
Historical Awareness Support and Its Evaluation in Collaborative Software
Engineering

David Nutter and Cornelia Boldyreff
Department Of Computer Science

University Of Durham
{david.nutter,cornelia.boldyreff}@durham.ac.uk

Abstract

The types of awareness relevant to collaborative soft-
ware engineering are identified and an additional type,
“historical awareness” is proposed. This new type of
awareness is the knowledge of how software artefacts re-
sulting from collaboration have evolved in the course of
their development.

The types of awareness that different software engineer-
ing environment architectures can support are discussed. A
way to add awareness support to our existing OSCAR sys-
tem, a component of the GENESIS software engineering
platform, is proposed. Finally ways of instrumenting and
evaluating the awareness support offered by the modified
system are outlined.

Keywords: Awareness, OSCAR, collaboration,
workspaces

1 Introduction

Collaborative software engineering environments re-
quire awareness support to ensure users of the environments
know of the activities of others in order to coordinate their
work, identify potential problems and prevent conflict. One
definition of awareness that is especially relevant in this do-
main is

“An understanding of the activities of oth-
ers which provides a context for your own
activity”.[8]

Where a number of software artefacts are being devel-
oped, often concurrently, one way to provide awareness is to
build it into a common repository, such as the Open Source
Component Artefact Repository (OSCAR[18]), monitor
changes made to artefacts and use this data as the basis for
awareness provision. However, care must be taken to ensure

that data collection and awareness provision do not disrupt
activities themselves.

To ease adoption by industry and the Open Source com-
munity, a key design goal in the development of OSCAR
has beennon-invasiveness. OSCAR is process aware but
does not require its adopters to change their existing work-
ing practices and tools, and it may be adopted on its own
without the rest of of the Generalised Environment for
Process Management in Collaborative Software Engineer-
ing (GENESIS[11]) platform. Similarly awareness support
within OSCAR must be non-invasive.

Building awareness into OSCAR will provide minimally
invasive support for indirect coordination and communica-
tion by alerting collaborators to the changes made to arte-
facts. In the longer term, analysis of the raw data that the
awareness support uses will allow studies of development
projects using OSCAR; and through these, we shall evalu-
ate the support that OSCAR provides in order to build better
support for collaborative software engineering in future.

Our initial motivation to provide support for awareness
is based on our experience and that of our partners in de-
veloping the GENESIS platform. Top down, rigidly im-
posed methods of collaboration largely failed when work-
ing on software artefacts consisting of many files (such as
code) though they succeeded with monolithic artefacts such
as Word documents. As the project moves towards self-
hosting its own development on GENESIS/OSCAR, inte-
grated awareness support will allow us to collaborate dur-
ing the development of software artefacts without spending
excessive amounts of time reading change logs and e-mail
archives all managed by separate tools to understand the
history of a particular artefact.

Section 2 describes the existing OSCAR system, sec-
tion 3 describes related work, existing systems and com-
mon architectures for awareness support, section 4 proposes
the addition of awareness support to OSCAR, section 5 dis-
cusses the evaluation of our improved environment and sec-
tion 6 identifies future work.

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Lincoln Institutional Repository

https://core.ac.uk/display/57299?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 OSCAR

OSCAR is a client/server application designed to man-
age and deliver XML based artefacts for both human users,
i.e. software engineers, and programs which access OS-
CAR via its API, i.e other components of the GENESIS
platform including work-flow[2] and resource management.

Figure 1 is a simplified architecture diagram of a single
OSCAR system. TheStorageManagercomponents may
be stub objects that call a remote OSCAR , allowing (ex-
plicitly configured) federation. Each OSCAR installation
has a CVS repository to store the data component of arte-
facts and a relational database to store the meta-data compo-
nent. Users see the two unified as XML documents or Java
objects, depending on their requirements. Interacting with
artefacts on the server generates events which OSCAR can
either ignore or propagate to interested parties, including
other artefacts. This allows artefacts to respond “actively”
to changes in related artefacts. All data stored in the system
including source code, documents, user and project infor-
mation is represented as artefacts with common meta-data
such as creator, contributor, modification time etc.

ST
O

R
A

G
E

M
A

N
A

G
E

R

E
V

E
N

T
 M

A
N

A
G

E
M

E
N

T

ARTEFACT COLLECTION

REPOSITORY LAYER

(CVS + RDBMS)

TRANSFORMATION

CLIENTS

Change

Change

Request/Update
Artefacts Notification

Artefacts
Store

EVENT
RESPONSE

ARTEFACT

EVENT

LAYER

Network

Figure 1. OSCAR architecture

The system is intended to support all software life cy-
cle phases by storing artefacts produced either as the result
of the GENESIS work-flow processes or by users directly
with their existing tools. The architecture relies on a plugin
system which encourages integration with existing software
such as SCM to allow minimally invasive system set-up.
OSCAR does not require users to migrate wholesale from
their existing software in order to benefit from OSCAR’s
features.

3 Related Work

Several informal definitions of distinct awareness types
have been collected by Drury et al[9] from previous works.
Table 1 describes the relevance of those types useful in an
environment like OSCAR.1

Table 1. Awareness Types and Purpose
Type Definition
informal
awareness

“The general sense of who is around and
what others are up to”
This is important as a prerequisite for
“group structural awareness” and a base-
line for informal collaboration.

peripheral
awareness(2)

“Where people know what others are do-
ing”
Full direct awareness is not possible with
a system like OSCAR, so such sup-
port is necessarily limited to interactions
with the OSCAR system rather than in-
teractions with a tool. However, since
the point when changes will affect other
users of the OSCAR system are when
changes are sent to the central system,
this is sufficient.

social aware-
ness(2)

“information about the presence and ac-
tivities of people in a shared environ-
ment”
Presence information promotes collabo-
ration while activity based information
prevents conflicts of interest over arte-
facts

group struc-
tural aware-
ness

“Knowledge of roles and responsibili-
ties, their positions on an issue and pro-
cess information”
OSCAR’s relationships model can pro-
vide such information; such awareness
will be used to prevent conflicts of inter-
est over certain artefacts.

workspace
awareness(2)

“Who is working on what”

Relating the human and machine actors
to specific software artefacts is an impor-
tant function of OSCAR. As before, such
knowledge will be used to prevent con-
flicts of interest.

Several kinds of awareness identified by Drury are im-
portant, yet omitted from table 1. These are thesynchronous
awareness types that rely on timely propagation of informa-
tion between users of systems such as Rear View Mirror[4].

1Numbers in brackets indicate the definitions order in Drury et al

2

Since OSCAR’s clients have limited integration with tools
and are not permanently connected to OSCAR, supporting
synchronous awareness cannot be guaranteed. Additionally,
task and conceptoriented awareness cannot be supported
by OSCAR; however, the GENESIS platform’s work-flow
management system can provide this support if desired.

Awareness types that that fit with OSCAR’s minimally-
invasive philosophy are largelyasynchronous, informaland
workspace awareness(2)limited to operations on artefacts
within OSCAR. Complete awareness for all OSCAR ses-
sion participants is not a goal due to the large overhead in-
curred.

3.1 Existing systems

One prerequisite for asynchronous awareness is ensuring
that each artefact possesses a rich history describing what
happened to it and when[15]. This information is the basis
of retrospective awareness such as “source code wear”[16],
a visualisation of source code change history. This type of
awareness is closely related toperipheral awareness.

MITRE evaluated two multiple-participant collaboration
systems[7] focusing on synchronous collaboration (though
replay was possible). In contrast to the “wear” system
this experiment instrumented the collaboration tools along
with change tracking, providing a richer interaction record.
Several different visualisations were employed such as a
time-line of data accesses during a session, providing full
workspaceandsocial awareness.

InterLocus[17] implements an interesting form of
workspace awareness, without needing shared workspaces.
Instead a series of snapshots the user’s files are taken and
the change details used to generate awareness information.
This approach allows the use of any tool but requires syn-
chronously connected clients and fast communication links.
A simpler approach to up-to-the-minute workspace aware-
ness is provided by Radar Views[14] which providepres-
enceand simpleaction awareness (via telepointers) rather
than detailed knowledge of changes.

SPE/JViews-based environments[12] manage inconsis-
tencies during software development, supporting round trip
engineering, inconsistencies visualisation,peripheral, so-
cial and workspace awarenessusing “Change Objects”.
The developers of SPE/JViews discovered that their users
liked uncluttered graphical awareness views but needed de-
tailed text views too; much the same was said of Radar
Views.

Shared editing environments are a special form of shared
workspace, relying on synchronous collaboration to pro-
duce shared documents and diagrams. Lessons learned
from ShrEdit[8] indicate that prior, static assignment of
roles is not a successful way of providinggroup struc-
tural awarenessas roles change frequently. Awareness data

must be obtained at no cost to information providers as
otherwise the amount of awareness obtained will be min-
imal. The ShrEdit system did not provide fullworkspace
awareness; an acknowledged limitation. Shared diagram
development[6] has divergent requirements to text edit-
ing and consequently different awareness needs. As with
ShrEdit, for small sessions social norms supported byin-
formal awarenessare good enough, but for more permanent
diagrams formal and enforced task/concept awareness is re-
quired.

In light of this work, we propose a new type of awareness
for collections of artefacts: “historical awareness”. Like the
retrospective awareness discussed earlier, historical action
information is presented to the user but unlike retrospective
awareness, historical awareness deals with a collection of
heterogeneous artefacts allowing the user to view the com-
plete context of an artefact’s creation and change into its
present form rather than a contextless view of changes to a
single artefact.

Historical awareness is superficially similar to changel-
ogs and history views provided by SCM systems but, un-
like these systems, provides information that has not been
explicitly requested by the user.

3.2 Common architectures for awareness

A simple architecture for awareness support is the “re-
flector” model. Each client transmits activity details to the
reflector, which distributes this information to other clients,
allowing awareness displays on each one. Though simple
and capable of providing a complete awareness picture, the
number of clients is limited by the resources available to
the reflector system. Such systems include WhitePine CU-
SeeMe and Microsoft Netmeeting.

Peer-to-peer awareness architectures do not have a re-
flector; instead each client knows of several peers with
which it exchanges information[3]. Clients in a peer-to-peer
awareness network cannot assume that they know of all ac-
tivities as they may not be linked to all peers, nor that they
are receiving timely information. The size of the network
is limited by the capacity of communications links between
peers and the presence or absence of a peer discovery sys-
tem.

Another enabling technology for awareness ispublish-
subscribe. Events are generated by the system and clients
need only receive those they are interested in. They indi-
cate interesting event types by making asubscription. The
MOTION[10] system uses publish/subscribe to support mo-
bile teamwork, awareness support. Two problems exist with
publish/subscribe:

• finding the correct subscriptions to ensure a client re-
ceives all pertinent events and

3

• preventing information overload through over-zealous
subscription!

Complex filtering regimes require fast communication
(if implemented on the client) or can slow event delivery
(if implemented on the server). Campailla et al[5] describe
a filtering system intended to deliver messages quickly to
clients with complex subscriptions.

Finally, “shared view” systems have enjoyed a renais-
sance with tools such as Virtual Network Computing[1]
used with awareness-capable tools such as shared editors
which incorporate presence awareness and shared interac-
tion with a single application.

4 Adding awareness support to OSCAR

Table 2 lists some activities OSCAR supports and the
types of awareness they require. The first five are specific
features of OSCAR; the remaining are two example activi-
ties that OSCAR will be used for in the GENESIS project
evaluation.

Activity Awareness Types
Edit artefact meta-data and
data

Social/presence,
workspace

Joint development of arte-
facts

group structural,
workspace,historical

Relate artefacts by project,
creator etc

group structural,historical

Re-using existing artefacts workspace, group struc-
tural,historical

Annotation of artefacts informal, conversational
Support software testing task/concept, workspace,

conversational, group
structural

Development of web appli-
cation

task/concept, workspace,
group structural

Table 2. Activities supported by OSCAR

The most basic features of OSCAR are creating and edit-
ing the stored artefacts. The awareness types useful here are
simple: presence awareness so users know who is around
and workspace awareness to describe what is happening to
the artefacts of interest. Joint development has additional
requirements as users must be aware of group information
in order to collaborate, alongside the workspace awareness
necessary for preventing conflict. This group awareness in-
formation can be derived from relationship meta-data asso-
ciated with each artefact, which includes information such
as creator, contributors, any projects the artefact is related
to etc.

Group structural awareness can also be used to discover
which artefacts are used elsewhere by other users, indicat-

ing potential re-use candidates. Annotation artefacts exist
to contain supplementary information (such as case stud-
ies, communication records etc.) and can provide a form
of conversational awareness: “who is talking about which
artefacts” related to workspace awareness.

Both the evaluation tasks in the table rely on task/concept
awareness which cannot easily be supported by OSCAR
without the GENESIS work-flow system. A discussion of
such integration is beyond the scope of this paper. Both
tasks rely on workspace and group structural awareness in-
dicating that these types are the most useful for the GEN-
ESIS project evaluation. The evaluation of software testing
will also benefit from conversational awareness, indicating
to users what others say about test-case results and the soft-
ware they test.

4.1 Approach

In order to support awareness, another subsystem must
be added to OSCAR which keeps track of clients connected
to OSCAR both directly or via any distribution mechanism.
The types of awareness those clients request will determine
the information sent to them; a simple way to avoid send-
ing all the information. Furthermore the event management
system must be connected to an extensible awareness infor-
mation generator to create the requested information. On
the client side, a generic container for the awareness dis-
play must be available to support multiple awareness views.

The revised architecture is shown in figure 2.

ST
O

R
A

G
E

M
A

N
A

G
E

R

E
V

E
N

T
 M

A
N

A
G

E
M

E
N

T

ARTEFACT COLLECTION

REPOSITORY LAYER

(CVS + RDBMS)

TRANSFORMATION

CLIENTS

Change

Change

Request/Update

Transform

Artefacts
Store

Artefacts

Network
AWARNESS
INFO

ARTEFACT

FILTERED
AWARENESS EVENTS

LAYER

AWARENESS

GENERATOR

Figure 2. Revised OSCAR Architecture

OSCAR’s existing event management subsystem will be
used to collect events containing useful information which

4

will then be passed to an awareness information genera-
tor where initial filtering and sorting of the events will take
place. The organised collections of events will then pass to
the transformation layer which shall perform final filtering
and turn the events into a form that the clients can render.

The proposed prototype approach is oriented to timeline
awareness display of artefact changes. Figure 3 shows an
example timeline including a key for the symbols shown.
The proximity of the lines indicates how close the system
believes the two users’ activities are to conflicting. Time-
lines may be drawn for artefacts and the actions of users.
The conversion of raw OSCAR events into timeline infor-
mation will take place in the existing transformation sub-
system of OSCAR and the resulting output transmitted to
the clients for rendering. This approach has the advantage
that timelines can be applied to past versions of artefacts
or applied in soft real time with variable granularity of the
displayed events achieved by disregarding events deemed
unimportant. This variation in granularity allows the aware-
ness display to cope when events are missing, merely result-
ing in a gap on the timeline instead of system failure.

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

� � �
� � �
� � �

RESOLUTION

AF32

AF61

AF32

AF75AF75
YOU

"BOB"

AF1234 Artefact ID

Workspace join/leave

Conflict

Examine

Update

Artefact Interaction

AF75

AF75

Figure 3. Example Timeline

4.2 Instrumentation

The presence of centralised event management and dis-
patching in both forms of OSCAR’s architecture allow sys-
tem instrumentation by recording these events at the server
side, irrespective of whether they are subsequently sent to
the clients. These events may then be used as a session
record or to calculate metrics about OSCAR sessions, sup-
porting the evaluation of OSCAR described in section 5.

Though collecting all information from instrumented
clients would yield more raw data, establishing the tempo-
ral order of events between clients would be difficult, also
clients may lose information due to operator error. Since
client actions are only “important” in historical awareness
terms when they can affect other artefacts, i.e when they

act on artefacts held in OSCAR rather than local copies, a
server-only approach is sufficient for our needs. Addition-
ally, “server-only” instrumentation is easier to deploy for
production environment studies than multiple, potentially
distributed, clients which need to “phone home” on a regu-
lar basis to return their event logs.

5 Evaluation

To ensure that the support we are developing addresses
the motivating concerns outlined in section 1 we must eval-
uate the awareness support provided by OSCAR. Since OS-
CAR is intended for all phases of everyday software engi-
neering, studying the actions of users by analysing event
data and session logs collected transparently will minimise
interference by the experiment with the user activities.

For example, to find out how our historical awareness
and timeline views affects the incidence of conflicts be-
tween users of OSCAR, two similar problems based on ex-
isting collections of artefacts could be given to the users:
one problem to be solved with the assistance of the aware-
ness support and one without. Comparing the metrics out-
put from the two sessions, and the types of artefacts created
and modified to solve the problem will show how the addi-
tion of awareness to OSCAR affects the users of the system
and the quality of artefacts they develop. The intention is
to compare code quality, both by simple automatic metrics
such as defect level and by inspection of the finished sys-
tems to obtain a qualitative judgement of their soundness.
As a second stage, the GENESIS project’s industrial part-
ners will be asked to examine the awareness extensions for
application in their work.

6 Summary, Open Issues, and Future Work

An approach to adding asynchronous workspace aware-
ness to an existing software artefact repository has been
proposed. The elements of “OSCAR Awareness” from the
Workspace Awareness Framework[13] arePresence, Activ-
ity Level, Actions, Changes, Objects. The other elements
of this framework rely either on exclusively synchronous
shared workspace sessions or on process information which
OSCAR does not directly support.

Many existing “workspace awareness” systems such as
TUKAN[19], ShrEdit and SPE/JViews, including the cur-
rent prototype intended for OSCAR rely on the system de-
signers anticipating every way of changing the data and pro-
viding for it. They do not cope well with deus-ex-machina
changes to the contents of the workspace. In OSCAR’s
case, it is possible to manipulate the CVS repository di-
rectly using a standard CVS client, potentially confusing
the OSCAR system which at present operates on the as-
sumption that all actions on artefact data held in CVS will

5

be performed by it alone. Addressing this requires two
changes, firstly that OSCAR itself can cope to a certain ex-
tent with data modifications performed by other means and
secondly that awareness collection is not affected by unex-
pected data changes. “Informal awareness” systems like the
Radar View do not have such issues as they do not deal in
specific actions. This flexibility must be balanced against
the loss of the complete “awareness picture” available in
more restrictive systems.

A possible way of providing task/concept awareness by
using the GENESIS platform’s work-flow system was men-
tioned above; however other approaches that do not rely on
any external tool must be examined as a part of any future
work. One such awareness model is implemented in the
TUKAN system which provides task awareness in the soft-
ware development domain with the intention of finding suit-
able development partners to work with. Task awareness
derived from a work-flow system will be limited to tasks di-
rectly managed by that system and will not include aware-
ness about tasks taking place outside a predefined process
or during deviations from a predefined process.

Alongside the architectural changes proposed in the ap-
proach discussion, we must find a suitable distribution
model which supports awareness across a network of OS-
CAR systems without excessive communications overhead
or data loss.

References

[1] Virtual network computing. [@:] http://www.realvnc.org.
[2] L. Aversano, C. Aniello, P. Gallucci, and M. L. Villani.

Flowmanager: a workflow management system based on
petri nets. InProc. of the 26th Annual International Com-
puter Software and Applications Conference, COMPSAC02,
pages 1054–1059, Oxford, England, August 2002. IEEE
Computer Press.

[3] S. Bowen and F. Maurer. Designing a distributed soft-
ware development support system using a peer-to-peer ar-
chitecture. InWorkshop on Cooperative Supports for Dis-
tributed Software Engineering Processes (with COMPSAC
2002), pages 1087–1092, Oxford, England, August 2002.
IEEE Computer Society Press.

[4] D. G. Boyer, M. Cortes, J. Herbsleb, and M. J. Handel. Vir-
tual community presence awareness.ACM SIGGROUP Bul-
letin, 19(3):11–14, 1998.

[5] A. Campailla, S. Chaki, E. Clarke, S. Jha, and H. Veith. Effi-
cient filtering in publish-subscribe system. InProc. of the In-
ternational Conference on Software Engineering (ICSE01),
pages 443–452. ACM Press, New York City, May 2001.

[6] J. D. Campbell. Characteristics of group development of di-
agrams. InProc. of the Eleventh International Workshops on
Enabling Technologies for Collaborative Enterprises (WET-
ICE02), pages 29–34, Carnegie Mellon University, Pitts-
burgh, June 2002. IEEE Computer Society Press.

[7] L. E. Damianos, J. Drury, T. Fanderclai, L. Hirschmann,
J. Kurtz, and B. Oshika. Evaluating multi-party multi-
modal systems. InProc. Of the 2nd International Confer-
ence on Language Resources and Evaluation (LREC2000),
Athens, MITRE Corporation, 202 Burlington Road, Bed-
ford, MA01730 USA, May 2000.

[8] P. Dourish and V. Belotti. Awareness and coordination
in shared workspaces. InACM Conference on Computer
Supported Cooperative Work (CSCW’92), pages 107–114,
Toronto, Ontario, November 1992. ACM Press, New York
City.

[9] J. Drury and M. G. Williams. A framework for role-
based specification and evaluation of awareness support in
synchronous collaborative applications. InProceedings of
the 11th International Workshops on Enabling Technologies
for Collaborative Enterprises (WETICE02), pages 12–17,
Carnegie Mellon University, Pittsburgh, June 2002. IEEE
Computer Society Press.

[10] P. Fenjam, E. Kirda, S. Dustdar, H. Gall, and G. Reif. Eval-
uation of a publish/subscribe system for collaborative and
mobile working. In Proc. of the Eleventh International
Workshops on Enabling Technologies for Collaborative En-
terprises (WETICE02), pages 23–28. IEEE Computer Soci-
ety Press, June 2002.

[11] M. Gaeta and P. Ritrovato. Generalised environment for
process management in cooperative software engineering.
In Workshop on Cooperative Supports for Distributed Soft-
ware Engineering Processes (with COMPSAC 2002), pages
1049–1053, Oxford, England, August 2002. IEEE Com-
puter Society Press.

[12] J. Grundy, J. Hosking, and W. B. Mugridge. Inconsistency
management for multiple view software development en-
vironments. IEEE Transactions On Software Engineering,
24(11):960–981, November 1998.

[13] C. Gutwin and S. Greenberg. Workspace awareness for
groupware. InCHI Conference Companion, pages 208–209,
1996.

[14] C. Gutwin, S. Greenberg, and M. Roseman. Workspace
awareness support with radar views. InCHI Conference
Companion, pages 210–211, 1996.

[15] W. C. Hill and J. D. Hollan. History-enriched digital objects.
In Proc. of the ACM Conference on Computers, Freedom
and Privacy CFP’93, pages 9.16–9.20. ACM Press, New
York City, 1993.

[16] W. C. Hill and J. D. Hollan. History-enriched source code.
Unpublished manuscript, August 1993.

[17] T. Nomura, K. Hayashi, T. Hazama, and S. Gudmundson.
Interlocus: Workspace configuration mechanisms for activ-
ity awareness. InProc. of the ACM Conference on Com-
puter Supported Cooperative Work (CSCW’98), pages 19–
28. ACM Press, New York City, November 1998.

[18] D. Nutter, S. Rank, and C. Boldyreff. Architectural require-
ments for an Open Source Component and Artefact Reposi-
tory System within GENESIS. InProc. of the Open Source
Software Development Workshop, pages 176–196. Univer-
sity Of Newcastle, February 2002.

[19] T. Scḧummer. Lost and found in software space. In
The 34th Annual Hawaii Internationl Confernece on Sys-
tem Sciences (HICSS01). GMD-IPSI, IEEE Computer Soci-
ety Press, 2001.

6

