
Mediated Data Integration and Transformation for
Web Service-based Software Architectures

Yaoling Zhu
School of Computing

Dublin City University
Dublin 9, Ireland

Email: yao.zhu3@mail.dcu.ie

Claus Pahl
School of Computing

Dublin City University
Dublin 9, Ireland

Email: claus.pahl@dcu.ie

Abstract— Service-oriented architecture using XML-based
Web services has been widely accepted by many organisations as
the standard infrastructure to integrate heterogeneous and au-
tonomous data sources. As a result, many Web service providers
are built up on top of the data sources to share the data by
supporting provided and required interfaces and methods of data
access in a unified manner. In the context of data integration,
problems arise when Web services are assembled to deliver
an integrated view of data, adaptable to the specific needs of
individual clients and providers. Traditional approaches of data
integration and transformation are not suitable to automate
the construction of connectors dedicated to connect selected
Web services to render integrated and tailored views of data.
We propose a declarative approach that addresses the often-
neglected data integration and adaptivity aspects of service-
oriented architecture.

I. INTRODUCTION

The advent of Web services and service-oriented architec-
ture (SOA) has provided a unified way to expose the data and
functionality of an information system. The use of standard
technologies reduces heterogeneity and is therefore key to
facilitating application integration. The Web services platform
is considered an ideal infrastructure to solve the problems in
the data integration domain such as heterogeneity and interop-
erability [9], [6], [23]. However, recent research activities in
Web services technology have been focused on service com-
position and integration rather than data aspects. We propose
a two-pronged approach to address this shortcoming: firstly,
data integration and adaptivity through declarative, rule-based
service adaptor definition and construction, and, secondly, a
mediator architecture that enables adaptive information service
integration based on the adaptive service connectors.

Our objective is to explore solutions to compose a set
of data integration services. The Business Process Execution
Language (WS-BPEL) [2] shall be used as the orchestration
language to build up a mediator process flow for service-based
data integration. The data integration services deliver a unified
data model built on top of individual data models for adaptivity
in dynamic, heterogeneous and open environments.

Portals, provided by Application Service Providers (ASP),
are classical examples where data might come from different
sources that motivate our research. In order to consume the
information, the data models and representation needs to

be understood by all participants. The ASP maintains the
application, the associated infrastructure, and the customer’s
data. The ASP also ensures that systems and data are available
when needed.

A lightweight mediated architecture for Web services com-
position shall be at the centre of our solution. Information
integration is a central architectural composition aspect. The
flexibility of the architecture to enable information integration
is essential in order to separate the business process rules from
the rest of the application logic. Therefore, the data transfor-
mation rules are best expressed at the abstract model level.
We will apply our solution to the service-oriented architecture
in general and the Web Services platform in particular in the
context of information technology services management in the
ASP (on demand) business area.

Data integration is a common problem in the composition
of collaborating services. The chosen area, however, demon-
strates the need to support deployment of Web service technol-
ogy beyond toy examples [17]. It is a specific, but important
area due to the need to find solutions to accommodate constant
structural changes in data representations. Two central themes
shall be investigated:

• Data Model transformation. To identify data transforma-
tion rules and how to express these rules in a formal, but
also accessible and maintainable way are central to the
data integration problem and its automation.

• Service Composition. Interoperability enabled through
connector and relationship modelling based on workflow
and business processes is central. Two main aspects
can be distinguished, which represent different views
on processes. The orchestration of data providers and
connector services addresses the internal perspective of
process composition, looking at one process only.

We start our investigation by providing some data integra-
tion background in Section II. We then present the principles
of our declarative data integration technique in Section III.
The mediator architecture that realises the data integration
technique for Web services is presented in Section IV. We
end with a discussion of related work and some conclusions.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/11310963?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II. DATA INTEGRATION

A. Problem Context

The Application Service Provider or ASP business model,
which has been embraced by many companies, promotes the
use of software as a service. IS outsourcing is defined [21]
as the handing over to third party the management of IT and
IS infrastructure, resources and/or activities. The ASP takes
primary responsibility for managing the software application
on its infrastructure, using the Internet as the delivery channel
between each customer and the primary software applica-
tion. The ASP maintains the application and ensures that
systems and data are available when needed. Handing over
the management of corporate information systems to third
party application service providers in order to improve the
availability of the systems and reduce costs is changing the
ways to manage information and information systems.

Data integration in collaborating systems is necessary. This
problem has been widely addressed in component-based soft-
ware development through adaptor and connector approaches
[4], [18]. In the Web services context, the data in XML
representation retrieved from the individual Web services
needs to be merged and transformed to meet the integration
requirements. The XML query and transformation rules that
govern the integration may change; therefore, the programs
for building up the connectors that facilitate the connection
between integrated Web services and data service providers
need to be adjusted or rewritten. As with schema integration,
the schema-mapping task cannot be fully automated since the
syntactic representation of schemas and data do not completely
convey the semantics of different data sources. As a result, for
both schema mapping and schema integration, we must rely on
an outside source to provide some information about how dif-
ferent schemas (and data) correspond. For instance, a customer
can be identified in the configuration management repository
by a unique customer identifier; or, the same customer may
be identified in the problem management repository by a
combination of a service support identifier and its geographical
location. In this case, see Fig. 1, a transformation might be
necessary.

Information integration aims at bringing together various
types of data from multiple sources such that it can be
accessed, queried, processed and analyzed in an integrated and
uniform manner. In a large modern enterprise, it is inevitable
that different parts of the organization will use different
systems to produce, store, and search their critical data.

B. Data Integration Principles

Information integration is the problem of combining het-
erogeneous data residing at different sources, and providing
the user with a unified view [8]. This view is central in any
attempt to adapt services and their underlying data sources to
specific client and provider needs. One of the main tasks in
information integration is to define the mappings between the
individual data sources and the unified view of these sources
and vice versa to enable this required adaptation; see Fig. 1.

There are two major architectural approaches to the data
integration problem [19].

• The data warehousing, eager, or in-advance approach
gathers data from the appropriate data sources to populate
the entities in the global view. A data warehousing
approach to integration is suitable for data consumers
wanting to access to local copies of data so that it can
be modified and calculated to suite the business needs by
nature.

• In contrast, the mediated approach extracts only data
from export schemas in advance. A mediated approach
to integration is suitable for information that changes
rapidly, for service environments that change, for clients
in need tailored data, and for queries that operate over
large amount of data from numerous information sources
and most importantly for clients with the need of the most
recent state of data.

The integration itself is defined using transformation lan-
guages.

C. XSLT Shortcomings

XSLT transformations – based on the most widely used
language for data integration – are difficult to write and
maintain for large-scale information integration. It is difficult
to separate the source and target parts of the rules as well as the
filtering constraints. With this difficulty in mind, we propose a
declarative query and transformation approach yielding more
expressive power and the ability to automatically generate
query programs as connectors to improve the development of
adaptive services-based data integration.

XSLT does work well in terms of transforming data output
from one Web service to another in an ad-hoc manner.
XSLT code is difficult to write and almost impossible to
reuse in a large enterprise integration solution. The syntac-
tical integration of the query part and construction part of
a XSLT transformation program is hard to read and often
new programs are neededeven when a small portion of the
data representation changes. XSLT does not support join of
XML documents. We would in our context need to merge
source XML documents into one document before it can be
transformed into the document according to an over-arching
schema.

III. A DECLARATIVE DATA INTEGRATION AND
TRANSFORMATION TECHNIQUE

A declarative, rules-based approach can be applied into the
data transformation problem [9]. A study by [10] introduces
the MTRANS language that is placed on top of XSLT to
describe model transformations. XSLT is generated from an
MTrans specification. The transformation rules are expressed
in the form of MTrans, and will be parsed using a compiler
generator. They argued that the transformation rules are best
expressed declaratively at the abstract model level rather than
at the concrete operational level to reduce the complexity of
the transformation rules.

transformation
between views

Fig. 1. Example of Data Integration in Adaptive Service Architectures – two Data Schemas that need to be transformed into one another.

A data integration engine for the Web services context
can be built in BPEL. A common over-arching information
model governs what types of services are involved in the
composition. In [13], a business rule engine-based approach
has been introduced to separate the business logic from the
BPEL process.

A. Requirements for Mediated Integration
The flexibility of the architecture in which information

integration is to be realised is essential in order to separate the
business logic from the rest of the application logic. Therefore,
the data transformation rules are best expressed at an abstract
business model level.

These rules, stored in a repository, will be used to dynami-
cally create XSLT-based transformations using a connector or
integration service as the mediator. These integration services
are the cornerstones of a mediator architecture that processes
composite client queries that possibly involve different data
sources provided by different Web services. We start our
investigation bt discussing the properties of suitable integration
and transformation languages.

XML data might be provided without accompanying schema
and sometimes is not well-formed; XML data often contains
nested structures. Therefore, transformation techniques need
more expressive power than traditional database languages
such as relational algebra or SQL. The characteristics of
an XML query language have been studied extensively [7],

[8], [11]. However, these investigations mainly focus on the
features on how to query an XML or semi-structured data
repository in the spirit of database query languages rather
than constructing a new XML document in the context of the
data integration. The following principles are inspired by the
literature aim to provide a comprehensive requirements list.

• The Language should support both querying and restruc-
turing XML Data.

• The language must enable the generation of query pro-
grams by other programs.

• The language should be capable of expressing the fol-
lowing operations in additional to the ones existing in
database languages (such as projection, selection, and
joins): restructuring (constructing a new set of element
instances based on variable bindings and the global
schema), combination (merging two or more element
instances into one), and reduction (to express transforma-
tion rules that exclude parts of the data from the result).

• Compositionality is an essential features for an XML
query and transformation language to support query com-
position.

A rule-based, declarative language enables developers to con-
centrate on the integration logic rather than on implementation
details and enables the required compositionality and expres-
siveness.

Most XML and semi-structured data query languages have

CONSTRUCT
CustomerArray [

all Customer[
nameAsContracted[var Name],
companyId[var CompanyId],
serviceOrganizationIdentifier[var OrgId],
all supportidentifier[

CustomerSupportIdentifier [var Code],
ISOCountryCode [var CSI]

]
]

]
FROM

arrayOfCustomer[[
item [[

orgName[var Name],
companyId[var CompanyId],
gcdbOrgId [var OrgId],
countryCode[var Code],
csiNumber[var CSI]

]]
]]

Fig. 2. Declarative Query and Transformation Specification of Customer Array Element in Xcerpt.

been proposed to extract XML data from the XML databases
or the Web. A comparative analysis of the existing languages
has been done [12]. A language is generally designed to suit
the needs for a limited application domain such as database
querying or data integration; some languages are designated
only for the semi-structured data that predated the XML-
format. A query language should be able to query data
source using complex predicates, joins and even document
restructuring. We add the following criteria specifically for
the context of data integration:

• Join. The language must support joint of multiple XML
data sources. A join condition is necessary to compare
attributes or elements in any number of XML document.
In data integration systems, data is most likely to come
from more than one source.

• Data Model. The queries and their answers are the
instances of a data model. Sometimes, a rich data model
is needed to support the functionality of some query
languages. The underling framework plays a major role
to determine a data model for a query language.

• Incomplete Querying Specification. XML and semi-
structured data is not as rigid as relational data in term
of schema definitions and data structure. Therefore, it is
important that a query language is capable of expressing
queries in incomplete form, such as by using wildcard
and regular expressions – also called partially specified
path expressions.

• Halt on Cyclic Query Terms. If a language supports
querying with incomplete query specification by wild-
card and regular expression, it might cause termination
problems. Therefore, features to detect cyclic conditions
is required.

• Building New Elements. The ability to construct a new
element or a new node adding to the answering tree is
an important feature for data integration systems.

• Grouping. Grouping XML nodes together by some condi-
tions by querying the distinct values is another important
feature in data integration. Some languages use nested
queries to perform grouping operation; in contrast, some
more powerful languages have the built-in constructors.

• Nested Queries. Nested queries are common in rela-
tional database languages to join between different data
elements by their values. In logic-based languages, the
construction part and the selection part are separated.

• Query Reduction. Query reduction allows users to specify
what part of the elements or what nodes in the query
conditions will be removed from the resulting XML tree.

We have chosen, based on this requirements list and the
language comparisons, the Xcerpt language [3] – a declarative
rule-based XML query language as the basis for our solution.

B. Declarative Transformation Rules

We have adapted Xcerpt to support the construction of the
adaptive service connectors – which is our central objective.
We need to adapt Xcerpt to specifically address the needs of
adaptive service connectors:

• From the technical point of view, in order to promote the
code reuse, the individual integration rules should not be
designed to perform the transformation tasks alone. The
composition of rules and rule chaining demand the query
part of service connector built ahead of the construction
part of service connector.

• From business point of view, the data presentation of the
global data model changes as element names change or

GOAL
Out { Resource {“file:SupportIdentifier_Customer.xml”},

SupportIdentifier [All var SupportIdentifier] }
FROM

Var SupportIdentifier -> SupportIdentifier {{}}
END

CONSTRUCT
SupportIdentifier [var Code, optional Var Cname, Var Code]

FROM
in { Resource {“file:customer1.xml”},

ArrayOfCustomer [[
customer [[optional countryName [var CName],

couuntryCode [var Code]
csiNumber [var CSI]]] }

END

CONSTRUCT
SupportIdentifier [var Code, Var Cname, optional Var Code]

FROM
in { Resource {“file:customer2.xml”},

Customers [[customer [[
countryName [var CName],
optional couuntryCode [var Code]
csiNumber [var CSI]]] }

END

Fig. 3. Transformation Specification in Xcerpt based on Goal Chaining.

elements being removed – these should not affect the
query and integration part of the logic. Only an additional
construction part is needed to enable versioning of the
global data model.

Grouping and incomplete query specification will turn out to
be essentially features.

Xcerpt is a document-centric language which is designed
to query and transform XML and semistructured documents,
therefore the ground rules that read data from the document
resources are tied with at least one resource identifier. This is
a bottom up approach in terms of data population because the
data are assigned from the bottom level of the rules upward
until it reaches a goal.

Fig. 2 shows a transformation example for a customer array
based on Fig. 1. An output customer in CustomerArray
is constructed based on the elements of an item in an
arrayOfCustomer by using a pattern matching approach,
identifying relevant attributes in the source and referring to
them in the constructed output through variables.

This original Xcerpt approach is not feasible in an informa-
tion integration solution because the resource identifiers can
not be hard coded in the ground rules in our setting. A wrapper
mechanism has been developed by us to pass the resource
identifiers from the goal level all the way down to the ground
rules.

In addition, we propose a mediator-based data integration
architecture where the Xcerpt-based connectors are integrated
with the BPEL-based Web services.

C. Implementation of Connector Construction

The construction of Xcerpt-based connectors can be au-
tomated using rule chaining. Ground rules are responsible
for querying data from individual Web services. Intermediate
composite rules are responsible for integrating the ground rules
to render data types that are described in global schemas. The
composite rules are responsible for rendering the data objects
described in the interfaces of the mediator Web services based
on the customers’ on demand. Therefore, exported data from
a mediator service is the goal of the corresponding connector
(query program), see Fig. 3.

We apply backward goal-based rule chaining in our im-
plementation to execute complex queries based on composite
rules. Fig. 3 shows an example of this pattern matching-
based approach that separates a possibly partial query based
on resource and construction parts. This transformation rule
maps the supportIdentifier element of the customer
example from Fig. 1. Fig. 3 is a composite rule based on the
SupportIdentifier construction rule at a lower level.

Rules are saved in a repository. When needed, a rule
will be picked and the backward rule chaining enables data
objects to be populated to answer transformation requests. This
architecture will be detailed in the subsequent section.

IV. MEDIATOR ARCHITECTURE

A. Motivation

Zhu et. al. [23] argue that traditional data integration ap-
proaches such as federated schema systems and data ware-
houses fail to meet the requirements of constantly changing

and adaptive environments. We propose, based on [6], [20],
[14], [23], a service-oriented data integration architecture to
provide a unified view of data on demand from various data
sources. A service-oriented data integration architecture is
different from business process integration as the latter is
concerned with integrating the business process rather than
data. The proposed integration architecture uses Web services
to enable the provision of data on demand whilst keeping the
underlying data sources autonomous.

There is consequently a need for mediators in an architec-
ture that harmonise and present the information available in
heterogeneous data sources. This harmonisation comes in the
form of identification of semantic similarities in data while
masking their syntactic differences; see Fig. 1. Relevant and
related data is then integrated and presented to a higher layer of
applications. The sourcing, integration, and presentation of in-
formation can be seen as logically separated mediator rules for
integration and adaptivity, implemented by mediator services
– which shall form the basis for our mediator architecture.

Garcia-Molina et.al. [5] identify that the following require-
ments are essential in order to build mediator architecture.
Firstly, it must be based on a common data model that is
more flexible than the models commonly used for the database
management systems. Secondly, it must be supported by a
common query language. Finally, there must be a tool to make
the creation of new mediators and mediator systems more cost-
effective than building from scratch.

B. Architecture Definition

The mediator architecture (Fig. 4) transforms local XML
documents into documents based on a global schema. The
data integration engine is built based on WS-BPEL, where
component invocation orders are predefined in the integration
schemas. Service orchestrations are defined by specifying the
order in which operations should be invoked.

The proposed Web services based mediator architecture will
contain the following components [16]:

• Schema Repository: Each object within the model is a
logical representation of the entity and will often be pop-
ulated with data sourced from more than one repository.
The advantage of having a unified view of data is to make
sure that the customers will have a consistent view of data
and to avoid duplication.

• Web Services: These provide source data retrieved from
the underling data repositories to clients and other ser-
vices. The signature of the Web service interfaces such
as input parameter and data output is agreed in advance
by business domain experts from both client and provider
sides. The benefit of asking the data sources to provide
a Web service interface is to delegate the responsibility
and cut down the effort spent on developing data access
code and understanding the business logic.

• Data Integration and Mediation Services: A common data
model can be implemented as an XML Schema. Two
basic approaches have been proposed for the mappings
between the export schemas and the federated schema

– called global-as-view and local-as-view in [8]. The
former approach defines the entities in the global data
model as views over the export schemas whereas the
latter approach defines the export schemas as views over
the global data model. In this project, a data integration
service will be treated as a mediator in the mediator
architecture. We introduce a novel approach to ease and
improve the development of the mediators. There are two
quite different styles of transformation: procedural, with
explicit source model traversal and target object creation
and update, and declarative, with implicit source model
traversal and implicit target object creation. Therefore,
a declarative rule markup language based approach to
express the data transformation rules and a rule engine
have been chosen. The mapping should be conducted at
the abstract syntax mappings level, leaving the rendering
of the result to a separate step at runtime to the BPEL
engine.

• Query Component: The query service is designed to
handle inbound requests from the application consumer
side. The application developers build their applications
and processes around common objects and make suc-
cessive calls to the mediated Web services. Therefore,
the interfaces of individual Web service providers are
transparent to the application customers; they may send
any combinations of the input parameters to the query
service. In order to facilitate these unpredicted needs, the
query service has to decompose the input SOAP messages
into a set of pre-defined BPEL flows. Normally a BPEL
flow belongs to a mediator that delivers a single common
object. Occasionally, two or more mediators need to be
bundled together to deliver a single object.

C. Software Process Model

The architecture in Fig. 4 explains the runtime view from
the client and user perspective. Fig. 5 is the development
perspective, looking at the developers of the architecture and
their tasks. This is part of the development process model. It
demonstrates the need for common understanding and main-
tainability of the integration problem, which can be achieved
through abstract and declarative rule specifications (here in
Xcerpt format), shared by service provider developers, inte-
gration business analysts, and integration software developers.

D. Application

Our approach is based on an incremental, evolutionary
process model. Some pragmatic aspects of this process shall
now be addressed.

In our proposed architecture, the unified data model (over-
arching schema) is maintained manually. The schema for large
enterprise integration solutions might consist of a large number
of data aspects. From the development point of view, it is only
reasonable to deliver the data integration services on a phased
basis such as one data aspect one release cycle. Mediators in
our solution are used to deliver these data aspects according to
the unified schema. This schema is available to the customers

Customer Data
Service

Customer Data
Service

Service Requests
Analysis Service

Service Requests
Analysis Service

E-business
Systems Service

E-business
Systems ServiceClientClient Query

Component

Query
Component BPEL EngineBPEL Engine

Transformation
Generator

(Integration Service)

Transformation
Generator

(Integration Service)

Transformation Rule
Repository

Transformation Rule
Repository

MOF Data Schema
Repository

MOF Data Schema
Repository

Mediator Flow
Repository

Mediator Flow
Repository

query

result

Mediator Service

Fig. 4. Mediator Architecture for Adaptive Service-based Information Systems with sample Information Services (Customer Data, E-business System, Request
Logging and Analysis Service).

also so that customers can decide which mediator to call
based on the definition of the unified schema. A mediator
consists of the following components: the individual provided
Web services, a BPEL workflow, and one or more service
connectors, see Fig. 4.

The focus of our study is not on the automatic composition
of Web services, rather than on how the data output from mul-
tiple Web services can be automatically integrated according to
a global data model and sent back to users. Therefore, in terms
of our BPEL process flow, we can taken a static approach
with respect to the orchestration of the involved Web services.
These can be orchestrated together in form of a BPEL flow
built in advance.

At the development phase, the mappings between the global
model and the local models will be expressed in at the abstract
model level, with a language based on the MOF specification.
Model transformation between different metamodels (MOF
allowing to unify the metamodels definition) can be automat-
ically carried out. The inputs are the source XML schema
definitions and the transformation rules. The output is an XSLT
transformation file.

In the proposed architecture, the unified data model and the
creation of rules are the responsibility of the business solution
analysts, not necessarily the software architect. The rules are
merely mappings from the elements exposed by Web service
providers to the elements in the unified data model. We have
taken the approach in that the semantic similarity is determined
manually.

In the literature on data model transformation, the automa-
tion of the mapping is often limited to transforming the source
model and the destination model rather than integrating more
than more data models into a unified data model. Even in
the case of source to destination model mapping, the users

intervention is needed to select one from more than one sets
of mapping that are generated. In our proposed architecture,
the service connectors can be generated on the fly by rule
composition. The sacrifice is that semantic similarity is not
taken into consideration.

The integration rules are created at the higher level than
the Xcerpt query program itself as below, as the following
schematic example demonstrates (Fig. 3 shows an example of
a composite rule like A below):

Rule A : A(a, b) := B(a, b), C(b)

Rule B : B(a, b) := D(a), E(b)

Rule C : C(b) := E(b), F (b)

Each of the above rules would be implemented in the Xcerpt
language. In the above example, rule A is a composite rule,
based on B and C, that could be used to answer a users query
directly. The resource identifiers in form of variables and the
interfaces for the data representation such as version number
of the unified data model will be supplied to the transformation
generator. The rules mapping in the transformation generator
serves as an index to find the correct Xcerpt queries for
execution. As a result, a query program including both query
part and construction part is being executed to generate the
XML output back to the transformation generator.

In terms of examples, we have so far only addressed
complex transformations based on compositional rules within
data provided by one Web services – the customer information
service. Queries could of course demand to integrate data from
different services. For instance, to retrieve all services requests
by a particular customer targets two services, based on several
composite integration and transformation rules.

Fig. 5. Development of a Mediated ASP infrastructure – Overview of different Developer Roles involved.

V. RELATED WORK

In contrast to XSLT, XQuery is a W3C-suppported query
language aims at a syntax and semantics making it convenient
for database systems. XQuery is an extension of XPath 2.0
adding functionalities needed by a full query language. The
most notable of these functionalities are support of sequences,
the construction of nodes and variables, and user-defined

functions.

UnQL – the Unstructured Query Language – is a query
language originally developed for querying semi-structured
data and nested relational databases with cyclic structures. It
has later been adapted to querying XML. Its syntax uses query
patterns and construction patterns and a query consists of a
single select or traverse rule that separate construction from

querying. Queries may be nested, in which case the separation
of querying and construction is abandoned. UnQL was one of
the first languages to propose a pattern-based querying (albeit
with subqueries instead of rule chaining, as in our case).

XML-QL is that uses query patterns and path expressions
to select data from the XML sources. Such patterns can
be augmented by variables for selecting data. One of the
main characteristics of XML-QL is that it uses query patterns
containing multiple variables that may select several data items
at a time instead of path selections that may only select one
data item at a time. Furthermore, variables are similar to the
variables of logic programming, i.e. joins can be evaluated
over variable name equality. Since XML-QL does not allow
one to use more than one separate rule, it is often necessary
to employ subqueries to perform complex queries.

The shortcomings of these widely known and used lan-
guages have led us to choose Xcerpt as a language that satisfies
all criteria that we have listed earlier on. Another candidate
for this context that has emerged recently is the Query View
Transformation (QVT) framework, which is another declara-
tive model transformation language. While QVT satisfies the
criteria, it is currently not as well supported through tools and
accessible tutorial material.

VI. CONCLUSIONS

The benefit of information systems on demand must be
supported by corresponding information service management
systems. Many application service providers are currently
modifying their technical infrastructures to manage informa-
tion using a Web services-based approach. However, how
to handle information integration in the context of adaptive
service management has not yet been fully exploited. Our pro-
posal aims to explore information integration technologies for
adaptive service-oriented software architectures. The crucial
solutions for the information integration problem are drawn
from mediated architectures and data model transformation,
allowing the data from local schemas to be transformed,
merged and adapted according to a declarative, rule-based
integration schemas for dynamic and heterogeneous environ-
ments. We have proposed a declarative style of transformation,
with implicit source model traversal and implicit target object
creation. The development of a flexible mediator service is
crucial for the success of the service architecture from the
deployment point of view.

Adaptivity in service-based software systems is emerging
as a crucial aspect beyond the discussed area of service-based
portals and on demand information systems. Adaptability of
services and their infrastructure is necessary to reconcile
integration problems that arise in particular in dynamic and
changing environments.

We have excluded the problem of semantic interoper-
ability from our investigation. Mappings between schemas
might still represent the same semantical information. The
recently widely investigated semantic Web services field, with
ontology-based domain and service models, shall provide input
for some planned extensions in this direction.

Re-engineering and the integration of legacy systems is
another aspect that we have not addressed. The introduction
of data transformation techniques for reengineering activities
can improve the process of reengineering legacy systems and
adopting service-oriented architecture to manage the informa-
tion technology services [22]. Business rules often change
rapidly – requiring the integration of legacy systems to deliver
a new service. How to handle the information integration in
the context of service management has not yet been exploited
in sufficient detail in the context of transformation and reengi-
neering.

REFERENCES

[1] Alsonso, G and Casati, F. and Kuno, H. and Machiraju, V. Web Services
Concepts, Architectures and Applications. Springer Verlag. 2004.

[2] BPEL. Business Process Execution Language for
Web Services Version 1.1. [Online] Available from:
http://www.ibm.com/developerworks/library/ws-bpel/. 2006.

[3] Bry, F. and Schaffert, S. Towards a Declarative Query and Trans-
formation Language for XML and Semistructured Data: Simulation
Unification. In Proc. Int. Conf. on Logic Programming. LNCS 2401,
Springer-Verlag. 2002.

[4] Crnkovic, I and Larsson, M. A Case Study: Demands on Component-
based Development. IN: Proc. 2nd International Conference on Software
Engineering. pages 2331. ACM Press. 2000.

[5] Garcia-Molina, H. and Papakonstantinou, Y. and Quass, D. and Rajara-
man, A. and Sagiv, Y. and Ullman, Y. D. and Vassalos, V. and Widom,
J. The TSIMMIS approach to mediation: Data models and languages.
IN: Journal of Intelligent Information Systems. 8(2), March 1997, pp.
117-132. 1997.

[6] Haller, A., Cimpian, E., Mocan, A., Oren, E. and Bussler, C. WSMX
- a semantic service-oriented architecture. In Proc. Intl. Conf. on Web
Services ICWS 2005. 2005.

[7] Jhingran, A.D. and Mattos, D. and Pirahesh, N.H. Information In-
tegration: A research agenda. IN: IBM System Journal 41, no. 4,
special issue on Information Integration [Online]. Available from :
www.research.ibm.com/journal/sj/414/jhingran.pdf. 2002.

[8] Lenzerini, M. Data integration: A theoretical perspective. Proc. Princi-
ples of Database Systems PODS’02, ACM. pp. 233-246. 2002.

[9] Orriens, B. and Yang, J and Papazoglou, M. A Framework for Business
Rule Driven Web Service Composition. IN: ER 2003 Workshops,
Jeusfeld, M.A. & Pastor, O. Ed(s). LNCS 2814, pp. 52-64, 2003.
Springer-Verlag Berlin Heidelberg. 2003.

[10] Peltier, M. and Bezivin, J and Guillaume, G. 2001. MTRANS: A general
framework, based on XSLT, for model transformations. IN: WTUML01,
Proceedsings of the Workshop on Transformations in UML .Genova,
Italy. 2001.

[11] Peltier, M. and Ziserman, F. and and Bezivin. 2002. On levels of
model transformation. IN: XML Europe 2002, pages 117, Paris, France,
Graphic Communications Association. 2002.

[12] Reynaud, C. and Sirot, J.P. and Vodislav, D. Semantic Integration of
XML Heterogeneous Data Sources. IN: Proc. IDEAS, pages 199208,
2001.

[13] Rosenberg, F., Dustdar, S. Business Rules Integration in BPEL - A
Service-Oriented Approach. IN: Proceedings of the 7th International
IEEE Conference on E-Commerce Technology. Munich, Germany. 2005.

[14] Sheth A. P. and Larson J. A. Federated database systems for managing
distributed, heterogeneous, and autonomous databases. ACM Computing
Surveys, vol. 22, No. 3, pp. 183. 1990.

[15] Seltsikas, P. and Currie, W.L. Evaluating the application service provider
(ASP) business model: the challenge of integration. IN: Proceedings
of the 35th Annual Hawaii International Conference on 7-10 Jan 2002
Page(s):2801 2809. 2002.

[16] Stern, A and Davis, J. A Taxonomy of Information Technology Services:
Web Services as IT Services. First International Conference on Service
Oriented Computing, Trento, Italy. 2003.

[17] Stern, A. and Davis, J. 2004. Extending the Web services model to
IT services. IN Proceedings IEEE International Conference on Web
Services Page(s):824 - 825. 2004.

[18] Szyperski, C. Component Software: Beyond Object-Oriented Program-
ming 2nd Ed. Addison-Wesley. 2002.

[19] Widom, J. Research problems in data warehousing. IN: Proceedings of
4th International Conference on Information and Knowledge Manage-
ment. 1995.

[20] Wiederhold, G. Mediators in the architecture of future information
systems. IEEE Computer, Volume 25. March 1992, pp. 38-49. 1992.

[21] Willcocks, L. P. and Lacity, M. C. The Sourcing and Outsourcing of IS:
Shock of the New? IN: Strategic Sourcing of Information Technology:
Perspectives and Practices.Willcocks, L. P. and Lacity, M. C. (eds)
Chichester: Wiley. 1998.

[22] Zhang, Z. and Yang, H. Incubating Services in Legacy Systems for Ar-
chitectural Migration. IN: Proceedings of the 11th Asia-Pacific Software
Engineering Conference (APSEC’04). Busan, Korea. pp. 196-203. 2004.

[23] Zhu, F. and Turner, M. and Kotsiopoulos, I. and Bennett, K. and Russell,
M. and Budgen, D. and Brereton, P. and Keane, J. and Layzell, P. and
Rigby, M. and Xu, J. Dynamic Data Integration Using Web Services.
IN: 2nd International Conference on Web Services (ICWS 2004. San
Diego, California, USA. 2004.

