299,832 research outputs found

    Environments to support collaborative software engineering

    Get PDF
    With increasing globalisation of software production, widespread use of software components, and the need to maintain software systems over long periods of time, there has been a recognition that better support for collaborative working is needed by software engineers. In this paper, two approaches to developing improved system support for collaborative software engineering are described: GENESIS and OPHELIA. As both projects are moving towards industrial trials and eventual publicreleases of their systems, this exercise of comparing and contrasting our approaches has provided the basis for future collaboration between our projects particularly in carrying out comparative studies of our approaches in practical use

    Support for collaborative component-based software engineering

    Get PDF
    Collaborative system composition during design has been poorly supported by traditional CASE tools (which have usually concentrated on supporting individual projects) and almost exclusively focused on static composition. Little support for maintaining large distributed collections of heterogeneous software components across a number of projects has been developed. The CoDEEDS project addresses the collaborative determination, elaboration, and evolution of design spaces that describe both static and dynamic compositions of software components from sources such as component libraries, software service directories, and reuse repositories. The GENESIS project has focussed, in the development of OSCAR, on the creation and maintenance of large software artefact repositories. The most recent extensions are explicitly addressing the provision of cross-project global views of large software collections and historical views of individual artefacts within a collection. The long-term benefits of such support can only be realised if OSCAR and CoDEEDS are widely adopted and steps to facilitate this are described. This book continues to provide a forum, which a recent book, Software Evolution with UML and XML, started, where expert insights are presented on the subject. In that book, initial efforts were made to link together three current phenomena: software evolution, UML, and XML. In this book, focus will be on the practical side of linking them, that is, how UML and XML and their related methods/tools can assist software evolution in practice. Considering that nowadays software starts evolving before it is delivered, an apparent feature for software evolution is that it happens over all stages and over all aspects. Therefore, all possible techniques should be explored. This book explores techniques based on UML/XML and a combination of them with other techniques (i.e., over all techniques from theory to tools). Software evolution happens at all stages. Chapters in this book describe that software evolution issues present at stages of software architecturing, modeling/specifying, assessing, coding, validating, design recovering, program understanding, and reusing. Software evolution happens in all aspects. Chapters in this book illustrate that software evolution issues are involved in Web application, embedded system, software repository, component-based development, object model, development environment, software metrics, UML use case diagram, system model, Legacy system, safety critical system, user interface, software reuse, evolution management, and variability modeling. Software evolution needs to be facilitated with all possible techniques. Chapters in this book demonstrate techniques, such as formal methods, program transformation, empirical study, tool development, standardisation, visualisation, to control system changes to meet organisational and business objectives in a cost-effective way. On the journey of the grand challenge posed by software evolution, the journey that we have to make, the contributory authors of this book have already made further advances

    Cloud-Based Collaborative 3D Modeling to Train Engineers for the Industry 4.0

    Get PDF
    In the present study, Autodesk Fusion 360 software (which includes the A360 environment) is used to train engineering students for the demands of the industry 4.0. Fusion 360 is a tool that unifies product lifecycle management (PLM) applications and 3D-modeling software (PDLM—product design and life management). The main objective of the research is to deepen the students’ perception of the use of a PDLM application and its dependence on three categorical variables: PLM previous knowledge, individual practices and collaborative engineering perception. Therefore, a collaborative graphic simulation of an engineering project is proposed in the engineering graphics subject at the University of La Laguna with 65 engineering undergraduate students. A scale to measure the perception of the use of PDLM is designed, applied and validated. Subsequently, descriptive analyses, contingency graphical analyses and non-parametric analysis of variance are performed. The results indicate a high overall reception of this type of experience and that it helps them understand how professionals work in collaborative environments. It is concluded that it is possible to respond to the demand of the industry needs in future engineers through training programs of collaborative 3D modeling environments

    OntoMaven: Maven-based Ontology Development and Management of Distributed Ontology Repositories

    Full text link
    In collaborative agile ontology development projects support for modular reuse of ontologies from large existing remote repositories, ontology project life cycle management, and transitive dependency management are important needs. The Apache Maven approach has proven its success in distributed collaborative Software Engineering by its widespread adoption. The contribution of this paper is a new design artifact called OntoMaven. OntoMaven adopts the Maven-based development methodology and adapts its concepts to knowledge engineering for Maven-based ontology development and management of ontology artifacts in distributed ontology repositories.Comment: Pre-print submission to 9th International Workshop on Semantic Web Enabled Software Engineering (SWESE2013). Berlin, Germany, December 2-5, 201

    Taxing Collaborative Software Engineering

    Full text link
    The engineering of complex software systems is often the result of a highly collaborative effort. However, collaboration within a multinational enterprise has an overlooked legal implication when developers collaborate across national borders: It is taxable. In this short article, we discuss the unsolved problem of taxing collaborative software engineering across borders. We (1) introduce the reader to the basic principle of international taxation, (2) identify three main challenges for taxing collaborative software engineering, and (3) estimate the industrial significance of cross-border collaboration in modern software engineering by measuring cross-border code reviews at a multinational software company.Comment: 7 pages, 3 figure

    Enablers and Impediments for Collaborative Research in Software Testing: An Empirical Exploration

    Full text link
    When it comes to industrial organizations, current collaboration efforts in software engineering research are very often kept in-house, depriving these organizations off the skills necessary to build independent collaborative research. The current trend, towards empirical software engineering research, requires certain standards to be established which would guide these collaborative efforts in creating a strong partnership that promotes independent, evidence-based, software engineering research. This paper examines key enabling factors for an efficient and effective industry-academia collaboration in the software testing domain. A major finding of the research was that while technology is a strong enabler to better collaboration, it must be complemented with industrial openness to disclose research results and the use of a dedicated tooling platform. We use as an example an automated test generation approach that has been developed in the last two years collaboratively with Bombardier Transportation AB in Sweden

    Pibok-pb: A collaborative framework to improve software development productivity through projects and process assets reuse and measurement with six sigma techniques

    Get PDF
    The Software Engineering Lab (SEL-UC3M) is aimed to develop solutions to software projects processes related problems having an accessible, collaborative, practiced and manageable focus. We are interested to collaborate with research centers and universities worldwide that share our philosophy as well as with enterprises and public administrations interested in our novel methods

    Historical awareness support and its evaluation in collaborative software engineering

    Get PDF
    The types of awareness relevant to collaborative soft- ware engineering are identified and an additional type, "historical awareness" is proposed. This new type of awareness is the knowledge of how software artefacts re- sulting from collaboration have evolved in the course of their development. The types of awareness that different software engineer- ing environment architectures can support are discussed. A way to add awareness support to our existing OSCAR sys- tem, a component of the GENESIS software engineering platform, is proposed. Finally ways of instrumenting and evaluating the awareness support offered by the modified system are outlined

    Teaching Software Engineering from a Collaborative Perspective: Some Latin-American Experiences

    Get PDF
    Teaching software engineering has been recognized as an important challenge for computer science undergraduate programs. Instruction in such area requires not only to deliver theoretical knowledge, but also to perform practical experiences that allow students to assimilate and apply such knowledge. This paper presents some results of two Computer-Supported Collaborative Learning (CSCL) experiences that involved students of software engineering courses from four Latin American Universities. The obtained results were satisfactory and indicate the reported collaborative activity could be appropriate to address teaching software engineering.Teaching software engineering has been recognized as an important challenge for computer science undergraduate programs. Instruction in such area requires not only to deliver theoretical knowledge, but also to perform practical experiences that allow students to assimilate and apply such knowledge. This paper presents some results of two Computer-Supported Collaborative Learning (CSCL) experiences that involved students of software engineering courses from four Latin American Universities. The obtained results were satisfactory and indicate the reported collaborative activity could be appropriate to address teaching software engineering
    corecore