111,266 research outputs found

    Enhancing massive MIMO: A new approach for Uplink training based on heterogeneous coherence time

    Full text link
    Massive multiple-input multiple-output (MIMO) is one of the key technologies in future generation networks. Owing to their considerable spectral and energy efficiency gains, massive MIMO systems provide the needed performance to cope with the ever increasing wireless capacity demand. Nevertheless, the number of scheduled users stays limited in massive MIMO both in time division duplexing (TDD) and frequency division duplexing (FDD) systems. This is due to the limited coherence time, in TDD systems, and to limited feedback capacity, in FDD mode. In current systems, the time slot duration in TDD mode is the same for all users. This is a suboptimal approach since users are subject to heterogeneous Doppler spreads and, consequently, different coherence times. In this paper, we investigate a massive MIMO system operating in TDD mode in which, the frequency of uplink training differs among users based on their actual channel coherence times. We argue that optimizing uplink training by exploiting this diversity can lead to considerable spectral efficiency gain. We then provide a user scheduling algorithm that exploits a coherence interval based grouping in order to maximize the achievable weighted sum rate

    Channel coding for progressive images in a 2-D time-frequency OFDM block with channel estimation errors.

    Get PDF
    Coding and diversity are very effective techniques for improving transmission reliability in a mobile wireless environment. The use of diversity is particularly important for multimedia communications over fading channels. In this work, we study the transmission of progressive image bitstreams using channel coding in a 2-D time-frequency resource block in an OFDM network, employing time and frequency diversities simultaneously. In particular, in the frequency domain, based on the order of diversity and the correlation of individual subcarriers, we construct symmetric n -channel FEC-based multiple descriptions using channel erasure codes combined with embedded image coding. In the time domain, a concatenation of RCPC codes and CRC codes is employed to protect individual descriptions. We consider the physical channel conditions arising from various coherence bandwidths and coherence times, leading to a range of orders of diversities available in the time and frequency domains. We investigate the effects of different error patterns on the delivered image quality due to various fade rates. We also study the tradeoffs and compare the relative effectiveness associated with the use of erasure codes in the frequency domain and convolutional codes in the time domain under different physical environments. Both the effects of intercarrier interference and channel estimation errors are included in our study. Specifically, the effects of channel estimation errors, frequency selectivity and the rate of the channel variations are taken into consideration for the construction of the 2-D time-frequency block. We provide results showing the gain that the proposed model achieves compared to a system without temporal coding. In one example, for a system experiencing flat fading, low Doppler, and imperfect CSI, we find that the increase in PSNR compared to a system without time diversity is as much as 9.4 dB

    Аналіз витрат палива сільськогосподарської техніки

    Get PDF
    Abstract—An analysis of broadcasting in massive MIMO (multiple-input and multiple-output) systems with a limited coherence interval is presented. When broadcasting common information, such as control signals, the base station does not have channel state information to the terminals. We propose that the base station broadcasts this common information using a low dimensional orthogonal space-time block code (OSTBC). This code is mapped onto the large antenna array with the use of a dimension reducing matrix, effectively “shrinking” the channel. The terminal can estimate the effective channel and decode the information, even when the coherence interval is short compared to the number of base station antennas. Different OSTBCs are compared in terms of outage capacity in practical scenarios using estimated CSI. In particular, the trade-off between diversity and rate, when little or no time/frequency diversity is available, is investigated

    Channel Coding for Progressive Images in a 2-D Time-Frequency OFDM Block With Channel Estimation Errors

    Get PDF
    Coding and diversity are very effective techniques for improving transmission reliability in a mobile wireless environ- ment. The use of diversity is particularly important for multimedia communications over fading channels. In this work, we study the transmission of progressive image bitstreams using channel coding in a 2-D time-frequency resource block in an OFDM network, em- ploying time and frequency diversities simultaneously. In partic- ular, in the frequency domain, based on the order of diversity and the correlation of individual subcarriers, we construct symmetric -channel FEC-based multiple descriptions using channel erasure codes combined with embedded image coding. In the time domain, a concatenation of RCPC codes and CRC codes is employed to pro- tect individual descriptions. We consider the physical channel con- ditions arising from various coherence bandwidths and coherence times, leading to a range of orders of diversities available in the time and frequency domains. We investigate the effects of different error patterns on the delivered image quality due to various fade rates. We also study the tradeoffs and compare the relative effec- tiveness associated with the use of erasure codes in the frequency domain and convolutional codes in the time domain under different physical environments. Both the effects of intercarrier interference and channel estimation errors are included in our study. Specifi- cally, the effects of channel estimation errors, frequency selectivity and the rate of the channel variations are taken into consideration for the construction of the 2-D time-frequency block. We provide results showing the gain that the proposed model achieves com- pared to a system without temporal coding. In one example, for a system experiencing flat fading, low Doppler, and imperfect CSI, we find that the increase in PSNR compared to a system without time diversity is as much as 9.4 dB

    Combination of Time Series of L-, C- and X-Band SAR Images for Land Cover and Crop Classification

    Get PDF
    The availability of new Earth observation satellites operating radar sensors at different frequencies enables the combination of multiple dimensions of the data (time, frequency, polarimetry and interferometry) in many applications. Image classification is expected to benefit from the diversity of observation. This work illustrates classification experiments carried out with series of images acquired by ALOS-2 PALSAR (L-band), Sentinel-1 (C-band) and TanDEM-X (X-band) in two application domains: land cover classification and crop-type mapping. Their usage, both separately and in combination, serves to identify the complementarity of information. In this work we propose a new colour representation of the pair-wise class separability in the case of using three frequency bands, which help identify which bands (or combinations of them) provide the best performance. Results in terms of accuracy scores (overall and class-specific) show that the use of the three frequency bands always outperforms the individual bands and their pairs. In addition, for both land classification and crop-type mapping the accuracy of using coherence time series is lower than the one obtained with the intensity time series, but there is complementarity in terms of sensitivity when both coherence and intensity time series are used together. The classes which are most benefited at each particular case of study have been identified. Finally, a partial trade-off has been found between the use of multiple frequency bands and the length of the available time series.This work was supported in part by the European Space Agency under Contract 4000133590/20/NL/AS/hh, and in part by the Spanish Ministry of Science and Innovation (State Agency of Research, AEI) and the European Funds for Regional Development under Project PID2020-117303GB-C22

    Diversity versus Multiplexing at Finite Blocklength

    Full text link
    A finite blocklenth analysis of the diversity-multiplexing tradeoff is presented, based on nonasymptotic bounds on the maximum channel coding rate of multiple-antenna block-memoryless Rayleigh-fading channels.The bounds in this paper allow one to numerically assess for which packet size, number of antennas, and degree of channel selectivity, diversity-exploiting schemes are close to optimal, and when instead the available spatial degrees of freedom should be used to provide spatial multiplexing. This finite blocklength view on the diversity-multiplexing tradeoff provides insights on the design of delay-sensitive ultra-reliable communication links.Comment: Proc. IEEE Int. Symp. Wirel. Comm. Syst. (ISWCS), Aug. 2014, to appea

    Compressed sensing of monostatic and multistatic SAR

    Get PDF
    In this letter, we study the impact of compressed data collections from a synthetic aperture radar (SAR) sensor on the reconstruction quality of a scene of interest. Different monostatic and multistatic SAR measurement configurations produce different Fourier sampling patterns. These patterns reflect different spectral and spatial diversity tradeoffs that must be made during task planning. Compressed sensing theory argues that the mutual coherence of the measurement probes is related to the reconstruction performance of sparse domains. With this motivation, we propose a closely related t%-average mutual coherence parameter as a sensing configuration quality parameter and examine its relationship to the reconstruction behavior of various monostatic and ultranarrow-band multistatic configurations. We investigate how this easily computed metric is related to SAR reconstruction quality

    Elements of Cellular Blind Interference Alignment --- Aligned Frequency Reuse, Wireless Index Coding and Interference Diversity

    Full text link
    We explore degrees of freedom (DoF) characterizations of partially connected wireless networks, especially cellular networks, with no channel state information at the transmitters. Specifically, we introduce three fundamental elements --- aligned frequency reuse, wireless index coding and interference diversity --- through a series of examples, focusing first on infinite regular arrays, then on finite clusters with arbitrary connectivity and message sets, and finally on heterogeneous settings with asymmetric multiple antenna configurations. Aligned frequency reuse refers to the optimality of orthogonal resource allocations in many cases, but according to unconventional reuse patterns that are guided by interference alignment principles. Wireless index coding highlights both the intimate connection between the index coding problem and cellular blind interference alignment, as well as the added complexity inherent to wireless settings. Interference diversity refers to the observation that in a wireless network each receiver experiences a different set of interferers, and depending on the actions of its own set of interferers, the interference-free signal space at each receiver fluctuates differently from other receivers, creating opportunities for robust applications of blind interference alignment principles
    corecore