1,270 research outputs found

    Testing Market Response to Auditor Change Filings: a comparison of machine learning classifiers

    Get PDF
    The use of textual information contained in company filings with the Securities Exchange Commission (SEC), including annual reports on Form 10-K, quarterly reports on Form 10-Q, and current reports on Form 8-K, has gained the increased attention of finance and accounting researchers. In this paper we use a set of machine learning methods to predict the market response to changes in a firm\u27s auditor as reported in public filings. We vectorize the text of 8-K filings to test whether the resulting feature matrix can explain the sign of the market response to the filing. Specifically, using classification algorithms and a sample consisting of the Item 4.01 text of 8-K documents, which provides information on changes in auditors of companies that are registered with the SEC, we predict the sign of the cumulative abnormal return (CAR) around 8-K filing dates. We report the correct classification performance and time efficiency of the classification algorithms. Our results show some improvement over the naïve classification method

    What attracts vehicle consumers’ buying:A Saaty scale-based VIKOR (SSC-VIKOR) approach from after-sales textual perspective?

    Get PDF
    Purpose: The increasingly booming e-commerce development has stimulated vehicle consumers to express individual reviews through online forum. The purpose of this paper is to probe into the vehicle consumer consumption behavior and make recommendations for potential consumers from textual comments viewpoint. Design/methodology/approach: A big data analytic-based approach is designed to discover vehicle consumer consumption behavior from online perspective. To reduce subjectivity of expert-based approaches, a parallel Naïve Bayes approach is designed to analyze the sentiment analysis, and the Saaty scale-based (SSC) scoring rule is employed to obtain specific sentimental value of attribute class, contributing to the multi-grade sentiment classification. To achieve the intelligent recommendation for potential vehicle customers, a novel SSC-VIKOR approach is developed to prioritize vehicle brand candidates from a big data analytical viewpoint. Findings: The big data analytics argue that “cost-effectiveness” characteristic is the most important factor that vehicle consumers care, and the data mining results enable automakers to better understand consumer consumption behavior. Research limitations/implications: The case study illustrates the effectiveness of the integrated method, contributing to much more precise operations management on marketing strategy, quality improvement and intelligent recommendation. Originality/value: Researches of consumer consumption behavior are usually based on survey-based methods, and mostly previous studies about comments analysis focus on binary analysis. The hybrid SSC-VIKOR approach is developed to fill the gap from the big data perspective

    SDRS: a new lossless dimensionality reduction for text corpora

    Get PDF
    In recent years, most content-based spam filters have been implemented using Machine Learning (ML) approaches by means of token-based representations of textual contents. After introducing multiple performance enhancements, the impact has been virtually irrelevant. Recent studies have introduced synset-based content representations as a reliable way to improve classification, as well as different forms to take advantage of semantic information to address problems, such as dimensionality reduction. These preliminary solutions present some limitations and enforce simplifications that must be gradually redefined in order to obtain significant improvements in spam content filtering. This study addresses the problem of feature reduction by introducing a new semantic-based proposal (SDRS) that avoids losing knowledge (lossless). Synset-features can be semantically grouped by taking advantage of taxonomic relations (mainly hypernyms) provided by BabelNet ontological dictionary (e.g. “Viagra” and “Cialis” can be summarized into the single features “anti-impotence drug”, “drug” or “chemical substance” depending on the generalization of 1, 2 or 3 levels). In order to decide how many levels should be used to generalize each synset of a dataset, our proposal takes advantage of Multi-Objective Evolutionary Algorithms (MOEA) and particularly, of the Non-dominated Sorting Genetic Algorithm (NSGA-II). We have compared the performance achieved by a Naïve Bayes classifier, using both token-based and synset-based dataset representations, with and without executing dimensional reductions. As a result, our lossless semantic reduction strategy was able to find optimal semantic-based feature grouping strategies for the input texts, leading to a better performance of Naïve Bayes classifiers.info:eu-repo/semantics/acceptedVersio

    Applications in security and evasions in machine learning : a survey

    Get PDF
    In recent years, machine learning (ML) has become an important part to yield security and privacy in various applications. ML is used to address serious issues such as real-time attack detection, data leakage vulnerability assessments and many more. ML extensively supports the demanding requirements of the current scenario of security and privacy across a range of areas such as real-time decision-making, big data processing, reduced cycle time for learning, cost-efficiency and error-free processing. Therefore, in this paper, we review the state of the art approaches where ML is applicable more effectively to fulfill current real-world requirements in security. We examine different security applications' perspectives where ML models play an essential role and compare, with different possible dimensions, their accuracy results. By analyzing ML algorithms in security application it provides a blueprint for an interdisciplinary research area. Even with the use of current sophisticated technology and tools, attackers can evade the ML models by committing adversarial attacks. Therefore, requirements rise to assess the vulnerability in the ML models to cope up with the adversarial attacks at the time of development. Accordingly, as a supplement to this point, we also analyze the different types of adversarial attacks on the ML models. To give proper visualization of security properties, we have represented the threat model and defense strategies against adversarial attack methods. Moreover, we illustrate the adversarial attacks based on the attackers' knowledge about the model and addressed the point of the model at which possible attacks may be committed. Finally, we also investigate different types of properties of the adversarial attacks

    Multi-Model Network Intrusion Detection System Using Distributed Feature Extraction and Supervised Learning

    Get PDF
    Intrusion Detection Systems (IDSs) monitor network traffic and system activities to identify any unauthorized or malicious behaviors. These systems usually leverage the principles of data science and machine learning to detect any deviations from normalcy by learning from the data associated with normal and abnormal patterns. The IDSs continue to suffer from issues like distributed high-dimensional data, inadequate robustness, slow detection, and high false-positive rates (FPRs). We investigate these challenges, determine suitable strategies, and propose relevant solutions based on the appropriate mathematical and computational concepts. To handle high-dimensional data in a distributed network, we optimize the feature space in a distributed manner using the PCA-based feature extraction method. The experimental results display that the classifiers built upon the features so extracted perform well by giving a similar level of accuracy as given by the ones that use the centrally extracted features. This method also significantly reduces the cumulative time needed for extraction. By utilizing the extracted features, we construct a distributed probabilistic classifier based on Naïve Bayes. Each node counts the local frequencies and passes those on to the central coordinator. The central coordinator accumulates the local frequencies and computes the global frequencies, which are used by the nodes to compute the required prior probabilities to perform classifications. Each node, being evenly trained, is capable of detecting intrusions individually to improve the overall robustness of the system. We also propose a similarity measure-based classification (SMC) technique that works by computing the cosine similarities between the class-specific frequential weights of the values in an observed instance and the average frequency-based data centroid. An instance is classified into the class whose weights for the values in it share the highest level of similarity with the centroid. SMC contributes alongside Naïve Bayes in a multi-model classification approach, which we introduce to reduce the FPR and improve the detection accuracy. This approach utilizes the similarities associated with each class label determined by SMC and the probabilities associated with each class label determined by Naïve Bayes. The similarities and probabilities are aggregated, separately, to form new features that are used to train and validate a tertiary classifier. We demonstrate that such a multi-model approach can attain a higher level of accuracy compared with the single-model classification techniques. The contributions made by this dissertation to enhance the scalability, robustness, and accuracy can help improve the efficacy of IDSs
    corecore