
Louisiana Tech University Louisiana Tech University

Louisiana Tech Digital Commons Louisiana Tech Digital Commons

Doctoral Dissertations Graduate School

Spring 5-2020

Multi-Model Network Intrusion Detection System Using Multi-Model Network Intrusion Detection System Using

Distributed Feature Extraction and Supervised Learning Distributed Feature Extraction and Supervised Learning

Sangam Mulmi

Follow this and additional works at: https://digitalcommons.latech.edu/dissertations

https://digitalcommons.latech.edu/
https://digitalcommons.latech.edu/dissertations
https://digitalcommons.latech.edu/graduate-school
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F863&utm_medium=PDF&utm_campaign=PDFCoverPages

MULTI-MODEL NETWORK INTRUSION DETECTION SYSTEM

 USING DISTRIBUTED FEATURE EXTRACTION

AND SUPERVISED LEARNING

by

Sangam Mulmi, M.S., B.S.

A Dissertation Presented in Partial Fulfillment

of the Requirements of the Degree
Doctor of Philosophy

May 2020

COLLEGE OF ENGINEERING AND SCIENCE
LOUISIANA TECH UNIVERSITY

GS Form 13a
(01/20)

LOUISIANA TECH UNIVERSITY

GRADUATE SCHOOL

April 20, 2020

Date of dissertation defense

We hereby recommend that the dissertation prepared by

Sangam Mulmi, M.S., B.S.

entitled Multi-Model Network Intrusion Detection System Using Distributed

Feature Extraction and Supervised Learning

be accepted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computational Analysis & Modeling

Dr. Sumeet Dua
Supervisor of Dissertation Research

Dr. Weizhong Dai
Head of Computational Analysis & Modeling

Approved: Approved:

Hisham Hegab Ramu Ramachandran
Dean of Engineering & Science Dean of the Graduate School

Doctoral Committee Members:
Dr. Pradeep Chowriappa
Dr. Weizhong Dai
Dr. Jinko Kanno
Dr. Ramu Ramachandran

iii

ABSTRACT

Intrusion Detection Systems (IDSs) monitor network traffic and system activities

to identify any unauthorized or malicious behaviors. These systems usually leverage the

principles of data science and machine learning to detect any deviations from normalcy

by learning from the data associated with normal and abnormal patterns. The IDSs

continue to suffer from issues like distributed high-dimensional data, inadequate

robustness, slow detection, and high false-positive rates (FPRs). We investigate these

challenges, determine suitable strategies, and propose relevant solutions based on the

appropriate mathematical and computational concepts.

To handle high-dimensional data in a distributed network, we optimize the feature

space in a distributed manner using the PCA-based feature extraction method. The

experimental results display that the classifiers built upon the features so extracted

perform well by giving a similar level of accuracy as given by the ones that use the

centrally extracted features. This method also significantly reduces the cumulative time

needed for extraction. By utilizing the extracted features, we construct a distributed

probabilistic classifier based on Naïve Bayes. Each node counts the local frequencies and

passes those on to the central coordinator. The central coordinator accumulates the local

frequencies and computes the global frequencies, which are used by the nodes to compute

the required prior probabilities to perform classifications. Each node, being evenly

iv

trained, is capable of detecting intrusions individually to improve the overall robustness

of the system.

We also propose a similarity measure-based classification (SMC) technique that

works by computing the cosine similarities between the class-specific frequential weights

of the values in an observed instance and the average frequency-based data centroid. An

instance is classified into the class whose weights for the values in it share the highest

level of similarity with the centroid. SMC contributes alongside Naïve Bayes in a

multi-model classification approach, which we introduce to reduce the FPR and improve

the detection accuracy. This approach utilizes the similarities associated with each class

label determined by SMC and the probabilities associated with each class label

determined by Naïve Bayes. The similarities and probabilities are aggregated, separately,

to form new features that are used to train and validate a tertiary classifier. We

demonstrate that such a multi-model approach can attain a higher level of accuracy

compared with the single-model classification techniques.

The contributions made by this dissertation to enhance the scalability, robustness,

and accuracy can help improve the efficacy of IDSs.

GS Form 14
(8/10)

APPROVAL FOR SCHOLARLY DISSEMINATION

The author grants to the Prescott Memorial Library of Louisiana Tech University

the right to reproduce, by appropriate methods, upon request, any or all portions of this

Dissertation. IW LV XQGHUVWRRG WKaW ³SURSHU UHTXHVW´ cRQVLVWV RI WKH aJUHHPHQW, RQ WKH SaUW

of the requesting party, that said reproduction is for WKHLU personal use and that

subsequent reproduction will not occur without written approval of the author of this

Dissertation. Further, any portions of the Dissertation used in books, papers, and other

works must be appropriately referenced to this Dissertation.

Finally, the author of this Dissertation reserves the right to publish freely, in the

literature, at any time, any or all portions of this Dissertation.

'DWH����____________________________

$XWKRU �___________________________

0D\��������

vi

DEDICATION

This dissertation is for my beloved parents, Mrs. Sarda Mulmi and Mr. Badri Lal

Mulmi, who are my greatest supporters. Without their hard work, dedication, and

sacrifice, my world the way it is would not exist.

vii

TABLE OF CONTENTS

ABSTRACT .. iii

APPROVAL FOR SCHOLARLY DISSEMINATION ..v

DEDICATION .. vi

LIST OF FIGURES ... xiii

LIST OF TABLES .. xv

ACKNOWLEDGMENTS .. xvii

CHAPTER 1 INTRODUCTION..1

1.1 Intrusion Detection System (IDS) ...1

1.1.1 Knowledge-based IDS ..2

1.1.2 Behavior-based IDS ...2

1.2 Centralized and Distributed IDSs ...3

1.3 Current Issues & Challenges ..4

1.4 Objectives and Intended Approaches ..5

1.5 Conclusions ...6

CHAPTER 2 PRELIMINARIES ...7

2.1 General Types of Data..7

2.2 Data Transformation ..8

2.2.1 Normalization ..8

2.2.2 Discretization by Binning ...8

2.3 Feature Selection and Extraction ..9

2.4 Distance Measures ... 11

viii

2.5 Supervised Learning... 11

2.6 Model Validation ... 12

2.7 Performance Evaluation ... 13

2.7.1.1 Accuracy ... 13

2.7.1.2 Precision ... 14

2.7.1.3 Recall .. 14

2.7.1.4 Specificity ... 14

2.7.1.5 F1 Score .. 14

2.8 Utilized Datasets .. 15

2.8.1 NSL-KDD .. 15

2.8.2 CICIDS2017 .. 17

2.9 Configuration and Tools ... 19

2.10 Conclusions ... 20

CHAPTER 3 DISTRIBUTED FEATURE EXTRACTION FOR IDS CLASSIFIER
CONSTRUCTION .. 21

3.1 Background .. 21

3.2 Related Works.. 24

3.3 Methodology .. 25

3.3.1 Network Topology ... 25

3.3.2 Data Distribution .. 26

3.3.3 Features Analysis ... 26

3.3.4 Data Transformation... 26

3.3.4.1 Data Normalization ... 27

3.3.4.1.1 Local Computations .. 27

3.3.4.1.2 Global Computations .. 28

3.3.4.1.3 Normalization ... 29

ix

3.3.4.2 Class Relabeling .. 29

3.3.5 Distributed Feature Extraction .. 30

3.3.5.1 Local Eigen-Decomposition .. 30

3.3.5.2 Global Aggregation ... 30

3.3.5.3 Local Extraction .. 31

3.3.6 Classification.. 31

3.4 Experimental Procedure & Observations .. 32

3.4.1 Data Splitting, Distribution, and Normalization .. 32

3.4.2 Eigen-Decomposition ... 33

3.4.3 Local Feature Extraction .. 36

3.4.4 Classification Model-Building .. 41

3.5 Results and Discussion ... 41

3.5.1 Time Analysis of Feature Extraction... 41

3.5.2 Classification with Original Features .. 43

3.5.3 Classification with Extracted Features .. 44

3.5.4 FPR Analysis ... 47

3.6 Conclusions ... 47

CHAPTER 4 DISTRIBUTED CONSTRUCTION OF A PREDICTION MODEL 50

4.1 Background .. 50

4.2 Related Works.. 52

4.3 Methodology .. 53

4.3.1 Data Preparation & Transformation .. 53

4.3.1.1 Standardization.. 54

4.3.1.2 Discretization by Binning .. 54

4.3.2 Features Analysis and Selection ... 55

x

4.3.3 Naïve Bayes Classifier ... 56

4.3.4 Distributed Model-Building .. 56

4.3.4.1 Data Separation by Class ... 57

4.3.4.2 Local Frequency Counting .. 57

4.3.4.3 Global Frequency Counting ... 57

4.3.4.3.1 Class Frequencies .. 58

4.3.4.3.2 Class-Specific Value Frequencies.. 58

4.3.5 Local Prior-Probabilities Computation.. 58

4.3.6 Classification.. 59

4.3.7 Validation .. 59

4.4 Experimental Procedure & Observations .. 60

4.4.1 Data Transformation & Splitting .. 60

4.4.2 Features Analysis and Selection ... 60

4.4.3 Data Separation by Class .. 62

4.4.4 Frequency Counting ... 62

4.4.5 Model Construction .. 63

4.5 Results and Discussion ... 63

4.5.1 Training and Detection Durations Analysis .. 63

4.5.2 Classification Performance ... 64

4.5.2.1 Centralized vs. Distributed Predictor Performance 65

4.5.3 FPR Analysis ... 66

4.6 Conclusions ... 67

CHAPTER 5 SIMILARITY MEASURE-BASED LEARNING AND MULTI-MODEL
BINARY CLASSIFICATION ... 69

5.1 Background .. 69

5.2 Related Works.. 71

xi

5.3 Methodology .. 72

5.3.1 Data Selection and Integration .. 72

5.3.2 Data Transformation... 73

5.3.2.1 Normalization ... 74

5.3.2.2 Discretization by Binning .. 74

5.3.3 Features Analysis, Ranking, and Selection.. 74

5.3.4 Similarity Measure-based Classification (SMC) ... 74

5.3.4.1 Frequency Analysis ... 75

5.3.4.1.1 Value-Frequency in Dataset .. 76

5.3.4.1.2 Value-Frequency in Class.. 76

5.3.4.2 Frequency-based Data Centroid ... 77

5.3.4.3 Frequential-Weight Determination .. 77

5.3.4.4 Similarity Measurement .. 78

5.3.4.5 Classification... 79

5.3.5 Distributed SMC .. 79

5.3.6 Multi-Model Binary Classification ... 80

5.3.6.1 Partially-Dependent Multi-Model (PDMM) 82

5.3.6.2 Fully-Dependent Multi-Model (FDMM).. 83

5.4 Experimental Procedure & Observations .. 83

5.4.1 Preparation ... 83

5.4.2 Features Selection .. 83

5.4.3 SMC-based Model Construction ... 85

5.4.3.1 Class Frequencies .. 85

5.4.3.2 Frequential Value-Weight Determination .. 86

5.4.3.3 Data Centroids... 90

xii

5.4.4 Similarity Measurements .. 91

5.4.5 SMC-based Classification .. 92

5.4.6 Multi-Model Classification ... 94

5.5 Results and Discussion ... 94

5.5.1 Classification Performances ... 94

5.5.1.1 Single-Model Performances .. 95

5.5.1.2 Multi-Model Performances .. 96

5.5.1.3 FPR Analysis .. 97

5.6 Conclusions ... 97

CHAPTER 6 CONCLUSIONS AND FUTURE WORK .. 99

6.1 Conclusions ... 99

6.1.1 Distributed Feature Extraction .. 99

6.1.2 Distributed Classifier Construction ... 100

6.1.3 SMC and Multi-Model Approach for Binary Classification 101

6.1.4 Final Discussion ... 101

6.2 Future Work ... 102

BIBLIOGRAPHY ... 104

xiii

LIST OF FIGURES

Figure 1-1: A basic illustration of the centralized and distributed IDS architectures.4

Figure 2-1: An illustration of the feature selection and extraction processes with four
original features. Both processes aim to reduce the number of features. 10

Figure 2-2: The iterations for k-fold cross-validation with 𝑘 ൌ 3. 12

Figure 2-3: The list of descriptors available in the NSL-KDD dataset. Out of the
total 43 descriptors, the 42nd one is the class label. .. 16

Figure 2-4: The list of descriptors available in the CICIDS2017 dataset. There are
79 attributes in this dataset, and the last one is the class label. 18

Figure 3-1: A simulated network topology where each of the 𝑗 nodes is connected to
the central coordinator for bi-directional information exchanges. 26

Figure 3-2: The pre-normalized standard deviation and arithmetic mean for the
numerical attributes in the NSL-KDD dataset show that only a few features have an
extremely high variance. .. 32

Figure 3-3: The pre-normalized standard deviation and average for the numerical
attributes in the CICIDS2017 dataset show that several features have a high variance. ... 33

Figure 3-4: The first versus second PCs extracted with 1, 3, and 5 nodes in the
NSL-KDD dataset. The variances explained by PC 1 and PC 2, respectively, in
1-node, 3-node, and 5-node extractions are the same.. 37

Figure 3-5: The plots of the first versus second PCs extracted with 10, 25, and 50
nodes in the NSL-KDD dataset. The variances explained by PC 1 and PC 2,
respectively, in these extractions are consistent. ... 38

Figure 3-6: The first versus second PCs extracted with 1, 3, and 5 nodes in the
CICIDS2017 dataset. PC 1 and PC 2 in these extractions look somewhat
correlated. .. 39

Figure 3-7: The first versus second PCs extracted with 10, 25, and 50 nodes in the
CICIDS2017 dataset. The plots morph more rapidly with the increase in the number
of nodes in this dataset. .. 40

xiv

Figure 3-8: The comparison between the time taken to extract the features from the
a) NSL-KDD and b) CICIDS2017 datasets with a various number of nodes. 50-node
parallel extraction is much faster than centralized extraction. ... 42

Figure 4-1: The relevance of each feature determined by the chi-square test of
independence in the NSL-KDD dataset using a varying number of nodes. PC 1 and
PC 2 are consistently identified as the two most relevant features................................. 61

Figure 4-2: The relevance of each feature determined by the chi-square test of
independence in the CICIDS2017 dataset using a varying number of nodes. PC 4 is
most-frequently identified as the most relevant feature. ... 61

Figure 4-3: The comparison between training and detection speeds when using
various number of nodes for model construction and intrusion detection. The
duration for both training and detection reduced as the number of nodes increased. 64

Figure 4-4: The performance comparison based on accuracy between the predictors
constructed in centralized and distributed manners. When 3, 5, and 50 nodes were
used for the CICIDS2017 dataset, the distributed classifier performed better than the
centralized classifier. ... 66

Figure 5-1: Data integration performed to combine the previously unused categorical
data and the numerical PCs extracted in CHAPTER 3.. 73

Figure 5-2: A high-level illustration of a multi-model classifier for binary
classification. SMC, Naïve Bayes, and a tertiary classification model collaborate to
make decisions. ... 81

Figure 5-3: The relevancy of features in the NSL-KDD-based integrated dataset.
service is identified as the most relevant feature, followed by PC 1 and PC 2. 84

Figure 5-4: The relevancy of features in the CICIDS2017-based integrated dataset.
None of the original categorical features were among the 16 most relevant features. 84

Figure 5-5: The average value-frequency-based centroids in the NSL-KDD and
CICIDS2017 datasets. Each point represents the average value-frequency in the
respective feature. .. 91

Figure 5-6: The plots showing the classifications in the a) NSL-KDD and b)
CICIDS2017 datasets when using 12 features. The points closer to the x-axis are
classified as Attack, and the ones closer to the y-axis are classified as Normal. 93

xv

LIST OF TABLES

Table 2-1: The general types of data with description..7

Table 2-2: The count of attributes based on their data type in the NSL-KDD dataset. 15

Table 2-3: An overview of the instances in the NSL-KDD dataset. This dataset is
available in separate training and testing parts. .. 16

Table 2-4: The observed data types in the CICIDS2017 dataset. 17

Table 2-5: An overview of the instances in the CICIDS2017 dataset. The dataset
contains eight different CSV files with the data spanning over five consecutive days. 19

Table 2-6: An overview of the system configuration utilized for the experiments. 19

Table 3-1: The class relabeling in the NSL-KDD and CICIDS2017 datasets. 29

Table 3-2: A comparison of the eigenvalues computed by a various number of nodes
whose cumulative EV exceeds the threshold of 95% in the NSL-KDD dataset. 34

Table 3-3: A comparison of the eigenvalues computed by a various number of nodes
whose cumulative EV exceeds the threshold of 95% in the CICIDS2017 dataset. 35

Table 3-4: The number of new dimensions observed after feature extraction from the
NSL-KDD and CICIDS2017 datasets. ... 36

Table 3-5: The comparison of performances between different classifiers built with
the original features in the NSL-KDD dataset. k-NN performs the best with an
accuracy of 97.94%. ... 43

Table 3-6: The comparison of performances between different classifiers built with
the original features in the CICIDS2017 dataset. k-NN performs the best with an
accuracy of 98.71%. ... 43

Table 3-7: The comparison of performances between different classifiers built with
the features extracted using a various number of nodes for the NSL-KDD dataset.
The overall performance of the k-NN-based classifier is the best. 45

Table 3-8: The comparison of performances between different classifiers built with
the features extracted using a various number of nodes for the CICIDS2017 dataset.

xvi

The observed performance is comparable to the classifiers that use the centrally
extracted features. .. 46

Table 3-9: The best FPR achieved by each of the tested classifiers on the respective
datasets. The lowest FPRs were achieved by the k-NN. .. 47

Table 4-1: The performance comparisons between the classifiers constructed in a
distributed way using a varying number of nodes. .. 65

Table 4-2: The best FPR achieved in each dataset by the distributed Naïve Bayes. 66

Table 5-1: The categorical attributes in the NSL-KDD and CICIDS2017 datasets
utilized for the similarity measure-based classification. These attributes were ignored
in the previous chapters. .. 73

Table 5-2: The number of rows representing each class in the training sets. 85

Table 5-3: The computed three most significant weights for the values in the top 16
features for the Attack class in the NSL-KDD dataset. ... 87

Table 5-4: The computed three most significant weights for the values in the top 16
features for the Normal class in the NSL-KDD dataset. ... 88

Table 5-5: The computed three most significant weights for the values in the top 16
features for the Attack class in the CICIDS2017 dataset. .. 89

Table 5-6: The computed three most significant weights for the values in the top 16
features for the Normal class in the CICIDS2017 dataset. .. 90

Table 5-7: A sample instance from the testing set of the NSL-KDD dataset with the
observed values for features service, PC 1, PC 2, and flag. 91

Table 5-8: The types of classifiers constructed to evaluate the performances of the
single-model and multi-model classifiers. .. 94

Table 5-9: The performance comparisons of the SMC-based classifiers constructed
using a varying number of features. ... 95

Table 5-10: The performance comparisons of the single-model Naïve Bayes and
k-NN classifiers. .. 96

Table 5-11: The observed performances when using multi-model approaches based
on SMC, Naïve Bayes, and k-NN. ... 96

Table 5-12: The best FPR achieved by each classifier in all tested datasets. 97

xvii

ACKNOWLEDGMENTS

I am grateful to many who have offered their valuable inputs throughout this

dissertation research. Foremost, I would like to thank my research advisor, Dr. Sumeet

Dua, for guiding me to pursue the correct path that appropriately led to the finish line.

Additionally, my sincere appreciation goes to the honorable advisory committee

members ² Dr. Pradeep Chowriappa, Dr. Weizhong Dai, Dr. Jinko Kanno, and Dr.

Ramu Ramachandran ² for providing honest critique and keeping me on track. My

thanks also extend to every educator who has ever shared their knowledge and wisdom,

so I could continually learn and flourish.

My family and friends have always been there. Their everlasting support has

made it possible to reach this point. I thank them from the bottom of my heart.

Especially, thanks to my dear brother, Mr. Bipan Mulmi, for a constant push; thanks to

my beautiful fiancé, Ms. Taylor Poland, for all the motivation and keeping me focused;

and finally, thanks to my respected uncle, Mr. Yogesh Shrestha, for inspiring me to

explore the wonders of science and mathematics.

1

CHAPTER 1

INTRODUCTION

1.1 Intrusion Detection System (IDS)

Network intrusions are unauthorized activities in a computing network that

compromise its security, resources, and data. All networking infrastructures, including

the internet and intranet, are prone to intrusions. It is vital to detect intrusions promptly

to mitigate the risks posed by them. An intrusion detection system (IDS) aides in

identifying intrusions. An IDS typically is software that examines and analyzes network

data packets to identify anything suspicious [1]. Such a system learns from the usual

pattern of the network and flags the activities that do not appear reasonable. To build a

classification model that is capable of adequately distinguishing between the normal and

abnormal network traffic, the IDS must learn from the known instances of the network

behavior. Such learning heavily relies on data analysis and machine learning techniques

[2]. Traditionally, IDSs are implemented centrally. This type of IDS architecture that

utilizes only a single central node requires all the data essential for detection to be passed

through it for screening. Depending on the way an IDS is constructed and implemented,

most IDSs can be categorized into one of the following two main categories ²

Knowledge-based IDS and Behavior-based IDS.

2

1.1.1 Knowledge-based IDS

A knowledge-based IDS utilizes previously known attacks and system

vulnerabilities to build the rules or signatures. The signatures are the known patterns that

define an attack, which can be represented as a set of rules [3]. The new questionable

data is compared against the previously formulated signatures. If any match is found,

meaning there exists a signature that matches the properties of the current data in

question, then it is identified as an attack. The knowledge-based IDSs tend to be fast and

accurate as they work by performing comparisons between their observations and the

predetermined set of rules [4]. They, however, fail to detect any new attacks because

even a minor deviation from the original attack causes the new attack to mismatch with

all the previously created signatures. Due to this, such IDSs are unable to detect zero-day

attacks. The zero-day attacks are the attacks that are being observed for the very first

time; therefore, their signature is not present in the system yet [5]. The signature

dictionary, consequently, requires frequent updating to ensure the signatures of the latest

threats are available. With the rapid evolvement of new types of attacks, basing a

QHWZRUN¶V VHcXULW\ VROHO\ RQ a NQRZOHGJH-based IDS is not preferable.

1.1.2 Behavior-based IDS

The behavior-based IDS relies on a proper understanding of the network traffic

patterns. To build this type of IDS, the network traffic-related data is statistically

analyzed, and a prediction model that differentiates between the normal and abnormal

traffic is developed. The prediction model is often based on a clustering or classification

technique. Usually, a set of data containing both normal and abnormal traffic patterns are

used to build a prediction model. It is also possible to train the system with just the

3

normal traffic data such that whenever a new type of traffic that does not adhere to the

regular traffic pattern is detected, then it is flagged as an attack. When an IDS is

implemented to identify abnormal traffic, it is categorized as an anomaly-based IDS. The

main benefit of the behavior-based IDS is its ability to detect new types of attacks. The

issue, however, is that the behavior-based IDSs tend to suffer from slower detection and

higher false alarms.

1.2 Centralized and Distributed IDSs

In a centrally implemented IDS, the central node that is responsible for running an

IDS undertakes all the training, testing, and detecting tasks; therefore, all the data are

passed through it. Since this central node has access to the entirety of the data, it can

build a detection model that is representative of all the previously observed instances.

With the growth in the implementation of a distributed computing environment for the

modern network infrastructures, the traditional centrally located IDS is gradually

becoming obsolete. The present-Ga\¶V massive volume of network data transfers can

become overwhelming to the single central IDS. Due to these, the interest has grown to

design, develop, and implement a distributed IDS architecture.

One of the first proposed distributed IDS performs traffic monitoring in a

distributed manner but performs data analysis centrally [6]. Many common forms of

distributed IDS employ a central node that helps aggregate the data from each node. In

such architecture, each node can detect attacks based on the patterns that are learned

collaboratively with the help of the central coordinator. Because the detection happens

locally on distributed nodes, the incoming data can be distributed among them for

inspection, which reduces the load on a single system. This type of IDS is more robust

4

and requires limited data throughput in nodes [7]. Figure 1-1 illustrates high-level

architectures of centralized and distributed IDSs.

Figure 1-1: A basic illustration of the centralized and distributed IDS architectures.

1.3 Current Issues & Challenges

The process of construction and utilization of the IDS has crossed many

milestones since its inception. The modern-day IDSs have evolved into sophisticated

systems powered by the advanced artificial intelligence capabilities; however, they

continue to suffer from some of the common issues like high-dimensional data, slow

detection speed, poor robustness, and high false alarms [8]. False alarms are high when

the normal traffic is incorrectly detected as an attack. Because of such inaccuracy, many

healthy connections could get affected. If all the traffic flagged as an attack were to be

reviewed manually for verification, then falsely flagging many could overload the queue

containing the suspicious traffic data to be reviewed.

In a centralized IDS, all the necessary data passes through the central node that is

responsible for monitoring the network traffic, triggering the need for high processing

power and bandwidth connection on that node. Additionally, the privacy of the data

owned by each node in a network is diminished because all the raw data destined to or

5

originating from them are visible to the central node. Having a single central IDS also

makes the entire network vulnerable to a single point of failure [9]. In an event when the

primary system responsible for operating the IDS goes down, the attacks in any part of

the network may go unnoticed.

This dissertation aims to dissect these issues, investigate potential solutions, and

propose appropriate approaches to help overcome them.

1.4 Objectives and Intended Approaches

The IDSs continue to encounter several challenges. The general objective of this

dissertation is to explore some of those challenges and present potential remedies.

The feature extraction can be done in a distributed manner to handle

high-dimensional distributed data. In such an approach, each node sends some

information about the data to the central coordinator for aggregation. The nodes use the

aggregated data for feature extraction. To be considered useful, the features extracted

distributedly must perform as effectively as the features extracted centrally. Their

effectiveness can be verified by separately building the classifiers with both centrally and

distributively extracted sets of features and comparing their performances in terms of

accuracy and other measures.

The IDS classifier construction and implementation can also be done in a

distributed fashion to improve the robustness and detection speed. Numerous nodes in a

network can collaboratively construct a classifier, which can be used by each node

individually to detect intrusions. Such IDS architecture would be robust, mitigating the

risks posed by a single point of failure. Since the workload is distributed across multiple

6

nodes, the distributed system would be able to process more data in a shorter amount of

time. As a result, the distributed IDS would be able to detect attacks more rapidly.

Finally, a multi-model architecture with ensembled classifiers can be utilized to

improve the performance of an IDS in terms of detection accuracy. Such an

improvement could also reduce the false-positive rates (FPRs). The information

produced by multiple lightweight prediction models can be passed into another classifier

as input features to identify whether an instance being investigated is indeed an attack.

The traffic that is flagged as an attack is usually examined manually by the network

security experts to confirm its maliciousness. Improving the classification accuracy and

consequently reducing the number of falsely flagged traffic by using a multi-model

approach can help limit the amount of manual monitoring and analysis needed to keep the

network systems secure.

CHAPTER 3, CHAPTER 4, and CHAPTER 5, sequentially, discuss the intended

approaches in detail while outlining significant findings and observations.

1.5 Conclusions

This chapter commenced with an overview of the IDSs. It introduced their types

in terms of the way they are constructed and implemented. It also gave an overview of

how the machine learning and data science powers the modern IDSs. Additionally, it

presented some common issues that IDSs continue to encounter; then, it laid out the

objectives and some intended approaches to address those issues.

7

CHAPTER 2

PRELIMINARIES

2.1 General Types of Data

Each column in a structured dataset represents some specific descriptor. Different

columns may have different types of values stored in them; however, a specific column

only holds a specific type of data. Depending on the type of values stored in a column,

the type of data could be quantitative or qualitative. The two main categories of data

types are numerical and categorical. The numerical data are represented by some

numbers. They can be differentiated as a discrete, continuous, interval, or ratio type. The

categorical data are generally represented by some texts and are usually categorized as

nominal or ordinal [10]. The ordinal data type has a specific order but lacks the extent of

the difference between the values. Table 2-1 shows the different types of data.

Table 2-1: The general types of data with description.

Type Subtype Description Example

Numerical Discrete Whole-number values. The number of nodes.

Continuous Any value between whole numbers. Size of data packets.

Interval Measured along a scale; no true zero. The temperature.

Ratio Like interval, but with true zero. Distance between nodes.

Categorical Nominal Categories with no specific order. Hostname, port number.

Ordinal Categories with a specific order. The level of risk.

8

2.2 Data Transformation

Data transformation is a data preprocessing procedure that is often necessary to

change the data in one form to another to make them more appropriate to construct and

implement the predictive models. Depending on the situation, different transformations

could be necessary. The following are some common types of transformations.

2.2.1 Normalization

A significant difference in values between the features in a dataset is common.

Using such a dataset to construct a predictive model can be problematic because the

larger values may have a stronger influence. The values need to be scaled such that they

become suitable [11]. The z-score normalization technique is one of the standardization

techniques that help normalize the data and put the values into the same scale. This

technique uses the mean and standard deviation in such a way that the arithmetic mean of

the resulting normalized values becomes 0, and their standard deviation becomes 1. The

z-score normalization is given by

 𝑧 ൌ
𝑥 െ 𝜇

𝜎
 , Eq. 2-1

where 𝑥 is the currently observed value, 𝜇 is the population mean, and 𝜎 is the population

standard deviation. In an event when 𝜇 and 𝜎 are unavailable, the sample mean, 𝑥̅, and

sample standard deviation, 𝑠, can be used.

2.2.2 Discretization by Binning

Binning is a form of mapping that puts the numeric values into bins or buckets for

discretization, such that the continuous values are grouped into some discrete bins.

Converting continuous values into categorical values makes them compatible with the

algorithms that only handle categorical values. The common types of binning include

9

equal-width binning and equal-frequency binning [12]. The equal-width binning method

determines the width of bins using

 𝑤𝑖𝑑𝑡ℎ ൌ
𝑣௠௔௫ െ 𝑣௠௜௡

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑛𝑠
 , Eq. 2-2

where 𝑣௠௔௫ and 𝑣௠௜௡ are the maximum and minimum values to be binned. The number

of bins is pre-defined. The computed width is used to generate the ranges for bins. All

the values falling into a specific range are put into the same bin. In equal-frequency

binning, a set number of values are put into the same bin while ensuring that each bin has

an equal number of values. For this dissertation, the equal-width binning technique is

used to discretize continuous values, whenever necessary.

2.3 Feature Selection and Extraction

Often confused as the same process, the feature selection and extraction are two

different processes. When the feature space is reduced through a proper feature selection

or extraction, the classification performance can improve [13].

The feature selection deals with the identification and removal of the unnecessary,

irrelevant, and duplicate attributes. It can be done in a supervised or unsupervised

manner. The feature selection aims to reduce the number of features while improving the

classification accuracy [14]. One typical example of the feature selection technique is the

chi-square test of independence, which examines each attribute¶s degree of independence

from the target variable. This method is useful for categorical data. Another technique,

Analysis for Variance (ANOVA), computes the amount of variance within and between

the samples by analyzing their means [15]. This technique is suitable when the input

variables are numeric, and the target variable is categorical. Similarly, the method based

10

on information gain identifies suitable features based on the mutual information between

two variables [16].

In contrast, the feature extraction techniques analyze the available descriptors and

use them to generate new features while ensuring that the desired amount of information

is preserved. Feature extraction results in dimensionality reduction, making it easier to

tackle the curse of dimensionality. In a dataset containing a target variable, feature

extraction can be done without its consideration. Principal Component Analysis (PCA) is

one of the conventional and widely-used unsupervised feature extraction techniques that

projects the data in a higher dimension into the lower dimension while ensuring each

feature is orthogonal to one another [17]. Such projection ensures independence between

attributes while reducing the number of dimensions. Figure 2-1 demonstrates the feature

selection and extraction processes.

Figure 2-1: An illustration of the feature selection and extraction processes with four
original features. Both processes aim to reduce the number of features.

11

2.4 Distance Measures

Distance measures compute how far two points are from one another. They can

be used to determine the degree of dissimilarity or similarity between the data points.

The data points are similar if the distance between them is short. There are different

types of distance measures. Some of the notable ones in data science are Euclidean

Distance, Manhattan Distance, and Minkowski Distance [18]. Most distance measures

only deal with numerical values. When the data is of nominal or ordinal type, then the

available options for distance measures are limited. Jaccard similarity coefficient and

cosine similarity are two commonly used techniques to measure the degree of similarity

between the two data points represented by categorical values.

2.5 Supervised Learning

Supervised learning is a branch of machine learning where the dataset has a

labeled target variable containing class labels. In this type of learning, the model is built

by tuning it to predict the class labels accurately. The goal is to learn a mapping function

such that for a given set of inputs, the predictor determines an accurate output. As shown

in Eq. 2-3, the input values in 𝑋 are mapped into an output 𝑌.

 𝑓ሺ𝑋ሻ ൌ 𝑌 Eq. 2-3

The supervised learning techniques pass through the training and testing phases.

In the training phase, the class labels are available during the learning process. The

adjustments are made as necessary to ensure that the built model is a good predictor of

the class. The testing phase uses the constructed model to classify the test instances.

Since the actual class labels are known, the performance of the model can be evaluated

by comparing the observed outcomes against the expected outcomes. Some notable

12

supervised learning methods include Naïve Bayes, Decision Tree, k-Nearest Neighbor

(k-NN), and Neural Network.

2.6 Model Validation

In machine learning, the model validation is referred to as the process where the

trained model is evaluated using the test data. The cross-validation is one of the model

validation techniques that examines how the results obtained by a predictive model

generalizes to the new independent dataset [19]. Cross-validation evaluates the

predictive model¶V SHUIRUPaQcH on limited data through random resampling. Its purpose

is to perform some statistical analysis of a model to determine its actual effectiveness in

terms of accuracy and other quality measures when applied to the previously unseen data.

The holdout method is one of the variants of cross-validation technique where the data is

split in some ratio for training and testing purposes. The more substantial portion is used

for training, and the smaller portion is used for testing. In k-fold cross-validation, the

dataset is split into 𝑘 equal subsets known as folds. The 𝑘 െ 1 folds are used for training,

and the remaining held-out fold is used for testing, as shown in Figure 2-2.

Figure 2-2: The iterations for k-fold cross-validation with 𝑘 ൌ 3.

13

This process is repeated 𝑘 times, ensuring that each fold is used as the validation fold

once. The performance outcomes obtained from each of the iterations are averaged to get

the PRGHO¶V overall performance result, which is given by

 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 ൌ
1
𝑘

෍ 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒௜

௞

௜=1

. Eq. 2-4

2.7 Performance Evaluation

Several metrics are available WR HYaOXaWH a SUHGLcWRU¶V SHUIRUPaQcH. The

performance result ideally consists of the counts of true-positives (TP), false-positives

(FP), true-negatives (TN), and false-negatives (FN). These are represented in a confusion

matrix form with expected and observed outputs for binary classifications. The

performance of a model can be evaluated by analyzing measures like accuracy, precision,

recall, and specificity. The precision and recall can be combined into a single

performance metric called F1 score. These metrics can be multiplied by 100 for scaling.

2.7.1.1 Accuracy

The accuracy of a model depends on how many instances are correctly predicted

when compared to the total number of predictions made. It is computed as

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ
𝑇𝑃 ൅ 𝑇𝑁

𝑇𝑃 ൅ 𝐹𝑃 ൅ 𝑇𝑁 ൅ 𝐹𝑁
 . Eq. 2-5

Using accuracy as a performance evaluator is appropriate only when all the

classes in a data sample are evenly represented. If they are not, then classifying all the

instances into the most representative class would still give a good accuracy result,

causing a false sense of high accuracy.

14

2.7.1.2 Precision

Precision is an indicator of the PRGHO¶V ability to identify the positive instances

correctly, which is given by

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ
𝑇𝑃

𝑇𝑃 ൅ 𝐹𝑃
 . Eq. 2-6

An IDS with a low precision would imply that a significant number of regular

traffic is being classified as an attack. It is essential to reduce such misclassifications, to

avoid unnecessary flagging of the regular traffic.

2.7.1.3 Recall

Recall, also known as sensitivity, is a measure of what proportion of the instances

that are positive are classified as positive. It is given by

 𝑅𝑒𝑐𝑎𝑙𝑙 𝑜𝑟 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ൌ
𝑇𝑃

𝑇𝑃 ൅ 𝐹𝑁
 . Eq. 2-7

Since both TP and FN are actual positive instances, recall helps determine the

PRGHO¶V abLOLW\ WR LGHQWLI\ WKH true-positive instances as positives.

2.7.1.4 Specificity

Specificity computes the proportion of actual negative instances classified as

negatives. It is the opposite of recall and is given by

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 ൌ
𝑇𝑁

𝑇𝑁 ൅ 𝐹𝑃
 . Eq. 2-8

Specificity and FPR are related, such that 𝐹𝑃𝑅 ൌ 1 – 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦.

2.7.1.5 F1 Score

F1 VcRUH cRPSXWHV WKH PRGHO¶V accXUac\ baVHG RQ LWV SUHcLVLRQ aQG UHcaOO as

 𝐹1 𝑠𝑐𝑜𝑟𝑒 ൌ 2 ൈ
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൈ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൅ 𝑅𝑒𝑐𝑎𝑙𝑙

 . Eq. 2-9

15

This measure helps determine the balance between precision and recall. Since it

is not affected by the imbalanced class distribution, it is a better measure of accuracy

when the data sample represents one class significantly more than the others.

2.8 Utilized Datasets

 The NSL-KDD and CICIDS2017 datasets have been used for the experiments

throughout this dissertation. These are popular IDS-related datasets that come in a

structured form. They are openly available and are widely used in research [20] [21].

The compressed file size of the NSL-KDD dataset is 6.45 megabytes, and that of the

CICIDS2017 dataset is 229.49 megabytes.

2.8.1 NSL-KDD

The NSL-KDD dataset is derived from the KDD Cup 1999 dataset to address

some of its inherent issues [20]. This dataset comes in the form of text files containing

comma-separated values (CSVs). A detailed analysis of this dataset is conducted in [22].

It is available in different parts containing training and testing sets. Table 2-2 shows the

data types of the attributes in this dataset.

Table 2-2: The count of attributes based on their data type in the NSL-KDD dataset.

Data Type Subtype Number of Attributes

Numerical Discrete (Integer) 17

Continuous 15

Categorical Nominal 3

Nominal (Binary) 6

Total Attributes 41

16

The NSL-KDD dataset has a total of 43 columns. The values in the 42nd column

are the labels indicating whether the specific row represents a normal instance or some

specific kind of attack. Other columns, excluding the 43rd column, contain the

connection-related, content-related, time-related, and host-related traffic data [22]. The

43rd column indicates the level of classification difficulty for a particular instance. All

the descriptors available in the NSL-KDD dataset are listed in Figure 2-3.

Figure 2-3: The list of descriptors available in the NSL-KDD dataset. Out of the total
43 descriptors, the 42nd one is the class label.

The instances of both classes are quite evenly distributed in this dataset, with

48.12% of them being attacks and 51.88% of them being normal, as seen in Table 2-3.

Such balanced datasets are considered appropriate for building classification models

because each class is evenly represented, reducing the chance of bias.

Table 2-3: An overview of the instances in the NSL-KDD dataset. This dataset is
available in separate training and testing parts.

Filename Attack Normal Total Rows

KDDTrain+.txt 58,630 67,343 125,973

KDDTest+.txt 12,833 9,711 22,544

Total Instances 71,463 77,054 148,517

17

For this dissertation, the available training and testing files are merged into a

single file. The merged file is used for both training and testing by leveraging the

random sampling and cross-validation techniques.

2.8.2 CICIDS2017

The CICIDS2017 dataset contains the traffic data collected for five days. This

dataset is considered to have network traffic data resembling the real-world attacks [23].

Even though the actual data packets obtained by capturing network packets are available,

the information from those packets has been extracted into eight CSV files. Each of

those files pertains to a specific day and the types of attacks undertaken that day. The

rows in these files represent the information extracted or computed from the captured

packets. The data types and the number of attributes using them in this dataset are shown

in Table 2-4.

Table 2-4: The observed data types in the CICIDS2017 dataset.

Data Type Subtype Number of Attributes

Numerical Discrete (Integer) 40

Continuous 23

Categorical Nominal 1

Nominal (Binary) 8

Nominal (Unary) 6

Total Attributes 78

There are 79 columns in this dataset. The last column is the class label that

specifies whether an instance belongs to the normal traffic or some type of attack.

Figure 2-4 lists all the available descriptors in this dataset.

18

Figure 2-4: The list of descriptors available in the CICIDS2017 dataset. There are 79
attributes in this dataset, and the last one is the class label.

An analysis of the CICIDS2017 dataset reveals that it contains significantly more

normal instances than attack instances. Such a difference can cause bias in the learning

process by heavily favoring the normal instances. Only 19.7% of the instances represent

the attacks. It has been noted that this resembles the practical network traffic, where the

number of attacks is usually significantly lower than the regular traffic exchanges.

For this research, all eight available files in the CICIDS2017 dataset are merged

into a single file, and a specific number of rows are selected through random sampling as

needed. When sampling, the even class balance is enforced such that the equal number

of normal-related and attack-related samples are selected. Specifically, a dataset

containing a million rows with fifty-percent instances representing attacks and another

fifty-percent representing regular traffics is formed by randomly selecting the samples

from the entire dataset. The eight files available in this dataset and the number of

instances of each class in each file are shown in Table 2-5.

19

Table 2-5: An overview of the instances in the CICIDS2017 dataset. The dataset
contains eight different CSV files with the data spanning over five consecutive days.

Filename Attack Normal Total Rows

Monday-WorkingHours.pcap_ISCX.csv 0 529,918 529,918

Tuesday-WorkingHours.pcap_ISCX.csv 13,835 432,074 445,909

Wednesday-workingHours.pcap_ISCX.csv 252,672 440,031 692,703

Thursday-WorkingHours-Morning-

WebAttacks.pcap_ISCX.csv

2,180 168,186 170,366

Thursday-WorkingHours-Afternoon-

Infilteration.pcap_ISCX.csv

36 288,566 288,602

Friday-WorkingHours-Morning.pcap_ISCX.csv 1,966 189,067 191,033

Friday-WorkingHours-Afternoon-

DDos.pcap_ISCX.csv

128,027 97,718 225,745

Friday-WorkingHours-Afternoon-

PortScan.pcap_ISCX.csv

158,930 127,537 286,467

Total Instances 557,646 2,273,097 2,830,743

2.9 Configuration and Tools

The experiments are undertaken on a single host computer. For experiments

requiring a distributed network environment, a multi-node environment is simulated in a

single central computer. Table 2-6 VKRZV WKH XWLOL]HG V\VWHP¶V KaUGZaUH cRQILJXUaWLRQ.

Table 2-6: An overview of the system configuration utilized for the experiments.

Processor Intel® Xeon(R) CPU E5-1620 v3 @ 3.50GHz

Memory 32 GB 2133 MHz RIMM DDR4

Storage HP EX950 M.2 1TB PCIe 3.1 x4 NVMe 3D TLC NAND SSD

20

To prepare, setup, and run the experiments, various tools, including RapidMiner

Studio version 9.5, Microsoft Excel, and some Python libraries, along with self-written

codes, are utilized. The outputs of the self-written programs have been modularly

validated against the outputs produced by other reputable tools to check their reliability

before using them.

2.10 Conclusions

This chapter explained some preliminary concepts needed to understand the

presented ideas. It also introduced the datasets, NSL-KDD and CICIDS2017, which are

used to verify the applicability of the proposed techniques in the intrusion detection

domain. These are popular and openly available datasets that have been widely used for

IDS-related research. The tools and methods that have been utilized were also described.

In general, some relevant technical insights were provided.

21

CHAPTER 3

DISTRIBUTED FEATURE EXTRACTION FOR IDS CLASSIFIER
CONSTRUCTION

3.1 Background

When building a prediction model, the quality of the features used dictates its

performance. Many practical datasets tend to have numerous features. Several of these

features can carry redundant or useless information for prediction. The models built

using such features can cause overfitting or underfitting. Additionally, when many

features are used to build a model, the complexity of the problem becomes high, causing

the need for expensive computational resources. Each attribute in a dataset is considered

its dimension; hence, the number of attributes is equal to the number of dimensions. A

higher dimension causes a more complex problem, resulting in the curse of

dimensionality. The feature extraction process deals with taking the existing data

descriptors and extracting new features from them while ensuring that the newly

extracted features retain the maximum information from the data [24]. The features

holding the least variance can be excluded from the model building process. Such

exclusion results in dimensionality reduction.

There are numerous feature extraction techniques. PCA is one of the prevalent

dimensionality reduction and feature extraction techniques. It describes data variation as

a set of uncorrelated and independent variables known as principal components (PCs).

22

The PCs are generated by projecting high dimensional data into a low dimensional

feature space while preserving its intrinsic characteristics [25] [26]. Such extracted PCs

are orthogonal from one another. The PCA is undertaken without any regard to the class

labels, so it is an unsupervised feature extraction process.

The PCA is conducted by first forming a covariance matrix of the given data, then

performing eigen-decomposition to compute the eigenpair, which contains the

eigenvalues and their respective eigenvectors. The eigenvalues and eigenvectors

summarize the data. The first few largest eigenvalues with high explained variance are

selected, and their corresponding eigenvectors are used to determine the new features.

For a sample dataset 𝑿 ൌ ሼ𝑅1, 𝑅2, … , 𝑅୒ሽ ∈ ℝ௡ൈ𝑁 with 𝑛 dimensions and 𝑁

number of rows, the covariance, 𝜎ሺ𝑥, 𝑦ሻ, between two random variables, 𝑥 and 𝑦, is

 𝜎ሺ𝑥, 𝑦ሻ ൌ
1

𝑁 െ 1
෍ሺ𝑥௜ െ 𝑥̅ሻሺ𝑦௜ െ 𝑦തሻ

𝑁

௜=1

, Eq. 3-1

where 𝑥௜ and 𝑦௜ are the observed values for 𝑥 and 𝑦 attributes, and 𝑥̅ and 𝑦ത are the means

of all the values in those attributes, respectively. Based on the computed covariances

between all pairs of attributes in 𝑿, the covariance matrix, 𝑲 ∈ ℝ௡ൈ௡, can be determined.

A covariance matrix is symmetric and positive definite [27], and it can be decomposed

into three matrices such that it becomes equivalent to their products. In Eq. 3-2, 𝑽 is the

matrix with eigenvectors, 𝜦 is a diagonal matrix containing the corresponding

eigenvalues on its diagonal elements in decreasing order, and 𝑽𝑇 is a transposed 𝑽.

 𝑲 ൌ 𝑽𝜦𝑽𝑇 Eq. 3-2

23

Let 𝜆 and 𝑣 represent eigenvalue and eigenvector, respectively. If ሼ𝜆1, 𝜆2, … , 𝜆௡ሽ

is a set of eigenvalues such that 𝜆1 ൒ 𝜆2 ൒ ⋯ ൒ 𝜆௡ ൒ 0, then the eigenpairs containing

eigenvalues with their corresponding set of eigenvectors, can be represented as

 𝐸𝑖𝑔𝑲 ൌ ൛൫𝜆1, ൛𝑣஛భ1, 𝑣஛భ2, … ൟ൯, … , ൫𝜆n, ൛𝑣஛౤1, 𝑣஛౤2, … ൟ൯ൟ. Eq. 3-3

Depending on the predefined explained variance threshold, the first few eigenvalues are

selected. Then, a projection matrix, 𝑷, is constructed using the eigenvectors derived by

the selected eigenvalues. This projection matrix is used to project the original data into a

lower dimension linearly, as given by

 𝒀 ൌ 𝑷𝑇 ൉ 𝑿, Eq. 3-4

where 𝑷𝑇 is the transpose of matrix 𝑷. The resulting matrix, 𝒀, contains the PCs, with

the most important component being the first one [28].

 The PCA in a centralized environment is a well-studied area; however, there has

been a limited study on its applicability in a distributed IDS to extract features for a

prediction model. With the rise in the implementation of a distributed computing

architectures, it would be nonsensical to continue using a strictly-central IDS requiring

extravagant computational, storage, and bandwidth resources on a single IDS host.

Besides that, since all the information stored in the descriptors would have to pass

through the central processor to build a predictor using a central IDS, it would not be

suitable for privacy-conscious nodes that do not desire to share their raw data with others.

This chapter discusses a distributed feature extraction technique for IDS, where multiple

nodes collaboratively extract the features that is representative of the global dataset with

only their portion of the data. The distributed nodes achieve this with some assistance

from a central coordinator.

24

3.2 Related Works

There have been studies on the type of distributed PCA where each node has

access to only a subset of data. According to the review in [29], this type of PCA usually

has local and global stages. At the local stage, each node with access to only a subset of

data performs local PCA and forwards some information about the result to the central

coordinator. At the global stage, the central coordinator performs a global PCA by

aggregating the information received from each node.

In [30], the authors propose and analyze a distributed PCA algorithm where each

node computes the top 𝐾 eigenvectors of the covariance matrix for its portion of data.

These top 𝐾 eigenvectors are sent to the central node. The central node aggregates the

information collected from the nodes and performs PCA based on the aggregated

information. Through their experiments and analysis, the authors successfully show that,

with enough intermediate nodes, the distributed PCA, despite having access to only

limited data, performs as well as the centralized PCA. The authors have validated the

results they presented by running experiments in a simulated environment.

Similarly, [31] proposes a Minimum Volume Elliptical PCA algorithm that is

claimed to be robust due to its ability to identify PCs of the data, even when there are

anomalies present in a training dataset. Such ability prevents any skewing of PCs caused

by anomalous data [31]. The authors demonstrate that their proposed algorithm performs

better in a centralized environment. They, however, reformulate the technique using a

distributed convex optimization problem, where the problem is split across many nodes.

Each node, then, computes based only on its portion of data and exchanges the resulting

25

small matrices with its neighboring nodes. This approach caused the performance of the

distributed method to be comparable with that of the centralized method.

Tarzanagh et al. [32] propose an online scheme to estimate principal eigenspaces

for streaming data. They break the incoming batch of data into subsets and allocate those

to different computational nodes. The nodes determine the low-rank approximation for

the subset assigned to them. They, then, perform local aggregation to estimate the

principal eigenspaces, which pass through the fusion center for global estimation. The

experiments on real data showed that the proposed algorithm is capable of computing the

principal eigenspaces quickly while maintaining the level of approximation accuracy.

There are other distributed methods discussed in the literature, but no relevant

research was found whose contribution is specifically on distributed feature extraction

using the PCA for an IDS. The motive of this chapter is to propose an approach for

distributed feature extraction using PCA to help build a classification model for IDSs.

3.3 Methodology

3.3.1 Network Topology

A distributed environment with a fixed number of nodes is simulated where each

node only has access to a subset of data. A node performs calculations based on its part

of the data and sends the calculated values to the central coordinator for aggregation. Let

𝑗 be the number of nodes and 𝐴 ൌ ൛𝐴௝ ∶ 1 ൑ 𝑗ൟ be the set of nodes. All nodes have a

two-way link with the central coordinator. The network architecture simulated for the

experiments is shown in Figure 3-1.

26

Figure 3-1: A simulated network topology where each of the 𝑗 nodes is connected to
the central coordinator for bi-directional information exchanges.

3.3.2 Data Distribution

Once the appropriate datasets are discovered and selected, the datasets are split

randomly into 𝑗 subsets, each with a varying number of rows, and every node is assigned

a subset. To simulate a distributed architecture while utilizing a pre-existing dataset,

such splitting and assignment of data are conducted. The assumption, however, is that

each node is the owner of the data assigned to it. The nodes are unaware of the values in

the data present on other nodes. For a dataset 𝑿, its subsets of data assigned to each node

can be represented as

 𝑿 ൌ ቄ𝑿𝐴భ, 𝑿𝐴మ, … , 𝑿𝐴ೕቅ. Eq. 3-5

3.3.3 Features Analysis

The PCA works with numerical data; therefore, only the attributes that have

continuous or other numerical values are selected.

3.3.4 Data Transformation

Each node, individually, processes its part of data through a data preprocessing

stage to prepare them for further operations. After executing the rudimentary

preprocessing actions like cleaning data, handling missing and inappropriate values, and

27

filtering out the unneeded features, the data is transformed to ensure its readiness for

feature extraction. The essential nontrivial transformations performed are data

normalization and class relabeling.

3.3.4.1 Data Normalization

Since PCA works with numerical data, the selected data must be analyzed to

identify the attributes that are appropriate for it. The numerical data are normalized in

each node to ensure all the values are in the same range. Since both datasets contain

various attributes with numerical data, it is crucial to normalize such data to bring them to

a standard scale, without affecting their difference in range. The z-score normalization

technique is chosen for normalization. The data is spread across multiple nodes;

therefore, a straight-forward normalization using Eq. 2-1 is not possible. The distributed

computation of arithmetic mean and approximation of standard deviation, involving local

and global computations, are necessary.

3.3.4.1.1 Local Computations

Let 𝐴௜ be one of the nodes. For its portion of the data, the local mean of the values

in attribute, 𝑓, can be computed as

 𝑥̅௙ಲ೔
ൌ

1
𝑁𝐴೔

෍ 𝑥௞೑ಲ೔

𝑁ಲ೔

௞=1

, Eq. 3-6

where 𝑁𝐴೔ is the number of rows in 𝐴௜¶V GaWaVHW and 𝑥௞೑ಲ೔
 is the 𝑘௧௛ value in 𝑓. The local

mean is computed for each of the attributes by every node.

Similarly, the local standard deviation of a sample can be computed as

28

 𝑠௙ಲ೔
ൌ ඩ 1

𝑁A೔ െ 1
෍ ൬𝑥௞೑ಲ೔

െ 𝑥̅௙ಲ೔
൰

2
𝑁ఽ೔

௞=1

 , Eq. 3-7

where 𝑥̅௙ಲ೔
 is 𝐴௜¶V local mean computed for the attribute, 𝑓, derived from Eq. 3-6.

 The mean and standard deviation are computed locally by each node for the

attributes requiring normalization. These are sent to the central coordinator, along with

the total number of rows available in each node¶V SaUW RI GaWa; therefore, the node 𝐴௜

would send 𝑁𝐴೔, 𝑥̅௙ಲ೔
, and 𝑠௙ಲ೔

 to the central coordinator.

3.3.4.1.2 Global Computations

After receiving the total number of rows, local means, and local standard

deviations for each feature from all the nodes, the central coordinator computes the

weighted global average for an attribute with

 𝑥̅௙ ൌ
∑ ሺ𝑁𝐴೔ ൈ 𝑥̅௙ಲ೔

ሻ௝
௜=1

∑ 𝑁𝐴೔
௝
௜=1

 , Eq. 3-8

where ∑ 𝑁A𝑖
𝑗
𝑖ൌ1 ൌ 𝑁 is the cumulative total number of rows.

The global standard deviation for a specific attribute can be estimated using

 𝑠௙ ൎ ඩ
∑ ൫𝑁𝐴೔ െ 1൯ ቀ𝑠௙ಲ೔

ቁ
2௝

௜=1

൫∑ 𝑁𝐴೔
௝
௜=1 ൯ െ 𝑗

 , Eq. 3-9

where 𝑗 is the number of nodes, ቀ𝑠௙ಲ೔
ቁ

2
 is the variance of 𝑓 aWWULbXWH¶V YaOXHV LQ the node

𝐴௜¶V GaWaVHW.

 The computed global averages and standard deviations for each attribute are

shared with all the participating nodes by the central coordinator.

29

3.3.4.1.3 Normalization

Each node normalizes the values in its attributes using the z-score normalization

technique, with the global mean and standard deviation. This procedure transforms the

values spread across multiple nodes into the same scale.

3.3.4.2 Class Relabeling

The selected datasets are labeled; hence, they have a target variable containing a

class label specifying whether a row is an instance of a normal or attack traffic. The

attacks are labeled with a specific type of attack in both datasets. The interest is in

distinguishing only between the normal and abnormal traffic, so the different labels

representing various attacks are grouped into the same class, Attack, and all the classes

representing the regular traffic are recorded as Normal. The class-relabeled datasets are

used throughout the dissertation. Table 3-1 lists the original and the corresponding

assigned class labels in each dataset.

Table 3-1: The class relabeling in the NSL-KDD and CICIDS2017 datasets.

Dataset Original Label(s) Assigned

NSL-KDD Normal Normal

back · buffer_overflow · ftp_write · guess_passwd · imap ·

ipsweep · land · loadmodule · multihop · neptune · nmap ·

perl · phf · pod · portsweep · rootkit · satan · smurf · spy ·

teardrop · warezclient · warezmaster

Attack

CICIDS2017 BENIGN Normal

Bot · DDoS · DoS GoldenEye · DoS Hulk · DoS Hulk · DoS

Slowhttptest · DoS slowloris · FTP Patator · Heartbleed ·

Infiltration · PortScan · SSH Patator · Web Attack ± Brute

Force · Web Attack ± Sql Injection · Web Attack ± XSS

Attack

30

3.3.5 Distributed Feature Extraction

The distributed feature extraction with multiple nodes involves local and global

computations. The centralized extraction is identical to the distributed extraction with a

single node.

3.3.5.1 Local Eigen-Decomposition

Each node, after normalizing its portion of data, computes a covariance matrix.

Suppose 𝑲1 is the covariance matrix computed from 𝑿𝐴భ. The eigenpairs observed after

eigen-decomposition of 𝑲1 forms the set 𝐸𝑖𝑔𝐾భ. Each of the nodes repeats this process.

The computed eigenpairs for the node 𝐴1 can be represented as

 𝐸𝑖𝑔𝐾భ ൌ ቄቀ𝜆 ௘಼భ
, ቄ𝑣1೐಼భ

, 𝑣2೐಼భ
, … ቅቁ : 1 ൑ 𝑒 ൑ 𝑛ቅ, Eq. 3-10

where 𝑛 is the number of attributes. Each node forwards its eigenpairs to the central

coordinator for global aggregation.

3.3.5.2 Global Aggregation

At the global level, the central coordinator compiles the eigenpairs received from

each of the nodes. The eigenpairs received from 𝑗 number of nodes can be represented as

a set, 𝐸𝑖𝑔 ൌ ൛𝐸𝑖𝑔𝐾೔: 1 ൑ 𝑖 ൑ 𝑗ൟ, whose elements are the sets containing the eigenpairs

computed by each node. The collected eigenpairs are aggregated by calculating the

arithmetic means of the corresponding eigenvalues and eigenvectors. Such aggregation

results in a single set of eigenpairs representing the global averages of eigenvalues and

their corresponding eigenvectors.

Suppose 𝐸𝑖𝑔𝐴௚௚ is a set containing the aggregated eigenpairs, then the elements

in this set are derived by summing each corresponding value of eigenvalues or

eigenvectors and dividing the resulting sums by the total number of nodes. The

31

following sequence represents the globally approximated eigenvalues and their

corresponding eigenvectors.

 𝐸𝑖𝑔Agg ൌ ቐቌ
∑ 𝜆௘಼೔

௝
௜=1

𝑗
, ቐ

∑ 𝑣1೐಼೔

௝
௜=1

𝑗
,
∑ 𝑣2೐಼೔

௝
௜=1

𝑗
, … ቑቍ : 1 ൑ 𝑒 ൑ 𝑛ቑ Eq. 3-11

 The central coordinator shares the aggregated eigenvalues and eigenvectors with

all the participating nodes for further processing.

3.3.5.3 Local Extraction

When a node, 𝐴௝, receives 𝐸𝑖𝑔𝐴௚௚ from the central coordinator, it forms a

projection matrix, 𝑷, by using the eigenvectors corresponding to the eigenvalues that

exceed the defined explained variance threshold. For instance, if the first two

eigenvalues exceed the threshold, then the eigenvectors corresponding to them are used

to form the projection matrix. The dot product of the transpose of the projection matrix,

𝑷𝑇, is taken with the original data to get the PCs. For 𝐴௝, the data containing the PCs it

extracts is given by

 𝒀𝐴ೕ ൌ 𝑷𝑇 ൉ 𝑿𝐴ೕ, Eq. 3-12

which contains the new features for an IDS classifier.

3.3.6 Classification

The classification is performed using the predictive models built using various

supervised learning techniques by utilizing the features extracted with the discussed

distributed method. The constructed models are trained and tested, and the observations

made are reported and analyzed. The k-Nearest Neighbors (k-NN) and Neural

Network-based classifiers are constructed because of their known ability to handle

continuous values effectively. Similarly, the classification models are also constructed

32

using different variants of Naïve Bayes classifier to examine the performance when the

classification is done using continuous values and when done after discretizing the

continuous values.

3.4 Experimental Procedure & Observations

A series of experiments are conducted to verify that the proposed method

performs as expected. A multi-node distributed networking environment containing the

desired number of nodes and a central coordinator is simulated. The tests are performed

on both NSL-KDD and CICIDS2017 datasets.

3.4.1 Data Splitting, Distribution, and Normalization

The data is split randomly to match the number of nodes. Each partition of data,

which is assigned to a unique node, has a varied number of rows. The data is normalized

using the distributed method discussed in section 3.3.4.1. After normalization, all the

numerical attributes are relatively in the same range. The observed global mean and

standard deviation of each attribute used for z-score normalization in the NSL-KDD and

CICIDS2017 datasets are plotted in Figure 3-2 and Figure 3-3, respectively, to give an

idea of the distribution of the values.

Figure 3-2: The pre-normalized standard deviation and arithmetic mean for the
numerical attributes in the NSL-KDD dataset show that only a few features have an
extremely high variance.

33

Figure 3-3: The pre-normalized standard deviation and average for the numerical
attributes in the CICIDS2017 dataset show that several features have a high variance.

3.4.2 Eigen-Decomposition

Each node computes a covariance matrix for its data portion by using the

normalized data. They also perform eigen-decomposition to find the eigenvalues and

their respective eigenvectors, which are sent to the central coordinator for aggregation.

The central coordinator averages all the corresponding eigenvalues and their eigenvectors

to determine the globally aggregated eigenpairs. The eigen-decomposition is performed

in both centralized, which involves a single node, and distributed, which involves

multiple nodes, manners for comparison. The cumulative explained variance (EV)

threshold is set to 95%, so the newly extracted features will retain at least 95%

information from the original data. The eigenvalues whose cumulative explained

variance exceeds the specified threshold in the NSL-KDD and CICIDS2017 datasets are

listed in Table 3-2 and Table 3-3, respectively.

34

Table 3-2: A comparison of the eigenvalues computed by a various number of nodes
whose cumulative EV exceeds the threshold of 95% in the NSL-KDD dataset.

𝑷𝑪

Explained Variance in NSL-KDD (%)

1 Node 3 Nodes 5 Nodes 10 Nodes 25 Nodes 50 Nodes

1. 20.53 20.53 20.53 20.54 20.91 21.23

2. 15.65 15.65 15.65 15.65 15.92 16.16

3. 7.03 7.88 7.88 8.22 8.28 8.30

4. 5.97 5.98 5.98 5.98 6.09 6.03

5. 4.95 4.95 4.95 4.98 5.17 5.20

6. 4.24 4.24 4.25 4.42 4.55 4.53

7. 3.68 3.70 3.74 3.93 3.96 3.99

8. 3.51 3.59 3.52 3.59 3.58 3.61

9. 3.33 3.35 3.35 3.40 3.37 3.43

10. 3.26 3.25 3.26 3.26 3.31 3.35

11. 3.23 3.23 3.23 3.23 3.28 3.32

12. 3.21 3.20 3.20 3.20 3.25 3.28

13. 3.13 3.15 3.16 3.12 3.13 3.09

14. 3.05 3.01 3.03 2.99 2.96 2.79

15. 2.94 2.88 2.90 2.55 2.42 2.36

16. 2.57 2.38 2.33 2.21 1.97 1.94

17. 2.29 1.85 1.80 1.76 1.62 1.65

18. 1.63 1.54 1.56 1.53 1.49 1.45

19. 1.50 1.39 1.46 1.38 - -

𝑬𝑽 Sum 95.68 95.76 95.78 95.92 95.25 95.71

35

Table 3-3: A comparison of the eigenvalues computed by a various number of nodes
whose cumulative EV exceeds the threshold of 95% in the CICIDS2017 dataset.

𝑷𝑪

Explained Variance in CICIDS2017 (%)

1 Node 3 Nodes 5 Nodes 10 Nodes 25 Nodes 50 Nodes

1. 26.13 26.14 26.17 26.27 26.48 26.61

2. 12.78 13.05 12.93 13.93 13.76 14.21

3. 9.22 9.22 9.22 9.23 9.25 9.27

4. 7.18 7.18 7.21 7.28 7.82 7.96

5. 4.91 4.95 4.97 4.99 4.99 4.93

6. 4.22 4.43 4.46 4.37 4.35 4.28

7. 3.79 3.93 4.04 3.96 3.93 3.89

8. 3.50 3.62 3.70 3.54 3.48 3.40

9. 3.25 3.25 3.26 3.23 3.23 3.18

10. 3.09 3.10 3.11 2.91 2.75 2.56

11. 2.28 2.42 2.51 2.42 2.24 2.17

12. 2.11 2.04 2.07 2.04 2.01 1.99

13. 1.96 1.94 1.95 1.94 1.91 1.90

14. 1.91 1.82 1.86 1.85 1.82 1.81

15. 1.77 1.71 1.71 1.71 1.70 1.69

16. 1.59 1.59 1.59 1.58 1.57 1.56

17. 1.57 1.54 1.55 1.53 1.49 1.47

18. 1.52 1.46 1.41 1.43 1.36 1.33

19. 1.38 1.28 1.31 1.24 1.24 1.21

20. 1.27 1.26 - - - -

𝑬𝑽 Sum 95.43 95.92 95.02 95.42 95.41 95.43

36

3.4.3 Local Feature Extraction

The qualifying eigenvalues¶ eigenvectors, based on the specified threshold, are

used to construct a projection matrix. Each node then takes a dot product of the transpose

of the projection matrix with its original data to project the data into a lower dimension,

which results in dimensionality reduction. The NSL-KDD dataset had 32, and the

CICIDS2017 dataset had 63 original numeric dimensions. These are reduced to 19 or 18

and 20 or 19 dimensions, depending on the number of nodes used, respectively. Table

3-4 shows the new dimensions for each dataset after data extraction.

Table 3-4: The number of new dimensions observed after feature extraction from the
NSL-KDD and CICIDS2017 datasets.

Dataset

New Dimension

1 Node 3 Nodes 5 Nodes 10 Nodes 25 Nodes 50 Nodes

NSL-KDD 19 19 19 19 18 18

CICIDS2017 20 20 19 19 19 19

The new data so generated after projection is described by the PCs, which are the

extracted features. The first PC holds the most information about the data, and the last

PC holds the least amount of information. Based on the comparisons between the first

two PCs, it is observed in the NSL-KDD dataset that even though the orientation of the

extracted data has changed, the general explained variance has remained relatively

constant. In the CICIDS2017 dataset, the principal components appear to have shifted

more drastically, as the number of nodes changed. The comparisons of the first versus

second PCs determined with various nodes in each dataset are displayed in the following

charts.

37

Figure 3-4: The first versus second PCs extracted with 1, 3, and 5 nodes in the
NSL-KDD dataset. The variances explained by PC 1 and PC 2, respectively, in
1-node, 3-node, and 5-node extractions are the same.

38

Figure 3-5: The plots of the first versus second PCs extracted with 10, 25, and 50
nodes in the NSL-KDD dataset. The variances explained by PC 1 and PC 2,
respectively, in these extractions are consistent.

39

Figure 3-6: The first versus second PCs extracted with 1, 3, and 5 nodes in the
CICIDS2017 dataset. PC 1 and PC 2 in these extractions look somewhat correlated.

40

Figure 3-7: The first versus second PCs extracted with 10, 25, and 50 nodes in the
CICIDS2017 dataset. The plots morph more rapidly with the increase in the number of
nodes in this dataset.

41

3.4.4 Classification Model-Building

To verify the effectiveness of the extracted features, various classifiers are built

and tested before and after extracting the features. All the values are numeric, so they are

first normalized. When using the original features, the chi-square statistic-based feature

selection technique is utilized to select the top 19 features. The chi-square requires

discretized data. The bin size of 1,000 is used for discretization. The classifiers tested

are based on Naïve Bayes, Neural Network, and k-NN. Naïve Bayes is known to perform

well with discretized data, so the same discretized data used for chi-square-based analysis

is used for it. Neural Network and k-NN handle continuous data. The primary purpose

of the experiments is to examine how the number of nodes used affects the quality of the

extracted features. The inter-classifier performance comparison is not the main motive.

The parameters set for Neural Network are as follows ² training cycle: 100, learning

rate: 0.03, momentum: 0.4, and hidden layers: 2. Similarly, for k-NN, the Euclidean

distance measure with 𝑘 ൌ 5 is used. The built models are validated using the k-fold

cross-validation technique with 5 folds.

3.5 Results and Discussion

This section presents and analyzes the time needed for feature extraction with a

different number of nodes and the performance of the classifiers built using the features

extracted in centralized and distributed manners.

3.5.1 Time Analysis of Feature Extraction

The time consumed by the series extraction, where each node waits for another

node to finish its task before proceeding, and by the parallel extraction, where the nodes

work simultaneously, are recorded. One of the benefits of using a distributed feature

42

extraction technique is the reduction in time required for feature extraction. The time

needed for extraction significantly reduced when done in parallel. The time taken to

extract features stayed quite constant when done in series; however, when done in

parallel, the time taken decreased as the number of nodes increased. It appears that for

massive datasets, the distributed feature extraction done in parallel takes a significantly

shorter time. Figure 3-8 depicts the reduction of time taken when the features are

extracted in parallel with multiple nodes.

Figure 3-8: The comparison between the time taken to extract the features from the a)
NSL-KDD and b) CICIDS2017 datasets with a various number of nodes. 50-node
parallel extraction is much faster than centralized extraction.

43

In the NSL-KDD dataset, the 50-node parallel feature extraction took 1.02

seconds and was 7.21 times faster than the central extraction that took 7.33 seconds. In a

significantly larger CICIDS2017 dataset, the 50-node extraction took only 2.34 seconds,

which was 26.74 times faster than 62.69 seconds that the central extraction took.

3.5.2 Classification with Original Features

The level of accuracy observed, when using the original features, ranged between

88.75% and 97.94% in the NSL-KDD dataset and between 92.47% and 98.71% in the

CICIDS2017 dataset. The k-NN-based classifiers performed the best, and the Naïve

Bayes-based ones performed the worst, in general, as seen in Table 3-5 and Table 3-6.

Table 3-5: The comparison of performances between different classifiers built with the
original features in the NSL-KDD dataset. k-NN performs the best with an accuracy of
97.94%.

Classifier Recall Precision Specificity Accuracy

Naïve Bayes 79.45 96.58 97.39 88.75

Neural Network 96.87 96.23 96.52 96.69

k-NN 97.97 97.75 97.92 97.94

Table 3-6: The comparison of performances between different classifiers built with the
original features in the CICIDS2017 dataset. k-NN performs the best with an accuracy
of 98.71%.

Classifier Recall Precision Specificity Accuracy

Naive Bayes 98.20 93.69 93.38 95.79

Neural Network 87.72 96.93 97.22 92.47

k-NN 98.89 98.54 98.54 98.71

44

It must be noted that even though k-NN appears to perform the best in terms of

overall accuracy, the time taken (~5 hours) to build and validate each classifier based on

it was significantly longer than what other algorithms took. The Naïve Bayes-based

classifiers took the shortest time, which was only a fraction of what the Neural

Network-based classifiers took.

3.5.3 Classification with Extracted Features

All the extracted features are used to build the classification models. The number

of features varies based on the number of nodes and the dataset used. The performance

of every classifier of the same type stayed reasonably consistent even when using the

features extracted with a different number of nodes. Just like with the original features,

the classifiers based on k-NN performed better on both datasets.

In the NSL-KDD dataset, the highest accuracy of 98.49% was achieved by the

k-NN-based classifier when using the centrally extracted features. The Naïve

Bayes-based classifier was the worst performer with the lowest accuracy of 91.92%

when using the features extracted with 5 nodes. Table 3-7 reports the performances of

the classifiers constructed and validated for the NSL-KDD dataset using the features

extracted in both centralized and distributed manners.

45

Table 3-7: The comparison of performances between different classifiers built with the
features extracted using a various number of nodes for the NSL-KDD dataset. The
overall performance of the k-NN-based classifier is the best.

Classifier Nodes Recall Precision Specificity Accuracy

Naïve Bayes 1 90.98 93.01 93.66 92.37

3 89.79 93.50 94.21 92.08

5 91.28 91.87 92.51 91.92

10 91.05 92.33 92.99 92.05

25 93.84 89.55 90.70 92.14

50 88.52 94.75 95.46 92.12

Neural Network 1 94.69 96.82 97.11 95.95

3 92.96 96.86 97.20 95.16

5 96.79 92.92 93.67 95.11

10 97.03 95.40 94.96 96.03

25 94.93 95.84 96.18 95.58

50 97.11 95.03 94.53 95.86

k-NN 1 98.58 98.28 98.40 98.49

3 98.35 98.18 98.31 98.33

5 98.23 98.08 98.22 98.22

10 98.22 98.35 98.23 98.23

25 98.12 98.07 98.21 98.16

50 98.24 97.99 97.83 98.04

In the CICIDS2017 dataset, the centrally extracted features gave an accuracy of

99.71% with the k-NN classifier. The accuracy appears to fluctuate more significantly

with the increase in the number of nodes in this dataset ² with the lowest observed

accuracy for the k-NN-based classifier being 99% when using the features extracted with

50 nodes. Each type of cOaVVLILHU¶V corresponding accuracies, however, stayed somewhat

46

within the same range. Table 3-8 shows the performances of the classifiers constructed

and validated for the CICIDS2017 dataset using the features extracted in both centralized

and distributed manners.

Table 3-8: The comparison of performances between different classifiers built with the
features extracted using a various number of nodes for the CICIDS2017 dataset. The
observed performance is comparable to the classifiers that use the centrally extracted
features.

Classifier Nodes Recall Precision Specificity Accuracy

Naïve Bayes 1 93.56 89.59 89.13 91.34

3 94.23 86.15 84.85 89.54

5 92.68 86.03 84.95 88.81

10 93.47 83.76 81.88 87.67

25 92.65 86.17 85.13 88.89

50 86.83 90.60 91.00 88.91

Neural Network 1 92.02 92.89 92.95 92.48

3 93.80 92.14 91.99 92.90

5 90.12 93.16 93.39 91.76

10 94.43 90.65 90.26 92.34

25 90.70 96.07 96.29 93.50

50 87.46 95.52 95.90 91.68

k-NN 1 99.77 99.65 99.65 99.71

3 99.66 99.49 99.48 99.57

5 99.36 99.63 99.63 99.50

10 99.50 99.22 99.22 99.36

25 98.99 99.37 99.37 99.18

50 98.76 99.24 99.25 99.00

47

3.5.4 FPR Analysis

The FPRs of each of the classifiers constructed using the extracted features are

compared and analyzed. The best achievements in terms of FPR by each classifier are

seen in Table 3-9.

Table 3-9: The best FPR achieved by each of the tested classifiers on the respective
datasets. The lowest FPRs were achieved by the k-NN.

Dataset Classifier Nodes Test Instances False Positives FPR

NSL-KDD Naïve Bayes 50 148,517 3,502 4.52

Neural Network 3 148,517 2,154 2.89

k-NN 1 148,517 1,231 1.60

CICIDS2017 Naïve Bayes 50 1,000,000 45,021 9.00

Neural Network 25 1,000,000 18,531 3.71

k-NN 1 1,000,000 7,308 1.46

It must be acknowledged that even for a low FPR, the number of normal instances

falsely predicted to be an attack can still be overwhelmingly high. The FPR for the

k-NN-based classifier on CICIDS2017 dataset is only 1.46%, but the number of

instances falsely identified as an attack is 7,308. If those instances are to be reviewed

manually to verify the correctness of the classification, it could consume a significant

amount of resources.

3.6 Conclusions

In this chapter, we discussed a distributed feature extraction method to build a

classifier for an IDS. It was baVHG RQ PCA¶V XQGHUO\LQJ SULQcLSOHV. The nodes computed

the eigenpairs from their subset of the data locally. These computed eigenpairs were sent

to the central coordinator for aggregation. With the globally approximated eigenpairs,

48

each node extracted the features from its portion of the dataset. By extracting the features

using multiple nodes, the time required for extraction was reduced significantly. For the

larger dataset, CICIDS2017, the extraction using 50 nodes took only 2.34 seconds, which

was 26.74 times faster than when done centrally. Extracting features in this manner also

reduced the amount of data needed to be transferred to the central coordinator, requiring

lower bandwidth and storage.

We constructed several classifiers using the extracted features to verify their

usefulness. These classifiers were validated using the k-fold cross-validation technique.

All the classifiers of the same type performed fairly evenly, regardless of the number of

nodes used to extract the features. The k-NN-based classifiers performed better

consistently over other classifiers. The best performances attained by the k-NN-based

classifiers were the accuracy of 98.49% in the NSL-KDD dataset and 99.71% in the

CICIDS2017 dataset. Both best performances observed were for the features extracted

using only one node, which is equivalent to the centralized extraction. Despite this, the

performances of the classifiers built using the features extracted with multiple nodes were

comparable to the best performing classifiers that used the centrally extracted features.

The worst performing k-NN-based classifier, which used the features extracted by 50

nodes in the NSL-KDD dataset, still achieved an accuracy of 98.04%. The same for the

CICIDS2017 dataset was 99%. Even though the k-NN based classifiers performed the

best in terms of accuracy, the time required to construct them was significantly longer

than what was required for the Naïve Bayes-based classifiers.

With these observations, we conclude that there can be some degradation in

performance when using the features extracted in a distributed manner; however, the

49

centrally extracted features tend to perform only slightly better over the features extracted

distributedly. The benefits like the reduced time needed to extract the features, the

applicability in a distributed network environment, and the relieved stress on an IDS

could make the distributed feature extraction worthwhile.

50

CHAPTER 4

DISTRIBUTED CONSTRUCTION OF A PREDICTION MODEL

4.1 Background

The IDS classifiers that are constructed and implemented in a centralized manner

continue to suffer from long training duration, slow detection, and poor robustness. A

load on an IDS could be distributed across several nodes to relieve the stress on a single

IDS. Doing so could improve the learning and detection speeds. Similarly, since the

network traffic-related data are rapidly generated and collected from various sources,

transferring them regularly to the central system for detecting intrusions can be

detrimental. If the data available in distributed nodes are utilized to construct an IDS

classifier collaboratively without having to transfer those data to the central coordinator,

then that would reduce the required total bandwidth while also better preserving the

privacy of data. If those nodes could individually perform traffic monitoring and

scanning using the classifiers constructed collaboratively, then the robustness would

improve.

This chapter discusses the distributed construction of a classifier based on the

Ba\HV¶ WKHRUHP IRU aQ IDS. TKH cROOabRUaWLYHO\ cRQVWUXcWHG PRGHO¶V effectiveness is

examined in terms of training duration, detection speed, and classification performances.

The Ba\HV¶ WKHRUHP helps determine the probability of an event occurring given that

51

certain events have occurred. It calculates the posterior probability based on prior

probabilities [33]. For two events, 𝐴 and 𝐵, WKH Ba\HV¶ WKHRUHP LV WKH cRQGLWLRQaO

probability of 𝐴 occurring if 𝐵 has occurred, which is given by

 𝑃ሺ𝐴 | 𝐵ሻ ൌ
𝑃ሺ𝐵 | 𝐴ሻ ൉ 𝑃ሺ𝐴ሻ

𝑃ሺ𝐵ሻ , Eq. 4-1

where 𝑃ሺ𝐵 | 𝐴ሻ is the conditional probability of 𝐵 occurring if 𝐴 has occurred, and 𝑃ሺ𝐴ሻ

and 𝑃ሺ𝐵ሻ are marginal probabilities of 𝐴 and 𝐵 occurring, respectively. TKH Ba\HV¶

theorem is used in many classification applications [34].

If 𝐹 ൌ ሼ𝑓1, 𝑓2, … , 𝑓௞ሽ is the set of 𝑘 features in a dataset and 𝐶 ൌ ሼ𝑐1, 𝑐2, … , 𝑐௠ሽ is

the set containing 𝑚 distinct class labels, then for a new unknown instance, 𝑥, the

cOaVVLILcaWLRQ baVHG RQ Ba\HV¶ WKHRUHP LV GRQH XVLQJ

 𝑐ሺ𝑥ሻ ൌ arg max
௖ ∈ 𝐶

𝑃ሺ𝑐ሻ ൉ 𝑃ሺ𝑣1, 𝑣2, … , 𝑣୩ | 𝑐ሻ, Eq. 4-2

where 𝑐ሺ𝑥ሻ is the predicted class for 𝑥 and 〈𝑣1, 𝑣2, … , 𝑣୩〉 is a feature vector containing

the values from the respective features [35].

Naïve Bayes is a widely-known statistical classification technique based on

Ba\HV¶ WKHRUHP that naïvely assumes all the features to be independent [36]. It is known

to perform well, even when this assumption of independence is violated to some extent.

The strengths of Naïve Bayes include low storage requirements, high scalability, and the

ability to train and make predictions quickly [37]. There are different variants of Naïve

Bayes. The Gaussian Naïve Bayes works with continuous features like the ones extracted

in CHAPTER 3. The categorical Naïve Bayes, however, demonstrated superior

performance over the Gaussian Naïve Bayes during experiments; therefore, the

discretized values from the extracted features have been used to construct a categorical

Naïve Bayes classifier.

52

Once the classifier is built, as the new training data becomes available, the

incremental training of Naïve Bayes depends only on updating the frequency counts,

which makes it highly scalable. Most algorithms used to construct a classifier require

extensive retraining to fit both the new and old data when the new information becomes

available. If the model is not retrained to fit the newly available information, then the

classifier can gradually lose its effectiveness and become obsolete. For the models that

require retraining, figuring out the best time to retrain the model is challenging [38]. The

fact that Naïve Bayes works by merely counting the frequencies and does not require

expensive retraining, as long as the frequency counts are kept up-to-date when the new

instances are identified, makes it a solid choice for an IDS classifier.

4.2 Related Works

The interest in the construction and implementation of a collaborative IDS has

grown gradually over the years. The different types of collaborative IDS approaches

have been surveyed in [39]. Many recent studies on collaborative IDS seem to focus on

privacy preservation, robustness improvement, and overhead reduction. Some relevant

works in the literature are briefly discussed here.

Toulouse et al. [33] propose a wholly distributed network IDS that works by

detecting anomalies. Their proposed method is based on the Naïve Bayes classifier,

where the probabilities computed by one node are shared with other nodes through an

iterative average consensus protocol. The authors show that their consensus-based model

has a lower communication overhead in comparison to other distributed methods.

In [40], the authors study the distributed machine learning that is suitable when

the data is distributed across several parties, and those parties do not wish to share the

53

raw data they possess with others. Through their study, the authors propose utilizing the

asynchronous stochastic gradient descent (SGD) algorithm to learn from the distributed

features collaboratively. Their proposed technique is capable of learning even when the

original features or the local model parameters are not shared with others.

Similarly, [41] proposes a modified Naïve Bayes algorithm for intrusion detection

classification that is based on an artificial bee colony algorithm. The authors compare

their version of the algorithm with other competing algorithms and successfully

demonstrate that their algorithm performs better than the competitors. Through some

experiments, they show that their method gets over 91% accuracy in the NSL-KDD

dataset. Fung et al. [42] present a collaborative framework for intrusion detection

networks that uses a Bayesian approach for feedback aggregation.

A thorough literature review reveals that despite some achievements, further

advancement is needed to ensure that the IDSs can keep up with the shifting dynamics of

the network ecosystem that has growingly adapted to the distributed architecture.

4.3 Methodology

4.3.1 Data Preparation & Transformation

Suppose 𝐴 ൌ ሼ𝐴1, 𝐴2, … , 𝐴௝ሽ is a set containing all the nodes and 𝑋 ൌ

ሼ𝑋1, 𝑋2, … , 𝑋௝ሽ is the set of data on each corresponding node. Each part of the data has

the same number of features. If they have 𝑘 features each, then for the part of data, 𝑋௝,

the set of its features is represented as 𝐹௑ೕ ൌ ሼ𝑓1೉ೕ
, 𝑓2೉ೕ

, … , 𝑓௞೉ೕ
ሽ. Since the number of

rows varies in each part, let 𝑁 ൌ ሼ𝑛𝐴భ, 𝑛𝐴మ, … , 𝑛𝐴ೕሽ be the set containing the number of

rows for each data part distributed across 𝑗 nodes.

54

The datasets containing the features extracted in CHAPTER 3 and their

corresponding class labels are the source of data for this chapter. It is assumed that each

participating node has its own set of data containing the extracted features and class

labels. For a network with 𝑗 nodes, there are 𝑗 parts of data with each consisting a

varying number of rows. The testing set is created by randomly sampling and separating

the sampled instances from the data extracted by the nodes. The training is done using

the remaining data. The ratio of training and testing sets is about 4:1.

Some data transformations are necessary to prepare the data for further

processing. Because the data is decentralized, the alterations must be done in a

distributed way. The two main transformations include data standardization and binning.

4.3.1.1 Standardization

Even though the principal components in CHAPTER 3 are extracted using the

standardized data, the post-extraction data are no longer in a standard form; therefore, the

data is standardized by using the same technique described in section 3.3.4.1.

4.3.1.2 Discretization by Binning

The fixed-width binning is performed after standardization to discretize the

continuous values in each dataset. Because the data is distributed, the binning must be

done collaboratively. Each node evaluates the values in its features and sends the

minimum and maximum values in its features to the central coordinator.

Suppose 𝑀𝑖𝑛𝑀𝑎𝑥𝐴ೕ ൌ ൜൬𝑓௜𝐴ೕ, ൜𝑣௙೔ಲೕౣ౟౤
, 𝑣௙೔ಲೕౣ౗౮ൠ൰ : 1 ൑ 𝑖 ൑ 𝑘ൠ is the set containing

the features, 𝑓௜ಲೕ
, in node, 𝐴௝, and their corresponding observed maximum and minimum

values. Each respective node shares this with the central coordinator. The central

coordinator determines the global minimum and maximum values for each feature based

55

on the information received from all the nodes. It, then, with some specified number of

bins, computes the width of bins for each feature using Eq. 3-2. Once the widths are

computed, they are shared with all the nodes along with the observed global minimum

value for each feature. The nodes, with the received widths and respective universal

minimum values, perform binning. The binning so undertaken is consistent and puts the

values belonging to the same range in the same bin across all nodes.

4.3.2 Features Analysis and Selection

The available features are analyzed to ensure their usability to construct a

classifier. Selecting the most suitable features and removing the unnecessary features

impact the performance of the classifier. Because Naïve Bayes-based classifier assumes

independence among attributes, it is crucial to ensure that only the considerably

uncorrelated features that hold the most information about the class are selected. The

principal components being used as features are orthogonal to one another, so they are

considered independent, but the feature analysis is still conducted to identify the most

suitable features to build a classifier. Since the datasets are distributed across several

nodes, each node performs a chi-square statistic-based analysis to test the independence

of the existing features only on its part of data.

The chi-square test of independence is one of the statistical methods to examine

the dependency between two variables, which is given by

 𝑥ௗ
2 ൌ ෍ ෍

൫𝑂௜,௝ െ 𝐸௜,௝൯2

𝐸௜,௝

௨

௝=1

௥

௜=1

 , Eq. 4-3

where 𝑑 is the degrees of freedom, such that 𝑑 ൌ ሺ𝑟 െ 1ሻ ൉ ሺ𝑢 െ 1ሻ, 𝑟 is total rows, 𝑢 is

total columns, and 𝑂௜,௝ and 𝐸௜,௝ are the observed and expected values of two categorical

attributes, respectively. This method ranks each feature based on its dependency on the

56

target variable. It identifies the features that have a low reliance on other features but a

high dependence on the class.

 All the features and their ranking weight computed on each node are shared with

the central coordinator. The central coordinator averages the weights received from the

nodes and sends the features along with their corresponding averaged weight back to the

nodes. The central coordinator also instructs each node to use the top 𝑛 features for

classifier construction.

4.3.3 Naïve Bayes Classifier

The Naïve Bayes classifier is one of the Bayesian Network Classifiers that makes

a bold assumption of the features being independent [35]. If 〈𝑣1, 𝑣2, … , 𝑣௞〉 is the feature

vector containing the values for each of the respective 𝑘 features; then, the classification

done using this method is expressed as

 𝑐ሺ𝑥ሻ ൌ arg max
௖ ∈ 𝐶

𝑃ሺ𝑐ሻ ൉ ෑ 𝑃ሺ𝑣௜ | 𝑐ሻ
௞

௜=1

, Eq. 4-4

where ∏ 𝑃ሺ𝑣௜ | 𝑐ሻ௞
௜=1 is the product of all class-specific conditional prior probabilities of

the values in each feature. When the data is distributed, each node must send some

relevant information on its data to the central coordinator to be able to build the

classification model. This process is discussed in the following sections.

4.3.4 Distributed Model-Building

The global frequency of every value in each feature associated with a class that is

representative of the entirety of data must be determined in a distributed manner.

Additionally, to compute the class-specific prior probabilities, the class frequencies must

also be computed collaboratively.

57

4.3.4.1 Data Separation by Class

It is necessary to segregate the data by class labels to ease counting the

class-specific frequency of each value in every feature. The class-segregated data in a

node 𝑗 can be expressed as 𝑋௝ ൌ ቄ𝑋௝೎భ
, 𝑋௝೎మ

, … , 𝑋௝೎೘
ቅ. The 𝑚 different classes in a dataset

can be represented as 𝐶 ൌ ሼ𝑐1, 𝑐2, … , 𝑐௠ሽ. Once the data is separated based on the

association with the class labels, the frequencies are counted.

4.3.4.2 Local Frequency Counting

Every node counts the number of rows in its dataset representing each class.

Similarly, every node also computes the class-specific frequency of each value in a

feature. Let 𝒻 represent the frequency and ℱ represent the set of frequencies. For 𝑚

distinct classes in 𝐶, a set containing the frequencies for each class in node 𝐴௝ can be

expressed as

 ℱ௖ಲೕ
ൌ ൜𝒻௖೔ಲೕ

∶ 1 ൑ 𝑖 ൑ 𝑚ൠ. Eq. 4-5

Similarly, if there are 𝑝 unique values in a feature 𝑓௞ associated with the class 𝑐௠ in node

𝐴௝, then the set containing class-specific frequencies for each value can be represented as

 ℱ௩೑ೖ೎೘ಲೕ
ൌ ൜𝒻௩೔೑ೖ೎೘ಲೕ

∶ 1 ൑ 𝑖 ൑ 𝑝ൠ. Eq. 4-6

Each node determines the class-specific value frequencies for all unique values in each of

the features. The calculated class frequencies and class-specific value frequencies are

sent to the central coordinator.

4.3.4.3 Global Frequency Counting

The central coordinator uses the collected local frequencies to compute the global

frequencies that are representative of the cumulative data.

58

4.3.4.3.1 Class Frequencies

All the corresponding class frequencies from each node are summed to get the

total frequency that is representative of the entire global data. Based on the class

frequencies received from each node, a set containing global class frequencies can be

determined as

 ℱ௖ ൌ ቐ෍ ℱ௖೔ಲ೙

௝

௡=1

: 1 ൑ 𝑖 ൑ 𝑚ቑ, Eq. 4-7

where 𝑚 is the number of classes and 𝑗 is the number of nodes. Based on the elements in

ℱ௖, the total number of rows, 𝑁, in all the data parts combined can be computed as

 𝑁 ൌ ෍ ℱ௖೔

௠

௜=1

. Eq. 4-8

The central coordinator shares the set containing the computed global frequency of each

class, ℱ𝑐, and the total number of rows, 𝑁, with each participating node.

4.3.4.3.2 Class-Specific Value Frequencies

The central coordinator compiles all the local class-specific frequencies for each

value in every feature. For a feature 𝑓௞ associated with class 𝑐௠, the global class-specific

value frequencies for 𝑝 unique values can be determined as

 ℱ௩௙ೖ௖೘
ൌ ቐ෍ ℱ௩೔೑ೖ೎೘ಲ೙

௝

௡=1

∶ 1 ൑ 𝑖 ൑ 𝑝ቑ. Eq. 4-9

Such computation is repeated for every feature and class. The sets containing global

class-specific value frequencies for each feature and class are also shared with the nodes.

4.3.5 Local Prior-Probabilities Computation

After each node has access to the information containing the class frequencies and

class-specific value frequencies, it can individually compute the necessary probabilities

59

to perform the Naïve Bayes classification. If 𝑃௖ is the set of class probabilities, then its

elements are computed as

 𝑃௖ ൌ ൜
ℱc೔

𝑁
∶ 1 ൑ 𝑖 ൑ 𝑚ൠ. Eq. 4-10

Similarly, if 𝑃௩೑ೖ೎೘
 is the set containing prior probabilities of 𝑝 unique values

appearing in a class, 𝑐௠, for a feature, 𝑓௞ , then its elements are computed as the ratio

bHWZHHQ WKH YaOXH¶V aQG cOaVV¶ frequencies, given by

 𝑃௩೑ೖ೎೘
ൌ ൝

ℱ௩೔೑ೖ೎೘

ℱ௖೘

∶ 1 ൑ 𝑖 ൑ 𝑝ൡ, Eq. 4-11

where ℱ௩೔೑ೖ೎೘
 is the global frequency of the 𝑖th value in a feature 𝑓௞ for the class 𝑐௠ and

ℱ௖೘ is the global frequency of the class 𝑐௠ from the set ℱ௖. Such prior probabilities are

computed for the values in all the features associated with each class.

Both class and value probabilities are necessary to perform classifications. The

prediction model construction using Naïve Bayes depends only on these prior

probabilities, so it is a quick learning algorithm.

4.3.6 Classification

Any participating node can classify a new unknown instance according to the Eq.

4-4 by using the available global prior probabilities. The likelihood of each class being

the right one for a newly observed instance is computed. An instance is then classified

into the class that has the highest probability of being the correct one.

4.3.7 Validation

The predictors constructed using a distributed approach is validated on each of the

nodes. The testing set is created by randomly sampling the instances and separating them

from the data on each node. The remaining data is used for training, which involves

60

frequency counting and probability calculations. This process follows the holdout

cross-validation method, with 80% of data used for training, and the remaining 20%

held-out data used for testing. The results observed using the classifiers constructed with

a different number of nodes are compared against each other to analyze the outcomes.

4.4 Experimental Procedure & Observations

4.4.1 Data Transformation & Splitting

The data in each node are standardized using a collaborative method explained in

3.3.4.1. After standardization, these data are discretized to make them appropriate for the

chi-square statistic-based analysis and categorical Naïve Bayes. The discretization is also

done collaboratively, as described in 4.3.1.2, using the equal-width binning method with

1,000 bins for both NSL-KDD and CICIDS2017 datasets. The 20% of instances in the

nodes are randomly sampled and separated to form a testing set. The rest of the data are

used as the training set. The training part of the dataset is used for feature selection,

frequency counting, and other training-related procedures. The testing part of the data is

used solely for testing and validation.

4.4.2 Features Analysis and Selection

The features extracted in CHAPTER 3 are analyzed, after standardization and

discretization, using the chi-square test of independence technique to identify the best

features to build a classifier. The analyzed features, along with the normalized relevancy

weights assigned to them, are sent to the central coordinator. The central coordinator

averages the relevancy weights. The top 15 features with the most significant aggregated

weights are selected for model-construction. Figure 4-1 and Figure 4-2 show the

relevance of the features extracted in distributed manners.

61

Figure 4-1: The relevance of each feature determined by the chi-square test of
independence in the NSL-KDD dataset using a varying number of nodes. PC 1 and
PC 2 are consistently identified as the two most relevant features.

Figure 4-2: The relevance of each feature determined by the chi-square test of
independence in the CICIDS2017 dataset using a varying number of nodes. PC 4 is
most-frequently identified as the most relevant feature.

62

4.4.3 Data Separation by Class

Each node segregates its part of the data by class. Such segregation is optional,

but it is easier to count the class and value frequencies when the instances belonging to

the same class are grouped. All pieces of the data have two classes ² Attack and

Normal. Through analysis of the segregated data, it is evident that even though the data

were randomly sampled and split across several nodes, the class balance is still mostly

maintained. Such a balanced dataset, where all the classes are evenly represented, is

suitable for classifier construction, as it helps mitigate potential biases.

4.4.4 Frequency Counting

Even when the class frequencies are counted in a distributed manner with a

varying number of nodes, the resulting frequencies for a respective class is always the

same. Similarly, the cumulative total number of rows for the datasets is also always

equal. The class probabilities, as a result, for each class label stays the same for any

number of nodes; however, this does not apply to class-specific values¶ frequencies

because the data extracted in CHAPTER 3 are different for a different number of nodes.

Such difference causes the bins to form differently during the discretization process,

which results in a discrepancy of frequency for class-specific values in a feature.

 The data containing frequency-related values exchanged between each node and

the central coordinator are sent in a JavaScript Object Notation (JSON) format where the

key-value pair is formatted in a dictionary form [43]. Depending on the information

being exchanged, the key contains the class label or the unique value from the dataset,

and the value contains the corresponding frequency.

63

4.4.5 Model Construction

The training phase of model construction constitutes using the counted

frequencies to compute the required probabilities. In Naïve Bayes, the model

construction only involves the computations of prior probabilities. The posterior

probability of an instance belonging to the class can be calculated based on the prior

probabilities. The testing phase validates the constructed model with the test set of the

data. The results observed during the testing and validation of the constructed models are

reported in the following section.

4.5 Results and Discussion

4.5.1 Training and Detection Durations Analysis

The training duration is the time taken to construct a classifier, and the detection

duration is the time the constructed classifier takes to classify all the instances in the

testing set. The training and detection durations decreased as the number of nodes

increased. The centralized training took 1.141 seconds and detection took 0.016 seconds

for the NSL-KDD dataset. When using 50 nodes for the same dataset, the training and

detection durations plummeted to 0.01 and less than 0.001 seconds, respectively.

Similarly, for the CICIDS2017 dataset, the centralized training took 8.781 seconds, and

detection took 0.094 seconds. With 50 nodes, it only took 0.151 seconds to train and

0.004 seconds to detect. The rates of decrease appear to follow the exponential decay

trend, as observed in Figure 4-3.

64

Figure 4-3: The comparison between training and detection speeds when using various
number of nodes for model construction and intrusion detection. The duration for both
training and detection reduced as the number of nodes increased.

It must be noted that these durations do not account for network latencies. The

observed shortening of training and detection duration implies that it is possible to

distribute an IDS classifier construction and detection jobs across several nodes to boost

the speed.

4.5.2 Classification Performance

Despite using the varying number of nodes to build the classifiers, the observed

performance remained consistent. In the NSL-KDD dataset, all predictors attained over

91% accuracy for any number of tested nodes. In the CICIDS2017 dataset, the

performance fluctuated more rapidly, with the lowest accuracy observed being just over

87%, and the highest accuracy observed being close to 90%. The performances of the

distributed classifiers are reported in Table 4-1.

65

Table 4-1: The performance comparisons between the classifiers constructed in a
distributed way using a varying number of nodes.

Dataset Nodes Recall Precision Specificity Accuracy

NSL-KDD 3 90.67 94.32 93.56 91.99

5 91.83 92.41 91.83 91.83

10 91.80 89.93 90.87 91.31

25 90.37 94.29 93.46 91.78

50 94.31 88.36 89.85 91.85

CICIDS2017 3 93.72 86.65 85.45 89.60

5 89.78 88.11 87.92 88.85

10 93.18 83.17 81.11 87.15

25 92.39 86.23 85.28 88.83

50 90.99 87.93 87.48 89.24

4.5.2.1 Centralized vs. Distributed Predictor Performance

The Naïve Bayes-based predictors constructed in a distributed manner are

compared against the ones that were constructed centrally in CHAPTER 3 (see Table 3-7

and Table 3-8). Even though the predictors constructed in a distributed manner using the

procedure discussed in this chapter appear slightly inferior in terms of accuracy, their

observed performance is still impressive. The centrally constructed predictors, which use

the features extracted in a distributed manner, have performed only slightly better in most

cases than their counterparts that use the features extracted and the classifier constructed

distributedly. The models constructed to examine the quality of the features in

CHAPTER 3, however, did not involve any feature selection. Figure 4-4 shows

comparisons between centralized and distributed classification models.

66

Figure 4-4: The performance comparison based on accuracy between the predictors
constructed in centralized and distributed manners. When 3, 5, and 50 nodes were
used for the CICIDS2017 dataset, the distributed classifier performed better than the
centralized classifier.

4.5.3 FPR Analysis

The FPR, when using the NSL-KDD dataset, stayed below 10% for any number

of nodes; however, in the CICIDS2017 dataset, the FPR was regularly over 12%, with the

worst FPR being 18.89% when using ten nodes. In comparison to the predictors

constructed centrally in CHAPTER 3 (see Table 3-9), the classifiers constructed in a

distributed manner have higher FPRs for both datasets, as seen in Table 4-2.

Table 4-2: The best FPR achieved in each dataset by the distributed Naïve Bayes.

Dataset Nodes Test Instances False Positives FPR

NSL-KDD 3 29,703 878 6.44

CICIDS2017 5 200,000 12,097 12.08

67

4.6 Conclusions

With the growing volume of data that an IDS must process to detect attacks, the

centralized IDSs are becoming outdated for modern-day distributed network

infrastructures that facilitate high-volume data exchanges. The attacks are evolving

rapidly, so an IDS must adapt continuously to retain its effectiveness. We identified

categorical Naïve Bayes as a scalable method that is fast and appropriate for an IDS, as it

only requires frequency counting and prior probability computations for model

construction. This chapter outlined a procedure to perform Naïve Bayes in a distributed

setting, where numerous nodes, with the help of the central coordinator, collaboratively

construct a classifier and independently detect attacks.

By constructing and validating the classifiers using multiple nodes, we

demonstrated that the durations for constructing classifiers and detecting attacks could be

reduced by employing multiple nodes. The rate of decrease in duration closely followed

the exponential decay trend when more nodes were added into the network. Similarly,

the classifiers retained a similar level of performance-accuracy even when numerous

nodes were used for classification model construction, instead of just one. The

distributed classifiers constructed with the NSL-KDD dataset consistently attained an

accuracy of over 91%; whereas, the ones constructed with the CICIDS2017 dataset

attained the accuracy between 87.15% and 89.60%. Such observations show that when

the data is spread across several nodes, an effective distributed classifier can be

constructed and utilized.

It is apparent that the classifiers constructed and deployed in a distributed manner

can handle a larger volume of data in a shorter time. In addition, since each node can

68

independently detect the attacks, once the model is constructed, such an approach

mitigates the issues related to the single point of failure by making the IDS

implementation more robust.

69

CHAPTER 5

SIMILARITY MEASURE-BASED LEARNING AND
MULTI-MODEL BINARY CLASSIFICATION

5.1 Background

In CHAPTER 3, we used the numerical attributes in the available datasets for

feature extraction, and in CHAPTER 4, we utilized those extracted features for

collaborative classifier construction. Because the PCA, which works with numerical

data, was used for feature extraction, all the existing categorical data present in the

datasets had been ignored; therefore, any significance held by them were disregarded.

We now introduce a similarity measure-based classification algorithm that utilizes

categorical data.

Even though the distance measures are often perceived as applicable only to the

points in a 3-dimensional space, most distance measures can compute the distance

between multi-dimensional data points that extend beyond the 3-dimensional physical

space [44]. Based on the properties a distance measure satisfies, it can be categorized

into metric distance measure or semi-metric distance measure. For points 𝐴, 𝐵, and 𝐶, a

metric distance measure meets the following properties.

a) The distance between 𝐴 and 𝐵 is greater than or equal to 0.

b) The distance between 𝐴 and 𝐵 is 0, if and only if 𝐴 ൌ 𝐵.

c) The distance between 𝐴 and 𝐵 is equal to the distance between 𝐵 𝑎𝑛𝑑 𝐴.

70

d) The distance between 𝐴 and 𝐵 is less than or equals to the sum of

distances between those points and some other point; i.e.,

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒ሺ𝐴, 𝐵ሻ ൑ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒ሺ𝐴, 𝐶ሻ ൅ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒ሺ𝐶, 𝐵ሻ.

A semi-metric distance measure, on the other hand, satisfies only the first three of these

properties [45]. The dissimilarity and similarity between points are typically related,

such that the degree of similarity between two points, 𝐴 and 𝐵, can be expressed as

 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦ሺ𝐴, 𝐵ሻ ൌ 1 െ 𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦ሺ𝐴, 𝐵ሻ, Eq. 5-1

where 𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦ሺ𝐴, 𝐵ሻ is the degree of dissimilarity computed by a distance measure,

and 𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦ሺ𝐴, 𝐵ሻ ൌ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒ሺ𝐴, 𝐵ሻ. Some similarity measures do not require the

computation of the degree of dissimilarity and work with categorical data. Cosine

similarity, which has widespread applications, is one of them. It finds the cosine angle

between the vectors ² a smaller angle implies more similarity [46].

For two non-zero vectors, 𝐴 and 𝐵, the cosine similarity is computed as their dot

product and magnitudes, which is given by

 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦ሺ𝐴, 𝐵ሻ ൌ 𝐶𝑜𝑠ሺ𝜃ሻ ൌ
𝐴 ൉ 𝐵

‖𝐴‖ ൈ ‖𝐵‖ . Eq. 5-2

As seen in Eq. 5-2, the similarity between 𝐴 and 𝐵 is based on the ratio between their dot

product and the product of their L2-norms. The resulting value ranges from െ1 to 1.

When the value is െ1, then the two vectors are the opposite; when the value is 0, then

they are orthogonal; and, when the value is 1, the cosine angle is the least, and the vectors

are precisely the same.

The presented similarity measure-based classification technique determines the

frequency-based centroid of the data by averaging the frequencies of all unique values in

each feature. It uses the cosine similarity-based method to find the degree of similarity

71

between the class-specific value weights vector of a newly observed instance and the

determined centroid of the data. The computed degree of similarity is then used to

perform a supervised classification.

As an extension, the computed similarities are utilized along with the probabilities

yielded by a Naïve Bayes-based classification model constructed using a technique

discussed in CHAPTER 4 to form the inputs for the third classifier. The purpose of such

multi-model approach is to improve the overall accuracy of the classification.

5.2 Related Works

There have been many studies on distance measures in terms of their applicability

to the IDS. Since the behavioral-based IDS may use a classification or clustering

technique to build a model, the distance measures that are appliable to these are of

interest. A survey of distance and similarity measures used in the network anomaly

detection problem domain is conducted in [44]. An overview of the distance-based

classifications is given in [47].

Ahmed et al. [48] propose a dissimilarity metric based on Minimum Spanning

Tree (MST). This metric is used to isolate the abnormal clusters and individual data

points by using a two-step process where the MSTs are first built at the global level and

then at the local level. Out of the compared methods, the authors show that their

proposed method performs better in most cases.

A new metric distance measure for categorical values is proposed in [49] for

unsupervised learning. This metric considers the frequency probability of each attribute

in the entire dataset to compute the distance between two categorical data. Additionally,

72

to ensure that the distance metric treats each attribute differently, based on their

importance, a dynamic attribute weight is assigned to them.

Kruegel et al. [50] present an anomaly-based IDS that utilizes a multi-model

process to detect anomalous traffic to defend web servers and web-based applications.

Their method employs multiple models that analyze the queries used to pass the

parameters to invoke the server-side programs. Each model assigns a probability value

based on their observation. The detection relies on those values. The authors claim that

when the models outputted Bayesian technique-based probability values, they produced

favorable results.

This chapter discusses a procedure for conducting a similarity measure-based

supervised classification, which is different than what is found in the recent literature

because it deals with structured categorical data using a directed technique. Additionally,

it is ensembled with the probabilistic technique discussed in CHAPTER 4 to produce

relevant outputs for a tertiary classifier that is used to achieve a higher accuracy through a

multi-model classification approach.

5.3 Methodology

5.3.1 Data Selection and Integration

The categorical data available in the original datasets had been ignored in the

previous chapters, and only the numerical and discretized-numerical data were used. The

previously unused attributes containing the categorical values from both NSL-KDD and

CICIDS2017 datasets are shown in Table 5-1.

73

Table 5-1: The categorical attributes in the NSL-KDD and CICIDS2017 datasets
utilized for the similarity measure-based classification. These attributes were ignored in
the previous chapters.

Dataset Categorical Attributes

NSL-KDD protocol · service · flag · land · logged_in · root_shell · su_attempted ·

is_hot_login · is_guest_login

CICIDS2017 Destination Port · FIN Flag Count · SYN Flag Count · RST Flag Count ·

PSH Flag Count · ACK Flag Count · URG Flag Count · CWE Flag Count ·

ECE Flag Count

The utilized data for the proposed classification method is inclusive of the original

categorical attributes. The categorical attributes are integrated with the principal

components, which were centrally extracted in CHAPTER 3, to form a dataset containing

both categorical and numerical data. Figure 5-1 depicts the data integration process.

Figure 5-1: Data integration performed to combine the previously unused categorical
data and the numerical PCs extracted in CHAPTER 3.

The dataset formed through integration also includes the class labels. Such

integrations are undertaken for both NSL-KDD and CICIDS2017 datasets.

5.3.2 Data Transformation

 The numerical data are normalized and discretized to ensure their suitability for

the discussed supervised classification method.

74

5.3.2.1 Normalization

It is essential to normalize the numerical data present in the datasets because of

the reasons explained in section 2.2.1. The normalization is done using the z-score

normalization technique, as described in section 3.3.4.1. The distributed technique of

normalization can be used even in a centralized environment by assuming the presence of

only one node.

5.3.2.2 Discretization by Binning

It is necessary to discretize the numerical values into categorical values. The

equal-width binning method is used for this with the bin size of 1,000 for each dataset.

The discretization follows the process undertaken in CHAPTER 4. See section 4.3.1.2.

5.3.3 Features Analysis, Ranking, and Selection

All available attributes are analyzed to identify the ones that would be most useful

to build a classification model. The analysis is done by testing the independence between

two features. The idea is to identify the features that are independent of one another but

are dependent on the class label. The features are analyzed using the chi-square

statistic-based method, which has been described in section 4.3.2. The features are

ranked based on their determined importance, after analysis. The top 𝑛 features

identified as important are selected to build the classification models.

5.3.4 Similarity Measure-based Classification (SMC)

This subsection formally introduces SMC. First, the frequency of each unique

value in the features are counted. The determined value-specific frequencies for each

feature in the entire dataset are averaged to identify the data centroid. After determining

the centroid, the instances are separated by class labels. The selected features are

75

analyzed to find the frequency of the values on those features for the respective class.

Each unique value is assigned a class-specific frequential weight. For a newly-observed

instance, the similarity between the class-specific weights for its values and the data

centroid is calculated. Such measurement is repeated for each class. An observed

instance is then classified into the class whose weights vector for the values in the

instance shares the highest similarity with the centroid.

It is possible to perform SMC in both centralized and decentralized environments.

Suppose a dataset, 𝑋, has a finite number of categorical attributes and a target variable, 𝐶,

containing class labels. Let 𝐹 ൌ ሼ𝑓௜ ∶ 1 ൑ 𝑖 ൑ 𝑛ሽ be the set of selected 𝑛 features and

𝐶 ൌ ሼ𝑐௜ ∶ 1 ൑ 𝑖 ൑ 𝑝ሽ be the set of 𝑝 unique class labels. The data is separated based on

the class label, such that: 𝑋 ൌ ቄ𝑋௖భ, 𝑋௖మ, … , 𝑋௖೛ቅ. The paired list of all the selected 𝑛

features and the corresponding unique values they hold that are associated with a specific

class, 𝑐, can be represented as

 𝑋௖ ൌ ቄቀ𝑓௜௖, ቄ𝑣௝೑೔೎
: 1 ൑ 𝑗 ൑ 𝑘௙೔೎

ቅቁ ∶ 1 ൑ 𝑖 ൑ 𝑛ቅ, Eq. 5-3

where 𝑛 is the number of features and 𝑘௙೔೎
 is the number of unique values in feature, 𝑓௜೎,

for the class, 𝑐.

5.3.4.1 Frequency Analysis

The frequency analysis of the values in the entire dataset and in each specific

class are performed to determine the required frequencies. Let 𝒻 represent the frequency

in the following sections.

76

5.3.4.1.1 Value-Frequency in Dataset

The number of occurrences is counted for each unique value in a feature. Such

counting is done without any regard to the class labels. If a dataset has 𝑁 number of

rows, then for a unique value, 𝑣௙, in a feature, 𝑓, the frequency can be determined using

 𝒻௩೑ ൌ ෍ ቂ𝑣௙ ൌ 𝑣௜೑ቃ
𝑁

௜=1

, Eq. 5-4

where the frequency, 𝒻௩೑, is computed by comparing every unique value, 𝑣௙, against all

the other values, 𝑣௜೑, in a feature, 𝑓. The frequency is incremented by 1 whenever a

match is found, as denoted by the Iverson bracket in Eq. 5-4. The frequencies so

computed for every possible value in each feature are stored. The purpose of determining

these frequencies is to compute the frequency-based centroid of the training set.

5.3.4.1.2 Value-Frequency in Class

The portion of data associated with a class is analyzed to determine HacK YaOXH¶V

class-specific frequency in a feature. The frequency analysis is done by counting each

occurrence of a particular value in a feature for a class, 𝑐. This frequency counting

process can be expressed similar to Eq. 5-4 as

 𝒻௩೑೎
ൌ ෍ ቂ𝑣௙೎ ൌ 𝑣௜೑೎

ቃ
𝑁೎

௜=1

, Eq. 5-5

where the frequency, 𝒻𝑣𝑓𝑐
, is determined by comparing each unique value 𝑣௙೎ against

other values, 𝑣௜೑೎
, in a feature, 𝑓, for a class, 𝑐. For each match, the frequency is

incremented. Such frequency analysis involves all 𝑁௖ instances associated with a class.

The resulting frequency distribution for every possible value in all selected features for a

77

specific class is stored. The values are assigned a weight based on their class-specific

frequency.

5.3.4.2 Frequency-based Data Centroid

The centroid is identified by averaging all the frequencies for the values in a

feature. These frequencies are computed using the process explained in section 5.3.4.1.1.

For a dataset with 𝑛 number of selected features, the data centroid, 𝑚, based on the value

frequencies can be determined using

 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 ሺ𝑚ሻ ൌ ቐ
1

𝑘௙೔

෍ 𝒻௩ೕ೑೔

௞೑೔

௝=1

: 1 ൑ 𝑖 ൑ 𝑛ቑ, Eq. 5-6

where 𝑘௙೔ is the number of unique values in feature, 𝑓௜, and 𝒻௩ೕ೑೔
is the frequency for the

𝑗th value in feature, 𝑓௜. The centroid is formed by the averages of the frequencies for

each value in the selected features. The computed centroid is used to determine the

similarity between an observed new instance and the class.

5.3.4.3 Frequential-Weight Determination

The weight for each value based on its frequency is computed relative to the

number of rows in a dataset containing only class 𝑐 and the total number of rows in the

entire dataset. The expression to compute the weight, 𝑤𝑣𝑓𝑐
, for each value is given by

 𝑤௩೑೎
ൌ

𝒻௩೑೎
ൈ 𝑁௖

𝑁
 , Eq. 5-7

where 𝒻𝑣𝑓𝑐
 is the frequency of a value, 𝑣, in a feature, 𝑓, for a class, 𝑐, 𝑁௖ is the number

of instances representing the class 𝑐 and 𝑁 is the total number of instances in the dataset.

78

After the class-specific weight for each value is determined and stored, the weight

for any existing value can be extracted using the mapping function, W, which gives the

weight, w, associated with a value, v. 𝑊 can be defined as

 𝑊ሺ𝑥ሻ ൌ ൜ 𝑤, for 𝑥 ൌ 𝑣
 𝑊ሺ𝑣ሻ, otherwise Eq. 5-8

If an associative array with a value-weight pair for all the possible values is maintained,

then for a value 𝑣௙೎ associated with the class 𝑐 in a feature 𝑓, its weight 𝑤𝑣𝑓𝑐
 can be

determined by using the mapping function represented by

 𝑊 ∶ 𝑣௙೎ → 𝑤௩೑೎
. Eq. 5-9

5.3.4.4 Similarity Measurement

The degree of similarity is measured between the class-specific weights vector

representing a newly observed instance, 𝑒, and the centroid of the data. First, the values

for each feature from an observed instance are extracted. Then, by using the function, 𝑊,

the class-specific frequency-based weights for the values are determined, and these

weights are used to form a vector. For 𝑛 features, suppose 𝑤௘೎ ൌ 〈𝑤1೐೎
, 𝑤2೐೎

, … , 𝑤௡೐೎
〉 is

a vector defined by the weights for the values in an observed instance for a class, 𝑐, and

𝑚 ൌ 〈𝑚1, 𝑚2, … , 𝑚௡〉 is the vector defined by the values describing a centroid. There

can be situations where some values in a feature are present only for certain classes. In

those situations, the weight of 0 is assigned to such values for a class. The components

in 𝑤௘೎ and 𝑚 are in the same order, with each component in 𝑤௘೎ representing the

class-specific weight for a value in a feature and the corresponding component in 𝑚

representing the feature-specific average of the global value-frequencies. When there are

𝑛 features, the cosine similarity between 𝑤௘೎ and 𝑚 can be measured using Eq. 5-2 as

79

 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 ൫𝑤௘೎, 𝑚൯ ൌ
∑ ቀ𝑤௜೐೎

ൈ 𝑚௜ቁ௡
௜=1

ට∑ 𝑤௜೐೎
2௡

௜=1 ට∑ 𝑚௜
2௡

௜=1

 . Eq. 5-10

Since each component of 𝑤௘೎ has a value that is 0 or higher and 𝑚 has all positive

components, the resulting degree of similarity ranges between 0 and 1, with 0 implying

that the vectors are entirely dissimilar and 1 implying that they are the same.

5.3.4.5 Classification

The classification is done by comparing the degree of similarity between the

class-specific frequential-weights for an observed instance and the centroid of data. If

there are 𝑝 classes, then let 𝑤௘ ൌ ቄ𝑤௘೎೔
: 1 ൑ 𝑖 ൑ 𝑝ቅ be the set containing the compiled

sets of value-weights in an instance for each of the classes. Then, the computed

similarities between the elements in 𝑤௘ and the centroid, 𝑚, can be represented as

 𝑆௪೐ ൌ ቄ𝑆 ቀ𝑤௘೎೔
, 𝑚ቁ ∶ 1 ൑ 𝑖 ൑ 𝑝ቅ. Eq. 5-11

The highest degree of similarity is the most significant value in 𝑆௪೐ , such that

 𝑆௠௔௫ ൌ max ൣ𝑆௪೐ ൧. Eq. 5-12

An observed instance is then classified into the class that it shares the most

similarity with, as represented by the following mapping function, 𝒞.

 𝒞 ∶ 𝑆௠௔௫ → 𝑐 Eq. 5-13

5.3.5 Distributed SMC

The SMC has been performed centrally for experiments; however, it is possible to

perform SMC in a distributed environment. This subsection outlines how this can be

done. When performing SMC in a distributed setting, the frequency of each value must

be counted in a distributed manner. The number of instances associated with every class

80

also must be counted collaboratively. These processes closely follow the procedures

explained in sections 4.3.4.1, 4.3.4.2, and 4.3.4.3. Each node, first, segregates the data by

class and counts the number of instances it has for every class. Then, it computes the

YaOXH¶V local frequency in a feature for a class. The frequencies of the values in the entire

dataset can be calculated similarly but without any regard for the class. The nodes then

share the local frequencies with the central coordinator. The central coordinator collects

all the local frequencies and determines the global frequencies. The determined global

frequencies are shared with each node. Each node now knows the total number of rows

in a dataset, the number of rows associated with each class, the class-specific value

frequencies in every feature, and the total frequency of each value in a dataset.

With the known information, the nodes can independently compute the data

centroid and value-weights using the processes explained in sections 5.3.4.2 and 5.3.4.3,

respectively. A new instance observed by any node is classified using the processes

described in sections 5.3.4.4 and 5.3.4.5.

5.3.6 Multi-Model Binary Classification

SMC, which depends on similarity measurement, can be used alongside other

classifiers to perform multi-model classifications. Naïve Bayes, as discussed in

CHAPTER 4, depends on Ba\HV¶ WKHorem. Since both of these techniques heavily rely

on frequency counts, it is logical to combine the information outputted by them to form a

multi-model classifier to improve the overall accuracy of classification. The

classification to be conducted is binary, so let 𝑐1 and 𝑐2 be the two class labels. Figure

5-2 shows a high-level overview of the multi-model classification process.

81

Figure 5-2: A high-level illustration of a multi-model classifier for binary
classification. SMC, Naïve Bayes, and a tertiary classification model collaborate to
make decisions.

The multi-model classification makes use of the same training set used for the

SMC and Naïve Bayes classifiers. After constructing SMC and Naïve Bayes-based

models, each instance, 𝑒, in the training set is passed through those models to get the

similarities 𝑆 ቀ𝑤௘೎భ
, 𝑚ቁ and 𝑆 ቀ𝑤௘೎మ

, 𝑚ቁ and posterior probabilities 𝑃ሺ𝑒 | 𝑐1ሻ and

𝑃ሺ𝑒 | 𝑐2ሻ, respectively. These similarities and probabilities are used to compute two new

values ² similarity ratio and probability ratio. These ratios become new features. The

similarity ratio for an arbitrary instance is given by

 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑅𝑎𝑡𝑖𝑜 ൫Φ𝑆೐൯ ൌ 1 െ
𝑆 ቀ𝑤௘೎భ

, 𝑚ቁ

𝑆 ቀ𝑤௘೎మ
, 𝑚ቁ

 , Eq. 5-14

82

where a similarity computed for one class is divided by another similarity to aggregate

those into a single value indicating the ratio between the two similarities.

 Similarly, the probability ratio for the same instance is given by

 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑅𝑎𝑡𝑖𝑜 ൫Φ𝑃೐ ൯ ൌ 1 െ
log 𝑃ሺ𝑒 | 𝑐1ሻ
log 𝑃ሺ𝑒 | 𝑐2ሻ , Eq. 5-15

where the log-probability of an instance belonging to one class is divided by the

log-probability of an instance belonging to another class. The log-function is used to

represent the values in a logarithmic scale, rather than in the usual [0, 1] probability scale.

With the computed similarity and probability ratios, the new training dataset is

formed that includes the similarity ratio, probability ratio, and class label for each of the

instances from the original training set. This new training set is used to construct a

classifier of choice. After the classifier is constructed using a newly formed training set,

the model is validated.

For each test instance, the similarities and probabilities must be computed before

it can be used. The computed similarities and probabilities are utilized to get the

similarity ratio and probability ratio using Eq. 5-14 and Eq. 5-15. These ratios are

passed as inputs to the constructed tertiary classifier to get the desired output.

Depending on the nature of implementation, two variants of the multi-model

approach have been proposed. Both variants use a similar technique. The difference is in

whether the tertiary classifier is only partially involved or fully involved.

5.3.6.1 Partially-Dependent Multi-Model (PDMM)

SMC and Naïve Bayes are mutually used to perform an initial classification in

this approach. If SMC and Naïve Bayes-based models concur and classify an instance

into the same class, then that is regarded as the final decision; otherwise, the respective

83

similarities and probabilities they compute are aggregated to form similarity and

probability ratios separately. These ratios become inputs for the tertiary classifier, which

then performs the final classification.

5.3.6.2 Fully-Dependent Multi-Model (FDMM)

SMC and Naïve Bayes do not make any classification in this approach. Instead,

they output the determined similarities and probabilities, to enable the computations of

the similarity and probability ratios. These ratios are supplied to the third model as inputs

for classification. The tertiary classifier does all the classifications; hence, the

classification model entirely depends on it for the final decision-making. If the used third

classifier has a high complexity, then this process can become expensive.

5.4 Experimental Procedure & Observations

5.4.1 Preparation

The unnecessary and redundant columns are eliminated from the datasets. The

rows containing invalid and incorrect data are either corrected or removed. The centrally

extracted PCs in CHAPTER 3 are horizontally joined with the corresponding rows of the

previously unused categorical columns to form new integrated datasets. The integrated

datasets are then split in a 4:1 ratio to form the training and testing sets. The feature

selection is undertaken on training sets to identify the relevant features for classification.

5.4.2 Features Selection

The datasets containing categorical and discretized numerical data are analyzed

using the chi-square statistic technique to identify the best features to build a classifier.

The SMC-based classifier has been constructed and tested using a different number of top

84

features. Figure 5-3 and Figure 5-4 show the relevance of each analyzed feature

determined by the chi-square statistic-based test of independence.

Figure 5-3: The relevancy of features in the NSL-KDD-based integrated dataset.
service is identified as the most relevant feature, followed by PC 1 and PC 2.

Figure 5-4: The relevancy of features in the CICIDS2017-based integrated dataset.
None of the original categorical features were among the 16 most relevant features.

85

In order to remain consistent with the procedure followed in CHAPTER 4, the top

15 features are used for the Naïve Bayes-based classifier.

5.4.3 SMC-based Model Construction

The SMC-based model construction involves a four-step process ² counting the

number of rows representing each class, determining the frequency of each unique value

in a feature for a class, identifying the centroid of the data by averaging the

feature-specific frequencies of the values, and calculating and assigning class-specific

frequency-based weights to the values. These steps are undertaken in the training dataset.

Once the data centroid and class-specific frequential weights for each unique value are

known, a new observed instance is classified by measuring the degrees of similarity

between the class-specific vectors containing the weights of its values and the centroid.

5.4.3.1 Class Frequencies

In the training sets, the class frequencies are determined by counting the number

of rows representing a specific class. Table 5-2 shows the observed class frequencies in

each dataset.

Table 5-2: The number of rows representing each class in the training sets.

Dataset Class Frequency

NSL-KDD Attack 57,227

Normal 61,587

CICIDS2017 Attack 400,153

Normal 399,847

86

5.4.3.2 Frequential Value-Weight Determination

In the training set of the NSL-KDD dataset, the number of total rows representing

Attack is 57227. The feature service in this part has 65 distinct values. The value

private has the highest frequency, 19894; hence, its weight can be computed using

Eq. 5-7 as 19894 ൈ 57227
118814

ൌ 9581.98. The value eco_i has the second-highest frequency,

3466, so its weight is 3466 ൈ 57227
118814

ൌ 1669.41. IQ WKH GaWaVHW¶V portion representing the

Normal class, the total number of rows is 61587. The feature service has 28 distinct

values, with http being the most frequent one with the frequency of 35726, so its

weight is 35726 ൈ 61587
118814

ൌ 18518.50. The value domain_u is the second most frequent

one with the frequency of 7869; therefore, its weight is 7869 ൈ 61587
118814

ൌ 4078.88. The

weights for all the unique values in features associated with each class labels are

calculated similarly.

The computed weights are assigned to their respective values, and the

value-weight pairs are stored in a dictionary form so they can be quickly retrieved

whenever needed. The value-weight pairs are available for each unique class. The three

largest computed value-weights in the NSL-KDD dataset for each feature in the Attack

and Normal classes are tabulated in Table 5-3 and Table 5-4, respectively.

87

Table 5-3: The computed three most significant weights for the values in the top 16
features for the Attack class in the NSL-KDD dataset.

service PC 1 PC 2 flag

Value Weight Value Weight Value Weight Value Weight

private 9581.98 bin_891 269.73 bin_83 888.17 S0 14080.61

eco_i 1669.41 bin_895 250.94 bin_88 866.01 SF 6484.96

ecr_i 1370.30 bin_896 249.98 bin_82 847.71 REJ 4759.69

PC 10 PC 19 PC 7 logged_in

Value Weight Value Weight Value Weight Value Weight

bin_862 9273.25 bin_862 9273.25 bin_653 1159.34 0 25779.94

bin_863 5048.68 bin_863 5048.68 bin_652 1097.68 1 1783.56

bin_869 2426.08 bin_654 1087.57 bin_642 1701.68 - -

PC 17 PC 12 PC 5 PC 16

Value Weight Value Weight Value Weight Value Weight

bin_561 4561.24 bin_760 10959.51 bin_568 300.55 bin_689 17823.05

bin_560 4435.05 bin_759 8763.66 bin_567 283.69 bin_688 7415.03

bin_562 3696.20 bin_758 1512.39 bin_538 278.39 bin_690 1471.93

PC 18 PC 6 PC 4 PC 14

Value Weight Value Weight Value Weight Value Weight

bin_449 695.51 bin_419 3989.52 bin_175 1199.31 bin_407 12827.36

bin_451 650.71 bin_417 3724.61 bin_181 1196.91 bin_408 8491.52

bin_448 639.63 bin_418 2934.22 bin_180 1157.89 bin_405 2533.01

88

Table 5-4: The computed three most significant weights for the values in the top 16
features for the Normal class in the NSL-KDD dataset.

service PC 1 PC 2 flag

Value Weight Value Weight Value Weight Value Weight

http 18518.50 bin_265 1089.05 bin_157 3360.97 SF 30258.04

domain_u 4078.88 bin_264 899.85 bin_151 2554.42 REJ 1108.23

smtp 3169.70 bin_266 818.47 bin_152 1925.66 S1 160.69

PC 10 PC 19 PC 7 logged_in

Value Weight Value Weight Value Weight Value Weight

bin_859 15081.85 bin_859 15081.85 bin_584 1395.91 1 22919.28

bin_860 6052.75 bin_860 6052.75 bin_585 908.15 0 9004.22

bin_861 1839.10 bin_589 820.54 bin_642 1405.24 - -

PC 17 PC 12 PC 5 PC 16

Value Weight Value Weight Value Weight Value Weight

bin_563 2065.62 bin_758 18769.38 bin_601 1037.21 bin_688 24091.77

bin_564 1811.63 bin_759 7174.45 bin_596 944.95 bin_689 6414.04

bin_555 850.09 bin_760 2945.77 bin_599 931.47 bin_690 477.40

PC 18 PC 6 PC 4 PC 14

Value Weight Value Weight Value Weight Value Weight

bin_433 1309.35 bin_419 4219.35 bin_208 1230.56 bin_408 22757.55

bin_434 1040.32 bin_423 3568.31 bin_207 950.65 bin_407 6661.29

bin_435 885.34 bin_420 3355.27 bin_209 940.28 bin_406 955.32

The weights are computed and recorded similarly for the CICIDS2017 dataset.

The three largest computed weights for the values in the Attack and Normal classes of

this dataset are tabulated in Table 5-5 and Table 5-6, respectively.

89

Table 5-5: The computed three most significant weights for the values in the top 16
features for the Attack class in the CICIDS2017 dataset.

PC 6 PC 7 PC 9 PC 1

Value Weight Value Weight Value Weight Value Weight

bin_863 25765.35 bin_527 18995.26 bin_504 29382.73 bin_92 25608.79

bin_864 24441.85 bin_526 18128.93 bin_508 22875.75 bin_93 24849.50

bin_866 16632.86 bin_527 18995.26 bin_505 12036.60 bin_95 10264.42

PC 4 PC 3 PC 17 PC 10

Value Weight Value Weight Value Weight Value Weight

bin_545 73013.42 bin_303 26866.27 bin_492 42002.06 bin_465 28295.32

bin_544 65164.92 bin_300 26189.01 bin_488 25477.74 bin_468 24518.37

bin_549 17135.05 bin_306 9213.02 bin_491 22241.50 bin_466 20310.77

PC 18 PC 13 PC 14 PC 16

Value Weight Value Weight Value Weight Value Weight

bin_498 46450.76 bin_709 57264.40 bin_524 37236.74 bin_667 25357.20

bin_494 31116.90 bin_711 40850.12 bin_525 21402.18 bin_673 25335.19

bin_501 28998.09 bin_712 25734.34 bin_523 18926.24 bin_676 20836.97

PC 5 PC 20 PC 15 PC 12

Value Weight Value Weight Value Weight Value Weight

bin_866 101664.37 bin_280 27977.70 bin_507 31084.39 bin_104 54685.41

bin_869 19749.05 bin_279 22325.04 bin_511 28460.38 bin_105 52286.49

bin_865 17738.28 bin_283 20417.81 bin_508 24663.43 bin_106 35927.24

90

Table 5-6: The computed three most significant weights for the values in the top 16
features for the Normal class in the CICIDS2017 dataset.

PC 6 PC 7 PC 9 PC 1

Value Weight Value Weight Value Weight Value Weight

bin_865 12092.87 bin_508 7106.78 bin_496 16007.37 bin_91 41680.05

bin_853 11854.96 bin_509 6648.96 bin_497 15471.08 bin_92 34692.72

bin_866 11808.98 bin_529 6518.01 bin_504 14732.36 bin_93 13487.84

PC 4 PC 3 PC 17 PC 10

Value Weight Value Weight Value Weight Value Weight

bin_544 96214.68 bin_305 30700.75 bin_491 70188.64 bin_456 12033.40

bin_543 34428.33 bin_304 27822.35 bin_492 35276.00 bin_467 11525.09

bin_545 18996.73 bin_306 27523.47 bin_490 18103.57 bin_454 11514.09

PC 18 PC 13 PC 14 PC 16

Value Weight Value Weight Value Weight Value Weight

bin_499 46541.69 bin_711 49509.56 bin_526 34423.33 bin_675 20196.27

bin_498 32680.49 bin_712 43320.42 bin_527 26638.81 bin_676 19745.94

bin_500 24650.57 bin_713 22907.73 bin_523 21278.86 bin_673 17663.74

PC 5 PC 20 PC 15 PC 12

Value Weight Value Weight Value Weight Value Weight

bin_869 40749.91 bin_279 16419.22 bin_506 27011.16 bin_105 78080.62

bin_866 37413.68 bin_282 16171.31 bin_505 24821.50 bin_104 60444.87

bin_870 27307.05 bin_280 14546.43 bin_504 24700.05 bin_103 13448.85

5.4.3.3 Data Centroids

The data centroid based on the value-frequencies in its features is determined for

each dataset using Eq. 5-6. The determined centroid is stored for the future degree of

91

similarity calculations. The centroids observed for each dataset are plotted in Figure 5-5.

The averages of the frequencies computed for the values in flag and logged_in

features of the NSL-KDD GaWaVHW¶V WUaLQLQJ VHW transcend the boundaries of the plotted

radar; therefore, they are not visible.

Figure 5-5: The average value-frequency-based centroids in the NSL-KDD and
CICIDS2017 datasets. Each point represents the average value-frequency in the
respective feature.

5.4.4 Similarity Measurements

The similarity of a newly observed instance is measured from each of the classes.

For the illustrated similarity measurement, only the top four features are used. Table 5-7

shows the values extracted from the top four features of a sample instance that is

randomly selected from the test set of the NSL-KDD dataset.

Table 5-7: A sample instance from the testing set of the NSL-KDD dataset with the
observed values for features service, PC 1, PC 2, and flag.

service PC 1 PC 2 flag

http bin_203 bin_150 SF

92

The observed values in the selected four features are used to extract the weights

for those values representing each of the classes. For the Attack class, the weights for the

values {service: ³KWWS´, PC 1: ³bLQ_203´, PC 2: ³bLQ_150´, flag: ³SF´` are

represented by the vector, 𝑤𝐴௧௧௔௖௞ ൌ 〈1338.51, 7.71, 2.41, 6484.96〉. Similarly, for

the Normal class, the weights for the same values are represented by the vector,

𝑤𝑁௢௥௠௔௟ ൌ 〈18518.50, 256.06, 1055.87, 30258.05〉.

The centroid based on the value-frequencies in the NSL-KDD dataset is

represented by 𝑚 ൌ 〈1697.36, 129.85, 133.20, 9901.25〉. Based on these, the

similarities 𝑆ሺ𝑤𝐴௧௧௔௖௞, 𝑚ሻ and 𝑆ሺ𝑤𝑁௢௥௠௔௟, 𝑚ሻ can be computed using Eq. 5-10. The

following are the computed similarities:

𝑆ሺ𝑤𝐴௧௧௔௖௞, 𝑚ሻ ൌ 0.9992 and 𝑆ሺ𝑤𝑁௢௥௠௔௟, 𝑚ሻ ൌ 0.9288.

The similarity measurements using other instances and datasets can be done by following

the same process.

5.4.5 SMC-based Classification

Since 𝑆ሺ𝑤𝐴௧௧௔௖௞ , 𝑚ሻ ൐ 𝑆ሺ𝑤𝑁௢௥௠௔௟, 𝑚ሻ in an example above, the instance being

investigated is classified into the Attack class. The classification using SMC-based

classifier distinguishes the point formed by the similarity measures based on its closeness

to an axis. The points closer to the y-axis, as seen in Figure 5-6 for each dataset, are

classified as Normal; otherwise, they are classified as Attack.

93

Figure 5-6: The plots showing the classifications in the a) NSL-KDD and b)
CICIDS2017 datasets when using 12 features. The points closer to the x-axis are
classified as Attack, and the ones closer to the y-axis are classified as Normal.

The SMC-based classifiers are constructed using a varying number of features to

identify the number that gives the best result. The identified number of features is used

for multi-model classification.

94

5.4.6 Multi-Model Classification

The multi-model classification depends on the values computed by the SMC and

Naïve Bayes-based models; therefore, those models are first constructed. The similarity

and probability ratios obtained from SMC and Naïve Bayes, respectively, are used as

features to construct the third classifier. Both PDMM and FDMM variants of the

multi-model approaches have been implemented and tested. k-NN is chosen to form the

tertiary classifier due to its known ability to perform well with a limited number of

features. It also performed the best when used in CHAPTER 3 to examine the quality of

the extracted features. It has now been reused to check the applicability of the PDMM

and FDMM methods. For k-NN, 𝑘 ൌ 3 is used.

In order to build and test both single-model and multi-model classifiers, the

combinations of the classifiers listed in Table 5-8 are constructed and validated.

Table 5-8: The types of classifiers constructed to evaluate the performances of the
single-model and multi-model classifiers.

Type Classifier Features Used

Single-Model SMC 8, 10, 12, 14, and 16 most relevant

Naïve Bayes 15 most relevant

k-NN Two most relevant

Multi-Model FDMM Two (similarity ratio and probability ratio)

PDMM Two (similarity ratio and probability ratio)

5.5 Results and Discussion

5.5.1 Classification Performances

The observed performances of the classification models constructed using both

single-model and multi-model approaches are presented and evaluated.

95

5.5.1.1 Single-Model Performances

The SMC-based classifiers have been constructed and tested using a different

number of features to determine the ideal number. The classifiers constructed using 16

and 10 features gave the best accuracy results in the NSL-KDD and CICIDS2017

datasets, respectively. The highest accuracy observed in the NSL-KDD dataset was

81.13%, and in the CICIDS2017 dataset, it was 75.60%. Table 5-9 demonstrates the

performance achieved by the SMC-based classifiers.

Table 5-9: The performance comparisons of the SMC-based classifiers constructed
using a varying number of features.

Dataset Features Recall Precision Specificity Accuracy

NSL-KDD 8 89.20 73.93 71.05 79.75

10 88.92 73.89 71.08 79.63

12 91.80 74.50 71.08 81.01

14 91.95 74.52 71.07 81.08

16 92.06 74.55 71.07 81.13

CICIDS2017 8 75.43 73.24 72.52 73.97

10 78.89 73.97 72.32 75.60

12 74.49 72.34 71.61 73.05

14 63.23 73.65 77.45 70.35

16 66.48 72.66 75.06 70.77

The Naïve Bayes and k-NN classifiers demonstrated superior performance over

the SMC-based classifiers. In the NSL-KDD dataset, k-NN performed the best with the

accuracy of 94.51%, and in the CICIDS2017 dataset, Naïve Bayes exceeded the

performance of k-NN. It must be noted that Naïve Bayes used 15 features, while k-NN

used only two. Table 5-10 records the performances of Naïve Bayes and k-NN.

96

Table 5-10: The performance comparisons of the single-model Naïve Bayes and k-NN
classifiers.

Dataset Classifier Recall Precision Specificity Accuracy

NSL-KDD Naïve Bayes 90.07 96.10 96.63 93.49

k-NN 93.46 95.00 95.47 94.51

CICIDS2017 Naïve Bayes 93.77 86.75 85.72 89.74

k-NN 93.60 85.94 84.73 89.16

5.5.1.2 Multi-Model Performances

The FDMM-based classifiers that entirely relied on k-NN for the final

classification decision performed the best by achieving the accuracy of 96.89% and

96.77%, for the NSL-KDD and CICIDS2017 datasets, respectively. In contrast, the

PDMM, which involved k-NN only when SMC and Naïve Bayes failed to reach a mutual

agreement, achieved an accuracy of 94.77% and 92.39% for each dataset, respectively.

These accuracies were still higher than those achieved by the single-model classifiers.

Even though the FDMM performed better in terms of accuracy, the classifiers based on it

took must longer to classify all the test instances. Table 5-11 displays the performances

observed when using the multi-model approach for classification.

Table 5-11: The observed performances when using multi-model approaches based on
SMC, Naïve Bayes, and k-NN.

Dataset Classifier Recall Precision Specificity Accuracy

NSL-KDD PDMM 93.28 95.70 96.15 94.77

FDMM 96.87 96.63 96.90 96.89

CICIDS2017 PDMM 96.29 89.31 88.51 92.39

FDMM 97.56 96.03 95.98 96.77

97

5.5.1.3 FPR Analysis

The observations reported in Table 5-12 show that number of false-positives can

be decreased by using a multi-model approach. The FDMM approach achieved the best

FPRs, which were 3.10% and 4.02% for the NSL-KDD and CICIDS2017 datasets,

respectively. The FPR decreased drastically in the CICIDS2017 dataset.

Table 5-12: The best FPR achieved by each classifier in all tested datasets.

Dataset Classifier Test Instances False Positives FPR

NSL-KDD SMC 29,703 4,473 28.92

Naive Bayes 29,703 521 3.37

k-NN 29,703 700 4.53

PDMM 29,703 596 3.85

FDMM 29,703 480 3.10

CICIDS2017 SMC 200,000 22,581 22.55

Naïve Bayes 200,000 14,297 14.28

k-NN 200,000 15,288 15.27

PDMM 200,000 11,511 11.49

FDMM 200,000 4,031 4.02

5.6 Conclusions

In this chapter, we introduced the SMC technique, which uses the frequential

weight of the values associated with a specific class. Just like the Naïve Bayes, this

method works by merely utilizing the values derived from the counted frequencies, so it

was quick. We tested and validated SMC by constructing the classifiers using the

NSL-KDD and CICIDS2017 datasets. The best accuracies observed using this technique

on these datasets were 81.13% and 75.60%, respectively. These performances were

98

subpar in comparison to the performances demonstrated by the single-model Naïve Bayes

and k-NN classifiers. SMC, despite being the weakest performer, contributed to the

multi-model classification approach to improve the overall classification accuracy.

We introduced two variants of the multi-model classification technique for binary

classification. In PDMM, the tertiary classifier participated in the classification process

only when SMC and Naïve Bayes failed to make a mutual decision. In the other variant,

FDMM, all the classifications were done by a tertiary classifier by using the information

produced by SMC and Naïve Bayes. It was clear through experiments that the

multi-model approach can improve the accuracy of the classification. The FDMM-based

approach gave an accuracy of 96.89% in the NSL-KDD dataset and 96.77% in the

CICIDS2017 dataset, in contrast to the best accuracies of 94.51% and 89.74% given by

the single-model approaches for those datasets, respectively. Even though FDMM gave

the best result, it took a long time to process all the instances for classification; on the

other hand, the PDMM-based model took a much shorter time because only a limited

number of instances had to pass through the third classifier.

Furthermore, we also analyzed the FPR-based performances. When the FDMM

approach was used, the number of false positives reduced drastically to 3.10% in the

NSL-KDD and 4.02% in the CICIDS2017 datasets. Since the IDSs continue to suffer

from high FPRs in general, such reduction in FPR when using a multi-model approach is

a promising achievement. Based on these observations, we conclude that the

classification accuracy can be improved while diminishing the FPR by using the

multi-model classification approach.

99

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

The primary objectives of this research hovered around identifying the potential

improvements in IDSs. The traditional IDSs suffer from high-dimensionality data, single

point of failure, slow operations, inability to adapt to new attacks, and low accuracy. The

ideas we expressed throughout this dissertation attempted to tackle these issues. Initially,

we discussed distributed feature extraction and classifier construction techniques.

Additionally, we proposed a new similarity measure-based supervised classification

method for categorical data and introduced a multi-model approach for binary

classification.

6.1.1 Distributed Feature Extraction

In CHAPTER 3, we conducted PCA-based distributed feature extraction using the

initial set of descriptors. The dimensionality of data was reduced significantly after

feature extraction, which consequently constrained the feature space. Since multiple

nodes simultaneously collaborated with the assistance of the central coordinator to extract

the features, the total time taken was also drastically shortened. The features so extracted

were used to construct various classifiers to verify their effectiveness. The observations

made implied that the classifiers constructed using the features extracted in a distributed

100

manner performed well. Their accuracy-based performance was competitive with that of

the classifiers constructed with the original and centrally extracted features. Given this

PHWKRG¶V advantages like shortened extraction time, improved privacy, and limited data

exchange requirements, it is appropriate for IDS construction. The discussed feature

extraction technique can be useful in the distributed networks supporting high-volume

data exchanges.

6.1.2 Distributed Classifier Construction

In CHAPTER 4, we utilized the features extracted in CHAPTER 3 to construct a

classifier in a distributed manner using the Naïve Bayes-based technique. Its fast speed

and high scalability have established it as an ideal choice for systems like IDSs that

require quick model training and attack detection. Since Naive Bayes works by

computing the prior probabilities, which depend on frequency counting, we presented the

process to perform frequency counting in a distributed manner with the help of the central

coordinator. The global frequencies of all the observed values and classes in the training

set were shared with each participating node by the central coordinator. Each node,

which uses the global frequencies to compute the prior probabilities, can perform

classifications. Since the training in the Naïve Bayes only involves frequency counting

and determining prior probabilities, the time taken to undertake these was significantly

shorter when these tasks were distributed across multiple nodes. We observed that the

classifiers constructed in a distributed manner give a similar level of accuracies as the

ones constructed centrally. Since each node could classify the new instances

independently, a distributed method also improved the robustness.

101

6.1.3 SMC and Multi-Model Approach for Binary Classification

In CHAPTER 5, we presented a similarity measure-based learning method and a

multi-model approach for classification. Like with Naïve Bayes, the training of SMC

relied on the frequency counts. The counted frequencies were used to determine the

class-specific weights for each of the values. Those weights were used to compute the

similarity with the data centroid. An instance was classified into the class whose weights

vector had the highest similarity with the centroid. The performance of this classification

technique was not impressive; however, the similarities computed by it were used

alongside the probabilities computed by the Naïve Bayes classifier to form another

classifier. In such an approach, the SMC¶V RXWSXWs contributed to improving accuracy.

In a discussed multi-model approach, we used the similarity ratio and probability

ratio determined using the similarities and probabilities computed by SMC and Naïve

Bayes as features to train and validate the k-NN-based classifiers. The PDMM variant of

the multi-model approach involved k-NN only when SMC and Naïve Bayes failed to

classify an instance into the same class. In contrast, FDMM always used k-NN for the

final classification. The multi-model approaches, as expected, improved the overall

accuracy of the classification. The FDMM variant of the multi-model approach

significantly decreased the FPRs. Such improvement in performance showed that it is

possible to use the outputs of multiple lightweight classification models and use those

outputs as an input for another classifier to perform a more accurate classification.

6.1.4 Final Discussion

In this dissertation, we successfully implemented a distributed feature extraction

technique for dimensionality reduction in a simulated distributed environment where each

102

node only had access to a subset of data. By constructing and validating the classifiers

with the extracted features, we demonstrated that these features work as effectively as the

features extracted centrally. We also constructed and implemented a distributed classifier

based on a probabilistic model, which utilized the extracted features. This distributed

classification model performed comparatively against the centralized model, while

significantly diminishing the model-training and attack-detection durations. Similarly,

we also proposed a similarity measure-based classification technique and used it to build

an IDS classifier. Finally, we undertook a multi-model classification approach that relied

on the information outputted by the probabilistic and similarity measure-based classifiers

to construct a tertiary classifier. This multi-model approach was successful in improving

the accuracy of classification. The promising results we observed throughout the

dissertation when using the presented techniques and concepts make them noteworthy for

future endeavors.

6.2 Future Work

There are countless possible directions to explore. The concepts discussed are

presumed to be applicable in a real-world scenario to construct an IDS classifier. Since

all the experiments were conducted in a simulated environment on a single host machine,

it would be sensible to undertake these in an actual distributed network and observe the

effects. Since only two pre-existing datasets were used to construct the prediction models

for experiments, experimenting with more datasets could give a better understanding of

how the presented techniques would adapt to and perform on other datasets. The

classifiers could also be constructed by using customized data pertaining to a specific

103

type of network; then, it could be tested live by deploying the built classifier into an IDS

for that network.

There are also numerous avenues for improvement within the dissertation. For

instance, in all distributed procedures, the nodes were assumed to be homogenous. In

circumstances when all the nodes do not have equal resources, type of data, or the size of

datasets, then the applicability and the observations can differ. Similarly, for the SMC,

the cosine similarity measure was used. A different similarity measure could give a

different outcome. It would be within the purview to try other similarity measures. In

the proposed multi-model approach, the third classifier has been constructed using k-NN.

It, however, could also be constructed using different algorithms. Furthermore, in the

PDMM variant of the multi-model approach, additional adjustments could be made to

decide which instances get sent to the tertiary classifier, instead of solely basing it on

whether SMC and Naïve Bayes made a mutual classification.

We expect the relevant future works to consider this work and build upon it to

enhance the state of IDSs.

104

BIBLIOGRAPHY

[1] K. Kent, S. Chevalier, T. Grance and H. Dang, "Guide to Integrating Forensic
Techniques into Incident Response," National Institute of Standards &
Technology, 2006.

[2] J. Mikhail, J. Fossaceca and R. Iammartino, "A Semi-Boosted Nested Model With
Sensitivity-Based Weighted Binarization for Multi-Domain Network
Intrusion Detection," ACM Transactions on Intelligent Systems and
Technology, vol. 10, no. 3, pp. 1-27, April 2019.

[3] B. I. Santoso, M. R. S. Idrus and I. P. Gunawan, "Designing Network Intrusion and
Detection System using Signature-Based Method for Protecting
OpenStack Private Cloud," in 2016 6th International Annual Engineering
Seminar (InAES), Jakarta, 2016.

[4] M. A. A. S. Monther Aldwairi, "Characterizing Realistic Signature-based Intrusion
Detection Benchmarks," in ICIT 2018: Proceedings of the 6th
International Conference on Information Technology: IoT and Smart
City, Hong Kong, 2018.

[5] T. D. Leyla Bilge, "Investigating Zero-Day Attacks," ;login:, vol. 38, no. 4, pp. 6-
12, August 2013.

[6] S. R. Snapp, S. E. Smaha, D. M. Teal and T. Grance, "The DIDS (Distributed
Intrusion Detection System) Prototype," in Summer '92 USENIX, San
Antonio, TX, 1992.

[7] C. Clark, W. Lee, D. Schimmel, D. Contis, M. Koné and A. Thomas, "A hardware
platform for network intrusion detection and prevention," in Network
Processor Design: Issues and Practices, vol. 3, Morgan Kaufmann,
2005, pp. 99-118.

[8] A. Khraisat, I. Gondal, P. Vamplew and J. Kamruzzaman, "Survey of intrusion
detection systems: techniques, datasets and challenges," Cybersecurity,
vol. 2, no. 20, July 2019.

105

[9] C. Fung, "Collaborative intrusion detection networks and insider attacks," Journal of
Wireless Mobile Networks, Ubiquitous Computing, and Dependable
Applications, vol. 2, no. 1, pp. 63-74, 2012.

[10] N. Lakshminarayan, "Know Your Data Before You Undertake Research," The
Journal of Indian Prosthodontic Society, vol. 13, no. 3, pp. 384-386, July
2013.

[11] S.-A. N. Alexandropoulo, S. B. Kotsiantis and M. N. Vrahatis, "Data preprocessing
in predictive data mining," The Knowledge Engineering Review, vol. 34,
pp. 1-33, 2019.

[12] R. K. S. James Dougherty, "Supervised and Unsupervised Discretization of
Continuous Features," in Machine Learning: Proceedings of the Twelfth
International Conference, Tahoe City, CA, 1995.

[13] A. R. Webb and K. D. Copsey, "Feature Selection and Extraction," in Statistical
Pattern Recognition, Third Edition, John Wiley & Sons, Ltd., 2011, pp.
305-354.

[14] R. C. Arthur Munson, "On Feature Selection, Bias-Variance, and Bagging," in
ECMLPKDD'09: Proceedings of the 2009th European Conference on
Machine Learning and Knowledge Discovery in Databases - Volume
Part II, Berlin, Heidelberg, 2009.

[15] R. Raphael, V. P. and B. Omman, "X-ANOVA ranked features for Android malware
analysis," in 2014 Annual IEEE India Conference (INDICON), Pune,
2014.

[16] S. Lei, "A Feature Selection Method Based on Information Gain and Genetic
Algorithm," in 2012 International Conference on Computer Science and
Electronics Engineering, Hangzhou, 2012.

[17] I. T. Jolliffe and J. Cadima, "Principal component analysis: a review and recent
developments," Philosophical Transactions of the Royal Society A, vol.
374, no. 2065, April 2016.

[18] N. M. Varma and A. Choudhary, "Evaluation Of Distance Measures In Content
Based Image Retrieval," in 2019 3rd International conference on
Electronics, Communication and Aerospace Technology (ICECA),
Coimbatore, 2019.

[19] O. Kilinc and I. Uysal, "Source-Aware Partitioning for Robust Cross-Validation," in
2015 IEEE 14th International Conference on Machine Learning and
Applications (ICMLA), Miami, FL, 2015.

106

[20] "NSL-KDD dataset," [Online]. Available: www.unb.ca/cic/datasets/nsl.html.
[Accessed 01 March 2019].

[21] "Intrusion Detection Evaluation Dataset (CICIDS2017)," Canadian Institute of
Cybersecurity, [Online]. Available: www.unb.ca/cic/datasets/ids-
2017.html. [Accessed 03 August 2019].

[22] L. Dhanabal and S. Shantharajah, "A Study on NSL-KDD Dataset for Intrusion
Detection System Based on Classification Algorithms," International
Journal of Advanced Research in Computer and Communication
Engineering, vol. 4, no. 6, pp. 446-452, June 2015.

[23] R. Panigrahi and S. Borah, "A detailed analysis of CICIDS2017 dataset for
designing Intrusion Detection Systems," International Journal of
Engineering & Technology, vol. 7, no. 3.24, pp. 479-482, 2018.

[24] M. A. Ambusaidi, X. He, P. Nanda and Z. Tan, "Building an Intrusion Detection
System Using a Filter-Based Feature Selection Algorithm," IEEE
Transactions on Computers, vol. 65, no. 10, pp. 2986-2998, 2016.

[25] M. O. Ulfarsson and V. Solo, "Selecting the Number of Principal Components with
SURE," IEEE Signal Processing Letters, vol. 22, no. 2, pp. 239-243,
February 2015.

[26] Z. Zhang, F. Li, M. Zhao, L. Zhang and S. Yan, "Joint Low-Rank and Sparse
Principal Feature Coding for Enhanced Robust Representation and Visual
Classification," IEEE Transactions on Image Processing, vol. 25, no. 6,
pp. 2429-2443, June 2016.

[27] R. G. Staudte and S. J. Sheather, "Linear Algebra Results," in Robust Estimation and
Testing, John Wiley & Sons, Inc., 1990, pp. 279-286.

[28] J. Lever, M. Krzywinski and N. Altman, "Principal component analysis," Nature
Methods, vol. 14, pp. 641-642, 29 June 2017.

[29] S. X. Wu, H.-T. Wai, L. Li and A. Scaglione, "A Review of Distributed Algorithms
for Principal Component Analysis," Proceedings of the IEEE, vol. 106,
no. 8, pp. 1321-1340, August 2018.

[30] J. Fan, D. Wang, K. Wang and Z. Zhu, "Distributed estimation of principal
eigenspaces," The Annals of Statistics, vol. 47, no. 6, pp. 3009-3031,
2019.

107

[31] C. O'Reilly, A. Gluhak and M. A. Imran, "Distributed Anomaly Detection Using
Minimum Volume Elliptical Principal Component Analysis," IEEE
Transactions on Knowledge and Data Engineering, vol. 28, no. 9, pp.
2320-2333, 01 September 2016.

[32] D. A. Tarzanagh, M. K. S. Faradonbeh and G. Michailidis, "Online Distributed
Estimation of Principal Eigenspaces," in 2019 IEEE Data Science
Workshop (DSW), Minneapolis, MN, 2019.

[33] M. Toulouse, B. Q. Minh and P. Curtis, "A Consensus Based Network Intrusion
Detection System," in 2015 5th International Conference on IT
Convergence and Security (ICITCS), Kuala Lumpur, 2015.

[34] G. V. BaUG, "UVHV aQG PLVXVHV RI Ba\HV¶ UXOH aQG Ba\HVLaQ cOaVVLILHUV LQ
cybersecurity," in AIP Conference Proceedings 1910, 2017.

[35] L. Jiang, L. Zhang, C. Li and J. Wu, "A Correlation-Based Feature Weighting Filter
for Naive Bayes," IEEE Transactions on Knowledge and Data
Engineering, vol. 31, no. 2, pp. 201-213, February 2019.

[36] R. Vijayasarathy, S. V. Raghavan and B. Ravindran, "A system approach to network
modeling for DDoS detection using a Naìve Bayesian classifier," in 2011
Third International Conference on Communication Systems and
Networks (COMSNETS 2011), Bangalore, 2011.

[37] A. Ashari, I. Paryudi and A. M. Tjoa, "Performance Comparison between Naïve
Bayes, Decision Tree and k-Nearest Neighbor in Searching Alternative
Design in an Energy Simulation Tool," International Journal of
Advanced Computer Science and Applications, vol. 4, no. 11, pp. 33-39,
2013.

[38] F. B. Sebastian Schelter, T. Januschowski, D. Salinas, S. Seufert and G. Szarvas,
"On Challenges in Machine Learning Model Management," IEEE Data
Engineering Bulletin, vol. 41, pp. 5-15, 2018.

[39] E. Vasilomanolakis, S. Karuppayah, M. Mühlhäuser and M. Fischer, "Taxonomy
and Survey of Collaborative Intrusion Detection," ACM Computing
Surveys, vol. 47, no. 4, 2015.

[40] Y. Hu, D. Niu, J. Yang and S. Zhou, "FDML: A Collaborative Machine Learning
Framework for Distributed Features," in KDD '19: Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, Achorage, 2019.

108

[41] J. Yang, Z. Ye, L. Yan, W. Gu and R. Wang, "Modified Naive Bayes Algorithm for
Network Intrusion Detection based on Artificial Bee Colony Algorithm,"
in 2018 IEEE 4th International Symposium on Wireless Systems within
the International Conferences on Intelligent Data Acquisition and
Advanced Computing Systems (IDAACS-SWS), Lviv, 2018.

[42] C. J. FXQJ, Q. ZKX, R. BRXWaba aQG T. BaúaU, "Ba\HVLan decision aggregation in
collaborative intrusion detection networks," in 2010 IEEE Network
Operations and Management Symposium - NOMS 2010, Osaka, 2010.

[43] M. Droettboom, "Understanding JSON Schema," 22 October 2019. [Online].
Available: json-schema.org/understanding-json-
schema/UnderstandingJSONSchema.pdf. [Accessed 04 03 2020].

[44] D. J. Weller-Fahy, B. J. Borghetti and A. A. Sodemann, "A Survey of Distance and
Similarity Measures Used Within Network Intrusion Anomaly
Detection," IEEE Communications Surveys & Tutorials, vol. 17, no. 1,
pp. 70-91, 11 July 2014.

[45] M. P. Kumar and D. Koller, "MAP Estimation of Semi-Metric MRFs via
Hierarchical Graph Cuts," in UAI '09: Proceedings of the Twenty-Fifth
Conference on Uncertainty in Artificial Intelligence, Montreal, 2009.

[46] J. Han, M. Kamber and J. Pei, "Getting to Know Your Data," in Data Mining:
Concepts and Techniques, The Morgan Kaufmann Series in Data
Management Systems, 2012, pp. 39-82.

[47] M. Biehl, B. Hammer and T. Villmann, "Distance Measures for Prototype Based
Classification," in Brain-Inspired Computing. BrainComp 2013., 2014.

[48] I. Ahmed, A. Dagnino and Y. Ding, "Unsupervised Anomaly Detection Based on
Minimum Spanning Tree Approximated Distance Measures and Its
Application to Hydropower Turbines," IEEE Transactions on Automation
Science and Engineering, vol. 16, no. 2, pp. 654-667, April 2019.

[49] H. Jia, Y.-m. Cheung and J. Liu, "A New Distance Metric for Unsupervised
Learning of Categorical Data," IEEE Transactions on Neural Networks
and Learning Systems, vol. 27, no. 5, pp. 1065-1079, May 2016.

[50] C. Kruegel, G. Vigna and W. Robertson, "A multi-model approach to the detection
of web-based attacks," Computer Networks, vol. 48, no. 5, pp. 717-738,
2005.

	Multi-Model Network Intrusion Detection System Using Distributed Feature Extraction and Supervised Learning
	Multi-Model Network Instrusion Detection System Using Distributed Feature Extraction and Supervised Learning

