We explore degrees of freedom (DoF) characterizations of partially connected
wireless networks, especially cellular networks, with no channel state
information at the transmitters. Specifically, we introduce three fundamental
elements --- aligned frequency reuse, wireless index coding and interference
diversity --- through a series of examples, focusing first on infinite regular
arrays, then on finite clusters with arbitrary connectivity and message sets,
and finally on heterogeneous settings with asymmetric multiple antenna
configurations. Aligned frequency reuse refers to the optimality of orthogonal
resource allocations in many cases, but according to unconventional reuse
patterns that are guided by interference alignment principles. Wireless index
coding highlights both the intimate connection between the index coding problem
and cellular blind interference alignment, as well as the added complexity
inherent to wireless settings. Interference diversity refers to the observation
that in a wireless network each receiver experiences a different set of
interferers, and depending on the actions of its own set of interferers, the
interference-free signal space at each receiver fluctuates differently from
other receivers, creating opportunities for robust applications of blind
interference alignment principles