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ABSTRACT 

Intrusion Detection Systems (IDSs) monitor network traffic and system activities 

to identify any unauthorized or malicious behaviors.  These systems usually leverage the 

principles of data science and machine learning to detect any deviations from normalcy 

by learning from the data associated with normal and abnormal patterns.  The IDSs 

continue to suffer from issues like distributed high-dimensional data, inadequate 

robustness, slow detection, and high false-positive rates (FPRs).  We investigate these 

challenges, determine suitable strategies, and propose relevant solutions based on the 

appropriate mathematical and computational concepts. 

To handle high-dimensional data in a distributed network, we optimize the feature 

space in a distributed manner using the PCA-based feature extraction method.  The 

experimental results display that the classifiers built upon the features so extracted 

perform well by giving a similar level of accuracy as given by the ones that use the 

centrally extracted features.  This method also significantly reduces the cumulative time 

needed for extraction.  By utilizing the extracted features, we construct a distributed 

probabilistic classifier based on Naïve Bayes.  Each node counts the local frequencies and 

passes those on to the central coordinator.  The central coordinator accumulates the local 

frequencies and computes the global frequencies, which are used by the nodes to compute 

the required prior probabilities to perform classifications.  Each node, being evenly 
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trained, is capable of detecting intrusions individually to improve the overall robustness 

of the system. 

We also propose a similarity measure-based classification (SMC) technique that 

works by computing the cosine similarities between the class-specific frequential weights 

of the values in an observed instance and the average frequency-based data centroid.  An 

instance is classified into the class whose weights for the values in it share the highest 

level of similarity with the centroid.  SMC contributes alongside Naïve Bayes in a 

multi-model classification approach, which we introduce to reduce the FPR and improve 

the detection accuracy.  This approach utilizes the similarities associated with each class 

label determined by SMC and the probabilities associated with each class label 

determined by Naïve Bayes.  The similarities and probabilities are aggregated, separately, 

to form new features that are used to train and validate a tertiary classifier.  We 

demonstrate that such a multi-model approach can attain a higher level of accuracy 

compared with the single-model classification techniques. 

The contributions made by this dissertation to enhance the scalability, robustness, 

and accuracy can help improve the efficacy of IDSs. 
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CHAPTER 1 
 

INTRODUCTION 
 

1.1 Intrusion Detection System (IDS) 

Network intrusions are unauthorized activities in a computing network that 

compromise its security, resources, and data.  All networking infrastructures, including 

the internet and intranet, are prone to intrusions.  It is vital to detect intrusions promptly 

to mitigate the risks posed by them.  An intrusion detection system (IDS) aides in 

identifying intrusions.  An IDS typically is software that examines and analyzes network 

data packets to identify anything suspicious [1].  Such a system learns from the usual 

pattern of the network and flags the activities that do not appear reasonable.  To build a 

classification model that is capable of adequately distinguishing between the normal and 

abnormal network traffic, the IDS must learn from the known instances of the network 

behavior.  Such learning heavily relies on data analysis and machine learning techniques 

[2].  Traditionally, IDSs are implemented centrally.  This type of IDS architecture that 

utilizes only a single central node requires all the data essential for detection to be passed 

through it for screening.  Depending on the way an IDS is constructed and implemented, 

most IDSs can be categorized into one of the following two main categories — 

Knowledge-based IDS and Behavior-based IDS. 
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1.1.1 Knowledge-based IDS 

A knowledge-based IDS utilizes previously known attacks and system 

vulnerabilities to build the rules or signatures.  The signatures are the known patterns that 

define an attack, which can be represented as a set of rules [3].  The new questionable 

data is compared against the previously formulated signatures.  If any match is found, 

meaning there exists a signature that matches the properties of the current data in 

question, then it is identified as an attack.  The knowledge-based IDSs tend to be fast and 

accurate as they work by performing comparisons between their observations and the 

predetermined set of rules [4].  They, however, fail to detect any new attacks because 

even a minor deviation from the original attack causes the new attack to mismatch with 

all the previously created signatures.  Due to this, such IDSs are unable to detect zero-day 

attacks.  The zero-day attacks are the attacks that are being observed for the very first 

time; therefore, their signature is not present in the system yet [5].  The signature 

dictionary, consequently, requires frequent updating to ensure the signatures of the latest 

threats are available.  With the rapid evolvement of new types of attacks, basing a 

network’s security solely on a knowledge-based IDS is not preferable. 

1.1.2 Behavior-based IDS 

The behavior-based IDS relies on a proper understanding of the network traffic 

patterns.  To build this type of IDS, the network traffic-related data is statistically 

analyzed, and a prediction model that differentiates between the normal and abnormal 

traffic is developed.  The prediction model is often based on a clustering or classification 

technique.  Usually, a set of data containing both normal and abnormal traffic patterns are 

used to build a prediction model.  It is also possible to train the system with just the 
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normal traffic data such that whenever a new type of traffic that does not adhere to the 

regular traffic pattern is detected, then it is flagged as an attack.  When an IDS is 

implemented to identify abnormal traffic, it is categorized as an anomaly-based IDS.  The 

main benefit of the behavior-based IDS is its ability to detect new types of attacks.  The 

issue, however, is that the behavior-based IDSs tend to suffer from slower detection and 

higher false alarms.  

1.2 Centralized and Distributed IDSs 

In a centrally implemented IDS, the central node that is responsible for running an 

IDS undertakes all the training, testing, and detecting tasks; therefore, all the data are 

passed through it.  Since this central node has access to the entirety of the data, it can 

build a detection model that is representative of all the previously observed instances.  

With the growth in the implementation of a distributed computing environment for the 

modern network infrastructures, the traditional centrally located IDS is gradually 

becoming obsolete.  The present-day’s massive volume of network data transfers can 

become overwhelming to the single central IDS.  Due to these, the interest has grown to 

design, develop, and implement a distributed IDS architecture. 

One of the first proposed distributed IDS performs traffic monitoring in a 

distributed manner but performs data analysis centrally [6].  Many common forms of 

distributed IDS employ a central node that helps aggregate the data from each node.  In 

such architecture, each node can detect attacks based on the patterns that are learned 

collaboratively with the help of the central coordinator.  Because the detection happens 

locally on distributed nodes, the incoming data can be distributed among them for 

inspection, which reduces the load on a single system.  This type of IDS is more robust 
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and requires limited data throughput in nodes [7].  Figure 1-1 illustrates high-level 

architectures of centralized and distributed IDSs. 

 

Figure 1-1: A basic illustration of the centralized and distributed IDS architectures. 

1.3 Current Issues & Challenges 

The process of construction and utilization of the IDS has crossed many 

milestones since its inception.  The modern-day IDSs have evolved into sophisticated 

systems powered by the advanced artificial intelligence capabilities; however, they 

continue to suffer from some of the common issues like high-dimensional data, slow 

detection speed, poor robustness, and high false alarms [8].  False alarms are high when 

the normal traffic is incorrectly detected as an attack.  Because of such inaccuracy, many 

healthy connections could get affected.  If all the traffic flagged as an attack were to be 

reviewed manually for verification, then falsely flagging many could overload the queue 

containing the suspicious traffic data to be reviewed. 

In a centralized IDS, all the necessary data passes through the central node that is 

responsible for monitoring the network traffic, triggering the need for high processing 

power and bandwidth connection on that node.  Additionally, the privacy of the data 

owned by each node in a network is diminished because all the raw data destined to or 



5 

 
 

originating from them are visible to the central node.  Having a single central IDS also 

makes the entire network vulnerable to a single point of failure [9].  In an event when the 

primary system responsible for operating the IDS goes down, the attacks in any part of 

the network may go unnoticed. 

This dissertation aims to dissect these issues, investigate potential solutions, and 

propose appropriate approaches to help overcome them. 

1.4 Objectives and Intended Approaches 

The IDSs continue to encounter several challenges.  The general objective of this 

dissertation is to explore some of those challenges and present potential remedies. 

The feature extraction can be done in a distributed manner to handle 

high-dimensional distributed data.  In such an approach, each node sends some 

information about the data to the central coordinator for aggregation.  The nodes use the 

aggregated data for feature extraction.  To be considered useful, the features extracted 

distributedly must perform as effectively as the features extracted centrally.  Their 

effectiveness can be verified by separately building the classifiers with both centrally and 

distributively extracted sets of features and comparing their performances in terms of 

accuracy and other measures. 

The IDS classifier construction and implementation can also be done in a 

distributed fashion to improve the robustness and detection speed.  Numerous nodes in a 

network can collaboratively construct a classifier, which can be used by each node 

individually to detect intrusions.  Such IDS architecture would be robust, mitigating the 

risks posed by a single point of failure.  Since the workload is distributed across multiple 
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nodes, the distributed system would be able to process more data in a shorter amount of 

time.  As a result, the distributed IDS would be able to detect attacks more rapidly. 

Finally, a multi-model architecture with ensembled classifiers can be utilized to 

improve the performance of an IDS in terms of detection accuracy.  Such an 

improvement could also reduce the false-positive rates (FPRs).  The information 

produced by multiple lightweight prediction models can be passed into another classifier 

as input features to identify whether an instance being investigated is indeed an attack.  

The traffic that is flagged as an attack is usually examined manually by the network 

security experts to confirm its maliciousness.  Improving the classification accuracy and 

consequently reducing the number of falsely flagged traffic by using a multi-model 

approach can help limit the amount of manual monitoring and analysis needed to keep the 

network systems secure. 

CHAPTER 3, CHAPTER 4, and CHAPTER 5, sequentially, discuss the intended 

approaches in detail while outlining significant findings and observations. 

1.5 Conclusions 

This chapter commenced with an overview of the IDSs.  It introduced their types 

in terms of the way they are constructed and implemented.  It also gave an overview of 

how the machine learning and data science powers the modern IDSs.  Additionally, it 

presented some common issues that IDSs continue to encounter; then, it laid out the 

objectives and some intended approaches to address those issues. 
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CHAPTER 2 
 

PRELIMINARIES 
 

2.1 General Types of Data 

Each column in a structured dataset represents some specific descriptor.  Different 

columns may have different types of values stored in them; however, a specific column 

only holds a specific type of data.  Depending on the type of values stored in a column, 

the type of data could be quantitative or qualitative.  The two main categories of data 

types are numerical and categorical. The numerical data are represented by some 

numbers.  They can be differentiated as a discrete, continuous, interval, or ratio type.  The 

categorical data are generally represented by some texts and are usually categorized as 

nominal or ordinal [10].  The ordinal data type has a specific order but lacks the extent of 

the difference between the values.  Table 2-1 shows the different types of data. 

Table 2-1: The general types of data with description. 

Type Subtype Description Example 

Numerical Discrete Whole-number values.   The number of nodes. 

Continuous Any value between whole numbers. Size of data packets. 

Interval Measured along a scale; no true zero. The temperature. 

Ratio Like interval, but with true zero. Distance between nodes. 

Categorical Nominal Categories with no specific order. Hostname, port number. 

Ordinal Categories with a specific order. The level of risk. 
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2.2 Data Transformation 

Data transformation is a data preprocessing procedure that is often necessary to 

change the data in one form to another to make them more appropriate to construct and 

implement the predictive models.  Depending on the situation, different transformations 

could be necessary.  The following are some common types of transformations. 

2.2.1 Normalization 

A significant difference in values between the features in a dataset is common.  

Using such a dataset to construct a predictive model can be problematic because the 

larger values may have a stronger influence.  The values need to be scaled such that they 

become suitable [11].  The z-score normalization technique is one of the standardization 

techniques that help normalize the data and put the values into the same scale.  This 

technique uses the mean and standard deviation in such a way that the arithmetic mean of 

the resulting normalized values becomes 0, and their standard deviation becomes 1.  The 

z-score normalization is given by 

 𝑧 =
𝑥 − 𝜇

𝜎
 , Eq. 2-1 

where 𝑥 is the currently observed value, 𝜇 is the population mean, and 𝜎 is the population 

standard deviation.  In an event when 𝜇 and 𝜎 are unavailable, the sample mean, �̅�, and 

sample standard deviation, 𝑠, can be used.   

2.2.2 Discretization by Binning 

Binning is a form of mapping that puts the numeric values into bins or buckets for 

discretization, such that the continuous values are grouped into some discrete bins.  

Converting continuous values into categorical values makes them compatible with the 

algorithms that only handle categorical values.  The common types of binning include 
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equal-width binning and equal-frequency binning [12].  The equal-width binning method 

determines the width of bins using 

 𝑤𝑖𝑑𝑡ℎ =
𝑣 − 𝑣

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑛𝑠
 , Eq. 2-2 

where 𝑣  and 𝑣  are the maximum and minimum values to be binned.  The number 

of bins is pre-defined.  The computed width is used to generate the ranges for bins.  All 

the values falling into a specific range are put into the same bin.  In equal-frequency 

binning, a set number of values are put into the same bin while ensuring that each bin has 

an equal number of values.  For this dissertation, the equal-width binning technique is 

used to discretize continuous values, whenever necessary. 

2.3 Feature Selection and Extraction 

Often confused as the same process, the feature selection and extraction are two 

different processes.  When the feature space is reduced through a proper feature selection 

or extraction, the classification performance can improve [13]. 

The feature selection deals with the identification and removal of the unnecessary, 

irrelevant, and duplicate attributes.  It can be done in a supervised or unsupervised 

manner.  The feature selection aims to reduce the number of features while improving the 

classification accuracy [14].  One typical example of the feature selection technique is the 

chi-square test of independence, which examines each attribute’s degree of independence 

from the target variable.  This method is useful for categorical data.  Another technique, 

Analysis for Variance (ANOVA), computes the amount of variance within and between 

the samples by analyzing their means [15].  This technique is suitable when the input 

variables are numeric, and the target variable is categorical.  Similarly, the method based 
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on information gain identifies suitable features based on the mutual information between 

two variables [16]. 

In contrast, the feature extraction techniques analyze the available descriptors and 

use them to generate new features while ensuring that the desired amount of information 

is preserved.  Feature extraction results in dimensionality reduction, making it easier to 

tackle the curse of dimensionality.  In a dataset containing a target variable, feature 

extraction can be done without its consideration.  Principal Component Analysis (PCA) is 

one of the conventional and widely-used unsupervised feature extraction techniques that 

projects the data in a higher dimension into the lower dimension while ensuring each 

feature is orthogonal to one another [17].  Such projection ensures independence between 

attributes while reducing the number of dimensions.  Figure 2-1 demonstrates the feature 

selection and extraction processes. 

       

 

Figure 2-1: An illustration of the feature selection and extraction processes with four 
original features.  Both processes aim to reduce the number of features. 
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2.4 Distance Measures 

Distance measures compute how far two points are from one another.  They can 

be used to determine the degree of dissimilarity or similarity between the data points.  

The data points are similar if the distance between them is short.  There are different 

types of distance measures.  Some of the notable ones in data science are Euclidean 

Distance, Manhattan Distance, and Minkowski Distance [18].  Most distance measures 

only deal with numerical values.  When the data is of nominal or ordinal type, then the 

available options for distance measures are limited.  Jaccard similarity coefficient and 

cosine similarity are two commonly used techniques to measure the degree of similarity 

between the two data points represented by categorical values. 

2.5 Supervised Learning 

Supervised learning is a branch of machine learning where the dataset has a 

labeled target variable containing class labels.  In this type of learning, the model is built 

by tuning it to predict the class labels accurately.  The goal is to learn a mapping function 

such that for a given set of inputs, the predictor determines an accurate output.  As shown 

in Eq. 2-3, the input values in 𝑋 are mapped into an output 𝑌. 

 𝑓(𝑋) = 𝑌 Eq. 2-3 

The supervised learning techniques pass through the training and testing phases.  

In the training phase, the class labels are available during the learning process.  The 

adjustments are made as necessary to ensure that the built model is a good predictor of 

the class.  The testing phase uses the constructed model to classify the test instances.  

Since the actual class labels are known, the performance of the model can be evaluated 

by comparing the observed outcomes against the expected outcomes.  Some notable 
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supervised learning methods include Naïve Bayes, Decision Tree, k-Nearest Neighbor 

(k-NN), and Neural Network. 

2.6 Model Validation 

In machine learning, the model validation is referred to as the process where the 

trained model is evaluated using the test data.  The cross-validation is one of the model 

validation techniques that examines how the results obtained by a predictive model 

generalizes to the new independent dataset [19].  Cross-validation evaluates the 

predictive model’s performance on limited data through random resampling.  Its purpose 

is to perform some statistical analysis of a model to determine its actual effectiveness in 

terms of accuracy and other quality measures when applied to the previously unseen data.  

The holdout method is one of the variants of cross-validation technique where the data is 

split in some ratio for training and testing purposes.  The more substantial portion is used 

for training, and the smaller portion is used for testing.  In k-fold cross-validation, the 

dataset is split into 𝑘 equal subsets known as folds.  The 𝑘 − 1 folds are used for training, 

and the remaining held-out fold is used for testing, as shown in Figure 2-2. 

 

Figure 2-2: The iterations for k-fold cross-validation with 𝑘 = 3. 
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This process is repeated 𝑘 times, ensuring that each fold is used as the validation fold 

once.  The performance outcomes obtained from each of the iterations are averaged to get 

the model’s overall performance result, which is given by 

 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =
1
𝑘

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒
=1

. Eq. 2-4 

2.7 Performance Evaluation 

Several metrics are available to evaluate a predictor’s performance.  The 

performance result ideally consists of the counts of true-positives (TP), false-positives 

(FP), true-negatives (TN), and false-negatives (FN).  These are represented in a confusion 

matrix form with expected and observed outputs for binary classifications.  The 

performance of a model can be evaluated by analyzing measures like accuracy, precision, 

recall, and specificity.  The precision and recall can be combined into a single 

performance metric called F1 score.  These metrics can be multiplied by 100 for scaling. 

2.7.1.1 Accuracy 

The accuracy of a model depends on how many instances are correctly predicted 

when compared to the total number of predictions made.  It is computed as 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 . Eq. 2-5 

Using accuracy as a performance evaluator is appropriate only when all the 

classes in a data sample are evenly represented.  If they are not, then classifying all the 

instances into the most representative class would still give a good accuracy result, 

causing a false sense of high accuracy. 
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2.7.1.2 Precision 

Precision is an indicator of the model’s ability to identify the positive instances 

correctly, which is given by 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 . Eq. 2-6 

An IDS with a low precision would imply that a significant number of regular 

traffic is being classified as an attack.  It is essential to reduce such misclassifications, to 

avoid unnecessary flagging of the regular traffic. 

2.7.1.3 Recall 

Recall, also known as sensitivity, is a measure of what proportion of the instances 

that are positive are classified as positive.  It is given by 

 𝑅𝑒𝑐𝑎𝑙𝑙 𝑜𝑟 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 . Eq. 2-7 

Since both TP and FN are actual positive instances, recall helps determine the 

model’s ability to identify the true-positive instances as positives. 

2.7.1.4 Specificity 

Specificity computes the proportion of actual negative instances classified as 

negatives.  It is the opposite of recall and is given by 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 . Eq. 2-8 

Specificity and FPR are related, such that 𝐹𝑃𝑅 = 1 –  𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦. 

2.7.1.5 F1 Score 

F1 score computes the model’s accuracy based on its precision and recall as 

 𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

 . Eq. 2-9 
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This measure helps determine the balance between precision and recall.  Since it 

is not affected by the imbalanced class distribution, it is a better measure of accuracy 

when the data sample represents one class significantly more than the others. 

2.8 Utilized Datasets 

 The NSL-KDD and CICIDS2017 datasets have been used for the experiments 

throughout this dissertation.  These are popular IDS-related datasets that come in a 

structured form.  They are openly available and are widely used in research [20] [21].  

The compressed file size of the NSL-KDD dataset is 6.45 megabytes, and that of the 

CICIDS2017 dataset is 229.49 megabytes. 

2.8.1 NSL-KDD 

The NSL-KDD dataset is derived from the KDD Cup 1999 dataset to address 

some of its inherent issues [20].   This dataset comes in the form of text files containing 

comma-separated values (CSVs).  A detailed analysis of this dataset is conducted in [22].  

It is available in different parts containing training and testing sets. Table 2-2 shows the 

data types of the attributes in this dataset. 

Table 2-2: The count of attributes based on their data type in the NSL-KDD dataset. 

Data Type Subtype Number of Attributes 

Numerical Discrete (Integer) 17 

Continuous 15 

Categorical Nominal 3 

Nominal (Binary) 6 

Total Attributes 41 
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The NSL-KDD dataset has a total of 43 columns.  The values in the 42nd column 

are the labels indicating whether the specific row represents a normal instance or some 

specific kind of attack.  Other columns, excluding the 43rd column, contain the 

connection-related, content-related, time-related, and host-related traffic data [22].  The 

43rd column indicates the level of classification difficulty for a particular instance.  All 

the descriptors available in the NSL-KDD dataset are listed in Figure 2-3. 

 

Figure 2-3: The list of descriptors available in the NSL-KDD dataset.  Out of the total 
43 descriptors, the 42nd one is the class label. 

The instances of both classes are quite evenly distributed in this dataset, with 

48.12% of them being attacks and 51.88% of them being normal, as seen in Table 2-3.  

Such balanced datasets are considered appropriate for building classification models 

because each class is evenly represented, reducing the chance of bias. 

Table 2-3: An overview of the instances in the NSL-KDD dataset.  This dataset is 
available in separate training and testing parts. 

Filename Attack Normal Total Rows 

KDDTrain+.txt 58,630 67,343 125,973 

KDDTest+.txt 12,833 9,711 22,544 

Total Instances 71,463 77,054 148,517 
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For this dissertation, the available training and testing files are merged into a 

single file.  The merged file is used for both training and testing by leveraging the 

random sampling and cross-validation techniques. 

2.8.2 CICIDS2017 

The CICIDS2017 dataset contains the traffic data collected for five days.  This 

dataset is considered to have network traffic data resembling the real-world attacks [23].  

Even though the actual data packets obtained by capturing network packets are available, 

the information from those packets has been extracted into eight CSV files.  Each of 

those files pertains to a specific day and the types of attacks undertaken that day.  The 

rows in these files represent the information extracted or computed from the captured 

packets.  The data types and the number of attributes using them in this dataset are shown 

in Table 2-4. 

Table 2-4: The observed data types in the CICIDS2017 dataset. 

Data Type Subtype Number of Attributes 

Numerical Discrete (Integer) 40 

Continuous 23 

Categorical Nominal 1 

Nominal (Binary) 8 

Nominal (Unary) 6 

Total Attributes 78 
 

There are 79 columns in this dataset.  The last column is the class label that 

specifies whether an instance belongs to the normal traffic or some type of attack.  

Figure 2-4 lists all the available descriptors in this dataset. 
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Figure 2-4: The list of descriptors available in the CICIDS2017 dataset.  There are 79 
attributes in this dataset, and the last one is the class label. 

An analysis of the CICIDS2017 dataset reveals that it contains significantly more 

normal instances than attack instances.  Such a difference can cause bias in the learning 

process by heavily favoring the normal instances.  Only 19.7% of the instances represent 

the attacks.  It has been noted that this resembles the practical network traffic, where the 

number of attacks is usually significantly lower than the regular traffic exchanges. 

For this research, all eight available files in the CICIDS2017 dataset are merged 

into a single file, and a specific number of rows are selected through random sampling as 

needed.  When sampling, the even class balance is enforced such that the equal number 

of normal-related and attack-related samples are selected.  Specifically, a dataset 

containing a million rows with fifty-percent instances representing attacks and another 

fifty-percent representing regular traffics is formed by randomly selecting the samples 

from the entire dataset.  The eight files available in this dataset and the number of 

instances of each class in each file are shown in Table 2-5. 
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Table 2-5: An overview of the instances in the CICIDS2017 dataset.  The dataset 
contains eight different CSV files with the data spanning over five consecutive days. 

Filename Attack Normal Total Rows 

Monday-WorkingHours.pcap_ISCX.csv 0 529,918 529,918 

Tuesday-WorkingHours.pcap_ISCX.csv 13,835 432,074 445,909 

Wednesday-workingHours.pcap_ISCX.csv 252,672 440,031 692,703 

Thursday-WorkingHours-Morning-

WebAttacks.pcap_ISCX.csv 

2,180 168,186 170,366 

Thursday-WorkingHours-Afternoon-

Infilteration.pcap_ISCX.csv 

36 288,566 288,602 

Friday-WorkingHours-Morning.pcap_ISCX.csv 1,966 189,067 191,033 

Friday-WorkingHours-Afternoon-

DDos.pcap_ISCX.csv 

128,027 97,718 225,745 

Friday-WorkingHours-Afternoon-

PortScan.pcap_ISCX.csv 

158,930 127,537 286,467 

Total Instances 557,646 2,273,097 2,830,743 
 

2.9 Configuration and Tools 

The experiments are undertaken on a single host computer.  For experiments 

requiring a distributed network environment, a multi-node environment is simulated in a 

single central computer.  Table 2-6 shows the utilized system’s hardware configuration. 

Table 2-6: An overview of the system configuration utilized for the experiments. 

Processor Intel® Xeon(R) CPU E5-1620 v3 @ 3.50GHz 

Memory 32 GB 2133 MHz RIMM DDR4 

Storage HP EX950 M.2 1TB PCIe 3.1 x4 NVMe 3D TLC NAND SSD 
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To prepare, setup, and run the experiments, various tools, including RapidMiner 

Studio version 9.5, Microsoft Excel, and some Python libraries, along with self-written 

codes, are utilized.  The outputs of the self-written programs have been modularly 

validated against the outputs produced by other reputable tools to check their reliability 

before using them. 

2.10 Conclusions 

This chapter explained some preliminary concepts needed to understand the 

presented ideas.  It also introduced the datasets, NSL-KDD and CICIDS2017, which are 

used to verify the applicability of the proposed techniques in the intrusion detection 

domain.  These are popular and openly available datasets that have been widely used for 

IDS-related research.  The tools and methods that have been utilized were also described.  

In general, some relevant technical insights were provided. 
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CHAPTER 3 
 

DISTRIBUTED FEATURE EXTRACTION FOR IDS CLASSIFIER 
CONSTRUCTION 

 

3.1 Background 

When building a prediction model, the quality of the features used dictates its 

performance.  Many practical datasets tend to have numerous features.  Several of these 

features can carry redundant or useless information for prediction.  The models built 

using such features can cause overfitting or underfitting.  Additionally, when many 

features are used to build a model, the complexity of the problem becomes high, causing 

the need for expensive computational resources.  Each attribute in a dataset is considered 

its dimension; hence, the number of attributes is equal to the number of dimensions.  A 

higher dimension causes a more complex problem, resulting in the curse of 

dimensionality.   The feature extraction process deals with taking the existing data 

descriptors and extracting new features from them while ensuring that the newly 

extracted features retain the maximum information from the data [24].  The features 

holding the least variance can be excluded from the model building process.  Such 

exclusion results in dimensionality reduction. 

There are numerous feature extraction techniques.  PCA is one of the prevalent 

dimensionality reduction and feature extraction techniques.  It describes data variation as 

a set of uncorrelated and independent variables known as principal components (PCs).  
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The PCs are generated by projecting high dimensional data into a low dimensional 

feature space while preserving its intrinsic characteristics [25] [26].  Such extracted PCs 

are orthogonal from one another.  The PCA is undertaken without any regard to the class 

labels, so it is an unsupervised feature extraction process. 

The PCA is conducted by first forming a covariance matrix of the given data, then 

performing eigen-decomposition to compute the eigenpair, which contains the 

eigenvalues and their respective eigenvectors.  The eigenvalues and eigenvectors 

summarize the data.  The first few largest eigenvalues with high explained variance are 

selected, and their corresponding eigenvectors are used to determine the new features. 

For a sample dataset 𝑿 = {𝑅1, 𝑅2, … , 𝑅 } ∈ ℝ ×𝑁 with 𝑛 dimensions and 𝑁 

number of rows, the covariance, 𝜎(𝑥, 𝑦), between two random variables, 𝑥 and 𝑦, is 

 𝜎(𝑥, 𝑦) =
1

𝑁 − 1
(𝑥 − �̅�)(𝑦 − 𝑦)

𝑁

=1

, Eq. 3-1 

where 𝑥  and 𝑦  are the observed values for 𝑥 and 𝑦 attributes, and �̅� and 𝑦 are the means 

of all the values in those attributes, respectively.  Based on the computed covariances 

between all pairs of attributes in 𝑿, the covariance matrix, 𝑲 ∈ ℝ × , can be determined.  

A covariance matrix is symmetric and positive definite [27], and it can be decomposed 

into three matrices such that it becomes equivalent to their products.  In Eq. 3-2, 𝑽 is the 

matrix with eigenvectors, 𝜦 is a diagonal matrix containing the corresponding 

eigenvalues on its diagonal elements in decreasing order, and 𝑽𝑇 is a transposed 𝑽. 

 𝑲 = 𝑽𝜦𝑽𝑇 Eq. 3-2 
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Let 𝜆 and 𝑣 represent eigenvalue and eigenvector, respectively.  If {𝜆1, 𝜆2, … , 𝜆 } 

is a set of eigenvalues such that 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆 ≥ 0, then the eigenpairs containing 

eigenvalues with their corresponding set of eigenvectors, can be represented as 

 𝐸𝑖𝑔𝑲 = 𝜆1, 𝑣 1, 𝑣 2, … , … , 𝜆n, 𝑣 1, 𝑣 2, … . Eq. 3-3 

Depending on the predefined explained variance threshold, the first few eigenvalues are 

selected.  Then, a projection matrix, 𝑷, is constructed using the eigenvectors derived by 

the selected eigenvalues.  This projection matrix is used to project the original data into a 

lower dimension linearly, as given by 

 𝒀 = 𝑷𝑇 · 𝑿, Eq. 3-4 

where 𝑷𝑇 is the transpose of matrix 𝑷.  The resulting matrix, 𝒀, contains the PCs, with 

the most important component being the first one [28]. 

 The PCA in a centralized environment is a well-studied area; however, there has 

been a limited study on its applicability in a distributed IDS to extract features for a 

prediction model.  With the rise in the implementation of a distributed computing 

architectures, it would be nonsensical to continue using a strictly-central IDS requiring 

extravagant computational, storage, and bandwidth resources on a single IDS host.  

Besides that, since all the information stored in the descriptors would have to pass 

through the central processor to build a predictor using a central IDS, it would not be 

suitable for privacy-conscious nodes that do not desire to share their raw data with others.  

This chapter discusses a distributed feature extraction technique for IDS, where multiple 

nodes collaboratively extract the features that is representative of the global dataset with 

only their portion of the data.  The distributed nodes achieve this with some assistance 

from a central coordinator. 
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3.2 Related Works 

There have been studies on the type of distributed PCA where each node has 

access to only a subset of data.  According to the review in [29], this type of PCA usually 

has local and global stages.  At the local stage, each node with access to only a subset of 

data performs local PCA and forwards some information about the result to the central 

coordinator.  At the global stage, the central coordinator performs a global PCA by 

aggregating the information received from each node. 

In [30], the authors propose and analyze a distributed PCA algorithm where each 

node computes the top 𝐾 eigenvectors of the covariance matrix for its portion of data.  

These top 𝐾 eigenvectors are sent to the central node.  The central node aggregates the 

information collected from the nodes and performs PCA based on the aggregated 

information.  Through their experiments and analysis, the authors successfully show that, 

with enough intermediate nodes, the distributed PCA, despite having access to only 

limited data, performs as well as the centralized PCA.  The authors have validated the 

results they presented by running experiments in a simulated environment. 

Similarly, [31] proposes a Minimum Volume Elliptical PCA algorithm that is 

claimed to be robust due to its ability to identify PCs of the data, even when there are 

anomalies present in a training dataset.  Such ability prevents any skewing of PCs caused 

by anomalous data [31].  The authors demonstrate that their proposed algorithm performs 

better in a centralized environment.  They, however, reformulate the technique using a 

distributed convex optimization problem, where the problem is split across many nodes.  

Each node, then, computes based only on its portion of data and exchanges the resulting 
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small matrices with its neighboring nodes.  This approach caused the performance of the 

distributed method to be comparable with that of the centralized method. 

Tarzanagh et al. [32] propose an online scheme to estimate principal eigenspaces 

for streaming data.  They break the incoming batch of data into subsets and allocate those 

to different computational nodes.  The nodes determine the low-rank approximation for 

the subset assigned to them.  They, then, perform local aggregation to estimate the 

principal eigenspaces, which pass through the fusion center for global estimation.  The 

experiments on real data showed that the proposed algorithm is capable of computing the 

principal eigenspaces quickly while maintaining the level of approximation accuracy. 

There are other distributed methods discussed in the literature, but no relevant 

research was found whose contribution is specifically on distributed feature extraction 

using the PCA for an IDS.  The motive of this chapter is to propose an approach for 

distributed feature extraction using PCA to help build a classification model for IDSs. 

3.3 Methodology 

3.3.1 Network Topology 

A distributed environment with a fixed number of nodes is simulated where each 

node only has access to a subset of data.  A node performs calculations based on its part 

of the data and sends the calculated values to the central coordinator for aggregation.  Let 

𝑗 be the number of nodes and 𝐴 = 𝐴 ∶  1 ≤ 𝑗  be the set of nodes.  All nodes have a 

two-way link with the central coordinator.  The network architecture simulated for the 

experiments is shown in Figure 3-1. 
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Figure 3-1: A simulated network topology where each of the 𝑗 nodes is connected to 
the central coordinator for bi-directional information exchanges. 

3.3.2 Data Distribution 

Once the appropriate datasets are discovered and selected, the datasets are split 

randomly into 𝑗 subsets, each with a varying number of rows, and every node is assigned 

a subset.  To simulate a distributed architecture while utilizing a pre-existing dataset, 

such splitting and assignment of data are conducted.  The assumption, however, is that 

each node is the owner of the data assigned to it.  The nodes are unaware of the values in 

the data present on other nodes.  For a dataset 𝑿, its subsets of data assigned to each node 

can be represented as 

 𝑿 = 𝑿𝐴 , 𝑿𝐴 , … , 𝑿𝐴 . Eq. 3-5 

3.3.3 Features Analysis 

The PCA works with numerical data; therefore, only the attributes that have 

continuous or other numerical values are selected. 

3.3.4 Data Transformation 

Each node, individually, processes its part of data through a data preprocessing 

stage to prepare them for further operations.  After executing the rudimentary 

preprocessing actions like cleaning data, handling missing and inappropriate values, and 
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filtering out the unneeded features, the data is transformed to ensure its readiness for 

feature extraction.  The essential nontrivial transformations performed are data 

normalization and class relabeling. 

3.3.4.1 Data Normalization 

Since PCA works with numerical data, the selected data must be analyzed to 

identify the attributes that are appropriate for it.  The numerical data are normalized in 

each node to ensure all the values are in the same range.  Since both datasets contain 

various attributes with numerical data, it is crucial to normalize such data to bring them to 

a standard scale, without affecting their difference in range.  The z-score normalization 

technique is chosen for normalization.  The data is spread across multiple nodes; 

therefore, a straight-forward normalization using Eq. 2-1 is not possible.  The distributed 

computation of arithmetic mean and approximation of standard deviation, involving local 

and global computations, are necessary. 

3.3.4.1.1 Local Computations 

Let 𝐴  be one of the nodes. For its portion of the data, the local mean of the values 

in attribute, 𝑓, can be computed as 

 �̅� =
1

𝑁𝐴
𝑥

𝑁

=1

, Eq. 3-6 

where 𝑁𝐴  is the number of rows in 𝐴 ’s dataset and 𝑥  is the 𝑘  value in 𝑓.  The local 

mean is computed for each of the attributes by every node. 

Similarly, the local standard deviation of a sample can be computed as 
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 𝑠 =
1

𝑁A − 1
𝑥 − �̅�

2
𝑁

=1

 , Eq. 3-7 

where �̅�  is 𝐴 ’s local mean computed for the attribute, 𝑓, derived from Eq. 3-6. 

 The mean and standard deviation are computed locally by each node for the 

attributes requiring normalization.  These are sent to the central coordinator, along with 

the total number of rows available in each node’s part of data; therefore, the node 𝐴  

would send 𝑁𝐴 , �̅� , and 𝑠  to the central coordinator. 

3.3.4.1.2 Global Computations 

After receiving the total number of rows, local means, and local standard 

deviations for each feature from all the nodes, the central coordinator computes the 

weighted global average for an attribute with 

 �̅� =
∑ (𝑁𝐴 × �̅� )=1

∑ 𝑁𝐴=1

 , Eq. 3-8 

where ∑ 𝑁A𝑖
𝑗
𝑖=1 = 𝑁 is the cumulative total number of rows. 

The global standard deviation for a specific attribute can be estimated using 

 𝑠 ≈
∑ 𝑁𝐴 − 1 𝑠

2

=1

∑ 𝑁𝐴=1 − 𝑗
 , Eq. 3-9 

where 𝑗 is the number of nodes, 𝑠
2
 is the variance of 𝑓 attribute’s values in the node 

𝐴 ’s dataset. 

 The computed global averages and standard deviations for each attribute are 

shared with all the participating nodes by the central coordinator. 
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3.3.4.1.3 Normalization 

Each node normalizes the values in its attributes using the z-score normalization 

technique, with the global mean and standard deviation.  This procedure transforms the 

values spread across multiple nodes into the same scale. 

3.3.4.2 Class Relabeling 

The selected datasets are labeled; hence, they have a target variable containing a 

class label specifying whether a row is an instance of a normal or attack traffic.  The 

attacks are labeled with a specific type of attack in both datasets.  The interest is in 

distinguishing only between the normal and abnormal traffic, so the different labels 

representing various attacks are grouped into the same class, Attack, and all the classes 

representing the regular traffic are recorded as Normal.  The class-relabeled datasets are 

used throughout the dissertation.  Table 3-1 lists the original and the corresponding 

assigned class labels in each dataset. 

Table 3-1: The class relabeling in the NSL-KDD and CICIDS2017 datasets. 

Dataset Original Label(s) Assigned  

NSL-KDD Normal Normal 

back · buffer_overflow · ftp_write · guess_passwd · imap · 

ipsweep · land · loadmodule · multihop · neptune · nmap · 

perl · phf · pod · portsweep · rootkit · satan · smurf · spy · 

teardrop · warezclient · warezmaster 

Attack 

CICIDS2017 BENIGN Normal 

Bot · DDoS · DoS GoldenEye · DoS Hulk · DoS Hulk · DoS 

Slowhttptest · DoS slowloris · FTP Patator · Heartbleed · 

Infiltration · PortScan · SSH Patator · Web Attack – Brute 

Force · Web Attack – Sql Injection · Web Attack – XSS 

Attack 
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3.3.5 Distributed Feature Extraction 

The distributed feature extraction with multiple nodes involves local and global 

computations.  The centralized extraction is identical to the distributed extraction with a 

single node. 

3.3.5.1 Local Eigen-Decomposition 

Each node, after normalizing its portion of data, computes a covariance matrix.  

Suppose 𝑲1 is the covariance matrix computed from 𝑿𝐴 .  The eigenpairs observed after 

eigen-decomposition of 𝑲1 forms the set 𝐸𝑖𝑔𝐾 .  Each of the nodes repeats this process.  

The computed eigenpairs for the node 𝐴1 can be represented as 

 𝐸𝑖𝑔𝐾 = 𝜆 , 𝑣1 , 𝑣2 , … : 1 ≤ 𝑒 ≤ 𝑛 , Eq. 3-10 

where 𝑛 is the number of attributes.  Each node forwards its eigenpairs to the central 

coordinator for global aggregation. 

3.3.5.2 Global Aggregation 

At the global level, the central coordinator compiles the eigenpairs received from 

each of the nodes.  The eigenpairs received from 𝑗 number of nodes can be represented as 

a set, 𝐸𝑖𝑔 = 𝐸𝑖𝑔𝐾 : 1 ≤ 𝑖 ≤ 𝑗 , whose elements are the sets containing the eigenpairs 

computed by each node.  The collected eigenpairs are aggregated by calculating the 

arithmetic means of the corresponding eigenvalues and eigenvectors.  Such aggregation 

results in a single set of eigenpairs representing the global averages of eigenvalues and 

their corresponding eigenvectors. 

Suppose 𝐸𝑖𝑔𝐴  is a set containing the aggregated eigenpairs, then the elements 

in this set are derived by summing each corresponding value of eigenvalues or 

eigenvectors and dividing the resulting sums by the total number of nodes.  The 
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following sequence represents the globally approximated eigenvalues and their 

corresponding eigenvectors. 

 𝐸𝑖𝑔Agg =
∑ 𝜆=1

𝑗
,

∑ 𝑣1=1

𝑗
,
∑ 𝑣2=1

𝑗
, … : 1 ≤ 𝑒 ≤ 𝑛  Eq. 3-11 

 The central coordinator shares the aggregated eigenvalues and eigenvectors with 

all the participating nodes for further processing. 

3.3.5.3 Local Extraction 

When a node, 𝐴 , receives 𝐸𝑖𝑔𝐴  from the central coordinator, it forms a 

projection matrix, 𝑷, by using the eigenvectors corresponding to the eigenvalues that 

exceed the defined explained variance threshold.  For instance, if the first two 

eigenvalues exceed the threshold, then the eigenvectors corresponding to them are used 

to form the projection matrix.  The dot product of the transpose of the projection matrix, 

𝑷𝑇, is taken with the original data to get the PCs.  For 𝐴 , the data containing the PCs it 

extracts is given by 

 𝒀𝐴 = 𝑷𝑇 · 𝑿𝐴 , Eq. 3-12 

which contains the new features for an IDS classifier. 

3.3.6 Classification 

The classification is performed using the predictive models built using various 

supervised learning techniques by utilizing the features extracted with the discussed 

distributed method.  The constructed models are trained and tested, and the observations 

made are reported and analyzed.  The k-Nearest Neighbors (k-NN) and Neural 

Network-based classifiers are constructed because of their known ability to handle 

continuous values effectively.  Similarly, the classification models are also constructed 
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using different variants of Naïve Bayes classifier to examine the performance when the 

classification is done using continuous values and when done after discretizing the 

continuous values. 

3.4 Experimental Procedure & Observations 

A series of experiments are conducted to verify that the proposed method 

performs as expected.  A multi-node distributed networking environment containing the 

desired number of nodes and a central coordinator is simulated.  The tests are performed 

on both NSL-KDD and CICIDS2017 datasets. 

3.4.1 Data Splitting, Distribution, and Normalization 

The data is split randomly to match the number of nodes.  Each partition of data, 

which is assigned to a unique node, has a varied number of rows.  The data is normalized 

using the distributed method discussed in section 3.3.4.1.  After normalization, all the 

numerical attributes are relatively in the same range.  The observed global mean and 

standard deviation of each attribute used for z-score normalization in the NSL-KDD and 

CICIDS2017 datasets are plotted in Figure 3-2 and Figure 3-3, respectively, to give an 

idea of the distribution of the values. 

   

Figure 3-2: The pre-normalized standard deviation and arithmetic mean for the 
numerical attributes in the NSL-KDD dataset show that only a few features have an 
extremely high variance. 
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Figure 3-3: The pre-normalized standard deviation and average for the numerical 
attributes in the CICIDS2017 dataset show that several features have a high variance. 

3.4.2 Eigen-Decomposition 

Each node computes a covariance matrix for its data portion by using the 

normalized data.  They also perform eigen-decomposition to find the eigenvalues and 

their respective eigenvectors, which are sent to the central coordinator for aggregation.  

The central coordinator averages all the corresponding eigenvalues and their eigenvectors 

to determine the globally aggregated eigenpairs.  The eigen-decomposition is performed 

in both centralized, which involves a single node, and distributed, which involves 

multiple nodes, manners for comparison.  The cumulative explained variance (EV) 

threshold is set to 95%, so the newly extracted features will retain at least 95% 

information from the original data.  The eigenvalues whose cumulative explained 

variance exceeds the specified threshold in the NSL-KDD and CICIDS2017 datasets are 

listed in Table 3-2 and Table 3-3, respectively. 
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Table 3-2: A comparison of the eigenvalues computed by a various number of nodes 
whose cumulative EV exceeds the threshold of 95% in the NSL-KDD dataset. 

𝑷𝑪 

Explained Variance in NSL-KDD (%) 

1 Node 3 Nodes 5 Nodes 10 Nodes 25 Nodes 50 Nodes 

1. 20.53 20.53 20.53 20.54 20.91 21.23 

2. 15.65 15.65 15.65 15.65 15.92 16.16 

3. 7.03 7.88 7.88 8.22 8.28 8.30 

4. 5.97 5.98 5.98 5.98 6.09 6.03 

5. 4.95 4.95 4.95 4.98 5.17 5.20 

6. 4.24 4.24 4.25 4.42 4.55 4.53 

7. 3.68 3.70 3.74 3.93 3.96 3.99 

8. 3.51 3.59 3.52 3.59 3.58 3.61 

9. 3.33 3.35 3.35 3.40 3.37 3.43 

10. 3.26 3.25 3.26 3.26 3.31 3.35 

11. 3.23 3.23 3.23 3.23 3.28 3.32 

12. 3.21 3.20 3.20 3.20 3.25 3.28 

13. 3.13 3.15 3.16 3.12 3.13 3.09 

14. 3.05 3.01 3.03 2.99 2.96 2.79 

15. 2.94 2.88 2.90 2.55 2.42 2.36 

16. 2.57 2.38 2.33 2.21 1.97 1.94 

17. 2.29 1.85 1.80 1.76 1.62 1.65 

18. 1.63 1.54 1.56 1.53 1.49 1.45 

19. 1.50 1.39 1.46 1.38 - - 

𝑬𝑽 Sum 95.68 95.76 95.78 95.92 95.25 95.71 
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Table 3-3: A comparison of the eigenvalues computed by a various number of nodes 
whose cumulative EV exceeds the threshold of 95% in the CICIDS2017 dataset. 

𝑷𝑪 

Explained Variance in CICIDS2017 (%) 

1 Node 3 Nodes 5 Nodes 10 Nodes 25 Nodes 50 Nodes 

1. 26.13 26.14 26.17 26.27 26.48 26.61 

2. 12.78 13.05 12.93 13.93 13.76 14.21 

3. 9.22 9.22 9.22 9.23 9.25 9.27 

4. 7.18 7.18 7.21 7.28 7.82 7.96 

5. 4.91 4.95 4.97 4.99 4.99 4.93 

6. 4.22 4.43 4.46 4.37 4.35 4.28 

7. 3.79 3.93 4.04 3.96 3.93 3.89 

8. 3.50 3.62 3.70 3.54 3.48 3.40 

9. 3.25 3.25 3.26 3.23 3.23 3.18 

10. 3.09 3.10 3.11 2.91 2.75 2.56 

11. 2.28 2.42 2.51 2.42 2.24 2.17 

12. 2.11 2.04 2.07 2.04 2.01 1.99 

13. 1.96 1.94 1.95 1.94 1.91 1.90 

14. 1.91 1.82 1.86 1.85 1.82 1.81 

15. 1.77 1.71 1.71 1.71 1.70 1.69 

16. 1.59 1.59 1.59 1.58 1.57 1.56 

17. 1.57 1.54 1.55 1.53 1.49 1.47 

18. 1.52 1.46 1.41 1.43 1.36 1.33 

19. 1.38 1.28 1.31 1.24 1.24 1.21 

20. 1.27 1.26 - - - - 

𝑬𝑽 Sum  95.43 95.92 95.02 95.42 95.41 95.43 
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3.4.3 Local Feature Extraction 

The qualifying eigenvalues’ eigenvectors, based on the specified threshold, are 

used to construct a projection matrix.  Each node then takes a dot product of the transpose 

of the projection matrix with its original data to project the data into a lower dimension, 

which results in dimensionality reduction.  The NSL-KDD dataset had 32, and the 

CICIDS2017 dataset had 63 original numeric dimensions.  These are reduced to 19 or 18 

and 20 or 19 dimensions, depending on the number of nodes used, respectively.  Table 

3-4 shows the new dimensions for each dataset after data extraction. 

Table 3-4: The number of new dimensions observed after feature extraction from the 
NSL-KDD and CICIDS2017 datasets. 

Dataset 

New Dimension 

1 Node 3 Nodes 5 Nodes 10 Nodes 25 Nodes 50 Nodes 

NSL-KDD 19 19 19 19 18 18 

CICIDS2017 20 20 19 19 19 19 
 

The new data so generated after projection is described by the PCs, which are the 

extracted features.  The first PC holds the most information about the data, and the last 

PC holds the least amount of information.  Based on the comparisons between the first 

two PCs, it is observed in the NSL-KDD dataset that even though the orientation of the 

extracted data has changed, the general explained variance has remained relatively 

constant.  In the CICIDS2017 dataset, the principal components appear to have shifted 

more drastically, as the number of nodes changed.  The comparisons of the first versus 

second PCs determined with various nodes in each dataset are displayed in the following 

charts. 
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Figure 3-4: The first versus second PCs extracted with 1, 3, and 5 nodes in the 
NSL-KDD dataset.  The variances explained by PC 1 and PC 2, respectively, in 
1-node, 3-node, and 5-node extractions are the same. 
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Figure 3-5: The plots of the first versus second PCs extracted with 10, 25, and 50 
nodes in the NSL-KDD dataset.  The variances explained by PC 1 and PC 2, 
respectively, in these extractions are consistent. 
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Figure 3-6: The first versus second PCs extracted with 1, 3, and 5 nodes in the 
CICIDS2017 dataset.  PC 1 and PC 2 in these extractions look somewhat correlated. 
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Figure 3-7: The first versus second PCs extracted with 10, 25, and 50 nodes in the 
CICIDS2017 dataset.  The plots morph more rapidly with the increase in the number of 
nodes in this dataset. 
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3.4.4 Classification Model-Building 

To verify the effectiveness of the extracted features, various classifiers are built 

and tested before and after extracting the features.  All the values are numeric, so they are 

first normalized.  When using the original features, the chi-square statistic-based feature 

selection technique is utilized to select the top 19 features.  The chi-square requires 

discretized data.  The bin size of 1,000 is used for discretization.  The classifiers tested 

are based on Naïve Bayes, Neural Network, and k-NN.  Naïve Bayes is known to perform 

well with discretized data, so the same discretized data used for chi-square-based analysis 

is used for it.  Neural Network and k-NN handle continuous data.  The primary purpose 

of the experiments is to examine how the number of nodes used affects the quality of the 

extracted features.  The inter-classifier performance comparison is not the main motive.  

The parameters set for Neural Network are as follows — training cycle: 100, learning 

rate: 0.03, momentum: 0.4, and hidden layers: 2.  Similarly, for k-NN, the Euclidean 

distance measure with 𝑘 = 5 is used.  The built models are validated using the k-fold 

cross-validation technique with 5 folds. 

3.5 Results and Discussion 

This section presents and analyzes the time needed for feature extraction with a 

different number of nodes and the performance of the classifiers built using the features 

extracted in centralized and distributed manners. 

3.5.1 Time Analysis of Feature Extraction 

The time consumed by the series extraction, where each node waits for another 

node to finish its task before proceeding, and by the parallel extraction, where the nodes 

work simultaneously, are recorded.  One of the benefits of using a distributed feature 
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extraction technique is the reduction in time required for feature extraction.  The time 

needed for extraction significantly reduced when done in parallel.  The time taken to 

extract features stayed quite constant when done in series; however, when done in 

parallel, the time taken decreased as the number of nodes increased.  It appears that for 

massive datasets, the distributed feature extraction done in parallel takes a significantly 

shorter time.  Figure 3-8 depicts the reduction of time taken when the features are 

extracted in parallel with multiple nodes. 

 

Figure 3-8: The comparison between the time taken to extract the features from the a) 
NSL-KDD and b) CICIDS2017 datasets with a various number of nodes.  50-node 
parallel extraction is much faster than centralized extraction. 
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In the NSL-KDD dataset, the 50-node parallel feature extraction took 1.02 

seconds and was 7.21 times faster than the central extraction that took 7.33 seconds.  In a 

significantly larger CICIDS2017 dataset, the 50-node extraction took only 2.34 seconds, 

which was 26.74 times faster than 62.69 seconds that the central extraction took. 

3.5.2 Classification with Original Features 

The level of accuracy observed, when using the original features, ranged between 

88.75% and 97.94% in the NSL-KDD dataset and between 92.47% and 98.71% in the 

CICIDS2017 dataset.  The k-NN-based classifiers performed the best, and the Naïve 

Bayes-based ones performed the worst, in general, as seen in Table 3-5 and Table 3-6. 

Table 3-5: The comparison of performances between different classifiers built with the 
original features in the NSL-KDD dataset.  k-NN performs the best with an accuracy of 
97.94%. 

Classifier Recall Precision Specificity Accuracy 

Naïve Bayes 79.45 96.58 97.39 88.75 

Neural Network 96.87 96.23 96.52 96.69 

k-NN 97.97 97.75 97.92 97.94 
 

 

Table 3-6: The comparison of performances between different classifiers built with the 
original features in the CICIDS2017 dataset.  k-NN performs the best with an accuracy 
of 98.71%. 

Classifier Recall Precision Specificity Accuracy 

Naive Bayes 98.20 93.69 93.38 95.79 

Neural Network 87.72 96.93 97.22 92.47 

k-NN 98.89 98.54 98.54 98.71 
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It must be noted that even though k-NN appears to perform the best in terms of 

overall accuracy, the time taken (~5 hours) to build and validate each classifier based on 

it was significantly longer than what other algorithms took.  The Naïve Bayes-based 

classifiers took the shortest time, which was only a fraction of what the Neural 

Network-based classifiers took. 

3.5.3 Classification with Extracted Features 

All the extracted features are used to build the classification models.  The number 

of features varies based on the number of nodes and the dataset used.  The performance 

of every classifier of the same type stayed reasonably consistent even when using the 

features extracted with a different number of nodes.  Just like with the original features, 

the classifiers based on k-NN performed better on both datasets. 

In the NSL-KDD dataset, the highest accuracy of 98.49% was achieved by the 

k-NN-based classifier when using the centrally extracted features.  The Naïve 

Bayes-based classifier was the worst performer with the lowest accuracy of 91.92% 

when using the features extracted with 5 nodes.  Table 3-7 reports the performances of 

the classifiers constructed and validated for the NSL-KDD dataset using the features 

extracted in both centralized and distributed manners. 
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Table 3-7: The comparison of performances between different classifiers built with the 
features extracted using a various number of nodes for the NSL-KDD dataset.  The 
overall performance of the k-NN-based classifier is the best. 

Classifier Nodes Recall Precision Specificity Accuracy 

Naïve Bayes 1 90.98 93.01 93.66 92.37 

3 89.79 93.50 94.21 92.08 

5 91.28 91.87 92.51 91.92 

10 91.05 92.33 92.99 92.05 

25 93.84 89.55 90.70 92.14 

50 88.52 94.75 95.46 92.12 

Neural Network 1 94.69 96.82 97.11 95.95 

3 92.96 96.86 97.20 95.16 

5 96.79 92.92 93.67 95.11 

10 97.03 95.40 94.96 96.03 

25 94.93 95.84 96.18 95.58 

50 97.11 95.03 94.53 95.86 

k-NN 1 98.58 98.28 98.40 98.49 

3 98.35 98.18 98.31 98.33 

5 98.23 98.08 98.22 98.22 

10 98.22 98.35 98.23 98.23 

25 98.12 98.07 98.21 98.16 

50 98.24 97.99 97.83 98.04 
 

In the CICIDS2017 dataset, the centrally extracted features gave an accuracy of 

99.71% with the k-NN classifier.  The accuracy appears to fluctuate more significantly 

with the increase in the number of nodes in this dataset — with the lowest observed 

accuracy for the k-NN-based classifier being 99% when using the features extracted with 

50 nodes.  Each type of classifier’s corresponding accuracies, however, stayed somewhat 
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within the same range.  Table 3-8 shows the performances of the classifiers constructed 

and validated for the CICIDS2017 dataset using the features extracted in both centralized 

and distributed manners. 

Table 3-8: The comparison of performances between different classifiers built with the 
features extracted using a various number of nodes for the CICIDS2017 dataset.  The 
observed performance is comparable to the classifiers that use the centrally extracted 
features. 

Classifier Nodes Recall Precision Specificity Accuracy 

Naïve Bayes 1 93.56 89.59 89.13 91.34 

3 94.23 86.15 84.85 89.54 

5 92.68 86.03 84.95 88.81 

10 93.47 83.76 81.88 87.67 

25 92.65 86.17 85.13 88.89 

50 86.83 90.60 91.00 88.91 

Neural Network 1 92.02 92.89 92.95 92.48 

3 93.80 92.14 91.99 92.90 

5 90.12 93.16 93.39 91.76 

10 94.43 90.65 90.26 92.34 

25 90.70 96.07 96.29 93.50 

50 87.46 95.52 95.90 91.68 

k-NN 1 99.77 99.65 99.65 99.71 

3 99.66 99.49 99.48 99.57 

5 99.36 99.63 99.63 99.50 

10 99.50 99.22 99.22 99.36 

25 98.99 99.37 99.37 99.18 

50 98.76 99.24 99.25 99.00 
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3.5.4 FPR Analysis 

The FPRs of each of the classifiers constructed using the extracted features are 

compared and analyzed.  The best achievements in terms of FPR by each classifier are 

seen in Table 3-9. 

Table 3-9: The best FPR achieved by each of the tested classifiers on the respective 
datasets.  The lowest FPRs were achieved by the k-NN. 

Dataset Classifier Nodes Test Instances False Positives FPR 

NSL-KDD Naïve Bayes 50 148,517 3,502 4.52 

Neural Network 3 148,517 2,154 2.89 

k-NN 1 148,517 1,231 1.60 

CICIDS2017 Naïve Bayes 50 1,000,000 45,021 9.00 

Neural Network 25 1,000,000 18,531 3.71 

k-NN 1 1,000,000 7,308 1.46 
 

It must be acknowledged that even for a low FPR, the number of normal instances 

falsely predicted to be an attack can still be overwhelmingly high.  The FPR for the 

k-NN-based classifier on CICIDS2017 dataset is only 1.46%, but the number of 

instances falsely identified as an attack is 7,308.  If those instances are to be reviewed 

manually to verify the correctness of the classification, it could consume a significant 

amount of resources. 

3.6 Conclusions 

In this chapter, we discussed a distributed feature extraction method to build a 

classifier for an IDS.  It was based on PCA’s underlying principles.  The nodes computed 

the eigenpairs from their subset of the data locally.  These computed eigenpairs were sent 

to the central coordinator for aggregation.  With the globally approximated eigenpairs, 
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each node extracted the features from its portion of the dataset.  By extracting the features 

using multiple nodes, the time required for extraction was reduced significantly.  For the 

larger dataset, CICIDS2017, the extraction using 50 nodes took only 2.34 seconds, which 

was 26.74 times faster than when done centrally.  Extracting features in this manner also 

reduced the amount of data needed to be transferred to the central coordinator, requiring 

lower bandwidth and storage. 

We constructed several classifiers using the extracted features to verify their 

usefulness.  These classifiers were validated using the k-fold cross-validation technique.  

All the classifiers of the same type performed fairly evenly, regardless of the number of 

nodes used to extract the features.  The k-NN-based classifiers performed better 

consistently over other classifiers.  The best performances attained by the k-NN-based 

classifiers were the accuracy of 98.49% in the NSL-KDD dataset and 99.71% in the 

CICIDS2017 dataset.  Both best performances observed were for the features extracted 

using only one node, which is equivalent to the centralized extraction.  Despite this, the 

performances of the classifiers built using the features extracted with multiple nodes were 

comparable to the best performing classifiers that used the centrally extracted features.  

The worst performing k-NN-based classifier, which used the features extracted by 50 

nodes in the NSL-KDD dataset, still achieved an accuracy of 98.04%.  The same for the 

CICIDS2017 dataset was 99%.  Even though the k-NN based classifiers performed the 

best in terms of accuracy, the time required to construct them was significantly longer 

than what was required for the Naïve Bayes-based classifiers. 

With these observations, we conclude that there can be some degradation in 

performance when using the features extracted in a distributed manner; however, the 
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centrally extracted features tend to perform only slightly better over the features extracted 

distributedly.  The benefits like the reduced time needed to extract the features, the 

applicability in a distributed network environment, and the relieved stress on an IDS 

could make the distributed feature extraction worthwhile. 
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CHAPTER 4 
 

DISTRIBUTED CONSTRUCTION OF A PREDICTION MODEL 
 

4.1 Background 

The IDS classifiers that are constructed and implemented in a centralized manner 

continue to suffer from long training duration, slow detection, and poor robustness.  A 

load on an IDS could be distributed across several nodes to relieve the stress on a single 

IDS.  Doing so could improve the learning and detection speeds.  Similarly, since the 

network traffic-related data are rapidly generated and collected from various sources, 

transferring them regularly to the central system for detecting intrusions can be 

detrimental.  If the data available in distributed nodes are utilized to construct an IDS 

classifier collaboratively without having to transfer those data to the central coordinator, 

then that would reduce the required total bandwidth while also better preserving the 

privacy of data.  If those nodes could individually perform traffic monitoring and 

scanning using the classifiers constructed collaboratively, then the robustness would 

improve. 

This chapter discusses the distributed construction of a classifier based on the 

Bayes’ theorem for an IDS.  The collaboratively constructed model’s effectiveness is 

examined in terms of training duration, detection speed, and classification performances.  

The Bayes’ theorem helps determine the probability of an event occurring given that 
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certain events have occurred.  It calculates the posterior probability based on prior 

probabilities [33].  For two events, 𝐴 and 𝐵, the Bayes’ theorem is the conditional 

probability of 𝐴 occurring if 𝐵 has occurred, which is given by 

 𝑃(𝐴 | 𝐵) =
𝑃(𝐵 | 𝐴) · 𝑃(𝐴)

𝑃(𝐵)  , Eq. 4-1 

where 𝑃(𝐵 | 𝐴) is the conditional probability of 𝐵 occurring if 𝐴 has occurred, and 𝑃(𝐴) 

and 𝑃(𝐵) are marginal probabilities of 𝐴 and 𝐵 occurring, respectively.  The Bayes’ 

theorem is used in many classification applications [34]. 

If 𝐹 = {𝑓1, 𝑓2, … , 𝑓 } is the set of 𝑘 features in a dataset and 𝐶 = {𝑐1, 𝑐2, … , 𝑐 } is 

the set containing 𝑚 distinct class labels, then for a new unknown instance, 𝑥, the 

classification based on Bayes’ theorem is done using 

 𝑐(𝑥) = arg max
 ∈ 𝐶

𝑃(𝑐) · 𝑃(𝑣1, 𝑣2, … , 𝑣  | 𝑐), Eq. 4-2 

where 𝑐(𝑥) is the predicted class for 𝑥 and 〈𝑣1, 𝑣2, … , 𝑣 〉 is a feature vector containing 

the values from the respective features [35]. 

Naïve Bayes is a widely-known statistical classification technique based on 

Bayes’ theorem that naïvely assumes all the features to be independent [36].  It is known 

to perform well, even when this assumption of independence is violated to some extent.  

The strengths of Naïve Bayes include low storage requirements, high scalability, and the 

ability to train and make predictions quickly [37].  There are different variants of Naïve 

Bayes.  The Gaussian Naïve Bayes works with continuous features like the ones extracted 

in CHAPTER 3.  The categorical Naïve Bayes, however, demonstrated superior 

performance over the Gaussian Naïve Bayes during experiments; therefore, the 

discretized values from the extracted features have been used to construct a categorical 

Naïve Bayes classifier. 
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Once the classifier is built, as the new training data becomes available, the 

incremental training of Naïve Bayes depends only on updating the frequency counts, 

which makes it highly scalable.  Most algorithms used to construct a classifier require 

extensive retraining to fit both the new and old data when the new information becomes 

available.  If the model is not retrained to fit the newly available information, then the 

classifier can gradually lose its effectiveness and become obsolete.  For the models that 

require retraining, figuring out the best time to retrain the model is challenging [38].  The 

fact that Naïve Bayes works by merely counting the frequencies and does not require 

expensive retraining, as long as the frequency counts are kept up-to-date when the new 

instances are identified, makes it a solid choice for an IDS classifier. 

4.2 Related Works 

The interest in the construction and implementation of a collaborative IDS has 

grown gradually over the years.  The different types of collaborative IDS approaches 

have been surveyed in [39].  Many recent studies on collaborative IDS seem to focus on 

privacy preservation, robustness improvement, and overhead reduction.  Some relevant 

works in the literature are briefly discussed here. 

Toulouse et al. [33] propose a wholly distributed network IDS that works by 

detecting anomalies.  Their proposed method is based on the Naïve Bayes classifier, 

where the probabilities computed by one node are shared with other nodes through an 

iterative average consensus protocol.  The authors show that their consensus-based model 

has a lower communication overhead in comparison to other distributed methods. 

In [40], the authors study the distributed machine learning that is suitable when 

the data is distributed across several parties, and those parties do not wish to share the 
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raw data they possess with others.  Through their study, the authors propose utilizing the 

asynchronous stochastic gradient descent (SGD) algorithm to learn from the distributed 

features collaboratively.  Their proposed technique is capable of learning even when the 

original features or the local model parameters are not shared with others. 

Similarly, [41] proposes a modified Naïve Bayes algorithm for intrusion detection 

classification that is based on an artificial bee colony algorithm.  The authors compare 

their version of the algorithm with other competing algorithms and successfully 

demonstrate that their algorithm performs better than the competitors.  Through some 

experiments, they show that their method gets over 91% accuracy in the NSL-KDD 

dataset. Fung et al. [42] present a collaborative framework for intrusion detection 

networks that uses a Bayesian approach for feedback aggregation. 

A thorough literature review reveals that despite some achievements, further 

advancement is needed to ensure that the IDSs can keep up with the shifting dynamics of 

the network ecosystem that has growingly adapted to the distributed architecture. 

4.3 Methodology 

4.3.1 Data Preparation & Transformation 

Suppose 𝐴 = {𝐴1, 𝐴2, … , 𝐴 } is a set containing all the nodes and 𝑋 =

{𝑋1, 𝑋2, … , 𝑋 } is the set of data on each corresponding node.  Each part of the data has 

the same number of features.  If they have 𝑘 features each, then for the part of data, 𝑋 , 

the set of its features is represented as 𝐹 = {𝑓1 , 𝑓2 , … , 𝑓 }.  Since the number of 

rows varies in each part, let 𝑁 = {𝑛𝐴 , 𝑛𝐴 , … , 𝑛𝐴 } be the set containing the number of 

rows for each data part distributed across 𝑗 nodes. 
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The datasets containing the features extracted in CHAPTER 3 and their 

corresponding class labels are the source of data for this chapter.  It is assumed that each 

participating node has its own set of data containing the extracted features and class 

labels.  For a network with 𝑗 nodes, there are 𝑗 parts of data with each consisting a 

varying number of rows.  The testing set is created by randomly sampling and separating 

the sampled instances from the data extracted by the nodes.  The training is done using 

the remaining data.  The ratio of training and testing sets is about 4:1. 

Some data transformations are necessary to prepare the data for further 

processing.  Because the data is decentralized, the alterations must be done in a 

distributed way.  The two main transformations include data standardization and binning. 

4.3.1.1 Standardization 

Even though the principal components in CHAPTER 3 are extracted using the 

standardized data, the post-extraction data are no longer in a standard form; therefore, the 

data is standardized by using the same technique described in section 3.3.4.1. 

4.3.1.2 Discretization by Binning 

The fixed-width binning is performed after standardization to discretize the 

continuous values in each dataset.  Because the data is distributed, the binning must be 

done collaboratively.  Each node evaluates the values in its features and sends the 

minimum and maximum values in its features to the central coordinator. 

Suppose 𝑀𝑖𝑛𝑀𝑎𝑥𝐴 = 𝑓 𝐴 , 𝑣 , 𝑣 :  1 ≤ 𝑖 ≤ 𝑘  is the set containing 

the features, 𝑓 , in node, 𝐴 , and their corresponding observed maximum and minimum 

values.  Each respective node shares this with the central coordinator.  The central 

coordinator determines the global minimum and maximum values for each feature based 
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on the information received from all the nodes.  It, then, with some specified number of 

bins, computes the width of bins for each feature using Eq. 3-2.  Once the widths are 

computed, they are shared with all the nodes along with the observed global minimum 

value for each feature.  The nodes, with the received widths and respective universal 

minimum values, perform binning.  The binning so undertaken is consistent and puts the 

values belonging to the same range in the same bin across all nodes. 

4.3.2 Features Analysis and Selection 

The available features are analyzed to ensure their usability to construct a 

classifier.  Selecting the most suitable features and removing the unnecessary features 

impact the performance of the classifier.  Because Naïve Bayes-based classifier assumes 

independence among attributes, it is crucial to ensure that only the considerably 

uncorrelated features that hold the most information about the class are selected.  The 

principal components being used as features are orthogonal to one another, so they are 

considered independent, but the feature analysis is still conducted to identify the most 

suitable features to build a classifier.  Since the datasets are distributed across several 

nodes, each node performs a chi-square statistic-based analysis to test the independence 

of the existing features only on its part of data. 

The chi-square test of independence is one of the statistical methods to examine 

the dependency between two variables, which is given by 

 𝑥2 =
𝑂 , − 𝐸 ,

2

𝐸 ,=1=1

 , Eq. 4-3 

where 𝑑 is the degrees of freedom, such that 𝑑 = (𝑟 − 1) · (𝑢 − 1), 𝑟 is total rows, 𝑢 is 

total columns, and 𝑂 ,  and 𝐸 ,  are the observed and expected values of two categorical 

attributes, respectively.  This method ranks each feature based on its dependency on the 
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target variable.  It identifies the features that have a low reliance on other features but a 

high dependence on the class. 

 All the features and their ranking weight computed on each node are shared with 

the central coordinator.  The central coordinator averages the weights received from the 

nodes and sends the features along with their corresponding averaged weight back to the 

nodes.  The central coordinator also instructs each node to use the top 𝑛 features for 

classifier construction. 

4.3.3 Naïve Bayes Classifier 

The Naïve Bayes classifier is one of the Bayesian Network Classifiers that makes 

a bold assumption of the features being independent [35].  If 〈𝑣1, 𝑣2, … , 𝑣 〉 is the feature 

vector containing the values for each of the respective 𝑘 features; then, the classification 

done using this method is expressed as 

 𝑐(𝑥) = arg max
 ∈ 𝐶

𝑃(𝑐) · 𝑃(𝑣  | 𝑐)
=1

, Eq. 4-4 

where ∏ 𝑃(𝑣  | 𝑐)=1  is the product of all class-specific conditional prior probabilities of 

the values in each feature.  When the data is distributed, each node must send some 

relevant information on its data to the central coordinator to be able to build the 

classification model.  This process is discussed in the following sections. 

4.3.4 Distributed Model-Building 

The global frequency of every value in each feature associated with a class that is 

representative of the entirety of data must be determined in a distributed manner.  

Additionally, to compute the class-specific prior probabilities, the class frequencies must 

also be computed collaboratively. 
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4.3.4.1 Data Separation by Class 

It is necessary to segregate the data by class labels to ease counting the 

class-specific frequency of each value in every feature.  The class-segregated data in a 

node 𝑗 can be expressed as 𝑋 = 𝑋 , 𝑋 , … , 𝑋 .  The 𝑚 different classes in a dataset 

can be represented as 𝐶 = {𝑐1, 𝑐2, … , 𝑐 }.  Once the data is separated based on the 

association with the class labels, the frequencies are counted. 

4.3.4.2 Local Frequency Counting 

Every node counts the number of rows in its dataset representing each class.  

Similarly, every node also computes the class-specific frequency of each value in a 

feature.  Let 𝒻 represent the frequency and ℱ represent the set of frequencies.  For 𝑚 

distinct classes in 𝐶, a set containing the frequencies for each class in node 𝐴  can be 

expressed as 

 ℱ = 𝒻 ∶ 1 ≤ 𝑖 ≤ 𝑚 . Eq. 4-5 

Similarly, if there are 𝑝 unique values in a feature 𝑓  associated with the class 𝑐  in node 

𝐴 , then the set containing class-specific frequencies for each value can be represented as 

 ℱ = 𝒻 ∶ 1 ≤ 𝑖 ≤ 𝑝 . Eq. 4-6 

Each node determines the class-specific value frequencies for all unique values in each of 

the features.  The calculated class frequencies and class-specific value frequencies are 

sent to the central coordinator. 

4.3.4.3 Global Frequency Counting 

The central coordinator uses the collected local frequencies to compute the global 

frequencies that are representative of the cumulative data. 
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4.3.4.3.1 Class Frequencies 

All the corresponding class frequencies from each node are summed to get the 

total frequency that is representative of the entire global data.  Based on the class 

frequencies received from each node, a set containing global class frequencies can be 

determined as 

 ℱ = ℱ
=1

: 1 ≤ 𝑖 ≤ 𝑚 , Eq. 4-7 

where 𝑚 is the number of classes and 𝑗 is the number of nodes.  Based on the elements in 

ℱ , the total number of rows, 𝑁, in all the data parts combined can be computed as 

 𝑁 = ℱ
=1

. Eq. 4-8 

The central coordinator shares the set containing the computed global frequency of each 

class, ℱ𝑐, and the total number of rows, 𝑁, with each participating node. 

4.3.4.3.2 Class-Specific Value Frequencies 

The central coordinator compiles all the local class-specific frequencies for each 

value in every feature.  For a feature 𝑓  associated with class 𝑐 , the global class-specific 

value frequencies for 𝑝 unique values can be determined as 

 ℱ = ℱ
=1

∶ 1 ≤ 𝑖 ≤ 𝑝 . Eq. 4-9 

Such computation is repeated for every feature and class.  The sets containing global 

class-specific value frequencies for each feature and class are also shared with the nodes. 

4.3.5 Local Prior-Probabilities Computation 

After each node has access to the information containing the class frequencies and 

class-specific value frequencies, it can individually compute the necessary probabilities 
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to perform the Naïve Bayes classification.  If 𝑃  is the set of class probabilities, then its 

elements are computed as 

 𝑃 =
ℱc

𝑁
∶ 1 ≤ 𝑖 ≤ 𝑚 . Eq. 4-10 

Similarly, if 𝑃  is the set containing prior probabilities of 𝑝 unique values 

appearing in a class, 𝑐 , for a feature, 𝑓 , then its elements are computed as the ratio 

between the value’s and class’ frequencies, given by 

 𝑃 =
ℱ

ℱ
∶ 1 ≤ 𝑖 ≤ 𝑝 , Eq. 4-11 

where ℱ  is the global frequency of the 𝑖th value in a feature 𝑓  for the class 𝑐  and 

ℱ  is the global frequency of the class 𝑐  from the set ℱ .  Such prior probabilities are 

computed for the values in all the features associated with each class. 

Both class and value probabilities are necessary to perform classifications.  The 

prediction model construction using Naïve Bayes depends only on these prior 

probabilities, so it is a quick learning algorithm. 

4.3.6 Classification 

Any participating node can classify a new unknown instance according to the Eq. 

4-4 by using the available global prior probabilities.  The likelihood of each class being 

the right one for a newly observed instance is computed.  An instance is then classified 

into the class that has the highest probability of being the correct one. 

4.3.7 Validation 

The predictors constructed using a distributed approach is validated on each of the 

nodes.  The testing set is created by randomly sampling the instances and separating them 

from the data on each node.  The remaining data is used for training, which involves 
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frequency counting and probability calculations.  This process follows the holdout 

cross-validation method, with 80% of data used for training, and the remaining 20% 

held-out data used for testing.  The results observed using the classifiers constructed with 

a different number of nodes are compared against each other to analyze the outcomes. 

4.4 Experimental Procedure & Observations 

4.4.1 Data Transformation & Splitting 

The data in each node are standardized using a collaborative method explained in 

3.3.4.1.  After standardization, these data are discretized to make them appropriate for the 

chi-square statistic-based analysis and categorical Naïve Bayes.  The discretization is also 

done collaboratively, as described in 4.3.1.2, using the equal-width binning method with 

1,000 bins for both NSL-KDD and CICIDS2017 datasets.  The 20% of instances in the 

nodes are randomly sampled and separated to form a testing set.  The rest of the data are 

used as the training set.  The training part of the dataset is used for feature selection, 

frequency counting, and other training-related procedures.  The testing part of the data is 

used solely for testing and validation. 

4.4.2 Features Analysis and Selection 

The features extracted in CHAPTER 3 are analyzed, after standardization and 

discretization, using the chi-square test of independence technique to identify the best 

features to build a classifier.  The analyzed features, along with the normalized relevancy 

weights assigned to them, are sent to the central coordinator.  The central coordinator 

averages the relevancy weights.  The top 15 features with the most significant aggregated 

weights are selected for model-construction.  Figure 4-1 and Figure 4-2 show the 

relevance of the features extracted in distributed manners. 
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Figure 4-1: The relevance of each feature determined by the chi-square test of 
independence in the NSL-KDD dataset using a varying number of nodes.  PC 1 and 
PC 2 are consistently identified as the two most relevant features. 

 

 

Figure 4-2: The relevance of each feature determined by the chi-square test of 
independence in the CICIDS2017 dataset using a varying number of nodes.  PC 4 is 
most-frequently identified as the most relevant feature. 
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4.4.3 Data Separation by Class 

Each node segregates its part of the data by class.  Such segregation is optional, 

but it is easier to count the class and value frequencies when the instances belonging to 

the same class are grouped.  All pieces of the data have two classes — Attack and 

Normal.  Through analysis of the segregated data, it is evident that even though the data 

were randomly sampled and split across several nodes, the class balance is still mostly 

maintained.  Such a balanced dataset, where all the classes are evenly represented, is 

suitable for classifier construction, as it helps mitigate potential biases. 

4.4.4 Frequency Counting 

Even when the class frequencies are counted in a distributed manner with a 

varying number of nodes, the resulting frequencies for a respective class is always the 

same.  Similarly, the cumulative total number of rows for the datasets is also always 

equal.  The class probabilities, as a result, for each class label stays the same for any 

number of nodes; however, this does not apply to class-specific values’ frequencies 

because the data extracted in CHAPTER 3 are different for a different number of nodes.  

Such difference causes the bins to form differently during the discretization process, 

which results in a discrepancy of frequency for class-specific values in a feature. 

 The data containing frequency-related values exchanged between each node and 

the central coordinator are sent in a JavaScript Object Notation (JSON) format where the 

key-value pair is formatted in a dictionary form [43].  Depending on the information 

being exchanged, the key contains the class label or the unique value from the dataset, 

and the value contains the corresponding frequency. 
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4.4.5 Model Construction 

The training phase of model construction constitutes using the counted 

frequencies to compute the required probabilities.  In Naïve Bayes, the model 

construction only involves the computations of prior probabilities.  The posterior 

probability of an instance belonging to the class can be calculated based on the prior 

probabilities.  The testing phase validates the constructed model with the test set of the 

data.  The results observed during the testing and validation of the constructed models are 

reported in the following section. 

4.5 Results and Discussion 

4.5.1 Training and Detection Durations Analysis 

The training duration is the time taken to construct a classifier, and the detection 

duration is the time the constructed classifier takes to classify all the instances in the 

testing set.  The training and detection durations decreased as the number of nodes 

increased.  The centralized training took 1.141 seconds and detection took 0.016 seconds 

for the NSL-KDD dataset.  When using 50 nodes for the same dataset, the training and 

detection durations plummeted to 0.01 and less than 0.001 seconds, respectively.  

Similarly, for the CICIDS2017 dataset, the centralized training took 8.781 seconds, and 

detection took 0.094 seconds.  With 50 nodes, it only took 0.151 seconds to train and 

0.004 seconds to detect.  The rates of decrease appear to follow the exponential decay 

trend, as observed in Figure 4-3. 
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Figure 4-3: The comparison between training and detection speeds when using various 
number of nodes for model construction and intrusion detection.  The duration for both 
training and detection reduced as the number of nodes increased. 

It must be noted that these durations do not account for network latencies.  The 

observed shortening of training and detection duration implies that it is possible to 

distribute an IDS classifier construction and detection jobs across several nodes to boost 

the speed. 

4.5.2 Classification Performance 

Despite using the varying number of nodes to build the classifiers, the observed 

performance remained consistent.  In the NSL-KDD dataset, all predictors attained over 

91% accuracy for any number of tested nodes.  In the CICIDS2017 dataset, the 

performance fluctuated more rapidly, with the lowest accuracy observed being just over 

87%, and the highest accuracy observed being close to 90%.  The performances of the 

distributed classifiers are reported in Table 4-1. 
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Table 4-1: The performance comparisons between the classifiers constructed in a 
distributed way using a varying number of nodes. 

Dataset Nodes Recall Precision Specificity Accuracy 

NSL-KDD 3 90.67 94.32 93.56 91.99 

5 91.83 92.41 91.83 91.83 

10 91.80 89.93 90.87 91.31 

25 90.37 94.29 93.46 91.78 

50 94.31 88.36 89.85 91.85 

CICIDS2017 3 93.72 86.65 85.45 89.60 

5 89.78 88.11 87.92 88.85 

10 93.18 83.17 81.11 87.15 

25 92.39 86.23 85.28 88.83 

50 90.99 87.93 87.48 89.24 
 

4.5.2.1 Centralized vs. Distributed Predictor Performance 

The Naïve Bayes-based predictors constructed in a distributed manner are 

compared against the ones that were constructed centrally in CHAPTER 3 (see Table 3-7 

and Table 3-8).  Even though the predictors constructed in a distributed manner using the 

procedure discussed in this chapter appear slightly inferior in terms of accuracy, their 

observed performance is still impressive.  The centrally constructed predictors, which use 

the features extracted in a distributed manner, have performed only slightly better in most 

cases than their counterparts that use the features extracted and the classifier constructed 

distributedly.  The models constructed to examine the quality of the features in 

CHAPTER 3, however, did not involve any feature selection.  Figure 4-4 shows 

comparisons between centralized and distributed classification models. 
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Figure 4-4: The performance comparison based on accuracy between the predictors 
constructed in centralized and distributed manners.  When 3, 5, and 50 nodes were 
used for the CICIDS2017 dataset, the distributed classifier performed better than the 
centralized classifier. 

4.5.3 FPR Analysis 

The FPR, when using the NSL-KDD dataset, stayed below 10% for any number 

of nodes; however, in the CICIDS2017 dataset, the FPR was regularly over 12%, with the 

worst FPR being 18.89% when using ten nodes.  In comparison to the predictors 

constructed centrally in CHAPTER 3 (see Table 3-9), the classifiers constructed in a 

distributed manner have higher FPRs for both datasets, as seen in Table 4-2. 

Table 4-2: The best FPR achieved in each dataset by the distributed Naïve Bayes. 

Dataset Nodes Test Instances False Positives FPR 

NSL-KDD 3 29,703 878 6.44 

CICIDS2017 5 200,000 12,097 12.08 
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4.6 Conclusions 

With the growing volume of data that an IDS must process to detect attacks, the 

centralized IDSs are becoming outdated for modern-day distributed network 

infrastructures that facilitate high-volume data exchanges.  The attacks are evolving 

rapidly, so an IDS must adapt continuously to retain its effectiveness.  We identified 

categorical Naïve Bayes as a scalable method that is fast and appropriate for an IDS, as it 

only requires frequency counting and prior probability computations for model 

construction.  This chapter outlined a procedure to perform Naïve Bayes in a distributed 

setting, where numerous nodes, with the help of the central coordinator, collaboratively 

construct a classifier and independently detect attacks. 

By constructing and validating the classifiers using multiple nodes, we 

demonstrated that the durations for constructing classifiers and detecting attacks could be 

reduced by employing multiple nodes.  The rate of decrease in duration closely followed 

the exponential decay trend when more nodes were added into the network.  Similarly, 

the classifiers retained a similar level of performance-accuracy even when numerous 

nodes were used for classification model construction, instead of just one.  The 

distributed classifiers constructed with the NSL-KDD dataset consistently attained an 

accuracy of over 91%; whereas, the ones constructed with the CICIDS2017 dataset 

attained the accuracy between 87.15% and 89.60%.  Such observations show that when 

the data is spread across several nodes, an effective distributed classifier can be 

constructed and utilized. 

It is apparent that the classifiers constructed and deployed in a distributed manner 

can handle a larger volume of data in a shorter time.  In addition, since each node can 
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independently detect the attacks, once the model is constructed, such an approach 

mitigates the issues related to the single point of failure by making the IDS 

implementation more robust. 
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CHAPTER 5 
 

SIMILARITY MEASURE-BASED LEARNING AND 
MULTI-MODEL BINARY CLASSIFICATION 

 

5.1 Background 

In CHAPTER 3, we used the numerical attributes in the available datasets for 

feature extraction, and in CHAPTER 4, we utilized those extracted features for 

collaborative classifier construction.  Because the PCA, which works with numerical 

data, was used for feature extraction, all the existing categorical data present in the 

datasets had been ignored; therefore, any significance held by them were disregarded.  

We now introduce a similarity measure-based classification algorithm that utilizes 

categorical data. 

Even though the distance measures are often perceived as applicable only to the 

points in a 3-dimensional space, most distance measures can compute the distance 

between multi-dimensional data points that extend beyond the 3-dimensional physical 

space [44].  Based on the properties a distance measure satisfies, it can be categorized 

into metric distance measure or semi-metric distance measure.  For points 𝐴, 𝐵, and 𝐶, a 

metric distance measure meets the following properties. 

a) The distance between 𝐴 and 𝐵 is greater than or equal to 0. 

b) The distance between 𝐴 and 𝐵 is 0, if and only if 𝐴 = 𝐵. 

c) The distance between 𝐴 and 𝐵 is equal to the distance between 𝐵 𝑎𝑛𝑑 𝐴. 
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d) The distance between 𝐴 and 𝐵 is less than or equals to the sum of 

distances between those points and some other point; i.e., 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐴, 𝐵) ≤ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐴, 𝐶) + 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐶, 𝐵). 

A semi-metric distance measure, on the other hand, satisfies only the first three of these 

properties [45].  The dissimilarity and similarity between points are typically related, 

such that the degree of similarity between two points, 𝐴 and 𝐵, can be expressed as 

 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝐴, 𝐵) = 1 − 𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝐴, 𝐵), Eq. 5-1 

where 𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝐴, 𝐵) is the degree of dissimilarity computed by a distance measure, 

and 𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝐴, 𝐵) = 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐴, 𝐵).  Some similarity measures do not require the 

computation of the degree of dissimilarity and work with categorical data.  Cosine 

similarity, which has widespread applications, is one of them.  It finds the cosine angle 

between the vectors — a smaller angle implies more similarity [46]. 

For two non-zero vectors, 𝐴 and 𝐵, the cosine similarity is computed as their dot 

product and magnitudes, which is given by 

 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝐴, 𝐵) = 𝐶𝑜𝑠(𝜃) =
𝐴 · 𝐵

‖𝐴‖ × ‖𝐵‖ . Eq. 5-2 

As seen in Eq. 5-2, the similarity between 𝐴 and 𝐵 is based on the ratio between their dot 

product and the product of their L2-norms.  The resulting value ranges from −1 to 1.  

When the value is −1, then the two vectors are the opposite; when the value is 0, then 

they are orthogonal; and, when the value is 1, the cosine angle is the least, and the vectors 

are precisely the same. 

The presented similarity measure-based classification technique determines the 

frequency-based centroid of the data by averaging the frequencies of all unique values in 

each feature.  It uses the cosine similarity-based method to find the degree of similarity 
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between the class-specific value weights vector of a newly observed instance and the 

determined centroid of the data.  The computed degree of similarity is then used to 

perform a supervised classification. 

As an extension, the computed similarities are utilized along with the probabilities 

yielded by a Naïve Bayes-based classification model constructed using a technique 

discussed in CHAPTER 4 to form the inputs for the third classifier.  The purpose of such 

multi-model approach is to improve the overall accuracy of the classification. 

5.2 Related Works 

There have been many studies on distance measures in terms of their applicability 

to the IDS.  Since the behavioral-based IDS may use a classification or clustering 

technique to build a model, the distance measures that are appliable to these are of 

interest.  A survey of distance and similarity measures used in the network anomaly 

detection problem domain is conducted in [44].  An overview of the distance-based 

classifications is given in [47]. 

Ahmed et al.  [48] propose a dissimilarity metric based on Minimum Spanning 

Tree (MST).  This metric is used to isolate the abnormal clusters and individual data 

points by using a two-step process where the MSTs are first built at the global level and 

then at the local level.  Out of the compared methods, the authors show that their 

proposed method performs better in most cases. 

A new metric distance measure for categorical values is proposed in [49] for 

unsupervised learning.  This metric considers the frequency probability of each attribute 

in the entire dataset to compute the distance between two categorical data.  Additionally, 
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to ensure that the distance metric treats each attribute differently, based on their 

importance, a dynamic attribute weight is assigned to them. 

Kruegel et al. [50] present an anomaly-based IDS that utilizes a multi-model 

process to detect anomalous traffic to defend web servers and web-based applications.  

Their method employs multiple models that analyze the queries used to pass the 

parameters to invoke the server-side programs.  Each model assigns a probability value 

based on their observation.  The detection relies on those values.  The authors claim that 

when the models outputted Bayesian technique-based probability values, they produced 

favorable results. 

This chapter discusses a procedure for conducting a similarity measure-based 

supervised classification, which is different than what is found in the recent literature 

because it deals with structured categorical data using a directed technique.  Additionally, 

it is ensembled with the probabilistic technique discussed in CHAPTER 4 to produce 

relevant outputs for a tertiary classifier that is used to achieve a higher accuracy through a 

multi-model classification approach. 

5.3 Methodology 

5.3.1 Data Selection and Integration 

The categorical data available in the original datasets had been ignored in the 

previous chapters, and only the numerical and discretized-numerical data were used.  The 

previously unused attributes containing the categorical values from both NSL-KDD and 

CICIDS2017 datasets are shown in Table 5-1. 
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Table 5-1: The categorical attributes in the NSL-KDD and CICIDS2017 datasets 
utilized for the similarity measure-based classification.  These attributes were ignored in 
the previous chapters. 

Dataset Categorical Attributes 

NSL-KDD protocol · service · flag · land · logged_in · root_shell · su_attempted · 

is_hot_login · is_guest_login 

CICIDS2017 Destination Port · FIN Flag Count · SYN Flag Count · RST Flag Count · 

PSH Flag Count · ACK Flag Count · URG Flag Count · CWE Flag Count · 

ECE Flag Count 
 

The utilized data for the proposed classification method is inclusive of the original 

categorical attributes.  The categorical attributes are integrated with the principal 

components, which were centrally extracted in CHAPTER 3, to form a dataset containing 

both categorical and numerical data.  Figure 5-1 depicts the data integration process. 

 

Figure 5-1: Data integration performed to combine the previously unused categorical 
data and the numerical PCs extracted in CHAPTER 3. 

The dataset formed through integration also includes the class labels.  Such 

integrations are undertaken for both NSL-KDD and CICIDS2017 datasets. 

5.3.2 Data Transformation 

 The numerical data are normalized and discretized to ensure their suitability for 

the discussed supervised classification method. 
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5.3.2.1 Normalization 

It is essential to normalize the numerical data present in the datasets because of 

the reasons explained in section 2.2.1.  The normalization is done using the z-score 

normalization technique, as described in section 3.3.4.1.  The distributed technique of 

normalization can be used even in a centralized environment by assuming the presence of 

only one node. 

5.3.2.2 Discretization by Binning 

It is necessary to discretize the numerical values into categorical values.  The 

equal-width binning method is used for this with the bin size of 1,000 for each dataset.  

The discretization follows the process undertaken in CHAPTER 4.  See section 4.3.1.2. 

5.3.3 Features Analysis, Ranking, and Selection 

All available attributes are analyzed to identify the ones that would be most useful 

to build a classification model.  The analysis is done by testing the independence between 

two features.  The idea is to identify the features that are independent of one another but 

are dependent on the class label.  The features are analyzed using the chi-square 

statistic-based method, which has been described in section 4.3.2.  The features are 

ranked based on their determined importance, after analysis.  The top 𝑛 features 

identified as important are selected to build the classification models. 

5.3.4 Similarity Measure-based Classification (SMC) 

This subsection formally introduces SMC.  First, the frequency of each unique 

value in the features are counted.  The determined value-specific frequencies for each 

feature in the entire dataset are averaged to identify the data centroid.  After determining 

the centroid, the instances are separated by class labels.  The selected features are 
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analyzed to find the frequency of the values on those features for the respective class.  

Each unique value is assigned a class-specific frequential weight.  For a newly-observed 

instance, the similarity between the class-specific weights for its values and the data 

centroid is calculated.  Such measurement is repeated for each class.  An observed 

instance is then classified into the class whose weights vector for the values in the 

instance shares the highest similarity with the centroid. 

It is possible to perform SMC in both centralized and decentralized environments.  

Suppose a dataset, 𝑋, has a finite number of categorical attributes and a target variable, 𝐶, 

containing class labels.  Let 𝐹 = {𝑓 ∶ 1 ≤ 𝑖 ≤ 𝑛} be the set of selected 𝑛 features and 

𝐶 = {𝑐 ∶ 1 ≤ 𝑖 ≤ 𝑝} be the set of 𝑝 unique class labels.  The data is separated based on 

the class label, such that: 𝑋 = 𝑋 , 𝑋 , … , 𝑋 .  The paired list of all the selected 𝑛 

features and the corresponding unique values they hold that are associated with a specific 

class, 𝑐, can be represented as 

 𝑋 = 𝑓 , 𝑣 : 1 ≤ 𝑗 ≤ 𝑘 ∶ 1 ≤ 𝑖 ≤ 𝑛 , Eq. 5-3 

where 𝑛 is the number of features and 𝑘  is the number of unique values in feature, 𝑓 , 

for the class, 𝑐. 

5.3.4.1 Frequency Analysis 

The frequency analysis of the values in the entire dataset and in each specific 

class are performed to determine the required frequencies.  Let 𝒻 represent the frequency 

in the following sections. 
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5.3.4.1.1 Value-Frequency in Dataset 

The number of occurrences is counted for each unique value in a feature.  Such 

counting is done without any regard to the class labels.  If a dataset has 𝑁 number of 

rows, then for a unique value, 𝑣 , in a feature, 𝑓, the frequency can be determined using 

 𝒻 = 𝑣 = 𝑣
𝑁

=1

, Eq. 5-4 

where the frequency, 𝒻 , is computed by comparing every unique value, 𝑣 , against all 

the other values, 𝑣 , in a feature, 𝑓.  The frequency is incremented by 1 whenever a 

match is found, as denoted by the Iverson bracket in Eq. 5-4.  The frequencies so 

computed for every possible value in each feature are stored.  The purpose of determining 

these frequencies is to compute the frequency-based centroid of the training set. 

5.3.4.1.2 Value-Frequency in Class 

The portion of data associated with a class is analyzed to determine each value’s 

class-specific frequency in a feature.  The frequency analysis is done by counting each 

occurrence of a particular value in a feature for a class, 𝑐.  This frequency counting 

process can be expressed similar to Eq. 5-4 as 

 𝒻 = 𝑣 = 𝑣
𝑁

=1

, Eq. 5-5 

where the frequency, 𝒻𝑣𝑓𝑐
, is determined by comparing each unique value 𝑣  against 

other values, 𝑣 , in a feature, 𝑓, for a class, 𝑐.  For each match, the frequency is 

incremented.  Such frequency analysis involves all 𝑁  instances associated with a class.  

The resulting frequency distribution for every possible value in all selected features for a 
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specific class is stored.  The values are assigned a weight based on their class-specific 

frequency. 

5.3.4.2 Frequency-based Data Centroid 

The centroid is identified by averaging all the frequencies for the values in a 

feature.  These frequencies are computed using the process explained in section 5.3.4.1.1.  

For a dataset with 𝑛 number of selected features, the data centroid, 𝑚, based on the value 

frequencies can be determined using 

 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 (𝑚) =
1

𝑘
𝒻

=1

: 1 ≤ 𝑖 ≤ 𝑛 , Eq. 5-6 

where 𝑘  is the number of unique values in feature, 𝑓 , and 𝒻 is the frequency for the 

𝑗th value in feature, 𝑓 .  The centroid is formed by the averages of the frequencies for 

each value in the selected features.  The computed centroid is used to determine the 

similarity between an observed new instance and the class. 

5.3.4.3 Frequential-Weight Determination 

The weight for each value based on its frequency is computed relative to the 

number of rows in a dataset containing only class 𝑐 and the total number of rows in the 

entire dataset.  The expression to compute the weight, 𝑤𝑣𝑓𝑐
, for each value is given by 

 𝑤 =
𝒻 × 𝑁

𝑁
 , Eq. 5-7 

where 𝒻𝑣𝑓𝑐
 is the frequency of a value, 𝑣, in a feature, 𝑓, for a class, 𝑐, 𝑁  is the number 

of instances representing the class 𝑐 and 𝑁 is the total number of instances in the dataset. 
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After the class-specific weight for each value is determined and stored, the weight 

for any existing value can be extracted using the mapping function, W, which gives the 

weight, w, associated with a value, v.  𝑊 can be defined as 

 𝑊(𝑥) =  𝑤,                for 𝑥 = 𝑣 
 𝑊(𝑣), otherwise Eq. 5-8 

If an associative array with a value-weight pair for all the possible values is maintained, 

then for a value 𝑣  associated with the class 𝑐 in a feature 𝑓, its weight 𝑤𝑣𝑓𝑐
 can be 

determined by using the mapping function represented by 

 𝑊 ∶ 𝑣 → 𝑤 . Eq. 5-9 

5.3.4.4 Similarity Measurement 

The degree of similarity is measured between the class-specific weights vector 

representing a newly observed instance, 𝑒, and the centroid of the data.  First, the values 

for each feature from an observed instance are extracted.  Then, by using the function, 𝑊, 

the class-specific frequency-based weights for the values are determined, and these 

weights are used to form a vector.  For 𝑛 features, suppose 𝑤 = 〈𝑤1 , 𝑤2 , … , 𝑤 〉 is 

a vector defined by the weights for the values in an observed instance for a class, 𝑐, and 

𝑚 = 〈𝑚1, 𝑚2, … , 𝑚 〉 is the vector defined by the values describing a centroid.  There 

can be situations where some values in a feature are present only for certain classes.  In 

those situations, the weight of 0 is assigned to such values for a class.  The components 

in 𝑤  and 𝑚 are in the same order, with each component in 𝑤  representing the 

class-specific weight for a value in a feature and the corresponding component in 𝑚 

representing the feature-specific average of the global value-frequencies.  When there are 

𝑛 features, the cosine similarity between 𝑤  and 𝑚 can be measured using Eq. 5-2 as 



79 

 
 

 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑤 , 𝑚 =
∑ 𝑤 × 𝑚=1

∑ 𝑤2
=1 ∑ 𝑚2

=1

 . Eq. 5-10 

Since each component of 𝑤  has a value that is 0 or higher and 𝑚 has all positive 

components, the resulting degree of similarity ranges between 0 and 1, with 0 implying 

that the vectors are entirely dissimilar and 1 implying that they are the same. 

5.3.4.5 Classification 

The classification is done by comparing the degree of similarity between the 

class-specific frequential-weights for an observed instance and the centroid of data.  If 

there are 𝑝 classes, then let 𝑤 = 𝑤 : 1 ≤ 𝑖 ≤ 𝑝  be the set containing the compiled 

sets of value-weights in an instance for each of the classes.  Then, the computed 

similarities between the elements in 𝑤  and the centroid, 𝑚, can be represented as 

 𝑆 = 𝑆 𝑤 , 𝑚 ∶  1 ≤ 𝑖 ≤ 𝑝 . Eq. 5-11 

The highest degree of similarity is the most significant value in 𝑆 , such that 

 𝑆 = max 𝑆 . Eq. 5-12 

An observed instance is then classified into the class that it shares the most 

similarity with, as represented by the following mapping function, 𝒞. 

 𝒞 ∶ 𝑆 → 𝑐 Eq. 5-13 

5.3.5 Distributed SMC 

The SMC has been performed centrally for experiments; however, it is possible to 

perform SMC in a distributed environment.  This subsection outlines how this can be 

done.  When performing SMC in a distributed setting, the frequency of each value must 

be counted in a distributed manner.  The number of instances associated with every class 
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also must be counted collaboratively.  These processes closely follow the procedures 

explained in sections 4.3.4.1, 4.3.4.2, and 4.3.4.3.  Each node, first, segregates the data by 

class and counts the number of instances it has for every class.  Then, it computes the 

value’s local frequency in a feature for a class.  The frequencies of the values in the entire 

dataset can be calculated similarly but without any regard for the class.  The nodes then 

share the local frequencies with the central coordinator.  The central coordinator collects 

all the local frequencies and determines the global frequencies.  The determined global 

frequencies are shared with each node.  Each node now knows the total number of rows 

in a dataset, the number of rows associated with each class, the class-specific value 

frequencies in every feature, and the total frequency of each value in a dataset. 

With the known information, the nodes can independently compute the data 

centroid and value-weights using the processes explained in sections 5.3.4.2 and 5.3.4.3, 

respectively.  A new instance observed by any node is classified using the processes 

described in sections 5.3.4.4 and 5.3.4.5. 

5.3.6 Multi-Model Binary Classification 

SMC, which depends on similarity measurement, can be used alongside other 

classifiers to perform multi-model classifications.  Naïve Bayes, as discussed in 

CHAPTER 4, depends on Bayes’ theorem.  Since both of these techniques heavily rely 

on frequency counts, it is logical to combine the information outputted by them to form a 

multi-model classifier to improve the overall accuracy of classification.  The 

classification to be conducted is binary, so let 𝑐1 and 𝑐2 be the two class labels.  Figure 

5-2 shows a high-level overview of the multi-model classification process. 
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Figure 5-2: A high-level illustration of a multi-model classifier for binary 
classification.  SMC, Naïve Bayes, and a tertiary classification model collaborate to 
make decisions. 

The multi-model classification makes use of the same training set used for the 

SMC and Naïve Bayes classifiers.  After constructing SMC and Naïve Bayes-based 

models, each instance, 𝑒, in the training set is passed through those models to get the 

similarities 𝑆 𝑤 , 𝑚  and 𝑆 𝑤 , 𝑚  and posterior probabilities 𝑃(𝑒 | 𝑐1) and 

𝑃(𝑒 | 𝑐2), respectively.  These similarities and probabilities are used to compute two new 

values — similarity ratio and probability ratio.  These ratios become new features.  The 

similarity ratio for an arbitrary instance is given by 

 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑅𝑎𝑡𝑖𝑜 Φ𝑆 = 1 − 
𝑆 𝑤 , 𝑚

𝑆 𝑤 , 𝑚
 , Eq. 5-14 
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where a similarity computed for one class is divided by another similarity to aggregate 

those into a single value indicating the ratio between the two similarities. 

 Similarly, the probability ratio for the same instance is given by 

 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑅𝑎𝑡𝑖𝑜 Φ𝑃 = 1 − 
log 𝑃(𝑒 | 𝑐1)
log 𝑃(𝑒 | 𝑐2) , Eq. 5-15 

where the log-probability of an instance belonging to one class is divided by the 

log-probability of an instance belonging to another class.  The log-function is used to 

represent the values in a logarithmic scale, rather than in the usual [0, 1] probability scale. 

With the computed similarity and probability ratios, the new training dataset is 

formed that includes the similarity ratio, probability ratio, and class label for each of the 

instances from the original training set.  This new training set is used to construct a 

classifier of choice.  After the classifier is constructed using a newly formed training set, 

the model is validated. 

For each test instance, the similarities and probabilities must be computed before 

it can be used.  The computed similarities and probabilities are utilized to get the 

similarity ratio and probability ratio using Eq. 5-14 and Eq. 5-15.  These ratios are 

passed as inputs to the constructed tertiary classifier to get the desired output. 

Depending on the nature of implementation, two variants of the multi-model 

approach have been proposed.  Both variants use a similar technique.  The difference is in 

whether the tertiary classifier is only partially involved or fully involved. 

5.3.6.1 Partially-Dependent Multi-Model (PDMM) 

SMC and Naïve Bayes are mutually used to perform an initial classification in 

this approach.  If SMC and Naïve Bayes-based models concur and classify an instance 

into the same class, then that is regarded as the final decision; otherwise, the respective 
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similarities and probabilities they compute are aggregated to form similarity and 

probability ratios separately.  These ratios become inputs for the tertiary classifier, which 

then performs the final classification. 

5.3.6.2 Fully-Dependent Multi-Model (FDMM) 

SMC and Naïve Bayes do not make any classification in this approach.  Instead, 

they output the determined similarities and probabilities, to enable the computations of 

the similarity and probability ratios.  These ratios are supplied to the third model as inputs 

for classification.  The tertiary classifier does all the classifications; hence, the 

classification model entirely depends on it for the final decision-making.  If the used third 

classifier has a high complexity, then this process can become expensive. 

5.4 Experimental Procedure & Observations 

5.4.1 Preparation 

The unnecessary and redundant columns are eliminated from the datasets.  The 

rows containing invalid and incorrect data are either corrected or removed.  The centrally 

extracted PCs in CHAPTER 3 are horizontally joined with the corresponding rows of the 

previously unused categorical columns to form new integrated datasets.  The integrated 

datasets are then split in a 4:1 ratio to form the training and testing sets.  The feature 

selection is undertaken on training sets to identify the relevant features for classification. 

5.4.2 Features Selection 

The datasets containing categorical and discretized numerical data are analyzed 

using the chi-square statistic technique to identify the best features to build a classifier.  

The SMC-based classifier has been constructed and tested using a different number of top 
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features.  Figure 5-3 and Figure 5-4 show the relevance of each analyzed feature 

determined by the chi-square statistic-based test of independence. 

 

Figure 5-3: The relevancy of features in the NSL-KDD-based integrated dataset.  
service is identified as the most relevant feature, followed by PC 1 and PC 2. 

 

 

Figure 5-4: The relevancy of features in the CICIDS2017-based integrated dataset.  
None of the original categorical features were among the 16 most relevant features. 
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In order to remain consistent with the procedure followed in CHAPTER 4, the top 

15 features are used for the Naïve Bayes-based classifier. 

5.4.3 SMC-based Model Construction 

The SMC-based model construction involves a four-step process — counting the 

number of rows representing each class, determining the frequency of each unique value 

in a feature for a class, identifying the centroid of the data by averaging the 

feature-specific frequencies of the values, and calculating and assigning class-specific 

frequency-based weights to the values.  These steps are undertaken in the training dataset.  

Once the data centroid and class-specific frequential weights for each unique value are 

known, a new observed instance is classified by measuring the degrees of similarity 

between the class-specific vectors containing the weights of its values and the centroid. 

5.4.3.1 Class Frequencies 

In the training sets, the class frequencies are determined by counting the number 

of rows representing a specific class.  Table 5-2 shows the observed class frequencies in 

each dataset. 

Table 5-2: The number of rows representing each class in the training sets. 

Dataset Class Frequency 

NSL-KDD Attack 57,227 

Normal 61,587 

CICIDS2017 Attack 400,153 

Normal 399,847 
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5.4.3.2 Frequential Value-Weight Determination 

In the training set of the NSL-KDD dataset, the number of total rows representing 

Attack is 57227.  The feature service in this part has 65 distinct values.  The value 

private has the highest frequency, 19894; hence, its weight can be computed using 

Eq. 5-7 as 19894 × 57227
118814 

= 9581.98. The value eco_i has the second-highest frequency, 

3466, so its weight is 3466 × 57227
118814

= 1669.41.  In the dataset’s portion representing the 

Normal class, the total number of rows is 61587.  The feature service has 28 distinct 

values, with http being the most frequent one with the frequency of 35726, so its 

weight is 35726 × 61587
118814

= 18518.50.  The value domain_u is the second most frequent 

one with the frequency of 7869; therefore, its weight is 7869 × 61587
118814

= 4078.88.  The 

weights for all the unique values in features associated with each class labels are 

calculated similarly. 

The computed weights are assigned to their respective values, and the 

value-weight pairs are stored in a dictionary form so they can be quickly retrieved 

whenever needed.  The value-weight pairs are available for each unique class.  The three 

largest computed value-weights in the NSL-KDD dataset for each feature in the Attack 

and Normal classes are tabulated in Table 5-3 and Table 5-4, respectively. 
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Table 5-3: The computed three most significant weights for the values in the top 16 
features for the Attack class in the NSL-KDD dataset. 

service PC 1 PC 2 flag 

Value Weight Value Weight Value Weight Value Weight 

private 9581.98 bin_891 269.73 bin_83 888.17 S0 14080.61 

eco_i 1669.41 bin_895 250.94 bin_88 866.01 SF 6484.96 

ecr_i 1370.30 bin_896 249.98 bin_82 847.71 REJ 4759.69 

PC 10 PC 19 PC 7 logged_in 

Value Weight Value Weight Value Weight Value Weight 

bin_862 9273.25 bin_862 9273.25 bin_653 1159.34 0 25779.94 

bin_863 5048.68  bin_863 5048.68 bin_652 1097.68 1 1783.56 

bin_869 2426.08 bin_654 1087.57 bin_642 1701.68 - - 

PC 17 PC 12 PC 5 PC 16 

Value Weight Value Weight Value Weight Value Weight 

bin_561 4561.24 bin_760 10959.51 bin_568 300.55 bin_689 17823.05 

bin_560 4435.05 bin_759 8763.66 bin_567 283.69 bin_688 7415.03 

bin_562 3696.20 bin_758 1512.39 bin_538 278.39 bin_690 1471.93 

PC 18 PC 6 PC 4 PC 14 

Value Weight Value Weight Value Weight Value Weight 

bin_449 695.51 bin_419 3989.52 bin_175 1199.31 bin_407 12827.36 

bin_451 650.71 bin_417 3724.61 bin_181 1196.91 bin_408 8491.52 

bin_448 639.63 bin_418 2934.22 bin_180 1157.89 bin_405 2533.01 
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Table 5-4: The computed three most significant weights for the values in the top 16 
features for the Normal class in the NSL-KDD dataset. 

service PC 1 PC 2 flag 

Value Weight Value Weight Value Weight Value Weight 

http 18518.50 bin_265 1089.05 bin_157 3360.97 SF 30258.04 

domain_u 4078.88 bin_264 899.85 bin_151 2554.42 REJ 1108.23 

smtp 3169.70 bin_266 818.47 bin_152 1925.66 S1 160.69 

PC 10 PC 19 PC 7 logged_in 

Value Weight Value Weight Value Weight Value Weight 

bin_859 15081.85 bin_859 15081.85 bin_584 1395.91 1 22919.28 

bin_860 6052.75 bin_860 6052.75 bin_585 908.15 0 9004.22 

bin_861 1839.10 bin_589 820.54 bin_642 1405.24 - - 

PC 17 PC 12 PC 5 PC 16 

Value Weight Value Weight Value Weight Value Weight 

bin_563 2065.62 bin_758 18769.38 bin_601 1037.21 bin_688 24091.77 

bin_564 1811.63 bin_759 7174.45 bin_596 944.95 bin_689 6414.04 

bin_555 850.09 bin_760 2945.77 bin_599 931.47 bin_690 477.40 

PC 18 PC 6 PC 4 PC 14 

Value Weight Value Weight Value Weight Value Weight 

bin_433 1309.35 bin_419 4219.35 bin_208 1230.56 bin_408 22757.55 

bin_434 1040.32 bin_423 3568.31 bin_207 950.65 bin_407 6661.29 

bin_435 885.34 bin_420 3355.27 bin_209 940.28 bin_406 955.32 
 

The weights are computed and recorded similarly for the CICIDS2017 dataset.  

The three largest computed weights for the values in the Attack and Normal classes of 

this dataset are tabulated in Table 5-5 and Table 5-6, respectively. 
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Table 5-5: The computed three most significant weights for the values in the top 16 
features for the Attack class in the CICIDS2017 dataset. 

PC 6 PC 7 PC 9 PC 1 

Value Weight Value Weight Value Weight Value Weight 

bin_863 25765.35 bin_527 18995.26 bin_504 29382.73 bin_92 25608.79 

bin_864 24441.85 bin_526 18128.93 bin_508 22875.75 bin_93 24849.50 

bin_866 16632.86 bin_527 18995.26 bin_505 12036.60 bin_95 10264.42 

PC 4 PC 3 PC 17 PC 10 

Value Weight Value Weight Value Weight Value Weight 

bin_545 73013.42 bin_303 26866.27 bin_492 42002.06 bin_465 28295.32 

bin_544 65164.92 bin_300 26189.01 bin_488 25477.74 bin_468 24518.37 

bin_549 17135.05 bin_306 9213.02 bin_491 22241.50 bin_466 20310.77 

PC 18 PC 13 PC 14 PC 16 

Value Weight Value Weight Value Weight Value Weight 

bin_498 46450.76 bin_709 57264.40 bin_524 37236.74 bin_667 25357.20 

bin_494 31116.90 bin_711 40850.12 bin_525 21402.18 bin_673 25335.19 

bin_501 28998.09 bin_712 25734.34 bin_523 18926.24 bin_676 20836.97 

PC 5 PC 20 PC 15 PC 12 

Value Weight Value Weight Value Weight Value Weight 

bin_866 101664.37 bin_280 27977.70 bin_507 31084.39 bin_104 54685.41 

bin_869 19749.05 bin_279 22325.04 bin_511 28460.38 bin_105 52286.49 

bin_865 17738.28 bin_283 20417.81 bin_508 24663.43 bin_106 35927.24 
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Table 5-6: The computed three most significant weights for the values in the top 16 
features for the Normal class in the CICIDS2017 dataset. 

PC 6 PC 7 PC 9 PC 1 

Value Weight Value Weight Value Weight Value Weight 

bin_865 12092.87 bin_508 7106.78 bin_496 16007.37 bin_91 41680.05 

bin_853 11854.96 bin_509 6648.96 bin_497 15471.08 bin_92 34692.72 

bin_866 11808.98 bin_529 6518.01 bin_504 14732.36 bin_93 13487.84 

PC 4 PC 3 PC 17 PC 10 

Value Weight Value Weight Value Weight Value Weight 

bin_544 96214.68 bin_305 30700.75 bin_491 70188.64 bin_456 12033.40 

bin_543 34428.33 bin_304 27822.35 bin_492 35276.00 bin_467 11525.09 

bin_545 18996.73 bin_306 27523.47 bin_490 18103.57 bin_454 11514.09 

PC 18 PC 13 PC 14 PC 16 

Value Weight Value Weight Value Weight Value Weight 

bin_499 46541.69 bin_711 49509.56 bin_526 34423.33 bin_675 20196.27 

bin_498 32680.49 bin_712 43320.42 bin_527 26638.81 bin_676 19745.94 

bin_500 24650.57 bin_713 22907.73 bin_523 21278.86 bin_673 17663.74 

PC 5 PC 20 PC 15 PC 12 

Value Weight Value Weight Value Weight Value Weight 

bin_869 40749.91 bin_279 16419.22 bin_506 27011.16 bin_105 78080.62 

bin_866 37413.68 bin_282 16171.31 bin_505 24821.50 bin_104 60444.87 

bin_870 27307.05 bin_280 14546.43 bin_504 24700.05 bin_103 13448.85 
 

5.4.3.3 Data Centroids 

The data centroid based on the value-frequencies in its features is determined for 

each dataset using Eq. 5-6.  The determined centroid is stored for the future degree of 
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similarity calculations.  The centroids observed for each dataset are plotted in Figure 5-5.  

The averages of the frequencies computed for the values in flag and logged_in 

features of the NSL-KDD dataset’s training set transcend the boundaries of the plotted 

radar; therefore, they are not visible. 

 

Figure 5-5: The average value-frequency-based centroids in the NSL-KDD and 
CICIDS2017 datasets.  Each point represents the average value-frequency in the 
respective feature. 

5.4.4 Similarity Measurements 

The similarity of a newly observed instance is measured from each of the classes.  

For the illustrated similarity measurement, only the top four features are used.  Table 5-7 

shows the values extracted from the top four features of a sample instance that is 

randomly selected from the test set of the NSL-KDD dataset. 

Table 5-7: A sample instance from the testing set of the NSL-KDD dataset with the 
observed values for features service, PC 1, PC 2, and flag. 

service PC 1 PC 2 flag 

http bin_203 bin_150 SF 
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The observed values in the selected four features are used to extract the weights 

for those values representing each of the classes.  For the Attack class, the weights for the 

values {service: “http”, PC 1: “bin_203”, PC 2: “bin_150”, flag: “SF”} are 

represented by the vector, 𝑤𝐴 = 〈1338.51, 7.71, 2.41, 6484.96〉.  Similarly, for 

the Normal class, the weights for the same values are represented by the vector, 

𝑤𝑁 = 〈18518.50, 256.06, 1055.87, 30258.05〉. 

The centroid based on the value-frequencies in the NSL-KDD dataset is 

represented by 𝑚 = 〈1697.36, 129.85, 133.20, 9901.25〉.  Based on these, the 

similarities 𝑆(𝑤𝐴 , 𝑚) and 𝑆(𝑤𝑁 , 𝑚) can be computed using Eq. 5-10.  The 

following are the computed similarities: 

𝑆(𝑤𝐴 , 𝑚)   = 0.9992  and  𝑆(𝑤𝑁 , 𝑚) = 0.9288. 

The similarity measurements using other instances and datasets can be done by following 

the same process. 

5.4.5 SMC-based Classification 

Since 𝑆(𝑤𝐴 , 𝑚) > 𝑆(𝑤𝑁 , 𝑚) in an example above, the instance being 

investigated is classified into the Attack class.  The classification using SMC-based 

classifier distinguishes the point formed by the similarity measures based on its closeness 

to an axis.  The points closer to the y-axis, as seen in Figure 5-6 for each dataset, are 

classified as Normal; otherwise, they are classified as Attack. 
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Figure 5-6: The plots showing the classifications in the a) NSL-KDD and b) 
CICIDS2017 datasets when using 12 features.  The points closer to the x-axis are 
classified as Attack, and the ones closer to the y-axis are classified as Normal. 

The SMC-based classifiers are constructed using a varying number of features to 

identify the number that gives the best result.  The identified number of features is used 

for multi-model classification. 
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5.4.6 Multi-Model Classification 

The multi-model classification depends on the values computed by the SMC and 

Naïve Bayes-based models; therefore, those models are first constructed.  The similarity 

and probability ratios obtained from SMC and Naïve Bayes, respectively, are used as 

features to construct the third classifier.  Both PDMM and FDMM variants of the 

multi-model approaches have been implemented and tested.  k-NN is chosen to form the 

tertiary classifier due to its known ability to perform well with a limited number of 

features.  It also performed the best when used in CHAPTER 3 to examine the quality of 

the extracted features.  It has now been reused to check the applicability of the PDMM 

and FDMM methods.  For k-NN, 𝑘 =  3 is used. 

In order to build and test both single-model and multi-model classifiers, the 

combinations of the classifiers listed in Table 5-8 are constructed and validated. 

Table 5-8: The types of classifiers constructed to evaluate the performances of the 
single-model and multi-model classifiers. 

Type Classifier Features Used 

Single-Model SMC 8, 10, 12, 14, and 16 most relevant 

Naïve Bayes 15 most relevant 

k-NN Two most relevant 

Multi-Model FDMM Two (similarity ratio and probability ratio) 

PDMM Two (similarity ratio and probability ratio) 
 

5.5 Results and Discussion 

5.5.1 Classification Performances 

The observed performances of the classification models constructed using both 

single-model and multi-model approaches are presented and evaluated. 
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5.5.1.1 Single-Model Performances 

The SMC-based classifiers have been constructed and tested using a different 

number of features to determine the ideal number.  The classifiers constructed using 16 

and 10 features gave the best accuracy results in the NSL-KDD and CICIDS2017 

datasets, respectively.  The highest accuracy observed in the NSL-KDD dataset was 

81.13%, and in the CICIDS2017 dataset, it was 75.60%.  Table 5-9 demonstrates the 

performance achieved by the SMC-based classifiers. 

Table 5-9: The performance comparisons of the SMC-based classifiers constructed 
using a varying number of features. 

Dataset Features Recall Precision Specificity Accuracy 

NSL-KDD 8 89.20 73.93 71.05 79.75 

10 88.92 73.89 71.08 79.63 

12 91.80 74.50 71.08 81.01 

14 91.95 74.52 71.07 81.08 

16 92.06 74.55 71.07 81.13 

CICIDS2017 8 75.43 73.24 72.52 73.97 

10 78.89 73.97 72.32 75.60 

12 74.49 72.34 71.61 73.05 

14 63.23 73.65 77.45 70.35 

16 66.48 72.66 75.06 70.77 
 

The Naïve Bayes and k-NN classifiers demonstrated superior performance over 

the SMC-based classifiers.  In the NSL-KDD dataset, k-NN performed the best with the 

accuracy of 94.51%, and in the CICIDS2017 dataset, Naïve Bayes exceeded the 

performance of k-NN.  It must be noted that Naïve Bayes used 15 features, while k-NN 

used only two.  Table 5-10 records the performances of Naïve Bayes and k-NN. 
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Table 5-10: The performance comparisons of the single-model Naïve Bayes and k-NN 
classifiers. 

Dataset Classifier Recall Precision Specificity Accuracy 

NSL-KDD Naïve Bayes 90.07 96.10 96.63 93.49 

k-NN 93.46 95.00 95.47 94.51 

CICIDS2017 Naïve Bayes 93.77 86.75 85.72 89.74 

k-NN 93.60 85.94 84.73 89.16 
 

5.5.1.2 Multi-Model Performances 

The FDMM-based classifiers that entirely relied on k-NN for the final 

classification decision performed the best by achieving the accuracy of 96.89% and 

96.77%, for the NSL-KDD and CICIDS2017 datasets, respectively.  In contrast, the 

PDMM, which involved k-NN only when SMC and Naïve Bayes failed to reach a mutual 

agreement, achieved an accuracy of  94.77% and 92.39% for each dataset, respectively.  

These accuracies were still higher than those achieved by the single-model classifiers.  

Even though the FDMM performed better in terms of accuracy, the classifiers based on it 

took must longer to classify all the test instances.  Table 5-11 displays the performances 

observed when using the multi-model approach for classification. 

Table 5-11: The observed performances when using multi-model approaches based on 
SMC, Naïve Bayes, and k-NN. 

Dataset Classifier Recall Precision Specificity Accuracy 

NSL-KDD PDMM 93.28 95.70 96.15 94.77 

FDMM 96.87 96.63 96.90 96.89 

CICIDS2017 PDMM 96.29 89.31 88.51 92.39 

FDMM 97.56 96.03 95.98 96.77 
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5.5.1.3 FPR Analysis 

The observations reported in Table 5-12 show that number of false-positives can 

be decreased by using a multi-model approach.  The FDMM approach achieved the best 

FPRs, which were 3.10% and 4.02% for the NSL-KDD and CICIDS2017 datasets, 

respectively.  The FPR decreased drastically in the CICIDS2017 dataset. 

Table 5-12: The best FPR achieved by each classifier in all tested datasets. 

Dataset Classifier Test Instances False Positives FPR 

NSL-KDD SMC 29,703 4,473 28.92 

Naive Bayes 29,703 521 3.37 

k-NN 29,703 700 4.53 

PDMM 29,703 596 3.85 

FDMM 29,703 480 3.10 

CICIDS2017 SMC 200,000 22,581 22.55 

Naïve Bayes 200,000 14,297 14.28 

k-NN 200,000 15,288 15.27 

PDMM 200,000 11,511 11.49 

FDMM 200,000 4,031 4.02 
 

5.6 Conclusions 

In this chapter, we introduced the SMC technique, which uses the frequential 

weight of the values associated with a specific class.  Just like the Naïve Bayes, this 

method works by merely utilizing the values derived from the counted frequencies, so it 

was quick.  We tested and validated SMC by constructing the classifiers using the 

NSL-KDD and CICIDS2017 datasets.  The best accuracies observed using this technique 

on these datasets were 81.13% and 75.60%, respectively.  These performances were 
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subpar in comparison to the performances demonstrated by the single-model Naïve Bayes 

and k-NN classifiers.  SMC, despite being the weakest performer, contributed to the 

multi-model classification approach to improve the overall classification accuracy. 

We introduced two variants of the multi-model classification technique for binary 

classification.  In PDMM, the tertiary classifier participated in the classification process 

only when SMC and Naïve Bayes failed to make a mutual decision.  In the other variant, 

FDMM, all the classifications were done by a tertiary classifier by using the information 

produced by SMC and Naïve Bayes.  It was clear through experiments that the 

multi-model approach can improve the accuracy of the classification.  The FDMM-based 

approach gave an accuracy of 96.89% in the NSL-KDD dataset and 96.77% in the 

CICIDS2017 dataset, in contrast to the best accuracies of 94.51% and 89.74% given by 

the single-model approaches for those datasets, respectively.  Even though FDMM gave 

the best result, it took a long time to process all the instances for classification; on the 

other hand, the PDMM-based model took a much shorter time because only a limited 

number of instances had to pass through the third classifier. 

Furthermore, we also analyzed the FPR-based performances.  When the FDMM 

approach was used, the number of false positives reduced drastically to 3.10% in the 

NSL-KDD and 4.02% in the CICIDS2017 datasets.  Since the IDSs continue to suffer 

from high FPRs in general, such reduction in FPR when using a multi-model approach is 

a promising achievement.  Based on these observations, we conclude that the 

classification accuracy can be improved while diminishing the FPR by using the 

multi-model classification approach. 
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CHAPTER 6 
 

CONCLUSIONS AND FUTURE WORK 
 

6.1 Conclusions 

The primary objectives of this research hovered around identifying the potential 

improvements in IDSs.  The traditional IDSs suffer from high-dimensionality data, single 

point of failure, slow operations, inability to adapt to new attacks, and low accuracy.  The 

ideas we expressed throughout this dissertation attempted to tackle these issues.  Initially, 

we discussed distributed feature extraction and classifier construction techniques.  

Additionally, we proposed a new similarity measure-based supervised classification 

method for categorical data and introduced a multi-model approach for binary 

classification.  

6.1.1 Distributed Feature Extraction 

In CHAPTER 3, we conducted PCA-based distributed feature extraction using the 

initial set of descriptors.  The dimensionality of data was reduced significantly after 

feature extraction, which consequently constrained the feature space.  Since multiple 

nodes simultaneously collaborated with the assistance of the central coordinator to extract 

the features, the total time taken was also drastically shortened.  The features so extracted 

were used to construct various classifiers to verify their effectiveness.  The observations 

made implied that the classifiers constructed using the features extracted in a distributed 
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manner performed well.  Their accuracy-based performance was competitive with that of 

the classifiers constructed with the original and centrally extracted features.  Given this 

method’s advantages like shortened extraction time, improved privacy, and limited data 

exchange requirements, it is appropriate for IDS construction.  The discussed feature 

extraction technique can be useful in the distributed networks supporting high-volume 

data exchanges. 

6.1.2 Distributed Classifier Construction 

In CHAPTER 4, we utilized the features extracted in CHAPTER 3 to construct a 

classifier in a distributed manner using the Naïve Bayes-based technique.  Its fast speed 

and high scalability have established it as an ideal choice for systems like IDSs that 

require quick model training and attack detection.  Since Naive Bayes works by 

computing the prior probabilities, which depend on frequency counting, we presented the 

process to perform frequency counting in a distributed manner with the help of the central 

coordinator.  The global frequencies of all the observed values and classes in the training 

set were shared with each participating node by the central coordinator.  Each node, 

which uses the global frequencies to compute the prior probabilities, can perform 

classifications.  Since the training in the Naïve Bayes only involves frequency counting 

and determining prior probabilities, the time taken to undertake these was significantly 

shorter when these tasks were distributed across multiple nodes.  We observed that the 

classifiers constructed in a distributed manner give a similar level of accuracies as the 

ones constructed centrally.  Since each node could classify the new instances 

independently, a distributed method also improved the robustness. 
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6.1.3 SMC and Multi-Model Approach for Binary Classification 

In CHAPTER 5, we presented a similarity measure-based learning method and a 

multi-model approach for classification.  Like with Naïve Bayes, the training of SMC 

relied on the frequency counts.  The counted frequencies were used to determine the 

class-specific weights for each of the values.  Those weights were used to compute the 

similarity with the data centroid.  An instance was classified into the class whose weights 

vector had the highest similarity with the centroid.  The performance of this classification 

technique was not impressive; however, the similarities computed by it were used 

alongside the probabilities computed by the Naïve Bayes classifier to form another 

classifier.  In such an approach, the SMC’s outputs contributed to improving accuracy. 

In a discussed multi-model approach, we used the similarity ratio and probability 

ratio determined using the similarities and probabilities computed by SMC and Naïve 

Bayes as features to train and validate the k-NN-based classifiers.  The PDMM variant of 

the multi-model approach involved k-NN only when SMC and Naïve Bayes failed to 

classify an instance into the same class.  In contrast, FDMM always used k-NN for the 

final classification.  The multi-model approaches, as expected, improved the overall 

accuracy of the classification.  The FDMM variant of the multi-model approach 

significantly decreased the FPRs.  Such improvement in performance showed that it is 

possible to use the outputs of multiple lightweight classification models and use those 

outputs as an input for another classifier to perform a more accurate classification. 

6.1.4 Final Discussion 

In this dissertation, we successfully implemented a distributed feature extraction 

technique for dimensionality reduction in a simulated distributed environment where each 
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node only had access to a subset of data.  By constructing and validating the classifiers 

with the extracted features, we demonstrated that these features work as effectively as the 

features extracted centrally.  We also constructed and implemented a distributed classifier 

based on a probabilistic model, which utilized the extracted features.  This distributed 

classification model performed comparatively against the centralized model, while 

significantly diminishing the model-training and attack-detection durations.  Similarly, 

we also proposed a similarity measure-based classification technique and used it to build 

an IDS classifier.  Finally, we undertook a multi-model classification approach that relied 

on the information outputted by the probabilistic and similarity measure-based classifiers 

to construct a tertiary classifier.  This multi-model approach was successful in improving 

the accuracy of classification.  The promising results we observed throughout the 

dissertation when using the presented techniques and concepts make them noteworthy for 

future endeavors. 

6.2 Future Work 

There are countless possible directions to explore.  The concepts discussed are 

presumed to be applicable in a real-world scenario to construct an IDS classifier.  Since 

all the experiments were conducted in a simulated environment on a single host machine, 

it would be sensible to undertake these in an actual distributed network and observe the 

effects.  Since only two pre-existing datasets were used to construct the prediction models 

for experiments, experimenting with more datasets could give a better understanding of 

how the presented techniques would adapt to and perform on other datasets.  The 

classifiers could also be constructed by using customized data pertaining to a specific 
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type of network; then, it could be tested live by deploying the built classifier into an IDS 

for that network. 

There are also numerous avenues for improvement within the dissertation.  For 

instance, in all distributed procedures, the nodes were assumed to be homogenous.  In 

circumstances when all the nodes do not have equal resources, type of data, or the size of 

datasets, then the applicability and the observations can differ.  Similarly, for the SMC, 

the cosine similarity measure was used.  A different similarity measure could give a 

different outcome.  It would be within the purview to try other similarity measures.  In 

the proposed multi-model approach, the third classifier has been constructed using k-NN.  

It, however, could also be constructed using different algorithms.  Furthermore, in the 

PDMM variant of the multi-model approach, additional adjustments could be made to 

decide which instances get sent to the tertiary classifier, instead of solely basing it on 

whether SMC and Naïve Bayes made a mutual classification. 

We expect the relevant future works to consider this work and build upon it to 

enhance the state of IDSs.     
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