (i, k) = —(1 — 2b;(u))b;(k),
BF(i, k) = (1 — 2b;(v))b;(k), (A.2.13)
By (i, k) = —(1 — 2b;(v))b; (k).
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Para el caso particular de mapeo tipo Gray es posible encontrar una expresiéon mas

compacta:
() = % (1-Q(,u), (A.2.14)
donde (7, x) se define en (A.2.15) como
Qi) 2 sign {cos (wi(z —1/2))}, (A.2.15)

y la frecuencia w; = 2?% incluye la periodicidad de la senial discreta b;(u). En este caso, la

derivada de la secuencia de bits es

!

bi(k) = bi(k+1) — bi(k) = = (i, k) — Qi k+1)) = = (@, k) — Q (i, —k)), (A.2.16)

N —
N —

donde k =1...L — 1. Combinando (A.2.14) y (A.2.16) se obtiene

o (i, k) = (1 — 20;(u))by(k) = %Q (i,m) [Q (i, k) — Q (4, —k)]. (A.2.17)

A.3 Calculo de probabilidades con formas cuadraticas

En muchos sistemas de comunicaciones, es habitual que la variable de decisién pueda expre-

sarse como un caso especial de una forma cuadratica general D, definida como

L
D £ " AIX ] + BIVi]* + CX0Yy + C* X} Yi, (A.3.1)
k=1

donde A,B € Ry C € C son constantes, y X, e Y, son pares de RVs complejas arbi-
trariamente distribuidas. Esta tesis se centra en las formas cuadraticas con RVs Gaussianas

complejas, que aparecen de manera natural en diferentes escenarios a la hora de evaluar la

BER.

A.3.1 Circularidad simétrica

Caso general

En [6] se presenta una expresién cerrada para el cdlculo de Pr{D < 0}, sujeta a dos condi-
ciones: (1) que los L pares {X}, Y;} sean mutuamente independientes e idénticamente dis-
tribuidos, y (2) que las RVs { X — E{X\}} e {Y, — E{Y}}} sean circularmente simétricas,

es decir, que sus partes real e imaginaria sean independientes y de igual varianza [13].
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En este escenario, la probabilidad Pr{D < 0} se calcula como
1 0 e )
Pb £ Pr {D < O} = 2—/ dD/ @(w)ewade, (ASQ)
T J-—x —0o0
donde ®(w) es la funcién caracteristica de D.

Usando los resultados de [28], la funcién caracteristica de la forma cuadrética puede

expresarse como

1 ; H 2 HR -1
D(w) = —— —ex (‘”’m’“ Qu + A Ay R m’“) . (A3.3)
(1 —jwAr) (1 — jwhs) (1 —jwAr) (1 — jwAs)
donde A; son los autovalores de la matriz RQ.
Asi, la expresion final (exacta y cerrada) de esta probabilidad [10] es
Po=Qufa.t) + Y Colabon)nfat) x exp { 5, (A3

m=0
donde Q1(a,b) es la funcién @ de Marcum, I,,(x) es la funcién de Bessel de primera especie

y orden m, y los pardmetros a, b, n y C,,(+) se calculan de acuerdo a las expresiones de la

Tabla A.1.

Caso asintdtico

Usando algunas de las relaciones asintéticas en [5]

Q1(a,b) ~ SQ(b —a), si b— o0, (A.3.5)
N exp(ab) b

I,,(ab) Nk sia-b— oo, (A.3.6)

Q) ~ SPEF) si (b—a) — oo, (A.3.7)

se puede obtener una expresion aproximada para la probabilidad buscada
Pr{D <0}~ T -Q(b—a), (A.3.8)

donde el parametro T se calcula como

. b b—a "
T2/~ + 7 > Cula,b,m). (A.3.9)
m=0
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Table A.1: Célculo de Probabilidad usando formas cuadraticas Gaussianas

FUNCTIONS AND DEFINITIONS
PARAMETERS
{\}icrz L(RQ) + (-1)y/ (3 2(RQ))’ — det(RQ)
A
n o

\/mz (ZE_ m} [Q — MR my)

i (A= A)’
) \/2)\1 (ZE_ ml [Q — MR my)
(M= A)°

I
o

1 L-1 /91 —1
I T n
+<1+n>“—1§o( n )”’ m

Co(a,b,n) ;Lim( 2L — 1 ) Ké)mﬂ” _ <%)mnzL—1—n} . m#£0

(1 + 77)2L_1 n=0 n

A.3.2 No circularidad simétrica

En la seccion A.3.1 se ha introducido el andlisis de formas cuadraticas cuando las RVs Gaus-
sianas son circularmente simétricas. Aqui, se introduce el andlisis para formas cuadraticas

en las que las RVs no son circularmente simétricas, para el caso particular de media nula.

Caso General

En este caso, se empleardn los mapeos y la notacién s x — Xy A — A, definidos en [29]

§R r e §R A _C\ A.
go | RO | Xl Cgen ga | RA) TSAI panay (4310
J(x) X; S(A)  R(A)
Asi, se puede expresar la forma cuadréatica como
D = xI'Qx,. (A.3.11)

107



A.3. CALCULO DE PROBABILIDADES CON FORMAS CUADRATICAS

La funcién caracteristica de D viene dada por

B(w) = — ! , (A.3.12)

H \/1 - 2])\lw

=1

donde \; son los autovalores de la matriz RQ [30].

Es posible calcular analiticamente Pr{D < 0}, obteniéndose

Wiy 1 11 ds3.4 ds3.4 ds3.4
Pri{D <0 :‘/—F -1, = =1, — ——= ——= A.3.13
r{ } d1,3d2,3w3 P (2’ 27277 w3 ’ d1,3’ d2,3 ’ ( )

donde wi |, , = dij = w; —wj, y Fp es la funcién de Lauricella.

=1
220
Analisis asintotico 1

Cuando el grado de circularidad simétrica en las RVs no es fuerte, puede demostrarse que
dy 3 ~ dy3. Por tanto, se puede usar la siguiente relacién entre Fip(-) y la funcién hiper-

geométrica de Appell Fy(-)

1 11
FD(_717§7§

1
5 Ly, x, ) = Fi(s

27171;1;1"173:)7 (A314)

para expresar de modo aproximado Pr{D < 0} como

[ Wy 1 dss dsa
PriD<0}~,/——F,(-,1,1:1;, — —= A.3.15
I'{ } d173d2’3W3 1 (27 y Ly Ly w3 9 d ) ) ( )
donde d £ CILLZCI“.

Anadlisis asintotico 2

Si la no circularidad simétrica se reduce ain més, puede asumirse que |ws| << |dis| y
|ds4| <<< |dy3|, respectivamente. Por tanto, puede esperarse que x — 0 en (A.3.15).

Usando algunas equivalencias [33, eq. 9.121], se obtiene

1
\/1—481-

Finalmente, se puede obtener una segunda expresion aproximada para la probabilidad bus-

1
Fl(_7171;1;$17x - O) ~

5 (A.3.16)

cada
PriD <0} ~ Y12 (A.3.17)
ws

_ witws
2
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A.4 Aplicaciones

A.4.1 BER en sistemas MIMO con desvanecimientos Rice

Caso 1: Interferencia tipo Rice

Se considera un sistema 1 X N en el que la senal recibida en la antena k viene dada por
T = gr2 + hipi + wy, (A.4.1)

donde z es el simbolo M-QAM transmitido, g, y hx son RVs Gaussianas de medias my, , ms,
y varianzas 03, o} respectivamente, p; es el simbolo interferente y wy es el ruido AWGN de
media cero y varianza o2,

La probabilidad de error puede calcularse mediante el andlisis de formas cuadraticas
presentado en (A.3.1), obteniendo una expresién exacta y cerrada de la BER, asi como una
expresion asintética para el caso simplificado de interferencia Rayleigh y estimacion de canal
perfecta. La Fig. A.1 muestra la BER en funciéon de la relacién senal a interferencia 7y, para

distintos valores del factor K7 de la senal interferente.

*;_ KI=0 (Rayleigh)
=- KIZOdB
-o-K=5dB

—As— KI: 10dB
-¢-K=20dB

25 30

Figure A.1: BER vs 7, para diferentes K;, Nr=2, 16-QAM, K,=10 dB.

Cuando ~; es baja, la componente LOS de la interferencia desplaza el simbolo recibido

fuera de las regiones de decision. Como la magnitud de este desplazamiento crece con K, la
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BER también aumenta con K;. Por el contrario, si v; es aun mas baja, el simbolo recibido
) )
puede llegar a desplazarse méas alld de varias regiones de decisién, provocando mas de un bit

erréneo por simbolo. Para valores elevados de v;, la BER aumenta cuando K; disminuye.

Caso 2: Alamouti-MRC

En este caso, se considera un sistema MIMO 2 x Ng, en el que se emplea el esquema de
transmision de Alamouti [41] junto con recepciéon MRC. Durante dos intervalos de simbolo
consecutivos, se transmiten z; y zo de acuerdo al esquema de codificacién descrito en [41].
Se ha demostrado que en este escenario, la variable de decisién para los simbolos z; es
equivalente a la de un escenario 1 X 2Ng, en el que los términos equivalentes de ruido en la
antena receptora j se ven aumentados por efecto del error de estimacién de canal ¥, ;:
Nuevamente, en este escenario la probabilidad de error puede expresarse de manera exacta
y cerrada en términos de las funciones () de Marcum e [, de Bessel. También es posible
hallar una expresién asintdtica usando la funcién @) de Gauss, cuando la componente LOS
es dominante. En la Fig. A.2, se comparan las prestaciones de un sistema 2 x N Alamouti-
MRC con las de un sistema 1x2Nr MRC convencional [9], en presencia de error de estimacién

de canal.

16-QAM, K=5dB

[|-o—Alam-MRC 2x2, y, =10dB

& 1070 —=Alam-MRC 2x2, y =15dB
w107

= v
H—o—Alam-MRC 2x2, y =20dB

4[| A-Alam-MRC 222 y:=oo
F-o-MRC 1x4, 7 =10dB
Hl-=-MRC 1x4, y =150B
10°H o MRC 1x4, 1,720 dB
;%MRC 1x4, Ty™® :
10° I I I I I

-10 -5 0 5 10 15 20 25 30 35 40
v (dB)

Figure A.2: Alamouti-MRC 2 x Ny vs. 1 x 2Ng MRC. BER vs SNR para distintos valores
de ICSIL.
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Puede verse que ambos esquemas se comportan de manera idéntica cuando la estimacion
de canal es perfecta. Sin embargo, Alamouti-MRC sufre de una mayor degradacién de la

BER debido al efecto del ICSI, ya éste que causa un aumento del ruido equivalente.

A.4.2 BER en OFDM con recepcion directa

En esta seccidn, el andlisis se centra en dos de las principales imperfecciones asociadas con los
receptores OFDM por conversién directa (DCRs), que son muy utilizados en la actualidad
para el desarrollo de cabezales de radio integrados en sistemas inalambricos de bajo coste:
el offset de continua (DC) y el desbalanceo de las componentes en fase y cuadratura (I1Q).

Ademas, el efecto del ICSI se incluye en ambos escenarios.

Caso 1: Offset de DC

En el modelo de sistema considerado, la senal recibida en banda base en la antena receptora

v-ésima puede expresarse como

N/2-1
1 j2rn(m-+te)
vin| = — H, X, ~ + Ny + wy|nl, A4.2
wil= gz 3 . o+ ] 142

donde N es el nimero de subportadoras, n =0... N — 1 es el indice de tiempo discreto del
simbolo OFDM, X, es el simbolo BPSK transmitido en la m-ésima subportadora, 7, es el
offset de DC, ¢ es el offset de frecuencia de portadora (CFO) normalizado, w,[n] es el ruido
AWGN y H, ,,, es la respuesta en frecuencia del canal.

Tras la compensacion del CFO, el offset de DC se desplaza a la frecuencia discreta e, pro-
duciendo una interferencia ((¢) que serd més acusada en las portadoras adyacentes. Es este
escenario, la BER se ha calculado de manera exacta y cerrada empleando unicamente fun-
ciones de Bessel. Asi mismo, se ha obtenido una expresion muy simple de la BER irreducible
en la portadora k debida al CFO y al offset de DC

 mGe(e)l?
Pim S (A.4.3)

También se ha derivado una expresion que determina el maximo offset de DC admisible en

un receptor para un valor objetivo de SNR en recepcién 7y,

i (ma)? = gt (1 -/ 17) | (Ad4)
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En la Fig. 5.2 se muestra la BER promedio en funcién de la SNR. Cuando existe PCSI, el
suelo de BER debido al offset de DC se estima eficientemente usando (A.4.3).

BER

Figure A.3: BER vs SNR, Nz=1, BPSK, para distintos valores de DC offset e ICSI.

Caso 1: Desbalanceo 1Q

En el modelo de sistema considerado, la senal recibida en la portadora k puede expresarse
como

e = Qr2k + h_pz_p + Wy, (A45)

donde k € {—N/2,...,N/2 — 1}, N es el nimero de subportadores del simbolo OFDM, z;
v z_ son los simbolos QAM transmitidos en las subportadoras k y —k, respectivamente. El
término h_jz_j se conoce como interferencia espejo (MCI).

Los términos restantes en (A.4.5) se expresan como

gk = KlGlHk + K2G2ij, (A46)
h_y = KoGEH® | + K G Hy, (AA.7)
wy = Kinyg + Kon™ (A.4.8)
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donde Hj y H_j representan la respuesta en frecuencia del canal en las subportadoras &k y
—k, y los términos ny y n_j representan el ruido AWGN. Finalmente, G; y K; (i = 1,2)

modelan el efecto del desbalanceo IQQ en transmisor y receptor, respectivamente:

1 Jpt 1— —Jpt
Gy = i7 Gy— M (A.4.9)
2 2
1 . —Jer 1— . Jer
K = % Ky = % (A.4.10)

En este escenario, puede demostrarse que g, es una RV Gaussiana no circularmente
simétrica. Por tanto, el andlisis de BER se lleva a cabo empleando las expresiones derivadas
en (A.3.2). Asi, la BER se expresa de manera exacta en términos de la funcién Fp de
Lauricella. También se han obtenido dos expresiones aproximadas, validas para distintas

magnitudes del desbalanceo 1Q).
En la Fig. A.4 es posible apreciar el efecto de la correlacion entre Hy y H_j. Se observa
como el efecto del desbalanceo IQ depende fuertemente del valor de dicha correlacién. Por

tanto, la asuncién de independencia estadistica [81, 83] lleva a una estimacién pesimista de

la BER.

@=0.9, 6=4° 0.=0.95, ¢ =2°, Yy =%
10" e e T T

|
0 5 10 15 20 25 30 35 40 45 50
v (dB)

Figure A.4: BER vs SNR, en funcion de la correlacién p, PCSI.
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A.4.3 BER en sistemas MIMO-OFDM Beamforming con errores
de estimacion de canal

El modelo de sistema MIMO-OFDM con beamforming en transmisién y recepcion MRC se
muestra en Fig. A.5. En este sistema, el simbolo z se transmite por el conjunto de Np
antenas transmisoras mediante un vector de pesos v, que se envia desde el receptor a través

de un canal de retorno con retardo 7p.
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Figure A.5: Modelo de sistema MIMO-OFDM Beamforming-MRC e ICSI

En este escenario, se calcula la BER condicionada a un estado del canal usando el analisis

de formas cuadraticas para RVs circularmente simétricas. La CEP se define como
Zuo(m; H) = Pr {?R{r} —B(m)>0|H,z= swj} . (A.4.11)

De este modo, la probabilidad de error final se obtiene promediando la BER condicionada
con todos los posibles estados del canal. En la Fig. A.6 se evalian las prestaciones para
distintas configuraciones de antena, cuando la estimacion de canal usa filtros de Wiener y de
tipo sinc. Es interesante destacar que la BER en la configuracién 2 x 4 es unos 3 dB mejor

que en la 4 x 2, mientras que en el caso de PCSI sus prestaciones coinciden [10].

A.5 Conclusiones

En esta tesis, se ha considerado el problema del analisis de prestaciones en sistemas de
comunicaciones inaldmbricas no ideales. Las principales contribuciones de esta tesis en dicho

campo pueden agruparse en dos puntos:
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Figure A.6: BER vs SNR, 16-QAM, canal Rayleigh, interpoladores tipo sinc y de Wiener,
configuracién Ny x Ng.

En primer lugar, se ha desarrollado una herramienta para el cdlculo de probabilidad en
sistemas QAM. El marco analitico que se propone puede ser utilizado en multitud de es-
cenarios, e incluye analisis previos de la bibliografia como casos particulares. Usando esta
metodologia, el cdlculo de los coeficientes elementales (que sélo depende del mapeo de la
constelacién) se separa del célculo de probabilidades (que sélo depende de la distribucién

estadistica de las RVs).

Por otra parte, se ha abordado el cdlculo de probabilidades en sistemas donde la vari-
able de decision puede expresarse como una forma cuadrdtica con RVs Gaussianas, desde
diferentes perspectivas. Se han usado y extendido los resultados de [6, 10] para analizar
escenarios en los que las RVs son circularmente simétricas. Para el caso general de RVs no
circularmente simétricas, se ha encontrado una expresién exacta y cerrada para Pr{D < 0},
en términos de la funcién Fp(-) de Lauricella, asi como dos expresiones aproximadas en

términos de la funcién hipergeométrica de Appell Fi(-) y de funciones racionales.
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De este modo, el uso conjunto del marco analitico para el andlisis de prestaciones de sis-
temas QAM y del cédlculo de probabilidades usando formas cuadréticas ha permitido llevar a
cabo el analisis de varios sistemas de comunicaciones inalambricas siguiendo una metodologia
comun. Mediante la definicién adecuada de modelos de sistema, se ha demostrado que esta
técnica es una alternativa viable para el cdlculo de la BER en sistemas MIMO-OFDM no
ideales.

En lo relativo a sistemas MIMO con estimacién de canal imperfecta en canales Rice, dos

escenarios que no habian sido analizados en la bibliografia han sido estudiados:

e Un sistema QAM con recepciéon MRC afectado por interferencias de tipo Rice. Se ha
demostrado que el efecto de la componente LOS de la senal interferente en la BER
varfa dependiendo de la magnitud de la dicha componente (es decir, del pardmetro K

de Rice).

e Un sistema MIMO 2 x Ny que usa la técnica de Alamouti junto con recepcién MRC.
Se ha demostrado que este esquema puede reducirse a un sistema 1 x 2Ny equivalente
en el que el ruido equivalente aumenta debido al efecto de la interferencia en el codigo

de Alamouti debido al error de estimacion de canal.

En estos escenarios, también se han propuesto expresiones aproximadas para la BER
usando la funcién ) de Gauss, validas para canales Rice con una fuerte componente LOS.
También, se ha analizado el efecto de diferentes imperfecciones que afectan a sistemas

OFDM que emplean recepcion por conversion directa:

e Un sistema OFDM con recepcion MRC y estimacion de canal imperfecta, CFO y offset
de DC. Para el caso particular de estimacion de canal perfecta y recepciéon con una
sola antena, se proporciona una expresion muy simple para el suelo de error irreducible
en la BER debido al offset de DC. También se establece una regla de diseno para el

maximo offset de DC admisible en un receptor, para una SNR determinada.

e Un sistema OFDM con desbalanceo I/Q en transmisor y receptor y estimacién imper-
fecta de canal. Se ha demostrado que la ganancia equivalente del canal es una RV sin
circularidad simétrica. En los resultados se aprecia que la correlacion entre la respuesta
en frecuencia en la portadora deseada y en la interferente espejo tiene un importante

efecto en la BER.
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Finalmente, se ha analizado un sistema MIMO-OFDM que combina beamforming en
transmision y MRC en recepcion, con el fin de establecer el efecto del conocimiento imperfecto
del estado del canal (ICSI) en ambos extremos de la comunicacin. En este escenario, se
calcula la BER condicionada a un estado del canal mediante formas cuadraticas, y esta
BER se promedia sobre todos sus posibles estados para obtener la expresion final. Se ha

comprobado que el efecto del ICSI en la BER es mayor en el transmisor que en el receptor.
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