
Support for Collaborative Component-Based Software
Engineering

Cornelia Boldyreff
University of Lincoln

cboldyreff@lincoln.ac.uk
Phone +44 (0) 1522 83 7115
Fax +44 (0) 1522 88 6974

David Nutter
University of Lincoln
dnutter@lincoln.ac.uk

Phone +44 (0) 1522 88 6653
Fax +44 (0) 1522 88 6974

Stephen Rank
University of Lincoln
srank@lincoln.ac.uk

Phone +44 (0) 1522 83 7306
Fax +44 (0) 1522 88 6974

Phyo Kyaw
University of Durham

phyo.kyaw@durham.ac.uk
Phone +44 (0) 191 33 41741
Fax +44 (0) 191 33 41701

Janet Lavery
University of Durham

janet.lavery@durham.ac.uk
Phone +44 (0) 191 33 41740
Fax +44 (0) 191 33 41701

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Lincoln Institutional Repository

https://core.ac.uk/display/57242?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


iABSTRACT

Collaborative system composition during design has been poorly supported
by traditional CASE tools (which have usually concentrated on supporting
individual projects) and almost exclusively focused on static composition.
Little support for maintaining large distributed collections of heterogeneous
software components across a number of projects has been developed. The
CoDEEDS project addresses the collaborative determination, elaboration,
and evolution of design spaces that describe both static and dynamic
compositions of software components from sources such as component
libraries, software service directories, and reuse repositories. The GENESIS
project has focussed, in the development of OSCAR, on the creation and
maintenance of large software artefact repositories. The most recent
extensions are explicitly addressing the provision of cross-project global
views of large software collections and historical views of individual
artefacts within a collection. The long-term benefits of such support can
only be realised if OSCAR and CoDEEDS are widely adopted and steps to
facilitate this are described.

Keywords: Distributed Systems, Internet Technologies, Web Applications,
Metadata, CASE tools, Groupware, XML, Software Management, Data

Models, File Management Systems.

INTRODUCTION

The systemic representation and organisation of software descriptions (e.g.

specifications, designs, interfaces, and implementations) of large distributed

applications using heterogeneous software components have been addressed

by research in the Practitioner and AMES projects (Boldyreff, Elzer, Hall,

Kaaber, Keilmann, and Witt, 1990; Boldyreff, 1992; Boldyreff, Burd,

Hather, Mortimer, Munro, and Younger, 1995; Boldyreff, Burd, Hather,

Munro, and Younger, 1996). The Practitioner project explicitly addressed

the reuse of software concepts, and developed a standard form to handle

representations of software concepts from their specification to their

associated implementations as components. The AMES project, while

focused on maintenance support, organised the associated software



components at various levels of abstract representations using hypertext and

the web. In both projects, it was assumed that the underlying collections of

software components would support software reuse and the subsequent

evolutions of systems composed from components. However, without

appropriate representations and organisations, large collections of existing

software are not amenable to the activities of software reuse and software

maintenance; these activities are likely to be severely hindered by the

difficulties of understanding the software applications and their associated

components. In both of these projects, static analysis of source code and

other development artefacts, where available, and subsequent application of

reverse engineering techniques were successfully used to develop a more

comprehensive understanding of the software applications under study

(Zhang & Boldyreff, 1990; Fyson & Boldyreff, 1998). Later research

addressed the maintenance of a web-based component library in the context

of component-based software product line development and maintenance

(Kwon, Boldyreff, and Munro, 1997). The classic horizontal and vertical

software decompositions proposed by Goguen (1986) have influenced all of

this research. While they are adequate for static composition, they fail to

address the dynamic aspects of composing large distributed software

applications from components especially where these include software

services that may be dynamically bound at run-time. 

Recent research within the CoDEEDS project has made some progress

towards the determination of design spaces to support both the static and

dynamic system composition as well as the determination of the physical

deployment and long-term operation of large distributed system composed



from heterogeneous components (Boldyreff, Kyaw, Nutter, and Rank,

2003). The current prototype implementation of collaborative support for

the determination, elaboration, and evolution of design spaces, based on the

CoDEEDS framework (Boldyreff & Kyaw, 2003), employs at its base

another development of our recent research within the GENESIS project,

the Open Source Component Artefact Repository, OSCAR (Boldyreff,

Nutter, and Rank, 2002a; Boldyreff, Nutter, and Rank, 2002b; Boldyreff,

Nutter, and Rank, 2002c; Nutter, Boldyreff, and Rank, 2003)

The GENESIS project developed a generalised environment for process

management in collaborative software engineering (Gaeta & Ritrovato,

2002). A key component of this environment is an underlying distributed

repository, OSCAR, to hold the software artefacts (both the artefact data and

its associated metadata). A software artefact is any component of a work

product resulting from the software engineering process. Thus the support

provided covers not only the engineering of software systems from reusable

software components, but also more generic reuse based on any work

product components, such as project plans, requirements specifications,

designs, test cases, and so on.

The research areas addressed in this chapter are:

●  Process-aware support for collaborative software engineering;

●  Management of software (and other) artefacts within and across software

engineering projects; and

●  Use XML-based artefact representations and interchange formats.



The remainder of this chapter is organised as follows: Firstly, the

background related to web-based collaborative software development and

software evolution are examined, then the overall design of OSCAR and the

support for co-operative software development that it currently offers

combined with CoDEEDS are described, along with extensions to OSCAR

to provide historical awareness of artefact development across projects

(Nutter & Boldyreff, 2003) and a global view of a number of distributed

artefact repositories are elaborated. Finally, planned deployment and future

research activities are discussed.

WEB-BASED COLLABORATIVE SOFTWARE

DEVELOPMENT 

The web and its associated technologies facilitate communication and

cooperation amongst software developers enabling large collaborative

software development projects to be undertaken. The open source

community provides many examples of such projects. Multinational

software projects are also commonplace within industry today. Various

solutions are available to address the immediate support of these

collaborative development projects throughout the lifecycle of the project.

These solutions, open source and commercial, vary considerably in the

elements of collaborative development and project management they

address. SourceForge, in the open source domain, provides basic support for

managing cooperative development of software artefacts such as handling

mailing lists, forums, repository services, and bug tracking. However, it

does not support workflow, resource management, or collaborative work by



many users on a single artefact (apart from the use of a CVS (Concurrent

Versions System) repository to handle configuration management).

Microsoft Project Professional supports enterprise project management over

single or distributed sites in the commercial domain. It concentrates on the

workflow and planning elements of cooperative development but has no

specific focus on software engineering projects, unlike Rational’s range of

products, which support industrial software development across a global

enterprise in the commercial domain. There are also general, not software

development specific, web-based solutions that have been used to support

cooperative working of distributed software development teams such as

SiteScape, which handles a central repository, with forum-like facilities for

interaction and BSCW (Basic Support for Cooperative Work) which formed

the basis of the SEGWorld development (Drummond & Boldyreff, 1999).

The GENESIS project has employed SiteScape to manage the deliverables

associated with its various work packages and to coordinate document

reviewing associated with the project’s research and software developments.

All of these current solutions support web-based access to project related

data and artefacts under production by the software team. 

In contrast, the OPHELIA (Dewar, Mackinnon, Pooley, Smith, Smith, and

Wilcox, 2002; Wilcox, Smith, Smith, Pooley, MacKinnon, and Dewar,

2002) project offers support for collaborative work using software tools and

employs a CORBA-based tool integration approach to do this. Various tools

including project planning (MS Project) and development tools (such as

ArgoUML) have been integrated using the ORPHEUS implementation of

the OPHELIA framework. These applications can interchange data with



other modules of the ORPHEUS system, which perform tasks such as

metrics calculation, recording traceability information, and archiving data.

Theoretically, any tool may be integrated within ORPHEUS but providing

truly universal data interchange is of course difficult and the effort required

to integrate a tool significant. 

The use of standard representations such as UML and XML-based notations

has a beneficial effect on the cost and efficiency of software engineering

projects. The GENESIS and CoDEEDS projects represent artefacts as XML

documents. This has allowed the rapid development of sophisticated tools to

handle artefacts; using currently available tools for XML handling has

avoided the requirement to build entirely new artefact handling software.

The use of UML as a common communication language amongst software

engineers is supported by both projects. UML improves communication at

the human level, while use of an XML exchange format can facilitiate the

exchange of software artefacts.

Current solutions lack any means of obtaining a global view of project data

and software artefacts across a number of projects irrespective of the initial

methods and tools employed during the project’s lifetime. Here the

underlying artefact management system, OSCAR, being developed within

the GENESIS project coupled with the CoDEEDS framework offers the

basis for delivering such support in the future. One benefit of this is that a

collection of artefacts can be treated as a repository of reusable components.

The navigation and search facilities provided by GENISOM support the

discovery of reuse candidates.



The GENESIS platform offers a process-aware environment which supports

distributed software engineering, allowing flexible modelling and control of

a collaborative software engineering project. While the GENESIS platform

is based around process modelling and control, CoDEEDS specifically

supports software engineering, providing support for specific software-

related tasks such as architectural design. Both projects address supporting

the evolution of software artefacts during their development and subsequent

deployments within a variety of systems.

SOFTWARE EVOLUTION 

A. Boldyreff was one of the first to recognise the role of evolution within

the process of engineering computer systems (Boldyreff, A. W., 1954). He

distinguished between mathematical models of systems and their

corresponding physical realisation; and noted the necessity to evolve these

models in step. In the 1970s, Lientz and Swanson (1980) studied a large

number of software projects in many data-processing organisations. The

study showed that software maintenance consumed approximately half the

time of software professionals in the organisations which responded to their

questionnaire. Generally, larger organisations spent a larger proportion of

their time on maintenance, though results varied across industries. Their

study showed that in organisations where  maintenance was considered as a

separate activity, it consumes a smaller proportion of effort. Lientz and



Swanson's study was carried out in the late 1970s, and the level of

technology that was used by the organisations reflected this. For example,

change logs were handled manually, and implementation languages such as

COBOL and FORTRAN were common. Lientz and Swanson concluded,

unsurprsingly, that larger and older systems have greater maintenance

problems than smaller and newer systems, and that personnel issues such as

the skill level and turnover of staff are of importance in determining the

quality and effort of system maintenance.

Lehman and Belady (1985a) made a detailed study of the development of a

single software system. In contrast to the method used by Lientz and

Swanson, Lehman and Belady studied the software product (IBM’s OS/360)

rather than the organisation. They examined the system's size at each release

point, and showed that the size (in terms of lines of code and number of

modules) and complexity of a system grows with each successive release,

unless specific effort is made to reduce these factors. During this work,

Lehman and Belady developed the idea of software system types, using the

terms S-type, P-type, and E-type to describe the three types (Lehman &

Belady, 1985b).

S-type programs are the simplest kind, being those programs which are

formally defined as a function between input and output, with no reliance on

or interaction with their environment, such as simple UNIX software tools;

grep and awk, for example. P-type programs are those which solve real-

world problems, and must use heuristics to arrive at approximate solutions.

Examples include weather forecasting and chess playing, where the input to



the software is well-defined and well-formed, but in order to arrive at a

useful solution in a reasonable amount of time, approximations must be

used. E-type software is the most complex and most interesting kind of

software.

 An E-type program is situated in and interacts with its environment, leading

to feedback between the software and the ‘real world’. Total correctness of

an E-type system cannot be shown in the abstract. Such software interacts

with its environment and thus it can be only be shown to be effective in a

particular, given, situation.

The results of these studies motivated Lehman to develop his laws of

software evolution (Lehman, 1979; Lehman, Ramil, Wernick, Perry, and

Turski, 1997; Lehman, 1996).

 These laws describe the behaviour of software systems over time (Lehman,

1996). They are:

• Continuing Change: An E-type program must either adapt or

become obsolescent.

• Increasing Complexity: Unless an evolving program has work done

specifically to reduce its complexity, it will become more complex

as a result of the evolution.

• Self-Regulation: The evolution process is self-regulating, with

statistically determinable trends and invariants.

• Invariant Work-Rate: The average effective global activity rate is

constant over the life-time of the system.



• Conservation of Familiarity: The content of successive releases is

statistically invariant.

• Continuing Growth: Functional content of a system must increase

with each release in order to satisfy user demands.

• Declining Quality: Unless an E-type program is rigorously

maintained and updated to its changing environment, it will be

perceived as declining in quality.

• Feedback System: The evolution process for E-type programs is

multi-loop and multi-level. Successful management of the process

depends on recognising and accounting for this fact.

Two of the key problems of maintenance are understanding the software in

order to determine where to make changes, and validating the changed

version of a system - determining that the correct changes and no others

have been made (Baxter & Pidgeon, 1997). One important cause of the

difficulty of maintenance is the complexity of software systems (Jackson,

1998); understanding a system in its entirety is often necessary before even

a simple change can be made and validated, thus the need for support

environments to capture and preserve the developer’s understanding of

programs. 

As described above, there have been several studies of the evolution of

software systems. These and other studies have led to models of the process

and products of software evolution which have been used to manage and

control software evolution. Process models identify the mechanism by



which the evolution is carried out, and product models identify the

characteristics of the software which are important with respect to evolution.

There are two complementary research approaches to software evolution.

The first approach, related to reverse engineering, aims to devise methods of

working with legacy systems, while the second approach, related to forward

engineering, attempts to design software that is easy to change. Whether a

software system has been designed for ease of modification or not, there are

common tasks which must be performed. In order to change a software

system, the software engineer performing the task must understand both the

system and the changes to be made (Takang & Grub, 1996). The software

engineer must  be able to verify that exactly the required changes have been

made to the software.

Various techniques for handling software evolution have been described in

the literature, including those by Takang and Grub (1996) and Pigoski

(1996). Takang and Grub describe several software life-cycle processes, and

put each in the context of evolving software systems, while Pigoski takes a

more evolution-centred approach, concentrating more on the processes

which occur after the development of a software system. Pigoski describes

software evolution processes, metrics, and management issues.

While developing software which is easy to change is not entirely removed

from changing so-called ‘legacy’ software, it is sufficiently different to merit

separate treatment. Various techniques for creating software have been

described. These range from product-oriented guidelines for developing



understandable source code (McConnell, 1993; Kernighan & Pike, 1999) to

processes with attempts at psychological grounding in program

comprehension (Smith, 1999).

There have been several attempts to categorise methods for dynamically

changing software at run-time. These include simple techniques based on

plugins (i.e., dynamically loadable modules) and parameter alteration

(Rubini, 1997), and more sophisticated approaches based on component

replacement or adaption (Bihari & Schwan, 1991; Segal & Frieder, 1989).

The lack of explicit representation of communication in a software system

causes problems with the evolution of the system; communication is a key

part of a software system, and should be explicitly represented rather than

implicitly inferred. Maintaining the existence of connectors through to the

run-time instantiation of the code allows connectors to encapsulate more

information about the communication that occurs between components, to

contribute to the mobility, distribution and extensibility of systems, and to

act as domain translators (providing mappings from messages in one format

to messages in another) (Oreizy, Rosenblum, and Taylor, 1998).

The initial design of a modern system usually aims to have low inter-

component coupling. This coupling between modules increases as a system

is maintained (Lehman, 1998). Whatever the initial architecture of a

software system, maintenance of the system without regard to the effects on

the architecture will cause degradation of architecture (Lehman, 1996).

There are several ways to tackle the problems here:



● Use a process of maintenance that pays explicit and careful attention to

the architecture of the system.

● Design the architecture of the system in such a way that maintenance can

be carried out in a way that preserves the structure and 'cleanliness' of the

system.

When building a software system of significant size, reuse of existing pieces

of software is desirable. Usually, unless the components have been

specifically designed to work together and do not violate each others’

assumptions, simple composition of components is not possible. Each

component will make different assumptions about the environment and the

behaviour of other components in the system, leading to so-called

architectural mismatch (Garlan, Allen, and Ockerbloom, 1995). The most

common approach to tackling this mismatch is to ‘wrap’ components

(commonly by inserting ‘glue’ code between them) to insulate them from

each other and to transform the input and output (Shaw, 1995).

One approach to architectural reuse is the concept of product-line

architectures. These provide the opportunity to reuse parts of previously

existing systems in later software, though this requires a significant amount

of work to achieve, and is hard to perform after-the-fact (Bosch, 1999).

Use of the C2 architectural style (Oreizy et al, 1998), which is based on a

layered system of components and connectors, has been claimed to ease

run-time software evolution; evolution without re-compilation of the



system, in such a way that the system retains its integrity without becoming

successively brittle over modifications (Oreizy & Medvidovic, 1998). Two

types of system change are identified: changes to the system requirements,

and changes to the implementation that do not affect the requirements.

Work on run-time architectural evolution has, in general, concentrated on

providing the ability to dynamically replace components. This typically

requires provision to be made at design-time (Amdor, de Vicente, and

Alons, 1991; Oreizy, 1998).

Distributed systems offer further challenges and opportunities. Large

distributed (and other) systems may need to remain functional for long

periods of time without interruption. In order to tackle this, Kramer and

Magee (1985) propose replacing traditional (build-time) static configuration

with incremental dynamic reconfiguration. This requires a greater separation

between programming (implementation of behaviour) and configuration

(implementation of composition), and requires a configuration language

distinct from the programming language(s) used in the system. The more

recent C2 architectural style advocates explicit representation of connectors,

which provides the ability to abstract away from distribution and to insulate

components from changes occurring in other parts of the system (Oreizy &

Taylor, 1998).

There are several approaches to handling the evolution of software system.

These fall into the two categories of process-oriented solutions and product-

oriented solutions. The GENESIS platform supports process-oriented



software evolution, while the CoDEEDS project's aims are to assist with the

maintenance of knowledge about software engineering products that have

been developed collaboratively.





 SUPPORT FOR COLLABORATIVE DEVELOPMENT 

In order to realise the above approaches and models in practice, software

engineering support environments with explicit provision for evolutionary

design of component-based systems are required. Below, two

complementary projects are described in greater detail.

The CoDEEDS Project

The CoDEEDS project is concerned with the Collaborative Determination

Elaboration and Evolution of Design Spaces (Boldyreff, Kyaw, Nutter, and

Rank, 2003b; Boldyreff & Kyaw, 2003). It provides support to design teams

enabling them to record their determination of the solution space in the

development of large complex distributed systems composed of

heterogeneous software components. The result is a potentially N-

dimensional design space layered by static and dynamic views of the

component sub-systems and models of their deployed instances within the

system being designed and deployed in practice. The design environment

being developed as part of the CoDEEDS project supports collaborative

design throughout the system lifecycle with an agent-based architecture to

support design team in their various activities. 



Different members of the design team may employ their own preferred

design methods and tools when carrying out the detailed design work. The

CoDEEDS environment provides a global view of the overall design of the

system and the various design decisions that have been made in its

composition from a number of potentially heterogeneous components.

Figure 1 indicates the primary areas (use cases) supported by the GENESIS

and CoDEEDS systems: it shows both the overlapping and discrete primary

areas addressed by each system.

Figure 1 GENESIS and CoDEEDS Overlap

Process Engineering

Abstract and refined views

Constraint Checking

Collaboration Recording

Store/retrieve artefacts

Manage project and workflow

CoDEEDS

GENESIS

Developers

Software agents



The GENESIS Project and OSCAR

The GENESIS project is focused on the development of a Generalised

Environment for Process Management in Co-operative Software

Engineering. In the context of figure 1 it addresses the needs for process and

work product management. It is employed at both the project management

and process workflow level. It complements the design rationale capture of

the CoDEEDS system through its support of process engineering and

collaborative activity recording. The GENESIS project has developed a

low-overhead platform to support collaborative software engineering. The

system has been designed to be process aware, but non-intrusive; like

CoDEEDS, it does not mandate methods and tools to be employed by the

development team. GENESIS is now an open Source project that was

seeded by initial closed-source developments by the project partners. 

Figure 2 Overview of GENESISMetrics Tool

OSCAR Client
Process 

DefinitionTool

Clients

Web ServicesStub Web ServicesStub

WFMS OSCAR

Workflow Client



GENESIS, outlined in figure 2, provides a solution for modelling and

enacting workflow processes, and for managing both planned and

unplanned work products. The process enactment is distributed over

multiple physical sites coordinated by a global process at one site. Both

local and global processes are managed via the GENESIS workflow

management system. 

Underlying both the GENESIS platform and the CoDEEDS system is an

artefact management system, OSCAR, which acts as a repository for all

artefacts resulting from development. OSCAR supports the creation,

storage, retrieval, and presentation of artefact data elements and their

associated meta-data. “Everything is an artefact” is the view of the

repository’s data; this results in a simplified data model throughout OSCAR.

By using Castor, an open source data-binding framework, in the

implementation of OSCAR, the ability to treat artefacts as objects and

documents simultaneously has been achieved allowing for flexible

processing and extension of artefacts and their associated types. The actual

storage of the artefact content is achieved through plug-ins to external

storage mechanisms such as CVS. An abstraction over software

configuration management (SCM) is currently mapped to a CVS plug-in

and a plug-in for the Perforce SCM system is under development. Similarly

plug-ins for searching are possible, such as the GENISOM extension

described in the following section. Instrumentation to collect data about the

users and system activities provides the basis for awareness extensions also

described in the following section, and potentially for studies of

collaborative working in the future.



Currently OSCAR is shipped with the following set of basic artefact types:

• Software – specifications, designs, code, etc.

• Annotation – any additional information such as email messages and

other discussion that may help users of the original artefact

• Human Resource – description of the relevant software engineering

personnel 

• Project – workflow models and enactment descriptions

• Default – all artefacts are extensions of this

The user may extend this default set of types, at present new types may only

be added to the system when the server is started. In particular, the

CoDEEDs and GENISOM projects expanded the set of artefact types for

their own purposes. 

OSCAR’s restrictive RMI interface is being complemented with a more

accessible Web Services interface to ease deployment of the system in user

environments where access through a firewall is necessary. This alternative

interface will be useful to industrial users of OSCAR and to users in Open

Source projects (Boldyreff, Lavery, Nutter, and Rank, 2003a).

Extending Artefact types

To extend the set of types, two things are required: a set of Java classes

derived from the base artefact type containing the functionality provided by



the new type and a Castor mapping file to translate between instances of the

class and an XML document. Once the new type has been written and tested

the OSCAR server must be reconfigured and restarted to recognise the new

type. Users may then create and modify instances of the type like any of the

basic types. 

There is a faster way to extend the set of “types”: that is to use the default

classes and mapping file but under a new name. Obviously the user gains no

new features by doing this but can differentiate a set of otherwise similar

artefacts by changing the type name without needing to spend time

developing new classes. For example, the CoDEEDS project first used the

default artefact type under the name “CoDeedsArtefact” before writing

classes and mappings for an artefact that provided features necessary for the

project, which then replaced the default type. 

Figure 3 illustrates how the XML-based representation of artefacts forms a

link between the higher-level human-understandable representation, which

is rendered as a Java object describable in UML, and the lower-level

database (entity-relationship) representation, which is used to provide

persistence



1.1.1

.

 BasicArtefact Operations

Currently high level artefact operations exist for automatic indexing to

support search and retrieval, and for various transformations to allow for

Figure 3 Artefact Representation
Version

cVersionNumber: String

Artefact

cDocument: XMLDocument

cRelations: Hashtable

0..*

1..*

Object

Document

Persistence

<?xml version=”1.0”?>

<artefact>

� <rdf:Description>

�� <dc:Identifier uniqueid=”http://localhost/oscar/TheArtefact”/>

�� <dc:Relation href=”http://foo.org/oscar/Software/foobar”/>

�� <dc:Title>An Example Artefact</dc:Title>

� </rdf:Description>

Version

Artefact Relationship

HAS

HAS

REFERS 

TO

Relationship

cFrom: Artefact

cTo: Artefact

cType: String



flexible presentation of artefacts to users, usually as an XML document,

sometimes as an object. Also, basic facilities common to all artefacts exist,

including the ability to query and modify the basic metadata, store data

within an artefact, store and retrieve versions of an artefact or collection of

artefacts and make relationships between artefacts. 

EXTENDING OSCAR WITH ADDITIONAL REPOSITORY SERVICES

We describe two additional services that are part of OSCAR alongside the

basic management facilities described previously. 

Historical Awareness

The possibility of extending OSCAR with historical awareness arises along

with the cross project historical data that is captured as OSCAR is used to

support a number of projects and as data sharing between distributed

OSCARs is realised. 

Historical awareness deals with a collection of heterogeneous artefacts

allowing the user to view the complete context of an artefact's creation and

history of changes into its present form across a number of projects rather

than a contextless view of changes to a single project artefact (Nutter &

Boldyreff, 2003). Historical awareness is superficially similar to change

logs and history views provided by SCM systems but, unlike these systems,

provides information that has not been explicitly requested by the user. One

way of displaying historical data is via a timeline relating the changes made



to an artefact by various users over time. Such a display can be driven by

events as they occur providing immediate feedback to developers sharing an

artefact across projects or within a single project. In effect, through

historical awareness, users gain a view of the software artefact’s evolution

over time and across a number of uses within various projects. 

The implications of supporting component reuse via this feature are that

historical awareness may be able to provide potential users of the

component  with the big picture of the component’s development over time

necessary for program comprehension, which must precede effective reuse

and evolution. It also gives them immediate feedback from other developers

reusing the component and possibly adapting or evolving its functionality,

thus preventing conflict (Nutter & Boldyreff, 2003).

GENISOM

A prominent problem within the field of Component-Based Software

Engineering concerns finding suitable components to reuse. Reusable assets

are in abundance over the web and in libraries, but it is extremely difficult to

locate reusable software components that are relevant to a particular

application. The necessary organisation is often lacking and difficult to

achieve given the dynamic nature of such software collections. This

problem can also be found where a large evolving software system consists

of an ever growing number of components and the management and hence

the comprehension of the associated software components tends to become

increasingly difficult. In the GENISOM project, we have applied Self-



Organising Maps (SOMs) to a large population of software components and

developed various visualisations of the SOMs. Their effectiveness in

relation to the organisation of a large software collection and their usage by

software engineers wishing to search the collection has been investigated

(Brittle, 2003; Brittle and Boldyreff, 2003). 

Self-organising maps are an adaptive technique used to hierarchically (in

our case) organise a large search space into a two-dimensional array of

smaller spaces. The organisation is performed using an unsupervised neural

network (Kohonen et al, 2000).

OSCAR’s initial large-scale population for demonstration purposes is

derived from the packages of the Debian open source project and consists of

just over 1500 software artefacts. This population with its extracted

metadata has been employed in some experimental studies to gauge the

effectiveness of using SOMs to classify large collections of software

artefacts in the GENISOM project (Brittle, 2003). In GENISOM, we have

replicated Kohonen’s original WebSOM (Kohonen et al, 2000) and

extended it to the domain of web-based software artefact collections. SOMs

are used as a data visualisation technique to support users browsing and

searching large collections of data by representing the collection's

population as an interactive map, thereby exploiting computer technology

and peoples' abilities to comprehend visual representations. Even though

reusable assets are in abundance, a growing problem is the ability to actually

locate assets that are relevant for reuse. Organisation of a collection is

therefore a necessity and the GENISOM project and other research (Merkl,



1998) have come to the conclusion that SOMs are a viable organisational

tool that could be used instead of hierarchical or faceted classification.

SOMs also provide a virtually automatic organisation process that could

save on the costs associated with employing reuse librarians and reduce the

amount of time needed to train engineers in the use of the library. More

recently, GENISOM has been redeveloped to provide a front-end to

OSCAR and the test population has been expanded to include the Java

software components that comprise the current implementation of OSCAR

(Brittle & Boldyreff, 2003). 

The GENISOM maps provide potential component reusers with various

views of the software collection. Figure 4 illustrates one view of such a

map.



5

Our preliminary results applying a prototype implementation GENISOM to

the Debian and OSCAR components show promise and support our belief

that SOMs are an ideal solution to organising the incrementally expanding

content of the large distributed repositories that we anticipate will result

from OSCAR's usage by a growing number of software development

projects.

Extending OSCAR for GENISOM and Awareness.

Extending OSCAR to support both these projects will require modification

of both the client and server parts of OSCAR. Though the goals were

different, some of the architectural modifications are similar.

Figure 4 GENESOM 2D Map View
Search terms Keywords corresponding 

to selected cell

Map cell
(small 
numberof 
items) Map cell

(large 
numberof 
items)

Selected cell



GENISOM at first required client-side modifications to generate useful

maps from a user’s own collection of artefacts in a workspace. These initial

modifications required the addition of a new artefact type to describe a

particular Self Organising Map configuration and a special artefact type

describing Debian package metadata used to represent the test artefact

population. 

The modifications to the client entailed adding a new user view in addition

to the existing hierarchical view of the workspace contents and allowing the

user to switch between the views at will. Dialogues to guide the user

through the process of creating a self-organising map of the contents of their

workspace (and a descriptive artefact) were prepared and added to the

client. A tool to extract test artefacts from the Debian packages file was

prepared. 

Adding awareness support requires modification of the client, though in

contrast to the view added for GENISOM this will not allow navigation of

the complete workspace; just the parts of the workspace which are affected

by the activities of other software engineers. Several server-side

modifications are necessary to deliver awareness information to the client:

an event handler is required to convert change and dependent change events

generated by artefacts into a form suitable for display in the awareness view.

This handler will feed the information it creates to the distribution



mechanism, which communicates with the peers in a distributed awareness

network. 

The awareness network is built by closely linking clients (few hops)

working with similar artefact collections; potential algorithms for doing this

are described in previous work (Nutter & Boldyreff, 2003). Awareness

information messages are then given a time to live (TTL) and sent to the

originating client’s immediate peers and from there propagated further until

the TTL has expired. Since nearby peers will all be using similar artefacts,

this approach will ensure that information expires once it becomes

irrelevant, keeping the network clear of spurious traffic and removing the

need to filter information for relevance on the client. 

This method necessarily means that some information will be lost when the

network is imperfectly arranged as it will not reach all the clients interested

in it. However, the display method outlined for historical awareness can

cope with lost information. 

 DEPLOYMENT

Within the framework of the GENESIS project, the consortium's industrial

partners have deployed the GENESIS platform including OSCAR in a

number of user trials. Members of the GENESIS project team have used it



to support their own internal development. A stable version of the

GENESIS platform is available on SourceForge (at

http://sourceforge.net/projects/genesis-ist). The CoDEEDS system is

currently a research prototype which is being prepared for release as an

open-source system.

The GENESIS platform has been evaluated in the industrial partners’

organisations (LogicDIS and Schlumberger) using a comprehensive test bed.

In each partner's organisation, the platform was used to model an already-

completed project. The project was re-run with the assistance of the

GENESIS platform. 

Consideration has been given to the adoption of the GENESIS platform by

organisations. For large organisations with highly distributed cooperating

teams the adoption of a new technology is a complex process that requires

an organisation to consider the technology in context of the organisation's

business goals (Lavery, Boldyreff, Nutter, and Rank, 2003). Prior to the

adoption of GENESIS a large organisation must determine the answers to

two difficult questions:Do the existing software processes require additional

or improved technical support supplied by GENESIS?

● Does the organisation need to improve their software processes and will

GENESIS support that improvement effort?

It is essential to any organisation that the adoption of any new technology is

based on the determined needs of the organisation. In the GENESIS project

we advocate the use of the Carnegie Mellon Software Engineering Institute's

Capability Maturity Model (SW-CMM) (Dewar et al, 2002) to determine



those organisational needs and to support an incremental technology

adoption strategy (Lavery et al, 2003).

As GENESIS and CoDEEDS are a collection of distinct systems that work

together to provide effective support for the management of both software

product evolution and software processes enactment it is possible to

introduce the individual systems incrementally based on the determined

needs of the organisation. 

To ease adoption of the platform, a stand-alone version of OSCAR has been

developed and made available. As well as the tools described earlier to up-

load the Debian project software; a simple import tool for Java software and

other miscellaneous files has been developed. This has enabled the

GENESIS project software to be easily transferred into OSCAR as part of

the project’s own use of its developments. 

As with the local and global work processes, the work products managed by

OSCAR will soon be visible in a similarly global name-space composed of

multiple local OSCAR repositories. Also in progress for OSCAR is user-

transparent meta-data extraction and indexing functionality.

It is only with the wide-spread adoption of OSCAR and the development of

much larger collections of software artefacts stored in OSCAR that

advantages, such as being able to obtain global views of such collections

held in distributed repositories, will become apparent. 



Instrumenting the tools provided by both GENESIS and CoDEEDS will

allow evolution studies of both software engineering processes and products

to be performed. Monitoring the real behaviour of projects managed by the

GENESIS workflow engine will allow studies of software development

processes, indicating how closely real software engineering projects adhere

to idealised models. Studying the evolution of products across a number of

projects allows a full picture of the development effort to be obtained and

may be the basis for predicting future changes. 

The architecture of the GENESIS platform currently relies on the relatively

tight binding of RMI. This is being transformed to a new architecture based

on web services. Once this has been done, the distribution model of the

platform will be more flexible. It will no longer be necessary to maintain a

strict one-to-one relationship between GENESIS and OSCAR installations;

an instance of OSCAR could be shared by more than one GENESIS

platform, or a single GENESIS project could use more than one repository.

The industrial partners have evaluated the GENESIS project in real projects.

The feedback on the prototype platform that was evaluated has provided

motivation for future development in terms of functionality, usability, and

interaction mechanisms. The CoDEEDS prototype is also being released as

an Open Source project. Feedback from its users will guide its further

development.



 CONCLUSIONS AND FUTURE WORK

Our initial experimental developments show that GENISOM provides an

effective way to organise of a large collection of artefacts. Research is in

progress to evaluate visualisation techniques applied to the associated SOMs

in terms of their utility to supporting the software reuse by software

engineering teams.

The applicability of collaborative technologies and theory to software

engineering in the open source environment has not yet been studied. The

CALIBRE Co-ordinated Action will provide an opportunity for

collaboration experts and Open Source stakeholders to employ tools and

techniques for collaboration in highly distributed projects. 

We have also proposed a track of research complimentary to the UK E-

Science agenda (Boldyreff & Nutter, 2003). The objective of this research

programme is to study the needs of collaborators on the scientific grid who

will be performing the following activities:

• Designing experiments, much like collaborative design of software

• Replicating or studying previous experiments: data provenance is

therefore important

• Collaborating on data analysis, requiring descriptions of scientists

working on the system, data sources and full traceability between them. 

 The eScience agenda itself is very technology focussed, concentrating on

the development of technologies for distributed computing and data

exchange. However, we believe that collaboration is at the heart and critical



to the success of scientific endeavour and must be considered in any large-

scale scientific system for that system to be successful.

This chapter has described two open-source projects which support

collaboration using UML and XML. Use of standard representation formats

such as these plays a critical role in facilitating software reuse and the

evolution of software artefacts. Support is needed for both the process of

software engineering as well as the products of these processes. GENESIS

provides support for the processes, OSCAR and CoDEEDS provide support

for the products. As software engineering matures as a discipline, software

reuse has become a more viable option and is becoming a more important

part of the software engineer's toolkit. The systems described here support

collaborative development per se, and also collaboration across projects at

different times, by supporting reuse, aided by common standard

representations.

ACKNOWLEDGEMENTS

We wish to acknowledge and thank both James Brittle and Christopher

Korhonen for their work with the GENESIS project team. GENESIS was

funded by the EU under their IST programme, and CoDEEDS was funded

by the UK EPSRC.

REFERENCES

Amdor, J., de Vicente, B., and Alons, A. (1991). Dynamically Replaceable
Software: A Design Method. Proceedings of the 3rd European Software
Engineering Conference, (ESEC), pages 210-228.



Baxter, I. and Pidgeon, C. W. (1997). Software change through design
maintenance. Proceedings of the 1997 International Conference on
Software Maintenance (ICSM 97), pages 250-259. 

Bihari, T. E. and Schwan, K. (1991). Dynamic adaptation of real-time
software. ACM Transactions on Computer Systems, 9(2):143-174.

Bosch, J. (1999). Evolution and Composition of Reusable Assets in Product-
Line Architectures: A Case Study. Proceedings of the First Working
IFIP Conference on Software Architecture, pages 321-340

.

Boldyreff, A. W. (1954). Systems Engineering. Technical Report P-537,
Mathematics Division, The RAND Corporation. 16 June 1954.
Available at http://www.dur.ac.uk/cornelia.boldyreff/boldyreff-se.pdf

Boldyreff, C. (1992). A Design Framework for Software Concepts in the
Domain of Steel Production. Proceedings of the Third International
Conference on Information System Developers Workbench, Gdansk,
Poland, 22-24 September 1992. 

Boldyreff, C., Burd, E.L., Hather, R.M., Mortimer, R.E., Munro, M., and
Younger, E.J. (1995). The AMES Approach to Application
Understanding: A Case Study. Proceedings of the International
Conference on Software Maintenance, IEEE Computer Press.

Boldyreff, C., Burd, E.L., Hather, R.M., Munro, M., and Younger, E.J.
(1996).Greater Understanding Through Maintainer Driven Traceability.
Proceedings of the 4th Workshop on Program Comprehension, April
1996, pages 100-106, IEEE Computer Press.

Boldyreff, C., Elzer, P., Hall, P., Kaaber, U., Keilmann, J., and Witt, J.
(1990). PRACTITIONER: Pragmatic Support for the Reuse of Concepts
in Existing Software. Proceedings of Software Engineering 1990
(SE90), Brighton, UK, Cambridge, UK: Cambridge University Press,
1990.

Boldyreff, C. and Kyaw, P. (2003). A Framework for Developing a Design
Evolution Environment. Proceedings of the 27th Annual International
Computer Software and Applications Conference (COMPSAC).

Boldyreff, C., Kyaw, P., Nutter, D., and Rank, S. (2003), Architectural
Framework For a Collaborative Design Environment. Proceedings of
Second ASERC Workshop on Software Architecture, Banff, Canada.

Boldyreff, C., Lavery, J., Nutter, D., and Rank, S. (2003), Open-Source
Development Processes and Tools. Proceedings of Taking Stock of the
Bazaar: 3rd Workshop on Open Source Software Engineering, Portland,
Oregon. 

Boldyreff, C. and Nutter, D. (2003). Supporting Collaborative Grid
Application Development within the E-Science Community. 1st
International Workshop on Web Based Collaboratories, collocated with
IADIS WWW/Internet, Carvoiero, Algarve, 8th September.



Boldyreff, C., Nutter, D., and Rank, S. (2002a). Open-Source Artefact
Management for Distributed Software Engineering. Proceedings of the
2nd Workshop on Open-Source Software Engineering at The 24th
International Conference on Software Engineering.

Boldyreff, C., Nutter, D., and Rank, S. (2002b). Active Artefact
Management for Distributed Software Engineering. Proceedings of the
Workshop on Cooperative Supports for Distributed Software
Engineering Processes, in the Proceedings of the 26th IEEE Annual
International Computer Software and Applications Conference
(COMPSAC).

Boldyreff, C., Nutter, D., and Rank, S. (2002c).Architectural Requirements
for an Open Source Component and Artefact Repository system within
GENESIS. Proceedings of the Open Source Software Development
Workshop, Newcastle upon Tyne, U.K. 25-26th February 2002, pp 176-
196.

Brittle, J. (2003) Self Organizing Maps Applied to Web Content. Final Year
Project Report, Department of Computer Science, University of
Durham.

Brittle, J. and Boldyreff, C. (2003). Self-Organising Maps Applied in
Visualising Large Software Collections, Proceedings of IEEE
VISSOFT.

Dewar, R. G., Mackinnon, L. M., Pooley, R. J., Smith, A. D., Smith, M. J.,
and Wilcox, P. A. (2002). The OPHELIA Project: Supporting software
development in a distributed environment. IADIS WWW/Internet 2002,
13-15 September.

Drummond, S. and Boldyreff, C. (1999). SEGWorld: A WWW-based
Infrastructure to Support the Development of Shared Software
Engineering Artifacts. Proceedings of the Workshop on Web-Based
Infrastructures and Coordination Architectures for Collaborative
Enterprises, IEEE 8th International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises (WETICE),
IEEE Press, pp. 120 -125.

Fyson, M. J. and Boldyreff, C. (1998). Using Application Understanding to
support Impact Analysis. Journal of Software Maintenance: Research
and Practice, 10:93-110.

Gaeta, M. and Ritrovato, P. (2002). Generalised Environment for Process
Management in Cooperative Software Engineering. 26th Annual
International Computer Software and Application Conference
Proceedings, IEEE, pp. 1049-1053.

Garlan, D., Allen, R., and Ockerbloom, J. (1995). Architectural Mismatch or
Why It's Hard to Build Systems out of Existing Parts. Proceedings of the
Seventeenth Interntional Conference on Software Engineering, pages
179-158.



Goguen, J. A. (1986). Reusing and Interconnecting Software Components,
IEEE Computer, pp 16-28, February 1986. Reprinted in Tutorial:
Software Reusability, edited by Peter Freeman, The Computer Society
Press of the IEEE, pp 251-263, 1987.

Jackson, M. (1998). Will there ever be software engineering? IEEE
Software, 15(1):36 39.

Kernighan, B. W. and Pike, R. (1999). The Practice of Programming.
Addison Wesley Longman.

Kohonen, T., Kaski, S., Lagus, K., Salojarvi, J., Honkela J., Paatero, V., and
Saarela, A. (2000). Self Organization of a Massive Document
Collection. IEEE Transactions on Neural Networks, 11(3):574-585. 

Kramer, J. and Magee, J. (1985). Dynamic configuration for distributed
systems. IEEE Transactions on Software Engineering, SE-11(4):424-
436.

Kwon, O. C., Boldyreff, C. and Munro, M (1997). An Integrated Process
Model of Software Configuration Management for Reusable
Components. Proceedings of the Ninth International Conference on
Software Engineering & Knowledge Engineering (SEKE'97), June 18-
20, Madrid, Spain. 

Lavery, J., Boldyreff, C., Nutter, D., and Rank, S. (2003). Incremental
Adoption Strategy for the GENESIS Platform. GENESIS Project
Report, University of Durham. Available at
http://www.dur.ac.uk/janet.lavery/documents/AdoptStratFinal.pdf

Lehman, M. M. (1979). On understanding law, evolution and conservation
in the large program life cycle. Journal of Systems and Software, 1:213-
221.

Lehman, M. M. (1996). Laws of software evolution revisited. In
Proceedings of EWSPT96, number 1149 in Lecture Notes in Computer
Science, pages 108-124. Springer-Verlag.

Lehman, M. M. and Belady, L. A. (1985a). Program Evolution: Processes of
Software Change. Number 27 in APIC Studies in Data Processing.
Academic Press.

Lehman, M. M. and Belady, L. A. (1985b). Programs, life cycles and laws
of software evolution. In Program Evolution: Processes of Software
Change, number 27 in APIC Studies in Data Processing, pages 393 449.

Lehman, M. M., Ramil, J. F., Wernick, P. D., Perry, D. E., and Turski, W.
M. (1997). Metrics and laws of software evolution The nineties view. In
Eman, K. E. and Madhavji, N. H., editors, Elements of Software Process
Assessment and Improvement, pages 20 32, Albuquerque, New Mexico.
IEEE CS Press.

Lehman, M. M. Software's Future: Managing Evolution. IEEE Software 15
(3):40-44



Lientz, B. P. and Swanson, E. B. (1980). Software Maintenance
Management: A Study of the Maintenance of Computer Application
Software in 487 Data Processing Organizations. Addison-Wesley.

McConnell, S. (1993). Code Complete: A Practical Handbook of Software
Construction. Microsoft Press.

Merkl, D. (1998). Self-Organizing Maps and Software Reuse.
Computational Intelligence in Software Engineering. World Scientific.

Nutter, D. and Boldyreff, C. (2003). Historical Awareness Support and Its
Evaluation in Collaborative Software Engineering. Proceedings of the
Workshop on Evaluation of Collaborative Information Systems and
Support for Virtual Enterprises at the 12th IEEE international
Workshops on Enabling Technologies For Collaborative Enterprises
(WETICE).

Nutter, D., Boldyreff, C., and Rank, S. (2003). An Artefact Repository to
Support Distributed Software Engineering. Proceedings of 2nd
Workshop on Cooperative Support for Distributed Software Engineering
Processes, CSSE 2003, Benevento, Italy.

Oreizy, P. (1998). Issues in modeling and analyzing dynamic software
architectures. In Proceedings of the International Workshop on the Role
of Software Architecture in Testing and Analysis, Marsala, Sicily, Italy.

Oreizy, P, Rosenblum, D S, and Taylor, R N. On the Role of Connectors in
Modelling and Implementing Software Architectures. Technical report
UCI-ICS-98-04, Department of Information and Computer Science,
University of California, Irvine, 

Oreizy, P, and Medvidovic, M. (1998) Architecture-Based Runtime
Software Evolution. In proceedings of the International Conference on
Software Engineering, Kyoto, Japan. Pages 19-25.

Oreizy, P. and Taylor, R. N. (1998). On the role of software architectures in
runtime system reconfiguration. I.E.E. Proceedings-Software, 145(5):
137-145.

Paulk, M. C., Curtis, B., Chrissis, M. B., and Weber, C. V. (1993). The
Capability Maturity Model for Software, IEEE Software, 10(4):18-27.

Pigoski, T. M. (1996). Practical Software Maintenance. John Wiley and
Sons.

Rubini, A. (1997). The sysctl interface. Linux Journal, 41. Available at
http://www2.linuxjournal.com/lj-issues/issue41/2365.html.



Segal, M. E. and Frieder, O. (1989). Dynamic program updating: A software
maintenance technique for minimizing software downtime. Journal of
Software Maintenance: Research and Practice, 1(1):59 79. 

Shaw, M. (1995). Architectural Issues in Software Reuse: It's Not Just The
Functionality, It's the Packaging. In proceedings of the I.E.E.E.
Symposium on Software Reusability

Smith, D. D. (1999). Designing Maintainable Software. Springer-Verlag.

Takang, A. A. and Grub, P. A. (1996). Software Maintenance: Concepts and
Practice. International Thomson Computer Press.

Wilcox, P. A., Smith, M. J., Smith, A. D., Pooley, R. J., MacKinnon, L. M.,
and Dewar, R. G. (2002). OPHELIA: An architecture to facilitate
software engineering in a distributed environment. 15th International
Conference on Software and Systems Engineering and their
Applications (ICSSEA), December 3-5, Paris, France.

Zhang, J and Boldyreff, C. (1990). Towards Knowledge-Based Reverse
Engineering. Proceedings of the Fifth Annual Knowledge-Based
Software Assistant Conference, Syracuse, NY, 24-28 September 1990. 


