943 research outputs found

    A unified view of data-intensive flows in business intelligence systems : a survey

    Get PDF
    Data-intensive flows are central processes in today’s business intelligence (BI) systems, deploying different technologies to deliver data, from a multitude of data sources, in user-preferred and analysis-ready formats. To meet complex requirements of next generation BI systems, we often need an effective combination of the traditionally batched extract-transform-load (ETL) processes that populate a data warehouse (DW) from integrated data sources, and more real-time and operational data flows that integrate source data at runtime. Both academia and industry thus must have a clear understanding of the foundations of data-intensive flows and the challenges of moving towards next generation BI environments. In this paper we present a survey of today’s research on data-intensive flows and the related fundamental fields of database theory. The study is based on a proposed set of dimensions describing the important challenges of data-intensive flows in the next generation BI setting. As a result of this survey, we envision an architecture of a system for managing the lifecycle of data-intensive flows. The results further provide a comprehensive understanding of data-intensive flows, recognizing challenges that still are to be addressed, and how the current solutions can be applied for addressing these challenges.Peer ReviewedPostprint (author's final draft

    From taxonomies to ontologies: formalizing generalization knowledge for on-demand mapping

    Get PDF
    © 2015 Cartography and Geographic Information Society Automation of the cartographic design process is central to the delivery of bespoke maps via the web. In this paper, ontological modeling is used to explicitly represent and articulate the knowledge used in this decision-making process. A use case focuses on the visualization of road traffic accident data as a way of illustrating how ontologies provide a framework by which salient and contextual information can be integrated in a meaningful manner. Such systems are in anticipation of web-based services in which the user knows what they need, but do not have the cartographic ability to get what they want

    Mediated data integration and transformation for web service-based software architectures

    Get PDF
    Service-oriented architecture using XML-based web services has been widely accepted by many organisations as the standard infrastructure to integrate heterogeneous and autonomous data sources. As a result, many Web service providers are built up on top of the data sources to share the data by supporting provided and required interfaces and methods of data access in a unified manner. In the context of data integration, problems arise when Web services are assembled to deliver an integrated view of data, adaptable to the specific needs of individual clients and providers. Traditional approaches of data integration and transformation are not suitable to automate the construction of connectors dedicated to connect selected Web services to render integrated and tailored views of data. We propose a declarative approach that addresses the oftenneglected data integration and adaptivity aspects of serviceoriented architecture

    Formalising cartographic generalisation knowledge in an ontology to support on-demand mapping

    Get PDF
    This thesis proposes that on-demand mapping - where the user can choose the geographic features to map and the scale at which to map them - can be supported by formalising, and making explicit, cartographic generalisation knowledge in an ontology. The aim was to capture the semantics of generalisation, in the form of declarative knowledge, in an ontology so that it could be used by an on-demand mapping system to make decisions about what generalisation algorithms are required to resolve a given map condition, such as feature congestion, caused by a change in scale. The lack of a suitable methodology for designing an application ontology was identified and remedied by the development of a new methodology that was a hybrid of existing domain ontology design methodologies. Using this methodology an ontology that described not only the geographic features but also the concepts of generalisation such as geometric conditions, operators and algorithms was built. A key part of the evaluation phase of the methodology was the implementation of the ontology in a prototype on-demand mapping system. The prototype system was used successfully to map road accidents and the underlying road network at three different scales. A major barrier to on-demand mapping is the need to automatically provide parameter values for generalisation algorithms. A set of measure algorithms were developed to identify the geometric conditions in the features, caused by a change in scale. From this a Degree of Generalisation (DoG) is calculated, which represents the “amount” of generalisation required. The DoG is used as an input to a number of bespoke generalisation algorithms. In particular a road network pruning algorithm was developed that respected the relationship between accidents and road segments. The development of bespoke algorithms is not a sustainable solution and a method for employing the DoG concept with existing generalisation algorithms is required. Consideration was given to how the ontology-driven prototype on-demand mapping system could be extended to use cases other than mapping road accidents and a need for collaboration with domain experts on an ontology for generalisation was identified. Although further testing using different uses cases is required, this work has demonstrated that an ontological approach to on-demand mapping has promise

    Providing end-user facilities to simplify ontology-driven web application authoring

    Full text link
    This is the author’s version of a work that was accepted for publication in Interacting with Computers. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Interacting with Computers, Interacting with Computers 17, 4 (2007) DOI: 10.1016/j.intcom.2007.01.006Generally speaking, emerging web-based technologies are mostly intended for professional developers. They pay poor attention to users who have no programming abilities but need to customize software applications. At some point, such needs force end-users to act as designers in various aspects of software authoring and development. Every day, more new computing-related professionals attempt to create and modify existing applications in order to customize web-based artifacts that will help them carry out their daily tasks. In general they are domain experts rather than skilled software designers, and new authoring mechanisms are needed in order that they can accomplish their tasks properly. The work we present is an effort to supply end-users with easy mechanisms for authoring web-based applications. To complement this effort, we present a user study showing that it is possible to carry out a trade-off between expressiveness and ease of use in order to provide end-users with authoring facilities.The work reported in this paper is being partially supported by the Spanish Ministry of Science and Technology (MCyT), projects TIN2005-06885 and TSI2005-08225-C07-06

    An ontology-aware integration of clinical models, terminologies and guidelines: an exploratory study of the Scale for the Assessment and Rating of Ataxia (SARA)

    Get PDF
    Background: Electronic rating scales represent an important resource for standardized data collection. However, the ability to exploit reasoning on rating scale data is still limited. The objective of this work is to facilitate the integration of the semantics required to automatically interpret collections of standardized clinical data. We developed an electronic prototype for the Scale of the Assessment and Rating of Ataxia (SARA), broadly used in neurology. In order to address the modeling challenges of the SARA, we propose to combine the best performances from OpenEHR clinical archetypes, guidelines and ontologies. Methods: A scaled-down version of the Human Phenotype Ontology (HPO) was built, extracting the terms that describe the SARA tests from free-text sources. This version of the HPO was then used as backbone to normalize the content of the SARA through clinical archetypes. The knowledge required to exploit reasoning on the SARA data was modeled as separate information-processing units interconnected via the defined archetypes. Each unit used the most appropriate technology to formally represent the required knowledge. Results: Based on this approach, we implemented a prototype named SARA Management System, to be used for both the assessment of cerebellar syndrome and the production of a clinical synopsis. For validation purposes, we used recorded SARA data from 28 anonymous subjects affected by Spinocerebellar Ataxia Type 36 (SCA36). When comparing the performance of our prototype with that of two independent experts, weighted kappa scores ranged from 0.62 to 0.86. Conclusions: The combination of archetypes, phenotype ontologies and electronic information-processing rules can be used to automate the extraction of relevant clinical knowledge from plain scores of rating scales. Our results reveal a substantial degree of agreement between the results achieved by an ontology-aware system and the human experts.This work presented in this paper was supported by the National Institute of Health Carlos III [grant no. FIS2012-PI12/00373: OntoNeurophen], FEDER for national and European funding; PEACE II, Erasmus Mundus Lot 2 Project [grant no. 2013-2443/001-001-EMA2]; and the Modern University for Business and Science (M.U.B.S)S

    Modelling and accessing regulatory knowledge for computer-assisted compliance audit

    Get PDF
    The ingredients for an effective automated audit of a building design include a building model containing the design information, a computerised regulatory knowledge model, and a practical method of processing these computable representations. There have been numerous approaches to computer-aided compliance audit in the AEC/FM domain over the last four decades, but none has yet evolved into a practical solution. One reason is that they have all been isolated attempts that lack any form of industry-wide standardisation. The current research project, therefore, focuses on investigating the use of the industry standard building information model and the adoption of open standard legal knowledge interchange and executable workflow models for automating conventional compliant design processes. This paper provides a non-exhaustive overview of common approaches to model and access regulatory knowledge for a compliance audit. The strengths and weaknesses of two comparative open standard knowledge representation approaches are discussed using an example regulatory document
    corecore