11 research outputs found

    Phase synchronization of coupled bursting neurons and the generalized Kuramoto model

    Full text link
    Bursting neurons fire rapid sequences of action potential spikes followed by a quiescent period. The basic dynamical mechanism of bursting is the slow currents that modulate a fast spiking activity caused by rapid ionic currents. Minimal models of bursting neurons must include both effects. We considered one of these models and its relation with a generalized Kuramoto model, thanks to the definition of a geometrical phase for bursting and a corresponding frequency. We considered neuronal networks with different connection topologies and investigated the transition from a non-synchronized to a partially phase-synchronized state as the coupling strength is varied. The numerically determined critical coupling strength value for this transition to occur is compared with theoretical results valid for the generalized Kuramoto model.Comment: 31 pages, 5 figure

    Phase synchronization of coupled bursting neurons and the generalized Kuramoto model

    Get PDF
    Abstract Bursting neurons fire rapid sequences of action potential spikes followed by a quiescent period. The basic dynamical mechanism of bursting is the slow currents that modulate a fast spiking activity caused by rapid ionic currents. Minimal models of bursting neurons must include both effects. We considered one of these models and its relation with a generalized Kuramoto model, thanks to the definition of a geometrical phase for bursting and a corresponding frequency. We considered neuronal networks with different connection topologies and investigated the transition from a non-synchronized to a partially phase-synchronized state as the coupling strength is varied. The numerically determined critical coupling strength value for this transition to occur is compared with theoretical results valid for the generalized Kuramoto model

    Dynamics and Synchronization in Neuronal Models

    Get PDF
    La tesis está principalmente dedicada al modelado y simulación de sistemas neuronales. Entre otros aspectos se investiga el papel del ruido cuando actua sobre neuronas. El fenómeno de resonancia estocástica es caracterizado tanto a nivel teórico como reportado experimentalmente en un conjunto de neuronas del sistema motor. También se estudia el papel que juega la heterogeneidad en un conjunto de neuronas acopladas demostrando que la heterogeneidad en algunos parámetros de las neuronas puede mejorar la respuesta del sistema a una modulación periódica externa. También estudiamos del efecto de la topología y el retraso en las conexiones en una red neuronal. Se explora como las propiedades topológicas y los retrasos en la conducción de diferentes clases de redes afectan la capacidad de las neuronas para establecer una relación temporal bien definida mediante sus potenciales de acción. En particular, el concepto de consistencia se introduce y estudia en una red neuronal cuando plasticidad neuronal es tenida en cuenta entre las conexiones de la re

    26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3 - Meeting Abstracts - Antwerp, Belgium. 15–20 July 2017

    Get PDF
    This work was produced as part of the activities of FAPESP Research,\ud Disseminations and Innovation Center for Neuromathematics (grant\ud 2013/07699-0, S. Paulo Research Foundation). NLK is supported by a\ud FAPESP postdoctoral fellowship (grant 2016/03855-5). ACR is partially\ud supported by a CNPq fellowship (grant 306251/2014-0)

    Modelos matemáticos para lesões em redes neurais com padrões complexos de conectividade

    Get PDF
    Orientador: Prof. Dr. Ricardo Luiz VianaTese (Doutorado) - Universidade Federal do Paraná, Setor de Ciências Exatas, Programa de Pós-Graduação em Física. Defesa: Curitiba, 18/09/2015Inclui referências : f. 139-146Resumo: O cérebro contem cerca de cem bilhões de neurônios que se conectam através de um padrão complexo de conectividade, que opera no sentido de otimizar o processo de transmissão de informação. Os neurônios, ao estabelecerem uma conexão entre si podem muitas vezes exibir sincronização. A presença de traumas e doenças degenerativas em regiões específicas do cérebro podem, através de efeitos locais, danificar o funcionamento cerebral como um todo. O propósito deste trabalho é tentar responder a questões do tipo: em uma rede neural, quais são as formas de lesões que causam maior impacto na dinâmica da rede? É possível identificar um tipo de lesão a partir do seu efeito? Existem topologias de rede que são mais robustas à lesões? Neste sentido, analisamos a sincronização de fase para uma rede de neurônios com diferentes topologias de rede, comparamos os resultados com um modelo de osciladores e analisamos diferentes tipos de lesões. Nossos resultados apontam que para o estudo de sincronização de fase, os neurônios podem ser considerados como osciladores, porém, o comportamento das frequências no estado sincronizado em redes neurais, em geral, não é similar ao comportamento de osciladores. No estudo das lesões, do ponto de vista dinâmico, para cada tipo de rede existe um comportamento distinto aos diferentes tipos de lesões. Entre neurônios globalmente acoplados, é possível distinguir a partir da dinâmica global se a lesão destrói apenas as conexões ou destrói os neurônios. Em redes complexas, o efeito das lesões é maior quando a lesão afeta os neurônios mais conectados ou com maior centralidade de intermediação. Em redes de pequeno mundo, a diferença entre os tipos de lesão é perceptível, porém, mais sutil do que para redes aleatórias e sem escala.Abstract: The brain is composed of around one hundread billion of neurons connected through synapses forming a complex pattern of connectivity. This complex connectivity is responsible to optimize the information process. When neurons are connected among themselves they can exhibit synchronization. The presence of traumas and neurodegenerative diseases in some brain areas causes not only local effects, but in the whole brain. The purpose of this work is to answer questions like: which are the type of lesions with bigger dynamical effects in the neural network? Is it possible to identify a type of lesion just looking at its dynamical effects in the network? Are there topologies against lesions which are more robust than others? In this sense, we analyse phase synchronization in a neural network with different network topologies. We compare the obtained results with a model of phase oscillators and we analysed different types of lesions. Our results show that neuronal phase synchronization is similar to phase synchronization in oscillators, however, frequency synchronization usually is different in both models. Related to lesions, from the dynamical point of view, for each type of network there is a distinct behavior for each type of lesion. Among globally coupled neurons, it is possible to dynamically distinguish when the lesion either disrupt or destroy the neurons. For complex networks, the most effective lesions are those that affects the most connected neurons or those with the largest betweenness. For small-world networks, the difference among types of lesions are distinguishable, though, they are subtle in comparison with random and scale-free networks

    Synchronization in dynamical networks:synchronizability, neural network models and EEG analysis

    Get PDF
    Complex dynamical networks are ubiquitous in many fields of science from engineering to biology, physics, and sociology. Collective behavior, and in particular synchronization,) is one of the most interesting consequences of interaction of dynamical systems over complex networks. In this thesis we study some aspects of synchronization in dynamical networks. The first section of the study discuses the problem of synchronizability in dynamical networks. Although synchronizability, i.e. the ease by which interacting dynamical systems can synchronize their activity, has been frequently used in research studies, there is no single interpretation for that. Here we give some possible interpretations of synchronizability and investigate to what extent they coincide. We show that in unweighted dynamical networks different interpretations of synchronizability do not lie in the same line, in general. However, in networks with high degrees of synchronization properties, the networks with properly assigned weights for the links or the ones with well-performed link rewirings, the different interpretations of synchronizability go hand in hand. We also show that networks with nonidentical diffusive connections whose weights are assigned using the connection-graph-stability method are better synchronizable compared to networks with identical diffusive couplings. Furthermore, we give an algorithm based on node and edge betweenness centrality measures to enhance the synchronizability of dynamical networks. The algorithm is tested on some artificially constructed dynamical networks as well as on some real-world networks from different disciplines. In the second section we study the synchronization phenomenon in networks of Hindmarsh-Rose neurons. First, the complete synchronization of Hindmarsh-Rose neurons over Newman-Watts networks is investigated. By numerically solving the differential equations of the dynamical network as well as using the master-stability-function method we determine the synchronizing coupling strength for diffusively coupled Hindmarsh-Rose neurons. We also consider clustered networks with dense intra-cluster connections and sparse inter-cluster links. In such networks, the synchronizability is more influenced by the inter-cluster links than intra-cluster connections. We also consider the case where the neurons are coupled through both electrical and chemical connections and obtain the synchronizing coupling strength using numerical calculations. We investigate the behavior of interacting locally synchronized gamma oscillations. We construct a network of minimal number of neurons producing synchronized gamma oscillations. By simulating giant networks of this minimal module we study the dependence of the spike synchrony on some parameters of the network such as the probability and strength of excitatory/inhibitory couplings, parameter mismatch, correlation of thalamic input and transmission time-delay. In the third section of the thesis we study the interdependencies within the time series obtained through electroencephalography (EEG) and give the EEG specific maps for patients suffering from schizophrenia or Alzheimer's disease. Capturing the collective coherent spatiotemporal activity of neuronal populations measured by high density EEG is addressed using measures estimating the synchronization within multivariate time series. Our EEG power analysis on schizophrenic patients, which is based on a new parametrization of the multichannel EEG, shows a relative increase of power in alpha rhythm over the anterior brain regions against its reduction over posterior regions. The correlations of these patterns with the clinical picture of schizophrenia as well as discriminating of the schizophrenia patients from normal control subjects supports the concept of hypofrontality in schizophrenia and renders the alpha rhythm as a sensitive marker of it. By applying a multivariate synchronization estimator, called S-estimator, we reveal the whole-head synchronization topography in schizophrenia. Our finding shows bilaterally increased synchronization over temporal brain regions and decreased synchronization over the postcentral/parietal brain regions. The topography is stable over the course of several months as well as over all conventional EEG frequency bands. Moreover, it correlates with the severity of the illness characterized by positive and negative syndrome scales. We also reveal the EEG features specific to early Alzheimer's disease by applying multivariate phase synchronization method. Our analyses result in a specific map characterized by a decrease in the values of phase synchronization over the fronto-temporal and an increase over temporo-parieto-occipital region predominantly of the left hemisphere. These abnormalities in the synchronization maps correlate with the clinical scores associated to the patients and are able to discriminate patients from normal control subjects with high precision

    Proceedings of Abstracts Engineering and Computer Science Research Conference 2019

    Get PDF
    © 2019 The Author(s). This is an open-access work distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For further details please see https://creativecommons.org/licenses/by/4.0/. Note: Keynote: Fluorescence visualisation to evaluate effectiveness of personal protective equipment for infection control is © 2019 Crown copyright and so is licensed under the Open Government Licence v3.0. Under this licence users are permitted to copy, publish, distribute and transmit the Information; adapt the Information; exploit the Information commercially and non-commercially for example, by combining it with other Information, or by including it in your own product or application. Where you do any of the above you must acknowledge the source of the Information in your product or application by including or linking to any attribution statement specified by the Information Provider(s) and, where possible, provide a link to this licence: http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/This book is the record of abstracts submitted and accepted for presentation at the Inaugural Engineering and Computer Science Research Conference held 17th April 2019 at the University of Hertfordshire, Hatfield, UK. This conference is a local event aiming at bringing together the research students, staff and eminent external guests to celebrate Engineering and Computer Science Research at the University of Hertfordshire. The ECS Research Conference aims to showcase the broad landscape of research taking place in the School of Engineering and Computer Science. The 2019 conference was articulated around three topical cross-disciplinary themes: Make and Preserve the Future; Connect the People and Cities; and Protect and Care

    18th IEEE Workshop on Nonlinear Dynamics of Electronic Systems: Proceedings

    Get PDF
    Proceedings of the 18th IEEE Workshop on Nonlinear Dynamics of Electronic Systems, which took place in Dresden, Germany, 26 – 28 May 2010.:Welcome Address ........................ Page I Table of Contents ........................ Page III Symposium Committees .............. Page IV Special Thanks ............................. Page V Conference program (incl. page numbers of papers) ................... Page VI Conference papers Invited talks ................................ Page 1 Regular Papers ........................... Page 14 Wednesday, May 26th, 2010 ......... Page 15 Thursday, May 27th, 2010 .......... Page 110 Friday, May 28th, 2010 ............... Page 210 Author index ............................... Page XII

    Stochastic and complex dynamics in mesoscopic brain networks

    Get PDF
    The aim of this thesis is to deepen into the understanding of the mechanisms responsible for the generation of complex and stochastic dynamics, as well as emerging phenomena, in the human brain. We study typical features from the mesoscopic scale, i.e., the scale in which the dynamics is given by the activity of thousands or even millions of neurons. At this scale the synchronous activity of large neuronal populations gives rise to collective oscillations of the average voltage potential. These oscillations can easily be recorded using electroencephalography devices (EEG) or measuring the Local Field Potentials (LFPs). In Chapter 5 we show how the communication between two cortical columns (mesoscopic structures) can be mediated efficiently by a microscopic neural network. We use the synchronization of both cortical columns as a probe to ensure that an effective communication is established between the three neural structures. Our results indicate that there are certain dynamical regimes from the microscopic neural network that favor the correct communication between the cortical columns: therefore, if the LFP frequency of the neural network is of around 40Hz, the synchronization between the cortical columns is more robust compared to the situation in which the neural network oscillates at a lower frequency (10Hz). However, microscopic topological characteristics of the network also influence communication, being a small-world structure the one that best promotes the synchronization of the cortical columns. Finally, this Chapter shows how the mediation exerted by the neural network cannot be substituted by the average of its activity, that is, the dynamic properties of the microscopic neural network are essential for the proper transmission of information between all neural structures. The oscillatory brain electrical activity is largely dependent on the interplay between excitation and inhibition. In Chapter 6 we study how groups of cortical columns show complex patterns of cortical excitation and inhibition taking into account their topological features and the strength of their couplings. These cortical columns segregate between those dominated by excitation and those dominated by inhibition, affecting the synchronization properties of networks of cortical columns. In Chapter 7 we study a dynamic regime by which complex patterns of synchronization between chaotic oscillators appear spontaneously in a network. We show what conditions must a set of coupled dynamical systems fulfill in order to display heterogeneity in synchronization. Therefore, our results are related to the complex phenomenon of synchronization in the brain, which is a focus of study nowadays. Finally, in Chapter 8 we study the ability of the brain to compute and process information. The novelty here is our use of complex synchronization in the brain in order to implement basic elements of Boolean computation. In this way, we show that the partial synchronization of the oscillations in the brain establishes a code in terms of synchronization / non-synchronization (1/0, respectively), and thus all simple Boolean functions can be implemented (AND, OR, XOR, etc.). We also show that complex Boolean functions, such as a flip-flop memory, can be constructed in terms of states of dynamic synchronization of brain oscillations.L'objectiu d'aquesta Tesi és aprofundir en la comprensió dels mecanismes responsables de la generació de dinàmica complexa i estocàstica, així com de fenòmens emergents, en el cervell humà. Estudiem la fenomenologia característica de l'escala mesoscòpica, és a dir, aquella en la que la dinàmica característica ve donada per l'activitat de milers de neurones. En aquesta escala l'activitat síncrona de grans poblacions neuronals dóna lloc a un fenomen col·lectiu pel qual es produeixen oscil·lacions del seu potencial mitjà. Aquestes oscil·lacions poden ser fàcilment enregistrades mitjançant aparells d'electroencefalograma (EEG) o enregistradors de Potencials de Camp Local (LFP). En el Capítol 5 mostrem com la comunicació entre dos columnes corticals (estructures mesoscòpiques) pot ser conduïda de forma eficient per una xarxa neuronal microscòpica. De fet, emprem la sincronització de les dues columnes corticals per comprovar que s'ha establert una comunicació efectiva entre les tres estructures neuronals. Els resultats indiquen que hi ha règims dinàmics de la xarxa neuronal microscòpica que afavoreixen la correcta comunicació entre les columnes corticals: si la freqüència típica de LFP a la xarxa neuronal està al voltant dels 40Hz la sincronització entre les columnes corticals és més robusta que a una menor freqüència (10Hz). La topologia de la xarxa microscòpica també influeix en la comunicació, essent una estructura de tipus món petit (small-world) la que més afavoreix la sincronització. Finalment, la mediació de xarxa neuronal no pot ser substituïda per la mitjana de la seva activitat, és a dir, les propietats dinàmiques microscòpiques són imprescindibles per a la correcta transmissió d'informació entre totes les escales cerebrals. L'activitat elèctrica oscil·latòria cerebral ve donada en gran mesura per la interacció entre excitació i inhibició neuronal. En el Capítol 6 estudiem com grups de columnes corticals mostren patrons complexos d'excitació i inhibició segons quina sigui la seva topologia i d'acoblament. D'aquesta manera les columnes corticals se segreguen entre aquelles dominades per l'excitació i aquelles dominades per la inhibició, influint en les capacitats de sincronització de xarxes de columnes corticals. En el Capítol 7 estudiem un règim dinàmic segons el qual patrons complexos de sincronització apareixen espontàniament en xarxes d'oscil·ladors caòtics. Mostrem quines condicions s'han de donar en un conjunt de sistemes dinàmics acoblats per tal de mostrar heterogeneïtat en la sincronització, és a dir, coexistència de sincronitzacions. D'aquesta manera relacionem els nostres resultats amb el fenomen de sincronització complexa en el cervell. Finalment, en el Capítol 8 estudiem com el cervell computa i processa informació. La novetat aquí és l'ús que fem de la sincronització complexa de columnes corticals per tal d'implementar elements bàsics de computació Booleana. Mostrem com la sincronització parcial de les oscil·lacions cerebrals estableix un codi neuronal en termes de sincronització/no sincronització (1/0, respectivament) amb el qual totes les funcions Booleanes simples poden ésser implementades (AND, OR, XOR, etc). Mostrem, també, com emprant xarxes mesoscòpiques extenses les capacitats de computació creixen proporcionalment. Així funcions Booleanes complexes, com una memòria del tipus flip-flop, pot ésser construïda en termes d'estats de sincronització dinàmica d'oscil·lacions cerebrals.Postprint (published version

    Interpersonal synchrony and network dynamics in social interaction [Special issue]

    Get PDF
    corecore