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A B S T R A C T

The interaural time difference (ITD) is the main cue to perform
sound localization for low-frequency sounds (below ∼ 2kHz) in
the azimuthal plane. The extractors for this cue are neurons of
two nuclei of the mammalian auditory brainstem, the medial
superior olive (MSO) and the low-frequency limb of the lateral
superior olive (lLSO). The read-out mechanism on a population
level is unknown as single neurons show different responses
for frequency-varying stimuli. This poses a challenge especially
for natural sound stimuli and complex auditory scenes which
cover a wide range of frequencies, i.e., they have a very broad
spectrum.

To find an encoder of ITDs, we have developed so-called ef-
fective population models of the human MSO and lLSO. They
are effective in the sense that the individual neurons are each
identified by their three defining properties which determine
their frequency-dependent ITD tuning: the best frequency (BF),
the characteristic delay (CD) and the characteristic phase (CP).

We have formulated an ITD decoding strategy in the 2d-space
spanned by the membrane potentials of lLSO vs. MSO. From
each hemisphere, a separate ITD can be decoded. These two
estimations can be weighted and balanced accordingly to re-
trieve the location of sound sources in the horizontal plane. To
this end, we make use of so-called short-term ITDs which are
successive estimates in small time windows. Our results indi-
cate that sound localization can be performed correctly in time
windows as short as up to 1ms. To perform sound separation
of stimuli within complex auditory scenes, we fit Gaussian Mix-
ture Models to the short-term ITD estimate distributions. The
results show that sound separation can be performed reliably
when the long-term ITD estimation (which is a distribution of
short-term ITDs) is made up of a time interval that is larger than
1s. Furthermore, we conclude that sounds can be separated and

xiii



reconstructed from complex auditory scenes solely based on
one auditory cue, the ITD. 0

0 Disclaimer. Some of the material and results in this work have been presented
in the form of an abstract and/or as part of a scientific poster; cf. References
and Publication List.
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1
I N T R O D U C T I O N

Where more is meant than meets the
ear.

— John Milton

1.1 fundamentals of sound processing in the

auditory system

1.1.1 Making Sense of Sound

Sound is produced by variations in air pressure. These varia-
tions are the result of objects moving towards or from patches
of air. Objects moving towards a patch of air compress the air
molecules herein making the air more dense (high air pressure).
Objects moving away, in turn, rarefy the air molecules making
the air less dense (low air pressure). These audible variations in
air pressure over distance constitute a pressure wave (Bear et al.,
2016). And thus a classic definition of sound is a pressure wave that
propagates through air (Schnupp et al., 2011). This definition is not
complete as it does not take into account that sound waves can
also propagate through other mediums such as liquids, other
gases and also solids. A more broad definition of sound is pro-
vided by the Merriam-Webster dictionary as mechanical radiant
energy that is transmitted by longitudinal pressure waves in a material
medium (such as air) and is the objective cause of hearing. For clear
terminology, we will use the word sound and all its compounds
(e.g., sound source, sound wave, etc.) when referring to the
physical phenomena of hearing and the adjective auditory to all
events concerning the perception of sound (Blauert, 1997).
Now consider that there are multiple sound sources of sound
in a room. Then each sound source will produce individual
pressure waves that propagate at the speed of sound (which is
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approximately 343m/sec or 767mph at normal room tempera-
ture) in all directions (if the sound source is not directional). The
ripples in the air will bounce off the floor, the ceiling, the walls
and soon the air of the room will be filled with an extremely
complex pattern of air pressure ripples. Nevertheless, our brain
can successfully make sense of these sounds and extract various
information (Schnupp et al., 2011). It can determine if the sound
source is animate (e.g., a person talking, singing, humming,
whispering or an animal hissing, purring, barking) or an inani-
mate object (e.g., a bell ringing, a bottle that is shattered on the
floor, a book that falls out of the shelf, a broom scraping across
the floor). It can also conclude where the different sounds are
coming from in the room, i.e., localize the sound sources in the
azimuthal plane.
In order to understand how the human auditory system can
respond in such a remarkable way to simple variations in air
pressure, we briefly overview the fundamentals of sound pro-
cessing. To this end we first describe how the mechanical power
of a sound wave entering the ear can elicit an electrical neural
response in the auditory nerve (AN). Then we discuss the rep-
resentation of frequency in the nervous system (tonotopy and
phase locking). Finally, we look at how the neural responses of
the AN travel further through the ascending auditory pathway
up to inferior colliculus (IC) with an emphasis on binaural pro-
cessing stages. Since the main focus of this thesis deals with the
(binaural processing) nuclei of the medial superior olive (MSO)
and the lateral superior olive (LSO), we accentuate those stages
of sound processing where the sound information from both
ears is combined.

1.1.2 From Sounds to Neural Signals

When a sound is emitted, the first component of the outer ear the
sound waves reach is the pinna (see Figure 1.1). Together with
cartilage it is the only visible part of the outer ear and acts as a
funnel with which humans can gather sounds. The shape of the
pinna with its specific folds also helps to distinguish if a sound
is coming from the front or back (azimuth) or from up or down
(elevation). When the sound waves reach the outer ear, they
further travel through the auditory canal and cause vibrations
in the membrane of the tympanum. This vibration is passed on
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to the three ossicles of the middle ear: the malleus, incus and
stapes. The footplate of the stapes pushes against the membrane
of the oval window, a small opening in the skull where the
inner ear begins. Whereas outer and middle ear are air-filled,
the cochlea of the inner ear is fluid-filled. To achieve sufficient
movement of the cochlear fluid, the auditory system makes use
of two sound amplifying principles. Firstly, the three middle
ear components play a crucial role in amplification, because the
energy of a sound wave would be almost fully attenuated by the
pressure of the cochlear fluid at the oval window. The ossicles
function as levers and transform the large movements at the
tympanic membrane into smaller albeit stronger movements
at the oval window. A second source of sound amplification
is that the surface area of the oval window is much smaller
than of the tympanic membrane, i.e., the force arriving at the
oval window is much higher than at the tympanic membrane.
Thus, the tympanum and the ossicles act as an impedance-
matching device for the difference of sound impedance at the
outer and the inner ear. The movement at the oval window then
sets the fluid of the cochlea into motion. Running throughout
the length of the cochlea is the basilar membrane (BM) which
divides the cochlea into two upper (scala media, scala vestibuli)
and one lower compartment (scala tympani). The Organ of
Corti – the site of signal transduction – is an epithelium within
the scala media and is directly located on the BM. For signal
transduction, the most important cells are the inner hair cells
(IHC) of the Organ of Corti. When the BM is deflected by the
movement of the fluid in the cochlea, the sterocilia located on top
of the IHCs are displaced which opens mechano-gated channels
within the cilia. An influx of potassium (K+) ions leads to a
depolarization of the IHCs which opens voltage-gated calcium
(Ca2+) channels. The subsequent influx of calcium leads to
the fusion of vesicles filled with excitatory neurotransmitters
(glutamate) with the presynaptic membrane of the IHC. After
release into the synaptic cleft, the neurotransmitters diffuse to
the postsynaptic spiral ganglion neurons. The AN is made up of
all axons of the neurons whose cell bodies are within in the spiral
ganglion. Action potentials (APs) are then generated at the soma
of each spiral ganglion cell. This is the first stage of the auditory
pathway where APs are fired. Thus the mechanical energy of
sound through movement of air molecules has been transduced
by the IHCs into an electrical neural signal which is transported
via these APs to subsequent nuclei of the ascending auditory
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Figure 1.1: Cross section of human ear. See main text for further ex-
planation. Figure inspired by Bear et al. (2016).

pathway (see Section 1.1.4) where the incoming information
is then further processed (Zenner, 1994; Schnupp et al., 2011;
Brown and Santos-Sacchi, 2012; Kandel, et al., 2013; Luo, 2015;
Bear et al., 2016).

1.1.3 Frequency Representation in the Auditory System

Since neurons of the auditory system show frequency-dependent
varying responses (see Section 1.2.2), one important question
is how frequency is represented in the auditory system. Two
mechanisms are tonotopy and phase locking.

Tonotopy. Tonotopy is the organization of frequency within an au-
ditory structure (von Békésy and Wever, 1960). The BM features
tonotopy as a direct consequence of its anatomical structure
(see Figure 1.2A). The base of the BM is narrow and stiff, the
apex is wide and flexible. The movement at the membrane of
the oval window in response to sounds sets the cochlear fluid
(perilymph) into motion bending the BM at the base. This sets
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a traveling wave along the BM into motion. The frequency of a
sound determines how far this wave travels along the BM. High-
frequency sounds cause strong vibrations at the base. These
vibrations cause much of the energy of the wave to be dissi-
pated at this point and therefore the wave will not travel far
from the base. In turn, low-frequency sounds do not cause very
strong vibrations at the base and therefore much of the energy
is not dissipated. This can generate waves that can travel to
the end of the BM, the apex. In sum, sounds with differing fre-
quencies will maximally displace the BM at different positions
and thus frequency is represented on the BM via a place code.
This tonotopy is preserved throughout the ascending auditory
pathway up to auditory cortex (Schnupp et al., 2011; Brown and
Santos-Sacchi, 2012; Bear et al., 2016).

Phase Locking. AN fibers can also represent the frequency of
pure tones by locking their action potential response to a spe-
cific sound phase (Galambos and Davis, 1943; also see Figure
1.2B). A pressure wave generated via a pure tone will repeat
itself after one whole cycle (or period). A neuron which is locked
to a certain phase will always fire an action potential whenever a
specific phase of the sound is present and only when this phase
is present. Thus the frequency of the neuron’s firing directly
reflects the frequency of the sound (Joris et al., 1994). Phase lock-
ing breaks down for sounds with high frequencies above 4kHz
because the cycles become too short to be reliably represented by
AP firing (an AP takes approximately 1ms). For sounds above
4kHz, frequency is then solely represented by tonotopy (Zenner,
1994; Luo, 2015; Bear et al., 2016). It is important to note at
this point, that phase locking is not only a means of frequency
representation in the auditory system, but furthermore a pre-
requisite for the functioning of fast temporal processing in the
downstream MSO and lLSO neurons (see Discussion, 3.3.1).

1.1.4 Superior Olivary Complex (SOC) Circuits in the Ascending
Auditory Pathway

Until sound reaches the final stage of sound processing – the
auditory cortex – the APs generated in the AN are relayed via
several auditory structures which, as a whole, are referred to as
the ascending auditory pathway. For reasons of conciseness we
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Figure 1.2: Frequency representation. A: Structure of the BM within
an uncoiled cochlea. Sounds of different frequencies max-
imally displace the BM at different positions. Frequency
is thus represented via a place code along the entire BM
(tonotopy). B: Schematic of phase-locking. A low-frequency
pure tone (top graph) evokes a response in form of an ac-
tion potential (black vertical lines, bottom graph) in an
AN neuron whenever the sound is at a specific phase (red
arrows). The neuron only shows response to exactly this
phase on (almost) every cycle of the sound, i.e., it is locked
to this phase. Note that it need not be the case that the
neuron fires on every cycle. Figure inspired by Bear et al.
(2016) and Lehnert (2015).

mainly focus on the inputs and outputs to the MSO and LSO as
these are the first two structures in auditory brainstem which
integrate and evaluate information from both ears, i.e., they are
the first two nuclei where binaural processing takes place.

MSO Circuit. The MSO is a nucleus within the SOC which is a
collection of nuclei located in the auditory brainstem (overview
in: Grothe et al., 2010 and Yin et al., 2019; Figure 1.3). The SOC
consists of three further nuclei, namely the LSO as well as the

1 Physiological Reviews, Mechanisms of sound localization in mammals, Benedikt
Grothe, Michael Pecka, David McAlpine, VOL 90, July 2010, p. 995.
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lateral and medial nucleus of the trapezoid body (LNTB and
MNTB, respectively). MSO principal neurons exhibit a typical
bipolar shape that receive binaural glutamatergic excitatory and
binaural glycingergic inhibitory inputs. Since MSO cells are pre-
dominantly binaurally excited, the MSO cells are described as
excitatory-excitatory (EE) neurons (Goldberg and Brown, 1969).
Sources of excitation are the ipsilateral and contralateral spheri-
cal bushy cells (SBCs). The SBCs together with another group
of cells, the globular bushy cells (GBCs), are subgroups of the
cells of the anterio-ventral cochlear nucleus (AVCN). The SBCs
and GBSs themselves directly receive input from the AN fibers,
i.e., they are the first relay stage after signal transduction in
the central nervous system (CNS). Sources of inhibition to the
MSO are cells of the ipsilateral LNTB and MNTB. These two
nuclei are innervated from two different sides: The LNTB itself

Figure 1.3: Upstream and downstream circuitry of the medial superior
olive. Color Code: Blue = Glycinergic inhibition. Red =
Glutamatergic excitation. Yellow = Typical MSO neuron
with its glutamatergic excitatory projections. See main text
for full description. Figure reprinted with permission from
Grothe et al. (2010)1.
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receives excitation from the ipsilateral GBCs of the AVCN and
the MNTB itself receives excitation from the GBCs of the con-
tralateral AVCN. At this point it may be already mentioned, that
the cells of the MNTB receive their input through the largest
synapse of the brain, the Calyx of Held. Excitation of the MNTB
therefore occurs in such a fast manner that the phase-locked
response of the AN is preserved, guaranteeing temporally pre-
cise phase-locked inhibition to the MSO. After integration of
excitatory and inhibitory inputs, the MSO itself sends excitatory
projections to the ipsi- and contralateral dorsal nucleus of the
lateral lemniscus (DNLL) and ipsilateral inferior colliculus (IC).
The lateral lemniscus is an axon bundle that leads to the IC
of the midbrain. Neurons of the IC then project to auditory
thalamus, more precise the medial geniculate nucleus (MGN),
which finally projects to the last stage of the ascending auditory
pathway, the auditory cortex.

LSO Circuit. The LSO is a nucleus in the SOC which is located
laterally with respect to the MSO (overview in: Grothe et al.,
2010 and and Yin et al., 2019; Figure 1.4). In comparison to the
MSO, the LSO only receives one ipsilateral excitatory and one
contralateral inhibitory input. The cells of the LSO are therefore
described as excitatory-inhibitory (EI) neurons (Goldberg and
Brown, 1969). The SBCs of the ipsilateral AVCN provide gluta-
matergic excitation, the ipsilateral MNTB provides glycinergic
inhibition. The MNTB is innervated contralaterally and is ex-
cited (also through the Calyx of Held synapse) by the GBCs of
the contralateral AVCN. The LSO sends excitatory projections to
contralateral DNLL and IC and inhibitory projections to ipsilat-
eral DNLL. Analogously to the MSO circuit, the information is
then passed on to higher auditory regions via MGN and finally
auditory cortex. Unique to the LSO circuit, is a de novo interau-
ral level difference (ILD, also see Section 1.2) sensitivity which
is generated due to converging inputs, a monaural input from
the contralateral AVCN (excitatory) and a binaural input from
the DNLL (inhibitory). It is noteworthy at this point, that the
MSO and LSO circuit not only have similar design principles,
but that they also share circuit components. A key notion that
hints at the fact that the information of MSO and LSO may in
fact not be processed completely independent of each other, but
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Figure 1.4: Upstream and downstream circuitry of the lateral supe-
rior olive. Color Code: Blue = Glycinergic inhibition. Red
= Glutamatergic excitation. Orange = LSO neuron with
its projections. See main text for full description. Figure
reprinted with permission from Grothe et al. (2010)2.

that information from both nuclei may be combined at higher
auditory stages (see Section 1.4.1).

1.2 sound localization in the azimuthal plane

1.2.1 Cues for Azimuthal Sound Localization: ITDs and ILDs

There are two dominant cues for sound localization in the az-
imuthal (or horizontal) plane, the interaural time difference
(ITD) and the interaural level difference (ILD).

2 Physiological Reviews, Mechanisms of sound localization in mammals, Benedikt
Grothe, Michael Pecka, David McAlpine, VOL 90, July 2010, p. 991.
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Figure 1.5: Cues for azimuthal sound localization. A: Low-frequency
sounds are located via ITDs, the interaural time difference
(denoted by ∆t). B: High-frequency sounds are located via
ILDs, the interaural level or intensity difference (denoted
by ∆l). Making use of a specific cues depending on the
frequency of the sound is referred to as the duplex theory of
sound localization.

ITDs. When a sound is coming from the right, it will arrive
earlier at the right ear than at the left ear (Figure 1.5A). This dif-
ference in arrival time is referred to as the ITD (review: Grothe
et al., 2010). Conversely, if a sound is coming from the left, it will
arrive at the left ear earlier than at the right. A sound coming
from straight in front (or behind) the head will arrive at both ears
simultaneously. For convention, we denote sounds coming from
the right with positive ITDs and sounds coming from the left
with negative ITDs. An ITD of zero represents a sound source
position at midline. The maximal possible difference in arrival
time is bounded by the head size (more precisely the ear-to-ear
distance) of the species in question and is referred to as the phys-
iological range. For example, for gerbils (Meriones unguiculatus)
this range is approximately ITD = ±135µs (Maki and Furukawa,
2005) and for humans it is approximately ITD = ±700µs (Kuhn,
1977), where the negative sign corresponds to ipsileading and
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the positive sign refers to contraleading sounds. For humans,
ITDs can only be used as a localization cue if the sound contains
frequencies below the inverse of 2 · 700µs, namely ∼ 1428Hz

as the wavelength of the incoming sound must be larger than
the distance between the ears. If the wavelength is shorter than
this distance, then ITDs cannot be revolved unambiguously as
it becomes impossible to distinguish individual cycles of the
incoming sound. The main extractor for ITDs is the MSO, but
the LSO also shows sensitivity to ITDs. The neurons of the LSO
most responsive to low frequencies are located in the lateral
limb (Tollin and Yin, 2005) and we denote this by lLSO (low-
frequency limb of the LSO).

ILDs. For high-frequency sounds above ∼ 1428Hz, another cue is
utilized to locate sounds in the horizontal plane. This cue makes
use of the level or intensity of a sound. When a sound is coming
from the right, the sound will have a higher level at the right ear
than at the left ear. This level difference is referred to as the ILD
(review: Grothe et al., 2010). Conversely, if a sound is coming
from the left, it will have a higher level at the left than at the
right ear. A sound coming from straight in front (or behind) the
head will result in identical intensity at both ears. The differ-
ence in level is a direct consequence of the sound shadow that
high-frequency sounds cast around the head. Sound shadows
occur because the incoming sounds are directly reflected by the
head resulting in a lower intensity at that ear that is within the
sound shadow. Note that for low-frequency sounds (<˜2kHz)there is almost no sound shadow because the sounds are not
reflected by the head, they are rather diffracted around the head
resulting in identical intensities arriving at both ears. The main
extractor for ILDs is the LSO, but it is also known that the MSO
has neurons that are sensitive to ILDs.

Summing up the two processes, we have two different cues
for localizing sounds in the horizontal plane. For low-frequency
sounds (<˜2kHz) we make use of ITDs and for high-frequency
sounds (>˜2kHz) we make use of ILDs. The separation of sound
localization cues into two frequency bands is called the duplex
theory of sound localization (Rayleigh, 1907).
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1.2.2 Neural Representation of Acoustic Space: The Jeffress Model

The question we now focus on is how can acoustic space be neu-
rally represented, i.e., how is sound source coded into the brain.
One famous theoretical model was presented by Jeffress in 1948

where he proposed that there are binaural coincidence detector
neurons located in the MSO which are sensitive to different ITDs
due to so-called delay lines (Jeffress, 1948; review: Leibold and
Grothe, 2015). The idea is that neurons in the MSO are lined up
next to each other in a row (see Figure A, right). Every neuron
receives purely excitatory inputs from both AVCNs (binaural).
When a sound, e.g., is coming from the right, it will trigger an
earlier response in the right AVCN than in the left AVCN. There
now exists one neuron in the MSO which responds maximally
to this difference in timing because there are delay lines (affer-
ents) leading to it and their lengths are varied in such a way
that the responses from both sides will arrive at the same time
at this neuron, hence the name coincidence detector neurons.
The afferents to the neuron in this example will therefore be
longer from the right AVCN than from left AVCN to cause this
compensation of delays.3 The Jeffress model thus states that
for each ITD there exists a different neuron that will respond
maximally to this ITD by delay line compensation from both
AVCNs as compared to neurons surrounding it. This results in
the concept that different neurons are tuned to a specific ITD,
their best ITD. This type of neural representation suggests a
peak code where the ITD is encoded by the maximum firing
rate of neurons, i.e., the firing rates of all neurons in one MSO
are compared with each other and the highest firing rate yields
the winner revealing the sound source position (see Figure B,
left). The Jeffress model is solely based on conduction times
and therefore it does not incorporate varying frequencies of
sounds. Therefore a consequence is to expect a neuron to have
the same maximum response to its tuned best ITD independent
of frequency (see Figure B, middle and right).

We now focus on evidence which speaks against the imple-
mentation of the Jeffress model as the mechanism of neural

3 It is important to note, that Jeffress did not write about the MSO or AVCN as
he considered the delay lines to be located in IC. The model’s general mecha-
nism has nowadays been applied to the nuclei that fit today’s understanding
of the anatomy of the mammalian auditory brainstem.
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Figure 1.6: The Jeffress model. A: If the green speaker emits an acoustic
signal, the sound waves reach the right ear earlier than the
left ear, leading to an earlier response in the right AVCN
than the left. Action potentials travel down afferents, called
delay lines. The length of these delay lines are varied in
such a way, that the responses from both ears maximally
coincide at the green neuron (colored disk). The delay line
from the right is thus longer than from the left AVCN. This
results in a maximal firing rate for each neuron to their
specific tuned ITD, their best ITD. B, left: Schema of tuning
curves (firing rate vs. ITD). Every neuron (different colors)
has its maximum firing rate to one fixed ITD establishing a
peak code. Note that all peaks are within the physiological
range (gray shaded area). B, middle: Best ITD vs. sound
frequency. The maximal response from one neuron to its
best ITD is independent of frequency. B, right: Multiplying
the Best ITD with sound frequency results in the interaural
phase difference (IPD). Best IPD vs. sound frequency is a
linear function (straight line) with slope corresponding to
the best ITD. Frequency-invariance is geometrically repre-
sented by the intercept of the line at best IPD = 0 cycles.
Figure inspired by Leibold and Grothe (2015).
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representation of auditory space in mammals. One reason that
speaks against it, is the non-existence of systematic delay lines.
Even though in the nucleus laminaris (NL), the avian analogue
of the MSO, such delay lines have been reported (Carr and Kon-
ishi, 1990; Seidl et al., 2010), for mammals they are absent as
3D reconstructions (Karino et al., 2011) and in vivo recordings
have shown (Franken et al., 2015). Also the purely excitatory
neural circuit proposed by Jeffress does not fit the anatomy as
described in 1.1.4. The MSO not only receives two glutamatergic
excitatory inputs (from both AVCNs) but also two glycinergic
inhibitory inputs from (LNTB and MNTB). Furthermore, for
the Jeffress model to hold true, the firing rate peaks describing
the best ITD of each neuron would have to be spread (homo-
geneously) within the physiological range of the animal. But
studies have shown (e.g. McAlpine et al., 2001) that neurons
rather have their maximum firing rate outside the physiological
range (see Figure 1.7, left), creating a strictly monotonous part
with a steep slope inside the physiological range from which
ITDs could be inferred, hinting at a rate code rather than a
peak code. And further, if glycinergic inhibition was blocked,
then the peaks of several neurons shifted to zero making an
ITD readout impossible and thus negating the purely excitatory
Jeffress mechanism.

Physiologically, the most important quantity which does not
fit the structure of the Jeffress model is the characteristic phase
(CP), the frequency-dependent delay difference from both ears.
As mentioned earlier, the peak firing rate of a neuron in Jeffress’
model is determined by a conduction delay difference from
the incoming axons from both ears and such a delay difference
would be independent of sound frequency (see Figure B, mid-
dle). Such a frequency-independent delay difference is called
characteristic delay (CD). However, there is experimental data
(Day and Semple, 2011; Franken, 2015) which suggests that the
Best ITD changes for a single neuron when the frequency of the
stimulus is varied (see Figure 1.7, middle and right), showing
that there must be a frequency-dependent delay difference from
both ears, coined the CP. Nevertheless, the existence of CPs and
their broad distributions across animal species make it a funda-
mental quantity which must be incorporated into a model of
neural representation of auditory space to make it a biologically
feasible one.
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Figure 1.7: Characteristic phases. Left: Firing rate vs. ITD. The tuning
curves show a schematic response of a single gerbil MSO
neuron to sinusoidal sounds. Varying colors represent dif-
ferent frequencies. Peaks indicate the Best ITD. Note that
the peaks are all located outside the physiological range
(gray shaded area) with a contralateral preference. This
establishes strictly monotonous parts with steep slopes
within the physiological range which establishes a rate
code rather than a peak code. ITDs are encoded best by
steep slopes since for a fixed ITD the firing rates of neigh-
bouring ITDs will show a large difference. Middle: Best
ITD vs. sound frequency. The best ITD varies with stimu-
lus frequency which is in opposition to the Jeffress model.
Right: Best IPD vs. sound frequency and linear function
fit (straight line obtained via linear regression) with slope
corresponding to the best ITD. Frequency-variance is geo-
metrically represented by the non-vanishing intercept of
the line at Best IPD = 0.17 cycles. Figure inspired by Lei-
bold and Grothe (2015).
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1.3 models of binaural hearing :
an overview

We now turn to a brief overview of the history of a variety
of models that can each be interpreted as models of binaural
hearing, which can estimate the azimuthal position of a sound
source. The models have been chosen to cover a wide variety
of model types and therefore a special focus in this section will
be on the motivation behind these models and if the models
in question can be regarded as accurate representations of the
underlying biology.

1.3.1 Left-Right Comparison Models

Left-right comparison models are lateralization models which
compare counts or activity from hypothetical left and right neu-
ral populations. Each population makes up a so-called channel.
The information from the channels’ activity can then be used
to determine where a sound is located in the azimuthal plane
(Colburn and Durlach, 1978).

Tuning Models. The first type of this model dates back to 1930

and was suggested by von Békésy. In the model, von Békésy
(1930) defines a group of cells that are centrally located. All cells
receive inputs from the left and right ear. A neuron can enter
one of two states, a left-tuned or a right-tuned state. If a stimulus
is located on the right, it will reach the right ear before the left
one. Whenever a stimulus reaches an ear, it sends a wave of ex-
citation at a constant rate across the cells. Depending on which
wave (from the left or right) reaches a neuron first, this neu-
ron will then enter a left- or right-tuned state. When the waves
from both ears meet, they extinguish each other and tuning is
complete. The position of the stimulus source is then obtained
by counting the relative number of left-tuned and right-tuned
cells. This model was an explanation of the observation of the
shift of virtual (acoustic) images in lateralization experiments.
For small ITDs, this shift was very large as compared to higher
ITDs. He explains this phenomenon by an increased density of
cells in the middle as compared to the sides. One important
conclusion from this is that around midline neurons should
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have their highest sensitivity to varying ITDs and thus, when
considering tuning curves, the maximum of these curves cannot
lie at midline since steep slopes resemble high ITD-sensitivity
(also see Further Left-Right Comparison Models below). The model
from von Békésy is purely motivated by psychophysics and
with our modern understanding of neurons, it has no biologi-
cal foundation, since von Békésy’s model implies that neurons
at higher stages are able to distinguish between two types of
firing: a response either received from a left or a right wave of
excitation. But neurons cannot respond in more than two ways,
since they respond in an all-or-nothing manner which means
that they either give a response or they do not (Hall, 1964).
A modification of this model was provided by van Bergeijk
(1962) in his Variation on a Theme of Békésy. He considers two dif-
ferent groups of neurons (whereas von Békésy only considered
one group) and each group receives contralateral excitation as
well as ipsilateral inhibition. Similar to von Békésy’s excitation
wave mechanism, this leads to areas of excitation and inhibition
in both groups, i.e., the number of cells excited or inhibited.
Higher auditory centers would then compare the areas of ex-
citation from the left and the right group. This model, as an
extension of the Békésy model, is also of course psychophysi-
cally motivated but it is also biologically motivated to the extent
that it incorporates two "accessory nuclei of the superior olive"
(van Bergeijk, 1962), which are the left and right MSO. (Hall,
1964; Colburn and Durlach, 1978; Stecker and Gallun, 2012)

Equalization and Cancellation Model. In 1963, Durlach used a sig-
nal processing approach to describe observations in binaural
detection experiments. His idea comes from the fact that subjects
can detect target signals in binaural-masking stimuli (which are
comprised of a target and a masking noise signal) when the
phase of target and masker are offset. This results in a reduction
of detection threshold as compared to when phase of target
and masker are equal, i.e., the target signal can more easily be
unmasked. The difference between non-reduced and reduced
threshold is referred to as the binaural masking level difference
(BMLD). Durlach proposed that the auditory system performs
an equalization (E) and a cancellation (C) process. In the E phase,
the auditory system transforms the binaural-masking signal in
one ear relative to the other ear until the masker is identical
in both ears, i.e., it has been equalized. Then, in the C phase,
the signal from one ear is subtracted from the other ear. If the
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auditory system would work in a completely precise manner,
then now the masker would have been eliminated or cancelled
(Durlach, 1963; Colburn and Kulkarni, 2005). Durlach states that
the EC-theory can be used to explain how the auditory system
can perform ITD discrimination. When turning off the target sig-
nal, then the listener could measure the ITD simply by recording
the E-phase transformation and calculating its inverse which
then would provide "a complete description of the interaural
relations of the masking signal" (Durlach, 1963). Although the
EC-theory is purely mathematical and based on signal process-
ing, it still performs well in sound source separation algorithms
(Mi et al., 2017).

Further Left-Right Comparison Models. McAlpine et al. (2001) took
up the idea of left-right comparison models again. Recordings
from IC of guinea pig revealed the peaks of ITD tuning curves
to be located outside of the physiological range, rendering them
unimportant for a sound localization (place) code. Furthermore,
they showed that the steepest parts of the tuning curves were
always located at midline and independent of BF. They therefore
postulate a rate code for ITD estimation which is generated
by "the activity in two broad, hemispheric spatial channels".
(McAlpine et al., 2001). Motivationally speaking, the 2-channel
model proposed is not based on biological or physiological
properties since it is the result of recordings.
Another left-right comparison model is that of Dietz et al. (2008).
It is a modified implementation of the excitatory-inhibitory
(EI) coincidence detector model of Breebaart et al. (see below).
In Dietz’s model, the place code from Breebart is exchanged
with an IPD rate code. The idea for this was initiated by the
physiological findings in McAlpine et al. (2001) and Harper
and McAlpine (2004). The model is primarily motivated by
filter mechanisms and for the binaural processing to work, it
relies on the precise extraction of the phase of an analytic signal
past the stage of the hair cells. It is debatable and unknown if
such a mechanism exists in the auditory system. Both of these
reasons speak against a biologically motivated model albeit it
is a phenomenological model of the auditory system. Another
usage of left-right comparison models is Takanen et al. (2014)
where they visualize the rate of output of the auditory system.
Their idea is that the output of a comparison model does not
directly result in a topographic map, so they present a method
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of extracting binaural activity maps and further show, that the
model performance agrees with human psychoacoustics.

1.3.2 Coincidence Detection Models

Models that are based on the underlying idea that an array
of neurons register simultaneously arriving inputs from both
ears are called coincidence detection models. Taking all neurons
together, they display a wide range of internal delays and thus
constitute a topographic map from which ITDs could be ex-
tracted. Such an encoding mechanism of ITDs is often referred
to as a labeled line code, because each neuron along the array
(line) is labeled for exactly one ITD. Groundwork for these types
of models is the above discussed Jeffress model. As already
mentioned, for mammals the Jeffress model seems unsuitable,
since there is no anatomical evidence for the delay lines he pro-
posed. Regardless, there exists a wealth of Jeffress-like model
implementations, e.g., Colburn (1973, 1977), Lindemann (1986),
Stern and Colburn (1978), Stern et al. (1988) and Breebart et
al. (2001). They all have in common that initial stages are of
phenomenological nature, e.g., the implementation of auditory
periphery via gammatone filterbank and subsequent nonlinear
reconstructions of the envelope, but characteristics of cells are
not taken into account at all. Rather, all possible delays that could
theoretically occur are calculated and implemented via binau-
ral cross-correlation (hence why these types of models are also
referred to as Jeffress correlation models (Colburn and Kulka-
rni, 2005). With time, the models have shifted away from the
purely excitatory mechanism proposed by Jeffress and instead
have incorporated aspects of inhibition, e.g., Lindemann (1986)
and Breebart et al. (2001) both include contralateral inhibition.
It is even more prominent in Breebart’s model where the two
binaural inputs are compared with each other via an excitatory-
inhibitory (EI) coincidence detector mechanism based on the
Equalization and Cancellation Model of Durlach. Even though
all the models discussed in this section are successful at pre-
dicting the performance of human subjects in psychophysical
tasks, we must regard these models as not biologically moti-
vated for mammals even though the models do incorporate
some important phenomenology of the mammalian auditory
system (Stecker and Gallun, 2012). The most recent model using
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a coincidence detector is Klug et al. (2020), where they opti-
mize the EI coincidence detector to account for lateralization in
high-frequency stimuli. They show that the output of an EI coin-
cidence detector in form of a hemispheric rate difference relates
"linearly with the extent of laterality in human listeners" (Klug
et al., 2020) and show this holds true for a thousand varying
amplitude-modulated stimuli.

1.3.3 Population Pattern Models

Models based on machine learning algorithms that themselves
find patterns in hemispheric activity are called population pat-
tern models. The theory is, that a sound emitted at a certain
location in azimuthal space will trigger a specific and unique pat-
tern of activity over the whole population of neurons and if the
position of the sound is shifted horizontally, then this will evoke
a different unique pattern of activity across all neurons (Day and
Delgutte, 2013). Population pattern models make use of a variety
of different readout mechanisms, such as linear classifiers, rate
difference decoders (Lüling et al., 2011), maximum-likelihood
decoders (Day and Delgutte, 2013) or pattern match decoders
(Goodman et al., 2013). Since these readout mechanisms them-
selves learn the patterns from the overall population activity,
the way in which the activity from both hemispheres is used
to extract relevant information (such as ITD information) is un-
known before the decoder is applied. This results in the fact that
population pattern codes can be very different from each other
(depending on the readout mechanism applied) and also that
these codes are very general, i.e., one code class can obviously
contain other subsets of codes such as the previously mentioned
left-right comparison code. The codes derived through popu-
lation pattern models elude experimental falsification through
their abstractness which, of course, make them seductively ap-
pealing in solving aspects which other models cannot, e.g., the
non-uniqueness of ITD encoding for large heads due to the
periodicity of ITD tuning curves (Leibold and Grothe, 2015; also
cf. Discussion). Finally, these types of models do not resemble
a 1:1 biological correspondence. It is one of the goals of our
model (cf. next section) to aim at a fully biologically motivated
representation of the MSO and LSO.
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1.3.4 Physiologically-Based Models

Other models trying to explain the underlying ITD localization
mechanisms and that are more physiologically grounded are,
e.g., Encke and Hemmert (2018) where a spiking neuron network
model of the MSO is used to extract ITDs in two different
ways. In the first method, ITD changes are detected by a linear
opponent channel decoder. In the second method, an artifical
neuronal network is employed to predict ITDs based directly on
the spiking output of their MSO and auditory nerve fiber (ANF)
model. Their results show that ITD changes can be detected up
to 10µs and that the MSO population can encode static and time
dependent ITDs covering a wide range of frequencies, including
complex sounds. Another model using the cell properties of
MSO and LSO cells in a linear membrane voltage model is
Remme et al. (2014). Based on recorded cells from guinea pig,
they implement their cells to include a capacitive current, a leak
current and a resonant and amplifying ion current. Using their
dynamics, they show, that the subthreshold resonance properties
of MSO and LSO cells can contribute to the efficient encoding
of ITDs. The most noteworthy models with respect to this thesis
are the physiologically-based models by Hancock and Delgutte
(2004) and Hancock (2006) where a population rate code for
ITDs is implemented via MSO and LSO by six parameters, the
characteristic frequency (CF), a time constant τ, the CD, the
CP and the coefficients A and B of a quadratic function which
transforms the output of a cross-correlator into a firing rate.
They retrieve the values by fitting the model to IC cat data
(Hancock and Delgutte, 2004). They show for an ITD = +1.5ms
(not µs) that narrowband noise at 500Hz is perceived on the left
and broadband noise 300− 700Hz is perceived on the right. In
general they show, that the broader the bandwidth of the input
stimulus is, the closer the perception is to the ground-truth ITD
position.

1.4 the effective model

The model presented in this thesis, which will in great detail
be explained in Chapter 2, can be classified as belonging to
the left-right comparison models, i.e., we use the activity from
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both hemispheres and combine the information in a meaningful
way to derive a neuronal representation of azimuthal space.
However, it is the first computational model which gives a
full representation of the MSO and LSO nuclei according to
their individual cell characteristics as have been reported in
vivo (Tollin and Yin, 2005; Siveke et al., 2006; Siveke et al., 2007;
Pecka et al., 2008; Lüling et al., 2011). Therefore, the model is
novel and separates itself from the aforementioned ones, as it
is a biologically and physiologically grounded model of sound
localization. Due to its purely phenomenological description of
the human binaural sound processing system, we thus term this
model the effective model of binaural hearing.
Most similar to our effective model is the the model by Hancock
(2006) as described in the previous section, but there are three
important distinctions. Firstly, the CP and CD in their model is
only applied to one side, the contralateral hemisphere. Secondly,
the CP is set as a constant of CP = 0.5 cycles for the LSO and
lastly, the CP is set to a constant of CP = 0 cycles for the MSO.
In the effective model, we apply the CP and CD not only to both
hemispheres, but we use a much higher variety for the values of
the CP, making this model the first one to capture the biological
reality of the characteristics of the mammalian MSO and LSO
cells.

1.4.1 Further Biological Motivation

One of the key aspects of our model is that we not only use fully
biologically based implementations of MSO and LSO neurons,
but that we also combine the information from both nuclei. The
motivation for this approach is the following. The descriptions
of the MSO and LSO neuronal circuits in Section 1.1.4 are simul-
taneously a description of the mammalian ITD and ILD circuits,
respectively. As previously mentioned, the two circuits not only
share circuit components and have similar design principles, but
both MSO and LSO act as detectors of binaural differences. The
general idea is therefore that MSO and LSO also share similar
coding principles (Grothe and Pecka, 2014). This has brought
forward the notion that sound source position may not be esti-
mated by MSO and LSO independently of each other, but rather
that information from both nuclei is combined to retrieve one
sound source estimate per hemisphere.
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Figure 1.8: Hemispheric preference and tuning functions. Top graphs:
Ipsilateral and contralateral MSO project to ipsilateral and
contralateral midbrain, respectively. Ipsilateral and con-
tralateral LSO project to contralateral and ipsilateral mid-
brain, respectively. Bottom graphs: Typical tuning curves
(firing rate vs. sound source position) of MSO and LSO.
Both tuning curves cover a large range of azimuthal space
suggesting a 2-channel model of ITD/ILD coding. On Mid-
brain/Cortex level, similar firing rates in each channel
would code for a sound positioned at 0◦ whereas higher fir-
ing rates in one hemisphere would code for a position more
contralateral in comparison to the less active hemisphere.
Overall activity (firing rate) is higher for sounds located
contralaterally for MSO, for LSO is is higher for sounds lo-
cated ipsilaterally. The cross-projections (top graphs) result
in equal hemispheric preference for MSO and LSO as MSO
maintains contralateral preference and LSO flips from ipsi-
to contralateral preference. Figure inspired by Grothe and
Pecka (2014).
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Furthermore, typical tuning curves of MSO and LSO cover a
wide range of auditory space (see Figure 1.8, bottom graphs).
This further supports the idea of a left-right comparison model,
i.e., that there might be two separate coding channels, one in
each hemisphere, that may be compared and evaluated at higher
auditory stages. This has further lead to the concept of hemi-
spheric balancing (Lingner et al., 2018) where each channel (or
hemisphere) computes one estimation of the position of a sound
and the two estimates are then combined with each other and
balanced according to the responses of MSO and LSO, i.e., the
higher the activity in one hemisphere is, the more the estimate
of this hemisphere will weigh into the balanced estimate. The
mathematical implementation of hemispheric balancing is intro-
duced in Section 2.2.1.
Another important fact about the MSO and LSO tuning curves
and their implications for hemispheric preference should be stressed
at this point. The MSO responds best to sounds located con-
tralaterally (see 1.8, left bottom) whereas the LSO responds best
to sounds located ipsilaterally (see 1.8, right bottom). This does,
however, not present a conflict when evaluating the responses
at midbrain or cortex level in one hemisphere, because the MSO
has projects to ipsilateral IC (excitatory) and the LSO projects
to contralateral IC (also excitatory, see 1.8, top graphs; also cf.
Section 1.1.4). Thus, whereas the MSO preserves its contralateral
preference at higher auditory stages, the LSO flips its ipsilateral
preference to a contralateral preference (Beckius et al., 1999;
Grothe and Pecka, 2014). These are features that need to be
incorporated to gain a biologically correct phenomenological
description of the neuron populations of these two nuclei.

1.5 aims of thesis

The neuronal code underlying sound localization in azimuthal
space is unknown. In this thesis, we present a novel model of
binaural hearing and apply it to complex auditory scenes in
order to separate sounds as a listener would do in a cocktail
party setting. To achieve this, the thesis can be subdivided into
three main aims.

1. The Effective Model.
The first aim is to design a complete biologically moti-
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vated computational model that captures large parts of the
phenomenology of the human binaural hearing apparatus.
We use this model to propose a novel neuronal code for
auditory space.

2. Short-Term ITD Estimation.
Secondly, we use the effective model and the neuronal
code to estimate positions of stimuli in horizontal space.
For this we make use of model-based ITD estimations
in very short time bins, hence the name short-term ITD
estimation.

3. Sound Separation.
Finally, we use the estimated ITDs to separate sounds
from each other. We show that it is in principle possible
to perform sound separation in complex auditory scenes
solely based on biologically processed ITDs.
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2
R E S U LT S

All models are wrong, ...

— George E. P. Box

2.1 model anatomy

2.1.1 Effective Models of MSO and lLSO

In order to simulate the processing of sounds in the two ITD-
sensitive nuclei MSO and lLSO in a fast manner, we implement
a structure that we coin an effective model for each of these
two nuclei. It is termed an effective model because we simulate
the individual neurons according to three defining properties
which results in a full characterization of each neuron. These
three properties are the best frequency (BF), the characteristic
delay (CD) and the characteristic phase (CP). The BF is the
frequency to which a neuron has its highest response, i.e., the
highest firing rate as compared to neighboring frequencies. The
CD is the frequency-independent time delay difference, i.e., the
difference in time it takes for a sound to arrive from both ears at
that neuron which is based on (morphological) properties that
do not take sound frequency into account (e.g., axonal length).
The CP is the frequency-dependent phase delay difference, i.e.,
the difference in phase it takes for a sound to arrive from both
ears at that neuron which is based on properties that take sound
frequency into account (e.g., cochlear filtering). These three
properties – BF, CD and CP – are connected via the best ITD

ITDbest = CD+
CP

f
(2.1)

which is the interaural time difference where a neuron has
its highest firing rate (Yin and Kuwada, 1983b; Yin and Chan,
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1990; Pecka et al., 2008). The denominator f in (2.1) refers to
the frequency of the current input sound. CD and CP are fixed
values for each neuron. Note that f is given in Hz, CD in seconds
and CP in cycles in order to obtain ITDbest in seconds.
The term effective in our model therefore stresses the fact that
we can bypass the explicit modeling of each step of excitation
and inhibition of the ascending auditory pathway as seen in
Figure 1.3 and 1.4, because the result of these processes is already
captured by these three defining properties of each ITD-sensitive
neuron. The distribution of these parameters is discussed in the
following subsection.

2.1.2 MSO and lLSO Populations

To achieve a realistic model of the MSO and lLSO in humans,
we have adjusted the total number of neurons in each nucleus
and the characteristics BF, CD, and CP to fit recent data from
Hilbig et al. (2009) and Lüling et al. (2011).

Population Sizes
According to Hilbig et al. (2009), Nissl staining in human au-
ditory brainstem nuclei and explicit counting of neurons via
Kontron Image Analysis (Zeiss, Germany), approximated the
MSO of humans to be comprised of 3, 891 and the LSO of 1, 980
neurons. Considering computational power limitations of the
model, we set the total number of MSO neurons to 100 (per BF).
The number of lLSO neurons (per BF) is set to 51 due to the ratio
LSO/MSO. The exact size of the lLSO in humans is unknown. In
Section 3 (Discussion), we discuss varying lLSO population sizes
and their impact on the ITD encoding mechanism as described
in Section 2.1.4. For left and right hemisphere, we model the
same amount of neurons with identical distribution of the char-
acteristics CP and CD. Because we analyze eight different BFs
per hemisphere, the total sum of neurons for both hemispheres
in the model is therefore 1600 for the MSO and 816 for the lLSO.

Distribution of BFs
The distribution of BFs is based on the physiological properties
of the basilar membrane as discussed in Section 1.1.3. The apex
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frequency in our model is set to 200Hz, the highest frequency is
set to 1500Hz to ensure that we stay in ITD-relevant frequency
range. We then use logarithmic spacing to create eight different
BFs. The formula for the n-th BF is given by

BF(n) = f0 x
(
fN
f0

)n/7
(2.2)

where f0 = 200, fN = 1500 and n ∈ {0, 1, ..., 7}. For the exact
filter implementation, which introduces the BF, see Section 1.1.3
(Basilar Membrane).

Distribution of CPs and CDs
The choice for the distribution of CPs and CDs is tuned in such a
way to reflect the negative correlation between CP and CD as re-
ported by Lüling et al. (2011). The data in this study is based on
recordings from DNLL neurons in gerbils (Meriones unguicula-
tus). However, the DNLL is the subsequent downstream nucleus
after the SOC and receives input from MSO and LSO neurons.
Furthermore, the DNLL also preserves the ITD sensitivities from
these nuclei (Siveke et al., 2006). Therefore it is a straightforward
choice to assume that the distribution of CPs and CDs from
MSO and lLSO can be equated to the distributions as described
in the DNLL. For the MSO, we assume uniformly distributed
CPs ranging from −π

2 to +π
2 radians. For the lLSO, which ex-

hibits larger CPs, we assume them to be uniformly distributed
ranging from +π

2 to +3π
2 radians. CP values are motivated by

Lingner et al., 2018. The numbers are created in MATLAB (The
MathWorks, Inc., Natick, Massachusetts, US) using a Mersenne
Twister pseudorandom number generator with a fixed seed of 0
to ensure reproducibility. The CDs are derived from the CPs via
equation (2.1). Solving for CD for every neuron for each fixed
BF results in

CD =
ITDbest x BF−CP

BF
=
BP−CP

BF
(2.3)

where the last equality is due to the relationship ITDbest x BF =
BP which is referred to as the best phase (BP). To obtain CD
in cycles, the values for CP are transformed from radians into
cycles before entering equation (2.3) via CP

2π , BP is given in cycles
and f in Hz. For the MSO we assume the BPs to be normally
distributed with mean µ = 0.085 cycles and standard deviation
σ = 0.05 cycles. For the lLSO we assume the BPs to be normally
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distributed with mean µ = 0.325 cycles and standard devia-
tion σ = 0.05 cycles. BP values are motivated by Lingner et al.,
2018. The numbers are generated with the MATLAB in-built
normal random generator normrnd (with a fixed seed of 0 for
reproducibility). For our model, we assume these parameter
distributions to also hold true for humans (see Section 3 (Dis-
cussion)). Note that the choice of parameters guarantees the
negative correlation as seen in Lüling et al. (2011).

Summary of Population Set-Up
The settings of all model parameters of one hemisphere are
summarized in the following Table 2.1. We assume identical
parameter distributions for each of the two nuclei in each hemi-
sphere, but for every BF there is a different set of CDs and
CPs chosen. In one hemisphere, there are thus no two identical
CDs or CPs, respectively, i.e., no two neurons of the same hemi-
sphere have the same distribution of BF, CD or CP; guaranteeing
uniqueness of every neuron.

MSO lLSO

# of neurons 800 408

BFs [Hz] [200, 1500] [200, 1500]
BPs [cycles] N(0.085, 0.05) N(0.325, 0.05)
CPs [radians] U(−π

2 ,+π
2 ) U(+π

2 ,+3π
2 )

Table 2.1: Population parameter distributions in each hemisphere. The
eight BFs are logarithmically scaled in the given range.
N(µ,σ) denotes the normal distribution with mean µ and
standard deviation σ. U(α,β) denotes the uniform distribu-
tion in the range α,β.

The from Table 2.1 resulting overall MSO and lLSO populations
are shown in Figure 2.1. Note that the y-axis is frequency-scaled
as CD x BF. This is done to ensure that the here modeled popula-
tions demonstrate the aforementioned same negative correlation
between CD x BF and CP (steepness of slope roughly −1) as ob-
served in Lüling et al. (2011). Furthermore, the distributions of
the parameters directly reflect that the lLSO projects contralater-
ally to IC and the MSO ipsilaterally (cf. Chapter 1 (Introduction)).
This is due to the fact that the larger CPs of the lLSO, as com-
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pared to the MSO, result in negative CDs as a consequence of
equation (2.3).

Figure 2.1: Neuronal properties. A. Distribution of the population of
neurons for MSO and lLSO in each hemisphere using the
frequency-scaled parameter CD x BF vs. CP. MSO pop-
ulation in blue, lLSO in green. Note that the lLSO has
larger CPs than the MSO, resulting in CD x BF < 0 which
indicates the aforementioned contralateral projection to
the IC (see Section 1.4.1). B. Distribution of best ITD as
defined in equation (2.1) vs. best frequency for all MSO
(blue) and lLSO (green) neurons of the left hemisphere
with respective mean best ITD curves (solid colored lines).
Black dots on colored lines refer to the mean best ITD to a
fixed BF-channel. Physiological range of humans denoted
by the gray shaded area.

2.1.3 Model Stages

The model can in its entirety be described as an input-output
function. The input signal is an arbitrary binaural pressure wave.
Binaural, because for each signal we calculate the input at the
left and right ear separately. The output of the model is the
membrane potential of the MSO or lLSO in one hemisphere
where the information from the left and right ear is combined.
The model can be divided into three stages. The first stage is
the introduction of the ITD. The second and third stages are
the peripheral and the binaural processing, respectively. An
overview is shown in Figure 2.2. The model is implemented in
MATLAB.
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Figure 2.2: Model flow diagram. An ITD is added to the input signal
which then goes through peripheral and binaural process-
ing, resulting in a membrane potential at the MSO or lLSO.

Signals

There are two types of input signals. The first type is a 1 second
long sinusoidal pure tone s(t) = sin(2πFt) (t > 0 time in sec-
onds) with the frequency F in hertz set to the current frequency
of the observed BF (in order to maximally drive the neurons).
The second type is a complex signal which is a 1 minute long
excerpt from the audiobook Gone Girl (© Random House Audio)
with a US-American male and US-American female speaking in
alternation, both of equal length.
To ensure that all model input signals, be it pure or complex,
have the same loudness, all inputs are normalized to correspond
to 60dB SPL (sound pressure level). This value has been chosen
by us as a base reference value to be able to scale different
sounds with different SPLs and make them comparable (see
Section 3.2.3). The sinusoidal tones are generated directly in
MATLAB. The complex signal has been recorded directly from
the audiobook using Audacity (Audacityr is a registered trade-
mark of Dominic Mazzoni). Speech pauses in the complex signal
have been cut out to get a maximum of 0.5s pauses between sen-
tences. All signals were sampled at 96kHz. The choice for 96kHz
rather than the standard 44.1kHz is owing to the better resolu-
tion of the time axis (roughly 22.68µs for 44.1kHz vs. 10.42µs

for 96kHz). This gives better control and numerical stability for
shifting signals along the time axis on a microsecond scale.
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ITD Introduction

The ITD implementation refers to how the binaural pressure
wave reaches the two separate ears depending on the position
of the sound in the azimuthal plane. For our model we use the
following convention: Positive ITDs refer to a sound coming
from the right with respect to midline, meaning that a sound
will also reach the right ear earlier than the left ear. Negative
ITDs, in turn, refer to a sound coming from the left. An ITD
of zero refers to a sound coming directly from straight ahead
(0◦ azimuth/midline). The input in our model at the right and
left ear are calculated and processed separately, therefore the
first step is to have two identical copies of the input signal s(t),
i.e., sR(t) and sL(t) with R/L referring to the input at the right
and left ear, respectively. For positive ITDs, we implement the
ITD by shifting the onset of the input signal at the right ear
by ITD

2 to the left on the time axis. Analogously, we shift the
beginning of the sound at the left ear by the same summand
to the right. This gives the generalized form sR(t +

ITD
2 ) and

sL(t−
ITD
2 ) which results in the sound arriving at the right ear

first with the onset of the sound at the left ear being delayed
by exactly 2 x ITD

2 = ITD. The leading ear, i.e., the ear where
the sound arrives first, switches from right to left for ITD < 0.
Following ITD introduction, the separate inputs at both ears
sR/L go through peripheral processing as described in the next
subsection.

Peripheral Processing

As decribed in Section 1.1.2, the auditory periphery encom-
passes those stages of processing that start at the pinna (i.e., the
arrival of the pressure wave at the ear) and end at the auditory
nerve (AN) where then action potentials transport the informa-
tion to the MSO and lLSO in the auditory brainstem (Meddis
and Lopez-Poveda, 2010). The model equivalent to the entire
peripheral processing stage is implemented by our cochlear
model which is biophysically motivated by how the inputs are
(non-linearly) transformed at the basilar membrane (BM) and
subsequently transduced at the inner hair cells (IHCs).

Pre-Processing. First of all, in order to dampen effects intro-
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duced by cochlear filtering at the BM, the two input signals
from both ears have to be pre-processed. The first and last
10ms of each signal are multiplied with a ramp function, i.e.,
s̃R/L(t) = sR/L(t) x R(t) and R is given by

R(t) =


+100t ; t < first 0.01s of signal sR/L

1 ; else

1− 100t ; t > last 0.01s of signal sR/L

where the factors ±100 are given in Hz and time t is measured
in seconds, rendering R dimensionless. The ramp R prevents
extreme amplitude distortions of the input signal when the BM
corresponding filter is applied.

Basilar Membrane. The BM consists of a gammatone filter bank
which introduces the BF to the pre-processed signals. Each dif-
ferent BF in the model resembles a different point of stimulation
along the BM from lower frequencies (from the apex of the BM)
towards higher frequencies (towards the base of the BM). As
we model eight different BFs, we thus have a bank consisting of
eight different gammatone filters. In time domain, the impulse
response function of the gammatone filter γ(t) is given by

γ(t) = αt(n−1) exp(−2πtβ) cos(2πtφ) (2.4)

where n is the order of the filter, α the amplitude, β the band-
width and φ the filter’s center frequency (Patterson and Moore,
1986). For simplicity, at this stage in the model we assume α = 1

(owing to later introduced BF-dependent amplitude modula-
tions as described in Section 2.1.4). A filter order of n = 4 has
been found to be a good fit to describe the human auditory filter
(Patterson et al., 1992). The bandwidth β gives the duration of
the filter and is defined as

β = ERB/bn

where ERB is the equivalent rectangular bandwidth and bn is
an order-dependent factor given by

bn =
π(2n− 2)!2−(2n−2)

[(n− 1)!]2

In our case (n = 4) the value is 20π
26
≈ 0.9817. The ERB describes

the varying bandwidths of the gammatone filter along the BM.
For humans, the ERB is approximated by

ERB = 24.7+ 0.108φ (2.5)
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(Glasberg and Moore, 1990) and thus the ERB is dependent on
the center frequency φ which is set to the current observed
BF. Thus, this part in the model is where the first of our three
neuron-defining properties (BF, CD and CP) is introduced. The
equations (2.4) and (2.5) fully characterize the gammatone filter
bank.
The two pre-processed input signals are convolved with the
gammatone filter, i.e.,

ŝR/L(t) = (s̃R/L ∗ γ)(t)

and the response is passed on to the IHCs.

Inner Hair Cells. The response of the basilar membrane is now
transduced by the IHCs into an electric potential p(t) which
models the release of transmitters onto spiral ganglion cell den-
drites. This signal transduction consists of four steps. First, the
output of the BM is half-wave rectified, i.e., ŝR/L(t0) = 0 if
ŝR/L(t0) < 0 for all times t0. The result is then power-law com-
pressed to the power of 0.4 (Oxenham and Moore, 1994), i.e.,
cR/L(t) = |ŝR/L(t)|

0.4. The compressed signal c is then convolved
with a low-pass filter l of second order and frequency cut-off
at 1kHz (Lingner et al., 2012), i.e., pR/L(t) = (cR/L ∗ l)(t). The
output of p of the cochlear model is the result of the peripheral
processing and is now passed on to the binaural processing
stages. Finally, to also account for the latency that occurs dur-
ing mechano-electrical transduction, we introduce a uniformly
distributed neuron-fixed latency jitter from the range of ]0; 1[
milliseconds (Rhode and Smith, 1986; Ford et al., 2015). The num-
bers are generated – analogously to the CPs – with a Mersenne
Twister pseudorandom number generator and a fixed seed of 0
to ensure reproducibility. The latency jitter is implemented via
a time-shift, i.e., jR/L(t) = pR/L(t− Jitter) and passed on to the
stage of binaural processing.

Binaural Processing

The term binaural processing in the ascending auditory pathway
in our model refers to the first time where neurons in the MSO
and lLSO use information from both ears. That information is
then combined to generate membrane potentials in these two
nuclei. As described in Section 2.1, we implement an effective
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model to bypass modeling of the exact stages of inhibition and
excitation as shown in Section 1.1.4. The binaural information in
our model is captured in its entirety by the two neuron-defining
properties of CD and CP.

Characteristic Delays. The CD is the difference in arrival time
it takes for a sound to arrive at one neuron from both ears and
can thus be implemented by a simple time shift. Similarly to the
ITD, this is achieved by shifting the response jR/L by CD

2 into the
corresponding direction on the time axis, i.e.,

rR(t) = jR(t−
CD

2
) and rL(t) = jL(t+

CD

2
)

The sign is determined by equation (2.1) and our convention
that sounds arrive at the right ear first when ITDs are greater
than zero.

Characteristic Phases. The CP is the difference in phase it takes
for a sound to arrive at one neuron from both ears and can thus
not be implemented by a simple time shift but rather by a phase
shift. However, the choice and reasoning for the sign of the shift
is the same as for the CD, i.e., rR is shifted by −CP

2 and rL is
shifted by +CP

2 .
In order to find an appropriate phase-shifting expression that
can easily be applied to non-trivial sounds, we look at the
functions rR/L(t) in frequency-domain. For reasons of compre-
hensibility, let us first look at rR(t). The function of frequency,
or the Fourier transform, of rR(t) is given by

r̂R(ω) =

∫∞
−∞ dte−iωtrR(t) (2.6)

whereω represents the angular frequency and i is the imaginary
unit defined as i2 = −1. To shift the Fourier transform r̂R(ω)

by phase Φ, we simply multiply r̂R with exp(Φsgn(ω)i) where
sgn(ω) denotes the sign-function given by

sgn(ω) =


1 ; ω > 0

0 ; ω = 0

−1 ; ω < 0

For Φ = −CP
2 we get

q̂R(ω) = r̂R(ω) exp
(
−
CP

2
sgn(ω)i

)
(2.7)
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as the phase-shifted version of rR(ω). The Fourier Convolution
Theorem (FCT) states that the back transform of the product of
two Fourier transforms is the convolution of the back transforms
of the two factors in time domain, i.e., for two functions f1 and
f2 the FCT can be written as

f̂1(ω)f̂2(ω) ↔ (f1 ∗ f2)(t) (2.8)

The back transform of q̂R(ω) is therefore – according to the FCT
(2.8) – given by

qR(t) = (rR ∗ uR)(t) (2.9)

where uR(t) denotes the back transform of ûR(ω) = e−
CP
2 sgn(ω)i

and rR(t) is already known. Hence, finding the back transform
of ûR(ω) solves the problem of shifting rR by phase −CP

2 by
performing the convolution described in (2.9).
In time-domain, the back transform uR(t) of ûR(ω) is defined
as

uR(t) =
1

2π

∫∞
−∞ dωe+iωtûR(ω) (2.10)

The improper integral (2.10) does not converge in the time do-
main for this specific choice of ûR(ω). To establish an improper
integral that is finite and exists, we multiply (2.10) with a regu-
larization factor given by

e−ε|ω| (2.11)

where | · | denotes the absolute-value-function or modulus de-
fined as

|x| =

x ; x > 0

−x ; x < 0

for x ∈ R. The reason for the choice of the regularization factor
(2.11) is because it turns into a multiplicative constant of 1 for
infinitesimal small ε > 0, because

lim
ε→0

e−ε|ω| = e0 = 1

regardless of the value of ω. To this end, for very small ε > 0,
we rewrite (2.10) as

uR(t) =
1

2π

∫∞
−∞ dωe+iωtûR(ω)e−ε|ω|

=
1

2π

∫∞
−∞ dωe+iωte−

CP
2 sgn(ω)ie−ε|ω|

(2.12)

37



Splitting the integral into its negative and positive parts gives
us

1

2π

(∫0
−∞ dωe+iωte+

CP
2 ie+εω +

∫∞
0
dωe+iωte−

CP
2 ie−εω

)

=
1

2π

(
e+

CP
2 i

∫0
−∞ dωeω(it+ε) + e−

CP
2 i

∫∞
0
dωeω(it−ε)

)

Calculating the anti-derivatives of the summands yields

1

2π

(
e+

CP
2 i

[
1

it+ ε
eω(it+ε)

]0
−∞ + e−

CP
2 i

[
1

it− ε
eω(it−ε)

]∞
0

)
(2.13)

The vanishing of the non-trivial limit

lim
ω→∞ eω(it−ε) (2.14)

can be seen as follows. We rewrite (2.14) as

lim
ω→∞

(
eωi
)t

lim
ω→∞ e−εω (2.15)

The expression

eωi = cos(ω) + i sin(ω) (2.16)

is known as Euler’s formula and describes that eωi is a finite
(complex) number located on the circle with origin at 0 and a
radius of 1. This means that

(
eωi
)t is an arbitrary oscillatory fac-

tor because t > 0 is also finite. The limit in (2.15) therefore only
depends on limω→∞ e−εω which is 0 for ε > 0. Consequentially,
the limit (2.14) also vanishes. Analog reasoning gives

lim
ω→−∞ eω(it+ε) = 0 (2.17)

Plugging these limits into equation (2.13) and using exp(0) = 1
yields

1

2π

(
e+

CP
2 i

(
1

it+ ε

)
+ e−

CP
2 i

(
−

1

it− ε

))
=
1

2π

(
e+

CP
2 i(−it+ ε) + e−

CP
2 i(it+ ε)

ε2 + t2

) (2.18)
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and applying Euler’s formula (2.16) for ω = ±CP2 reduces the
equation to

(cos
(
CP
2

)
+ i sin

(
CP
2

)
)(−it+ ε) + (cos

(
CP
2

)
− i sin

(
CP
2

)
)(it+ ε)

2π(ε2 + t2)

(2.19)

because sin(−x) = − sin(x) and cos(−x) = cos(x) for x ∈ R.
Finally, simplifying (2.19) gives us the convolution kernel

uR(t) =
1

π(ε2 + t2)

(
t sin

(
CP

2

)
+ ε cos

(
CP

2

))
(2.20)

and qR(t) = (rR ∗uR)(t) performs the phase shift in time-domain.
Replacing CP

2 with −CP
2 gives us the kernel for rL(t), i.e.,

uR(t) =
1

π(ε2 + t2)

(
−t sin

(
CP

2

)
+ ε cos

(
CP

2

))
and qL(t) = (rL ∗ uL)(t) implements the phase shift.
In our model, setting ε = 20

96000 ≈ 0 for the regularization factor
results in robust phase shifts.

Membrane Potentials. To translate the response of the binaural
processing steps into a membrane potential, we must account
for the biophysics of typical MSO and lLSO membranes as
described in Section 3.3.1. Therefore, we designed a filter to re-
flect the channel kinetics, i.e., the interplay of the low-threshold
voltage-gated potassium channels (Kv1), the hyperpolarization-
activated cyclic nucleotide-gated cation channels (HCN) as well
as account for the passive membrane properties with its low-
pass frequency behavior due to the leakiness of MSO and lLSO
neurons. Following the notions in Fischer et al. (2018), we use a
second-order gammatone-bandpass-filter of the form

m(t) = t exp(−tβm) cos(2πtΦm) (2.21)

which acts as membrane filter m which is applied to the CD-
and CP-shifted responses qR/L(t). The bandwidth is set to βm =

2765Hz and the center frequency to Φm = 427Hz. This type of
filter cascades a low-pass and high-pass filter and, most impor-
tantly, the filter parameter choices establish a membrane time
constant of τm = 1

βm
= 1

2765Hz ≈ 361.66µswhich is small enough
to guarantee the existence of membrane potential resonance
properties which facilitate frequency specific processing (Fischer
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et al., 2018). Convolved with m, i.e., VR/L(t) = (qR/L ∗m)(t) we
receive the individual inputs from right and left ear to the MSO
or lLSO cells. The membrane potential of one cell is the sum of
these inputs, i.e.,

V(t) = VR(t) + VL(t) (2.22)

and the resulting output, i.e., the amplitude, is interpreted as
the membrane potential V(t) in response to a specific sound for
fixed parameters BF, CD and CP.

2.1.4 Population ITD Encoding

Neuronal Subpopulations. For every single cell in the MSO and
lLSO we derive a separate membrane potential V(t) as described
in Equation 2.22. As mentioned in Section 1.2.2, a tone delay
curve, i.e., the firing rate response of a cell vs. ITD, shows vari-
ability for pure tone sound stimuli with differing frequencies.
Consequently, tone delay curves are not frequency-invariant. For
this reason, we analyze subpopulations of neurons in each nu-
cleus and hemisphere rather than interpreting the responses on
a single-cell level. All cells that have the same BF assigned make
up such a subpopulation which we now refer to as a BF-channel
in order to emphasize the identical BF per neuron. Note, that
this automatically implies that there is no crosstalk explicitly
implemented between different BF-channels. The neurons are
separated by frequency-channels. But due to the nature of the
basilar gammatone filter as described in Section 2.1.3, this does
not mean that there is an absolute separation of frequencies.
There of course will be leak from higher frequency-channels
into lower frequency-channels.

Tone Delay Curves Calibration. Frequency-variance is not the only
problem at hand when analyzing auditory brainstem neurons.
Several filtering mechanisms in the peripheral and binaural pro-
cessing stages lead to inevitable distortions of the membrane
potential V(t). In order to correct for this, i.e., to extract tone
delay curves that match the in-vivo data as observed in e.g., Yin
and Kuwada (1983a) or Pecka et al. (2008), and also described in
Section 1.2.2, the tone delay curves must first be calibrated via
sinusoidal pure tones before being able to make implications
about complex sounds.
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The responses of all single neurons belonging to one BF-channel
in each separate nucleus (MSO/lLSO) and hemisphere (left/
right) are summed up and averaged according to the number
of neurons (100 for MSO and 51 for lLSO per BF-channel). This
results in the population membrane potential. The driving stim-
ulus for calibration is a sinusoidal pure tone with a frequency of
the current observed BF. From this we plot the tone delay curve:
population membrane potential against ITD. Each BF-channel
then receives a membrane potential amplification factor ABF in
such a way that the peaks and troughs of the MSO and lLSO
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Figure 2.3: Tone Delay Curves. Mean V(t) vs. ITD. Stimulus is a pure
tone with frequency identical to BF. Each row corresponds
to one specific BF-channel. MSO is depicted in blue, lLSO in
green. Left panels show the response of the left hemisphere,
right panels the response of the right hemisphere. Gray
areas denote the physiological range for human (±700µs).
The maximal average response of each nucleus declines
the larger the value of the BF. Note how, for example, in
the top left panel the MSO curve loses injectivity at the
peak located at approximately +300µs. An ITD very close
to the left or right to this point of injectivity-loss could
not be resolved unambiguously by the MSO since one
value of mean V(t) would code for two different ITDs.
However, the slopes of MSO and lLSO curves are offset
(by approximately 500µs) and so the lLSO curve is still
injective in an interval around +300µs meaning the lLSO
curve can still resolve ITDs unambiguously as one mean
V(t) codes for exactly one ITD.



have similar population membrane potential. This is not ideally
possible for all BF-channels as the MSO is more responsive to
very low frequencies and loses range in the membrane potential
domain the higher the value of BF is set (see bottom graphs in
Figure 2.3). The lLSO also loses range in its membrane potential
domain but is more stable than the MSO (which is to be expected
for lLSO neurons). Once a fitting amplification factor ABF per
BF-channel is ascertained, this same factor is also applied to the
membrane potentials which are generated from complex sound
stimuli.
The resulting tone delay curves from three different BFs for
sinusoidal stimuli can be seen in Figure 2.3. Note that the y-
axis (population membrane potential) is in arbitrary units. The
reason for this is that the exact absolute magnitude of response
is not of importance for the model. It is rather crucial that the
slopes of MSO and lLSO tone-delay curves are offset. Because
this means, that if one of the two tone-delay curves (MSO or
lLSO) loses injectivity due to reaching a peak or trough, the other
delay curve can possibly counter this by being itself injective in
an area around a current observed ITD and thus resolve the ITD
unambiguously (see Figure 2.3 for further explanation).

Mean Population Response. To find an encoding mechanism for
ITDs, we now look at the BF-channel-specific amplified re-
sponses. For this, we analyze these subpopulation responses
under the condition that ITDs are fixed and plot the activity
of the two nuclei of one hemisphere against each other, i.e.,
the activity from each hemisphere is evaluated separately at this
point. The response lLSO vs. MSO is then plotted over time t (in
seconds) for the entire duration of the input stimulus. In Figure
2.4 we see the 200Hz-channel population response from the left
hemisphere for a sinusoidal driven at 200Hz (top graphs) and
for the complex calibration sound stimulus (bottom graphs). For
the right hemisphere, the resulting graphs have the same shape
due to the hemispheric-symmetric structure of the model, but
with the fixed ITDs having opposite sign.
For every fixed ITD (different ITDs are represented by different
colors), every point on the respective colored curve is a sample
with a sampling frequency of 96000Hz within a cycle of a sound.
As the training stimuli are sufficiently long enough and span
several cycles, this gives rise to ellipse-shaped geometric objects.
Let us now consider all data points (i.e., the response to each
point in time t) to one fixed ITD. We can interpret every data
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Figure 2.4: Mean population responses of lLSO vs. MSO at BF =

200Hz for pure tone (top graphs) and sentence (bottom
graphs). Different colors represent fixed ITD values. Iden-
tity line plotted in magenta for reference. Every popu-
lation response vector ~zITD encodes exactly one MPA
φITD = arg(~zITD) (see text for further explanation). For
the left hemisphere (left graphs), φITD is largest for high
values of ITD. For the right hemisphere (right graphs),
φITD is largest for low values of ITD. The ellipses are
denser for complex stimuli (bottom graphs), nevertheless
the summation over all data points t results in a unique
MPA for each individual ITD, establishing an encoding
mechanism for ITDs.
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point t as a complex number zt = a+ ib ∈ C (a,b ∈ R and i
imaginary unit) in the Gaussian number plane. Summing up
over all data points t∑

t

zt = ~zITD (2.23)

results in the population response vector ~zITD to a given fixed
ITD. We now make use of a simple mathematical concept of
complex numbers: Summing up over several complex numbers,
which individually themselves can be represented by vectors
in 2d-space, results in a single line or single vector. A simple
consequence of vector algebra. For a perfect ellipse, this line
would overlap with the principal axis of that ellipse. For the
ellipse-similar objects as shown in Figure 2.4, the line can only
be thought of as an approximation of such a principal axis. Nev-
ertheless, summing up over a large set of data points t thus
results in a stable line, the population response vector.
For every fixed ITD, i.e., for every ellipse-shaped object, the fol-
lowing procedure can be reiterated: We calculate the population
response vector ~zITD and propose that the ITD is encoded in
this response vector via the argument

φITD = arg(~zITD) (2.24)

which is geometrically the angle enclosed by the axis of abscis-
sas and the vector ~zITD. We coin this the mean population angle
(MPA) to a given ITD. Calculating every MPA to every ITD
thus provides an encoder for a specific ITD to a given BF. To
make this encoder more precise, before calculating the MPA, a
BF-specific noise limit is set to remove activity which is too low
which would distort the MPA.
It is noteworthy at this point, that although the ellipses to dif-
ferent fixed ITDs overlap to some extent, this does not infer
ITD ambiguity. Because if summed up over all data points, the
resulting mean population vectors do not overlap anymore and,
of course, the longer the training stimulus is, i.e., the longer you
average over time, the robuster this vector is.
A general and crucial observation in the mean population re-
sponses is that the contraleading nucleus will always show a
higher response than the ipsileading nucleus. For increasing
positive ITDs (arriving at the right ear first), the contraleading
left hemisphere shows an increase in the response of both nuclei.
This also explains the overall form of the ellipses and how they
change when manipulating the ITD from lower to higher values.
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The principal axis of each ellipse not only gets expanded (i.e.,
the area of the ellipse enlarges), but the ellipses also move in
an upwards direction when the ITD is shifted towards more
positive values, peaking in its form at +1000µs. The same obser-
vations hold true vice versa for shifting from positive to negative
ITDs when considering the right hemisphere. It is exactly this
change of form of the ellipses which qualifies the MPA as an
ITD encoding mechanism. The overall resulting ITD encoders,
the calibration curves, are discussed in the next subsection and
also the arising issue of ITD-ambiguity.

ITD Encoding: Calibration Curves. We now commence calibrat-
ing the model by calculating all MPAs to all combinations of
ITDs and BF-channels per hemisphere. Calculations have been
performed for ITDs ranging from −1000µs (which denotes left
with respect to midline) to +1000µs (right with respect to mid-
line) in steps of 50µs. Note that we consider ITDs exceeding the
physiological range of humans by ±300µs. First of all, in order
to avoid computational errors in MATLAB when time-shifting
signals, we need to take the sampling rate into account and
adjust the ITD increments. The rate is 96000Hz and because
5 x 10−5 /∈ 96000−1N (50µs is not a multiple of the inverse
sampling rate), the increments are adjusted using the MATLAB
in-built round function according to

ITDnew = (2 x
1

96000
) x round

(
ITD

2 x 1
96000

)
and the twice arising factor 2 is necessary because we shift by
ITD
2 (see Section 2.1.3: ITD introduction). This adjustment of the

ITD increments guarantees that the resulting ITDs are multiples
of the inverse sampling rate, establishing a reliable time-shifting
method and thus enabling us to keep faithful to the temporal
precision of auditory brainstem cells on these very small time
scales.
Calibration curves are calculated for each hemisphere individ-
ually for a fixed BF-channel. To every possible ITD the accord-
ing MPA is computed. Plotting MPA vs. ITD gives us the the
ITD encoder, the calibration curve. The resulting curves are
shown in Figure 2.5. Different colors now represent different
BF-channels. The top two panels show the calibration for the
pure tone stimulus (driven at that BF), the bottom two panels
show the calibration for the complex training stimulus. Left two
panels represent left hemisphere and right two panels the right
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hemisphere. Note that the pure tone calibrations (frequency
F = BF) show expected periodicity for multiples of the period
1
F , which leads to non-injectivity when monotony switches at
troughs and peaks. For higher frequencies, this presents a prob-
lem because the non-monotonic areas become very small with
respect to the physiological range and thus a unique relation
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Figure 2.5: Calibration Curves. MPA vs. ITD for pure tone stimuli (top
graphs) and complex stimuli (bottom graphs). Different col-
ors represent different BF-channels. The calibration curves
of the right hemisphere (right graphs) appear as mirrored
(at axis ITD = 0) versions of the calibration curves of the
left hemisphere (left graphs). ITDs are best encoded in
areas of steep slopes and areas of curves that have similar
MPA values represent frequency-invariant ITD encoding,
i.e., regardless of the frequency of the current BF, the same
ITD is encoded by very similar MPAs.

between MPA and ITD breaks down (Leibold and Grothe, 2015).
For the complex sound stimulus, there is no ongoing periodic
signal. The reason is because in sinusoidal tones the high fre-
quency components are stationary and for spoken sentences
these components are not stationary anymore, i.e., periodicity
in the evaluated range is broken down. Simply put, this means
that there is no clear periodicity visible in this range for complex
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tones as it is for sinusoidal tones (compare Figure 2.5 top and
bottom graphs). This is a direct consequence of the construction
of the basilar membrane filter as described in Section 2.1.3. Due
to the finite filter bandwidths (the ERB and thus also the filter
width increases with increasing BF-channels), the IPDs (i.e., the
interaural time differences multiplied with sound frequency)
are no longer sufficiently constant for a given ITD at high fre-
quencies. For complex tones which have a broad spectrum, this
results in a wide range in which ITDs can later be decoded from
as we have larger ITD-domains that are strictly monotonous.
Although the calibration curves of the complex sound stimulus
are not monotonous over the whole physiological range for BFs
above 355.7Hz, the overall strictly monotonous ITD-ranges are
still much larger than for periodic sounds. Thus the calibration
curves of complex sounds provide a much better chance at de-
coding ITDs for arbitrary sound stimuli, especially for higher
frequency channels.
Mechanistically speaking, the flattening of the curves in Figure
2.5 can be explained by the mean population responses for MSO
and lLSO as shown in Figure 2.4. In that example, the responses
are shown for BF = 200Hz. For higher frequencies (not shown)
there are two important aspects that change. Firstly, the overall
amplitudes becomes lower the higher the BF is. But since this oc-
curs for both MSO and lLSO responses simultaneously, it would
not influence the MPA since it is only a rescaling of both axes.
Secondly, the different colored point clouds (ellipses which rep-
resent a fixed ITD) move closer together. The higher the BF, the
more the ellipses move towards the midline axis, except those
ellipses which are already clustered around midline as these
stay stationary. A direct consequence from this phenomenon is,
that the closer all of the ellipses are together, the more similar
the MPAs become for varying ITDs, resulting in the calibration
curves which can be observed in Figure 2.5.

ITD Decoding: Elimination Rule. To be able to use the calibration
curves and successfully decode ITDs for arbitrary sound stimuli,
ITD-ambiguity has to be resolved. To guarantee uniqueness of
ITD, the calibration curve must be injective, i.e., one MPA may
not encode more than one ITD. Geometrically this is only the
case if a parallel to the ITD-axis has exactly one intersection
with the calibration curve (Figure 2.5). Since this is not the case
whenever a calibration curve has a trough or a peak, we have
ITD-ambiguity for these cases. Restricting the calibration curves

49



to monotonous parts counters the ITD-ambiguity directly. Since
the left hemisphere encodes better for positive ITDs (contralead-
ing) and the right hemisphere encodes better for negative ITDs,
we implement the elimination rule as follows.

Elimination Rule: For left hemisphere, we only consider values
of the calibration curves starting at the trough and the remain-
ing right branches. For right hemisphere, we only consider the
remaining left branches.

This straightforward rule can furthermore be justified by the fact,
that those parts of the calibration curves which are eliminated
via this rule yield very low mean membrane potentials V(t) as
these eliminated parts are located ipsilaterally with respect to
the current hemisphere performing the ITD estimation. Thus
ITD estimations in one hemisphere from those branches would
not weigh much into the subsequent overall hemispherically
balanced ITD estimation as described in Section 2.2.1, since it
would be dominated by the ITD estimation from the other hemi-
sphere due to the high mean membrane potential (contralateral
preference). The elimination rule therefore can be seen as a
means to make the hemispherically balanced ITD estimations
more precise.
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2.2 itd estimations in complex auditory scenes and

sound source separation

The model described in Chapter 2.1 can now be applied to
estimate ITDs in complex auditory scences. Such a complex
auditory scene is simulated by extending the number of inputs
to the model. This can now be any number of n concurring,
different signals (see Figure 2.6). Each signal has its own specific
ITD assigned. All of the ITD-shifted signals are then summed
up to obtain one superposed input signal. This signal now
resembles a complex auditory scene with various sound sources
distributed across the azimuthal plane. The effective model is
then applied to this superposition input for each BF frequency-
band and each hemisphere separately which results in an MSO
and lLSO membrane potential. Similar to the derivation of the
calibration curves, the membrane potentials are at first obtained
over the whole stimulus duration time. However, estimating

Figure 2.6: Complex auditory scenes and sound separation. Individ-
ual speakers are resembled by signals which each receive
one ITD. The ITD corresponds to the signal’s azimuthal
position in space. The sum of all signals, the superposed
signal, resembles a complex auditory scene. The effective
model is applied to the superposed signal and subsequent
short-term ITD estimation results in hemispheric estimates
which are balanced according to each hemisphere’s overall
activity. A Gaussian mixture model determines the num-
ber of signals contained within the complex auditory scene
and also their respective ITD. In a final step, the individ-
ual signals are extracted from the superposed signal (see
main text for further explanation), yielding separated and
reconstructed signals purely on the basis of ITD.
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an ITD over the entire time interval (e.g., for a 2min stimulus)
would of course be biologically implausible. Instead, to retrieve
biologically relevant results, we now introduce the concept of
short-term ITD estimations.

2.2.1 Short-Term ITD Estimations

In general, to estimate ITDs from the superposed input signal,
we decode from the calibration curves that we obtained in Sec-
tion 2.1.4. Completely analogously to calibration, the model
simulates the MSO and lLSO membrane potentials for the input
signal. The main difference is, that in the calibration procedure,
the ITD was an overt input to the model and thus the assign-
ment ITD 7→ MPA was a unique, deterministic mapping. Now
the ITDs of the various individual input signals are not overtly
accessible to the model and thus each ITD is covertly bound
to the superposed input signal because within it the different
input ITDs are contained. Therefore, we now apply the reverse
operation MPA 7→ ITD where the mean population angle gives
us exactly one ITD. Instead of computing an MPA (and thus an
ITD) over the whole stimulus duration t, we estimate ITDs in
successive time bins of length δt and the amount of ITD esti-
mations is thus equal to the amount of time bins. Each of these
time bin estimations is referred to as a short-term ITD estimation.
Since a model assumption is that the short-term ITD estimations
are considered to be performed by each hemisphere individu-
ally, a short-term ITD is retrieved from left and right hemisphere
individually in each time bin. Subsequently, in every time bin
these two estimates are combined. To this end we use the con-
cept of hemispheric balancing as described in Section 1.4.1 (also
cf. Lingner et al., 2018). For each time bin and each hemisphere,
we denote the short-term ITD estimation as φL/R (L: left hemi-
sphere, R: right hemisphere). These are then hemispherically
balanced according to

ITDest = arg[g(aL)exp(iφL) + g(aR)exp(iφR)]

in which aL/R (L: left hemisphere, R: right hemisphere) is the
sum of the MSO and lLSO membrane potentials in the cur-
rent time bin and g(a) = exp(a/a0) a monotonically increasing
exponential weighting function. Numerical simulations were
performed for a0 = 0.5021. The underlying idea is, that the
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higher the activity in one hemisphere, the higher the influence
of the estimation of said hemisphere is on the balanced esti-
mate and vice versa, if the activity is very low, it barely has
any influence on the balanced estimate. The chosen value for
a was based on the assumption that the model should always
perform a clear favoring of one hemisphere even when there
are only minute differences in the membrane potentials of the
two hemispheres. These can then be accurately detected and the
ITD estimations can be weighed accordingly. This choice for a
yielded more reliable balanced ITD estimations as compared
to the value a = 0.07 as used in Lingner et al. (2018), which is
due to the increased steepness of the exponential for smaller a.
The need for a different value is due to the fitted values of the
BF-specific amplification factors ABF in the model calibration
(cf. Section 2.1.4). In case one of the hemispheres cannot per-
form an estimation (this is the case when there is no mapping
MPA 7→ ITD), this hemisphere is exempt from the balanced
estimation. If both hemispheres cannot retrieve an estimation,
no localization of sound can be performed for this time bin.
In Figure 2.7, we describe the influence of the length of the
short-term ITD estimation window δt on the accuracy of the
estimated short-term ITDs. To this end, we use four pure tones
and two natural stimuli, all shifted by the same ITD. In each BF
we vary the window δt from 1ms to 10ms and for each choice
of δt we compute the root-mean-square error (RMSE) of all
estimated balanced ITDs compared with the ground-truth ITD.
We find that the value of RMSE is stable for all tested sounds for
δt = 10ms (and higher) across all BF-channels. Even though the
RMSE becomes worse for higher BF (> 1124Hz), there are no
more strong fluctuations for this value. Only considering pure
tones, the RMSE is already stable for approximately δt = 2ms
(and higher). Considering all tones, the higher the BF, the higher
the localization error, which is especially noticeable for complex
tones. There is therefore a dependency on low-frequency contri-
butions for good ITD estimations. Generally, complex tones have
a worse RMSE than pure tones. This is an interesting finding,
because it seemingly contradicts the consistent finding in the
literature, that the sensitivity to low-frequency ITDs in humans
is more precise with tone complexes rather than with pure tones
(Klumpp and Eady, 1956; Thavam and Dietz, 2019). McFadden
and Pasanen (1976) give a possible explanation which could ex-
plain this conundrum. They point out, that different tone types
have different ITD types embedded in the tone structure. Pure
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tones below 6 1500Hz have an (1) onset ITD and if the sound
is longer than 1ms it also has an additional (2) ongoing ITD.
For complex tones there is an additional time difference, the (3)

envelope ITD. For low-frequency complex tones, all three types of
ITDs can be used to perform lateralization, whereas for higher
frequencies the ongoing ITD (2) cannot be used (cf. Figure 2.5
and the shortened areas of clear ITD resolution for pure tones
at high frequencies). The missing of (2) could therefore explain
why the RMSE becomes so high for BFs > 1124Hz. To investi-
gate the fact, that the RMSE is higher for tone complexes than
for pure tones in this model (which it should not be), all three
of these ITD types should be incorporated in further studies to
guarantee more consistent results with human psychophysics,
as onset ITDs and envelope ITDs have been omitted from these
analyses.
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Figure 2.7: Minimizing the RMSE of short-term ITD estimation. RMSE
vs. window length δt. Every panel displays the currently
observed BF-channel. The colorbar shows the frequency
for pure tones (dashed lines). Red and green (solid) lines
show RMSE of complex stimuli (green: female speaker;
red: calibration stimulus excerpt). Every signal is shifted by
ITD = −200µs. For fixed window lengths δt, the RMSE is
computed for all balanced ITD estimations vs. the ground-
truth ITD. The vertical blue dashed line (10ms) resembles
the value of δt where there are no more strong fluctuations
of the RMSE for a given stimulus.
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2.2.2 Sound Source Separation

The next subsection deals with the question, whether sound
sources can be separated solely on the basis of one sound cue,
the short-term ITD estimation. A successful separation of sounds
only based on ITDs and neglecting other cues such as spectral
components would establish a novel concept of sound source
separation. To achieve this, the model must first establish how
many signals are contained within the superposed signal, i.e.,
how many speakers are within the complex auditory scene. This
number is equivalent to the number of ITDs contained within
the superposed signal (see Figure 2.6). Secondly, an ITD estima-
tion for the entire duration of the stimulus is needed, since the
separation and then reconstruction of sounds will be based on
these ITD estimations. The ITD estimations which are retrieved
from the entire stimulus duration are now coined long-term ITDs.
It should already be noted at this point, to prevent confusion,
that long-term ITDs are directly derived from short-term ITDs
and thus the latter serve as the basis of sound source separation.
In other words, the long-term ITD is calculated for a time inter-
val which is larger to the short-term ITD time interval and thus
a long-term ITD stems from the distribution of short-term ITDs.
To retrieve a long-term ITD estimation for a given superposed
signal, we make use of the short-term ITD distributions esti-
mated in Section 2.2.1. Short-term ITD distributions are calcu-
lated with the MATLAB built-in histogram function. The binning
of the histogram is set to 10µs. This choice is based on psy-
choacoustic experimentally derived value for the just noticeable
difference (JND), i.e., the lowest possible ITD detection thresh-
old, in human on average (Klumpp and Eady, 1956; Zwislocki
and Feldman, 1956; Mills, 1958), even though values as low as
3.3µs JND have also been reported for individuals (Thavam and
Dietz, 2019). To all histograms derived from one superposed
signal, we fit a Gaussian mixture model (GMM) distribution
which is used to estimate the long-term ITDs.
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Figure 2.8: Short-term ITD estimation and GMMs. A. Two input sig-
nals (green graphs), male and female, shifted by ITD1 =

−500µs and ITD2 = +110µs, respectively). Bottom Graphs
are a close-up where red shows the arrival at right ear and
blue at left ear. B. Short-term ITD estimation every 10ms
for the sum of the inputs in A in the 200Hz BF-channel.
Red and blue horizontal lines are ground-truth ITDs. C.
Fitting of GMMs for 10ms short-term ITD distributions
in each BF-channel for the entire stimulus duration. His-
togram binning is 10µs. Red and blue vertical lines are
ground-truth ITDs. D. Sum histograms of all BF-channels
in C. Left histogram is for 10ms, right for 1ms short-term
ITDs. See main text for further description.
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Figure 2.9: The RMSE vanishes for sufficiently long-term ITD estima-
tions. For a fixed short-term ITD window length (columns;
1ms, 2ms and 10ms) and for different frequency bands (in-
dicated next to orange arrows) the long-term ITD window
length T is fixed. For every T , a GMM is fit to the distribu-
tion of short-term ITDs to retrieve an ITD estimate for each
speaker. Uneven rows: Overlap fraction vs. T. Even rows:
RMSE vs. long-term window length T. Ground truth ITDs:
ITD1 = −500µs (red), ITD2 = +110µs (blue). Solid lines
indicate when the GMM fit the amount of speakers via the
BIC. Dots indicate when the number of GMM components
was set to two. See main text for further explanation.

58



Gaussian Mixture Models and Long-Term ITDs. A GMM makes the
assumption, that all data points are produced from of a mixture
of k (k ∈N>1) Gaussian distributions. The parameters of these
Gaussians are unknown. The use of GMMs is a straightforward
choice for our underlying data, because we observed most of the
short-term ITDs to scatter mainly around the ground-truth ITD
and few wrong estimates to deviate further from the ground-
truth ITD which precisely fits the distribution of a Gaussian.
Considering our auditory scene analysis, this means that if it
simply consists of only one signal, then we would also expect
only one Gaussian to be fitted to the data and its peak to corre-
spond to the ground-truth input ITD. If the superposed signal
is complex and made up of 2, 3, ...,n input signals, we would
also expect 2, 3, ...,n Gaussians, respectively, with each peak
approximating one ground-truth ITD of the individual input
signals. Therefore, the number of Gaussian curves or compo-
nents of the GMM can be thought of as representing the number
of speakers of the complex auditory scene. However, there are
cases where there are more components fitted than speakers
are contained within the signal, but this is only the case if the
peak of one Gaussian G1 is under the curve of another fitted
Gaussian G2 and if the means are close to each other. We use
the object GaussianMixture implemented in Python Scikit-learn,
which employs an iterative Expectation-Maximization (EM) al-
gorithm to maximize the likelihood of each Gaussian. From the
superposed input signal, this procedure extracts the amount of
speakers (i.e., the number of maxima) as well as each long-term
ITD which is equivalent to the means of every fitted Gaussian.
A problem that can arise is that the number of Gaussians that
the GMM is trying to fit to the data is too large, i.e., there are too
many components observed in the GMM. The correct number
of components, i.e., the correct amount of Gaussians fitted to
the data is of high importance, because it directly reflects the
numbers of speakers within the complex auditory scene. To
obtain a reliable estimate for the number of components, we cal-
culate the Bayesian information criterion (BIC) which, in short,
seeks the best-fit model to accurately represent the underlying
data (Schwarz, 1978; Wit et al., 2012). The best-fit model is the
one that has the least information loss when compared to other
models. The BIC is calculated for each GMM with number of
components ranging from 1 to 5 in increments of 1. Choosing the
model with the lowest BIC results in the best candidate for the
number of components. The number of components retrieved
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from the BIC were compared to the similar Akaike informa-
tion criterion (AIC) (Akaike, 1973; Akaike 1974). Calculation of
the AIC delivered no differences to the number of components
when compared to BIC.
Using the GMMs, we can now analyze the influence of the long-
term ITD window length T which is necessary for a good fit
of Gaussians in order to retrieve ITDs that do not deviate too
much from the ground-truth ITDs. The exact procedure and the
derived GMMs from all BF-channels are shown in Figure 2.8.
Two input signals (green graphs; male and female speaker, 20s
stimulus) are shifted by ITD1 = −500µs and ITD2 = +110µs.
The bottom graphs are a close-up (2.8A). Red resembles the
input arriving at the right ear, blue left ear. For the sum of the
time-shifted input signals of A, balanced short-term ITD esti-
mations (green circles) are performed for the whole stimulus
duration in time bins of 10ms (2.8 B). Blue and red horizontal
lines are ground-truth ITDs. The estimations temporally cluster
around different ITDs for different time windows in line with
the theory of glimpsing (cf. Cooke, 2003), where a signal of a
complex scene can be perceived more dominantly than another
for a brief period of time before another signal is perceived more
dominantly. For the whole stimulus duration and to each BF-
channel, a GMM (red curve) is fitted to the balanced short-term
ITD estimations grouped into histograms of 10µs (2.8C). The
location of the stimuli is estimated by the maxima of the Gaus-
sians. For higher frequency (> 843Hz) channels, the estimations
become less reliable and deviate more from the ground-truth
ITDs. The two GMMs in 2.8D show the short-term ITD esti-
mations summed up for all frequency channels. Left for 10ms
short-term ITDs and right for 1ms. It is noticeable, that the sum
histogram for 1ms has worse ITD estimations than the sum his-
togram for 10ms. We consider this to be the result of the higher
BF-channels, which generally have worse estimations than the
low-frequency channels. To this end, we therefore compared the
RMSE of long-term ITDs calculated for varying window lengths
T in different frequency bands (cf. Figure 2.9). For fixed short-
term ITD window lengths of 1ms, 2ms and 10ms, we calculate
the RMSE under two different conditions. In the first condition,
the GMM was supposed to gauge the correct number of speak-
ers, in the second condition, the GMM was set to estimate ITDs
with two fixed components, i.e., the GMM knew a priori that
there were two speakers. The amount of correct detections of
the number of stimuli over time bins is defined as the overlap
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fraction. An overlap fraction converging to zero implies that the
GMM does not detect the correct amount of signals anymore.
For sufficient long time bins T , this case always occurs. This is
in line with the result that the sum histogram for 1ms has worse
estimations than for 10ms as the overlap fraction is much lower
and converges faster to zero than for 10ms.
For the other condition that the number of components was
set to two, it is apparent that the longer the long-term ITD es-
timation is, the more precise the estimation gets. In every case,
for sufficient long times T, the RMSE converges to zero which
means a perfect estimation. From both conditions we conclude,
that there are two questions to be answered when performing
sound localization. The first question is how many stimuli are
present in the auditory scene. The second question is where
are the stimuli. For long time windows T, the precise gauging
of numbers of speakers becomes more difficult, i.e., for very
short time windows T an estimate of the number of speakers
can be extracted. While lateralization works well in any case
(i.e., a general idea where the stimuli are located), the precise
estimation of stimuli takes at least 1− 2 seconds, depending on
the stimulus. It is therefore not unreasonable to assume, that
these two processes are carried out subsequently when trying
to localize sounds. First, the number of speakers is estimated
and when this number is known (corresponding to setting the
GMM to two components), then the reliable estimation of the
direction of the sound sources can be carried out.

The Moore-Penrose Pseudoinverse. Once the ground-truth ITDs
of the complex auditory scenes have been estimated via the
GMMs, the next step is to successfully separate and reconstruct
the original sounds. To demonstrate the underlying idea, we first
restrict our complex auditory scene to two signals S1 and S2 with
corresponding ITDs φ1 and φ2, respectively. The superposed
signals SR/L arriving at the right and left ear are then given by
the following two equations.

SR(t) = S1(t+
φ1
2 ) + S2(t+

φ2
2 )

SL(t) = S1(t−
φ1
2 ) + S2(t−

φ2
2 )
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We desire an expression only dependent on one signal. Thus,
we can make the subtraction ansatz

Φ1(t) = SR(t−
φ2
2
)−SL(t−

φ2
2
) = S1(t+

φ1
2

−
φ2
2
)−S1(t+

φ1
2

−
φ2
2
)

which is independent of S2. Computing the Fourier transform
gives us

Φ̂1(ω) = Ŝ1(ω) · 2i sin
(
φ1−φ2
2 ω

)
which can now be easily solved for Ŝ1(ω). Computing the back
transform results an explicit solution for S1(t). Analogously, this
method yields an explicit solution for S2(t).
Obtaining an expression only depending on one signal is unfor-
tunately not so simple when regarding complex auditory scenes
with more than two input signals. The superposed signals SR/L
arriving at the right and left ear for n signals are then given
by:

SR(t) = S1(t+
φ1
2 ) + S2(t+

φ2
2 ) + ... + Sn(t+ φn

2 )

SL(t) = S1(t−
φ1
2 ) + S2(t−

φ2
2 ) + ... + Sn(t− φn

2 )

From these equations, it is impossible to find a subtraction
ansatz so that the resulting expression is only dependent on one
speaker, i.e., the resulting equations will always be dependent
on n− 1 input signals. In terms of linear algebra, for n signals,
we receive a n− 1-dimensional system of linear equations with
n variables. Such a system of linear equations does not have a
unique solution as its coefficient matrix is singular and thus has
no inverse.
A remedy is that every system of linear equations A~x = ~b can
be solved with the Moore-Penrose pseudoinverse A+ which
is always existent and unique (Moore, 1920; Penrose, 1955).
In short, the pseudoinverse minimizes the problem ||A~x ′ − ~b||

where || · || describes the Eucledian norm. The vector ~x ′ then
represents the best approximation to the solution of A~x = ~b.
The pseudoinverse can be shown to be defined as

A+ = lim
ε→0

(
(ATA+ Eε)−1AT

)
where AT denotes the transpose of A and E is the identity
matrix of dimension dim(AHA). For our calculations, we set
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the regularization factor ε = 0.001. This value for ε resulted
in sound reconstructions with a correlation of 1 (original vs.
reconstructed signals) when the estimated long-term ITD was
identical to the ground-truth ITD (cf. next subsection). The
pseudoinverse thus now provides a means of sound source
separation and sound reconstruction when there are two or
more input signals in the complex auditory scene.
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Figure 2.10: Sound separation and reconstruction. A. Three auditory
scenes with two signals at different azimuthal positions.
Scene 1 (top): ITD1 = −500µs, ITD2 = +110µs. Scene 2

(middle): ITD1 = −404µs, ITD2 = +81µs. Scene 3 (bot-
tom): ITD1 = −220µs, ITD2 = −95µs. B. Probability vs.
correlation. Correlation and occurence was measured for
different reconstruction intervals (color code). C. Proba-
bility vs. correlation in the three different scenes from A
for a reconstruction interval of 500ms. D. Original signals
(green) shown with their reconstruction (blue, red). Top
panels scene 1, bottom scene 3. E. Reconstruction vs. orig-
inal signal scatter plots of the corresponding signals in
D. Values close to identity line represent good reconstruc-
tions. The correlation coefficient for the entire stimulus
duration is indicated by ρ.
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Figure 2.11: Separation of three signals in two different auditory
scenes. Group A. The three speakers are positioned at
ITD1 = −800µs, ITD2 = 400µs and ITD3 = 800µs.
ITD indicated in blue. Group B. The three speakers
are positioned at ITD1 = −800µs, ITD2 = 700µs and
ITD3 = 800µs. ITD indicated in blue. A1/B1. Three dif-
ferent signals (left to right panels). Original signals in
green, reconstructions in black. A2/B2. Reconstruction vs.
original signal scatter plots of the corresponding signals
(from left to right) in A1/B1. Values close to identity line
represent good reconstructions. The correlation coefficient
for the entire stimulus duration is indicated by ρ. See
main text for further description.
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Separation and Reconstruction. In the final steps, we now apply
the Moore-Penrose pseudoinverse to a variety of complex au-
ditory scenes to obtain separated estimated input sounds from
the original superposed input signal. To recapitulate, the super-
posed input signals SR/L at right and left ear consist of n signals
Sn shifted accordingly to their individual ground-truth inter-
aural time differences ITDn

2 . The GMMs estimate the amount
of input signals and an estimator of the azimuthal position of
each input signal in the form of long-term ITDs on the basis
of short-term ITDs. These estimated ITDs are denoted by φn.
The Moore-Penrose pseudoinverse uses these estimators φn to
separate the superposed input signal. Each separated sound
retrieved via the pseudoinverse is thus itself an estimator Ŝn
to each corresponding input signal Sn. Therefore each Ŝn is a
reconstruction of the original signals.
To measure quality of reconstruction, we have developed three
auditory scenes (2.10A) based on the analysis from the long-
term ITD estimations (cf. 2.8). All scenes have the underlying
ground-truth ITDs of speaker one with ITD1 = −500µs and
speaker two with ITD2 = +110µs (male and female speaker,
respectively, each 20s stimulus). In the first scene (2.10A, top),
we assume that the estimated ITDs (red and blue dot) are equiv-
alent to the ground-truth ITDs. In the second scene (2.10A,
middle), we assume that the estimated ITDs are perceived dis-
torted, i.e., pushed towards the midline by the 5%−quantile
RMSE of the short-term ITDs over the whole stimulus (96µs for
ITD1 and 29µs for ITD2). In the third scene (2.10A, bottom), we
assume the estimated ITDs to be pushed towards midline by
the 95%−quantile of all RMSE calculations (280µs for ITD1 and
205µs for ITD2). To find a suitable binning window for recon-
struction, we tested scene 1 for varying reconstruction window
lengths for signal 1 (Figure 2.10B), color code resembles different
window lengths. We then use the MATLAB function corrcoef to
measure the correlation ρ between original and reconstructed
signal in every time bin. A perfect correlation is denoted by
ρ = 100% and no correlation by ρ = 0%. The latter is defined
as the null hypothesis H0 that there is no statistically signifi-
cant relationship between original and reconstruction. Each ρ
determined by corrcoef has a corresponding p-value which is the
probability of H0 being correct. The significance level is set to
α = 0.05. A p-value of exactly 0.05 would entail that the deter-
mined ρ is due to only 5% chance. We reject the null hypothesis
if the p-value is smaller than α and then favor the alternative
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hypothesis, i.e., that there is a statistically significant correla-
tion between original and reconstruction (H1). Independent of
reconstruction interval length, we found the most reliable re-
construction for pseudoinverses for the regularization factor
ε = 0.001. Furthermore, we found that larger window lengths
show a higher probability of perfect reconstruction (Figure 2.10B,
correlation histogram binning in 5% increments from), therefore
we set the reconstruction interval to 500ms for the following
analyses. Figure 2.10C shows the correlation of the separated
and reconstructed signals (red ITD1, blue ITD2). The closer the
signals move to each other, the more difficult separation be-
comes (scene 3). In the initial condition (scene 1) separation for
both signals works very well for having a perfect reconstruction
(over 95%) for over 75% of the signal. A close up (2.10D, top two
panels) of the reconstruction signals (blue and red graphs) in
scene 1 shows how good the resemblance of the input stimulus
(green graph) is. For scene 3 (bottom two panels), the resem-
blance is lost. This is probably due to the fact, that in this scene
the two input signals are of almost overlapping origin. In Figure
2.10E, we show the original vs. the reconstructed signal. For a
perfect reconstruction, the data points would all be on the iden-
tity line. Thus, less deviations from the identity line resemble
better reconstructions.
A further example of sound separation and reconstruction of
three stimuli is shown in Figure 2.11 for two different auditory
scenes. In scene 1 (group A), the three speakers are positioned
at ITD1 = −800µs, ITD2 = 400µs and ITD3 = 800µs. In scene 2

(group B), the three speakers are positioned at ITD1 = −800µs,
ITD2 = 700µs and ITD3 = 800µs. Thus, in the second scene, the
second speaker has been moved away from the third speaker
closer to midline. In general the reconstructions are not as good
as compared to the scenario when only two speakers are present
(Figure 2.10), but it is apparent, that the more distance the
speakers have to each other, the better their own reconstruction
becomes.
Taking all results into consideration, we conclude that it is the-
oretically possible, that the short-term ITD can serve as the
sole cue to localize individual sounds in the azimuthal plane in
complex auditory scenes. Furthermore, it can also theoretically
serve as the sole cue to separate and reconstruct sounds from
the same complex auditory scene, given that the estimated ITDs
do not deviate too far from the ground-truth ITDs.
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3
D I S C U S S I O N

... but some are useful.

— George E. P. Box

3.1 summary of results

In this thesis we have sought to satisfy three main objectives in
order to obtain insight about a population code for sound local-
ization in horizontal space. In a first objective, we provided the
basis of this work, namely a phenomenological effective model
of binaural hearing in humans. With the help of this model, we
provided a possible neuronal code for the spatial representation
of acoustic space. In a second objective, the feasibility of this
code was tested by applying it to real-life speech to test whether
it can be utilized to estimate ITDs. In a third objective, we tested
if the code could be used to separate sounds from each other
in complex auditory scenes and, finally, if they could be recon-
structed. We now recapitulate the main results from these three
aims.

1. The Effective Model.
The neuronal population code itself is the result of our
approach towards an effective model, which was designed
such that it is fully biologically motivated and should
faithfully mirror large parts of the phenomenology of the
human binaural hearing apparatus. To this end, we have
implemented the two ITD-sensitive nuclei MSO and lLSO.
We have bypassed an implementation of the complex SOC
circuits by assigning to every neuron three defining charac-
teristics: the BF, CD and CP. An arbitrary binaural pressure
wave (a signal) was then assigned to a fixed ITD and run
through standard peripheral and binaural processing. The
resulting output was the membrane potential for each
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of the two nuclei. From the two-dimensional space that
these two membrane potentials span, we have derived a
neuronal code of ITDs. Since the two nuclei were each
considered in their entirety, i.e., all cells participated in the
establishment of the code, the ITD encoding mechanism is
thus based on a population code. The neuronal realization
(i.e., the population response) of an ITD is the MPA. To
every BF and to every ITD such an MPA exists and conse-
quently an ITD can be encoded by its corresponding MPA.
To guarantee a stable ITD encoding mechanism, we have
calibrated the model with a sufficient long stimulus which
spans a wide range of frequencies. Finally, the reverse
operation of inferring an ITD from the MPA to a fixed
BF for a given arbitrary complex signal was tested and
yielded robust results (correct estimations). The neuronal
population code we proposed for sound localization in
the azimuthal plane is thus fully captured by one single
quantity, the MPA.

2. Short-Term ITD Estimation.
The effective model itself and the newly established popu-
lation code for auditory space were then applied to esti-
mate ITDs in cocktail party scenarios. This was simulated
by summing up n input signals at different azimuth. Ap-
plication of the effective model to the superposed input
signals yielded the base raw data for the ITD estimation
procedure, namely the membrane potential of the com-
plex signal in 2d-space (lLSO V(t) vs. MSO V(t)). From
the MPAs we then decoded the corresponding ITDs of
the input signals. For biological plausibility, the individ-
ual estimations of ITDs were performed in short time
bins δt. Each estimation in such a time bin was coined a
short-term ITD. The short-term ITDs in each hemisphere
were then balanced according to their responses in the
two ITD-sensitive nuclei. Applying hemispherically bal-
anced short-term ITDs to complex auditory scenes gave
rise to the observation of the phenomenon of glimpsing,
i.e., the temporally restricted clustering of multiple sub-
sequent short-term ITD estimations close to one signal
before switching to another signal. This means that a lis-
tener would perceive the utterance of one speaker more
dominantly before perceiving the utterance of another
speaker more clearly. Lastly, in accordance with the phase
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locking behavior of auditory nerve fibers accompanied by
the high fidelity relay of APs from bushy cells to MSO and
lLSO neurons and the duration restrictions it presupposes
on the time window of synaptic integration of the two ITD-
sensitive nuclei, we observed a BF-dependent worsening
of the ITD estimations in case the length of the time bin
δt is only 1− 2ms which is still low enough to allow for
successful integration of synaptic inputs (see 3.3.1) when
considering that long-term ITD estimations (which them-
selves contain a specific amount of short-term ITDs and
are only a few hundreds of microseconds long; see below)
can be seen as an analogue to the integration process.

3. Sound Separation.
In the final objective, we analyzed if the neuronal rep-
resentation of auditory space, as supplied by the model
in the form of the MPA yielding a specific and unique
ITD, could serve as the sole basis for sound source separa-
tion. To this end, we introduced the concept of long-term
ITDs which were themselves based on short-term ITDs.
The latter were extracted from the information contained
within the population response (i.e., the value of the MPA)
and subsequently grouped together by corresponding his-
tograms. GMMs were then used to extract the number of
original input signals contained within the superposed sig-
nal, i.e., the complex auditory scene. The means calculated
by the GMMs represented the aforementioned long-term
ITDs which were interpreted as the ground-truth ITDs of
the various input signals. Thus, at this stage, the azimuthal
allocation of all speakers was completed. The long-term
ITDs then served as the basis of the sound separation
procedure. In order to isolate each input signal from the
complex signal, the Moore-Penrose pseudoinverse could
be used as it provided a means of solving the underlying
system of linear equations which arose when summing up
two or more time-shifted signals. The separated sounds
were then reconstructed. This was not performed for the
entire complex input stimulus duration at once, but for
smaller subsequent reconstruction intervals. We found that
for reconstruction intervals of 500ms the correlation with
the original signals were over 95% for over 75% of the
entire stimulus duration (20s), given that the estimated
ITDs are close enough to the ground truth IDs. We finally
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concluded our proof of principle, namely that the ITD
could theoretically serve as the only cue to separate and
reconstruct up to three sound sources in horizontal space
when they are contained within an auditory scene.

3.2 modeling : chances and limitations

3.2.1 Models and Reality

All of the results presented in this thesis are the direct prod-
uct of a theoretical computational model. The modeler must
decide on which biological aspects to focus on more in-depth
and which aspects to cover more superficially. This, of course,
can only happen if the modeler moves within a plausible and
realistic framework that does not give a distorted depiction of
the real world we live in. The fact that it is simply impossible to
integrate every detail of reality into a model has the immediate
implication that all models of biological systems will inevitably
be missing some features of the overall picture. This means that
the features of a model and all the results it entails can never
be a direct 1-to-1 mapping of the real world. In other words, a
model will always be wrong or faulty in the sense that it will
never be 100% complete. Nevertheless, models are useful tools
to help us understand at least pieces of how a biological system
might work and therefore we delineate the general chances that
go hand in hand with the methodology of modeling, but also
scrutinize the restrictions and dangers the modeler is confronted
with when designing such a model and put them into perspec-
tive with the current model at hand.

Advantages of Modeling. One of the biggest advantages of mod-
eling is that computational models can always be produced to
describe biological systems without the actual biological system
having to be readily available (in form of test subjects, brain
slices, etc.). Models are thus easy to handle tools to facilitate
the understanding of phenomena and they can provide novel
insights into neurobiological aspects that would otherwise be
difficult to test for. The reason for this is that the complexity of
models and the model itself is always under full control of the
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modeler. This means that the amount of variables is precisely
set and they can be either reduced or increased to investigate
different scenarios. Needless to say, the variables in real life
systems cannot be controlled with such precision. Having full
control over a model results in reproducibility of results which
makes it possible to analyze causalities in different biological
settings by changing parameters and variables. For example,
in our model it is very easy to shift the location of the input
sounds in space since this is just a number (the ITD) that we can
manipulate. There is no upper bound (except CPU hours) that
restricts us on the amount of different auditory scenarios that
we can create. Compared to an on-site experiment, there are,
however, many limiting factors, such as time, precise speaker
placement and limited attention spans of subjects.
A good model should furthermore be simple. Not only because
this simplicity allows for the identification of said causal compo-
nents, but also because the simplification process itself already
identifies which key aspects must be included in the model and
which aspects can be excluded. Our model is simple in the sense,
for example, that in the neuron population implementation we
only consider their defining properties (BF, CD and CP) and do
not consider the entire SOC circuits.
Finally, models are also highly informative when they produce
negative results (i.e., the hypothesis being tested is not verified)
or if the model breaks down altogether. Because this does not
mean that the model is wrong per se, it can simply mean that the
model must be altered in its current form and its configurations
to accurately capture the biological system or experiment in
question. Thus, the so-called breakability of a model can lead to
a more precise and better developed model which, in turn, can
reveal those key features of reality which are inevitable to the
model and cannot be left out of the implementation. Of course
these notions can also all be applied to live experiments, but
again, it is the full control over the experiment settings and the
simplicity that make models so advantageous as a repetition
of an experiment is much more time consuming, costly and
uncertain (i.e., the experiment may fail again) than tweaking
features of a model. (O’Reilly and Munakata, 2000; Bray, 2014;
Teufel and Fletcher, 2016). In our model, we established that
using any arbitrary ITD to shift the input signals would result
in unreliable calibration curves which would cause the model
to break down because no reliable estimation of ITDs could be
made. This could easily be fixed by only considering ITDs that
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were multiples of the inverse sampling rate. Although this poses
a restriction on the modeling process and the ITDs that can
be analyzed, it does not mean, that the real biological system
cannot correctly localize other ITDs.

Problems of Modeling. The most straightforward problem of a
model is that it can be too simple in comparison to the real-life
scenario. It may not capture core elements of the underlying
biology or the overall experiment and these elements and their
implications for the results may then simply go unnoticed by
the modeler. The pitfall of over-simplification may thus result in
a model that is not valid or cannot explain certain underlying
phenomena. A theoretical example would be if we considered
the anatomy of the SOC circuits to be unknown nowadays, but
the properties of the neuron population to be known. From the
results of our model, we could not make any statements about
the existence or importance of any underlying biological circuits.
Because of the simple structure of the model, the implication for
an intricate biological pathway might go unnoticed. Of course
we can only speculate if all the parameters in our model are
sufficient to explain the real biological system. We simply cannot
know if something is missing. For example, we are able to infer
ITDs from the membrane potentials of lLSO and MSO and use
them for sound localization. But there could theoretically be
other factors that we are missing, e.g., high plasticity or signifi-
cantly varying membrane time constants of different cells.
On the other hand, however, a model may become far too com-
plex by considering too many variables. In this case it may be
that the model produces good results, but it need not be the
case that the real-world biological system actually makes use of
all of these variables. The biological system might perform just
as well with some of the variables being absent, rendering them
redundant for the entire model. Considering too many variables
and thereby increasing a model’s complexity is furthermore not
beneficial to the modeler since it results in unnecessary high
computation time. A model can quintessentially do anything the
modeler desires. In theory, it is possible to implement so many
degrees of freedom, that the model will always verify a given
hypothesis. It is therefore possible that different models can pro-
vide different explanations for the same biological phenomenon
(O’Reilly and Munakata, 2000; Teufel and Fletcher, 2016; Bray,
2014). In our case, we tried to avoid this problem by using a
minimal variables approach (only considering those variables
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that - if absent - would cause the model to break down), and also
we have developed a model which is not restricted to the uses
it is applied to in this thesis. For example, it could be applied
to make predictions for psychophysical experiments where the
following questions could be answered: How many speakers
can be maximally resolved and at which localization success
rate? When does a test subject realize how many speakers are
speaking simultaneously and when does the test subject know
where the amount of gauged speakers are located in azimuthal
space?

Verdict. As has been demonstrated, modeling has many ben-
efits and also some disadvantages. From these we cannot and
should not decide if modeling or another methodology is more
superior than the other. Rather, different methodologies can
be seen as complementary to each other, i.e., models can be
used to design experiments and, vice versa, experiments or the
results hereof can be used as the basis for modeling. However,
we can conclude that one has to be wary of the fact that each
method brings along its own chances and limitations that one
must be aware of to obtain results that assure scientific integrity.
Considering all of the aforementioned pros and cons, we can
conclude that modeling requires the precise taring of situation-
tailored simplification and likewise complexification to retrieve
an (at least approximately) accurate implementation of reality.
To make a model scientifically relevant, one should therefore
always ask what is exactly being modeled, how close does the
model approximate reality and what aspects from reality are
missing. Most importantly, these questions must constantly be
reevaluated and put into perspective with the current state of
the model (Teufel and Fletcher, 2016; Bray, 2014). In the next
subsection, we turn to the most important parameters of our
model and discuss them while keeping these mentioned chances
and limitations of modeling in mind.

3.2.2 Model Size

One of the model parameters that has greatest influence on
computational time, and thus being a strong limiting factor,
is the size of the population. As one main objective was to
implement a fast model, we set the total amount of neurons
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of all four nuclei to a constant number which we denote as
M. The model used in this thesis is based on a population
of exactly 800 MSO and 408 lLSO neurons per hemisphere,
therefore M = 2416 which is roughly 20.58% of the total amount
of neurons (H = 11742) estimated by Hilbig et al. (2009). The
question now is, if changes in model size also significantly
change the calibration curves which are used to estimate the
ITDs or if they are invariant under size manipulation. In order
to test for this, we calibrated the model for different sizes of
M, namely M ′ = M× d for d ∈ {18 , 14 , 12 , 1, 2, ..., 5, 6}. Note that
the factor 5 already exceeds the amount H of neurons gauged
by Hilbig and 6 results in model nuclei that are considerably
larger. The resulting calibration curves were compared to those
that were computed with the exact number of neurons as stated
in Hilbig et al. (2009). We found, that for the factor d = 1

2 the
maximum difference between all MPAs to each ITD (calculating
the absolute value after subtracting the original calibration curve
from the manipulated curve) was ≈ 1.6deg. For the factors 1
and 2 it was as small as ≈ 1deg. For lower factors d 6 1

2 the
difference was larger > 2deg and for higher factors d > 3 the
difference also yielded ≈ 1deg. Since a factor of d = 2 already
resulted in computation times that were four times longer than
for d = 1, we opted for the latter as the best trade-off between
time and accuracy. Furthermore, we argue that a difference of
≈ 1deg is completely acceptable, because this is the minimum
audible angle in humans as proposed by Mills (1958). The overall
similarity between the curves can be explained by the neuron
population parameters CD, CP and BF, because the CD is drawn
from a normal distribution (via the BP and the BF; see equation
(2.3), Chapter 2) and the CP is drawn from a uniform distribution
within specific limits determined by Lingner et al. (2012). The
higher the number of neurons gets, the denser the population
cloud gets (cf. Figure 2.1) and for d > 3 it does not make any
significant differences in the calibration curves anymore.
We can conclude, that in case an ideal population size exists,
then it will be close to, or around, H, but we have seen that
a population size of M is already sufficient to obtain an ITD
encoding mechanism. Which leads us to the question: Does an
ideal population size exist? We argue that this may not be the
case as we suggest that there might not even exist a ground truth
calibration curve. It is a fact that the MPAs are more similar to
the original calibration the more the size of M ′ approximates H.
But this misses the point that the calibration curves are simply
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used as a means to perform ITD estimations. There is no reason
to assume that the calibration curves retrieved from H represent
reality better than the ones retrieved from M ′. For M and H,
we determined in both cases that the resulting curves could
perform ITD estimations with the same precision. It is therefore
not unreasonable to assume that, if the human auditory system
makes use of such a calibration curve concept, then the real
curves will most likely be different for each human and their
precise shape is dependent on the individual nuclei sizes and
probably display some sort of plasticity. This is motivated by the
fact, that the calibration curves are very different for pure and
complex stimuli. It nevertheless still remains a proof of principle
that ITDs can be encoded via such curves, but we conclude that
the ITD encoding mechanism might be invariant or at least very
robust to population size.

3.2.3 Population Membrane Potentials

In this thesis, ITDs are estimated through the metric of popu-
lation membrane potentials. We solely use the summed output
potentials of the MSO and the lLSO and do not take into account,
that in real biological systems the potentials would be converted
into action potentials (APs). Since an AP is generated in an all-
or-nothing manner, i.e., an AP is either elicited once a specific
membrane potential threshold is reached or it is not elicited, AP
generation is a highly non-linear transformation of a continuous
summed input. To account for this non-linear transformation, at
a very early stage of implementing the model, we introduced
a non-linearity as described in Lehnert et al. (2014), where the
firing rate, or rather firing probability, was dependent on input
frequency and amplitude of inputs. The results showed to not
be more beneficial than when dropping the non-linearity, i.e.
there was no difference of the output except in the scaling of the
calibration curve axes. Therefore we opted to drop the aspect of
AP generation in favor of computation time.
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3.2.4 Only Considering the MSO

A question that naturally arises is how do the results of the cali-
bration curves change if we only consider one nucleus, namely
the MSO since the lLSO’s role in ITD estimation has long been
unknown. In an early stage of model development, we extracted
the calibration curves from the population membrane poten-
tials of the MSO when comparing the left and right hemisphere
with an input pure tone stimulus driven at BF = 200Hz. In this
scenario an ITD = 0µs would result in ellipses collapsing on
the midline and thus resulting in an angle of 45◦. ITDs with
opposite signs would always appear as ellipses mirrored at mid-
line due to the symmetry of the ITD. The largest ITDs (absolute
value) would scatter closest to x-axis and the y-axis. This re-
sulted in calibration curves that were symmetrical to the y-axis
and strictly monotonous s-shaped and their MPAs ranged from
12◦ to 78◦. For higher BFs, all the ellipses would move closer
to midline, resulting in smaller MPA intervals but all values
symmetric around 45◦. In general, the MPA ranges were very
similar to the ones we can see for our analysis when considering
both nuclei (see graphs in Figure 2.5). The major difference is of
course, that the calibration curves are not strictly monotonous
and not s-shaped anymore. To keep faithful to the underlying
biology, we early on opted to consider both nuclei rather than
just one.

3.2.5 Input Signal Amplitude

Another key parameter in our model is the amplitude A of the
input signals. All input signals were normalized to correspond
to 60dB SPL. This means that all sounds used to perform cal-
ibration have the exact same intensity or loudness. In nature,
the loudness of sounds is of course not constant, but highly
variable. To be biologically feasible, the proposed ITD encoding
mechanism must be invariant towards amplitude modulation,
because otherwise there would have to exist an infinite amount
of sets of calibration curves. More precisely, the number of sets
would be equal to the cardinality of R+ which is uncountably
infinite.
To test for loudness invariance, we therefore calculated the cal-
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ibration curves for varying amplitudes, namely A ′ = A× l for
l ∈ {14 , 12 , 1, 2, 3}. Interestingly, the resulting calibration curves
were identical for all parameters l (Figure 3.1). This can be ex-
plained by the fact that the ITDs are encoded by the MPAs which
are themselves retrieved from the 2d-membrane-potential-space
of lLSO vs. MSO. If the input amplitude is A for MSO and lLSO,
then the output membrane potential of MSO and lLSO will have
amplitude Am and Al, respectively. If the input amplitude A
is multiplied with a scaling factor s ∈ R, then the new MSO
and lLSO outputs will have amplitude ŝ×Am and ŝ×Al, re-
spectively, and ŝ is the factor s after cochlear compression. It
is evident, that this cannot change the calibration curves, as ŝ
is the identical factor for both nuclei and thus the MPA for the
amplitude modulated signals remains the same when compared
to the MPA which is retrieved for the signals without amplitude
modulation.
We therefore conclude, that the here implemented ITD encoding
mechanism is invariant under amplitude modulation. Further-
more, our implemented model also satisfies its sole intended
purpose: It should only encode the information of the position
in horizontal space (ITD) and not other features.

Figure 3.1: MPA amplitude invariance. Mean population responses of
lLSO vs. MSO at BF = 200Hz for pure tone at two different
fixes ITDs (top for 800µs and bottom for −300µs). Different
colors represent different amplitude modulating factors
l ∈ {14 , 1

2 , 1, 2, 3}. Identity line in magenta for reference. The
MPA is identical for all cases which proves invariance of
the model to varying input signal amplitudes.
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3.2.6 Jitter

Another parameter that we varied was latency jitter, i.e., the
duration of transduction at the IHCs. Basis in our model is a flat
distribution from ]0; 1[ms. We investigated how the calibration
curves would change when we would reduce the latency to (a)
non-existent (0ms) and (b) if we would extend the interval to
]0; 2[ms. In both cases, there was no significant change noticeable.
The ellipse-like objects as seen in Figure 2.4 only displayed a
noticeable change in the length of the minor axis. For case (a)
there was reduction and in case (b) there was an extension of its
length as compared to the base settings. This change in length
was symmetric to the principal axis. The more data points that
are analyzed, the more insignificant a change of the minor axis
becomes for the MPA. To recapitulate, the MPA is defined as
the angle enclosed by the axis of abscissas and the population
response vector ~zITD (sum of all data points). For smaller neuron
populations, the same latency jitters could impose a problem
and result in significant changes for the MPA. Thus, a sufficient
population size is needed to guarantee that the ITD encoding
mechanism is robust towards the different jitter conditions that
we tested for.

3.2.7 Short-Term and Long-Term ITD Estimation Windows

The short-term ITD estimation window was set to δt = 10ms in
first analyses, i.e., every 10ms an ITD estimation would be per-
formed. However, it is apparent, that the width of the short-term
ITD estimation window bounds the length of the long-term ITD
estimation windows. For 10ms this would mean, that for a long-
term ITD of 100ms, this would result in only ten short-term
ITDs. To this end, we shortened the short term ITD estimation
window down to 1ms with the underlying idea, that more short-
term ITD estimations would make the long-term ITD estimation
more stable by averaging out outliers (which have more weight
when considering fewer estimates). The long-term ITD estima-
tion window was found to be optimal if its length was greater
or equal to T = 1s. For this value, there was no strong deviance
from the RMSE of estimated ITD and ground truth ITD over
the pooled short-term ITDs from all observed BF-channels over
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the whole stimulus duration. We hypothesize a deviance of the
long-term ITDs from the ground-truth ITDs for two main rea-
sons. Firstly, we propose that the higher BF channels cause a
distortion of good estimation, simply because the estimations
are not very well performed in these channels. A remedy would
therefore be to exempt these BF-channels from analysis or in-
troduce some other weighting effect to mitigate their impact
as it may be the case that these channels are not relevant for
sound source localization. The second reason is probably due
to the reduced availability of short-term ITDs for smaller T , as
then the GMM might result in extreme over- or underfitting,
causing a significant difference for estimated ITD and ground
truth ITD. However, by manipulating the GMMs to gauge as
many ITD estimators as signals were actually present, we found
the RMSE to vanish for large windows T . Furthermore, when
the GMM was made to gauge the numbers of signals, there
was poor performance in areas of low signal overlap. From this
we conclude that there might be two separate successive tasks
to be able to perform sound localization. The first one is, that
the amount of signals within a complex signal must first be
extracted. This could always be done successfully by the GMMs.
Once the correct number of signals has been found, then the
precise localization of the sounds can be carried out. It can be
argued that sound source localization improves by the integra-
tion of multimodal information, i.e., knowing how many sound
sources are present (e.g., from visual input) aids the localiza-
tion process (Suied et al., 2008). Furthermore, it is interesting
to mention, that lateralization always worked within the model.
This means, that the general direction of the sounds can always
be determined, hinting at the fact, that maybe absolute sound
localization is not as important as being able to separate sounds
from each other in order to gain a quick general overview of the
current auditory scene.

3.3 encoding sound source positions from two nu-
clei simultanesously

In order to explain why we propose a population coding model
of sound localization in mammals that makes use of both nuclei
simultaneously, we now turn to the biological fundamentals
of the fast and temporally precise processing of ITDs in the

81



MSO and LSO. For this, it is necessary to understand their
evolutionary emergence, how their integration process works
and why it herefrom follows, that the MSO and LSO outputs
together can provide a reliable estimation of azimuthal sound
source position.

3.3.1 The Evolutionary "Choice" for ILDs in Early Mammals

To be able to hear and localize airborne sounds, a device to
perform impedance-matching is needed that can sufficiently
vibrate. About 210 to 230 million years ago in the Triassic, the
tympanum and the specialized middle ear evolved three times
independently in amphibians (Anura), sauropsids and mammals
due to common selection pressure (Allin, 1975; Clack, 1997).
These two devices fulfill the prerequisites of detecting airborne
sounds. The two main cues for sound localization are the ITD
for low-frequency and the ILD for high-frequency sounds (cf.
Section 1.2). But both cues could most likely not be exploited by
early ancestors of mammals. For example, Morganucodon were
smaller in size than mice. Even if they did use ITDs, their small
head size could only account for ITDs up to 50µs. It is more
likely that they mainly exploited ILDs in order to guarantee
their survival and that there was simply no need to use ITDs. A
small larynx could have produced sounds in the high-frequency
range and their small head size could sufficiently make use
of ILDs (Grothe and Pecka, 2014). As ILDs occur when the
wavelength is shorter than the head, even small animals are
able to detect significant ILDs at high frequencies (Erulkar, 1972;
Harnischfeger et al., 1985). Most importantly, high-frequency
communication avoids predation through birds as they are low-
frequency hearers below 10kHz (Grothe, 2003; Grothe and Pecka,
2014). All this points to the assumption, that early mammals
only used ILDs to locate sounds.

Fast Temporal Processing in the LSO.

The LSO is the nucleus which is sensitive to ILDs (Galambos
et al., 1959; Boudreau und Tsuchitani, 1968) and the integration
process is a summation of one ipsilateral excitatory and one
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contralateral inhibitory input (see Section 1.1.4). Therefore LSO
cells are ipsileading, because an ipsilateral positioned sound
(dB < 0) will create a strong excitation and the contralateral
(dB > 0) inhibition will be much lower due to the sound shadow
at the head. The tuning curves of LSO neurons are therefore
sigmoids with steep slopes at midline (dB = 0), low activity
levels for positive ILDs and high activity levels for negative ILDs
(Tollin, 2003). As ILD detectors, the LSO neurons capture the
timing of fluctuations in signal amplitudes. To be able to achieve
this, there are two main requirements, namely short integration
times and a coincidence detection mechanism at LSO stage.

Short Integration Times. To be able to be detect amplitude fluctua-
tions in a temporally precise manner, LSO cells must have short
integration times. A mechanism that integrates and averages
over whole stimulus durations is extremely unlikely to capture
fast timed events, because the average could theoretically change
during the integration process, making it impossible to localize
more than one sound source. For complex sounds, which con-
tain many sharp rising amplitude modulations (transients), very
short integration windows are necessary (Grothe and Pecka,
2014; Grothe et al., 2019). Transients in complex signals are en-
coded in the spiral ganglion/auditory nerve via phase locking
and maintained in the afferent circuitry and then used by LSO
cells which guarantees high fidelity of timing information. Af-
ter the precise timing of auditory events is captured by phase
locking in the AN, this timing information is conserved by the
SBCs and GBCs and transferred in high fidelity to their next re-
spective stages (Joris et al., 1994). The GBCs (contralateral input)
project onto cells of the MNTB via the largest synapses of the
brain, the Calyx of Held. This sizeable synapse is well studied
for its fast and high fidelity transmission (Schneggenburger and
Forsythe, 2006; Kopp-Scheinpflug et al., 2011). It is not only
extremely fast due to low synaptic latency, it is also very reliable
in that a presynaptic AP will (almost) always result in a post-
synaptic AP and lastly has low jitter which also helps maintain
phase locking. The input of the MNTB is then projected onto the
LSO. The SBCs (ipsilateral input) project directly onto the LSO.
Phase locking not only occurs for sounds at low frequencies
as discussed in Section 1.1.3, but at sounds of all frequencies
under the condition that the signal contains transients or onsets
(Dietz et al., 2014). The membrane kinetics of LSO cells are able
to preserve the high temporal precision of the MNTB and the
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SBC input (Tollin, 2003). In short, the expression and complex
interaction of two specific channels, namely fast opening low-
threshold Kv1 channels (Mathews et al., 2010) and slow opening
HCN channels (Baumann et al., 2013), results in membrane time
constants of about τ ∼ 0.5− 1.5ms (Wu and Kelly, 1991; Sanes
and Takács, 1993; Gittelman and Tempel, 2006; Pilati et al., 2016)
which results in short integration time windows. For a mem-
brane time constant of τ = 0.5ms, this would translate into an
upper bound of the phase locking of the SBCs and GBCs at
2kHz. Note, that for any phase-locked input with the same or a
lower firing rate, the LSO kinetics guarantee timing sensitivity
on a cycle-by-cycle basis (Grothe et al., 2019). All of these spe-
cializations and components of the LSO are thus responsible for
high sensitivity of timing information, which corroborates our
theory, that the LSO could potentially be exploited – together
with the MSO – for ITD encoding.

Coincidence Detection in the LSO. Another requirement to achieve
temporally precise ILD processing, is not only that the informa-
tion is preserved from the stage of the AN until it reaches the
LSO, but also that the excitatory and inhibitory inputs must oc-
cur in close proximity to each other or else the inputs could not
influence one another, i.e., no subtraction or addition processes
of the EPSPs (excitatory postsynaptic potentials) and IPSPs (in-
hibitory postsynaptic potentials) during integration could take
place (Park et al., 1996; Tollin, 2003; Grothe and Pecka, 2014).
Joris and Yin (2005) illustrate this problem in the case for a
sound coming straight from ahead which would correspond
to 0dB ILD (and also vanishing ITD). In order for the excita-
tion and inhibition to coincide at the LSO, there are two main
problems that have to be overcome. Firstly, the pathway to the
LSO from both ears is not equidistant, i.e., the contralateral path
is longer than the ipsilateral path. Secondly, the contralateral
pathway has an additional synaptic relay stage, the Calyx of
Held synapse (Tollin, 2003). In order to be able to counter the
anatomical differences in both pathways, several specializations
have been reported. To compensate for the the overall differ-
ences in pathway length, the axons from the GBCs leading to
the MNTB have a greater diameter (Morest, 1968) and thicker
myelination (Ford et al., 2015) as compared to the axons of
the SBCs. Both morphological features that increase velocity of
conduction (Grothe and Pecka, 2014). The Calyx of Held guar-
antees incredibly fast synaptic transmission due to hundreds of
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active zones and a large vesicle pool in the presynaptic bouton
(Taschenberger et al., 2002; Yu and Goodrich, 2014), resulting in
one of the shortest synaptic delays ever measured in the central
nervous system (CNS). These specializations guarantee precise
coincidence detection at the LSO.
Taking all results together, the head size of small ancestral mam-
mals was probably the reason for the evolutionary "choice" of
utilizing ILDs for sound localization. The possibility of process-
ing ILDs came along with biophysical, anatomical and physio-
logical challenges that had to be overcome in order to retain the
temporal information of input sounds at the stage of the LSO.
These challenges were overcome by specific evolutionary adap-
tations within the ILD circuit resulting in a coincidence detector
mechanism with integration time windows so short, that they
can retain the phase-locked temporal information of the input
sounds. Most importantly for us, the short integration times
and the coincidence detection mechanism of the LSO make it
reasonable to include this nucleus in our model of ITD estima-
tion, rather than restricting the LSO’s functional use solely to
ILDs, since all of the described mechanisms and specializations
guarantee high fidelity of timing information.

3.3.2 Combining Information from the MSO and LSO.

During evolution, when mammals increased in size, not only
their head and larynx became larger, but they also inhabited
larger territories which required communication over long dis-
tances using low-frequency sounds which travel farther than
high-frequency sounds before their energy dissipates (Grothe
and Pecka, 2014). These animals were already sensitive to ILDs
by possessing a well-developed LSO. But low-frequency sounds
produce dismissible small ILDs so the need for a precise ITD
extraction mechanism grew. This was probably the driving selec-
tion pressure for adaptations in the MSO to be sensitive to ITDs.
That the MSO is most relevant for sound localization in mam-
mals via ITDs seems to be the scientific consensus nowadays
(Spitzer and Semple, 1995; Pecka et al., 2008; Franken, Bremen
and Joris, 2014), so we shall not delineate the properties3 that
explain how it achieves such high temporal precision, but rather
discuss why it is reasonable to assume, that the human binaural
system makes use of both nuclei – MSO and LSO – simultane-
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ously for ITD estimations. The LSO, as described in the previous
section, was already specialized for retaining temporal features.
In cat and chinchilla (Joris and Yin, 1995; Tollin and Yin, 2002),
when presented with ITDs on a microsecond scale, there were
strong response rate modulations measured in their lLSO neu-
rons, which shows that the neurons of the low-frequency limb of
the LSO are capable of cycle-by-cycle ITD sensitivity via phase
locking. The MSO is seen as a refined LSO (Grothe and Pecka,
2014). The refinement lies within the doubling of the pathways
already present in the LSO. The MSO has not only two pathways
leading it, but two additional ones, i.e., the MSO receives two
excitatory and two inhibitory inputs. The different amount of
inputs to the MSO results in a different ITD tuning curve as
compared to the LSO (see Figure 1.8). The LSO neurons are
ipsileading (what one would expect for an excitatory-inhibitory
coincidence detector, where excitation precedes inhibition), the
MSO neurons are contraleading (which is likely due to the com-
plex interplay of the four inputs and the special role of fast
glycinergic inhibition preceding excitation, cf. Roberts et al.,
2013 and Myoga et al., 2014). Since the hemispheric preference
of the nuclei is switched for the LSO at higher stages, but stays
the same for the MSO, their individual population codes are
compatible at the midbrain/cortex stage, e.g., the higher the
overall activity is in one hemisphere, the more contralateral the
sound source would be located, and vice versa.
Concluding, there are two main similarities between the MSO
and LSO. Both nuclei act as coincidence detectors, i.e., they
have the same design principle. Furthermore, the integration
mechanism of both coincidence detectors results in a population
code of ITD that each cover a wide range of acoustic space.
Both nuclei thus share the same coding principle. Because of
these shared principles and under the premise that both nuclei
(within one hemisphere) should make the same estimation for a
sound at a specific location in space, it is therefore not unrea-
sonable to make the assumption that this position can be read
out by evaluating the output of MSO and LSO simultaneously,
establishing a 2d-code auf auditory space.

3 In short, some of the most important properties are that the MSO cells have
membrane time constants of only ∼ 300µs and morphological adaptations
to increase conduction velocity (similar to the LSO). For a review on further
properties see Grothe et al. (2019)

86



3.4 concluding remarks

We have presented a novel model of sound source coding in
the azimuthal plane which is biologically motivated. Different
selection pressures and different biological prerequisites have
successively brought forward two separate binaural coincidence
detection systems, the LSO for ILDs and the MSO for ITDs. The
capability of the LSO to also process ITDs as well as the the
circuit and coding properties shared with the MSO led us to
believe, that the interaction between the two nuclei is necessary
to obtain a clear mapping of auditory space. We then presented
a method of sound source separation solely based on one cue,
the ITD, which was obtained from the responses of both nuclei.
The motivation for analyzing sound separation as the objective
of the two population codes is due to the following evolutionary
assumptions. Consider a sleeping animal, which is awaken by a
growl. It could run to safety if it correctly localizes the position
of the predator. At first look, to be able to know the absolute
position of the predator thus seems to be the straightforward
objective of sound localization. But this perspective misses an
important point: Mammals are animals that are usually not
stationary or fixed to one point in space. Mammals move ac-
tively around in the world. They prey on other animals or are
being preyed on themselves. Their auditory surroundings are
subject to great variation. Many of the earliest mammals, such
as Morganucodon, lived in a world of darkness, having adapted
to a nocturnal life while living in coexistence with the roaming
dinosaurs (Grothe and Pecka, 2014). They lived in a world where
constant alertness and having to be in motion could be crucial
for survival. The fast movement would of course also change
all of the absolute positions of all sound sources in a matter
of seconds. In short, auditory scenes are highly dynamic and
context-dependent. Therefore, the idea of being able to success-
fully separate sound sources in such a complex scene seems to
be a plausible evolutionary driving force for communication and
survival. However, the same evolutionary pressure might not
have been the same for all animals. Whereas for smaller animals
sound separation might have been of paramount importance
for communication and survival in order to avoid predation,
for larger animals, sound localization acuity might have been
more important in order to correctly localize its prey and thus
guarantuee their survival. Therefore, it can only be speculated
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about the true objective of sound localization.
Furthermore it has been shown, that the tuning curves of the
MSO and LSO are not fixed, but their output is modulated
by GABAergic feedback (Stange et al., 2013). Activation of the
nuclei leads to presynaptic inhibition by activation of GABA-B
receptors, which is mediated by an additional nucleus, the su-
perior paraolivary nucleus (SPN), and results in a dampening
of the amplitude of the resulting output (i.e., gain regulation
through negative feedback). This results in a shift of the per-
ceived midline (zero azimuth) towards where the sound was
coming from and thus would also shift the perceived location
of a subsequent sound. Most recently, in a conductance-based
model of LSO neurons investigating the encoding of ILDs, it has
been shown, that the adaptation introduced by the GABAergic
feedback loop results in a shift of coding precision towards the
ILD of the adapter tone which results in a higher sensitivity
for ILDs in adapter proximity (Oess et al., 2020). The effect of
a shifted perceived midline after adaptation has also been doc-
umented in psychophysical experiment (Lingner et al., 2018).
Since this inhibitory feedback loop is found in both the MSO and
LSO circuit, it is assumed, that the main evolutionary constraint
to shape the nuclei into its today’s form was not necessarily
absolute sound localization, but sound separation, which marks
a paradigm shift in auditory neuroscience as to what the true
underlying principle of sound localization may be.
A final question we might ask at this point is how can the find-
ings of this thesis be embedded in the historical and future
scientific landscape. From the historical viewpoint it is striking,
that when Durlach proposed his Equalization and Cancellation
Model in 1963, his findings from over half a century ago have
hinted at the relevance of not exact absolute sound source lo-
calization acuity, but rather the importance of relative sound
source separation. His underlying mechanism using a subtrac-
tion operation acting on both ears showed, that a previously
occurring sound (the masker) can help improve ITD discrim-
ination; similar to what Lingner et al. (2018) and Oess et al.
(2020) have suggested quite recently. Even though our effec-
tive model makes use of a completely different ITD-decoding
approach (hemispheric balancing), it could still be tested for
the relevance of relative sound source separation. The effective
model presented in this thesis is rather powerful for providing
stream separation and we have learned, that the ITD can the-
oretically serve as the sole cue for sound source localization.
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In order to move forward with this model and to validate it
in future experiments, the effective model should be expanded
to incorporate the aforementioned GABAergic feedback loop
and activity-dependent input modulation. In addition, it should
also be investigated how well the ITD serves as a sound separat-
ing cue under the condition, that the sounds are not presented
concurrently (both starting at t = 0), but one after another (i.e.,
sound one at t1 = 0, sound two at t2 6= t1). This would serve
as a test of the effective model to see if it can reproduce the
results as observed in Lingner et al. (2018) and Oess et al. (2020).
Until the model is not adapted to reflect all known aspects of
the true underlying biology, we cannot infer if the presented
decoding mechanisms resemble some or any of the functionality
of the brain circuits. Even in the case that the feedback loop
were to be incorporated, it would still be highly speculative to
link the presented decoding mechanisms to any specific part
of the circuits. This is due to the nature of the design of the
effective model’s most important quantity, the MPA. It simply
cannot be directly connected to a specific structure in the audi-
tory brainstem. This is owing to the fact, that the three defining
properties BF, CD and CP of an MSO and lLSO neuron can by
interpreted as a bypass or a substitute for the entire neuronal
circuit in the auditory brainstem, i.e., we only make use of the
information that arrives at the neurons directly and not at the
stages in-between ears and neurons. Nevertheless, the MPA still
serves as a powerful proof of principle, that a potential sound
source separating mechanism of humans could completely be
based on ITD.
Finally, even though we have found a working model of sound
source separation based on ITD, it only seems to represent one
of many possible answers to a question that might be the wrong
one to ask in the first place. The irrefutable truth is that no cod-
ing theory can conclude on what the true underlying objective
function is, that the code is trying to satisfy (Leibold and Grothe,
2015). We can only guess. Nevertheless, I hope that this research
can contribute to a better understanding of sound localization
theory. Questions were answered, but many questions remain
open.
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