89 research outputs found

    Iris Recognition: Robust Processing, Synthesis, Performance Evaluation and Applications

    Get PDF
    The popularity of iris biometric has grown considerably over the past few years. It has resulted in the development of a large number of new iris processing and encoding algorithms. In this dissertation, we will discuss the following aspects of the iris recognition problem: iris image acquisition, iris quality, iris segmentation, iris encoding, performance enhancement and two novel applications.;The specific claimed novelties of this dissertation include: (1) a method to generate a large scale realistic database of iris images; (2) a crosspectral iris matching method for comparison of images in color range against images in Near-Infrared (NIR) range; (3) a method to evaluate iris image and video quality; (4) a robust quality-based iris segmentation method; (5) several approaches to enhance recognition performance and security of traditional iris encoding techniques; (6) a method to increase iris capture volume for acquisition of iris on the move from a distance and (7) a method to improve performance of biometric systems due to available soft data in the form of links and connections in a relevant social network

    Real-Time Localization Using Software Defined Radio

    Get PDF
    Service providers make use of cost-effective wireless solutions to identify, localize, and possibly track users using their carried MDs to support added services, such as geo-advertisement, security, and management. Indoor and outdoor hotspot areas play a significant role for such services. However, GPS does not work in many of these areas. To solve this problem, service providers leverage available indoor radio technologies, such as WiFi, GSM, and LTE, to identify and localize users. We focus our research on passive services provided by third parties, which are responsible for (i) data acquisition and (ii) processing, and network-based services, where (i) and (ii) are done inside the serving network. For better understanding of parameters that affect indoor localization, we investigate several factors that affect indoor signal propagation for both Bluetooth and WiFi technologies. For GSM-based passive services, we developed first a data acquisition module: a GSM receiver that can overhear GSM uplink messages transmitted by MDs while being invisible. A set of optimizations were made for the receiver components to support wideband capturing of the GSM spectrum while operating in real-time. Processing the wide-spectrum of the GSM is possible using a proposed distributed processing approach over an IP network. Then, to overcome the lack of information about tracked devices’ radio settings, we developed two novel localization algorithms that rely on proximity-based solutions to estimate in real environments devices’ locations. Given the challenging indoor environment on radio signals, such as NLOS reception and multipath propagation, we developed an original algorithm to detect and remove contaminated radio signals before being fed to the localization algorithm. To improve the localization algorithm, we extended our work with a hybrid based approach that uses both WiFi and GSM interfaces to localize users. For network-based services, we used a software implementation of a LTE base station to develop our algorithms, which characterize the indoor environment before applying the localization algorithm. Experiments were conducted without any special hardware, any prior knowledge of the indoor layout or any offline calibration of the system

    New Methods to Improve Large-Scale Microscopy Image Analysis with Prior Knowledge and Uncertainty

    Get PDF
    Multidimensional imaging techniques provide powerful ways to examine various kinds of scientific questions. The routinely produced data sets in the terabyte-range, however, can hardly be analyzed manually and require an extensive use of automated image analysis. The present work introduces a new concept for the estimation and propagation of uncertainty involved in image analysis operators and new segmentation algorithms that are suitable for terabyte-scale analyses of 3D+t microscopy images

    New Methods to Improve Large-Scale Microscopy Image Analysis with Prior Knowledge and Uncertainty

    Get PDF
    Multidimensional imaging techniques provide powerful ways to examine various kinds of scientific questions. The routinely produced datasets in the terabyte-range, however, can hardly be analyzed manually and require an extensive use of automated image analysis. The present thesis introduces a new concept for the estimation and propagation of uncertainty involved in image analysis operators and new segmentation algorithms that are suitable for terabyte-scale analyses of 3D+t microscopy images.Comment: 218 pages, 58 figures, PhD thesis, Department of Mechanical Engineering, Karlsruhe Institute of Technology, published online with KITopen (License: CC BY-SA 3.0, http://dx.doi.org/10.5445/IR/1000057821

    Underwater image restoration: super-resolution and deblurring via sparse representation and denoising by means of marine snow removal

    Get PDF
    Underwater imaging has been widely used as a tool in many fields, however, a major issue is the quality of the resulting images/videos. Due to the light's interaction with water and its constituents, the acquired underwater images/videos often suffer from a significant amount of scatter (blur, haze) and noise. In the light of these issues, this thesis considers problems of low-resolution, blurred and noisy underwater images and proposes several approaches to improve the quality of such images/video frames. Quantitative and qualitative experiments validate the success of proposed algorithms

    Speech Recognition

    Get PDF
    Chapters in the first part of the book cover all the essential speech processing techniques for building robust, automatic speech recognition systems: the representation for speech signals and the methods for speech-features extraction, acoustic and language modeling, efficient algorithms for searching the hypothesis space, and multimodal approaches to speech recognition. The last part of the book is devoted to other speech processing applications that can use the information from automatic speech recognition for speaker identification and tracking, for prosody modeling in emotion-detection systems and in other speech processing applications that are able to operate in real-world environments, like mobile communication services and smart homes

    A simplified HDR image processing pipeline for digital photography

    Get PDF
    High Dynamic Range (HDR) imaging has revolutionized the digital imaging. It allows capture, storage, manipulation, and display of full dynamic range of the captured scene. As a result, it has spawned whole new possibilities for digital photography, from photorealistic to hyper-real. With all these advantages, the technique is expected to replace the conventional 8-bit Low Dynamic Range (LDR) imaging in the future. However, HDR results in an even more complex imaging pipeline including new techniques for capturing, encoding, and displaying images. The goal of this thesis is to bridge the gap between conventional imaging pipeline to the HDR’s in as simple a way as possible. We make three contributions. First we show that a simple extension of gamma encoding suffices as a representation to store HDR images. Second, gamma as a control for image contrast can be ‘optimally’ tuned on a per image basis. Lastly, we show a general tone curve, with detail preservation, suffices to tone map an image (there is only a limited need for the expensive spatially varying tone mappers). All three of our contributions are evaluated psychophysically. Together they support our general thesis that an HDR workflow, similar to that already used in photography, might be used. This said, we believe the adoption of HDR into photography is, perhaps, less difficult than it is sometimes posed to be

    Tone mapping for high dynamic range images

    Get PDF
    Tone mapping is an essential step for the reproduction of "nice looking" images. It provides the mapping between the luminances of the original scene to the output device's display values. When the dynamic range of the captured scene is smaller or larger than that of the display device, tone mapping expands or compresses the luminance ratios. We address the problem of tone mapping high dynamic range (HDR) images to standard displays (CRT, LCD) and to HDR displays. With standard displays, the dynamic range of the captured HDR scene must be compressed significantly, which can induce a loss of contrast resulting in a loss of detail visibility. Local tone mapping operators can be used in addition to the global compression to increase the local contrast and thus improve detail visibility, but this tends to create artifacts. We developed a local tone mapping method that solves the problems generally encountered by local tone mapping algorithms. Namely, it does not create halo artifacts, nor graying-out of low contrast areas, and provides good color rendition. We then investigated specifically the rendition of color and confirmed that local tone mapping algorithms must be applied to the luminance channel only. We showed that the correlation between luminance and chrominance plays a role in the appearance of the final image but a perfect decorrelation is not necessary. Recently developed HDR monitors enable the display of HDR images with hardly any compression of their dynamic range. The arrival of these displays on the market create the need for new tone mapping algorithms. In particular, legacy images that were mapped to SDR displays must be re-rendered to HDR displays, taking best advantage of the increase in dynamic range. This operation can be seen as the reverse of the tone mapping to SDR. We propose a piecewise linear tone scale function that enhances the brightness of specular highlights so that the sensation of naturalness is improved. Our tone scale algorithm is based on the segmentation of the image into its diffuse and specular components as well as on the range of display luminance that is allocated to the specular component and the diffuse component, respectively. We performed a psychovisual experiment to validate the benefit of our tone scale. The results showed that, with HDR displays, allocating more luminance range to the specular component than what was allocated in the image rendered to SDR displays provides more natural looking images

    Sound source coding in the azimuthal plane: separating sounds via short-term interaural time difference estimations

    Get PDF
    The interaural time difference (ITD) is the main cue to perform sound localization for low-frequency sounds (below ~2kHz) in the azimuthal plane. The extractors for this cue are neurons of two nuclei of the mammalian auditory brainstem, the medial superior olive (MSO) and the low-frequency limb of the lateral superior olive (lLSO). The read-out mechanism on a population level is unknown as single neurons show different responses for frequency-varying stimuli. This poses a challenge especially for natural sound stimuli and complex auditory scenes which cover a wide range of frequencies, i.e., they have a very broad spectrum. To find an encoder of ITDs, we have developed so-called effective population models of the human MSO and lLSO. They are effective in the sense that the individual neurons are each identified by their three defining properties which determine their frequency-dependent ITD tuning: the best frequency (BF), the characteristic delay (CD) and the characteristic phase (CP). We have formulated an ITD decoding strategy in the 2d-space spanned by the membrane potentials of lLSO vs. MSO. From each hemisphere, a separate ITD can be decoded. These two estimations can be weighted and balanced accordingly to retrieve the location of sound sources in the horizontal plane. To this end, we make use of so-called short-term ITDs which are successive estimates in small time windows. Our results indicate that sound localization can be performed correctly in time windows as short as up to 1ms. To perform sound separation of stimuli within complex auditory scenes, we fit Gaussian Mixture Models to the short-term ITD estimate distributions. The results show that sound separation can be performed reliably when the long-term ITD estimation (which is a distribution of short-term ITDs) is made up of a time interval that is larger than 1s. Furthermore, we conclude that sounds can be separated and reconstructed from complex auditory scenes solely based on one auditory cue, the ITD
    • …
    corecore