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Welcome Address to NDES 2010 in Dresden

Dear colleagues and friends,

we  would  like  to  extend  a  warm  welcome  to  all  the  participants  of  the  International 

Workshop NDES 2010, and we thank you very much for your participation. 

NDES 2010 is the eighteenth in a series of workshops, and some of the NDES family 

might remember the way it took almost around the world:

Dresden (1993) – Krakow (1994) – Dublin (1995) – Seville (1996) – Moscow (1997) - 

Budapest (1998) - Rønne (1999) – Catania (2000) - Delft (2001) – Izmir (2002) – 

Scuol (2003) – Évora (2004) - Potsdam (2005) – Dijon (2006) – Tokushima (2007) - 

Nizhniy Novgorod (2008) - Rapperswil (2009).

– Participants of the first NDES in 1993-

Now it will be held again in the place where it started, and we expect that the workshop will 

not only be an interesting event in nonlinear science, but that it will also provide all of you 

with the best of science and education. All program components of NDES, such as invited 
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talks  given  by  well-known  lecturers,  presentations  of  research  results  and  a  special 

session  devoted  to  neural  networks  will  hopefully  attract  as  many  participants  as  in 

previous years.

We also hope that you will enjoy your stay here in our beautiful city of Dresden.

The workshop was sponsored by the German Research Foundation (DFG), technically co-

sponsored by the Circuit and Systems Society (CASS) of the Institute of Electrical and 

Electronic Engineers (IEEE) Inc., and supported by the Dresden University of Technology. 

We  would  like  to  express  our  appreciation  and  sincere  thanks  to  all  sponsoring 

organizations. 

Furthermore, we thank all who contributed with their efforts and their engagement to make 

our workshop possible. 

Welcome to Dresden! 

Welcome to NDES 2010!

We wish you a very pleasant stay!

Prof. Ronald Tetzlaff  Prof. Wolfgang Schwarz                   Prof. Kristina Kelber

General Chair         Program Chair                      Publication Chair
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Special Thanks
The NDES2010 Organizing Committee would like to acknowledge the technical support of the 

Technische Universität Dresden, Professur für Grundlagen der Elektrotechnik 

(Dresden University Of Technology, Chair Of Fundamentals Of Electrical Engineering) 

and the 

Circuit And Systems Society (CASS) of the Institute Of Electrical And Electronics 

Engineers (IEEE). 

They greatly contributed to the success of the event. 

We would like to express our appreciation and sincere thanks to the 

Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) 

which financially supported the Symposium and greatly contributed to make it a memorable event. 

Finally, special thanks go to the reviewers, who devoted their valuable time to NDES2010:

Anthony C. Davies, Ute Feldmann, 

Martin Hasler, Kristina Kelber, 

Jörg Krupar, Erik Lindberg, 

Jan Lunze,  Andreas Mögel,  

Yoshifumi Nishio, Toshimichi Saito, 

Wolfgang Schwarz, Ronald Tetzlaff, 

Hiroyuki Torikai, Michael Tse. 
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Conference program

May 25, 2010 (Tuesday)

Time slot Schedule / Room

16:00-20:00 Registration at Görges-Bau (conference venue), 
Wednesday: 8-17
Thursday: 8-17
Friday: 8-12

18:00-20:00 Welcome and Get-Together / Görges-Bau (conference venue)

May 26, 2010 (Wednesday)

Time slot Time Schedule Room
Page

08:15-08:30 Welcome Note
Ronald Tetzlaff

226

08:30-10:00 Invited lectures 1:
Chairman: Wolfgang Schwarz

226

08:30 Guanrong (Ron) Chen (City University of Hong Kong, China)
Pinning Control of Nonlinear Network Synchronization 

Page
1

09:15 Maciej Ogorzalek (Jagiellonian University, Krakow, Poland)
Fractal Techniques Boost Performance of Microelectronic Circuits 

Page
1

10:00-10:30 Coffee break

10:30-11:50 Session 1.1: Nonlinear circuits & systems 1 127
10:30 The Barkhausen Criterion (Observation ?) 

Erik Lindberg. 
Page 

15

10:50 Asymptotic and Numerical Analysis of Equation with Large Delay
Ilya S. Kashchenko.

Page 
19

11:10 A New Quality Factor for the Comparison of Multiplier Architectures
Ahmed Darrat and Wolfgang Mathis. 

Page 
22

11:30 Design of coupling for arbitrary lag synchronization in chaotic 
oscillators
Prodyot Kumar Roy, Sourav Kumar Bhowmick, Ioan Grosu and 
Syamal Kumar Dana. 

Page 
26
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Time slot Time Schedule Room
Page

10:30-11:50 Session 1.2: Control & Synchronisation 1 229
10:30 Desynchronization of Mean-Field Coupled Oscillators by Remote 

Virtual Grounding
Arunas Tamasevicius, Skaidra Bumeliene, Elena Tamaseviciute,  
Gytis Mykolaitis and Raimundas Kirvaitis.

Page 
30

10:50 Nonlinear Observer Based Control of a Chaotic Phase Locked 
Loop
Mohamed Mchiri and Karim Trabelsi. 

Page 
34

11:10 Observer approch for synchronization of chaotic time delay Chua 
circuit: application to secure communication
Karim Trabelsi and Mohamed Mchiri.

Page 
38

11:30 Communication system with chaotic radiopulses in the real 
channels
Lev Kuzmin. 

Page 
42

11:50-12:00 break

12:00-13:20 Session 2.1: Nonlinear circuits & systems 2 127
12:00 Generation of the microwave dynamic chaos in ring self-oscillatory 

system on CMOS structure
Alexander Dmitriev, Elena Efremova and Artem Nikishov.

Page 
46

12:20 Influence of electron velocity dispersion on dynamics of electron 
beam with virtual cathode
Semen Kurkin, Alexander Hramov and Alexey Koronovskii.

Page 
50

12:40 Observer Based Measurement of the Adenosine Diphosphate 
Concentration in Multimodal Oscillatory Pancreatic Beta Cells
Klaus Röbenack. 

Page 
54

13:00 Spiking in Delay-Coupled FitzHugh-Nagumo Systems with 
Feedback
Anastasiia Panchuk. 

Page 
58

12:00-13:20 Session 2.2: Control & Synchronisation 2 229
12:00 Synchronization in Two Polygonal Oscillatory Networks Sharing a 

Branch
Yoko Uwate, Yoshifumi Nishio and Ruedi Stoop. 

Page 
62

12:20 Chaos Control of the Chaotic Colpitts Oscillator
Arturo Buscarino, Luigi Fortuna, Mattia Frasca and Gregorio  
Sciuto. 

Page 
66

12:40 Generalized synchronization in mutually coupled dynamical 
systems
Olga Moskalenko, Alexey Koronovskiy, Alexander Hramov and 
Svetlana Shurygina. 

Page 
70

13:00 Chaotic Behavior of Hysteresis Cellular Nonlinear Networks and its 
Control
Angela Slavova. 

Page 
74
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Time slot Time Schedule Room
Page

13:20-14:30 Lunch

14:35-15:20 Invited lecture 2:
Chairman: Vladimir Nekorkin

226

Michael Tse (Hong Kong Polytechnic University, China)

Composing Music by Complex Networks 

Page
2

15:20-15:30 Coffee break

15:50-17:10 Session 3.1: Chaos phenomena & control 127
15:50 Focusing Time--Dependent Billiards as Maxwell's Demon

Alexander Loskutov and Alexei Ryabov
Page 

78

16:10 Noise-induced Phenomena in a Bio-inspired Chemical Sensor 
Array
Kazuki Nakada, Katsumi Tateno, Hatsuo Hayashi and Kiyonori  
Yoshii. 

Page 
82

16:30 Explicit model predictive control for the start-up and orbital 
stabilization of a boost converter
Axel Schild, Jan Lunze and Wolfgang Schwarz. 

Page 
86

16:50 Chaos based networking systems sharing a common nonlinearity
M. Santhiah and P. Philominathan.

Page 
90

15:50-17:10 Session 3.2: Signal processing 229
15:50 Music Score Recognition System for a Robot controlling a 

Theremin
Kristina Kelber, Nils Wabnik and Carlos Hernandez Franco.

Page 
94

16:10 A Cochlear Active Transmission-Line Model without Wave 
Reflection
Tohru Kohda, Takao Une and Kazuyuki Aihara

Page 
98

16:30 Automatic Discovery of Subgoals in Reinforcement Learning using 
Betweeness Centrality Measures
Ali Ajdari Rad, Parham Moradi, Alireza Kahdivi and Martin Hasler.

Page 
102

16:50 Prediction of Time-Series Data using PSpice and Runge-Kutta 
Method
Kazuhisa Yoshimatsu, Masayuki Yamauchi and Yoshifumi Nishio. 

Page 
106
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May 27, 2010 (Thursday)

Time slot Time Schedule Room
 Page

08:30-10:00 Invited lecture 3:
Chairman: Ronald Tetzlaff

226

Leon Chua (University of California at Berkley, USA)
From G-clef to 137 

Page 
2

10:00-10:30 Coffee break

10:30-11:50 Session 4.1: Nonlinear circuits & systems 3 127
10:30 Circuit Implementation of an A/D Converter Based on the Scale-

Adjusted β-Map Using a Discrete-Time Integrator
Yoshihiko Horio, Kenya Jin'no, Tohru Kohda and Kazuyuki Aihara. 

Page 
110

10:50 Peak Search Algorithm of Frequency Characteristics with Unstable 
Region
Hiroshige Kataoka, Yoshihiro Yamagami and Yoshifumi Nishio. 

Page 
114

11:10 An Experimental Investigation of PWM-1 Controlled Circuit with 
Time Delay
Kenichi Tasaki, Hiroyuki Asahara and Takuji Kousaka. 

Page 
118

11:30 Qualitative Mechanism of DC/DC Converter containing Spike Noise
Hiroyuki Asahara and Takuji Kousaka. 

Page 
122

10:30-11:50 Session 4.2: Neural networks, neurodynamics, robots 1 229
10:30 Two-Compartment Phenomenological Model of Dopaminergic 

Neuron
Denis Zakharov, Alexey Kuznetsov and Vladimir Nekorkin. 

Page 
126

10:50 An adaptive coupling scheme for the Kuramoto model of complex 
networks
Ning Bo, Hou Jian-Li, Ren Quansheng and Zhao Jianye.

Page 
130

11:10 Improved Divided Chaotic Associative Memory for Successive 
Learning
Yohei Takamori and Yuko Osana.

Page 
134

11:30 Network motifs in STDP-driven neuronal networks
Quansheng Ren, Kiran M. Kolwankar, Areejit Samal and Juergen 
Jost. 

Page 
138

11:50-12:00 break
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Time slot Time Schedule Room
 Page

12:00-13:20 Session 5.1: Nonlinear circuits & systems 4 127
12:00 An Exactly Solvable Chaotic Circuit

Ned Corron, Mark Stahl and Jonathan Blakely.
Page 
142

12:20 Complex dynamics in a new PWL chaotic circuit
Arturo Buscarino, Luigi Fortuna and Mattia Frasca. 

Page 
146

12:40 Shil’nikov Chaos and Mixed-mode Oscillation in asymmetry-
induced Chua circuit
Satyabrata Chakraborty and Syamal Kumar Dana. 

Page 
150

13:00 Penetration and Reflection Mechanisms of Phase-Inversion Waves 
in Lattice Oscillators
Hitoshi Aburatani, Suguru Yamane, Masayuki Yamauchi and 
Yoshifumi Nishio. 

Page 
154

12:00-13:20 Session 5.2: Neural networks, neurodynamics, robots 2 229
12:00 Data Clustering based on Hebbian Learning in Inhomogeneous 

Coupled Map Lattices
Thomas Ott and Urs Mürset

Page 
158

12:20 Transient Dynamics and Metastable States in an Ensemble of 
Synaptically Coupled Morris-Lecar Neurons
Vladimir Nekorkin, Dmitry Kasatkin and Aleksey Dmitrichev.

Page 
162

12:40 Bifurcations in memristive oscillators 
Fernando Corinto, Alon Ascoli and Marco Gilli

Page 
166

13:00 On the Chaos Associative Memory with Tchebycheff Activation 
Function 
Masahiro Nakagawa. 

Page 
170

13:20-14:30 Lunch

14:35-15:20 Invited lecture 4:
Chairman: Syamal Dana

226

Vladimir I. Nekorkin (Institute of Applied Physics, RAS Nizhny 
Novgorod, Russia)

Nonlinear Dynamical Approach for Study of Neural Networks 
Activity 

Page 
3

15:20-15:30 Coffee break
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Time slot Time Schedule Room
 Page

15:50-17:30 Session 6.1: Bifurcation & Chaos 1 127
15:50 Detecting unstable periodic spatio-temporal states of spatial 

extended chaotic systems
Alexander Hramov and Alexey Koronovskii. 

Page 
174

16:10 Phase-flip bifurcation in a system of time-delay coupled oscillators
Vladimir Klinshov and Vladimir Nekorkin. 

Page 
178

16:30 T-point-Hopf bifurcation in electronic circuits
Antonio Algaba, Fernando Férnandez, Manuel Merino and 
Alejandro Rodríguez. 

Page 
182

16:50 Global bifurcations in a family of coupled systems
Antonio Algaba, Cristobal Garcia, Manuel Merino and Manuel  
Reyes. 

Page 
186

17:10 Generalizations of Blakesley's Voltage Source Shift Theorem 
Albrecht Reibiger (invited lecture)

Page 
10

15:50-17:30 Special Session: Neural networks for cognitive agents 229
15:50 Multiobjective optimization of Echo State Networks for multiple 

motor pattern learning
A. F. Krause, B. Blasing, T. Schack

Page 
190

16:10 Parallel Central Pattern Generators for locomotion control in a 
humanoid robot model
I. Aleo, P. Arena, L. Patane

Page 
194

16:30 Reaction-diffusion-like Systems for event representation and 
beyond
J.A. Villacorta-Atienza, V. A, Makarov, M. G. Velarde

Page 
198

16:50 Chunking by naming: A nonlinear recurrent network for storing 
hierarchical memory contents
H. Cruse, M Schilling

Page 
202

17:10 Tribot: a hybrid robot for cognitive algorithm implementation
P. Arena, L. Patane', M. Pollino, C. Ventura

Page 
206

19:00 Visit to the Dresden cathedral (Catholic Church of the Royal Court 
of Saxony), introduction to the SILBERMANN organ & short 
concert

20:00 Conference dinner at Sophienkeller
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May 28, 2010 (Friday)

Time slot Time Schedule Room
Page

08:30-10:00 Invited lectures 5:
Chairman: Martin Hasler

226

08:30 Syamal Dana (Central Instrumentation Indian Institute of Chemical 
Biology, Kolkata, India)

Engineering Synchronization in Chaotic Oscillators by Design of 
Coupling 

Page 
4

09:15 Ruedi Stoop (University and ETH Zürich, Switzerland)

Global real-world shrimp hierarchies 

Page
6

10:00-10:30 Coffee break

10:30-11:50 Session 7.1: Bifurcation & Chaos 2 226
10:30 Comparison of Eyelet Intermittency and Type-I Intermittency with 

Noise
Alexander Hramov, Alexey Koronovskiy, Maria Kurovskaya and 
Olga Moskalenko.

Page 
210

10:50 Bifurcation of a simplified model of the boost converter with solar 
cell input
Toshimichi Saito and Daisuke Kimura.

Page 
214

11:10 Self-Generation of Chaotic Dissipative Soliton Trains in Active 
Ring Resonators with Ferromagnetic Films
Sergey Grishin and Yurii Sharaevskii. 

Page 
218

10:30-11:50 Session 7.2: Nonlinear network analysis 229
10:30 Exponential Transient Oscillations and Their Stabilization in a 

Bistable Ring of Unidirectionally Coupled Maps
Yo Horikawa and Hiroyuki Kitajima.

Page 
226

10:50 Bistability and supratransmission in a nonlinear electronic Klein-
Gordon network
B. Bodo, S. Morfu, P. Marquie and M. Rossé.

Page 
230

11:10 Memristive effect in the model of superconductive-normal 
transition
Linda Ponta, Anna Carbone, Marco Gilli and Piero Mazzetti. 

Page 
234

11:30 Studying Circuit Disturbances of MOS LC-Tank Oscillators based 
on Order Reduction Techniques
Jan Bremer, Marco Reit and Wolfgang Mathis

Page 
238

11:50-12:00 break

12:00-12:15 Closing remarks
Wolfgang Schwarz

226

12:15-13:30 Lunch

end of workshop
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Guanrong (Ron) Chen
City University of Hong Kong, China

Pining Control of Nonlinear Network 
Synchronization

Abstract  - In this talk,  topics  on complex nonlinear  network synchronization and its 
pinning control are presented. First, the concept of synchronization and some criteria are 
briefly introduced for various dynamical networks, including fully-connected, ring-shaped 
and  star-shaped  regular  networks,  as  well  as  small-world  and  scale-free  complex 
networks.  Then,  the  issue  of  pinning-controlled  synchronization  is  discussed,  for 
nonlinear networks that do not satisfy self-synchronized conditions. Furthermore, some 
commonly  concerned  questions  are  addressed,  such  as  what  kind  of  controllers  to 
deploy, how many to use, and where to apply them on the network, so as to achieve 
effective network synchronization. Finally, a simple method is described for designing 
the  state-feedback  pinning  controller  gains,  verified  and  visualized  by  numerical 
simulation examples.

Maciej Ogorzalek
Jagiellonian University, Krakow, Poland

Fractal Techniques Boost Performance of 
Microelectronic Circuits

Abstract  – The  concepts  of  fractals  and space-filling curves  have  drawn attention of 
electrical  and  electronic  engineers  during  the last  decade  enabling  many  interesting 
developments such as building super-capacitors, multi-band miniature antennas, fractal 
sensors or new array search algorithms. 
With the recent advances in technologies entering the nano-scale electronics, ultra-high 
frequencies and 3D circuit topologies it seemed that fractal techniques have come to its 
limit of scalability.  This has been confirmed not to be true! In the last three-mentioned 
areas fractal approaches find even more spectacular applications. The functionality of 
nano-transistors,  bio-nano  probes  can  be  efficiently  analyzed  using  fractal 
transformations, new types of fractal THz antennas can be built and also fractal channel 
cooling  structures  could  be  designed  for  3D-stacked  Ics.  This  lecture  provides  an 
overview of cutting-edge techniques and most spectacular recent developments.

18th IEEE Workshop on Nonlinear Dynamics of Electronic Systems (NDES2010)
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Michael Tse
Hong Kong Polytechnic University, China

Composing Music by Complex Networks

Abstract  – Across  cultures,  and  between  individuals,  certain  musical  pieces  are 
consistently rated more favourably than others. We find that musical scores which are 
widely  perceived  to  be  “good”  generate  complex  networks  with  certain  invariant 
properties: scale-free networks with strong clustering of nodes within the network. We 
describe  a  method  to  generate  random  musical  compositions  from  these  networks 
(essentially, as a weighted random walk on the network) and find that scores generated 
in this manner are also perceived to be reasonably “good” and are similar (in the network 
statistical sense) to the specific score from which the generating network was produced. 
We will also introduce the concept of “motifs” in music and in networks. Creating and 
incorporating motifs in our network-based computer composition has shown to produce 
“appealing” music. We will construct networks for selected works from the late Chinese 
pop singer Teresa Teng, and use the constructed networks for recomposing music that 
mimicks the classic Teng’s style.

Leon Chua
University of California at Berkley, USA

From G-clef to 137

Abstract - The G-clef  and  the prime number 137 will be defined and immortalized for 
their fundamental significance in chaos and computation.

18th IEEE Workshop on Nonlinear Dynamics of Electronic Systems (NDES2010)
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Vladimir I. Nekorkin
Institute of Applied Physics, RAS Nizhny Novgorod, Russia

Nonlinear Dynamical Approach for Study of 
Neural Networks Activity

Abstract – In recent years nonlinear wave processes are attracting growing interest in the 
studies of neuronal network dynamics and information processes in the brain. Waves of 
excitation, localized activity patterns, their propagation and interactions represent are 
the  key  processes  in  the  problem  of  inter-neuron  communication,  guiding  the 
information flow and information processing in the neuronal networks of the brain. The 
mathematical  images  of  such  processes  are  attractors. On  the  other  hand, many 
neurophysiologic experiments have indicated that some neural processes (for example, 
processes  related  with  performing  of  different  cognitive  tasks  –  memory,  attention, 
psychomotor coordination, etc.) are accompanied only by transient activity on the level of 
individual neurons or small enough groups of neurons.  As a result of such processes a 
certain sequence of transitional activity phases appears in neural network. It is clear that 
such activity of neural networks cannot be understood within the framework of classical 
models of nonlinear dynamics which are based on concept of attractor because here the 
main effect  is  achieved long before the system reaches its neighborhood. My talk is 
devoted to applying nonlinear dynamics approach to both problems mentioned above.

Ruedi Stoop
University and ETH Zürich, Switzerland

 Global real-world shrimp hierarchies 
(full paper ->   page 6)

18th Int. Workshop on Nonlinear Dynamics of  Electronic Systems (NDES2010)
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Syamal Dana

Central Instrumentation Indian Institute of Chemical Biology, Kolkata, India

Engineering Synchronization in Chaotic 
Oscillators by Design of Coupling

Abstract— Synchronization is as a process of evolving common rhythm in oscillatory 
systems.  It  is  true for  periodic  as  well  as  chaotic  oscillators.  Most  of  the studies of 
synchronization so far assume the unidirectional and mutual coupling mode due to their 
common existence in many natural systems, physical, chemical and biological and even 
ecological.   Different synchronization regimes,  namely,  complete synchronization,  lag 
synchronization  and  phase  synchronization  and  also  antiphase  synchronization  is 
identified under varying coupling strength. However, there is strict rule how to achieve or 
to target a particular type of synchronization in any given oscillatory system. However, 
for engineering purposes, we need robust methods for targeting such synchronization. 

In  this  talk,  two different  methods,  one  open-plus-closed-loop  coupling  and  another 
lyapunov  function  definition  of  coupling  are  proposed  to  target  any  of  the  above-
mentioned  synchronization  regimes  in  two  or  more  coupled  oscillators.  We  present 
mathematical foundations of the design of the coupling function for targeting several 
regimes,  synchronization,  anti-synchronization  and  arbitrary  lag  synchronization.  We 
provide experimental evidences of all the regimes in electronic circuits.

Albrecht Reibiger
Dresden University of Technology, Germany

Generalizations of Blakesley's Voltage 
Source Shift Theorem

(full paper ->  page 10)
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Global real-world shrimp hierarchies

Ruedi Stoop, Philipp Benner, Yoko Uwate
Institute of Neuroinformatics,

University of Zürich and Swiss Federal Institute of Technology Zürich, Irchel Campus, 8057 Zurich, Switzerland
Email: ruedi@ini.phys.ethz.ch

Abstract—As a recent result on dynamical invariants in
two-dimensionsional parameter space, islands of periodic-
ities of characteristic shapes (’shrimps’) have been shown
to exist that are connected by means of spirals, emanating
from a joint focal point, offering ways to wander around in
parameter space without ever having to cross the chaotic
sea. In this paper, we confirm the experimental existence
of the shrimp phenomenon, by probing the parameter
space of a hardware nonlinear electronic system family and
comparing it to the corresponding numerical simulations.

I. INTRODUCTION

The theory of dynamical systems, being developed
since Poincare in the 19th century, can be characterized
as the search for dynamical invariants, with respect to
variations of the system at hand with respect to its
parameters or with respect to the initial conditions used.
From the practical viewpoint, knowing the underlying
principles spatial extensions and further properties of
these invariants provides experimentalists and modelers
with strong universal guidelines for their work . One par-
ticular important aspect of such properties, for example,
is the possibility to maintain a certain given dynamical
behavior of the system (e.g., the periodicity of the
device) while navigating through the parameter space.
For systems depending on one parameter, the system
behavior from this respect is fairly well understood
in terms of the bifurcation diagrams that tell us what
dynamical behavior in physical space is to be expected.
In this case, the main parameter intervals pertaining to a
fixed periodic behavior are generically of small size and
follow a simple scaling behavior. The typical situation in
systems having a parameter space of co-dimension two
or higher, is less well understood. Here, the fundamental
class of such invariants are the so-called ’shrimps’ [5].
They owe their name to their peculiar form, which is
preserved among a large variety of systems. Similarly
to the parameter intervals associated with a certain
periodicity in dimension one, the sizes of the shrimps
associated with different periodicities follow a simple

scaling behavior, and their geometric shapes remain es-
sentially invariant. More explicitly, the appearance of one
such shrimp implies the appearance of an infinite number
of self-similar shrimps that are aligned side by side along
a particular direction. Moreover, each shrimp occupies
an extended region of the parameter space, meaning
that one can still stay in the same periodic window
even when large variations in two control parameters
are being made. In this way, an arbitrary change in only
one accessible parameter can replace chaos by periodic
behavior, or vice versa. Therefore, a better understanding
of the global properties of shrimps is useful in particular
in the experimental context, when nonlinearly reacting
devices are to be switched from chaotic into periodic
behavior just by a minimal application of a change in one
(or a combination) of the parameters, or if robust chaotic
behavior of a device is needed, e.g. if the periodicity is to
be established by means of chaos control, or for chaos-
based communication [1], [2].

II. EARLIER APPROACHES AND PREVIOUS RESULTS

A program of investigation of the behavior of nonlin-
ear systems, including the determination of their invari-
ants, was already very early pointed out in the context of
electronic systems [3]. On of the first remarkable theoret-
ical results in understanding two-dimensional invariants
in parameter space were obtained for time-continuous,
near-to-homoclinic systems, in the context of Shilnikov
chaos [4].

Later on, the topic was taken up by Gallas, who
analyzed the internal structures of the shrimps in a more
abstract way [5], [6], building directly upon iterated non-
linear maps. Shrimps were found an discussed in a large
number of discrete-time map based systems approach
[5], [6], [7], [8], [9], [10], [11], [12]. The simulation
of continuous-time systems require more technicalities
for ordinary differential equation systems [13], [14],
[15], [16], [17], [18]. Their experimental corroboration,
however, is even more involved, as, due to the complex
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shrimp boundaries, a high experimental resolution is
needed in order to pin the object down. In Ref. [13],
one of the first examples of a shrimp from a real-
world system was reported, for Chua’s circuit. Results
that concentrate on the internal structure of a period-4
shrimp of an electronic circuit, were recently obtained in
Ref. [19]. This work verified in a real-world experiment
the theoretical predictions made in [4], [5] on the internal
mechanisms responsible for shrimps generation.

To some some extent of even more important than
the internal structure of shrimps, is the global aspect
of their occurrence. In a recent computational effort,
Gallas and Bonatto explored explore the global param-
eter space aspects associated with a model of a related
nonlinear electronic circuit [17]. They demonstrated the
existence of a hierarchical structure (’hub’), binding all
shrimps in a large portion of the parameter space, and
allowing for to change from periodicity to periodicity
without ever having to cross the chaotic sea. Such an
observation is, as discussed above, at the heart of the
whole invariant investigation; in direct simulations, the
theoretical predictions of Ref. [4] were corroborated.
However, to fulfill the program, also the corroboration
from real-world systems is desired, as global properties
of differential equations of electronic circuits reflect only
the behavior and properties of the latter to a certain
extent: They refer to idealized electronic components,
which when observed over extended regions of the
parameter space, might not be valid everywhere, and so
a direct correspondence is questionable.

Here we provide evidence for the first time hinting at
the structural stability of these invariants also in the real-
world paradigm, by showing that the identical invariant
objects exist in the real-parameter world of circuits and
that their global organization matches that one predicted
by the theoretical, idealized, analysis.

III. O N THE EMERGENCE OF THE SHRIMP

PHENOMENON

For an introduction into the shrimp phenomenon, we
consider first the prototype of dissipative nonlinear sys-
tems, Hénon’s map [20]f : {x, y} → {1−ax2+y, bx}
(the corresponding prototype for conservative systems,
the circle or standard map [21], [22]f : {x, y} →

{xn := x + Ω −
K
2π sin(2πx), yn := y + xn mod 1},

gives rise to similar observations). In this map,a is the
nonlinearity parameter;b characterizes the dissipation.
Evaluating this system, we observe that the sets on
which simple periodic behavior emerges, are bounded by

complicated geometric boundaries (and have a ’shrimp’-
like appearance). Moreover, they have interesting scaling
properties, in the phase space as well as in the parameter
space, see Fig. 1. Phase-space shrimps are bound by

−2

0

2

4

−2 −1 0 1 2

x

y

P1

P3

P3

P3

a)

0.05

0.10

0.15

0.20

0.25

1.45 1.50 1.55 1.60 1.65

a

b 
P5

P6

P6

P7

P7

P8

P9

P10

P9

P10

P12

P10

chaos

P8

b)

divergence

Fig. 1. a) Phase-space shrimp of the dissipative Hénon’s map
(standard parametersa = 1.4, b = 0.3). All points that converge to
the central period-1 attractor are displayed in red, those that converge
to a period-3 attractor in orange. Open dot: unstable period1. b)
Shrimps of different periodicitiesPi in parameter space, separated
by a chaotic sea (white). Crossing tails reflect non-ergodicity.

nonlinear manifolds that co-operate for their generation:
An attracting basin towards fixed periodicity (central
point of low periodicity) is bounded by a heteroclinic
connection of saddle points of higher periodicity; beyond
the separatrix, there are attractive points of higher peri-
odicity (heteroclinic saddle connection [23]). As we will
see below, this picture translates in a simple way into the
parameter domain. Similarly (and strongly related) to the
Feigenbaum period doubling, the emergence of shrimps
is a universal feature. Shrimp islands are embedded
within a surrounding (possibly hyper-[24]) chaotic sea,
characterized byk ≥ 1 positive Lyapunov exponents,
that generally are reached over a series of period dou-
blings. Each shrimp is organized along so-called spines
of codimensionk. Inside the shrimps, there is at least
one point for which the determinant and the trace of
the linearization are both zero, around which the shrimp
structure is organized [11]. Periodic attractors with close
to zero Lyapunov exponents are generated for parameter
values on the tails of the shrimp. For dissipative systems,
the tails of the shrimps can be seen as a codimension-one
curve of nilpotent points. As a consequence, always large
parameter changes can be made without breaking an
orbit’s stability. Shrimps are thus extended and have large
scale dimensions in the parameter space. The situation
for conservative systems is very similar [11].
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IV. SHRIMP RELATIONS

Before demonstrating the existence of the salient
shrimp phenomena in real systems, we will exemplarily
demonstrate the close relationship between shrimps of
the phase- and parameter-space. The observation that
phase- and parameter-space shrimps are intimately con-
nected was, among with other fundamental features of
shrimps, first outlined in one of the pioneering works
by Gallas [6], which we recall here in a condensed
form. For simplicity of the argument, instead of the
two-dimensional Hénon map, it is sufficient to consider
the one-dimensional mapf : x → (a − x2)2 − b [6].
This map can be seen as the nonlinear component of
the second iterate of the Hénon map, where various
terms involving pre-images ofx can be thought of being
absorbed in the parametersa andb. Stablek-isoperiodic
islands (shrimps) arise wheneverxk = fk(xk), | mk |=|

fk
′

(xk) |< 1 holds, wherefk denotes thek-fold iterated
mapf and the prime the derivative with respect tox. A
superstable locus requires thatmk = 0, i.e.

fk
′

(xk) = −4

k
∏

i=1

xi

k
∏

i=1

(a − x2
i ) = 0. (1)

First, this implies that allk-superstable solutions need
to pass either throughxk = 0 or xk = ±

√

a. By differ-
entiability, this defines three families in parameter and
in phase-space. Specifically for thek = 1-isoperiodic
islands, we arrive at the two conditions

{a2
−b−x−2ax2+x4 = 0, −m−4ax+4x3 = 0}. (2)

From these conditions, the phase-space variablex can
be eliminated and the problem can be examined in the
parameter space. We end up withm4

− 12m3 + (48 −

32ab)m2 + 64(ab − 1)m − 256(a − b2)(a2
− b) = 0.

The parameter space area of the period-1 shrimp is
now obtained by restrictingm to values | m |≤ 1.
As the locus of superstable solutions(m = 0), the
four parabolaa = ±

√

b, b = ±

√

a emerge, which
define the legs of the shrimp. Higher order islands
are obtained analogously, requiring, however, increased
computational efforts. Due to the symmetry and the
differentiability of the underlying equation, the centers
of the hearts of the islands are obtained form = 0; they
are connected by Eq. 2 with the corresponding{x, y}-
coordinates.k > 1-superstable orbits must similarly
pass either throughx = 0 or x = ±

√

a, so that the
procedure can be repeated for higher periodicities. For
the family that passes throughx = 0, we finally obtain
the conditionsk = 1 : a2

− b = 0, k = 2 : (a − (a2
−

b)2)2 − b = 0, k = 3 : (a− (a− (a2
− b)2)2 − b = 0, . . .,

whereas for the families that pass throughx = ±
√

a,
the corresponding expressions arek = 1 : −b = 0,
k = 2 : (a − b2)2 − b = 0, k = 3 : (a − ((a − b2)2 −
b)2)2 − b = 0 . . .. For k = 1, this implies the solution
{a1, b1} = {0, 0}, which is the intersection point of
the four parabolas, defining the center, or head, of the
shrimp. Similarly, the corresponding solutions for higher
k’s define the heads of shrimps of higher periods. These
points of intersections can be cast in the form of the

pair of equations [6]{a = ±

√

b ±
√

a ±

√

b ± . . ., b =

±

√

a ±

√

b ±
√

a ± . . .}, where the continued formula
needs to be cut off according tok. Cutting off after the
first radical yields the equation fork = 1, with sole
solution{a1, b1}. Cutting off after the third radical yields
the solutions associated withk = 2, and so on. For both
equations, identical sequences of signs must be selected,
which consequently leads to2k islands of periodk. The
locations of the shrimp heads are then easily derived
from equations corresponding to Eq. 2.

V. REAL-WORLD SHRIMPS

Here, we advance these efforts, by providing evidence
for the hierarchical shrimp phenomenon from idealized
ordinary differential equations of a nonlinear electronic
circuit and by providing the corresponding directly real-
world experimental evidence. Our experimental system is
an asymmetric variant of the Nishio-Inaba circuit family,
which we found to be experimentally much more stable
than the symmetric two-diode version used in Refs. [25].
In Fig. 2 a), we provide the diagrammatic description
of this circuit family and its model equations (note the
changed expression of the diode representationf ). In
Fig. 2 b) we characterize the emergent behavior across
the parameter space in terms of Lyapunov exponents
(we plot here the largest exponent, constraining ourselves
thus to non-negative values) and in c) by means of peri-
odicity. For these figures, as well as for the experimental
counterpart in Fig. 2 d), we choseC = 0.0066µF and
L1 was fixed toL1 = 634mH and probed the systems
by sampling their parameter spaceα × β, exploiting
the relationshipsα = r

√

C/L1, β = L1/L2 and
γ = rd/L2

√

L1C [25]. For the simulated samples,
the emergent behavior was observed after a transient
and recorded. For the experimental results, we similarly
probed the space of systems, however, at a coarser step-
size of ∆β = 0.025 and of ∆r = 0.01, respectively,
rendering the value ofL2 to vary across the interval
[105, 507]mH. For each data point, the periodicity was
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observed on the oscilloscope and recorded. In the ob-
tained results, the rich emergence of shrimp structures
is obvious. It will be noted that our experimental results
do not completely coincide with the simulation results.
For this difference, we hold the internal resistance of
the inductance (that are not accounted for in the circuit
equations) and the precise characteristics of the diode
responsible. The stunning similarity between the model
and the experimental data is, nonetheless, evident. With
the high experimental resolution achievable, a zoom-in
also confirms the characteristic details of the recently
observed ’periodicity hub’ formed by the shrimps [17]
(dashed boxes).

f (y) =
γ

2
(y +

1

γ
− | y −

1

γ
|)

x, y, z i 1 , i 2 , vare the rescaled 

circuit equations:

,    and

a)

,

d x

dt
= z + α x

d y

dt
= z − f (y)

d z
dt = − x − β y

C

-r
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Fig. 2. a) Asymmetric variant of Nishio’s circuit with corre-
sponding equations. b) shrimps from simulations expressedin terms
of Lyapunov exponents, c) by periodicity, d) experimental shrimps
characterized by periodicity (dashed box: location of the ’periodicity
hub’ [17]).

VI. CONCLUSION

The shrimp phenomenon as the locus of a distin-
guished periodic behavior may be of particular relevance
for bioinformatics. When dealing with experimental high
throughput data in biochemistry or genetics, often the
question is relevant, what initial conditions or parameter
values will give rise to similar behaviors. Chemical sub-
stance generation, and, similarly, biological organisms,
often require certain physical conditions to be fixed in a
certain band-width.

The division of a set of observations into subsets
so that observations follow the same behavior in some
sense, is termed clustering. If the clusters have a form
close to a spatially Gaussian probability distribution, two
classical approaches that will solve this problem are
k-means [26] and hierarchical clustering [27], [28], if
we provide the correct number of clusters to be found.
The shrimp phenomenon with its characteristic convex-
concave geometric boundaries, however, suggests that
in carefully prepared data, Gaussian noise clouds will
rather be the exception than the rule. We suspect that this
is why in bioinformatics, despite a plethora of standard
algorithms, clustering works less well than expected.
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Abstract—It is shown that the well-known Voltage
Source Shift Theorem due to Blakesley and its dual
version, the Current Source Shift Theorem as well as the
rules for the transformation of networks with loops of
capacitors or cut sets of inductors into networks without
such loops or cutsets, resp., and the relationships between
capacitance coefficients and partial capacitors are special
cases of general theorems on the terminal behavior of
networks. The proof of these theorems is based on the
theory of terminal behavior of networks. For these proofs
we do not need the substitution theorem with its strong
uniqueness assumptions. This fact is an essential advantage
in comparison to the original proof given by Chua and
Green.

I. I NTRODUCTION

The Voltage Source Shift Theorem [5], [3] goes back
to the paper [1] of T. H. BLAKESLEY in 1894.

BLAKESLEY considers two cases. In the first one a
voltage source is shifted from one branch of an incidence
cut into the complementary subset of branches of this
cut. In the second one a voltage source is shifted from
one branch of an arbitrary cutset into the complementary
subset of branches of this cutset.

The Current Source Shift Theorem [5], [3] is the dual
form of the Voltage Source Shift Theorem. While the lat-
ter is definitely connected with the name of BLAKESLEY,
we was unable to identify the originator of the Current
Source Shift Theorem.

CHUA and LIN consider in [2], Problem 10-9 and 10-
11, examples for the elimination of a single capacitor-
loop or inductor-cutset from some network. CHUA and
GREEN generalize in [4] these equivalences to nonlinear
RLCM-networks including multiple capacitor voltage-
source loops or inductor current-source cutsets.

In almost all of today’s circuit simulators the net-
work models to be analyzed are described by means
of differential-algebraic equations. The so called index

[7], [19] describes an essential property of this class of
equations. The equivalences considered in [4] can be
used to reduce the index of the corresponding differential
algebraic equation. This is an important feature for
the development of circuit simulation software since
index reduction improves the convergence properties of
numerical integration procedures for this special type of
equations.

CHUA and GREEN use mathematical induction to
prove these equivalences. To verify the corresponding
base step they rely on the Substitution Theorem of
network theory [5], [3]. This fact is the Achilles heel
of their proof since the Substitution Theorem can be
used only, if both the original network and the network
modified by means of this theorem have the same finite
number of solutions (cf. [6]) or, in the standard version
[5], [3], only unique solutions. Take into account, for
nonlinear networks it is impossible to ensure that this
assumption is always fulfilled.

The examples of equivalent networks mentioned above
are special cases of more general theorems on the
terminal behavior of networks. Here we present only the
central results and the ideas behind their proofs; a paper
with complete proofs is in preparation [16].

For network theoretical notations used in the following
we refer to [15]. As there we define a network as an
ordered pair(C,V) of a skeletonC and a constitutive
relation V. The skeleton is itself an ordered pair of
two oriented graphs with the same branch and node
set differing at most with respect to their orientations.
The constitutive relation is a binary relation, it is a
subset of the universal signal set of the network. Its
elements are denoted as signal pairs. Especially we make
use here from the notions of constitutive and behavioral
equations of a network, of matrix representations of the
elements of its universal signal set, of the projections of
its solution set defined by subsets of its branch set and
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of the canonical representatives of its terminal behavior
with respect to a prescribed terminal class family.

The constitutive relation of a network(C,V) is de-
noted asvoltage controlledif it is a right-unique relation,
i.e. a mapping which assigns to each elementu of domV

a uniquei = V(u). Similarly we refer toV as current
controlled if V is a left-unique relation. ThenV−1 is a
mapping which assigns to each elementi of its domain
a uniqueu = V

−1(i).

II. GENERALIZED CURRENT SOURCESHIFT

THEOREMS

In this section we consider a connected network
N = (C,V) with associated reference directions, with at
least one loop, and without self-loops. We assume that
N consists of two complementary subnetworksN

vs and
N

vc. The subnetworkN vs has the branch setZvs and
consists of independent voltage sources only, of course,
without voltage-source loops. The subnetworkN

vc has
the branch setZvc and a voltage controlled constitutive
relation, e.g. it may be consist of independent current
sources or nonlinear capacitors. Branch and node set
of N are denoted byZ and K, resp. Clearly, it holds
Z = Z

vs
∪ Z

vc.
SinceN does not include self-loops, each of its loops

consists of at least two branches.
BecauseN has associated reference directions there

exists an oriented graphG such thatC = (G,G).
SinceN

vs is loopless, there exists inG a spanning
treeGtr with a branch setZtr consisting of all branches
of Z

vs and a minimal subsetZvc
tr ⊂ Z

vc, i.e., Ztr =
Z

vs
∪ Z

vc
tr . BecauseN includes at least one loop, the

corresponding setZlk := Z
vc
lk := Z

vc
\ Z

vc
tr of links is

nonvoid and consists merely of branches ofZ
vc.

A suitable numbering of the branches ofN presup-
posed the fundamental cutset matrix ofN defined byGtr

can be partitioned as follows

S =

(
Evs 0 F vs

0 Evc F vc

)
, (1)

whereEvs and Evc are |Z
vs
| × |Z

vs
| or |Zvc

tr | × |Z
vc
tr |

unit matrices, resp.
Using numberings of the branch setsZvs, Zvc, Zvc

tr ,
andZvc

lk , preserving the arrangement of the correspond-
ing branches introduced by the numbering ofZ to fix
the matrix S in equation (1) we assign to each signal
pair (u, i) of the universal signal set ofN matrix rep-
resentations of the quantitiesu, uZ

vs , uZ
vc , uZ

vc

tr
, uZ

vc

lk
,

andi, iZvs , iZvc , iZvc

tr
, iZvc

lk
. These matrix representations

are now in the same order denoted byu, uvs, uvc, uvc
tr ,

uvc
lk and i, i vs, i vc, i vc

tr , i vc
lk , resp.

Because the subnetworkN vs consists of independent
voltage sources only and the constitutive relation of its
complementary subnetworkN vc is voltage controlled,
there exists a column matrixupv and a column-matrix
valued mappingG such that

uvs = upv
|domuvs and i vc = G(uvc) (2)

are constitutive equations ofN vs or N
vc, resp. The

elements ofupv are the prescribed voltages ofN vs and
i vc = G(uvc) is a representation of the constitutive
relation ofN vc in conductance form.

The restriction ofupv to the domain ofuvs on the right
hand side of (2) is necessary since in the general case the
signal pairs(u, i) ∈ V have domains which are proper
subintervalls1 of domupv. But to simplify the notation
we skip the appendix “|domuvs ” in the following.

To determine the terminal behavior ofN with respect
to K we connectN with a norator networkÑ with
skeletonC̃ = (G̃,−G̃) where G̃ is a tree with node set
K̃ := K and a branch set̃Z with |Z̃| = |Ztr| branches.
The branches of this tree are connected parallel to that
of Gtr.

Let N̄ denote this interconnection. For the analysis of
N̄ then an appropriate system of behavioral equations is
setted up. Elimination of the branch voltages and currents
of its subnetworkN results in a system of constitutive
equations of a canonical representative of the terminal
behavior ofN defined by the skeleton(G̃, G̃). After an
exchange of variables we obtain the following theorem.

Theorem 2.1: Let N̂ = (Ĉ, V̂) denote that canonical
representative of the terminal behavior ofN defined by
the skeleton̂C := (Gtr,Gtr).

Then the constitutive relation of̂N can be represented
with

Svs := ( 0 F vs) , Svc := (Evc F vc) , (3)

by means of the system

uvs = upv , i vc = SvcG(tSvcuvc + tSvsupv) (4)

of constitutive equations in hybrid form.
As a canonical representative of the terminal behavior

of N the networkN̂ does not include any loops.

1Typical examples for such situations are networks with finite
escape times, cf. e.g. [2], p. 442.
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III. G ENERALIZED VOLTAGE SOURCESHIFT

THEOREMS

In this section we consider a networkN = (C,V)
with associated reference directions, branch setZ, node
setK, and a current controlled constitutive relation, e.g.
it may be consist of independent voltage sources or
nonlinear inductors. BecauseN has associated reference
directions, there exists an oriented graphG such that
C = (G,G).

In difference to Section II we consider here the
terminal behavior ofN with respect to a prescribed
terminal class family(Kl)l∈L which includes in the
general case more than one terminal class. Especially we
are here interested in that cutsets of the corresponding
interconnections consisting only of branches ofZ and do
not partition anyone of the terminal classesKl (l ∈ L).
We assume that each such cutset consists of at least
two branches. Also in difference to Section II our prior
aim is here not the determination of some canonical
representatives of the terminal behavior ofN but rather
the determination of a network̄̄N with the same skeleton
and the same terminal behavior as the given networkN

whereas additionally some branches ofZ are realized in
¯̄
N by a short-circuit.

To determine the terminal behavior ofN , and later
on that of ¯̄

N , with respect to(Kl)l∈L we connect their
terminal classes with a norator network̃N with skeleton
C̃ = (G̃,−G̃) and branch setZ̃. The graphG̃ is a
forest. The node set of each tree of this forest is equal
to exactly one of the terminal classesKl (l ∈ L).
The interconnection ofN with Ñ may be denoted by
N̄ = (C̄, V̄). Let Ḡv andḠc denote its voltage and current
graph andZ̄ its branch set.

There exists a minimal subsetZfo ⊂ Z such that the
subgraphs of the voltage and the current graph ofN̄

generated bȳZfo := Z̃∪Zfo are spanning forests of these
graphs. LetZlk := Z \Zfo denote the corresponding set
of links. Using an appropriate numbering of the branches
of N̄ there exist a|Zlk| × |Z̃| matrix F̃ , a |Zlk| × |Zfo|

matrix F , and a|Zlk|× |Zlk| unit matrixE such that the
matrices

M̄v = (−F̃ F E) , M̄c = (F̃ F E) (5)

are the fundamental loop matrices of the voltage and
current graph ofN̄ , resp., defined by these spanning
forests.

The branches ofZfo are that branches realized in̄̄N
by short-circuits.

By means of the same numbering of the branches of
Z̄ used for the determination of the matrices̄Mv and

M̄c we assign to each signal pair(ū, ı̄) of the universal
signal set ofN̄ a matrix representation. For simplicity
this matrix representation is denoted again by(ū, ı̄).

Using numberings preserving the arrangements of the
branches of the subsetsZ, Z̃, Zfo, Zlk ⊂ Z̄ defined by
the numbering of the branches of̄Z we assign toūZ ,
ū
Z̃

, ūZfo
, ūZlk

and toı̄Z , ı̄
Z̃

, ı̄Zfo
, ı̄Zlk

the corresponding
matrix representations. These matrix representations are
denoted in the same order byu, ũ, ufo, ulk and i, ı̃, ifo,
ilk.

Because the constitutive relation ofN current con-
trolled, there exists a column-matrix valued mappingR
such that the constitutive relation ofN can be repre-
sented by the following constitutive equation

u = R(i) (6)

in resistance form.
For the representation of the constitutive relation of

¯̄
N by means of a system of constitutive equations we
introduce the ansatz

ufo = 0, ulk = MR(tR ilk) . (7)

Let N̂ = (Ĉ, V̂) andŇ = (Č, V̌) denote the canonical
representatives of the terminal behavior ofN or ¯̄

N , resp.,
defined by the skeleton̂C := Č := (G̃, G̃).

The proof that the networksN and ¯̄
N have the same

terminal behavior with respect to(Kl)l∈L is a little bit
more involved then that of the proof of Theorem 2.1
in Section II. This is owed the fact that it is now in
the general case impossible to derive for the canonical
representatives of these networks constitutive equations
in closed form. Nevertheless it can be shown, for details
see [16], that the canonical representativesN̂ and Ň

are identical. Their skeletons are identical by definition.
Their constitutive relations are both equal to the set of
all pairs (ũ, ı̃) fulfilling for some value of the variable
ilk the equations

F̃ ũ = M R(tM ilk) , (8)

ı̃ = tF̃ ilk . (9)

What implies, they are identical, too.
In that manner it is possible to obtain a proof for the

following theorem.
Theorem 3.1: The networksN and ¯̄

N have the
same terminal behavior with respect to the terminal class
family (Kl)l∈L.

In the terminology introduced in [11] the system of
equations (8) and (9) is an example for the representation
of a constitutive relation by means of a constitutive
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equation with a latent variable. The idea to represent the
constitutive relation of the network̄̄N in that manner
goes back to the author’s former collaborator T. Nähring
[10]. It is essential for the proof of Theorem 3.1.

If the branch setZ̃ of the interconnection ofN with
the norator network̃N includes a spanning coforest, then
the rank of the submatrix̃F of the matricesM̄v andM̄c

is equal to |Zlk|. Under this assumption it is without
additional assumptions on the properties of the column-
matrix valued mappingR possible to eliminate the latent
variable ilk included in equation (8). This elimination
results in a constitutive equation for̂N in hybrid form,
cf. [16].

In [16] a generalization of Theorem 3.1 is proved
wherein forN networks are admitted which include ad-
ditionally subnetworks consisting of independent current
sources.

IV. CONCLUDING REMARKS

We have presented generalizations of the Source Shift
Theorems. Our proofs are based on a theory of ter-
minal behavior of networks developed in [12], [13].
The interconnection of the networks under consideration
with trees or forests of norators are substantial parts of
these proofs. Other applications of this method are to
find in [13], [14], [15], [18]. By the way, these results
show that norators (and nullators, too) are by no means
“pathological” objects in network theory since their
introduction simplifies and unifies the representation of
network theory and delivers even starting points for
developing important analysis methods.

The most essential applications of the Theorems 2.1
and 3.1 are their use for the reduction of the index of
differential-algebraic equations [19] for the analysis of
RLCM networks by the elimination of voltage source-
capacitor loops and current source-inductor cutsets.

If N is a capacitor network withn nodes whose
voltage graph is a complete graph with(n + 1) × n/2
branches, then by Theorem 2.1 it is possible to replace
this network by a canonical representativeN̂ consisting
of n coupled capacitors whose voltage graph is a star-
like tree. This transformation is the inverse of a classical
transformation [9], [8] which assigns a network to the
matrix of capacitance coefficients describing a physical
multi-electrode capacitor, where this network consists
of uncoupled capacitors, known as MAXWELL ’s partial
capacitors, arranged on a complete graph. From the point
of view of the theory of differential-algebraic equations
as well as the theory of state-space equations it follows
that for modeling of a physical multi-electrode capacitor

there are generally network models based on a tree
of coupled capacitors to prefer over that based on a
complete graph of uncoupled capacitors.

The proof of Theorems 3.1 is not a dualization of the
proof of Theorem 2.1, resp. It seems to be of interest
whether in the theory of graphoidale networks [17] such
a dualization is possible. However for this purpose it
would be first necessary to develop for this class of
generalized networks a theory of multiport behavior as a
counterpart to the theory of terminal behavior considered
in [12], [13].
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Abstract—A discussion of the Barkhausen Criterion
which is a necessary but NOT sufficient criterion for steady
state oscillations of an electronic circuit. An attempt to
classify oscillators based on the topology of the circuit.
Investigation of the steady state behavior by means of the
time-varying linear approach (”frozen eigenvalues”).

I. INTRODUCTION

Oscillators occur all over in nature and in man-
made systems. Their behavior is characterized by size
(amplitude) and period (frequency). They are controlled
by the basic principle of nature which says that a system
always try to go to a minimum energy state. We observe
oscillators varying in size from 1e+31 for the galaxies in
space to 1e−31 for the super-strings proposed in physics.
Steady state oscillations may be limit cycle oscillations
or chaotic oscillations.

Autonomous oscillators are non-linear oscillating sys-
tems which are only influenced by a constant energy
source. When two oscillating systems are coupled they
try to synchronize in order to obtain the minimum energy
state.

Electronic oscillators are man-made non-linear circuits
which show steady state oscillating behavior when pow-
ered only by dc power supplies. The behavior may be
limit cycle behavior or chaotic behavior. The order of the
circuit is the number of independent memory elements
(capacitive, inductive or hysteric).

For many years we have seen that some basic circuit
theory textbooks introduce the Barkhausen Criterion as
the necessary and sufficient criterion for an electronic
circuit to be an oscillator. Also the concept of linear
steady state oscillators is introduced. The aim of this
discussion is to point out that steady state oscillators
must be non-linear circuits and linear oscillators are
mathematical fictions.

In some textbooks you may also find statements like:
“an oscillator is an unstable amplifier for which the non-
linearities are bringing back the initial poles in the right

Fig. 1. Barkhausen’s original observation

half plane of the complex frequency plane, RHP, to the
imaginary axis”. This statement is not true [1]. When
you solve the implicit non-linear differential equations
modeling an electronic circuit the kernel of the numerical
method is the solution of a linear circuit. By means of
Taylor evaluation the nonlinear components are replaced
with linear approximations and iteration is performed
until a solution is obtained. The iteration is based on
Picard (static) or Newton-Raphson (dynamic) methods.
In each integration step a small-signal model is found
for the circuit corresponding to a linearization of the
Jacobian of the differential equations.

Non-linear circuits may be treated as time-varying
linear circuits so it make sense to study the eigenvalues
as function of time in order to better understand the
mechanisms behind the behavior of an oscillator.

II. BARKHAUSEN’S OBSERVATION

In 1934 H. Barkhausen (1881-1956) [2] pointed out
that an oscillator may be described as an inverting ampli-
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fier (a vacuum tube) with a linear frequency determining
feedback circuit (fig. 1). The non-linear amplifier is
a two-port with a static gain-factor equal to the ratio
between the signals at the ports. The linear feedback
circuit is a two-port with a feed-back-factor equal to
the ratio between the port signals. It is obvious that
the product of the two factors becomes equal to one.
The product is called the Barkhausen Criterion or the
Allgemeine Selbsterregungsformel in German language.

Fig. 2. Barkhausen’s Criterion. Characteristic polynomial

Barkhausens figure may be redrawn as shown in
fig. 2 where the non-linear amplifier is assumed to
be a perfect amplifier with infinite input impedance,
zero output impedance and linear time-varying gain A.
The feedback circuit is assumed to be a linear, lumped
element, time-invariant passive two-port with a rational
transfer function H(s). It is obvious that the closed-loop
gain is always equal to one (1) and the phase-shift is
equal to a multiple of 360◦ (2π). Furthermore it is seen
that the Barkhausen Criterion is just an expression for
the characteristic polynomial of the circuit as function
of the amplifier gain. For zero gain the characteristic
polynomial becomes equal to the denominator of H(s).
For infinite gain the characteristic polynomial becomes
equal to the numerator of H(s).

You may open the loop and study another circuit
closely related to the oscillator circuit. This circuit has
a time independent bias-point. You may perform the
normal linear small-signal analysis (ac analysis) and
study the natural frequencies (poles, eigenvalues). You
may design the open-loop gain to be one (16 360◦) and
you may also make the closed-loop circuit unstable with
poles in the right half of the frequency plane, RHP, in the
hope that the circuit will start to oscillate. However when
you close the loop the bias-point of the amplifier will
change and you have no guarantee that oscillations start

Fig. 3. Proper Barkhausen topology with H(s) as a modified full
graph admittance circuit

up. The conclusion is that you must base your design on
the characteristic polynomial of the closed-loop circuit.

Figure 3 shows a realization of the closed-loop circuit
where the feed-back circuit is represented with a mod-
ified full graph admittance circuit. The admittance YE
between node 6 and node 7 is deleted and the admittance
YF between node 4 and node 5 is deleted.

The characteristic polynomial with a full graph
feedback admittance circuit may be found from

Y E × (Y A + Y D + Y C + Y B) +

(Y A + Y B)× (Y D + Y C) +

A× (Y A× Y C − Y B × Y D) = 0 (1)

where the admittances are functions of the complex
frequency s. The admittance YF does not occur because
it is in parallel with the output voltage source of the
amplifier.

The amplifier is a voltage controlled voltage source
(VCVS) and the output signal is returned to the input
by positive (YA, YB) and negative (YC, YD) voltage
division. This structure has been used to investigate
various oscillator families [3], [4], [5].

When you study the poles (eigenvalues) of the lin-
earized Jacobian of the non-linear differential equations
you may observe that they move around in the complex
frequency plane as function of time. The signals are
increasing when the poles are in RHP (the right half
plane). The signals are decreasing when the poles are
in LHP (the left half plane). You may observe how a
complex pole pair in RHP goes to the real axis and splits-
up into two real poles of which one goes towards zero
and the other towards infinity. The two real poles meet
again in LHP and leave the real axis as a complex pole
pair [6].
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The basic mechanism behind the behavior of the
oscillator is a balance of the energy received from the
power source when the poles are in RHP with the
energy lost when the poles are in the LHP. The real
part of the poles may go between +∞ and −∞. At
a certain instant the frequency is determined by the
imaginary part of the complex pole pair. The phase noise
observed corresponds to the part of the period where
the instantaneous frequency deviates from the dominant
frequency, the oscillator frequency [7].

III. CLASSIFICATION OF OSCILLATORS

So far classification of oscillators is not found in
the basic electronics textbooks in a proper way. You
may classify with respect to waveform as relaxation,
sinusoidal, multi-frequency or chaotic. You may classify
with respect to application as e.g. used to synchronize
systems (clock of computers), used to communication
(carrier of waveforms, audio) or used to test of systems
(instrumentation). You may classify with respect to im-
plementation as e.g. voltage controlled (VCO), integrated
or lumped element. However a given oscillator may fall
into several of these classes. Classification based on
structure (topology) seems to be the only proper way,
see e.g. [8] where oscillators are classified according to
number of memory elements.

Based on the topology of the circuit oscillators may be
classified as belonging to one of the following classes.

Class I: Proper Barkhausen Topology.
Proper Barkhausen topology is a loop of an amplitude

determining inverting non-linear amplifier and a passive
frequency determining linear feed-back circuit.

The two circuits in the loop are 4-terminal or 3-
terminal two-ports (fig. 1 and fig. 2). The bias point of
the amplifier vary with time.

It is obvious that the power source limits the amplitude
of the oscillator. The following question should be dis-
cussed: Can you separate the design of the non-linearity
from the design of the gain and the linear frequency
determining sub-circuit when designing an oscillator ?

Class II: Modified Barkhausen Topology.
Modified Barkhausen topology is a loop of an in-

verting linear amplifier and a passive amplitude and
frequency determining two-port non-linear feed-back
circuit.

From mathematical point of view a linear amplifier
with constant gain is easy to implement for analysis and
design purposes but a number of questions should be
discussed. Is it possible to create a linear real world am-
plifier which does not influence frequency and amplitude

? Is the dc bias point of the amplifier time-invariant ?
What kind of passive non-linearity should be introduced
in the feed-back circuit ?

Class III: A topology different from I and II, i.e.
non-linear amplifier and non-linear feed-back circuit.

An example of a circuit belonging to this class is the
classic multi-vibrator with two capacitors and two cross-
coupled transistors (3-terminal amplifiers) [4].

In [7] an oscillator based on the differential equations
which have sine and cosine as solutions is investigated.
The oscillator is based on a loop of two active RC
integrators and an inverter. By choosing different time
constants for the two RC integrators phase noise in the
output of one of the amplifiers could be minimized.

IV. AN EXAMPLE TO BE DISCUSSED -
WIEN BRIDGE OSCILLATOR

Figure 4 shows a Wien Bridge oscillator with proper
Barkhausen topology (Class I) in the case where resistor
RCL is ∞. The circuit is investigated in [9] where
the operational amplifier is assumed a perfect linear
amplifier with gain A = 100k. The components cor-

Fig. 4. Wien Bridge Oscillator

responding to a complex pole pair on the imaginary axis
are: CA = CB = C = 10nF, RA = RB = R = 20kΩ,
RD = 3kΩ and RC = 6kΩ. The frequency becomes
795.8 Hz and ω0 = 5k rad/sec. The poles of the linear
Wien Bridge oscillator are found as function of resistor
RC . If RC is amended with a large resistor RCL in
series with a non-linear element made from two diodes
in antiparallel as shown in fig. 4 you have a mechanism
for controlling the movement of the poles between RHP
and LHP so you can avoid making use of the non-
linear gain. The circuit becomes a Class II oscillator
with modified Barkhausen topology. For RC = 7kΩ (>
6kΩ), D1 = D2 = D1N4148 and three values of
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RCL: RCL = ∞, RCL = 38kΩ and RCL = 17.5kΩ it is
demonstrated that you may control both frequency and
amplitude of the oscillator. When you change the perfect
linear A = 100k amplifier to an AD712 operational
amplifier with a dominant pole at 12Hz and a high-
frequency pole at 15MHz the non-linear control in the
feed-back circuit is overruled by the non-linearities of the
amplifier and the circuit becomes a Class III oscillator.

Fig. 5. Dynamic transfer characteristic of the amplifier with almost
constant bias point

Fig. 6. Frequency spectrum of amplifier output

The circuit is now scaled to low frequencies by means of
new capacitor values CA = CB = C = 10µF and a new
value RC = 6.010kΩ (> 6kΩ). Figure 5 shows that it is
possible to adjust the circuit into a Class II oscillator
with an almost linear amplifier. In order to start-up
oscillations the initial conditions for the capacitors were
chosen as V(CA) = -0.17406342924 V and V(CB) =
+0.044747527689 V i.e. values close to an instant time
of the steady state. Figure 6 shows how the harmonics
are reduced. Figure 7 shows the dynamic and the static
gain as functions of time. It is seen how the dynamic
gain is almost constant in a large part of the period.

V. CONCLUSION

It is demonstrated that the Barkhausen Criterion is
a necessary but not sufficient criterion for steady state

Fig. 7. Dynamic and static gain

oscillations of an electronic circuit. Barkhausen did not
”open the loop” ! Oscillators may be classified into
three groups based on the Barkhausen Observation. A
Wien bridge oscillator with an almost linear inverting
amplifier and a nonlinear passive amplitude and
frequency determining feed-back circuit is investigated
by means of the time-varying linear approach (”frozen
eigenvalues”).
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Abstract—The local dynamics of a differential equation
with large delay is analyzed using the normal forms
technique. It is shown that, in the critical cases, families
of parabolic equations play the role of infinite-dimensional
normal forms. It is demonstrated analytically and numer-
ically that even a very simple first-order delay equation
can have a complicated dynamical behavior. Methods for
constructing classes of stable modes for such equations are
described.

I. INTRODUCTION

Differential equations with delay are mathematical
models for many applied problems [1, 2]. Among them,
an important role is played by systems in which time
delay is relatively large. Equations with delay are charac-
terized by the presence of many specific effects and phe-
nomena, which are caused by the infinite-dimensionality
of the phase space. Importantly, problems concerning
the local (i.e., observed in a small neighborhood of
a stationary point) dynamics of singularly perturbed
systems with delay may be complicated and specific. In
this paper, we develop the method for studying local
dynamics in a neighborhood of an equilibrium state
suggested in [3 - 6].

II. ASYMPTOTIC ANALYSIS

We study the behavior in a neighborhood of the zero
equilibrium state of the solutions to the differential-
difference equation

dx

dt
+ x = F (x(t− T ))

under the assumption that the delay time is sufficiently
large, i.e., T À 1. The change of time t → Tt in the
initial equation yields the equation

ε
dx

dt
+ x = F (x(t− 1)). (1)

(where ε = T−1 ¿ 1).

We assume that, in a neighborhood of zero, the
function F (x) is smooth enough to be represented in
the form

F (x) = ax + f2x
2 + f3x

3 + . . . (2)

We study the behavior of all solutions of Eq. (1) at
all t ≥ 0 in a sufficiently small (but not depending on
ε) neighborhood of the zero equilibrium state.

The local dynamics of Eq. (1) is largely determined
by the linearized (at the zero equilibrium state) equation

ε
dx

dt
+ x = ax(t− 1), (3)

and the behavior of solutions to Eq. (3), in turn, de-
pends on the location of the roots of the characteristic
quasipolynomial

ελ + 1 = ae−λ. (4)

For |a| < 1, the real parts of all roots of (4) are nega-
tive, and for |a| > 1, they are positive. Thus, the behavior
of the solutions to Eq. (1) needs additional considerations
only when the parameter a is close to 1 in absolute value.
In this case, the characteristic quasipolynomial (4) has a
root λ(ε) such that Reλ(x)→ 0 (as ε→ 0), and it has
no roots in the right complex half-plane bounded away
from the imaginary axis for all sufficiently small ε.

The case of a close to 1 is less interesting. We dwell
on the situation in which a is close to −1. Let

a = −1− µa1, 0 < µ¿ 1. (5)

Then, obviously, the quasipolynomial (4) has infinitely
many roots of the form

λk(ε) = π(2k − 1)(1− ε + ε2)i + µa1 −

−
1

2
ε2π2(2k − 1)2 + o(ε2 + µ), k ∈ Z.

(6)
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Formula (6) gives an asymptotic representation for roots
continuously depending on the small parameter. Remov-
ing the continuity requirement, we can write roots (4) as
follows.

Take an arbitrary number 0 < γ < 1 and positive
number ω. Let θ(ω, ε) denote a number from the half-
open interval [0, 2π) for which ωε−γ + θ(ω, ε) is an
odd integer multiple of π. Then, formula (7) gives the
following asymptotic dependence on ε of the roots with
real parts tending to zero:

λk(ω, ε) =
ω(2k + 1)

εγ
i + θ(2k + 1)i−

− ε1−γω(2k + 1)i + o(ε1−γ + µ)i−

− ε2−2γ ω
2(2k+1)2

2 + µa1 + o(ε2−2γ + µ).

(7)

Note that, although formula (7) depends on the con-
tinuous parameters ω, Eq. (4) has only countably many
roots. As ε → 0, the solution “skips” from one root to
another because of the function θ. Thus, the absolute
value of each λk increases unboundedly as ε → 0. The
choice of ω affects only the rate of skipping between
roots.

Consider the dynamics of (1). First, suppose that µ =
ε2, i.e.,

a = −1− ε2a1.

It was shown in [3] that, in this case, the local dynamics
of Eq. (1) essentially determines the behavior of the
solutions of the parabolic-type boundary value problem

∂u

∂τ
=

1

2

∂2u

∂r2
+ a1u + (f2

2 − f3)u
3 (8)

with antiperiodic boundary conditions

u(τ, r) = −u(τ, r + 1). (9)

Theorem 1. If the boundary value problem (8), (9)
has a bounded solution u∗(τ, r), then, for sufficiently
small ε, Eq. (1) has the following solution asymptotic in
discrepancy on the ray t ≥ 0:

x∗(t, ε) = εu∗(ε
2t, (1− ε + ε2)t) + o(ε).

Note that this assertion does not answer the question
of whether Eq. (1) has an exact solution with above
asymptotics. It only implies that if u∗ is unstable, then
the exact solution (if it exists) is surely unstable. Thus,
it suffices to consider only stable solutions of (8), (9).
Moreover, if u∗ has a certain form, then (1) does have
an exact solution of the corresponding form.

Theorem 2. If problem (8), (9) has a solution u∗(τ, r)
periodic in τ and only one multiplier of the problem

linearized at u∗ has absolute value 1, then, for small ε,
Eq. (1) has the periodic solution

x∗(t, ε) = εu∗(ε
2(1+o(1)t, (1−ε+ε2 +o(ε2))t)+o(ε)

with the same stability properties.
The case where µ = o(ε2) in (5) is trivial. A more

complicated situation arises when µ = εp for 0 < p < 2.
Thus, we assume that

a = −1− εpa1, 0 < p < 2. (10)

We proceed to study the dynamics of (1). We set γ =
1− p

2 . As in [5, 6], we substitute the series

x(t, ε) = εp/2u(τ, t1) + εpx2(t1, τ) +

+ ε3p/2x3(t1, τ) + . . . ,
(11)

into (1), where τ = εpt, t1 = (ωε−γ+θ(ω, ε)−ε1−γω+
o(1))t. The functions x2(t1, τ) and x3(t1, τ) are assumed
to be π-periodic in the first argument. The dots denote
terms of higher order of smallness in ε.

Let us collect together the coefficients of equal powers
of ε. The equality of the coefficients of ε3p/2 implies that
the u must satisfy parabolic equation

∂u

∂τ
=

1

2

∂2u

∂r2
+ a1u + (f2

2 − f3)u
3 (12)

with boundary conditions

u(τ, r) = −u(τ, r +
π

ω
). (13)

For various ω we obtain various boundary value
problems, each of which describes local dynamics in
some part of a neighborhood of the zero solution to Eq.
(1). Thus, as a normal form, we obtain the family of
boundary value problems (12), (13), which depends on
the continuous parameters ω. Generally, the dynamics of
the problem depends on the parameter value.

Theorem 3. Suppose that, given a positive value of
ω, the boundary value problem (12), (13) has a bounded
solution u∗(τ, r) defined for all τ ≥ 0.

Then, the initial equation (1) has a solution asymptotic
in discrepancy on the ray t ≥ 0 of the form

x∗(t, ε) = εp/2u∗(ε
pt + o(εp), t1) + o(εp/2).

An analogue of Theorem 2 is valid too.
Theorem 4. Suppose that, for some ω > 0, the

boundary value problem (12), (8) has a solution u∗(τ, r)
periodic in τ and only one multiplier of the problem
linearized at u∗ has absolute value 1.
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Then, the initial equation (1) has a periodic solution
of the form

x∗(t, ε) = εp/2u∗

(

εp(1 + o(1))t,

(

ω

ε1−p/2
+ θ +

+ o(1)

)

t

)

+ o(εp/2)

with the same stability properties.
Note that the solution x∗ mentioned in Theorem 4 is

a high-frequency oscillatory mode.

III. NUMERICAL ANALYSIS

It should be mentioned that, in a numerical analysis
of the equations, the parameters p and a1 may be
determined not uniquely, which gives evidence for the
abundance of dynamical modes of Eq. (1).

Let us use the results obtained above to analytically
and numerically analyze concrete systems with fixed
numerical parameters. Consider the equation

dx

dt
+ x = −(1 + µ)x(t− T ) + f3x

3(t− T ).

The change of variables t→ tT yields

ε
dx

dt
+ x = −(1 + µ)x(t− 1) + f3x

3(t− 1), (14)

where ε = T−1. Take ε = 10−3, µ = 10−3 (we assume
that these values are “sufficiently small”) and f3 = −1.

Represent µ as µ = εpa1. Hence, the parameter p
can be written as p = 1 − logε a1. We are interested
in the values of a1 that are neither too large nor too
small relative to ε. For example, we may assume that
a1 belongs to the interval (0.1, 10). So, p is in interval
0 < p < 2.

For each a1 ∈ (0.1, 10), consider the normal form
treating ω > 0 as an arbitrary parameter:

∂u

∂τ
=

1

2

∂2u

∂r2
+a1u+u3, u(τ, r) = −u(τ, r+

π

ω
). (15)

Consider the solutions that are constant with respect to
τ . They are determined by the equation

d2u

dr2
+ a1u + u3 = 0 (16)

subject to the boundary conditions

u(r +
π

ω
) = −u(r).

It is easy to show that Eq. (16) has a periodic solutions
with a nonzero minimum period S. Let u0(r; a1) is one
of such solutions. Take ω = 2πS−1. Then, u0(r; a1) is a
solution of the boundary value problem and, therefore, of
the normalized form. Note that du0/dr vanishes exactly

once on an interval of length S/2. We linearize (15) on
u0 as follows:

∂u

∂τ
=

(

1

2

∂2

∂r2
+ a1 + 3u2

0

)

u,

u(τ, r) = −u(τ, r +
S

2
).

The linear operator on the right-hand side has one zero
eigenvalue, and all its other eigenvalues are negative.
Therefore, u0(r; a1) is a stable solution of the normalized
form. Hence, due to Theorem 4, the original equation has
stable solutions close to

x(t; a1, S) = εp/2u0((
2π

Sε1−p/2
+ θ(2πS−1, ε))t; a1).

Here we have two arbitrary parameters: a1 and S. If we
change them, then, generally, we get another solution of
Eq. (14). Graphs of some solutions are shown at Fig. 1.

Fig. 1. Solutions of Eq. (14) in case µ = 10
−3, ε = 10

−3, f3 = −1,
3000 < t < 3005. Additional parameters are for top plot: a1 = 5,
p = 1, 23, ω = 4; for middle plot: a1 = 1, p = 1, ω = 4; for bottom
plot: a1 = 1, p = 1, ω = 3.

Therefore, the number of periodic solutions to the
original equation in the neighborhood of the equilibrium
state increases unboundedly as ε → 0. These analytical
results are confirmed by the numerical results.
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Abstract— In this paper we introduce a quality 
factor which enables the comparison of multiplier 
architectures with respect to the purity of the 
multiplication. We also propose an analytical method to 
derive closed-form expressions of the introduced 
quality factor in dependency of design parameters. This 
allows the designer to select the most suitable 
architecture for an application and choose the optimum 
values for the design parameters of the selected 
architecture. For illustration we use the introduced 
quality factor to compare between two basic multiplier 
architectures. 

I. INTRODUCTION 
Multiplication is an essential operation in different 
application fields of modern analog circuits. 
Multipliers are necessary components in neural 
networks and are widely used in communication 
systems for frequency conversion, phase detection, 
synthesizers, etc. A multiplier should ideally perform 
a linear product of two signals x and y yielding an 
output z=Kxy, where K is a multiplication constant 
[1,2]. Owing to the characteristics of the devices used 
for implementation, multipliers exhibit several non-
idealities. 
Although many works have been presented in the 
field of multipliers [1-3], this research field lacks a 
work which compares different architectures based 
on a systematic methodology, to help designers make 
the right choice for the relevant application. In order 
to make a comparison between different multiplier 
architectures, it is necessary to define a method that 
can be applied to all architectures and results in 
parameters that indicate the quality of the multiplier. 
Multipliers have several specification parameters, but 
since all are strongly dependant on the application 
field, there is no standard comparison metric [1]. 
Moreover, no metric exists that provides a conclusion 
on the quality of the mere functionality which is 
multiplication. The absence of a comparison method 
and a proper specification parameter hinders circuit 

designers in selecting the most suitable multiplier 
architecture for their applications.  
In this work a quality factor to indicate the purity of 
the multiplication performed by a multiplier is 
proposed. The introduced quality factor enables the 
comparison of multiplier architectures with respect to 
the purity of the multiplication. We also propose a 
method to derive closed-form expressions of the 
introduced quality factor in dependency of 
architecture and technology design parameters. This 
enables designers select the most suitable architecture 
for an application and choose the optimum values for 
the design parameters of the selected architecture. For 
illustration we use the proposed quality factor to 
compare between two basic multiplier architectures. 

II. ANALYSIS OF NON-IDEALITIES IN 
MULTIPLIERS 

The non-idealities in multipliers depend on the 
architecture as well as on the used devices [3]. For a 
designer to choose the most suitable architecture for 
an application, he/she must be able to compare the 
different multipliers with respect to their non-
idealities for his/her specific application. 

A. Taylor-series representation of the output 
The output z of a multiplier can be approximated as a 
function of the inputs x and y through a Taylor series 
with two variables [4] 
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with ∆x=x-x0 and ∆y=y-y0, where (x0,y0) is the 
operating point. In order to determine the Taylor 
coefficients in this equation, the input-output 
description z=f(x,y) of the system is needed. It must 
be N-times differentiable, where N is the order of the 
Taylor-series.  Equation (1) corresponds to the 
following series representation [3] 

, 0

N
m n

mn
m n

z a x y
=

= ⋅ ⋅∑ .    (2) 

The coefficient amn represents the magnitude of the 
component xmyn at the output of the system. amn can be 
determined directly from the Taylor coefficients 
calculated in (1). The coefficient amn can therefore be 
calculated as a function of the system’s characteristics 

( ( , ))mna g f x y=  .  (3) 

Since an ideal multiplier should only produce the 
component xy at its output, all other coefficients other 
than a11 are undesired and have to be equal to zero. 

B. The Multiplication Purity Index (MPI) 
According to this representation of the output we 
define the following parameter to indicate the quality 
of the multiplication performed by the system 

11

11
0, 0

.N

mn
m n

a
MPI

a a
= =

=
−∑

   (4) 

The Multiplication Purity Index (MPI) is the ratio of 
the desired component to the sum of all undesired 
components at the output of the multiplier. It therefore 
indicates the purity of the multiplication xy performed 
by a system with two inputs x and y. According to our 
definition, a multiplier with a higher MPI value 
produces a purer multiplication. An ideal multiplier 
should have an MPI of infinity. 
Now consider the case of sinusoidal inputs 
x(t)=A1cos(ω1t) and y(t)= A2cos(ω2t). By substituting 
the functions of x(t) and y(t) into (2) and applying the 
trigonometric addition theorems, we obtain the 
following equation for the output z(t): 

[ ]1 2
,

( ) cos ( )
N

ij
i N j N

z t b i j tω ω
=− =−

= ⋅ + ⋅∑  (5) 

The coefficient bij represents the amplitude of the 
spectral component at the frequency iω1+jω2. The 
coefficient bij can be determined in terms of the 
coefficients amn by comparing (2) to (5) and equating 

the coefficients of both equations. The following 
equation shows the dependency of b11 on amn for N=3: 

3 3 3 3
11 13 1 2 11 1 2 33 1 2 31 1 2

3 1 9 3
8 2 32 8

b a A A a A A a A A a A A= + + +

      (6) 

Note that b11 is provoked not only by a11, but also by 
higher order coefficients of the Taylor series in (2).  
C. The Spectral Multiplication Purity Index (SMPI) 
According to the trigonometric product theorem, a 
multiplication of two sinusoidal signals with the 
frequencies ω1 and ω2 results in two spectral 
components, one at the sum frequency (ω1+ω2) and 
the other at the difference frequency (ω1-ω2) [4]. This 
implies that an ideal multiplier should contain only the 
spectral components with the coefficients b11 and b1-1 
in its output. All other components at the output of the 
multiplier are undesired and can be categorized as 
non-idealities. Assuming ω1>ω2, we define the 
Spectral Multiplication Purity Index (SMPI) based on 
the spectral components at the output as 

      11 1 1
10

11 1 1
1,

20 log N

ij
i j N

b b
SMPI

b b b

−

−
= =−

⎛ ⎞
⎜ ⎟+⎜ ⎟=
⎜ ⎟

− −⎜ ⎟
⎝ ⎠
∑

. (7) 

SMPI is given thereby in decibels, because the range 
of possible values is very large. According to (4), (6) 
and (7), SMPI≠MPI. The advantage of SMPI over 
MPI is that, the calculation of MPI requires an 
analytical description of the input-output function 
f(x,y), whereas for the calculation of SMPI only the 
spectral components of the output signal are needed. 
For complex multiplier circuits where an analytical 
description of the input-output function f(x,y) is not 
derivable, a numerical calculation of SMPI after a 
spectral analysis of the system’s output is possible. 
For the case that an analytical description of the input-
output function f(x,y) is derivable, both the MPI and 
the SMPI can be derived analytically as shown in the 
flow diagram of Fig. 1. 

 

Figure 1.  Flow diagram of the analytical derivation of MPI and 
SMPI 
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Figure 2.  Gilbert MOS Multiplier 

 

Figure 3.  Square-law MOS Multiplier 

III. COMPARISON OF TWO MULTIPLIER 
ARCHITECTURES 

In this section we illustrate the use of MPI and SMPI 
by comparing two basic multiplier architectures. It is 
important to note that we here illustrate the analytical 
derivation of MPI and SMPI, which prerequisites the 
input-output description of the system. Nevertheless, a 
numerical calculation of MPI and SMPI is possible. 
For the numerical calculation of MPI, the taylor 
coefficients of the input-output description of the 
system are needed, whereas for the numerical 
calculation of SMPI a spectral analysis of the output is 
required. 

The two basic multipliers used for illustration are the 
Gilbert MOS multiplier and the square-law MOS 
multiplier. Both circuits are designed in the strong 
inversion operation mode. In the first part of this 
section we present both circuits. Their output 
functions are derived using the ideal quadratic model 
for the drain current of MOSFET in the strong 
inversion/saturation operation mode given by [5] 

2
0( ) ,  with D n GS T n n oxI K V V K C W Lμ= − = , (8) 

where Kn is the transconductance coefficient, W and L 
are the transistor’s width and length, Cox is the oxide 
capacitance, μn is the mobility coefficient of electrons 
and VT0 is the zero-bias threshold voltage. 

A. The Gilbert MOS Multiplier 
The Gilbert MOS multiplier shown in Fig. 2 consists 
of three differential pairs. The lower one has a 
constant bias-current and the upper two have bias 
currents controlled by v2. Using the simple MOSFET 
model given in (8), the output current can be derived 
to [1]  

, 1 2 1 2 1 22 2out s o o n nI I I K K v v= − ≈ ,  (9) 

where Kn1 and Kn2 are the transconductance 
coefficients of the transistors M1-M4 and M5-M6. 

B. The square-law MOS Multiplier 
The square-law MOS multiplier is shown in Fig. 2. 
Each of the transistor pairs M1-M2 and M3-M4 builds 
a squarer. The squaring is realized through the 
approximately quadratic characteristic of the 
MOSFET in the strong inversion/saturation operation 
mode. Using the MOSFET model of (8), the output 
current can be derived to [3] 

, 1 2 1 22out s o o nI I I K v v= − = ,  (10) 

where Kn is the transconductance coefficient of the 
equally scaled and biased transistors. 

C. Comparison of both architectures 
The analytical derivation of the quality factors MPI 
and SMPI have been done as shown in the flow 
diagram of Fig. 1. In order to make a realistic 
comparison between the two presented multipliers, we 
have used a MOSFET model, which inculdes high 
field and short channel effects [5]. This model is 
given by 

 

2
0 0[1 ( )]( ) ,D n GS T GS TI K V V V Vθ≈ − − −      (11) 

where θ is the mobility degradation factor.  
The first step in the analytical calculation of MPI and 
SMPI is to derive the input-output function z=f(x,y). 
Since we use the MOS-model of (11), we get 
relatively complex expressions for the input-output 
functions of both circuits compared to the simple 
expressions of (9) and (10). In order to retain the 
parameters in analytical form we have implemented 
the method symbolically in MAPLE. The order N of 
the Taylor-series was set to 3, which we found 
adequate for demonstrating the differences between 
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both circuits. The coefficients amn and bij as well as 
MPI and SMPI for each circuit were determined 
analytically as closed-form expressions in dependency 
of the design parameters.  
In order to reduce the number of parameters in these 
expressions, the technology (process) and some 
architecture design parameters have been set. As an 
example, figs. 4 and 5 show 3D-plots for MPI and 
SMPI in dependency of the bias-current IB and the 
width W of the transistors (assuming equal sizing). 
All other design parameters were set constant. The 
chosen range of values for both the bias-current IB and 
the width W is typical for mixer applications in 
submicron technologies [6]. The differences between 
the results for MPI and SMPI are due to the different 
definitions of each quality factor, which has been 
illustrated in (4), (6) and (7). 
Figs. 4 and 5 show that the square-law multiplier has 
higher values of MPI and SMPI for the chosen range 
of values of the design parameters IB and W. This 
implies that the square-law architecture is a better 
multiplier for the chosen range of values of the design 
parameters. Having chosen the architecture, one can 
select the optimum design point for this circuit with 
respect to multiplication purity (MPI, SMPI), power 
consumption (IB) and silicon area (W). 

IV. CONCLUSION 
A quality factor to indicate the purity of the 
multiplication performed by a multiplier has been 
introduced. Two definitions for the quality factor 
have been given; MPI (Multiplication Purity Index) 
and SMPI (Spectral Multiplication Purity Index). 
Using this quality factor it is now possible to compare 
multiplier architectures with respect to the purity of 
the performed multiplication. Furthermore, a simple 
analytical method for deriving closed-form 
expressions of the introduced quality factor in 
dependency of architecture and technology design 
parameters was proposed. This enables designers to 
select the most suitable architecture for an application 
and choose the optimum values for the design 
parameters of the selected architecture. We have 
demonstrated the feasibility of the quality factor by 
using it in comparing two basic multiplier circuits. 
Since the introduced quality factor indicates the 
purity of the output signal with respect to the 
multiplication, all effects that lead to undesired 
components at the multipliers output, such as 
mismatch or noise, can be investigated. We believe 
that both the introduced quality factor and the 

proposed method can be very useful in assisting 
designers in choosing the most suitable multiplier 
architecture for an application, and optimizing the 
design of the selected architecture for best 
performance. 

 
Figure 4.  MPI against IB and W for the square-law and the Gilbert 

multipliers in strong inversion  

 
Figure 5.  SMPI against IB and W for the square-law and the 

Gilbert multipliers in strong inversion  
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Abstract—We propose a design of unidirectional delay 
coupling for implementing arbitrary lag 
synchronization between two chaotic oscillators. The 
main advantage of the proposed method is that any 
desired value of lag can be set between the two 
oscillators, and further, the synchronization can be 
precisely controlled. The method is elaborated using 
numerical examples of the Hindmarsh-Rose neuron 
model, Rossler oscillator and a Sprott system.  
 
 
 

I.  INTRODUCTION  
Coupled chaotic oscillators show different degrees of 

coherence either in amplitude and/or phase [1] depending 
upon the strength of the coupling. A complete 
synchronization (CS) [2] of amplitude and phase between 
chaotic oscillators is possible if the oscillators are identical 
and strongly coupled. In reality, as no two systems are 
identical, mismatch between the two play an important role 
on synchronization process: an almost CS can only be 
observed with strong coupling when its strength lies above 
a particular threshold value. Below this threshold, lag 
synchronization (LS) may be observed [3,4] in mismatched 
oscillators while phase synchronization (PS) [5] in general 
appear for further weaker coupling but above a second 
coupling threshold.  Below this second threshold 
desynchronization takes place. The amplitudes of the 
coupled oscillators, in PS, remain almost uncorrelated in 
time, but always maintain phase differences less than a 
constant value either near zero (in-phase) or π (antiphase) 
[8]. On the contrary in case of LS, when the coupling 
strength lies between CS and PS, the coupled system 
oscillates in such a manner that the state variables of the 
two oscillators attain identical amplitudes but maintain a 
constant phase lag between them. This lag time, however, 
depends on the magnitude of mismatch between the 

parameters and the coupling strength.  And, as such, one 
cannot set an arbitrary time lag. And also, using the 
existing methods [9], one does not have any control over 
synchronization. For this, few researcher are even skeptic 
[4] regarding the experimental observation of LS since the 
amount of lag time often becomes of the same order as that 
of experimental uncertainty casting doubts on successful 
observation, particularly, in presence of noise. 
Nevertheless, intermittent lag synchronization (ILS) [4] is 
always possible to observe when the coupled oscillators 
develop LS with occasional interruption by intermittent 
loss of synchrony. The LS is also reported in time-delayed 
systems [10] under unidirectional delay coupling. The 
limitation of all such methods is their restriction on the 
amount of time lag and having no control over its 
magnitude, which is very important from the viewpoint of 
practical applications.  It is true that alternative/modified 
methods of coupling for LS [11] or anticipating 
synchronization [12] are coming up to increase the lag 
time. No doubt these methods improve the result to certain 
extent, but the delay time still remains restricted to over a 
small range. On the contrary, our proposed design of 
coupling allows one achieving LS between two chaotic 
oscillators with an arbitrary lag time which may be of the 
order of the systems characteristic time or even multiples 
of it. We call this synchronization as arbitrary lag 
synchronization (ALS). 
 
 

II. OPCL DELAY COUPLING  
The unidirectional OPCL coupling was used earlier to 

realize CS in two identical chaotic oscillators [15] and two 
identical complex networks [16]. Later on, we extended 
[17] the theory to achieve CS and antisynchronization (AS) 
between two mismatched oscillators.  Further we have 
shown how the scheme can be utilized to attain 
amplification/attenuation of chaos by introducing a 
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multiplicative factor in the goal dynamics. Now we attempt 
to use the same idea to realize ALS between two 
mismatched chaotic oscillators under unidirectional OPCL 
delay coupling.  

We briefly outline the OPCL delay coupling method 
below. 

 

A. Brief introduction of OPCL delay coupling 
In [17] we discussed how a chaotic driver whose 

dynamics is described by  ),()( yfyfy ∆+=D nRy ∈ ,          
(∆f(y) contains the additional terms due to mismatch 
between the two oscillators) can be coupled to another 
chaotic oscillator so that the dynamics of the response 
oscillator is governed by nRxgxuxfx ∈+= ),,()(D              
(u(x(t), g(t)) is the coupling term) to achieve a goal 
dynamics )()( tytg α= . Further, the multiplicative factor 
α appearing in the goal dynamics can be suitably chosen to 
obtain amplification or attenuation. 

Now we propose to utilize the same idea to introduce 
time delay in the response signal.  In other words, we 
modify our goal dynamics as )()( τα −= tytg , so that 
the response signal synchronizes with the driver but 
with a time delay τ.  The design of coupling u should 
be changed accordingly to satisfy the desired goal.  
We have found that the following choice of coupling 
satisfies our requirement: 

)).(()( )( ),( τα −−








∂
∂−+−= tyx

g
gfHgfggxu �      (1) 

Note that the form is similar to that in [17] but now 
contains the delay variables y(t-τ).  In examples 
below we shall show that such a design of coupling 
works fine and one can set any desired value ot τ 
independent of the system under consideration.  
Even, one can amplify or attenuate the signal 
according to one’s own  choice. 

 

B.     Numerical Simulation 

 Identical Oscillators                

  
 First we show the efficacy of OPCL delay 
coupling using two identical oscillators: the spiking-
bursting Hindmarsh-Rose (HR) neuron model [18].  The  
driver equation is,  
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where y1 is membrane potential, y2 and y3 are associated 
with fast and slow membrane currents, I is the input bias 
current to the neuron. The Jacobian of the model is  
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where y= T

  3  21 ]    [ yyy  (T denotes transpose of a matrix). 
The matrix H appearing in the coupling term can be 
obtained from the Jacobian of the model system as 
described in [17],  
 
 
         H= T

  21 ]-    0       0;     1-      1;-    1    [ rrSpp .      (4) 
 
 
We consider another identical HR system as response. The 
coupling for HR model is derived accordingly. The 
dynamical equations of the response HR oscillator 
including coupling terms are found to be, 
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     where )(11 ττ −= tyy . 
 
The parameters (p1, p2) in are chosen as usual so as to 
satisfy the RH criterion (see [17] for details) so that the 
real part of all the eigenvalues of H are negative: p1<r+1 if 
we assume p2=0. Accordingly, we select p1= -3 in our 
design of the coupling for implementing ALS  
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 Numerical examples for two selected time delays are 
shown in Fig.1.  Clearly the response signal (x1 in blue) is 
following the driver signal (y1 in red). 
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The result of our simulation is shown in Fig.3. 

 
 
Fig.3. ALS in two mismatched Rossler system. Time series (after 
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the response (9) becomes          
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The results are shown in Fig.4. 

  
 
Fig.4. ALS in two mismatched Sprott circuit signals. The lag 
time being τ=2 and τ=8 units respectively confirming that one 
can set any arbitrary value of the lag time 

 
 
The driver and the response are chaotic before coupling 
for (a=0.225, ∆a=0.025). We choose in our design p=-1 
and put control parameter α=1. The time series of driver 
and response clearly indicates lag synchronization with 
delay time 2 and 8 units respectively. 

III. CONCLUSION 
We have shown that the OPCL coupling scheme 

can be suitably modified to include delay variables to 
obtain ALS.  The main advantage of the method is 
that it allows one to set any arbitrary value of the 
delay time. Numerical results were presented for the 
Hindmarsh-Rose neuron model, Rossler oscillator and 
a Sprott system. Further, one can implement control 
over the synchronization but not discussed here for 
lack of space. 
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Abstract—An extremely simple feedback technique 

has been proposed to desynchronize an array of the 
mean−field coupled FitzHugh−Nagumo type oscillators. 
A negative impedance converter based unit has been 
used for the remote virtual grounding of the coupling 
node of the array. The performance of the technique 
has been demonstrated both by means of numerical 
simulation and hardware experiments.  
 

Keywords—oscillations; coupled oscillators; 
synchronization; desynchronization; 

I.   INTRODUCTION 
Synchronization of coupled oscillators is a 

common phenomenon observed in a variety of fields 
in nature, science and engineering. It is widely 
investigated in physical, electronic, chemical, 
biological, and communication systems. However in 
some cases synchronization has rather contradictory 
impact. For example, synchrony in neuronal networks 
is very important for information processing in brain. 
While strong synchronization of neurons may cause 
essential tremor and Parkinson’s disease. The 
standard therapy for patients is the electrical deep 
brain stimulation (DBS) with strong high frequency 
(~100 Hz) pulse trains. However, the DBS may cause 
side effects. A large number of advanced feedback 
and non-feedback techniques have been described in 
literature to avoid synchronization of interacting 
oscillators in general, and more specifically with the 
possible application to neuronal arrays, e.g. [1−5]. 

In this paper, we describe a very simple feedback 
technique for desynchronizing an array of FitzHugh− 
Nagumo type coupled oscillators (Fig. 1).  

 
 O1
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Block diagram of th
oscillators O1, O2, and O3 wi

II.   MATHEMAT

 An individual FitzH
is described by [6,7]:  
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node. Assuming negligibly small capacitance C0 of 
the node (ε → 0) we arrive to: 
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i.e. the coupling node potential is just the weighted 
mean of the main variables xi. Then Eqs. (2) read: 
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 Let us apply very strong damping ‘−K0 z’ to the 
coupling node: 

.0
1 1

zKkzxkz
N

i

N

i
iii −−= ∑ ∑

= =
&ε     (5) 

 
Again for ε → 0 
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If , then z → 0. In an electronic 
implementation (e.g. Fig. 4) the K

NkK N
i i ≈>> ∑0

0 is an open−loop 
gain of an operational amplifier and reaches several 
hundreds of thousands. Thus Eqs. (2) read 
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It is evident from (7), that the system effectively 
becomes uncoupled (the coupling term z vanishes). 
The only difference between the isolated oscillators 
(1) and the virtually decoupled oscillators (7) is the 
term ‘−kixi’. However, it involves only simple local 
damping, which does not cause any synchronization. 
 

III.   PSPICE SIMULATION 
 The coupled circuit in Fig. 1, where the 
oscillators O1, O2, O3 are presented in Fig. 2 and the 
remote virtual grounder (RVG) is shown in Fig. 4, 
has been simulated numerically using the Electronics 
Workbench Professional (the PSPICE based 
software). The LM741 type operational amplifiers 
(OA) and the 1N5820 type Schottky diodes (D1, D2) 
have been employed in the simulations. The typical 
output of an individual oscillator is presented in 

Fig. 3, while the application circuit of the RVG unit 
is sketched in Fig. 5. The remote virtual ground is 
demonstrated to appear at the node # 5 (Table 1).  
 

 
 

Fig. 2. Circuit diagram of the FitzHugh−Nagumo type oscillator. 
It is a slightly modified version of the circuit described in [6,7]. 
 

 
 
Fig. 3. Voltage across the capacitor C of the oscillator in Fig. 2. 
L=1 H, C=330 nF, ρ = (L/C)1/2 =1.74 kΩ, R01=R02=1 kΩ, 
R03=300 Ω, R04=30 Ω, R05=240 Ω, R06=200 Ω, I =333 µA. 
Amplitude ≈ 1.5 V, inter−spike period ≈ 10 ms. 
 

 
 
Fig. 4. Circuit diagram of the remote virtual grounder (RVG). It 
is a negative impedance converter based unit. 
 

 
 
 
 
 
 
 
 
Fig. 5. Remote virtual grounding in a “distributed” resistive line. 
# 0 is the measurement and stimulation node, # 5 is the remote 
virtual grounding node (V5 ≈ 0, see Table 1); geometrically to be 
close to the coupling node. All resistors in the line are 4 kΩ each. 

 

Rg 

RVG V0
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TABLE I. VOLTAGE DISTRIBUTION ALONG THE RESISTIVE LINE 
 

Node 0 1 2 3 4 5a 6 7 
Vi/V0 −1.7 −1.3 −1.0 −0.7 −0.3 0 0.3 0.7 

a exact voltage value at the node # 5 is V5/V0 = − 0.0007. 
 
 The simulation results are presented in the form 
of the phase portraits, taken from different pairs of 
the oscillators (Figs. 6−8). 
 

   
 

Fig. 6. Phase portraits from isolated oscillators. a) O2−O1, 
b) O3−O1, c) O3−O2. I1/I2/I3=333/349/313 µA. ki = 0. 

 

   
 

Fig. 7. Phase portraits from mean−field coupled oscillators. 
a) O2−O1, b) O3−O1, c) O3−O2. I1/I2/I3=333/349/313 µA. 
R1=R2=R3=20 kΩ, ki = ρ/Ri ≈ 0.09 (threshold value kith ≈ 0.05). 

 

   
 

Fig. 8. Phase portraits from mean−field coupled oscillators with 
the remote virtual grounder. a) O2−O1, b) O3−O1, c) O3−O2. 
I1/I2/I3=333/349/313 µA, R1=R2=R3=20 kΩ, ki = ρ/Ri ≈ 0.09, 
R=10 kΩ, R*=Rg =20 kΩ. Note: it is important to set R* ≅ Rg.  
 
 Fig. 6, Fig. 7 and Fig. 8 indicate the uncoupled, 
synchronized and desynchronized states, respectively. 
The value of the mean field is illustrated with the 
time series of the voltage simulated at the coupling 
node (Fig. 9). The voltage of the coupling node 
becomes almost zero (Fig. 9b), when the remote 
virtual grounder is applied. Only a small ripple is 
observed on an enlarged scale (Fig. 9c). 
 

a

 

 

 
Fig. 9. Voltage simulated at the coupling node. a) Three c
oscillators; amplitude ≈ 1.5 V. b) Three coupled oscillators
remote virtual grounder. c) Plot (b) vertically zoomed i
factor of 200; amplitude ≈ 2 mV. Circuit parameters are th
as in Fig. 7 and Fig. 8. 

IV.   HARDWARE EXPERIMENTS 
Hardware experiments were carried out usin

circuits described in the previous section III, n
three FitzHugh−Nagumo type oscillators (F
resistively coupled in a star configuration, an
remote virtual grounder (Fig. 4). All the c
elements and parameters were the same as i
numerical simulations, except the bias current 
was set to the value of 220 µA, because sl
different Schottky diodes (1N5817), had been
In addition, the bias currents were the same  (I1=
for all oscillators. The difference of the osci
was due to the manufacturing spread of the el
parameters (tolerance of the linear elements wa
and the mismatch of the diodes up to 10%)
output from an individual oscillator (Fig. 10) is
excellent agreement with the simulated wav
(Fig. 3). The corresponding phase portraits in Fi
Fig. 12, Fig. 13 and the time series in Fig. 14 f
coupled oscillators are also in a reasonable agre
with the numerical simulations. 
  

 
Fig. 10. Voltage across the capacitor C in the exper
FitzHugh−Nagumo oscillator. Amplitude ≈ 1.5 V, inte
period ≈ 10 ms. Nominal circuit parameters are the sam
Fig. 3. The bias current I = 220 µA. 
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Fig. 11. Phase portraits from isolated oscillators. a) O2−O1, 
b) O3−O1, c) O3−O2. Nominal circuit parameters are the same as 
in Fig. 6. I1=I2=I3=220 µA. 
 

   
 
Fig. 12. Phase portraits from mean−field coupled oscillators. 
a) O2−O1, b) O3−O1, c) O3−O2. Nominal circuit parameters are 
the same as in Fig. 7. I1=I2=I3=220 µA. 
 

 
Fig. 13. Phase port
virtual grounder. 
circuit parameters a
 

 

 

 
Fig. 14. Voltage m
oscillators; amplitu
remote virtual gro
factor of 200; amp
the same as in Fig.

V.   CONCLUSION 
 We have suggested desynchronizing mean−field 
coupled oscillators by using a remote virtual 
grounder, i.e. by resetting the voltage at the coupling 
node. Simulations have been performed and hardware 
experiments have been carried out with the 
FitzHugh−Nagumo oscillators. However we hope the 
similar technique can be applied to networks 
composed of other types of oscillators as well.  

a c 
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Abstract— This paper proposes a novel nonlinear 
observer to control a chaotic third order Phase Locked 
Loop (PLL). The design of the proposed observer is 
based on the high order sliding mode technique. By 
assuming that only the phase error of the PLL is 
known, the control strategy constructs a nonlinear 
observer based feedback law and then causes the phase 
error to behave in a desired way. The convergence of 
the observer is analyzed using the Lyapunov theory. 
Simulations results on PLL show the effectiveness and 
robustness of the proposed scheme.   

I.  INTRODUCTION 
In recent years, control of chaotic systems has been 

an intensive research interest and several methods 
have been proposed [1-4]. From practical point of 
view, a direct access to actual states is not always 
available. Consequently, it is necessary to use a state-
observer in order to estimate the state vector of the 
system under consideration and then construct the 
control law. In literature, the observer design for 
chaotic systems has been extensively studied and 
many types of observers have been used [5-9]. 
However, these methods do not consider the system 
uncertainties. To overcome this drawback, sliding 
mode observers have been developed [10-12]. They 
differ from traditional observers by the injection of a 
non-linear discontinuous term into the observer. This 
term, depending on the output estimation error, 
enables the observer to reject disturbances. The 
objective of this paper is to construct a non-linear 
observer based control design to force the solutions of 
the chaotic system to track a desired trajectory. We 
develop in the first step a novel observer based on 
sliding mode technique which guarantee an 
asymptotically convergence of the error estimation to 
zero. Then, we construct the control law based on the 
estimated states.  

This paper is organized as follows. Section 2 
displays the class of nonlinear chaotic systems under 
consideration. Section 3 presents the observer design 
and the convergence analysis. In Section 4 we 
consider the observer based control approach. Section 
5 illustrates the main results by applying the proposed 
method for controlling a chaotic PLL and obtaining a 
desirable behavior. Finally, some conclusions are 
included in Section 6. 

II. PROBLEM STATEMENT   
The dynamics of the system under consideration 

are described by the following equation:  

),(),,...,,( )1()( tutxxxfx nn += −&  

where nRx∈ is the vector of generalized 
coordinates, ),,...,,( )1( txxxf n−& is a nonlinear function 
depending on the time and u(t) represent the control 
input. The form (1) includes a wide variety of chaotic 
systems such as third order Phase Locked Loop (PLL) 
and Duffing oscillator. The model (1) can be rewritten 
in the state-space form  
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where .,...,, )1(
21

−=== n
n xxxxxx & We assume 

here that only the state vector x is available for 
measurements. Hence, the goal is to find a nonlinear 
state observer for system (1) such that the error 
estimation tends to zero in finite time and by the 
availability of the state vector x only.   

(2) 

(1) 
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III. OBSERVER DESIGN  

The proposed sliding mode observer has the 
following form  
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where ,,..,1,ˆ nixi = are the state estimations of 

the state vectors ,,..,1, nixi = respectively and )( ii eg  

is given by ,1..1),(*)(
2/1

−== niesigneeg iiii
 

111 x̂xe −= is the output error and sign(.) is the 
standard signum function. ,,..,1, nii =λ are the observer 
gains to be defined later.  By introducing the state 
errors  niei ,..,1, =  as iii xxe ˆ−= , the error system 
is given by:  
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We assume that all states of (1) are bounded by a 
positive constant M (which is possible for chaotic 
systems since they are bounded in a compact and 
convex region) and one can write 

MtxxxxxF nn <),ˆ,,...,ˆ,,( 221  

To demonstrate the asymptotically convergence of 
the error system to zero, we determine in the first step, 
the gain 1λ (respectively nλ ) by defining a definite 

positive Lyapunov function 1V (respectively nV  ) as 

follows                      2
11 2

1
eV =  

2

2
1

nn eV = , 

The time derivative of (6) gives  
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which is negative since
max21 e>λ . So, by choosing 

max21 e>λ the Lyapunov function 1V is continually 

decreasing and the error 1e tends asymptotically to 
zero. As before, nV is continually decreasing and the 

error ne tends asymptotically to zero since we 
have Mn >λ . Now, the second step consist on assuring 
an asymptotically convergence of all errors 

,1,..,2, −= niei  to zero. To this end, we will study 

the function ie&&  in the error trajectory )( ii efe =& for 
,1,..,2 −= ni (see fig. 1). The second derivative of 

the system errors 1,...,2, −= niei  gives  
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Beginning with 1−ne&& . Since we have guaranteed 

the convergence of ),( nn ee &  to (0,0) ntt ≥∀ , the 

expression of 1−ne&&  becomes  
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When studying 1−ne&&  in the error trajectory 

)( 11 −− = nn efe& , we have a negative decreasing  

function  1−ne&&  in the first half (see fig.1 quadrant (1) 
and (2)) .In the second half of )( 11 −− = nn efe& (quadrant 
(3) and (4)), we have 01 ≥−ne&& and increase and tend 
towards 011 == −− nn ee & in finite time. Consequently 
and in the same way, we prove the finite time 
convergence of ,2,...,2),,( −= niee ii &  towards 

0== ii ee & and for any observer gains 1,...,2, −= niiλ .  

IV. OBSERVER BASED CONTROL LAW 
The control problem here is the design of a control 

law u(t) such that the output signal y(t) tracks a 
desired trajectory )(tyd . The approach used in this 
section is based on the phase space reconstruction 

(3) 

(4) 

(9) 

(10) 

(6) 

(8) 

(7) 

(5) 
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technique [13]. Consider system (1), let h(x) be the 
signal output and fL  the Lie derivative operator. We 
construct then the signal state  
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The ith Lie derivative operator is given by 
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given by model (2). The first derivate of )(tσ gives:  
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For model (1), the state vector )(tσ represents the 
signal  ),...,,( 21 nxxxX = , so one can write  

 uvBXAX ++= ..&  
where  
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and                    )(xhLv n
f=  

(13) is a Brunowsky canonical form [14]. By 
introducing a complementary control input 

 )(.)( tuvBtr +=  
(13) can be rewritten as  

)()(.)( trtXAtX +=&  
 To guarantee the convergence of the error 

trajectory between )(ty  and )(tyd exponentially to 
zero, r(t) can be chosen as 

 ))()(.()( tytyKtr d−−=  

where T
nkkkK ],...,,[ 21= , niki ,..,1, =  are 

constants to be chosen such that the real parts of all 
eigenvalues of the closed loop system (13) are 
negative. From equations (15) and (17), the control 
input u(t) is modified to be  

vBtytyKtu d ˆ.))()(.()( −−−=  
where v̂  is based on the estimated variables and 

equal to  )ˆ(ˆ xhLv n
f= .  

V. SIMULATIONS  
Consider a third order PLL given by the following 

dynamic model  

( ) ( )

( ) ( ) uED
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ψ  is the phase error and u the control input of the 
system. The PLL exhibits a chaotic behavior for the 
following parameters ;195;3;783.3;94.3 ==== DCBA  

2250=E . Figure 2 illustrates this behaviour. Let ψ  be 
the output signal given by 1)()( xtty ==ψ  which is 
assumed to be only measured. As we want to design a 
controller for zero loops’ phase error, the desired 
trajectory is chosen as 0== constyd . For simulations 
purposes, M is equal to 120 and the observer gains are 
taken as ,401=λ 125;10 32 == λλ . For the design of 
the controller, we choose 389;160;22 321 === kkk . 
Figure 3 displays the errors estimation between the 
system states ( ψ , ψ& and ψ&& ) and their estimated 

variables (ψ̂ ,ψ&̂ ,ψ&&̂ ). Based on this figure, it is clear 
that estimated states converge in finite time and 
quickly to the real states of the PLL. Figure 4 displays 
the system response in the controlled case. It is easy to 
see that the phase error of the PLL quickly converges 
to the desired trajectory.  

A comparison of our approach to control methods 
given in [4] and applied to a chaotic PLL shows the 
effectiveness of our strategy control from convergence 
rapidity point of view. Figure 5 display the transition 
time of the system response to the desired trajectory. 
Based on this figure, we show that our method allows 
better control results. 

VI. CONCLUSION 
A nonlinear observer based control approach of 

chaotic systems has been developed in this paper. The 
observer is based on sliding mode technique in order 
to estimate all states of the system. The constructed 
control law employs the estimated variables in order 
to derive the system from chaos to a fixed point. 
Theoretical results have been supported by numerical 
simulations applied to a third order chaotic PLL. 
These results are compared with those given in [4] 
showing then, the effectiveness of the proposed 
method.  
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Abstract—In this paper secure data transmission system 
based on synchronization of chaotic system is 
presented. The transmitter module consists of a chaotic 
generator which is the time delay feedback Chua 
circuit and an encryption mechanism (chaotic 
masking), in which the secret message (digital image) is 
added to the output of the chaotic generator. The 
receiver module consists of a non linear state observer 
design, driven by only one of the states of the time delay 
feedback Chua circuit; and a decryption mechanism. 
Simulations results prove the efficiency of the 
considered observer based cryptosystem: 
synchronization of the chaotic systems (transmitter-
receiver) is obtained and the message signal is 
recovered.  

I. INTRODUCTION 
 

    In recent years, Chua’s circuit has become a 
standard model for studying chaos in systems 
described by finite-dimensional ordinary differential 
equations [1]. 

Synchronization of chaotic Chua’s circuit with 
application to secure communication has also been 
investigated. However, a classic Chua’s circuit is a 
third-order continuous-time autonomous system 
which can only produce low-dimensional chaos with 
one positive Lyapunov exponent. 

On the other hand, it has been known that even a 
very simple first-order system with a time-delay 
feedback can produce very complex chaotic behaviors 
[2–5]. Mathematically, continuous-time systems with 
time-delay feedback can be described by delay 
differential equations that possess of infinite-
dimensional state spaces and have the possibilities of 
producing high-dimensional hyperchaotic attractors 
with a large number of positive Lyapunov exponents. 

This property has already stimulated the work on both 
analysis and design, and we have also witnessed a 
number of physically implemented chaotic time-delay 
systems for secure communication which claimed to 
have low detectability [6–7]. 

Several methods are proposed for chaotic 
cryptography. Among these methods we can cite 
chaotic masking, chaotic shif keying, chaotic 
modulation[8–10].  

The communication system used in this work is 
based on the chaotic time delay feedback Chua circuit 
to transmit a digital image in a secure way. It consists 
of two steps: the first one assures the 
transmitter/receiver synchronization while the second 
step focuses on the encryption/decryption procedure. 
The synchronization is performed through a non linear 
state observer design, driven by the transmitted signal, 
and the encryption/decryption procedure is ensured by 
using the chaotic masking method [9–10]. 

The paper is organized as follows: In section II, we 
introduce the electronic structure and mathematical 
model of the time delay Chua’s circuit and its chaotic 
behavior. In section III a non linear state observer is 
designed for this circuit and performances of the 
considered observer and the LMI observer 
approach[11] are compared. Section IV presented 
some simulations illustrate the efficiency of the 
considered observer-based cryptosystem: the “Lenna 
picture” is encrypted, transmitted, and decrypted 
Finally, Section V concludes the paper. 

II. TIME DELAY CHUA ’S CIRCUIT 
    The chaotic generator consists of the time delay 

feedback Chua circuit [12] which is shown in 
figure(1) 
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Fig. 1. Time delay feedback Chua circuit 

A. Mathematical model 
    A time delay voltage feedback is added to the 

nominal Chua circuit. This system is described by the 
following system: 
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Where 1v , 2v and 3i  are the voltage across 1c , the 

voltage across 2c  and the current through L , 

respectively. 
R

G
1=  and  

))((
2

1
)( 1111 EvEvGGvGvf bab −−+−+=  

is the iv−  characteristic of the non linear resistor. 

The time-delay function input is : 

))(sin())(( 11 τσετ −=− tvtvw  

Where ε  and σ  are tow positive constants and τ  
represents the time delay. 

B. Chaotic behavior :transmitter key difinition 
    Now, using the mathematical model of the time 

delay Chua circuit, we study its chaotic behavior, for 
that some parameters are fixed in order to obtain such 
dynamics. To do so, we plotted the bifurcation 
diagram which is used to study the changes in the 
evolution of the solution's system with respect to 
changes in a chosen parameter. In this case, we 
plotted 1v   with the control parameter0r , so by 
varying its value from 1 to 50, keeping the other 
parameter fixed as following: 

2,0;5,0;10.68,18;10;10;1950 37
2

8
1 ====== −−− εσLccR

 and 001,0=τ  

The bifurcation diagram is illustrated in the 
figure(2) 
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Fig. 2. Bifurcation diagram 

As can be seen from the figure (2), the state 
variable 1v  is stable if 0r  is superior to 47.98, and 

then, if 0r  is inferior to this value the system 
dynamics follows usual period doubling rout to chaos. 

In this work, we considered the parameter 
2.10 =r  as a cryptosystem secret key (The value of 

this key is chosen in a way that makes the output 
behavior of the circuit be chaotic).  

 

III.  OBSERVER DESIGN 
In this section, we are interested in the design of a 

nonlinear observer which ensures synchronization 
with the chaotic generator. In this work we consider 
the observer described in [13]. 

The dynamic model of the chaotic generator can be 
rewritten as: 
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The dynamic model of nonlinear observer is the 
following: 

)),(),((),(..
.

τττ yysxxsgyyfByAy −++=  

Where 32: IRIRg → is a suitably chosen 
nonlinear function; and 23: IRIRs →  is the 
synchronizing signal.  

System (4) and (5) are said to be synchronizing, if 
0)()()(  →−= ∞tytxte . 

Let  

Kxxxfxxs += ),(),( ττ  

 with 32 xIRK ∈ , and let : 

)),(),(()),(),(( ττττ yysxxsByysxxsg −=−  

Then system (6) becomes linear and time-
invariant, and can be expressed as: 

BuAeBKeAee +=−=
.

 

Where Keu −= plays the role of a state feedback.. 

The error dynamic system is controllable if the 
controllability matrix ],,[ 2 BAABBm = is full rank. 

In this case, a necessary and sufficient condition 
for the existence of a feedback gain matrix K such that 
the error converges to 0 is that all eigenvalues of the 
matrix ][ BKAC −=  have negative real parts. 

In this work, the chosen matrix m is full rank and 
we have to sent only one of the states of the time 
delay feedback Chua circuit to ensure the 
synchronization of the receiver, if we choose the state   

1v  , the structure of the matrix K will be as the 
following : 
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For 1011 −=k and 5021 −=k ,the eigenvalues of 
the matrix C are )31005487;31005487;45491( ii −−+−− ; 
Substitute this matrix K into the observer dynamic and 
simulated it with Matlab we got the sum of squared 
errors (SSE) in state estimation as showed in figure(3) 
witch is shown the rapidity of the SSE convergence to 
0 of the consider observer and the MLI method. 

In this figure, we can observe that the SSE in the 
state estimation of three states, using the tow observer 
approach, is very low and satisfactory and it’s clear 
that the considered nonlinear observer converges more 
rapidly (in less than 1.3 ms) than the LMI method 
[11]
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Fig.3. Comparative study: SSE using the tow observer 

approaches 

IV.  SECURE COMMUNICATION : IMAGE 

ENCRYPTION 
    The faculty of synchronizing the time delay 

Chua circuit makes the approach described in this 
paper, suitable for secure digital image transmission 
using the masking approach. 

A. Communication scheme 
    In this work, we considered the scheme 

illustrated in figure(4) 

 
 

Fig. 4. Proposed communication scheme 
In this scheme, the synchronization and the 

encoding are independent, indeed, two chaotic signals 
are sent by the transmitter. On the one hand, a first 
signal is aimed to the synchronization of the receiver. 
On the other hand, a second signal is used to encrypt 
the message: the information signal is injected in the 
second chaotic signal by the encryption mechanism to 

(5) 

(6) 

(7) 

(8) 

(9) 
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create masked message. In order to recover the 
original signal and enhancing the security of the 
cryptosystem, the amplitude of the original signal 
must be small enough (compared with the amplitude 
of the chaotic signal), so; we choose the chaotic signal 
as following: 

)(3)()( 21 vvtmts ++=  

where )( tm is the original message, 

After the synchronization step, the receiver 
recovers the message using the decryption mechanism 
ensured by the function: 

)~~(3)()(~
21 vvtstm +−=  

where 
1

~v and 2
~v are given by the dynamic model 

of the observer. 

B. Image encryption/decryption 
In this work, we transform the images file on NRZ 

signal.The result of the encryption using the proposed 
chaos cryptosystem is illustrated in Figure(5). 
Figure(5.a) shows the original gray-level image of 
Lena, Figure(5.b) is the encrypted image and in 
Figure(5.c) the recovered image is successfully 
obtained. 

 
Fig. 5. Image secure Transmission :(a) the original image,(b) the 
encrypted image, (c) the recovered image 

V. CONCLUSION 
In this paper, the problem of observer based 

synchronization and secure communication was 
addressed. We use the chaotic time delay Chua circuit 
as a transmitter. A first chaotic signal is sent to assure 
an observer-based synchronization. Then, a second 
chaotic signal is sent, in which the secret messag (the 
gray-level image of Lena) is masked. For this purpose, 

we prove that the considered observer design for 
synchronization is very low (in less than 1.3 ms) and 
satisfactory, converges more rapidly than the LMI 
method and it was successfully used as the receiver 
(the recovered image is successfully obtained). It is 
interesting to analyse, in further work, the influence of 
the noise present in the transmission channel on the 
deciphering quality in the receiver.  
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Abstract—Performance of wireless communication
scheme with ultrawideband chaotic radiopulses in realistic
channels is evaluated. The channels based on multipath
channel models elaborated by IEEE 802.15.4a working
group for ultrawideband wireless communication systems
are considered. Error probability is numerically estimated
and pathloss of chaotic radio pulses propagating over
multipath channel are experimentally measured.

I. INTRODUCTION

Chaotic signals as information carriers for commu-
nication systems are widely studied theoretically and
experimentally since 1990 when a special type of chaotic
synchronization was introduced [1]. Further investiga-
tions showed low immunity of the chaotic synchro-
nization to channel distortions, that yielded to the de-
velopment of different modulation schemes improving
characteristics of chaos-based systems in real channels,
namely differential-chaos-shift-keying [2], chaotic-pulse-
position-modulation [3] and direct chaotic communica-
tion scheme (DCCS) [4], [5] that was experimentally
approved. DCCS means that chaotic signal is generated
and modulated in microwave band without intermediate
heterodyning. This scheme belongs to wideband or ul-
trawideband (UWB) communication systems, in which
chaotic radiopulses are used as information symbols.
It was shown that the performance of DCCS in white
noise channel is comparable with the performance of
communication systems based on an orthogonal signals.
DCCS scheme allows us to design high-bitrate systems
[4] as well as low-bitrate ones [5] due to possibility to
design effective sources of chaotic signals of microwave
band [5].

Recently theoretical DCCS performance was inves-
tigated in multipath channels [6] in the presence of
significantly dominating multipath interference. The sub-
ject of this work is to evaluate the DCCS performance
in the presence of additive white noise and multipath

interference. and to experimentally analyze the influence
of multipath propagation on the chaotic radio pulses.

II. DCCS STRUCTURE AND CHANNEL MODEL

The schematic of DCCS structure [4] is depicted in the
Fig. 1. Basically the DCCS modulator implements “On-
Off keying” (OOK) modulation scheme: chaotic radio
pulse of length τp is emitted to transmit symbol “1” and
is not emitted to transmit symbol “0”. Between chaotic
radio pulses a guard interval of length τg is inserted to
prevent intersymbol interference.

Fig. 1. DCCS structure (top) and chaotic radiopulses emitted to the
air to encode symbols ”‘1 1 0 1”’ (bottom)

The channel model considered here for numerical
evaluation of the DCCS performance is based on the
UWB multipath channel models adopted by IEEE work-
ing group developing an wireless channel models for
UWB communications [7]:

y(t) = H(t)⊗ s(t) + n(t) (1)

where s(t) is a signal emitted by the transmitter to
the air; H(t) is a channel impulse-response; symbol ⊗
means convolution; n(t) is a additive white noise; y(t)
is a signal at the receiver input.

The channel impulse-response H(t) corresponding to
some relative position of the transmitter and the receiver,
to some geometrical size of an accommodations and to

18th IEEE Workshop on Nonlinear Dynamics of Electronic Systems (NDES2010)

26-28 May 2010, Dresden, Germany 42



some indoor layouts is described by the i-th channel
realization of response function h(i)(t) to δ-pulse [7]:

h(i)(t) = X(i)
L∑

l=0

K∑

k=0

α
(i)
k,lδ(t− T

(i)
l − τ

(i)
k,l ) (2)

hi(t) is formed as a sum of paths with statistically
distributed amplitudes α

(i)
k,l, cluster T i

l and path τ i
k,l

delays. The value X(i) represents log-normal shadowing.
Channel model (2) was designed on the basis of

numerous experimental data and it can be considered
as realistic channel model to describe nine different
multipath environments: residential (CM1, 2), office
(CM3, 4), outdoor (metropolitan suburban CM5,6), in-
dustrial (CM7, 8), farm (CM9). Models with odd num-
bers describe line-of-sight (LOS) case, even numbers
correspond to the no-line-of-sight (NLOS) case. These
multipath environments are typical for wireless personal
area networks, where UWB communication systems are
considered as promising applications.

The UWB receiver implemented in the DCCS is based
on quadratic envelope detector with non-zero threshold.
The receiver output is fed to the analogue-to-digital
converter and then it is digitally processed to determine
the positions with and without pulses.

Theoretical model of the noncoherent receiver as-
sumes that the envelope detector forms the signal en-

velope i(t) =
t∫

t−τp

y2(p)dp of the chaotic radiopulses

that can be expressed as

i(t) = ep(t) + epn(t) + en(t) (3)

where ep(t) =
t∫

t−τp

(h(i)(p)⊗ s(p))2dp is

the pulse energy corrupted by multipath;

epn(t) = 2
t∫

t−τp

(h(i)(p)⊗ s(p))n(p)dp is the cross term

that equals to zero in average; and en(t) =
t∫

t−τp

n2(p)dp

is the energy of white noise within pulse position.
It is assumed that symbol synchronization is estab-

lished between the transmitter and the receiver. The
receiver gathers energy within the pulse length τp and
decides what symbol it receives: ”‘0”’ or ”‘1”’ according
to the value of i(t) that is compared with the threshold.
The minimum error probability is achieved by means of
preliminary estimated threshold on the basis of distribu-
tion of i(t) for symbols ”0” and ”1” [4], [5].

III. DCCS PERFORMANCE

Performance characteristics, which are normally con-
sidered in wireless communications and we are interested
in, are: energy loss of chaotic pulses due to multipath dis-
persion; bit-error-ratio (BER) as function of the signal-
to-noise ratio (the ratio of the energy per bit to the
noise spectral density Eb/N0 for digital communication
systems) for the given bitrate, i.e. for given τp, τg and for
signal bandwidth ∆f ; and pathloss exponent of UWB
chaotic signal. Here the DCCS performance will be
governed by the statistical properties of i(t).

We consider the case when the guard interval length is
longer than the channel response (Fig. 2a), white noise
plays the dominant role at the receiver and the interpulse
interference does not take place (Fig. 2b).

Fig. 2. Results of multipath propagation of two chaotic pulses when
the guard interval τg is longer (a) and when it is shorter (b) than the
channel response

A. Energy loss

The average pulse energy < ep > at the receiver can
be estimated as the product of averaged pulse power
< Pp > by the pulse length < ep >=< Pp > τp. Due to
noncoherent summation of paths the average pulse power
is the sum of the path’s power with amplitudes αk,l, i.e.

Pp =
Lp∑
l=0

Kp∑
k=0

(α(i)
k,l)

2, where Lp and Kp is the number of

clusters and paths, respectively, coming in the receiver
within the time interval τp. Lp and Kp are determined by
the multipath channel environment: the smaller channel
dispersion, the larger pulse energy coming in the receiver
within the time interval τp. So, in order to achieve the
maximum pulse power PR, the pulse length τp must be
matched with the channel impulse-response time. Under
the assumption that the channel impulse-response energy

is normalized to unity, i.e.
L∑

l=0

K∑
k=0

(α(i)
k,l)

2 = 1, the PR

is the estimate of the energy loss due to dispersion.
Numerical estimates of this ratio are given in Fig. 3.

As can be seen in Fig. 3, the pulse energy loss rapidly
decreases with increasing pulse length. Namely, for the
pulse length τp = 10ns, for all channel types the average
energy loss is no more than 4 dB. The pulse length τp =

18th IEEE Workshop on Nonlinear Dynamics of Electronic Systems (NDES2010)

26-28 May 2010, Dresden, Germany 43



Fig. 3. Loss of the chaotic pulse energy due to multipath dispersion
in the channels CM1...CM9

100 ns permits us to decrease the energy loss to 0 dB
for all channel types.

B. Error probability

BER is governed by the variance and by the distri-
bution of the pulse energy i(t) corrupted by noise and
multipath propagation effects. The pulse energy variance
increases due to multipath dispersion and BER will
also increase with respect to the BER corresponding
to the pure noise channel. To evaluate the BER, direct
numerical simulations were carried out.

Simulation results are shown in Fig. 4, where BER
(Pb) is depicted versus Eb/N0 for the following LOS
channels: residential (CM1), outdoor (CM5) and farm
(CM9). Estimates were obtained for the chaotic pulses
of length τP equals to 5, 10 20 and 100 ns and the signal
bandwidth ∆f = 2000 MHz.

Fig. 4. BER (Pb) vs Eb/N0 for residential (circle), outdoor (cross),
farm (diamond) and AWGN channels (square) for the pulse length
τP : 5 (a), 10 (b), 20 (c) and 100 ns (d).

As can be seen, if the pulse length τP is matched to
the length of channel response, i.e. τp =100 ns here, the
BER does not differ significantly from the BER for the

noise channel, and DCCS performance is practically the
same as in noise channel taking into account that the
pulse energy Ep should be corrected according to the
loss due to the multipath dispersion (see Fig. 3).

IV. EXPERIMENTAL ESTIMATION OF CHAOTIC RADIO

PULSE PROPAGATION

In order to experimentally demonstrate the multipath
tails of chaotic radio pulses, to analyze variability of
chaotic pulse envelope at the receiver output for different
propagation conditions at different distances between the
transmitter and the receiver, to evaluate the pathloss
exponent of the UWB chaotic signals, we carried out
the following experiment.

The scheme of experimental setup is depicted in
Fig. 5. It consists of a generator of chaotic radio pulses,
a logarithmic UWB receiver and an oscilloscope to
record the signal waveforms (Fig. 5, top) for further
computer analysis. A transistor oscillator operating in
chaotic mode was used as the source of chaotic pulses
[5]. The chaotic pulse length is set at τp = 100 ns.
The guard interval between pulses is τg = 300 ns.
The choosen guard interval length is enough to prevent
interpulse interference. The pulse length value is enough
to exclude the influence of the multipath dispersion and
to correctly evaluate the pathloss exponent.

Fig. 5. The scheme of the experimental setup (top) and the envelope
of the chaotic pulses at the logarithmic detector output (bottom).

Experiments were carried out in office area: in a
corridor (height 4 m, length 40 m, width 3 m) and in a
conference hall (length 20 m, height 4 m, width 16 m).
The distance d between the transmitter and the receiver
was varied from 1 to 20 m in the corridor and from 1
to 14 m in the conference hall. The transmitter and the
receiver were located 1 m above the floor in the corridor
and 2 m in the conference hall.

The output of the logarithmic detector is proportional
to the logarithm of input power of chaotic radiopulses,
i.e. VP (t) = K lg(PP (t)/P0), where VP (t) is the en-
velope of the chaotic radiopulses at the detector output,
K is the proportion coefficient, PP (t) is the power of
chaotic radiopulses at the detector input and the P0 is
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a reference power value. Logarithmic detector allows
to map exponential dynamical range of input power
consisting of several orders of magnitude into a linear
scale.

Experimental results are depicted in the Fig. 6, where
the average envelopes of the chaotic radio pulses for
different distances d between the transmitter and the
receiver are shown for the corridor (to the left) and for
the conference hall (to the right). The average envelopes
were obtained by means of averaging envelopes of all
pulses shown in Fig. 5b.

Fig. 6. Average envelopes in the corridor (left) and in the conference
hall (right): upper curve corresponds to the minimum distance d =
1 m, lower one corresponds to the maximum d

The average envelope waveforms remain similar to
each other at all distances between the transmitter and
the receiver, which reflects the peculiar properties of the
chaotic pulse propagation for the given indoor conditions
and indicates good averaging of the power of paths
coming to the receiver. It also should be noted that
pathloss function shows no signs of small-scale fading-
caused notches.

The pathloss PL was calculated with the use of the
average envelopes. The average amplitudes of the pulse
envelopes are proportional to the pulse power, so the
ratio of the given average envelope amplitudes to the
amplitude of the envelope corresponding to d = 1 m
(upper curves in the both figures) is the pathloss for the
given channel.

Calculated pathloss PL is depicted in Fig. 7, where
the pathloss in the corridor and in the conference hall
are shown at the left and at the right plots, respec-
tively. Experimental pathloss estimates are rather well
approximated by theoretical pathloss law PL(d) =
−10n lg(d/d0), where d0 = 1 m and n = 1.75 for the
corridor and n = 1.3 for the conference hall. the obtained
pathloss exponent values are close to the corresponding
values estimated for LOS channels of IEEE 802.15.4a
model [7].

V. CONCLUSIONS

Performance estimation shows that the communication
scheme based on chaotic radiopulses is immune to strong

Fig. 7. Pathloss PL in the corridor (left) and in the conference
hall (right). Circles and crosses indicate two different series of
mesurements.

multipath conditions of signal propagation. Simulations
with realistic channel models show that DCCS is suit-
able for wireless UWB networks operating in complex
environments.

ACKNOWLEDGMENT

Authors acknowledge support from the Russian Foun-
dation for Basic Research, grant No. 09-07-92651-IND-
a.

REFERENCES

[1] Pecora L. M., Carroll T. L., “Synchronization in Chaotic sys-
tems,” Phys. Rev. Lett., Vol. 64, No. 8, 821–824, 1990.

[2] Kolumban G., Vizvari B., Schwarz W. et al. “Differential chaos
shift keying: A robust coding for chaotic communication,” Proc.
NDES’96 , Seville, Spain, 87–92, June 27-28 1996.

[3] Rulkov N. F., Sushchik M. M., Tsimring L. S. et al. “Digi-
tal Communication Using Chaotic-Pulse-Position Modulation,”
IEEE Trans. on Circuits and Syst.-I, Vol. 48, No. 12, 1436–
1444, 2001.

[4] Dmitriev A.S., Kyarginsky B.Ye., Panas A.I. et al. Experiments
on ultra wideband direct chaotic information transmission in
microwave band,” Int. J. Bifurcation and Chaos, Vol. 13, No 6,
1495, 2003.

[5] Andreyev Yu. V., Dmitriev A. S., Efremova E. V. et al. “Qual-
itative theory of dynamical systems, chaos and contemporary
communications,” Int. J. Bifurcation and Chaos, Vol. 15, No 11,
3639–3651, 2005.

[6] Kuz’min L. V., Morozov V. A. “Statistical Characteristics of an
Ensemble of Ultrawideband Communications Channels under
the Conditions of Multipath Signal Propagation in Rooms,” J.
Communications Technology and Electronics, Vol. 54, No 3,
313–322, 2009.

[7] Channel Modeling Sub-committee Report Final.
/ IEEE P802.15.4a Working Group for Wireless
Personal Area Networks (WPANs), Dec. 2004.
http://grouper.ieee.org/groups/802/15/pub/04/15-04-0662-
02-004a-channel-model-final-report-r1.pdf

18th IEEE Workshop on Nonlinear Dynamics of Electronic Systems (NDES2010)

26-28 May 2010, Dresden, Germany 45



Generation of the microwave dynamic chaos in ring 
self-oscillatory system on CMOS structure

Alexander Dmitriev and Elena Efremova
Kotel’nikov Institute of Radio Engineering and Electronics 

of RAS,
Mohovaya st., 7-11, Moscow, 125009, Russia

Email: chaos@cplire.ru

Artem Nikishov
Moscow Institute of Physics and Technology,

141700, Institutskii st., 9, Dolgoprudnyi, Moscow 
Region, 141700, Russia

Email: nikishov@cplire.ru

Abstract—Ring self-oscillatory system on CMOS 
structure, capable to generate microwave chaotic 
signal with uniform power spectral density, is 
proposed, implemented and investigated. System is 
realized as an integrated microcircuit on 180 nm 
CMOS technology process. Generation of chaotic 
oscillations with a maximum of spectral density in a 
range of frequencies 2.8 GHz – 3.8 GHz is obtained in 
experiments with microcircuit.

I. INTRODUCTION

Generation of dynamic chaos in the microvawe
frequencies range represents an interest for 
ultrawideband wireless communication systems [1-4]. 
Last years schemes and methods of calculation of 
microwave chaotic self-oscillatory systems with the 
lumped parameters, using transistors as active 
elements [5-6] have been proposed and developed. 
On the basis of these results ultrawideband radio- and 
microwave chaotic oscillators, realized on discrete 
elements [7-8], are created and experimentally 
investigated.

However, as it was noted in [9], for mass 
application of such devices it is necessary to realize 
them on basis of elements of modern functional 
electronics — monolithic integrated microcircuits. In 
the same paper possibility of such devices creation on 
an example of the Si-Ge-based microwave chaotic
oscillator has been shown.

In the given work the microwave chaotic ring self-
oscillatory system realized on CMOS-structure is 
proposed, implemented and investigated.

II. SYSTEM STRUCTURE

Unlike SI-Ge technology where typical active 
elements is bipolar transistor used in [9], CMOS 
transistors are used in CMOS technology. Beside this, 
boundary frequencies of active elements (so also gain 

in an applied microwave range) for these two 
technologies essentially differ. If for Si-Ge
technology 0,25 µm boundary frequency is 75 GHz, 
then it is only 35 GHz for CMOS technologies 0,18 
µm. These two circumstances complicate realisation 
of the basic scheme of the chaotic oscillator with one 
active element on CMOS structure. Therefore in this
work as initial chaotic self-oscillatory system the 
scheme with three amplifiers closed in a feedback 
looop [10] has been used.

The block-scheme of the chaotic self-oscillatory 
system on CMOS structure (fig. 1) consist of three 
identical two-cascade amplifiers and frequency 
selective circuit (FSC), closed in a feedback ring. 

Fig.1. Block scheme of the system. 1, 2, 3 – amplifiers; 4 – output
buffer amplifier; 5 – frequency selective circuit; A –point of 

signal taken from a feedback ring; B – out

The first cascade of the each amplifier is an 
inverter (common-source circuit) with negative 
feedback. The second cascade is a buffer (common-
drain circuit). The first cascade amplifies input signal. 
The second has gain of an order of unit, smaller level 
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of saturation in comparison with the first cascade and 
behave as a limiter. FSC (Fig.2), consisting of one 
RC and two LC sections, together with amplifiers 
frequency characteristic limits a power spectrum of 
oscillations to a demanded frequencies range. 

Output signal is taked from a chaotic oscillations
generation loop through the buffer amplifier.



Fig.2. System frequency selective circuit

III. SIMULATION

Proposed system dynamics is investigated by 
means of considering the following questions: 
establishment of the fact of chaotic oscillations 
generation at certain parameters of the system; 
analysis of oscillarions spectral characteristics; 
studying the bifurcation phenomena; determining the 
scenario of the chaotic oscillations evolution. 

For simulation of the system, its model based on 
active and passive elements of the 180 nm CMOS 
technology process was designed according to block-
scheme represented on the Figure 1.

Modelling was made in engineering package 
Advanced Design System (ADS).

As an observable variable signal voltage U(t) on 
the system out (point В on the Fig. 1) was used.

An analysis of spectral characteristics of the 
model has shown that for the chosen values of system
parametres at different supply voltage various 
oscillation modes, including chaotic, are observed. 
Single-frequency mode of oscillations is observed at 
a frequency close to 4 GHz when system amplifiers 
supply voltage is Ua = 1.4 V. The supply voltage 
increase up to Ua = 1.5 V leads to excitation of 
oscillations on the second frequency about 1 GHz. 
Then amplitudes of the double-frequency oscillation 
subharmonics become more intensive and, at last, 
oscillations become chaotic at Ua = 1.8 V (Fig. 3).

Evolution of oscillations is summarised on the 
single-parameter bifurcation diagram of oscillations
modes (Fig. 4). Along axis U maximums of signal 
U(t) are placed on given diagram at the adiabatic 
slow change of parameter Ua.

As follows from the diagram analysis, single-
mode oscillations are excited at first time, when 

supply voltage is sufficiently small. Then supply 
voltage increase leads to excitation of double-
frequency oscillations mode and invariant torus is 
formed in oscillations phase space. The further 
voltage increase leads to structural reorganization of 
the resonances on the torus which finally comes to its 
subsequent destruction and transition to chaos. Such 
structural reorganization of the resonances is 
reflected in an increase of the number of oscillations 
spectral components. 

Fig.3. Chaotic oscillations power spectral density (modeling)

From the diagram, in particular, it is visible that 
zone of chaotic oscillations covers at least a range of 
supply voltage change from 1.8 V to 2.0 V that 
testifies to enough high stability of chaotic 
oscillations mode to change of this parameter.

Thus, chaotic oscillations are excited on the basis 
of double-frequency oscillations mode destruction. 
The described process illustrates a general principle 
of chaotic oscillations generation in proposed self-
oscillatory system. Frequency range and bandwidth 
of the generated oscillations utterly corresponds to 
those of amplifiers used and the cutoff frequency of 
the FSC.

Fig.4. Single-parameter bifurcation diagram of oscillation modes.
Ua – supply voltage, U – maxima of U(t) signal
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Possibility of double-frequency oscillations mode 
in the system is explained by the following 
circumstance. As follows from the phase-frequency 
response, represented on the figure 5, in the range 
from 0 to 10 GHz two frequencies have phase 
incursion n2 , where n is an integer. According to 
Nyquist-Mihaylov criterion, self-sustaining 
oscillations can excite on each of these frequencies in 
case the amplitude balance is fulfilled (feedback loop 
gain is above unit).

Fig.5. Phase frequency response of the system feedback loop

Analysis of the amplitude-frequency response
shows that at supply voltage 1.4 V the feedback loop 
gain becomes more than unity at a frequency close to 
4 GHz. So, at this frequency a first self-sustaining 
oscillation mode appears. Then, at supply voltage 1.5
V, the feedback loop gain becomes more than unity at 
both frequencies: close to 4 GHz and 1 GHz. So, self-
sustaining oscillations are possible on these two 
frequencies.

According to the simulations results the basic 
power of the oscillations contains in the frequency 
band from 3.6 to 4.6 GHz and it is about -4 dBm. 
Consumed current is 25 mA at 1.8 voltage supply.

IV. EXPERIMENT

Using positive simulation results, an experimental 
realization of the proposed ring self-oscillatory 
system as an integrated CMOS microcircuit was 
made. Microcircuit topology size is about 0.8x0.9 
mm2 (microcircuit in QFN package represented in the 
Figure 6). Frequency modes were adjusted by varying 
supply voltage in the range from 0 V to 3.5 V.

Self-oscillatory system on CMOS technology 0.18 
µm was implemented in software package Cadence
IC. Possibility of its use for the analysis of systems 
with chaotic dynamics has been established in [9].

For experiments the microcircit of the system was 
located in center of the QFN plastic package, and 
dice output pads are connected with package pads 
through slices of thin wires.

Fig.6. Microcircuit in QFN package.

Experimental investigation showed that single-
mode oscillations excite at the frequency close to 3.2 
GHz at supply voltage 1.5 V. With an increase of 
supply voltage to 1.7 V double-frequency oscillations 
mode appear (second frequency is about 600 MHz). 
Then amplitudes of the double-frequency oscillation 
subharmonics become more intensive and at supply 
voltage about 2.2V chaotic (Fig. 7) oscillations with 
uniform power-density spectrum and integrated 
power of about -6 dBm occur in the frequency band 
2.8 - 3.8 GHz.

And you can see that experimental results are very 
close with results of modeling.

Fig.7. Chaotic oscillations power spectral density (experiment).

V. CONCLUSION

In the report microwave chaotic ring self-
oscillatory system on CMOS structure capable to 
generate ultrawideband microwave chaotic signal 
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with uniform power spectral density, is proposed, 
implemented and investigated. The basic result of 
research is realization of system as an integrated 
microcircuit on technology 180 nm with the topology 
area less than 1 mm2 and its activity demonstration in 
experiment.

Experimental realization of the device has 
confirmed simulation results. Chaotic oscillations 
have uniform power spectral density in frequency 
band from 2.8 GHz to 3.8 GHz and integrated output 
power reaches about -6 dBm.

It is possible to draw following conclusions by the 
results of simulations and experimental researches.

At first, oscillation modes which were observed in 
experiment qualitatively identical to oscillation 
modes which were observed at simulation. It means 
that theoretical conclusions about bifurcation 
phenomena based on the simulation are 
experimentally proved.

At second, chaotic oscillations are really excited 
on the basis of mechanism of double-frequency 
oscillations mode destruction.

Quantitative discrepancies between model and 
experiment are certainly observed. However it is 
explained by technological errors arising at 
microcircuits fabrication. But at simulations this 
errors were not considered because qualitative 
acknowledgements of theoretical assumptions (the 
scientific component) was important.

Thus, proposed mocrowave chaotic ring self-
oscillatory system on CMOS structure can be used in 
different wireless communication applications as a 
compact device for UWB microwave chaotic signal 
generation.
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Abstract—The results of numerical study of initial
electron velocity dispersion (external noise) influence
on nonlinear dynamics of the electron beam with a
virtual cathode and on the output characteristics of
microwave devices based on electron beam with the
virtual cathode (low-voltage vircators) are presented.
It was discovered that the growth of initial electron
velocity dispersion (the increase of the noise power)
causes the suppression of virtual cathode oscillations
in the system and hence the breaking of generation
in the devices with the virtual cathode. It were ob-
tained the character dependencies of spectra and out-
put power of vircator radiation on the value of initial
electron velocity dispersion.

I. INTRODUCTION

A study of the microwave generators with a virtual
cathode (vircators) is an important and actual appli-
cation of nonlinear dynamics to modern problems of
microwave electronics and telecommunications [1,2].
The significance of such researches is determined by
the distinctive features of vircators. Generators with
the virtual cathode (VC) are characterized by a high
output power, a simple construction (particularly vir-
cators can operate without external focusing magnetic
field), a possibility of a simple frequency tuning and
regime switching. Therefore, vircators can be used as
perspective controlled sources of microwave chaotic
radiation. Such sources have wide application in mod-
ern devices for electronic system of information trans-
mission based on the ideas of dynamical chaos [3, 4],
noise radiolocation [5], non-linear antennas [6], etc.

The analysis of nonlinear oscillation processes in
spatially extended systems with intensive beams of
charged particles in the regimes of VC formation at-
tracts great attention of scientific community [2, 7, 8].
It is well known [2, 7–9] that the systems with VC
are characterized by the complex dynamics and can
demonstrate a wide range of nonlinear phenomena,
including dynamical chaos. Among the different elec-

tronic systems with VC the special interest is caused
by the low-voltage vircator, in which the additional
braking of the electron beam is used for to form VC
[8]. In such systems VC may be formed in the non-
relativistic electron beams with low current and low
space charge density. As consequence, such compact
non-relativistic electron systems may demonstrate pe-
riodic, narrow-band and wideband chaotic microwave
oscillations.

It is well known that an initial velocity and angu-
lar distribution of injected electrons have a signifi-
cant influence on the processes in the intensive elec-
tron beams with VC. Let us note, that the initial ve-
locity dispersion can be considered as external noise
effected on the chaotic oscillations of spatially ex-
tended system with VC. For example, the characteris-
tics of chaotic oscillations in the traveling-wave tube
(TWT) with collector-oscillator with VC are found
to be determined by a value of the velocity disper-
sion of injected electrons [10]. This fact was used to
improve the characteristics of the output radiation in
the collector-generator system [11]. The experimental
and theoretical studies of the influence of the electron
velocity distribution on the chaotic oscillations in the
electron beam in the regime of the VC formation were
carried out in [12], with results showing a strong de-
pendency of output characteristics of systems with VC
on the noise characteristics. The theoretical results in
this work were obtained by means of 1D numerical
model. However, it is necessary often to take into
account 2D effects in such systems [13–15]. At the
present time there is a lot or results concerning the in-
fluence of the electron velocity dispersion on the char-
acteristics of VC oscillations, but the systematic stud-
ies of such problem have not been carried out yet. An
understanding of the noice influence on the electron
beam with VC can make progress in the researches
of the nonlinear dynamics of electronic systems and,
as a consequence, in the development of the chaotic
generators based on VC oscillations.
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The present report deals with the theoretical numer-
ical research of the influence of initial electron disper-
sion on output characteristics of radiation in the low-
voltage vircator.

II. THEORETICAL STUDY OF LOW-VOLTAGE

VIRCATOR WITH INITIAL ELECTRON

DISPERSION

A. System under study and mathematical model

The typical scheme of the low-voltage vircator
is presented in Fig. 1a. The generater consists of
the electron-optical system 1-3 forming solid axially-
cylindrical beam 4, drift space between grids 5 and
6, absorber 7, wideband microwave slow-wave sys-
tem 8 (spiral system), microwave power output 9 and
collector 10 for exhausted electrons of the beam. Os-
cillations in the system are generated by VC formed
in the space between grids 5 and 6 due to the deceler-
ating potential Vt putted on the output grid 6. The ex-
ternal axial magnetic field in the space between grids
5 and 6 is formed usually by the magnetic periodical
focusing system (MPFS). The dimensionless param-
eter B is proportional to the external magnetic field
amplitude on the symmetry axis of the drift space.

We have considered a time-dependent 2.5D model
in which the dynamics of the electron beam in the drift
space is described by a self-consistent set of Vlasov
and Poisson equations [17]. The Vlasov kinetic equa-
tion for the electron beam motion analysis is solved
numerically by the particle method [16]. In the cylin-
drical geometry the particles have the form of charged
rings. In terms of dimensionless values (see, for ex-
ample, [13]), the equations of motion in cylindrical
coordinates for each particle are written as

dPri

dt
− γ(zi, θi, ri)ri

(
dθi

dt

)2

= −Er − riBz
dθi

dt
,

(1)
dPθi

dt
+ γ(zi, θi, ri)

dri

dt

dθi

dt
= Bz

dri

dt
−Br

dzi

dt
, (2)

dPzi

dt
= −Ez + riBr

dθi

dt
, i = 1, . . . N0, (3)

where γ(zi, θi, ri) is the relativistic factor. Here, zi,
ri, and θi are the longitudinal, radial, and azimuthal
dimensionless coordinates of the charged particles,
Pzi = γżi, Pri = γṙi Pθi = γriθ̇i are longitu-
dinal, radial, and azimuthal components of particles
impulses, Ez and Er are the longitudinal and radial
electric field components, Bz(z, r) and Br(z, r) are
the longitudinal and radial components of the exter-
nal magnetic field in the interaction space, β0 = v0/c,
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Fig. 1. (a) The scheme of the low-voltage vircator: (1) the
cathode, (2) the grid, (3) the second anode of the elec-
tron gun, (4) the electron beam, (5) the input grid of
the diode with accelerating potential V0, (6) the output
grid of the diode gap with potential Vt, (7) the absorber,
(8) the power output, (9) the energy output, and (10)
the collector with potential Vt; (b) and (c) the typical
electron angular f(α) (b) and velocity f(v) (b) distri-
butions for the electron gun working in the regime of
the temperature limiting of the current

where v0 is the electron beam longitudinal velocity at
the entrance of the system and c is the light speed.
The fields do not have the azimuthal components due
to the axial symmetry of the system. The subscript
i denotes the number of the particle and N0 is the
full number of the particles used to model the charged
particles beam. The initial conditions for the motion
equations in the case of the initial electron dispersion
absent are:

żi = v0, ṙi = 0, θ̇i = Bz(zi, 0)/(2γ). (4)

The second initial condition in (6) is determined by
Busch’s theorem.

The potential distribution in the interaction space
was calculated self-consistently from Poisson’s equa-
tion

1
r

dϕ

dr
+

d2ϕ

dr2
+

d2ϕ

dz2
= α2ρ, (5)

where α = L
√
|ρ0|/V0ε0 is the dimensionless control

parameter which depends on the beam current as α ∼√
I and is proportional to the length of the drift tube

space as α ∼ L. Here V0 is an accelerating potential.
Poisson’s equation (5) was solved with the standard
boundary conditions ϕ(z = 0, r) = 0, ϕ(z = 1, r) =
0, ϕ(z, r = R) = 0, dϕ

dr

∣∣∣
r=0

= 0.
To model the wideband microwave power output

the equivalent circuit method [18] is used.
To study physical processes in the low-voltage vir-

cator taking into account the initial electron dispersion
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we have considered the following model. The elec-
trons of the axially symmetrical beam having the ini-
tial velocity and angular distributions are injected to
the drift space. The velocity f(ṽ) and angular f(α̃)
distributions of the injected electrons correspond to
the experimentally ones reported in the work [12].
These distributions are characterized by the probabil-
ity densities shown in Fig. 1b,c with dispersion values
σα and σv, respectively. Note, that σv = 0.01 cor-
responds to the dispersion of the velocity distribution
equals to 1%, and σα = 0.01 – to dispersion of angu-
lar distribution equals to 0.01 radian.

The initial conditions for the motion equations of
the large particles are the following:

żi = (v0 + ṽ)cos(α̃), ṙi = ṽsin(α̃). (6)

These conditions specify the axial and radial initial
velocities of the injected particles, respectively, while
the noise processes, α̃ and ṽ, being determined by the
distributions f(α̃) and f(ṽ).

B. Results of numerical study of nonlinear dynamics

The numerical simulation of the processes in the
electron beam with VC in the low-voltage vircator
has shown that the dynamics and characteristics of the
output radiation of the low-voltage vircator are rather
complex and depend on the values of the velocity and
angular distributions of the injected electrons. The
power spectra of the output radiation in the system
obtained by means of the numerical simulation for the
different values of the dispersion of electron velocity
distribution σv and for the fixed value of dispersion
of electron angular distribution σα = 0.016 are pre-
sented in Fig. 2. As the dispersion σv increases, the
output power spectrum is transformed considerably.
The discrete power spectrum with a few fundamen-
tal harmonics and a noise pedestal around them cor-
responds to the small value of the velocity dispersion
(Fig. 2a). With the growth of the dispersion σv the
amplitude of the fundamental harmonics in the output
power spectrum decreases (Fig. 2b). Finally, when the
velocity dispersion reaches the critical value, the fun-
damental harmonics vanish completely, and the output
power spectrum demonstrates only the noise pedestal
(Fig. 2c). So, the presence of the considerable initial
velocity dispersion in the low-voltage vircator (about
2.6%) leads to the suppression of the VC oscillations
in the system and to the break of regular generation.
It has been also obtained that the growth of the initial
angular dispersion σα in the low-voltage vircator with
the fixed value of velocity dispersion σv leads to the
similar result.

a bP P

f f

cP

f

Fig. 2. Dimensionless output power spectra in the low-
voltage vircator for α = 20, B = 7, σα = 0.016,
σv = 0.7% (a), σv = 1.3% (b) and σv = 2.6% (c)

C. Microwave power of the generator

Let us consider now the dependence of the VC
oscillation power in the low-voltage vircator on the
value of the dispersion of electron velocity distribu-
tion σv. In Fig. 3 these dependencies are shown
for the different parameters of the external magnetic
field K (Fig. 3a) and beam currents α (Fig. 3b). All
curves demonstrate the similar behavior. The output
power of the generator decreases monotonously with
the growth of the dispersion σv approaching asymp-
totically the constant value for any external magnetic
field and beam current values (Fig. 3). The constant
value of the output power of the low-voltage vircator
corresponds to the power of noise generation of the
device with suppressed VC oscillations (see Fig. 2c).
There are the critical values of the velocity disper-
sion σv for the dependencies of the output power in
Fig. 3, when the regular VC oscillations in the device
are completely suppressed, with the power having
reached the saturation point. The output power spec-
trum in Fig. 2c with no fundamental harmonics cor-
responds to this case. In this regime the low-voltage
vircator can be used as the source of microwave noise-
type signals. So, the decrease of the output power of
the generator with the growth of the initial velocity
dispersion σv is determined by the suppression of the
VC oscillations in the system.

D. Physical processes

Finally, we consider the physical processes leading
to the described behavior of the system and the sup-
pression of the VC oscillations in the low-voltage vir-
cator with the growth of the velocity or angular dis-
persion of the injected electrons. The analysis of the
space-time diagrams of the electron beam in the sys-
tem under study has shown that the suppression of
the VC oscillations with the growth of initial elec-
tron dispersion is determined by the break of the main
electron structure (VC) in the beam. When the initial
dispersion is small, a non-stationary VC is formed in
the system. It reflects periodically a part of electron
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Fig. 3. Normalized dependencies of the output power of
the low-voltage vircator on the value of the dispersion
of the electron velocity distribution σv for σα = 0.016,
a = 20, B = 7 and B = 40 (a, curves 1 and 2 respec-
tively) and B = 7, a = 20, a = 25 and a = 30 (b,
curves 1, 2 and 3, respectively)

beam back to the injection plane, so the dynamics of
VC leads to the regular density modulation of the re-
flected and passed parts of the electron beam. The
character period of the VC oscillations in the system
determines the fundamental harmonics in the output
power spectrum (Fig. 2a) of the generator. The pres-
ence of the noise pedestal in the spectrum of output
radiation is a consequence of a complex non-regular
dynamics of electrons in the VC area and the initial
dispersion of the injected electrons. When the initial
dispersion exceeds the critical value the structure of
VC in the electron beam is broken, because electrons
in the system have large initial random velocity com-
ponents. Consequently, the spectrum of output radia-
tion demonstrates only the noise pedestal without fun-
damental spectral harmonics of VC the oscillations.

III. CONCLUSIONS

In conclusion, we have analyzed numerically the
nonlinear dynamics and physical processes in the low-
voltage system with VC with initial dispersion of in-
jected electrons. We have discovered the considerable
influence of the dispersion value on the nonlinear dy-
namics of VC and the output characteristics of the
low-voltage vircator. The character dependencies of
the output power of the generator on the initial disper-
sion of the injected electrons have been obtained. It
was discovered that the increase of the initial velocity
or angular dispersion of electrons leads to the suppres-
sion of the VC oscillations in the system and, hence,
to the decrease of the output power of the generator.
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02-90432) and Federal special-purpose program “Sci-
entific and educational personnel of innovation Rus-
sia” (2009-2013).

REFERENCES

[1] V. L. Granatstein and I. Alexeff, High Power Microwave
Sources, Artech House Microwave Library, 1987.

[2] V. D. Alyokhin, A. E. Dubinov, V. D. Selemir et al, “The-
oretical and experimental studies of virtual cathode mi-
crowave devices,” IEEE Trans. Plasma Sci., vol. 22, no.
5, pp. 954, 1994.

[3] A. S. Dmitriev and A. I. Panas, Dynamic chaos: novel
type of information carrier for communication systems, Fiz-
matlit, Moskow, 2002.

[4] A. A. Koronovskii, O. I. Moskalenko, and A. E. Hramov,
“On the use of chaotic synchronization for secure commu-
nication,” Physics-Uspekhi, vol. 52, no. 12, 2009.

[5] R. M. Narayanan and M. Dawood, “Doppler estimation us-
ing a coherent ultrawide-band random noise radar,” IEEE
Trans. Antennas and Propagation, vol. 48, pp. 868, 2000.

[6] B.K. Meadows, T. H. Heath, J.D. Neff, et al., “Nonlinear an-
tenna technology,” Proc. IEEE, vol. 90, pp. 882–897, 2002.

[7] A.E. Dubinov and V.D. Selemir, “Electronic devices with
virtual cathodes (review),” J. Commun. Techn. and Elec-
tronics, vol. 47, pp. 575, 2002.

[8] Yu. Kalinin, A. Koronovskii, A. Hramov, et al, “Experi-
mental and theoretical investigations of stochastic oscilla-
tory phenomena in a nonrelativistic electron beam with a
virtual cathode,” Plasma Phys. Rep., vol. 31, pp. 938–952,
2005.

[9] V. G. Anfinogentov and A. E. Hramov, “On the mechanism
of occurrence of chaotic dynamics in a vacuum microwave
generator with virtual cathode,” Radiophysics and Quantum
Electronics, vol. 41, no. 9, pp. 1137, 1998.

[10] Yu.A. Kalinin, A.V. Mushtakov, and A.E. Hramov, “Study-
ing chaotic microwave oscillations in a two with depressed
collector,” Tech. Phys. Lett., vol. 33, pp. 655–657, 2007.

[11] Yu.A. Kalinin, A. A. Koronovskii, and A. E. Hramov,
“Chaotic wideband microwave oscillations in a hybrid sys-
tem consisting of a traveling wave tube and a collector os-
cillator,” Tech. Physics, vol. 53, no. 5, pp. 614–619, 2008.

[12] Yu.A. Kalinin and A. E. Hramov, “Experimental and the-
oretical investigation into the effect of the electron velocity
distribution on chaotic oscillations in an electron beam un-
der virtual cathode formation conditions,” Tech. Physics,
vol. 51, no. 5, pp. 558–566, 2006.

[13] A. E. Hramov, A. A. Koronovskii, M.Yu. Morozov, et al,
“Effect of external magnetic field on critical current for the
onset of virtual cathode oscillations in relativistic electron
beams,” Phys. Lett. A, vol. 372, pp. 876–883, 2008.

[14] S. Gursharn and C. Shashank, “Secondary virtual-cathode
formation in a low-voltage vircator,” IEEE Trans. on Plasma
Sci., vol. 36, no. 3, pp. 694–700, June 2008.

[15] S. A. Kurkin, A. E. Hramov, and A. A. Koronovskii, “Non-
linear dynamics and chaotization of virtual cathode oscilla-
tions in annular electron beam in uniform magnetic field,”
Plasma Phys. Report, vol. 35, no. 8, pp. 628–642, 2009.

[16] C. K. Birdsall and A. B. Langdon, Plasma physics, via com-
puter simulation, NY: McGraw-Hill, 1985.

[17] T. M. Anderson, A. A. Mondelli, B. Levush, et al. “Ad-
vances in modelling and simulation of vacuum electron de-
vices,” Proc. IEEE, vol. 87, no. 5, pp. 804–839, 1999.

[18] E. N. Egorov, Yu.A. Kalinin, A. A. Koronovskii, and A. E.
Hramov, “Analysis of the dependence of the microwave
generation power of a low-voltage vircator on controlling
parameters,” Tech. Phys., vol. 52, no. 10, pp. 1387, 2007.

18th IEEE Workshop on Nonlinear Dynamics of Electronic Systems (NDES2010)

26-28 May 2010, Dresden, Germany 53



Observer Based Measurement of the Adenosine
Diphosphate Concentration in Multimodal

Oscillatory Pancreaticβ-Cells

Klaus Röbenack
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Abstract—Up to now, the concentration of adenosine
diphosphate in a living pancreatic cell cannot be mea-
sured in real-time. However, these cells generate bursts of
electrical activity. We use an electro-physiological model
of the cell to derive an observer based estimation scheme
using voltage measurement.

Index Terms—Nonlinear systems, multimodal oscilla-
tions, observer design, estimation.

I. INTRODUCTION

Insulin is secreted from pancreatic islets. For a better
understanding of the mechanism behind the insulin se-
cretion we study pancreaticβ-cells. This is important to
understand the development of type 2 diabetes.

Pancreatic cells show electric activity in term of
multimodal oscillations. These oscillations are influenced
by the concentrations of certain ions. In this context,
one important substance is adenosine diphosphate. The
real-time measurement of its concentration is practically
not feasible. We use an well-accepted highly nonlinear
electro-physiological model of pancreatic cells to derive
an observer based estimation scheme. This paper extends
the filter based approaches given in [1], [2].

The paper is structured as follows. In Section II we
describe the electro-physiological model of pancreatic
β-cells. This model is used in Section III to derive
an estimation scheme. We draw some conclusions in
Section IV.

II. CELL MODEL

Many cells can be modeled using the formalism
derived by Hodgkin and Huxley [3]. A simple model
describing the oscillations of pancreaticβ-cells is given
in [4]. We use the more complicated model developed
in [5]. This model takes certain slow oscillation patterns
(in the time rage of seconds up to minutes) into account.
In addition to ion channel and calcium dynamics, the

model in [5] also considers the ratio of adenosine diphos-
phate (ADP) to adenosine triphosphate (ATP) and the
concentrations of the glycolytic intermediates, glucose
6-phosphate (G6P) and fructose 1,6-bisphosphate (FBP).

The membrane voltageV results from the differential
equation

CmV̇ = −IK − ICa − IK(Ca) − IK(ATP) (1)

with the membrane capacitanceCm = 5300 fF. The
currentsIK and ICa are caused byK+ potassium and
Ca2+ calcium ions, respectively. The currentsIK(Ca) and
IK(ATP) are related toCa andADP sensitiveK+ ions.
The ionic currents are given by

IK = gKn(V − VK)
ICa = gCam∞(V )(V − VCa)

IK(Ca) = gK(Ca)
Ca2

K2

D
+Ca2 (V − VK)

IK(ATP) = gK(ATP)o∞(ADP )(V − VK)

(2)

with the conductancesgK = 2700pS, gCa = 1000pS,
the reversal potentialsVK = −75mV, VCa = 25mV,
the calcium concentrationCa and the constantKD =
0.5µM. The activation variablen for the K+ current
IK is governed by

ṅ =
1

τn
(n∞(V ) − n) , (3)

with the time constantτn = 20ms and the function

n∞(V ) =
1

1 + e−(16+V )/5
,

where the voltageV is in mV. The functionm∞ defined
by

m∞(V ) =
1

1 + e−(20+V )/12
.

can be interpreted as an activation variable of theCa2+

current ICa. Similarly, o∞ occurring in (2) is the ac-
tivation variable of the currentIK(ATP). The equivalent
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circuit representation of model (1),(2) is shown in Fig. 1.

V Cm
gK gK(Ca)

IK IK(Ca) IK(ATP)

VK

gK(ATP)

n Ca ATP

ICa

VCa

m∞(V )

gCa

Fig. 1. Equivalent circuit representation of model (1),(2)

The calcium concentrationCa is modeled by the
differential equation

Ċa = fcyt (−αICa − kPMCACa + Jer) (4)

with the dimensionless constantfcyt = 0.01. The
constantα = 4.5 × 10−6 fA−1 µMms−1 converts the
current ICa to the Ca2+ flux and kPMCA = 0.2ms−1

is the calcium pump rate. TheCa2+ flux out of the
endoplasmic reticulum is given by

Jer = pleak(Caer − Ca) − kSERCACa

with the leakage permeabilitypleak = 0.0002ms−1 and
another pump ratekSERCA = 0.4ms−1. The calcium
concentrationCaer in the endoplasmic reticulum is mod-
eled by the differential equation

Ċaer = −fer (Vcyt/Ver) Jer (5)

with the constantfer = 0.01 and the ratioVcyt/Ver = 31.
In addition to the 4 differential equations (1), (3), (4),

(5), the model in [5] consists of 3 further states, namely
the concentrations ofADP , G6P andFBP . This com-
plicated 3-dimensional slow submodel is omitted here.
Details can be found in [5].

The simulation of the pancreaticβ-cell model was
carried out for different parameter values of the conduc-
tancesgK(Ca), gK(ATP) and the glucokinase reaction rate
RGK used in the second subsystem [5]. These parameter
values are given in Tab. I.

For the numerical simulation of the first 4 dif-
ferential equations (1)-(5) we used the initial values
V (0) = −60mV, n(0) = 0, Ca(0) = 0, 1µM and
Caer(0) = 185µM . The initial values of the addi-
tional 3-dimensional subsystem areADP (0) = 780µM,
G6P (0) = 200µM and FBP (0) = 40µM. The sim-
ulation results are show in Fig. 2. Depending on the
parameter values, the system exhibits different oscillation
pattern.

TABLE I
DIFFERENT PARAMETER VALUES FOR THE SIMULATION

Mode gK(Ca) in pS gK(ATP) in nS RGK in s
−1

Compound 600 25 0.2
Slow 100 27 0.2
Fast 600 25 0.4
Subthreshold 100 30 0.2
Accordion 600 23 0.2
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Fig. 2. Different oscillation patterns of the pancreaticβ-cell model.
In descending order of the rows: compound, slow, fast, subthreshold
and accordion bursting.

III. O BSERVER BASE MEASUREMENT

A. State observer structure

Equations (1)-(5) can be rewritten as a 4-dimensional
nonlinear state-space system

ẋ = f(x) −
1

Cm
IK(ATP) (6)

with the state x = (V, n,Ca,Caer)
T , the current

IK(ATP) as input and the measured voltageV as an
output. To estimate the state we use an observer

˙̂x = f(x̂) + k(V − V̂ ) (7)

with the estimated statêx = (V̂ , n̂, Ĉa, Ĉaer)
T and

the constant observer gaink = (k1, k2, k3, k4)
T

∈ R4.
The currentIK(ATP) is omitted since it is not measured.
To ensure convergence, the linear output injection with
the gaink must dominate the occurring nonlinearities.
This usually implies large entries in the observer gain.
Therefore, this observer is a high-gain observer [6]–[8].
Although there are several other possible approaches to
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design an observer [9]–[13], the constant observer gain
will simplify the reconstruction of the unknown input.

The observation error̃x = x − x̂ is governed by the
error dynamics

˙̃x = f(x) − f(x̂) −
1

Cm
IK(ATP) − k(V − V̂ ) . (8)

B. Input reconstruction

Consider the error dynamics (8) near an equilibrium
point with x̃ ≈ 0, i.e., x ≈ x̂. This impliesf(x) ≈

f(x̂). For sufficiently largek1 > 0 in k, the first
differential equation of (8) can be simplified with̃̇x = 0

to
0 ≈ −

1

Cm
IK(ATP) − k1(V − V̂ ) ,

or equivalently

IK(ATP) ≈ −k1Cm(V − V̂ ) (9)

This approximation can be used together with (2) to
obtain an estimatêADP of the ADP concentration

ÂDP := o−1
∞

(
−

k1Cm(V − V̂ )

gK(ATP)(V − VK)

)
, (10)

whereo−1
∞

denote the inverse map ofo∞.
In [5], the value of the activation variableo∞ re-

sults from a difficult and lengthy calculation taking
the balances betweenADP , ATP , G6P and FBP
into account. Here, we use the simulation data of the
pancreatic cell model of all oscillation patterns shown in
Fig. 2. It can be seen in Fig. 3 thato∞ depends weakly
nonlinear on theADP concentration. We used a second
order polynomial

ADP = p0 + p1o∞ + p2o
2
∞

(11)

to approximate the inverse mapo−1
∞

: o∞ 7→ ADP
required in (10). Using least squares we obtained the
coefficientsp0 = −949.57631µM, p1 = 378525.42µM
andp2 = −19041025µM. (Note thato∞ is dimension-
less.)

The measured voltageV quite often contains bursts,
i.e., high frequency oscillations (see Fig. 2). These bursts
also cause deviations of theADP estimatêADP given
in (10). We will suppress these disturbances using a low-
pass filter with the continuous time transfer function

F (s) =
a0

sn + an−1sn−1 + · · · + a1s + a0
. (12)

The filter coefficientsa0, . . . , an−1 can be calculated
using standard methods, e.g. one could use a Bessel, But-
terworth or Cauer filter [14], [15]. In the time domain we
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Activation variableo∞

Fig. 3. Relation betweeno∞ andADP concentration

apply the filter (12) tôADP from (10) in order to define
the final estimateADP of the concentrationADP :

ADP := F ( d
dt) ◦ ÂDP . (13)

The whole simulation and estimation scheme is shown
in Fig. 4.

C. Numerical Results

The numerical simulation was carried out with
SCILAB [16]. For the cell model we selected the com-
pound bursting scheme (see Fig. 2 and Tab. I). For the
observer (7) we used the initial valuesV̂ (0) = −50mV,
n̂(0) = 0, Ĉa(0) = 0.2µM andĈaer(0) = 150µM. Fur-
thermore, we used the observer gaink = (k1, 0, 0, 0)

T

with normalized valuek1 = 100 for V in mV and t
in ms. For the filter (12), a6th order Butterworth low-
pass was designed having the radian cut-off frequency
ω = 0.1 s−1. The simulation results are shown in Fig. 5.
A visual inspection suggests that the observer converges.
The filtered signalADP yields a reasonable estimate of
the ADP concentration.

Note that by the given form of the observer gain, only
the first differential equation of the error dynamics (8)
is directly influenced by the measurement. The conver-
gence of the observer scheme suggests that system (6)
is detectable [17], i.e., we rely on a weaker assumption
that observability.

IV. CONCLUSION

In the paper we suggested an observer based approach
to estimate the ADP concentration of a pancreaticβ-
cell measuring only the voltage on the cell’s membrane.
The method developed here requires a model of the
cell’s electro-physiological behavior. Our approach can
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Eq. (10) F (s)
V̂ ÂDP ADP

Observer (7) ADP reconstruction Low-pass filter

Model (1)-(5)

ADP , G6P , FBP

Slow submodel
x

IK(ATP)

Pancreatic cell model

Measured voltageV

˙̂x = f(x̂) + k(V − V̂ )

ẋ = f(x) − 1
Cm

IK(ATP)

Fig. 4. Simulation and estimation scheme
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Fig. 5. ADP estimation from (simulated) voltage measurement

be implemented for a real-time measurement, which
will be our next step. However, the disadvantage of
our approach is the requirement of a reasonable precise
cell model. Therefore, this method cannot be applied to
unknown cell types.
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Abstract—We study two delay-coupled FitzHugh-
Nagumo systems as the simplest representation of interact-
ing neurons. It can be observed that adding delay coupling
can cause periodic oscillations which coexist with a stable
fixed point. We also demonstrate that self-feedback terms
can provoke stable bursting patterns in the model.

Index Terms—Coupled excitable neurons, FitzHugh-
Nagumo systems, spiking and bursting, delay differential
equaitons.

I. INTRODUCTOIN

In the age of computers and technological progress,
when science is developping so quickly that one major
achievement is almost immediately followed by the next
significant breakthrough, mankind finally dared lift the
veil of mystery from this strange phenomenon named
brain.

Since the end of the last century, study of neural
networks picks up speed. Many works are devoted to
modelling the brain as an ensemble of coupled nonlinear
dynamical elements, capable of exchanging information
between each other and producing different time regimes
[1]–[6].

Quite often for representing a single neuron, a phase
oscillator system is used. Thus, oscillatory behaviour of
the individual system element is embedded in the model
itself, and observable regular spiking is produced due
to collective synchronization [7]–[9]. For instance, to
characterize mutual dynamics of cells in certain brain
areas, responsible for giving the onset to Parkinson’s
disease or epilepsy, a well-known Kuramoto model is
considered [10]–[13].

The other approach was deveploped in 1961 by
R. FitzHugh [14], and independently by J. Nagumo
and co-authors [15] in 1962. They have deduced the
simplest 2-dimensional system for studying the main
characteristics of a neuron behaviour. Nowadays, this
model is considered to be a canonical one and has been

studied in many papers (see, for instance, [16]–[19] and
references therein).

II. MODEL

The purpose of this work is to study a model of two
coupled neural elements, each being in the excitable
regime (namely, not producing any self-sustained oscil-
lation) and represented by a FitzHugh-Nagumo system.
The elements are coupled so that each gets the delayed
response from the other one: τC

1 and τC
2 are the delays

and C is the coupling strength. In addition, it is assumed
that each element receives a delayed feedback signal with
the delay time τK

i , i = 1, 2 and feedback strength K.
As it was shown in [23], the difference between τC

1 and
τC
2 is not essential, therefore they are put to be equal
τC
1 = τC

2 = τC .
Adding all this up one can arrive to the following DDE

system:

εẋ1 = x1 −
x3

1

3
− y1 + C(x2(t− τC)− x1(t))

+K(x1(t− τK
1 )− x1) (1a)

ẏ1 = x1 + a (1b)

εẋ2 = x2 −
x3

2

3
− y2 + C(x1(t− τC)− x2(t))

+K(x2(t− τK
2 )− x2) (1c)

ẏ2 = x2 + a (1d)

Everywhere below, if not specified differently, we put
ε1 = ε2 = 0.01, a = 1.3, and C = 0.5.

III. VARIETY OF DYNAMICAL PATTERNS

Besides the only fixed point which is always stable
(see [23]), the system (1) shows various regular spiking
and bursting type patterns. Furthermore, several stable
solutions can coexist for the same parameter values
entailing high level multistability.
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The Fig. 1 presents sample dynamics for the fixed
delays τK

1 and τK
2 while the feedback strength K varies.

Here, in each column of 3 plots the top subfigure
represents time series for x1, y1, the middle one shows
the phase portrait, and in the the bottom one x1 vs. x2

are depicted.

Fig. 1. Sample dynamics of the system (1) for τK
1 = 0.4, τK

2 = 0.8
with (a) K = 0.2, (b) K = 0.3, (c) K = 0.32, (d) K = 0.4. (The
time series and phase space are shown only for x1, y1. For x2, y2
they look similar).

One can see an expected transition from periodic
spiking to bursting, in particular, with increasing K the
activity (bursting) time interval enlarges.

In the Fig. 2 and 3 similar trajectory transformations
are drawn, but for τK

1 = 0.47, τK
2 = 1.2 and τK

1 =
0.8, τK

2 = 1.5, respectively. However, there are no-
ticeable differences between the three figures presented.
Figs. 1(a), (b) and Figs. 2(a), (b) are almost the same, but
for τK

1 = 0.47, τK
2 = 1.2, before the bursting dynamics,

a periodic solution of smaller period can be obtained
(Fig. 2(c)), which does not seem to be the case for
τK
1 = 0.4, τK

2 = 0.8 (cf. Fig. 1(c)). To the other hand,
for τK

1 = 0.8, τK
2 = 1.5 one observes diminuation of the

solution period till chaotic-like dynamics arises, and we
were not able to get any bursting.

IV. CLASSIFYING OSCILLATION REGIMES

As the dynamics of the system (1) is so diverse,
some mean of its classification is needed. For this, one
can calculate the autocorrelation function (ACF) of the
solution series, or being precise, the lag where the ACF
maximum is reached. Then this maximum’s lag value
equals roughly the solution period.

Fig. 2. Sample dynamics of the system (1) for τK
1 = 0.47, τK

2 = 1.2
with (a) K = 0.2, (b) K = 0.28, (c) K = 0.3, (d) K = 0.42

Fig. 3. Sample dynamics of the system (1) for τK
1 = 0.8, τK

2 = 1.5
with (a) K = 0.2, K = 0.3, K = 0.4, K = 0.5

In the Fig. 4, 2D bifurcation diagrams in the (K, τK
1 )

parameter space are plotted for τC = 3 and τK
2 = 2. The

initial conditions are taken diferently for these plots: for
(a) the history function was chosen in the shape of the
cycle of period ≈ 6 (cf. “long cycle” in [23]), and for
(b) the period of the intial function is about 2. As one
can notice, the considered system is highly sensitive to
the inital conditions.

In both figures, we plot all the solutions for which
ACF maximum ≥ 0.8, but those, with the calculated
“period” (time lag of ACF maximum) greater than 7,
are pointed with the same color as those, which have
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Fig. 4. Bifurcation diagrams in the (K, τK
1 )-plane with τC =

3, τK
2 = 2. The history function mimics the cycle of period (a) ≈ 6;

(b) ≈ 2.

period ≈ 7. White color corresponds to the trajectories
with ACF maximum < 0.8.

The Fig. 5 depicts 2D diagrams in (τK
1 , τ

K
2 ) space

with different K values.

Fig. 5. Bifurcation diagrams in the (τK
1 , τ

K
2 )-plane with τC = 3

and (a) K = 0.2; (b) K = 0.3; (c) K = 0.4; (d) K = 0.5.

It is observable that starting from some sufficiently
large K-value, the regions where periodic solutions exist,
accumulate around some lines, restraining the delay
times to satisfy a certain law.

The Fig. 6(a), (b) show the color-coded bifurcation
diagram in the (τK

1 , τ
K
2 )-plane for K = 0.5, and the

same diagram with dashed black lines corresponding to
the various laws τK

2 = m/nτK
1 + r/sτC (or τK

1 =
m/nτK

2 + r/sτC), where m,n, r, s ∈ N, which is the
same as MτK

1 + NτK
2 + RτC = 0 with M,N,R ∈ Z.

(The similar relation was obtained in [24] for the 2D
discrete system with several different delay terms). The
Fig. 7 represents the lines corresponding to certain ratios
of delay times (most of them are clearly visible in the
Fig. 6(a)).

Fig. 6. Bifurcation diagram in the (τK
1 , τ

K
2 )-plane with τC =

3,K = 0.5; (b) dashed black lines indicate certain ratios between
τK
1 , τ

K
2 .

Fig. 7. Lines corresponding to different laws MτK
1 +NτK

2 +RτC =
0 with M,N,R ∈ Z.

Finally, in Fig. 8 bifurcation diagrams in the (τK
1 , τ

K
2 )

parameter space for a constant K = 0.5 and different
values of τC are depicted. Again one can see that for
sufficiently large delay times periodic dynamics assem-
bles around the lines corresponding to the law stated
above.

V. CONCLUSION

In the present work for modelling interacting neural
elements, two delay-coupled FitzHugh-Nagumo equation
sets, including delayed feeedback terms, were consid-
ered. Although each individual neuron is taken to be in
the exitable regime (not generating any self-sustained os-
cillations), when coupled, they produce a great variety of
spiking and bursting patterns. Thus, introducing delays
entails significant complication of the system dynamics.

As it was also shown, the system is highly sensitive
to the initial conditions, as well as it is rather responsive
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Fig. 8. Bifurcation diagrams in the (τK
1 , τ

K
2 )-plane with K = 0.5

and (a) τC = 0.37; (b) τC = 1; (c) τC = 2; (d) τC = 2.73; (e)
τC = 4; (f) τC = 5.

to the parameter changes, especially, adjusting the delay
times. It was observed, that the regions where low-
frequency oscillations exist, accumulate mostly around
some lines, restraining the delay times to satisfy a certain
ratio.
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Abstract—In this study, synchronization phenomena
observed in two coupled polygonal oscillatory networks
sharing a branch is investigated. We focus on the phase
difference between two oscillators which are coupled to
the shared branch of the two polygonal networks. By
computer simulations, we observe that synchronization
state of the shared oscillators depends on the number of
coupled oscillators of the each polygonal network.

I. INTRODUCTION

Synchronization, in particular, is one of the most
important features that can be described and explored
with the help of oscillators, because, upon their cou-
pling, strongly correlated rhythms among the oscillators
emerge, called synchronized states. Synchronization phe-
nomena have been extensively reported in physical [1]-
[4], biological [5],[6] and electrical [7],[8] systems.

Moreover, there are several types of polygonal net-
work structures (e.g. Honeycomb structure and crystal
structure) exists in the natural science. For the studies
of large-scale network using coupled oscillators, a ring,
a ladder and a two dimensional array structure are often
investigated. However, there are not many discussions
about coupled polygonal oscillatory networks by using
electrical oscillators.

In this study, synchronization phenomena in two cou-
pled polygonal oscillatory networks is investigated. Two
polygonal oscillatory networks is shared a branch of
two networks as shown in Fig. 1. First, we consider
the two triangle oscillatory networks are shared by a
branch. By using computer simulations and theoretical
analysis, the phase difference and the amplitude of each
oscillator are discussed. Furthermore, we investigate the
phase difference between the shared oscillators when
two polygonal (quadrilateral, pentagon, hexagon and
heptagon) oscillatory networks are coupled.

osc. osc.

osc.

osc.

osc.

osc.

osc.

osc.

osc.

osc.

Fig. 1. General two coupled polygonal network oscillators.

II. T WO COUPLED TRIANGLE OSCILLATORY

NETWORKS

We consider the two coupled triangle oscillatory net-
works sharing a branch as a first circuit model.

A. Circuit Model

The circuit model of two coupled triangle oscillatory
networks sharing the branch is shown in Fig. 2.

We assume that thevk − iRk characteristics of the
nonlinear resistor in each oscillator is given by the
following third order polynomial equation,

iRk = −g1vk + g3vk
3 (g1, g3 > 0), (1)

(k = 1, 2, 3, 4).

The normalized circuit equations governing the circuit
in Fig. 2 are expressed as
[First oscillator]







































dx1

dτ
= ε

(

1 −
1

3
x1

2
)

x1 − (ya1 + yb1 + yc1)

dya1

dτ
=

1

3

{

x1 − ηya1 − γ(ya1 + yb2)
}

dyb1

dτ
=

1

3

{

x1 − ηyb1 − γ(ya3 + yb1)
}

dyc1

dτ
=

1

3

{

x1 − ηyc1 − γ(yb4 + yc1)
}

(2)
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Fig. 2. Circuit model.
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(3)

[Third oscillator]
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=
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=
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[Fourth oscillator]
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=

1

3

{

x4 − ηya4 − γ(ya4 + yc2)
}

dyb4

dτ
=

1

3

{

x4 − ηyb4 − γ(yb4 + yc1)
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=
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}

(5)

where

t =
√

LCτ, vk =

√

g1

3g3
xk,

iak =

√

g1

3g3

√

C

L
yak, ibk =

√

g1

3g3

√

C

L
ybk,

ε = g1

√

L

C
, γ = R

√

C

L
, η = rm

√

C

L
,

(k = 1, 2, 3, 4).

In this equations,γ is the coupling strength andε
denotes the nonlinearity of the oscillators.

B. Synchronization Phenomena

For the computer simulations, we calculates Eqs. (2)-
(5) using a fourth-order Runge-Kutta method with the
step sizeh = 0.005. The parameters of this circuit model
are fixed asε = 0.1, γ = 0.1, η = 0.0001.

Figure 3 shows the time wave form of the voltage
charged at the capacitance of each oscillator. From this
figure, we can see that the first and the second oscil-
lators are synchronized at in-phase (phase difference:0
degree). While, the other combination oscillators syn-
chronize with anti-phase (phase difference:180 degree).
Furthermore, the amplitude of between the first/second
and the third/fourth oscillators has small difference. The
phase plane of each combination oscillator is shown in
Fig. 4.
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Fig. 3. Time wave form of the voltage charged at the capacitance
of each oscillator.
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Fig. 4. Phase plane of each oscillator.
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C. Theoretical Analysis

In this section, we explain the theoretical analysis by
using the averaging method for the circuit equations (2)-
(5) obtained from Fig. 2. Here, we consider the case of
that the tiny resistancerm does not exist (η = 0).

First, Eq (2) can be described by second order non-
linear differential equation as follows.

d2x1

dτ2
+ x1 = ε(1 − x1

2)
dx1

dτ
+

1

3
γY1 ≡ F1 (6)

dY1

dτ
+

2

3
γY1 = x1 +

1

3
x2 +

1

3
x3 +

1

3
x4 (7)

where,

Y1 ≡ ya1 + ya3 + yb1 + yb2 + yb4 + yc1.

Equation (7) is the first order linear differential equation.
The solution is given as following equation.

Y1 = e−
2

3
γτ

∫

e
2

3
γτ

(

x1 + 1
3x2 + 1

3x3 + 1
3x4

)

+Ce−
2

3
γτ

(C : const.)

(8)

In the steady state, the second term of Eq. (8) becomes
to zero.

Next, let assume the solution of Eq. (6) is

xk(τ) = ρksin(τ + θk). (9)

We pay attention to treat the non-resonance system and
apply for the averaging method to Eq. (6). We obtainρ1

andθ1 as follows.

ρ̇1 = lim
T→∞

∫ T

0
εF1cos(τ + θ1)dτ

θ̇1 = lim
T→∞

∫ T

0

ε

ρ1
F1sin(τ + θk)dτ

(10)

By solving the above equations, Eqs. (11) and (12) are
obtained.

ρ̇1 = −
ε2ρk

8
(ρ2

k − 4)

−
εγ

3(4γ2 + 9)

{

9ρ1 + 2γρ2sin(θ1 − θ2)

−3ρ2cos(θ1 − θ2) + 2γρ3sin(θ1 − θ3)

−3ρ3cos(θ1 − θ3) + 2γρ4sin(θ1 − θ4)

−3ρ4cos(θ1 − θ4)
}

(11)

θ̇1 = −
εγ

3ρk(4γ2 + 9)

{

6γρ1 + 2γρ2cos(θ1 − θ2)

−3ρ2sin(θ1 − θ2) + 2γρ3cos(θ1 − θ3)

−3ρ3sin(θ1 − θ3) + 2γρ4cos(θ1 − θ4)

−3ρ4sin(θ1 − θ4)
}

(12)
We also apply the averaging method to Eqs. (3)-(5) as

similarity.
In the steady state,

ρ̇k = 0 and θ̇k = 0 (13)

(k = 1, 2, 3, 4).

must be satisfied. We obtain the solutions as follows.
For the amplitude:

ρk =

√

4 −
8γ

3ε(4γ2 + 9)
(14)

(k = 1, 2).

ρk = 2 (15)

(k = 3, 4).

For the phase difference:

θ1 − θ2 = 0. (16)

θ3 − θ2 = θ3 − θ4 = θ4 − θ1 = θ4 − θ2 = π. (17)

We confirm that the first and the second oscillators are
synchronized at in-phase. Other combination oscillators
synchronize with anti-phase. These theoretical results
correspond with the computer simulation results. Table I
summarizes the comparison between theoretical and sim-
ulation results when the parameters are set asε = 0.1!$
γ = 0.1. From this table, we can see that they match
very well.

TABLE I
COMPARISON BETWEEN THEORETICAL AND SIMULATION

RESULTS FOR THE AMPLITUDE.

Theory Simulation

ρ1, ρ2 1.765 1.790
ρ3, ρ4 2.000 1.979
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D. Case for polygonal network (N ≧ 6)

Finally, we investigate synchronization phenomena in
several types of two coupled polygonal oscillatory net-
works as shown in Fig. 5. The computer simulation result
of the phase difference between the shared oscillators
of each network structure are summarized in Tab. II.
From this table, we can see that the shared (the first
and the second) oscillators are synchronized at anti-phase
state when the number of the coupled oscillators of each
polygonal network is even number. While in the case
of that the number of the coupled oscillators of each
polygonal network is odd number, the shared oscillators
can not synchronized at anti-phase state.

3rd osc.

1st osc.

2nd osc.

5th osc.4th osc.

6th osc.
(a) quadrilateral network (N=6).

3rd osc.

1st osc.

2nd osc.

6th osc.5th osc.

8th osc.

4th osc. 7th osc.

(b) pentagon network (N=8).

3rd osc.

1st osc.

2nd osc.

6th osc.

5th osc.

9th osc.4th osc.

8th osc.

7th osc.

10th osc.

(c) hexagon network (N=10).

3rd osc.

1st osc.

2nd osc.

7th osc.

5th osc.

11th osc.4th osc.

9th osc.
8th osc.

12th osc.

6th osc.

10th osc.

(d) heptagon network (N=12).

Fig. 5. Several types of two coupled polygonal oscillatory networks.

TABLE II
SYNCHRONIZATION STATES FOR DIFFERENT TYPES OF

POLYGONAL OSCILLATORY NETWORKS

Number of oscillators Oscillator type Phase

N=6 Shared osc. (1-2) 180◦ (anti-phase)
(quadrilateral) Independent osc. 180◦ (anti-phase)

N=8 Shared osc. (1-2) 107.2◦

(pentagon) Independent osc. 152.8◦

N=10 Shared osc. (1-2) 180◦ (anti-phase)
(hexagon) Independent osc. 180◦ (anti-phase)

N=12 Shared osc. (1-2) 128.5◦

(heptagon) Independent osc. 158.7◦

III. C ONCLUSION

In this study, we investigated synchronization phe-
nomena in two coupled polygonal oscillatory networks
sharing the branch. By computer simulations, we con-
firmed that synchronization state of the shared oscillators
depends on the number of coupled oscillators of the each
polygonal network. We assume that the shared oscillators
synchronize to make balance for whole system. In order
to make clear the mechanism of such synchronization,
to discuss a power consumption of coupled resistor and
to analyze the stability of solutions obtained from the
averaging method in detail are our future works.
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Abstract—In this work, chaos control of the chaotic
Colpitts oscillator is obtained through a new technique
acting at the circuit level. It consists of the addition
of a simple passive control network, constituted by a
coupled inductor and a variable resistor. Numerical and
experimental results demonstrate how by varying this
external parameter different dynamics can be obtained.

I. INTRODUCTION

Since the discovery of chaos, the problem of control-
ling it, i.e., the problem of stabilization of equilibrium
points or of some periodic orbit of the system (in general,
the process that suppresses chaos) [1], [2], [3], [4], [5]
attracted a lot of interest. Many different solutions have
been proposed to solve this problem. In general, the
techniques for chaos control can be classified in feedback
and open-loop methods. Feedback methods usually allow
the system to be stabilized in any of the unstable periodic
orbits lying in the chaotic attractor, but require fast and
accurate response to work properly. On the contrary,
open-loop techniques exploit the effect of some (small)
perturbations added to the system to modify the final
state of the controlled dynamics.

Furthermore, when the problem of controlling elec-
tronic chaotic circuits is dealt with, issues such as easy of
implementation and direct access to state variables may
arise. In this case, some of the techniques for chaos con-
trol, although general, may require significant additional
circuitry and/or may be of difficult implementation. For
this reason, the research on control methods of direct
applicability in specific chaotic circuits is an actual topic.

In this work, we discuss a new technique operating
at the circuit level for chaos control in the Colpitts
oscillator. The Colpitts oscillator [6], one of the simplest
examples of an electronic oscillator, has been recently
demonstrated to be able to exhibit chaotic behavior

[7]. It is therefore possible to design Colpitts oscilla-
tors able to generate high-frequency chaotic signals for
communications applications [7]. Other configurations of
this base circuit have been studied in [8] for inductor-
less implementations and in [9] for ultra-high frequency
oscillations.

The paper is organized as follows: in Sec. II the con-
trol technique is discussed; in Sec. III the behavior of the
circuit mathematical model is numerically investigated
characterized with respect to the bifurcation parameter;
in Sec. IV experimental results are discussed. Finally,
Sec. V draws some concluding remarks.

II. THE CONTROLLED CHAOTIC COLPITTS

OSCILLATOR

The starting point for the circuit introduced in this
paper is the common base Colpitts oscillator reported in
Fig. 1(a). This circuit belongs to the class of feedback
oscillators. The feedback is provided by the inductor and
the voltage divider made by the two capacitors, while
R2 and the voltage supply implement the polarization
network for the transistor. According to the Barkhausen
stability criterion, the parameters of this circuit can be
chosen in order to obtain steady-state oscillations at
a frequency determined by the two capacitors and the
inductor and given by

f0 =
1

2π

√
L ·

(
C1C2

C1+C2

) (1)

Beyond the periodic regime, it has been found that
this circuit is also able to generate chaotic signals, thus
constituting one of the simplest chaotic oscillators [7].
Interestingly, the observed chaotic behavior is robust
with respect to the type of the transistor used (a 2N2222
BJT in our experiments).
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Following the analysis given in [7], the mathematical
model of the chaotic Colpitts oscillator can be derived
taking into account that, as it is experimentally verified,
transistor Q1 only operates in forward active and cutoff
regions. Therefore, the behavior of base current IB
can be modelled as a piece-wise linear function. The
equations of the whole chaotic circuit can be thus written
as follows:

C1
dVC1

dt = IL − βIB
C2

dVC2

dt = Vee−VC2

R2

+ IL + IB
LdIL

dt = Vcc − VC1 − VC2 − ILR1

(2)

where

IB =

{
0 if VBE ≤ Vth
VBE−Vth

RON

otherwise
(3)

and β and RON are the forward current gain and the
small-signal on-resistance of the base-emitter junction of
the transistor, respectively.

The idea underlying the chaos control is to couple the
inductor of the Colpitts oscillator with another inductor
inserted in a passive circuit including a control parameter
as shown in Fig. 1(b). The passive circuit in Fig. 1(b)
is composed by the coupled inductor Lc and a resistor
RL. The inductor Lc is implemented by shaping a
further conducting wire around the same coil core of
the inductor L. The control exploits the mutual influence
effect of the two coupled inductors: varying an element
of the passive control network (the resistor RL) the
behavior of the chaotic Colpitts oscillator is controlled.

(a) (b)

Fig. 1. (a) Chaotic Colpitts oscillator. (b) Controlled chaotic Colpitts
oscillator. Components: R1 = 35Ω, R2 = 500Ω, C1 = 54nF ,
C2 = 54nF , L = 98.5µH , Lc = 23µH , Q1 = BJT2N2222,
RL = 1kΩ-potentiometer, Vcc = 5V , Vee = −5V .

Introducing the control in Eqs. (2), they become:

C1
dVC1

dt = IL − βIB
C2

dVC2

dt = Vee−VC2

R2

+ IL + IB
LdIL

dt −M dI2
dt = Vcc − VC1 − VC2 − ILR1

Lc
dI2
dt −M dIL

dt = −RLI2

(4)

or, equivalently:

C1
dVC1

dt = IL − βIB
C2

dVC2

dt = Vee−VC2

R2

+ IL + IB
dIL

dt = Lc

LLc−M2

(
Vcc − VC1 − VC2 − ILR1 −

M
Lc

RLI2

)

dI2
dt = M

LLc−M2

(
Vcc − VC1 − VC2 − ILR1 −

L
MRLI2

)

(5)
where M = k

√
LLc represents the mutual inductance

between L and Lc, given the coupling factor k.
The behavior obtained by inserting the proposed con-

trol in the chaotic Colpitts oscillator can be qualitatively
studied taking into account some simple circuital consid-
erations. When RL is large (in the limit case RL →∞,
it is an open circuit), the current I2 is very small (in the
limit case, zero), and the passive control network has no
influence on the chaotic Colpitts oscillator. Decreasing
RL the effect of the mutual inductance becomes more
important. When RL is small, the term RLI2 in the last
equation of (4) becomes negligible and dI2

dt '
M
LC

dIL

dt .
Substituting this in the third equation of (4), one can
argue that Eqs. (4) become similar to (2) except for
L which has to be substituted by L − M2

Lc

, with a net
effect of decreasing the value of the equivalent inductor
L. Finally, when RL is very small, we expect that
oscillations are suppressed, since the coupled inductor
is short-circuited.

III. NUMERICAL RESULTS

The behavior of the mathematical model of the circuit
as in Eqs. (5) has been investigated through numerical
simulations for the values of components given in Fig. 1.
The further parameters (β, RON and k) of the model
have been fixed on the basis of their estimated values:
β = 200, RON = 100Ω and k = 0.8.

Chaotic behavior has been observed when the circuit
is not controlled (RL → ∞). Fig. 2 shows the wave-
forms of the simulated output vc and the corresponding
attractor.

The suitability of the chaos control approach is proven
when RL assumes finite values. Different periodic orbits
can be stabilized. Fig. 3 shows three examples of the
behavior of the controlled circuit for different values
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of RL. For RL = 100Ω another chaotic attractor is
obtained. Several other windows of periodic behavior
and chaotic regions have been observed when RL is
varied.

−1 −0.5 0 0.5 1 1.5
1

2

3

4

5

6

7

V
c2

 (V)

V
c

(a)

8 9 10

x 10
−4

2

3

4

5

6

T(s)

V
c (

V
)

(b)

Fig. 2. Simulations of the not controlled Colpitts oscillator. (a)
Projection on the plane vC2 − vC of the attractor. (b) Trend of vc.

IV. EXPERIMENTAL CHARACTERIZATION

The behavior of system (5) has been experimentally
investigated with respect to different values of the control
parameter RL. It has been found that for different values
of RL limit cycles of different periods can be stabilized.
Furthermore, several windows of chaotic behavior have
been also observed. Some examples are reported in
Fig. 4. In particular, Fig. 4(a) shows the chaotic attractor
obtained for RL = 925Ω which corresponds to the
nominal case of not controlled behavior. Decreasing
RL, stable limit cycles are obtained (Fig. 4(b) and
Fig. 4(c)). Fig. 4(d) shows a chaotic attractor obtained
for RL = 180Ω. Two other limit cycles obtained for
RL = 90Ω and RL = 35Ω are shown in Fig. 4(e) and
Fig. 4(f), respectively.

The complete experimental bifurcation diagram of the
controlled chaotic Colpitts oscillator is shown in Fig. 5,
showing the local maxima Vc,max of the output signal Vc
at different values of RL. Waveforms have been acquired
by using a NI USB6255 data acquisition board, with
sampling frequency fs = 1000kHz. As theoretically
predicted, for RL ' 0 a fixed point is obtained. For
small values of RL, a period-1 limit cycle is obtained. A
cascade of period doubling bifurcations is then observed
for increasing values of RL, leading through the typical
period-doubling route-to-chaos scenario to a first window
of chaotic behavior. This window is followed by another
window of periodic behavior that for further increasing
values of RL leads to the chaotic region observed in the
not-controlled chaotic Colpitts oscillator. The attractors
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Fig. 3. Simulations of the not controlled Colpitts oscillator. (a)
Projection on the plane vC2− vC of the attractor for RL = 20Ω. (b)
Trend of vc for RL = 20Ω. (c) Projection on the plane vC2 − vC

of the attractor for RL = 70Ω. (d) Trend of vc for RL = 70Ω. (e)
Projection on the plane vC2 − vC of the attractor for RL = 100Ω.
(f) Trend of vc for RL = 100Ω.

shown in Fig. 4 can be retrieved in the bifurcation dia-
gram of Fig. 5 along with the other dynamical behaviors
of the circuit.

V. CONCLUSIONS

In this paper, a new technique for chaos control
in the chaotic Colpitts oscillator has been introduced.
The technique exploits the coupling between a passive
network coupled to the circuit through mutual inductors
and the oscillator itself. The theoretical and experimental
analysis allowed us to conclude that varying a resistor in
the control network it is possible to control the behavior
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(c) (d)
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Fig. 4. Projection on the plane vC2−vC of the attractor for different
values of the control parameter RL. Horizontal axis: 200mV/div;
vertical axis 500mV/div. (a) RL = 925Ω, (b) RL = 475Ω, (c)
RL = 315Ω, (d) RL = 180Ω, (e) RL = 90Ω, (f) RL = 35Ω.

of the chaotic Colpitts oscillator in a simple and effective
way. Several limit cycles can be stabilized. The complete
bifurcation diagram with respect to this parameter also
allowed to discover new windows of chaotic behavior
not observed in the chaotic Colpitts oscillator, thus
demonstrating the rich dynamics of this single-transistor
chaotic circuit. Being passive and composed of only two
elements, the control network has the advantage of a
direct and easy implementation.
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Abstract—In present report the generalized synchro-
nization regime onset in systems with a mutual type of
coupling is analyzed. To define the mechanism of the
synchronous regime arising the dependence of Lyapunov
exponents on the coupling parameter is considered. The
nearest neighbor method to mutually coupled dynamical
systems is applied. The main results are illustrated using
the examples of mutually coupled Rössler oscillators.

I. INTRODUCTION

Synchronization of chaotic oscillations is one of the
most relevant directions of nonlinear dynamics attracting
great attention of modern scientists [1]. The interest to it
is connected both with a large fundamental significance
of its investigation [2] and a wide practical applications,
e.g., for the transmission of information, diagnostics of
dynamics of some biological systems, control of chaos
in the microwave systems, etc [3]–[7]. Several types of
the synchronous chaotic system behavior are tradition-
ally distinguished. They are phase [8], generalized [9],
lag [10], complete [11], time scale synchronization [12]
and others.

One of the most interesting types of the synchronous
chaotic system behavior is the generalized synchro-
nization (GS) regime [9], [13], [14]. Such type of
chaotic synchronization has been firstly proposed for
two unidirectionally coupled chaotic oscillators [9]. Later
the concept of GS has been extended to the mutually
coupled systems and networks of coupled nonlinear
elements [13], [14]. At that, it should be noted that
the GS regime has been investigated in detail only
in unidirectionally coupled chaotic oscillators, whereas
such type of chaotic synchronization in mutually coupled
dynamical systems and complex networks has been
analyzed poorly enough. Known works (see, e.g. [13],
[14]) are directed to the development of new methods
for the GS regime detection in such systems on the
basis of the auxiliary system approach [15] proposed
for unidirectionally coupled oscillators. At the same

time, the concept of the GS regime, the mechanisms
of its arising and the correctness of application of the
auxiliary system approach even in two mutually coupled
dynamical systems remain still unclear.

In the present report we analyze the possibility of
the GS regime existence in systems with a mutual
type of coupling. Thereto we compute the spectrum of
Lyapunov exponents (LE) and analyze its behavior with
the coupling parameter value increasing. As would be
shown bellow, the transition of the one of the positive
LEs to the negative values could be treated as the GS
regime onset in mutually coupled dynamical systems. We
prove our assumptions by the nearest neighbor method
proposed in [16].

II. GENERALIZED SYNCHRONIZATION REGIME

Generalized synchronization (GS) regime in unidi-
rectionally coupled dynamical systems, the drive xd(t)
and response xr(t) ones, means the presence of the
unique functional relation F[·] between their system
states after the transient process is finished [9], i.e.
xr(t) = F[xd(t)]. It is clear that for two mutually
coupled chaotic oscillators x1,2(t) the definition of
GS given above should be extended as the following
F[x1(t),x2(t)] = 0.

To reveal the presence of the GS regime in unidirec-
tionally coupled dynamical systems the auxiliary system
method [15] is frequently used. It is one of the accurate
ones and simple enough for realization. Therefore, sev-
eral attempts to apply such methods both for mutually
coupled dynamical systems and complex networks are
known in literature. In particular, in Ref. [13] the modi-
fication of the auxiliary system method for the analysis of
GS in mutually coupled dynamical systems has been pro-
posed. Due to such approach two auxiliary units u1,2(t)
being identical to the systems x1,2(t) by the control
parameter values but starting with other initial conditions
should be introduced. At that, the system x1(t) should
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drive the oscillator u2(t), whereas oscillator x2(t) should
drive the system u1(t) (obviously, the type of coupling
between the initial x1,2(t) and auxiliary u1,2(t) systems
should be unidirectional). When the coupling parameter
value increases the original and auxiliary system states
can become coinciding after the initial transients, with
two pairs of “identical” systems achieving synchroniza-
tion at different coupling thresholds. When the first pair
of “identical” oscillators (e.g., x1(t) and u1(t)) becomes
synchronized the so-called partial GS regime is observed.
The case when both pairs of “identical” oscillators
demonstrate coinciding oscillations corresponds to the
complete GS regime (see for detail [13]).

Nevertheless, such modification of the auxiliary sys-
tem approach gives the contradictory results. In partic-
ular, our calculations show that the synchronous regime
(lag (LS) or even complete (CS) synchronization) be-
tween the systems x1,2(t) arises before the complete GS
onset in the terminology of Ref. [13] that conflicts with
the definition of the GS regime itself, since the CS and
LS regimes are partial cases of the GS and correspond
to their strong forms [17].

Taking into account the arguments mentioned above
one can draw a conclusion that the concept of the
GS regime in the mutually coupled dynamical systems
and complex networks demands reconsideration, with
the auxiliary system approach in the form described in
Ref. [13] being unapplicable for such systems.

Except the auxiliary system approach in the unidirec-
tionally coupled dynamical systems the nearest neighbor
method [9], [16] can be used for the GS regime detection.
It is also possible to compute Lyapunov exponents to
detect the presence of GS [18]. For unidirectionally
coupled chaotic oscillators the negativity of the largest
conditional Lyapunov exponent (computated for the re-
sponse system) can be considered as a criterion of the
GS presence [18].

Both methods mentioned above can be also applied
for the systems with a mutual type of coupling. On
the one hand, the nearest neighbor method may be
used to detect the presence of the functional relation
between the interacted system states, but it gives only
approximate result [9], [16]. On the other hand, the Lya-
punov exponent computation method is more accurate
one, but the application of such method to the mutually
coupled dynamical systems demands additional studies
to be carried out. At the same time, the application of
both methods together gives a clear view on the GS
in the mutually coupled oscillators and networks. The
next sections of our work are devoted to the detailed

description of the results obtained with the help of these
methods.

III. LYAPUNOV EXPONENTS

Lyapunov exponents (LEs) are known to be a powerful
tool for the analysis of the complex system dynamics.
The spectrum of Lyapunov exponents allows to detect
the qualitative changes of the system behavior when its
control parameter is varied [18], [19]. It is clear that
appearance of any type of chaotic synchronization can
be detected by the changes in the behavior of Lyapunov
exponent spectrum. In particular, as we have mentioned
in Section II, the GS regime in unidirectionally coupled
dynamical systems takes place when the largest condi-
tional Lyapunov exponent becomes negative [18], [20].
The analogous situation takes place in mutually coupled
dynamical systems, i.e., with the coupling parameter
value increasing, one of the positive Lyapunov exponents
passes through zero [10].

Transition of the positive Lyapunov exponent in the
field of the negative values has been explained in lit-
erature (see, e.g. [10]) by the appearance of the LS
regime (when the interacting systems demonstrate iden-
tical oscillations shifted in time). At the same time,
the difference between the coupling parameter values
corresponding to the points where the considered positive
LE becomes negative and where the onset of LS is
observed can be too large to be explained by the presence
of intermittency near the boundary of LS regime.

In the present report we analyze in detail the rela-
tionship between the boundary of the LS regime and
the critical line when one of the positive LEs passes
through zero. For such purpose we consider two mutually
coupled Rössler systems described by the following
differential equations:

ẋ1,2 = −ω1,2y1,2 − z1,2 + ε(x2,1 − x1,2),
ẏ1,2 = ω1,2x1,2 + ay1,2,
ż1,2 = p + z1,2(x1,2 − c),

(1)

where x1,2(t) = (x1,2, y1,2, z1,2)T are the vector-states
of interacting systems, ε is a coupling parameter. The
control parameter values have been selected by analogy
with our previous works as a = 0.15, p = 0.2, c = 10.
The parameters ω1,2 define the natural frequencies of
the mutually coupled oscillations. In our investigations
we have fixed ω2 = 0.95 and varied the ω1 parameter in
the range [0.89; 1.01] providing the frequency mismatch
of the oscillators.

To detect the presence of LS regime we have analyzed
the behavior of the discrete maps obtained from the
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Fig. 1. The boundary of the LS regime onset (¥) and the critical
curve corresponding to zero crossing of one of the positive LE (¨)
in mutually coupled Rössler oscillators (1)

original system (1) by means of Poincaré secant (as
a secant planes we have used the planes y1,2 = 0,
ẏ1,2 < 0). Taking into account the fact that the LS
regime in the flow systems corresponds to the CS one
in discrete maps [21] we have analyzed the CS regime
onset in the maps reduced from (1). The boundary of
the LS regime onset in system (1) is shown in Fig. 1
(numerically obtained data are marked by squares). In
Fig. 1 the critical curve corresponding to the case when
one of the positive LEs passes through zero is also shown
(numerically obtained data are marked by diamonds).
It is easy to see that the threshold of the LS regime
grows with the value of the control parameter mismatch
increasing, whereas the moment of the transition of the
positive LE towards the negative values depends on the
value of parameter detuning slightly. At the same time,
the intermittent LS can be observed both before and after
zero crossing of the positive LE or be non-observed at
all. On the basis of calculations being made one can as-
sume that the transition of the positive LE to the negative
values could be connected with the GS regime onset in
the mutually coupled dynamical systems. Nevertheless,
such assumptions demand additional approval.

IV. NEAREST NEIGHBOR METHOD

To prove our assumptions that the zero pass of one
of the positive LE could be connected with the GS
regime onset in mutually coupled dynamical systems
we apply the nearest neighbor method [9], [16] to the
system under study. The main idea of such method
consist in the fact that the presence of the functional
relation between the interacting system states means that
two close states (“origins”) in the phase space of the
first system correspond to two close states (“images”) in
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Fig. 2. (a) The quantitative measure of the GS regime onset d versus
coupling parameter strength ε obtained for systems (1) with ω1 =
0.99. The critical values of the coupling parameter εΛ = 0.106 (the
moment of zero crossing of one of the positive Lyapunov exponents)
and εLS = 0.169 (the threshold of LS regime) are marked by arrows.
(b–i) The phase portraits of Rössler oscillators for different values of
the coupling parameter: (b-c) ε = 0.01 (the asynchronous state); (d-
e) ε = 0.05 (the PS regime); (f-g) ε = 0.12 (the GS regime); (h-i)
ε = 0.18 (the LS regime)

the phase space of the second system [9]. The principal
advantage of such method is that it allows to detect the
presence of a functional relation between two systems
using only corresponding time series (independently on
the the way of their obtainment). Therefore, it could be
easily applied to the data obtained both experimentally
and numerically [16], [22], with the type of coupling
(is it unidirectional or bidirectional) being not crucial.
Although, as we have mentioned in Section II, such
method is a rough enough, it can be used for the approval
of the proposed theory.

In our calculations we have used the modification of
the nearest neighbor method allowing to characterize the
degree of the neighbor closeness quantitatively [16]. As
a numerical indicator for the existence of a continuous
function between the interacting systems the mean dis-
tance between images xn,nn

2 of nearest neighbors xn,nn
1

in the second system normalized by the average distance
δ of randomly chosen states of the first system, i.e.

d =
1

Nδ

N−1∑

n=0

||xn
2 − xnn

2 ||, (2)
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where N is the number of randomly chosen points, has
been calculated. If the GS regime takes place d → 0,
whereas d ≈ 1 when the functional relation between the
interacted system states is absent.

The dependence of the quantitative measure d men-
tioned above on the coupling parameter strength ε is
shown in Fig. 2,a. One can easily see that such character-
istics decreases monotonically with the coupling parame-
ter value increasing. At that, the (ε; d)-plane can be con-
ventionally divided into 3 parts: I – ε ∈ [0; 0.04) (the d–
characteristics decreases very sharply indicating the tran-
sition from the asynchronous state to the phase synchro-
nization (PS) regime at εPS = 0.04), II – ε ∈ [0.04; 0.11)
(the d–characteristics decreases slowly indicating occur-
rence of GS regime), III – ε > 0.11 (d ≈ 0). The values
of the coupling parameter corresponding to zero crossing
of the positive LE (εΛ = 0.106) and onset of the LS
regime (εLS = 0.169) are marked by arrows. It is easy
to see that the value of d does not practically changes
and remains close to zero in the range of coupling
parameter ε ∈ [εΛ, εLS ] that leads to the conclusion that
the GS regime arises before the LS one in mutually
coupled dynamical systems as well as in the case of the
unidirectionally coupled systems.

In Fig. 2,b-i the phase portraits of interacted Rössler
systems (1) for different values of the coupling parameter
strength are shown. At the phase portraits of the first
system (b,d,f,h) three randomly chosen points and its
nearest neighbors are marked by red, yellow and green,
respectively. Fig. 2,c,e,g,i illustrates the images of the
nearest neighbors of the first system mentioned above
into the phase space of the second system. One can easily
see that for a small values of the coupling parameter
(ε = 0.01) all image points are distributed randomly
on the whole attractor (c). With the coupling parameter
value increasing the points become concentrated in a lim-
ited range of attractor, with the radius of such distribution
decreasing when the coupling parameter grows (compare
Fig. 2,e,g). Note, that the character of the images of
the nearest neighbor location is practically the same in
the case of GS (g) and LS (i) regimes. The only one
difference between them consists in the fact that in the
LS regime the representation points corresponding to the
nearest neighbors are reflected practically in the same
part of chaotic attractor (i) whereas in the GS regime
they can be concentrated in a different regions (g).

V. CONCLUSION

In the present report the GS regime onset in systems
with a mutual type of coupling is analyzed. The GS

regime onset is shown to be connected with the zero
crossing of one of the positive Lyapunov exponents.
The obtained results are proved by means of the nearest
neighbor method.
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Abstract- The main goal of this paper is to model
and investigate Hysteresis Cellular Nonlinear Net-
works (CNN). Special type of memory-based relation
between an input signal and an output signal in this
circuit is introduced. Hysteresis reaction-diffusion
model is studied from the point of view of local ac-
tivity theory.Numerical simulations and discussions
about the pattern formation in such model are pre-
sented. Feedback control is applied in order to stabi-
lized the model.

Index terms- Hysteresis Cellular Nonlinear Net-
works, feedback, local activity theory, chaos, feed-
back control

I. INTRODUCTION

Hysteresis is defined as a rate independent
memory effect. Such a setting occurs, for ex-
ample, in the Weiss mean field theory of ferro-
magnetism [6], because of a positive feedback ef-
fect. In this model the bistability, and conse-
quently the occurrence of hysteresis effects, cor-
responds to the presence of a sufficiently large
positive feedback [7]. In the Weiss model of ferro-
magnetism it is shown that a nonlinear monotone
constitutive law combined with a proper positive
feedback effect can be transformed into a non-
monotone law, and can then generate hystere-
sis. In this paper we shall show that monotone
or non-monotone relationships generate hystere-
sis only in presence of suitable feedback effects.
This work is devoted to mathematical modeling
of pattern formation. Partial differential equa-
tions of diffusion type have long served as mod-
els for regulatory feedbacks and pattern forma-
tion in aggregates of living cells. We propose
new receptor-based models for pattern forma-
tion and regulation in multicellular biological sys-
tems. The idea is that patterns are controlled by
specific cell-surface receptors, which transmit to
the cells signals responsible for their differentia-
tion. The main aim of this work is to check which

aspects of self-organization and regeneration can
be explained within the framework of CNNs.

II. FEEDBACK AND HYSTERESIS

Let us consider a circuit composed of an elec-
tric generator and two capacitors, characterized
by the laws:

E1 = f(D1) , E2 =
D2

ε
,

where f is a non-monotone function R → R, ε
is a positive constant, which represents electric
permeability. If there elements are combined in
series, then at equilibrium the charges of the two
capacitors are equal D1 = D2. Then, denoting
by V the generated electromotive force and by
C1 and C2 two positive constants, we get [6]:

W = C1E1 + C2E2 = C1E1 +
C2

ε
D1. (1)

This condition will be named a load line (the po-
tential W is the electric load). By eliminating
E1, we get

W = C1f(D1) +
C2

ε
D1 = g(D1), (2)

here g may be either monotone or non-monotone,
depending on C1 and C2. In this case hysteresis
occurs in the D1 versus W dependence.

Finally, let us show that the presence of a load
line is mathematically equivalent to occurrence of
a feedback effect. Usually this can be checked by
means of a simple change of variable; however,
these viewpoints can have different interpreta-
tions in applications. Assume that two variables
w and z are related by a law:

w = f(z)
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and that they are subject to a constraint (load
line) depending on a third variable u:

z = g(u,w).

Then these two relations are equivalent to a feed-
back law relating u and w:

w = (f ◦ g)(u,w). (3)

Now we shall make a comparison between our
general model of CNN and the feedback systems
with hysteresis given above.

Let us consider our CNN model as the follow-
ing system of equations:

ẋk(t) = −Dkxk(t) +
∑

all l

Ak,lyl(t) + Ik, (4)

zk(t) = Ck(t)xk(t) +
∑

all l

Ak,lyl(t) + Ik, (5)

yk(t) = sgmk(xk(t)). (6)

It is obvious that we have the feedback system.
In other words we have the following relations,
defined by the (4)-(6):

y = f(x),

and from the other hand after solving (4) we get:
∣∣∣∣

x = g1(y, x)
z = g2(y, x).

If we denote vector (g1, g2) = g, then we get
y = (f ◦ g)(y, x) which is a feedback law consid-
ered above.

Theorem 1 Let f(x) be a sigmoid, monotone
increasing function. Assume that Ck is very large
positive scalar, Dk - very large negative scalar
and that Ak,l > 1. Then the CNN defined by
(4)-(6) generates hysteresis.

Proof:
Let us consider equation (4) and rewrite it in

the form:

ẋk(t) = −Dkxk(t) + F1(yk). (7)

It is first order differential equation and there-
fore it is equivalent to the following integral equa-
tion:

xk(t) = eDktxk(0) +
∫ t

0

e−Dk(t−s)F1(yk(s)) ds.

(8)
Substituting (8) in (5) we get:

zk(t) = CkeDktxk(0)+ (9)

+
∫ t

0

Cke−Dk(t−s)F1(yk(s)) ds + F1(yk(t)).

Equations (8) and (9) define a feedback sys-
tem of the type y = (f.g)(y, x) given above. Un-
der the conditions of the theorem, i.e. Ak,l > 1
and sufficiently large negative scalar Dk it fol-
lows that we have in this case very large positive
feedback. According to [6] such kind of feedback
leads to arising of hysteresis in the circuit. Thus,
the theorem is proved.

As indicated earlier, hysteresis arises in sys-
tems having several equilibrium points.

We shall consider the following output func-
tion:

y = f(x) =
x3

3
− x + c. (10)

This can be done practically by introducing in the
output circuit a special type of resistor known as
a tunnel diode which exhibits a cubic character-
istic function.

Let us denote by aq = A(l, l), 1 ≤ q ≤ n.The
following theorem hold.

Theorem 2 If aq > 1, 1 ≤ q ≤ n, any equi-
librium point x̄ of our CNN model (4) - (6) is
unstable. After the transient has decayed to zero
any trajectory of the system (4) - (6) will not
converge to one stable equilibrium point. In other
words we have hysteresis or bistability of the equi-
librium points.

The condition aq > 1 possesses a very large
positive feedback in our CNN, which can exhibit
hysteresis according to the theory of ferromag-
netism [6]. Since the trajectory of the system
(4)-(6) is actually the solution of the differen-
tial equation (4) which is a first order differential
equation [4], it means that after the transient has
decayed to zero the trajectory will not converge
to the stable equilibrium point if aq > 1.

III. HYSTERESIS REACTION-DIFFUSION
MODEL

A reaction-diffusion model involving a hys-
teretic functional was proposed by Hopenstead
and Jäger [5]. They assumed that the cell’s
growth had a hysteretic dependence on the
amount of nutrients and acid present. Pattern
formation in this model is caused by the initial
instability of the ordinary differential equations
(ODEs).

We consider one-dimensional epithelial sheet
of length L. We denote the density of ligands
by v(x, t), where x and t are space and time co-
ordinates, with x increasing from 0 to L along

18th IEEE Workshop on Nonlinear Dynamics of Electronic Systems (NDES2010)

26-28 May 2010, Dresden, Germany 75



the body column. The density of free receptors
is denoted by u(x, t). Consider a system of one
reaction-diffusion equation and one ordinary dif-
ferential equation (ODE):

∣∣∣∣
ut = ∆u + f(u, v)
vt = g(u, v), (11)

where the functions f(u, v) and g(u, v) present
the rate of production of new free receptors and
ligands, respectively and they are given by:

∣∣∣∣∣
f(u, v) = −c1

u
1+u2 + b1u

(1+u2−u)(1+v)

g(u, v) = −c2
v

1+v2 + b2v
(1+v2−v)(1+u) ,

(12)

c1 is the rate of decay of free receptors, c2 is the
rate of decay of ligands, bi > 0, i = 1, 2 are con-
stants.

We map hysteresis model (11), (12) into the
following associated discrete-space version which
we shall call hysteresis CNN model:

duj

dt
= (uj−1 − 2uj + uj+1) + (13)

+ f(uj , vj) = U + f

dvj

dt
= g(uj , vj) = g, 1 ≤ j ≤ N.

The above system is actually a system of ODE
which is identified as the state equation of an au-
tonomous CNN made of N cells. For the output
of our CNN model (13) we will take the standard
sigmoid function [2].

The theory of local activity [3] provides a
definitive answer to the fundamental question:
what are the values of the cell parameter for
which the interconnected system may exhibit
complexity? Let us set U = 0 in the equilibrium
equations:

U + f(ue, ve) = 0, (14)
g(ue, ve) = 0.

After solving the above system we get that it can
have one, two or three real solutions and therefore
we have three equilibrium points Ei(ue

i , v
e
i ), i =

1, 2, 3.

Definition 1 A hysteresis CNN is said to be op-
erating on the edge of chaos EC iff there is at least
one equilibrium point Ei, i = 1, 2, 3 which is both
locally active and stable when U = 0.

The following theorem hold for our model:

Theorem 3 Hysteresis CNN model for the sys-
tem (11), (12) is operating in the edge of chaos
regime iff c1 > b1 > 0, c2 > b2 > 0. For this pa-
rameter values, there is at least one equilibrium
point which is both locally active and stable.

We shall perform simulations for the receptor-
based CNN model (13):
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Fig.1. Stationary wave solution of the
receptor-based CNN model for the following

parameter set:ci, bi ∈ [1, 2], i = 1, 2.

We can see from Fig. 1 that for small enough
diffusion coefficients what is equal to the large
enough domain size, we have formation of inho-
mogeneous solutions (fronts) which are station-
ary in time.
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Fig.2. Spatio-temporal solution of the
receptor-based CNN model for the following

parameter set: ci, bi ∈ [1, 2], i = 1, 2.

Simulations show that for the model (13) we
can have a gradient-like solution for the density of
free receptors (standing wave) which is stationary
in time (see Fig.1) or a spatio-temporal solution
oscillating in time (see Fig. 2). The hysteresis
CNN cell [3] has two operating modes, namely, a
bistable multivibrator mode and a relaxation os-
cillator mode. In the case of the bistable mode,
the CNN gene design methodology [3] can be ap-
plied to hysteresis CNN. In the case of relaxation
oscillator mode, the hysteresis CNN can gener-
ate various patterns and nonlinear waves. Fur-
thermore, the hysteresis CNN has the function
of both associative (static) and dynamic memo-
ries. The formation and persistence of the sev-
eral peaks on Fig.2 are result of the bistability of

18th IEEE Workshop on Nonlinear Dynamics of Electronic Systems (NDES2010)

26-28 May 2010, Dresden, Germany 76



the reaction term. For such model we can have
various stable solutions which are transitions be-
tween the stable steady states.

IV. CONTROL OF HYSTERESIS
REACTION-DIFFUSION MODEL

In this section we propose a feedback control of
our hysteresis reaction-diffusion model (13).We
shall design a discrete-continuous regulator of
CNN model in order to stabilize the chaotic mo-
tion to an admissible solution which is connected
in some way to the original behaviour of the sys-
tem (11),(12). Let us rewrite the CNN model
(13) by the following simultaneous 2∗N ordinary
differential equations:

duj

dt
= (uj−1 − 2uj + uj+1) + (15)

+ f(uj , vj) + zuj , j = 1 . . . N,

dvj

dt
= g(uj) + zvj , j = 1 . . . N,

where zuj , zvj are controls and

∣∣∣∣∣
f(u, v) = −c1

u
1+u2 + b1u

(1+u2−u)(1+v)

g(u, v) = −c2
v

1+v2 + b2v
(1+v2−v)(1+u) ,

(16)

Numbers of cells N lies in bounds 1 ≤ N ≤ 25.
Constant coefficients

cj ∈ [0, 1], bj ∈ [1, 2]. (17)

Boundary conditions for (15) are

u(t,−1) = u(t,N + 1) = 0

and initial conditions are in the intervals

u(0, j) ∈ [0, 2], v(0, j) ∈ [0, 2].

We shall seek stabilized controls for (15), (16)
as follows

zuj = kuvj , zvj = kvuj + kwvj , (18)

where the values of the scalar control coefficients
ku, kv, kw are to be found.After some calcula-
tions we obtain the following close-loop system’s
dynamical matrix [1] for them:

Acl =
[

A + (b1 − c1)E kuE
kvE (kw − b2 − c2)E

]
(19)

The simulation results are given on figures 3
and 4.They show that the proposed feedback con-
trol method allows so to stabilize the system’s
dynamics so to assign its rate of convergence.

Fig.3. Spatio-temporal solution of the
unstabilized receptor-based CNN model.

Fig.4. Spatio-temporal solution of the stabilized
receptor-based CNN model, σ = 0.5.
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Abstract—The Fermi acceleration is always inherent in
completely chaotic time-dependent billiards. At the same
time, the particle dynamics in nearly–integrable billiard
systems can be more complex. Using a simplified approach,
we investigate time-dependent stadium-like billiards and
show that at a certain particle velocity a resonance between
external periodical perturbations and the motion within
stability islands of the unperturbed billiard can be ob-
served. This resonance suppresses the Fermi acceleration
of particles with velocities less than the resonance one. As
a result, we observe separation of billiard particles by their
velocities. This phenomenon may be treated as a peculiar
billiard Maxwell’s Demon, when weak perturbations of
a system leads the particle ensemble to separation. In
other near–integrable billiard systems similar resonances
can lead to differences in the acceleration of particles with
velocities smaller or larger than a resonance value.

I. I NTRODUCTION

A billiard dynamical system is generated by the free
motion of a point mass particle (billiard ball) in a region
Q with a piecewise–smooth boundary∂Q and by the
condition of the elastic collision from∂Q. If the billiard
boundary consists of dispersing and neutral components
then such a billiard is said to be a dispersing one, or the
Sinai billiard. One of the well know dispersing billiards
is the Lorentz gas [1]. On the basis of the analysis of
a 2D Lorentz gas a remarkable result has been obtained
that the dynamics of purely deterministic systems may be
ergodic with mixing and similar to the Brownian motion
[2].

So-called focusing billiards include focusing compo-
nents which can be connected by neutral ones. For
some of such billiards one may prove that they possess
the mixing property [3], [4]. The most know example
of focusing billiards is “stadium”, or the Bunimovich
billiards, which consist of two arcs and two rectilinear
parallel segments joining them. Quite general conditions

of the chaoticity in 2D plane billiards are described in
[5], [6] (see also references cited therein).

Billiards with boundaries, which oscillate according
to one or another rule, represent a natural physical
generalization of classical billiard systems. Indeed, the
Lorentz gas has been proposed for the description of the
motion of electrons between heavy ions in the lattice
of metals. In the reality, however, ions should weakly
oscillate near their equilibrium state. Moreover, some
important problems of mathematical physics can be
described by non–stationary billiard models (see [7]).

It is obvious that in time–dependent billiards the
velocity of billiard particles changes from a collision to
collision. After a collision event the billiard particle gains
or loses its energy depending on whether the billiard
boundary is approaching (i.e. there is a head-on collision)
or receding (i.e. there is a head-tail collision).

A model of particle acceleration by elastic collisions
with massive moving obstacles has been suggested by
E.Fermi to explain the origin of high energy cosmic
rays [8]. Fermi argued that in a typical environment the
probability of a head-on collision is greater than the
probability of a head-tail collision, so particles would,
on average, be accelerated. In this problem, dynamical
properties of billiards play a principal role: if it possesses
the chaotic behavior then the boundary perturbation may
lead to the particle acceleration [9], [10], [11], [12].
It was also found that new effects may be observed
if the static billiard is a nearly integrable system [13].
Depending on the initial velocity value the particle
ensemble in time–dependent billiards may be accelerated
or decelerated.

This phenomenon can be treated as a specific (billiard)
Maxwell’s Demon. In 1871 Maxwell proposed a peculiar
arrangement (Demon) which could select the gas of
molecules containing in two cambers connected through
a small hole. These cambers, following to the second
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thermodynamics law, are at the equilibrium state. Demon
could hypothetically work against this law by separation
of molecules by their velocities and the further chamber
selection.

In the present paper we consider nearly integrable
stadium–like billiards with periodically perturbed bound-
aries and describe the origin of the increase and decrease
of the particle velocity.

II. T IME–DEPENDENT BILLIARDS

First let us describe the billiard models which used
in the present paper for simulations. Suppose that the
focusing components are arcs of a circle of the radiusR
and of the angle measure2Φ, and they are symmetrically
placed with respect to the vertical billiards axis (Fig.1a).
Introduce also dynamical variables as shown in Fig.1b.

Fig. 1. Coordinates in a stadium.

Let us suppose now that the focusing components of
the billiard boundary are perturbed periodically,U(t) =
U0f(ω(t + t0)), where ω is the oscillation frequency.
If the amplitude of billiard oscillations is sufficiently
small, i.e.U0/ω ¿ l, then we can neglect the boundary
displacement with respect to the characteristic billiard
size. In this approximation the billiard map reads as

Vn =
√

V 2
n−1 + 4Vn−1 cosα∗nUn + 4U2

n ,

αn = arcsin
(

Vn−1

Vn
sinα∗n

)
,

(1)

α∗n+1 = αn

tn+1 = tn +
2R cosαn

Vn
,

ϕn+1 = ϕn + π − 2αn (mod 2π) ,

(2)

if |ϕn+1| ≤ Φ, and

ψn = αn − ϕn ,

ϕn+1 = ψn − α∗n+1 ,

xn =
R

cosψn
[sinαn + sin (Φ− ψn)] ,

x∗n+1 = xn + l tanψn (mod a) ,

α∗n+1 = arcsin
[
sin (ψn + Φ)− x∗n+1

R
cosψn

]
,

tn+1 = tn +
R(cosϕn + cos ϕn+1 − 2 cos Φ) + l

Vn cosψn
,

(3)
if |ϕn + π − 2αn| > Φ. Expressions (2) correspond to
a series of successive collisions with one component,
and expressions (3) describe transition from one focusing
component to another. The only approximation that we
used is the smallness of the boundary displacement.

A. Particle separation

We carried out numerical simulations of maps (1)–(3)
in two cases. In the first case we considered “classical”
fully chaotic billiards in the form of a classical stadium.
In the second case we assumed thatl À a À b and
investigated a nearly integrable billiard system.

Fig. 2. The average (green), minimal (blue), and maximal (red)
velocities of an ensemble of5000 particle as a function of the
number of collisions:l = 2, a = 0.5, b = 0.25, U0 = 0.01,
ω = 1 andV0 = 0.1.

Fig. 2 shows the dependence of the average, maximum
and minimum velocities in the ensemble of particles on
the number of collisions for a fully chaotic stadium.
The average particle velocity (the central green curve)
follows a power lawV (n) ∼ nγ , γ = 0.44. Thus, the
Fermi acceleration phenomenon is inherent in this time–
dependent billiard. To characterize the spread of particles
we also plotted the minimal (the lower blue curve) and
maximal (the red broken curve) velocity in the ensemble.

The most intriguing behavior of the particle velocity
we observe in nearly integrable billiards. In this case
b ¿ l, and the phase space of the system contains re-
gions with regular and stochastic dynamics. If the initial
velocity of particles is sufficiently large then the average
particle velocity grows, and the velocity distribution
function becomes wider with the number of collisions
(Fig. 3a,b). If however, the initial velocity is small

18th IEEE Workshop on Nonlinear Dynamics of Electronic Systems (NDES2010)

26-28 May 2010, Dresden, Germany 79



enough, then the average particle velocity slows down
up to a small valueVfin, and the particle distribution
approaches to a stationary one with a relatively small
variance (Fig. 3c,d).

Fig. 3. (a) The dynamics of initially ”fast“ particles,V0 = 4.
(b) The evolution of the velocity distribution function, corre-
sponding to panel (b). (c), (d) The same for initially “slow”
particles, V0 = 1. For each case an ensemble of20 000
particles has been considered.l = 1, a = 0.5, b = 0.01,
ω = 1, U0 = 0.005

Note, however, that in the last case there is a small

probability for particles to leave the region of small
velocities. In particular, the maximal velocity of the
ensemble grows (Fig. 3c). However, these events are rare
and do not influence the particle distribution during the
observation time. But their role can be crucial on an
extremely long simulation period. This is due to the fact
that for “fast” particles the probability to return into the
region of small velocities decreases with time, because
these particles will on average be accelerated, while the
probability to leave the small velocity region will be
almost constant.

Fig. 4. The standard deviation
√

∆V 2 of the velocity
distribution after107 collisions as a function of the initial
velocity plotted for differenta and b. The black dashed line
shows a threshold value between narrow (the deceleration of
particles) and wide (the acceleration of particles) distributions.
Each data point is calculated for an ensemble of400 particles.
l = 1, a = 0.5, b = 0.01, ω = 1, U0 = 0.005.

To find the velocity at which the particle separation
occurs we investigated the width (standard deviation,√

∆V 2) of the particle velocity distribution after107

collisions as a function of the initial velocity for different
billiard parametersa andb (see Fig. 4). For calculations
of each point we used an ensemble of400 trajectories.
This analysis shows that

√
∆V 2 undergoes a first-order

phase transition at a critical valueVc of the initial
velocity. If V0 < Vc then the variance of the velocity

18th IEEE Workshop on Nonlinear Dynamics of Electronic Systems (NDES2010)

26-28 May 2010, Dresden, Germany 80



distribution approaches to a small value. At the same
time, V0 > Vc leads to a non-stationary distribution with
an unlimited variance which grows with the number of
collisions. Furthermore, the velocity distribution function
(Fig. 3b and 3d) has a bimodal form. This is an addi-
tional hint that we observe a first-order phase transition
characterized by two attracting states.

We should make two comments here. Firstly, for some
parameters values (e.g., forb = 0.004 and b = 0.001)
particle separation is very slow and the number of steps
107 is not enough to clearly see it. As a result, these
transitions look much smoother and resemble a second-
order phase transition. However, analyzing the dynamics
of velocity distribution functions, we still observe sepa-
ration of particles into two groups with relatively high
and low velocities. Secondly, curves forb ≤ 0.002 in
bottom Fig. 4 have a local maximum whenV0 is slightly
larger thanVc. This maximum occurs due to the fact that
for small b random fluctuations of the velocity diminish.
As a result, the variance is relatively small if the initial
velocity is large. If however, the initial velocity is a
little larger thanVc, then a fraction of particles which
are decelerated and turn out to be trapped in a small
velocity region, gives an essential additional impact in
the variance. This leads to a local maximum of the
variance at this values of the velocity.

III. D ISCUSSION

The phase portrait of a nearly integrable billiard con-
figuration with the fixed boundary consists of stochastic
layers and stable fixed points surrounded by stability
islands. In a vicinity of a fixed point the particle motion
can be represented as rotation around this point with
a certain period. All trajectories are located either on
elliptical invariant curves or in the stochastic layer.

In time–dependent billiards the whole phase space
may become accessible. In this case the resonance be-
havior can be observed: The particle follows a spiral
trajectory approaching the fixed point and leaves its
neighborhood [13]. There is a essential difference in
the dynamics of velocity of particles moving within the
stochastic layer and within the stability islands. In the
stochastic area, the angles of incidence can be large
and the flights between collisions can be long, while
in the regular area successive collisions occur almost
at the same incidence angles and in regular intervals
of time. As a result, in the stochastic area the velocity
changes more chaotically and slower than in the vicinity
of fixed points. In particular, detailed analysis shows
that the average change of velocity vanishes in the

stochastic area, while there are areas of acceleration and
deceleration within the stability islands [14]. Note that
this is true only if the particle can occasionally enter
and leave regular regions. If however, a particle moves
along an invariant curve of the perturbed system then the
change of total velocity tends to zero.

To get an insight into the mechanism of the particle
separation by their velocities, consider a particle with
V < Vr, whereVr = Vc is a resonance velocity. The
particle enters into the vicinity of a fixed point if the
phases of rotation and boundary oscillations are close to
each other. SinceV < Vr, the rotation around the fixed
point will be slower, and the phase delay will increase.
Finally, the particle will return in the stochastic area.
However, if the particle enters the regions of regular
motion at the phase when it decelerates due to collisions
with boundaries, then the phase delay will increase even
faster, and the particle can leave this area after only a
few head-tail collisions, which decrease its velocity. At
the same time, if the particle initially accelerates in the
regular region, then the phase delay will increase slower,
and the particle can stay in this area longer. As a result,
the velocity growth will be compensated by a further
velocity decrease. Similar ideas show that a particle
with V > Vr will rather have accelerating collisions
and then return to the stochastic area. We believe that
this mechanism breaks the symmetry and leads to the
separation of particles by their velocities (for detailed
explanations see [14]).
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Abstract—For the development of a bio-inspired chemical
sensor array, a computational model has been proposed in our
previous work. The model consists of three functional parts: the
chemical sensor, the random pulse generator, and the stochastic
synchronizer, converting the concentration of chemical substances
into the degree of stochastic synchronization of elements. In this
work, we focus on resonate-and-fire neuron circuits that receive
common random pulses for the stochastic synchronizer part. We
evaluated cross correlation coefficients of outputs of the circuits as
the degree of synchronization with circuit simulations. As a result,
the circuits synchronized with others depending on the statistical
properties of the random pulses. Furthermore, we considered
how the dynamical properties of the circuits affect stochastic
synchronization.

I. INTRODUCTION

For the development of a bio-inspired chemical sensor array,
we focus on the functional roles of a network of mouse
taste bud cells (TBCs). The information processing in sensory
coding includes the TBCs can be represented as stochastic
processes due to the probabilistic neurotransmitter release and
action potential generation with fluctuation. On the basis of the
physiological properties of the TBCs, a computational model
for chemical sensor arrays has been proposed in our previous
work [1]. The model consists of three functional parts: the
chemical sensor as an array of electrochemical transducers,
the random pulse generator that converts the outputs from
the first part into a sequence of random pulses, and the
stochastic synchronizer that receives the random pulses and
detect the concentration of chemical substances as the degree
of stochastic synchronization.

For a practical chemical sensor array, it is the demand
to operate correctly under nonideal conditions as constraints:
a limited number of sensing elements with nonuniformity
and probabilistic behavior. Biological sensor arrays in nature
could find solutions to fulfill the demand [4]-[5]. By learning
from these solutions, we have considered to utilize noise-
induced nonlinear phenomena, such as noise shaping [3],
stochastic resonance [4] and coherence resonance [6]-[10],
and noise-induced synchronization [12]-[14] and clustering
[15], increasing the signal-to-noise ratio (SNR), dynamic range
(DR), and information transfer ratio in information processing.

In this context, a computational model that utilizes noise-
induced synchronization for detecting the concentration of
chemical substances has been proposed [1]. It has also been

implemented on a software platform with commercial alcohol
sensors [16] and on a hardware platform [20], [21].

In this work, focusing on hardware implementation of the
stochastic synchronizer part, we investigated noise-induced
nonlinear phenomena in an uncoupled array nonidentical
resonate-and-fire neuron (RFN) circuits [18] that receive
common strong random pulses. Through SPICE (Simulation
Program with Integrated Circuit Emphasis) simulations, we
evaluated cross correlation coefficients of the outputs of the
circuits as the degree of stochastic synchronization. As a result,
each circuit synchronized with others depends on the statistical
properties of the random pulses. Furthermore, we considered
how the dynamical properties of the circuits affect stochastic
synchronization.

II. COMPUTATIONAL MODEL FOR A CHEMICAL SENSOR
ARRAY.

We here explain a computational model for a chemical
sensor array [1], [2]. The model consists of three functional
parts.

The first part is the chemical sensor part constructed from
an array of nonidentical electrochemical transducers. This part
outputs analog signals with fluctuation and noise depending
on the concentration of chemical substances. The second
part is the random pulse generator part. It consists of an
array of individual integrators that converts each output of
the elements of the first part into a sequence of random
pulses. When the number of the integrators increases, the
interpulse interval (IPI) of the summation of the outputs
becomes close to the Poisson process. The third part is
the stochastic synchronizer part constructed from uncoupled
nonidentical neuron models. It receives the random pulses
and each element synchronizes with others depending on the
statistical properties of the random pulses. As a result, the
concentration of chemical substances can be detected as the
degree of stochastic synchronization [1]. Finally, the model
converts the concentration of chemical substances into the
degree of stochastic synchronization of the elements [1], [2].

III. CIRCUIT IMPLEMENTATION

We here explain the resonate-and-fire neuron (RFN) circuit
[19] for constituting the stochastic synchronizer part of the
computational model for a chemical sensor array.
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Fig. 1. Schematic diagram and chip layout of the resonate-and-fire neuron (RFN) circuit. The circuit consists of a membrane
circuit, a threshold-and-fire circuit, and excitatory and inhibitory synaptic circuits. The membrane circuit has second-order
dynamics containing two state variables U (a current-like variable) and V (a voltage-like variable).

The circuit consists of a membrane circuit, a threshold-
and-fire circuit, and current-mirror integrators as excitatory
and inhibitory synaptic circuits (Fig.1) . The dynamics of the
circuit are as follows:

C
dU

dt
=−g(U−Vrst)+Iin+ĪU−SInoexp

(
κ2

n

κn + 1

V

VT

)

(1)

C
dV

dt
= SInoexp

(
κ2

n

κn + 1

U

VT

)
−ĪV (2)

where U and V correspond to the current- and voltage-like
state variables, respectively. C represents the capacitance, g
the conductance for a transistor M11, Vrst the reset voltage, and
Iin the summation of the post-synaptic currents, IEPSC and
IIPSC, through the excitatory and inhibitory synaptic circuits,
respectively. Currents, ĪU and ĪV , are described as follows:

ĪU = αIUi(1 +
VDD − U

VE,p
) (3)

ĪV = βIVi(1 +
V

VE,n
) (4)

where IUi and IVi represent the bias currents for the current
mirrors, VDD the power-supply voltage, and α and β the

dimensionless constants:

α =

(
1 +

VDD − Vg1

VE,p

)−1

(5)

β =

(
1 +

Vg2

VE,n

)−1

(6)

where Vg1 and Vg2 represent the gate voltages of M7-M8 and
M9-M10, which are determined by the bias currents IUi and
IVi .

The equilibrium point of the membrane circuit, (Uo, Vo),
can easily be calculated, and the stability of the point can
be analyzed by the eigenvalues of the Jacobian matrix of the
membrane circuit,

J =



 − IUi

VE,p+VDD−Vg1

− κ2

n

κn+1
IVo

VT

κ2

n

κn+1
IUo

VT
− IVi

VE,n+Vg2



 (7)

where IUo and IVo represent the equilibrium current at the
equilibrium point. The leak conductance g is close to zero as
M11 turns off. We used diode-connected transistors M1 and
M3 to obtain small coefficients for IUo and IVo , and short
transistors that have small Early voltages for M7-M10 to obtain
small coefficients for IUi and IVi .

Consequently, the equilibrium point becomes a focus. In
this case, the circuit dynamics is qualitatively equivalent to
the membrane dynamics of the resonate-and-fire neuron model
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Fig. 2. Typical behavior of a RFN circuit in (A) an excitable
state and (B) a periodic firing state.

near the equilibrium point [17]. Furthermore, the circuit has
a voltage-dependent resonant frequency at the resting state as
in the case of analogous to biological neurons.

According to the relative location of the equilibrium point
and the threshold Vth, the RFN circuit has two states: an
excitable state and a periodic firing state. In the excitable state,
the circuit fires when the voltage V exceeds Vth driven by
external pulse inputs. By increasing the bias current IVi to
bring the the equilibrium point close to the threshold Vth, the
circuit becomes a periodic firing state. In the periodic firing
state, the circuit fires repetitively.

IV. SIMULATION RESULTS

We investigated stochastic synchronization properties of an
array of uncoupled nonidentical RFN circuits using the circuit
simulator SPICE. We used a set of the model parameters for
the TSMC 0.35-µm CMOS process.

Through the following simulations, the supply voltages were
set at VDD = 1.5 V, Vth = 820 mV, and Vrst = 750
mV, the bias currents were set at IUi = IVi = 10 nA, and
Ibias = 250 nA, and the capacitance were set at C = 2 pF.
We introduced excitatory pulse inputs (amplitude: 1.5 V and
width: 0.1 µsec) as synaptic currents into the circuit. The
capacitances for the synaptic circuits were set at Cp = 0.02 pF.

We firstly describe the typical behavior of a single RFN
circuit. When the circuit was in an excitable state, the circuit
exhibited a damped subthreshold oscillation in response to an
excitatory pulse input (Fig. 2A). When the bias current IVi

increases from 10 nA to 17 nA, the circuit becomes a periodic
firing state and exhibits a repetitive firing pattern (Fig. 2B).

We further describe the behavior of an array of uncoupled
nonidentical RFN circuits in response to common strong
random pulses. We set Gaussian-distributed values with a
low coefficient of variation (CV) for the bias currents IUi

and IVi of the circuits, and therefore each circuit had an
individual resting potential and resonant frequency according
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Fig. 3. Stochastic synchronization in an array of uncoupled
nonidentical RFN circuits (the number of circuits equals to
10) driven by random pulses with Gamma-distributed IPIs
(the mean of IPIs = 10 µsec). Multiple waveforms are the
outputs of the circuit. The degree of stochastic synchronization
increased with the increase of the CV of IPIs as in the case
of (A) CV = 1/

√
10 and (B) CV = 1.

to (7). We introduced common random pulses with Gamma-
distributed interpulse intervals (IPIs) into the array of the
circuits. The degree of synchronization among the circuits
was increased with the increase of the CV of the IPIs in the
presence of nonuniformity of the individual circuits, as shown
in Fig. 3. The mean of the IPIs also affected the degree of
synchronization when the CV of the IPIs decreased.

Figure 4 shows the relationship between the degree of
synchronization and the CV of of the random pulses, in
which the degree of synchronization is represented as the cross
correlation coefficient of the waveforms of the voltage Vi. This
result also shows that the circuits synchronized when Poisson
pulses were introduced (CV=1).

We considered effects of the dynamical properties of the
circuit on stochastic synchronization. We increased the mean
of the bias current IVi from 10 nA to 20 nA so that the
circuits entered the periodic firing state from the excitable
state. We introduced common Poisson random pulses into the
circuits. Figure 5 shows the relationship between the degree of
synchronization and the mean IPIs of the Poisson pulses. The
degree of synchronization decreased when the circuits were in
the periodic firing state as compared to the excitable state.

V. CONCLUDING REMARKS

In biological information processing, a population of cells
may effectively use their correlations in order to transmit
information even in a noisy environment [5]. Noise-induced
nonlinear phenomena such as noise-induced synchronization
increases correlations between uncoupled cells. In practice,
the computational model described here effectively use such a
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Fig. 4. Cross correlation coefficients of the output waveforms
of the circuits as the degree of stochastic synchronization when
Gamma pulses were introduced into the array of the circuits.

phenomenon to reduce the nonuniformity of sensing elements
on sensory processing [1].

In this work, focusing on hardware implementation of
the part of the computational model, we have investigated
noise-induced nonlinear phenomena in an array of uncoupled
nonidentical RFN circuits [18] that received common random
pulses. We have evaluated the cross correlation coefficients
as the degree of stochastic synchronization through SPICE
simulations. As a result, the circuits synchronized with others
depending on the statistical distribution of the random pulses.
Furthermore, we have considered the effects of the dynamical
properties of the circuits on stochastic synchronization. The
degree of synchronization increased when the element circuits
were in an excitable state. These results provide valuable
insight into strategies for designing of a chemical sensor array
on a silicon chip.
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Abstract—This paper addresses the design of optimal
switching laws that jointly solve the problems of start-
up and orbital stabilization for a boost converter. After
summarizing the concept of model predictive control for
smooth systems, it is outlined first, how MPC can be
extended to power converters that fall into the class of
switched autonomous systems and, second, that the optimal
control can be represented in terms of relatively simple
stationary switching surfaces in the state space. Simulation
results demonstrate the feasibility and the good control-
loop performance.

I. INTRODUCTION

A switching power converter transforms a constant
dc input voltage into a dc dominated output voltage of
desired level. The working principle relies on switching
the power stage between different circuit topologies,
here called operation modes, in the correct order at
adequate time instants. Typically, power converters are
operated by periodic switching laws, where expedient
circuit topologies are pre-selected and arranged into a
periodic mode schedule by the designer. This reduces
the effective control input to the transition times.

The design of the control law, which processes state
measurements into transition times, has a long and rich
history. Many works synthesize fixed-frequency time-
driven switching laws by exploiting the technique of
averaging. The latter yields a nonlinear average model
with duty cycles as continuous-valued constrained con-
trol inputs, for which the controller can then be de-
signed using linear and nonlinear control theory [1].
The presence of input and state constraints together
with advances in controller hardware have recently fu-
elled the interest for the application of model predictive
control [2], [3]. It was shown that fix-frequency MPC
laws achieve 1. a fast start-up while obeying constraints,
2. an excellent output tracking as well as 3. a good

disturbance attenuation. However, the high switching
frequency may cause unnecessary mode transitions and,
thus, high switching losses. Also, orbital stability, which
is a central element of stationary converter specifications,
is not ensured by equilibrium stability of the averaged
closed-loop system [4].

The systematic synthesis of event-driven switching
laws, which make no a-priori assumptions on the switch-
ing frequency, has been investigated only quite recently.
In contrast to fixed-frequency control, an event-driven
switching law is implemented directly in terms of switch-
ing surfaces in the state space that switch the circuit
topology whenever being intersected by the state tra-
jectory. [5] showed that the associated hybrid design
problem can be translated into an equivalent periodic
feedback design problem of discrete-time systems. Ex-
ploiting the idea of optimal control and continuation, [6]
presented a scheme for designing polyhedral switching
surfaces, that achieve an optimal transient loop behavior
in the presence of state constraints as well as orbital
stability of a desired limit cycle at stationary operation.
A central benefit of the new approach is that the resulting
switching law is simple to implement and evaluate. Also,
it avoids unnecessary mode transitions.

The central contribution of this paper is an extension
of model predictive control to the design of event-
driven switching laws of switching power converters by
using the results of [6]. Simulation results illustrate the
feasibility as well as the good loop performance, both in
the transient and stationary operating regime.

II. BOOST CONVERTER MODEL AND CONTROL

OBJECTIVES

For ease of presentation, this work focusses on the
design of an optimal periodic switching law for a simple
boost converter circuit in continuous-conduction mode

18th IEEE Workshop on Nonlinear Dynamics of Electronic Systems (NDES2010)

26-28 May 2010, Dresden, Germany 86



Fig. 1. Schematics of the boost converter power stage

(Fig. 1). The power stage constitutes a bimodal switched
system. Mode q = 1 is associated with switch S being
closed and mode q = 0 with S open. The circuit dy-
namics are described by a second-order switched affine
system

ẋ(t) = Aqx(t) + bq (1)

with the state x(t) =
(
iL(t) vo(t)

)T
and

A0 =

(−RL

L
−1
L

1
C

−1
RC

)
, A1 =

(−RL

L 0

0 −1
RC

)

b0 =
(

Vs−Vd

L 0
)T

, b1 =
(

Vs

L 0
)T

Parameter values are Vs = 12V, L = 1 mH, RL =
0.25Ω, C = 20.5 �F, Vd = 0.4V and R = 50 Ω.
The switching time, at which the k-th mode transition
is executed, is denoted by τk. The corresponding state
value x(τk) = xk is called the switching point and the
distance δk = τk+1 � τk is called the activation duration
of the k-th mode. Finite or infinite sequences of values
τk, xk, and δk are indicated by τ̄ , x̄ and δ̄.

Problem 1: Given the model (1) and a mode schedule
q̄◦ = (1, 0) to be periodically executed, determine
switching surfaces Sq in the state space that 1. orbitally
stabilize the boost converter at a feasible limit cycle Γ
around a reference voltage Vref = 18V with a ripple
of |∆vo| < 0.5V and 2. realize a fast start-up without
excessive inductor currents iL(t) above 1A.
An admissible limit cycle with a period of T = 50 �s is
depicted in Fig. 2. Its switching points (rectangles) are

xΓ
1 =

(
0.67A 17.91V

)T
, xΓ

0 =
(
0.46A 18.23V

)T
.

This cycle is to be stabilized in the following.

III. EXPLICIT MODEL PREDICTIVE CONTROL FOR

SWITCHED DYNAMICAL SYSTEMS

A. The concept of model predictive control

Model predictive control provides an approach to
solve an intractable optimal feedback control problem by

i
Lmax

G

X
T

Fig. 2. Admissible limit cycle satisfying the design specifications

repeatedly solving open-loop finite-horizon optimization
problems during the operation of a plant [7]. Originally,
this control scheme was introduced for uniformly sam-
pled smooth nonlinear discrete-time systems

xk+1 = f(xk, uk, dk) (2)

with states x, continuous-valued control inputs u, distur-
bances d and a smooth vector field f . Having obtained a
new state measurement xk at the k-th sample time tk, a
constrained optimization problem π(xk, N) of the form

min
ν̄k

J[0,N ](ξ̄k, ν̄k) =
N−1∑
j=0

gj(ξj|k, νj|k)+gN (ξN |k) (3)

s. t. ξj+1|k = h(ξj|k, νj|k), ξ0|k = xk (4)

ck(ξj|k, νj|k) ≤ 0, for k = 0..p � 1 (5)

cN (ξN |k) ≤ 0 (6)

is solved. Here, an undisturbed model (4) of system (2)
is used to predict the evolution ξ̄k from the current state
xk onwards over the next N samples into the future.
From the resulting optimal input sequence ν̄⋆

k , only the
first element is applied as the k-th input

uk = κN (xk, k) = ν⋆
0|k (7)

to the plant. κN (xk, k) defines the model predictive
feedback control law, which is in general of time-
varying nature. The remaining predicted input sequence
is reused as an initial guess for the subsequent optimiza-
tion problem π(xk+1, N) to be solved at the (k+1)-st
sample time, at which a new state measurement becomes
available. Clearly, the MPC principle still works, if the
time between each new optimization varies.

Under the assumption of 1. having a perfect model (4),
2. the absence of disturbances, 3. that gk(0,0) =
gN (0) = 0 and 4. that the terminal cost term
gN (ξ) over-bounds the infinite-horizon residual costs,
i.e. gN (ξN |k) ≥ V (ξN |k) = minν̄ J[N,∞](ξ̄k, ν̄) < ∞,
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asymptotic stability of the origin (or any other equi-
librium, if the gj are adjusted properly) is guaranteed
for the closed-loop system using (7). In the face of a
moderate model mismatch and exogenous disturbances,
the resulting control-loop is practically stable. Transient
performance can be traded against computational com-
plexity by increasing the horizon N .

The over-bounding property 4 can be enforced by fol-
lowing a quasi-infinite horizon (QIH) strategy. Here, the
idea is constrain ξN at the end of the prediction horizon
to a neighborhood of the origin, in which π(xk,∞) can
be approximated sufficiently well by its unconstrained
linearization at (x, u) = (0,0)

min
∆ν̄k

∞∑
j=0

∆ξT
j|k

∂2gj

∂ξ2
∆ξj|k+2∆ξT

j|k
∂g2

j

∂ξ∂ν
∆νj|k

+ ∆νT
j|k

∂2gj

∂ν2
∆νj|k s. t.

∆ξj+1|k =
∂h

∂ξ
∆ξj|k+

∂h

∂ν
∆νj|k, ∆ξ0|k = ∆x0

As known, this linearized problem yields a closed-form
solution ∆ν⋆

j|k = �kT∆ξj|k and the value function
V (∆ξ) = ∆ξTX∆ξ is a quadratic form, with X being
the solution to the Lyapunov equality

X � (
∂h

∂ξ
� ∂h

∂ν
kT)TX(

∂h

∂ξ
� ∂h

∂ν
kT)

� (
∂2gj

∂ξ2
+ 2

∂2gj

∂ξ∂ν
kT + k

∂2gj

∂ν2
kT) = 0 . (8)

Consequently, it is possible to select a γ > 0 and P
large enough, such that gN (ξ) = ξTPξ ≥ V (ξ), ∀ξ ∈
XT = {ξ : ξTPξ ≤ γ}. To minimize the performance
loss, the over-bounding should be least conservative.

B. Model predictive control applied to a boost converter

The MPC scheme from the last subsection can be ex-
tended to the boost converter by replacing the model (4)
by the return map [8]

xc+1 =
(
I 0

)
e(Ã0δ0)e(Ã1δ1)

(
xc

1

)
, Ãq =

(
Aq bq

0T 0

)
.

Clearly, this map constitutes a nonlinear discrete-time
system with a state xc that coincides with the switching
point at each re-activation of mode q = 1, and a
continuous-valued control input δ̄◦ denoting the activa-
tion duration sequence for the cycle q̄◦.

Furthermore, we need to formalize the verbal spe-
cifications of Problem 1 into a discrete-time perfor-
mance metric and discrete-time state constraints. Suitable

choices for these are

gk(xk, δ) =

{
xT

k Qkxk, k < N

xT
NPxN , k = N

(9)

ck(xk, δ) =

{ ∫ δ
0 I(t) dt, k < N

xT
NPxN � γ < 0, k = N

(10)

I(t) =


iL(t) � 1 if iL(t) ≥ 1.01

400(iL(t) � 0.99)2 if 0.99 ≤ iL(t) ≤ 1.01

0 if iL(t) ≤ 0.99

.

The quadratic term of (9) accounts for the orbital stability
requirement as long as the weighting matrix Qk is
positive definite. The transcribed constraints (10) can be
evaluated numerically. Both (9) and (10) are sufficiently
smooth functions, which makes derivative-based iterative
solvers for nonlinear programs applicable.

All that remains is to choose P , γ according to the
QIH-strategy. For this, stabilizing switching planes have
to be computed according to the algorithm in [5]. With
these, a periodic Lyapunov equality similar to (8) can
be solved numerically. The resulting X and γ = 0.01
define terminal costs gN and a terminal region XT that
together ensure orbital stability.

C. Explicit representation of the MPC law

For a fast switching power converter, it is impossible
to iteratively solve the complex algebraic optimization
problem (3)-(6) on-line at the beginning of each period.
Fortunately, it was shown in [6] that the solution to such
a finite-horizon problem can be expressed in terms of
stationary switching surfaces by imposing mild restric-
tions onto the dynamics, the costs and the constraints.
The resulting time-invariant MPC law δ̄◦ = κq̄◦(xc),
which returns the complete optimal activation duration
sequence for the schedule q̄◦ at the beginning of each
switching cycle, defines the optimal surfaces as

S⋆
q = {x : eT

q κq̄◦(xc) = 0} (11)

with the q-th unit vector eq. [6] provides a numerically
efficient algorithm to compute polyhedral approxima-
tions S̃⋆

q of S⋆
q , which uses ideas from predictor-corrector

continuation, nonlinear optimization and optimal pertur-
bation control. Such polyhedral surfaces S̃⋆

q are effi-
ciently tested for intersection within �s by exploiting
ideas from the field of collision detection [9].

IV. SIMULATION RESULTS

For the converter model and the control specifications
of Section II, the explicit model predictive control law
was computed in terms of two polyhedral surfaces S̃⋆

0
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Fig. 3. Switching surfaces implementing the MPC law

and S̃⋆
1 . Fig. 3 depicts these surfaces in state space,

together with the desired limit cycle Γ. Each surface S̃⋆
q

constitutes a polygon of approximately 200 sections. As
can be seen, it is certainly possible to use far less polygon
sections without degrading the closed-loop performance
considerably. Figure 4 shows a simulation result of the
start-up behavior under strong disturbances affecting the
input source VS . The first two subfigures illustrate that
the state x(t) is quickly taken from its initial value

x0 =
(
0A 6 V

)T
to a close neighborhood of Γ within

four switchings. At the beginning, the inductor is maxi-
mally charged while energy is simultaneously transferred
to the capacitor at the output. The first activation period
of mode q = 1 is short to prevent violation of the
current constraint. The subsequent energy transfer to the
capacitor is interrupted (q = 0 is deactivated), when the
outgoing energy flow first exceeds the incoming flow.

In summary, nearly time-optimal start-up is achieved

Fig. 4. Simulation of the closed-loop start-up behavior

without violating the constraint on the inductor current,
without voltage overshoot and without the execution
of unnecessary mode transitions (see third subplot).
Once the state reaches a neighborhood of Γ the power
converter settles to a stationary periodic operation.

Even though, disturbances cause heavy inductor cur-
rent oscillations and the capacitor is chosen relatively
small, the output voltage is almost left unaffected. This
is due to the infinite sampling rate property of an explicit
MPC law, which allows for compensating disturbance
effects immediately.

V. CONCLUSION

At the academical example of a boost converter, it
was shown how to use model predictive control in the
design of optimal switching surfaces in the state space.
Simulation results illustrate the good loop performance
for a known constant load and a fixed reference voltage.
How to relax these two restriction is subject to ongoing
research. The potential for applying this control concept
at high power converters should be investigated as well.
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Abstract—This paper suggests a simple mecha-
nism of sharing a common nonlinearity among
the linear oscillators to exhibit some interest-
ing phenomena. Here, we present fourth-order
nonautonomous circuit capable of showing a large
variety of dynamical behaviours in three differ-
ent modes of operation. In particular, a new
phenomenon of coexistence of attractors leading
to torus behaviour when two identical oscilla-
tors sharing a common nonlinearity and many
spatio-temporal patterns when more oscillators
sharing a nonlinearity are presented. The results
of numerical simulations, hardware experimental
realization and analytical studies are presented.

Key words: Bifurcations; chaos; nonlinear
electronic circuits.

I. INTRODUCTION

Ever since the invention of chaos, the applica-
tion of dynamic chaos in many diversified fields
has an exponential growth. It is an established
fact that electronic circuits are representatives of
many physical systems and can be represented
by differential or partial differential equations.
This leads to exhibit many kinds of natural
phenomena from chaotic electronic circuits. The
concept of nonlinear element by Chua and its’
subsequent studies allowed many possibilities
of exploring chaotic dynamical systems [?].
Motivated by many research activities in nonlin-
ear electronic circuits, we wish to present some
suggestions regarding the implementation of two
identical linear oscillators sharing a common

nonlinearity. In particular, much attention has
been given to explore the novel features of the
present circuit with experimental, numerical and
analytical results. Moreover, this study is ex-
pected to open up certain unexplored aspects ex-
ist in certain nonlinear electronic systems which
could mimic many kinds of natural phenomena
and it is expected that these phenomena be
analyzed by using differential equations. From
the technical point of view, our study provides a
clue for the potential applications in controlling
of chaos, secure communication systems, torus-
synchronization etc.

II. D ESCRIPTION OFMODEL CIRCUIT

A. Experimental Setup

(a)

(b)

Oscillator 1 Oscillator 2S1 S2Nonlinear Element

(Chua’s Diode)

L1

R1 R2

C1 C2

f1sinω1t

f2sinω2t

18mH
18mH

1.34 KΩ 1.34 KΩ

10 nF
10 nFChua’s

Diode

S1 S2

L2

Fig. 1. (a) Block diagram of two LCR oscillators shar-
ing Chua’s diode through switches.(b) Schematic circuit
diagram of Fig. 2(a).

The experimental circuit that we have em-
ployed here is a simple nonautonomous MLC
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circuit and a forced LCR circuit connected
in parallel. The combined circuit is shown in
Fig. 2(b). The nonlinear resistive element, that
is , Chua’s diode employed in the circuit is to
cater the needs of the two linear oscillators and
to provide both periodic and chaotic domains ex-
perimentally. For analysis, we use the parameter
set as:C1 = C2 = 10nF , L1 = L2 = 18mH,
R1 = R2 = 1.34kΩ. The circuit is driven by
two external forcing sources whose amplitudes
(f1, f2) and frequencies(ω1, ω2) are considered
as the control parameters.

1) State Equations: The state equations for
the schematic in Fig. 2(b) are the following:

C1
dv1

dt
= iL1 − h(〈v〉) (1)

C2
dv2

dt
= iL2 − h(〈v〉) (2)

L1
diL1

dt
= −iL1

R1 + f1 sin(ω1t) − v1 (3)

and

L2
diL2

dt
= −iL2

R2 + f2 sin(ω2t) − v2 (4)

wherev1 andv2, the voltages acrossC1 and
C2 and iL1

and iL2
, the current through the

inductanceL1 andL2 are the four state variables
that describe the dynamics of the system.

In this implementation, since the nonlinear
element is connected parallel toC1 and C2,
the current flow across it is controlled by the
voltagesv1 and v2 of the capacitors and hence
it’s performance is restricted to a linear combi-
nation, specifically the arithmetic mean of these
potentials(〈v〉). The argument of the nonlinear
function is given as,

h(〈v〉) = Gb〈v〉+
1

2
(Ga−Gb) [|〈v〉 + Bp| − |〈v〉 − Bp|]

(5)
The slopes of the nonlinear characteristic

h(〈v〉) in Eq. (5) are defined byGa =
−0.756mA/V andGb = −0.409mA/V .

B. Experimental realization

The circuit model described here is the most
suited one to have both the processes and its’
adaptability to set in any mode of operations is
explained in the following:

1) Mode(1): If the states of the switches are
set as S1-ON and S2-OFF, we have the standard
nonautonomous MLC circuit. By increasing the
amplitude from zero upwards, the circuit ex-
hibits the complex dynamics of bifurcation and
chaos.

2) Mode(2): If the states of the switches are
set as S1-OFF and S2-ON, and by setting the
frequency to8.890KHz and varying the ampli-
tude from0.0365Vrms to 0.107Vrms, the period
doubling route to chaos can be observed as in
mode(1). From the mode(1) and mode(2), one
can understand that the dynamical behaviours
just mimic the dynamics of the MLC circuit.

(a)
(b)

(c) (d)

(e)
(f)

(g) (h)

Fig. 2. Experimental phase portraits in the(v1 − iL1
)

and (v2 − iL2
) planes. (a-b) ν1(=

ω1

2π
)= 16 KHz,

ν2=8 KHz, f1=0.00707 Vrms andf2=0.03535 Vrms;
(c-d) ν1= 24 KHz, ν2=9 KHz, f1=0.006364 Vrms

andf2= 0.0707 Vrms; (e-f) ν1= 1.433 KHz, ν2=2.786
KHz, f1=0.00707 Vrms andf2=0.28284 Vrms; (g-h)
ν1= 8.2123KHz, ν2=12.4586KHz, f1=0.06363Vrms

andf2=0.35355Vrms.

3) Mode(3): To study the performance of
the circuit [Eqs. (1)-(4)] which includes the
paradigm of sharing of nonlinearity, the states
of the switches S1 and S2 should have to be
in ON condition. In order to understand the
behaviour of the chosen circuit in mode(3), the
following observations are carried out by keep-
ing f1 = f2 = 0.107Vrms, ω1 = 8.890KHz and
ω2 = 8.8KHz.

• When S1 is ON and S2 is OFF the circuit
exhibits a double-scroll chaotic attractor.

• When S1 is kept ON and S2 is also
switched to ON, the existence of double-
scroll attractor is controlled to exhibit
period-1 limit cycle.
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• The same behaviour of transition from
chaotic attractor to period-1 limit cycle is
observed when S2 is made ON at first and
then S1- ON.

Further, we varied the amplitudesω1, ω2 and
the frequenciesf1, f2 to understand the more
interesting behaviour of circuit. Experimentally
observed phase portraits in(v1 − iL1

) and(v2 −

iL2
) planes for various values of frequencies and

amplitudes are shown in Fig. 3.

III. N UMERICAL STUDIES

For numerical analysis, the circuit Eqs. (1)-
(5) are converted into a normalized form. The
normalized circuit equations are give by,

ẋ1 = y1 − f(x) (6)

ẏ1 = F1 sin(ω1t) − β1y1 − β1x1 (7)

ẋ2 = y2 − f(x) (8)

ẏ2 = F2 sin(ω2t) − β2y2 − β2x2 (9)

where,

f(x) = f(〈x〉) =











b〈x〉 + a − b , 〈x〉 ≥ 1

a〈x〉 , |〈x〉| ≤ 1

b〈x〉 − a + b , 〈x〉 ≤ −1
(10)

Here (·) dot denotes differentiation with re-
spect toτ , 〈·〉 refers arithmetic mean andf(x)
denotes the current through the nonlinear ele-
ment. The dynamics of Eqs. (6)-(10) depends
on the parametera and b. In order to investi-
gate the dynamics of this circuit, we numeri-
cally integrated Eqs. (6)-(10) using fourth-order
Runge-Kutta algorithm with the fixed parameters
a = −1.022, b = −0.55, β1 = β2 = 1.0, while
varying the frequenciesω1 or ω2 or the drive
amplitudesF1 or F2.

Using the above model [Fig. 2(b)], the dynam-
ical behaviour based on numerical simulation are
summarized below.

As discussed in the experimental studies, the
circuit performance in three different modes of
operation are also numerically examined. For

x1

y1

x2

y2

(a) (b)

x1

y2

y2

y2

x2

x2

x2

x1

x1

y1

y1

y1

(c) (d)

(e) (f)

(g)
(h)
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-0.2
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-0.4

-0.2

 0

 0.2

 0.4
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Fig. 3. Numerically observed phase portraits in
the (x1, y1) and (x2, y2) planes. (a-b) ω1=1.346432,
ω2=0.673216, F1=0.01, F2=0.05; (c-d) ω1=2.019648,
ω2=0.673216, F1=0.009, F2=0.1; (e-f) ω1=2.1038,
ω2=0.673216, F1=0.01, F2=0.4; (g-h) ω1=0.618034,
ω2=0.3345,F1=0.09,F2=0.5.

mode(1) and mode(2) operations, one could ex-
pect the dynamical behaviour of the conven-
tional MLC circuit. But, for the mode(3) oper-
ation, we observe few ordered patterns which
includes the influence of forces present in the
entire circuit.

IV. A NALYTICAL STUDIES

Earlier sections have vividly described both
experimental and numerical realizations and it
is quite obvious from the experimental ob-
servations that the potential developed across
each energy components seem to be constant
in mode(3). This unique feature paved way to
investigate the analytical aspects of the proposed
circuit given by Eqs. (6)-(10). Then, the unified
second order differential equation will be of the
form

ÿ1 = −β1ẏ1−β1y1−
a

2
β1y1−

a

2
ẏ1+

a

2
F1 sinω1t−β1

a

2
y2−

β1

β2

a

2
ẏ2

+
β1

β2

a

2
F2 sin ω2t + F1ω1 cos ω1t (11)

and when consideringy1 = y2 and ẏ2 = ẏ1, we
obtain the subspace divided into three regions.

D−1 = {(t, y, ẏ)| 〈x〉 < −1}

D0 = {(t, y, ẏ)| |〈x〉| ≤ −1}

D+1 = {(t, y, ẏ)| 〈x〉 > −1}
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For mode(3), the stability determining eigen-
values of the indicial equationλ2+K1λ+K2 in
the D0 region are found to be real and distinct,
on the other hand, in the regionD±1, there exists
a pair of complex conjugate eigenvalues. Now
Eq. (15) in each of the regions as,
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Fig. 4. Analytical phase portraits in the (x1, y1)
and (x2, y2) planes. (a-b) ω1=1.346432, ω2=0.673216,
F1=0.035, F2=0.045; (c-d) ω1=2.019648,ω2=0.673216,
F1=0.05, F2=0.15; (e-f) ω1=2.1038, ω2=0.673216,
F1=0.35, F2=0.2; (g-h) ω1=0.618034, ω2=0.3345,
F1=0.09,F2=0.5.

ÿ1+K1ẏ1+K2y1 = E1 cos(ω1t)+E2 sin(ω1t)

+ E3 sin(ω2t) for |〈x〉| ≤ −1 (12)

and

ÿ1+K3ẏ1+K4y1 = E4 cos(ω1t)+E5 sin(ω1t)

+ E6 sin(ω2t) + β1∆ . (13)

where,

∆ = a − b for D+1 region

∆ = b − a for D−1 region

Eqs. (12) and (13) can be solved analytically
to obtain y1 and y2 , which can be then dif-
ferentiated to geṫy1 and ẏ2. From Eq. (6) and
Eq. (8),x1 andx2 can be evaluated. The phase
portraits of analytical solutions in the(x1 − y1)
and(x2−y2) phase space shown in Fig. 5 agrees
with the experimental and numerical results ob-
tained in earlier sections.

V. CONCLUSION

In this paper, the fascinating ordered and
chaotic phenomena have been accomplished in
a versatile model circuit using a well known
paradigm of nonlinear circuit, namely, Chua’s
circuit and their results are presented. The pos-
sible ways and means by which a single nonlin-
earity can be exploited by a network of linear
oscillators have been shown here with efficient
experimental, numerical and analytical studies.
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Abstract—This paper is focussed on a MatLab-based
music score recognition system, which is developed to read
printed music scores and to generate a MIDI structure.
This structure is used to control two robotic arms playing
a Theremin without physical contact. The whole system is
developed for teaching engineering students at the involved
universities.

I. I NTRODUCTION AND DESCRIPTION OF THE

OVERALL PROJECT

The Theremin is an early electronic musical instru-
ment, invented in 1920 by Lev Sergeyevich Termen,
who discovered its function by chance during research
on proximity sensors. The Theremin is played without
being touched. Two metal antennas sense the position
of the players hands, which act as the grounded plate
(the performers body being the connection to ground)
of a variable capacitor in an LC circuit. The horizontal
antenna is used for volume control (changing the am-
plitude of the signal), while the vertical one is used for
the pitch (changing the frequency). Its signal processing
principle is depicted in fig. 1. To control the pitch, two

Fig. 1. Signal processing principle of the Theremin [1]

radio frequency oscillators are used. One operates at a
fixed frequency, the other is controlled by the performers
distance from the pitch antenna. The difference between

the frequencies of the two oscillators at each moment
allows the creation of a difference tone in the audio
frequency range.

Fig. 2. Experimental setup: Moog Etherwave Theremin, two Lynx-5
robotic arms, and a laptop to control the robots.

In this project, players hands are replaced by two
robotic arms as shown in fig. 2. The robots are controlled
by a MatLab script, which reads musical information
from a MIDI file. Now, an optical vision system for the
robot is added. This paper is focussed on a simple and
fast music score recognition system, which is developed
as the basis of the vision system and is implemented in
MatLab, too. The whole project, which is intended to be
used for teaching (lab experiments, demonstrations), is
described in [8].

II. REQUIREMENTS ANDL IMITATIONS FOR THE

OPTICAL VISION SYSTEM

A. Requirements

For development and test of the system, score sheets
of A4 paper size, produced by the software LilyPond
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[7], are used. Investigations show, that for detection of
all necessary details (such as dotted notes) a minimum
resolution of 100dpi is required. At present, an image
size of approx. 1200 x 1700 pixel (corresponding to a
resolution of 145dpi) is used for each A4 page.

B. Limitations

Simply moving his right hand by something near 50
cm enables the player of the Theremin to cover a usable
pitch range of approximately c2 to c7 (MIDI 36 to MIDI
96) [6]. Unfortunately, the working range of the robotic
arm is not that large. In the recent setup it is restricted to
the range of c3 to f5 (MIDI 48 to MIDI 77). Therefore,
music score recognition is limited to that range as well
during this first stage of development.

As the Theremin is only able to produce one single
tone per time, it is assumed that there are single notes
only at the sheet.

Furthermore, due to the speed limit of the robotic
arms, the minimum duration of a note is 0.2ms. There-
fore, only notes and breaks down to 1/8 are analysed.

III. M USIC SCORERECOGNITION ALGORITHM

Optical Music Recognition (OMR) has been devel-
oped for over three decades to read printed music scores
by a computer system. An overview of the state of the
art is given e.g. [4]. Many of the algorithms, described
there, consist of the following four modules:

1) staff line identification,
2) musical object location,
3) musical feature classification, and
4) musical semantics.

The upper part of one of the example images, which is
used to depict the image processing algorithm and its
results, is shown in fig. 3.

A. Staff line detection

The most widely used method for detecting staff lines
is based on horizontal projections [5]. A horizontal
projection maps a two-dimensional array into a one-
dimensional vector by recording the number of black
pixels in each row of the image in the corresponding
entry in the vector. Under such a projection, staff lines
appear as distinct maximums in that vector that can be
detected easily [4] (see fig. 4 for example). Lets assume,
the length of the staff lines exceeds a certain percentage
(e.g. 0.8) of the paper width. Then, for maximums less
than that percentage, the staff sheet has been rotated. The
angle of rotation can be determined and corrected based
on a Hough transform for (staff) lines and the horizontal

Fig. 3. Upper part of an example image of a musical score
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Fig. 4. Horizontal projection of the example image

projection is repeated. Afterwards, always five staff lines
are grouped to one staff, which forms the region of
interest (ROI) for further processing (e.g. fig. 5).

B. Musical object location

For object location, which is based on a flood-fill
algorithm in general, staff lines are either ignored or
removed. Due to the limitations mentioned in sec. II-B,
a simplified approach can be used here, which is based
on vertical projection of the ROI of each staff. As an
example, fig. 6 shows the vertical projection of the ROI
of the first staff. As the average number of pixels related
to staff lines in each row is known from staff line
detection (no. of values above threshold in the vector
of horizontal projection, 10 pixel for fig. 6), it can be
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ROI of staff no. 1

Fig. 5. Region of interest of first staff

0 200 400 600 800 1000 1200
0

10

20

30

40

50

60

70

80
No. of white pixel in staff no. 1

column no.

Fig. 6. Vertical projection of the Region of interest of first staff

subtracted from the vector of vertical projection. Now,
musical symbols are separated by zeros in that vector
and the horizontal range of its bounding box can be
determined.

C. Musical feature classification and semantics

OMR often works on a sub-symbol level. Primitives,
such as note heads, stems, beams, or flags, are classified
based on template matching, Hough transform or pro-
jections. Afterwards, primitives are grouped to musical
symbols using musical knowledge [4]. Other approaches
are based on the analysis of the bounding box dimension
[4], on morphological detection and connected compo-
nents analysis to recognize the symbols, followed by
a reasoning module [2] or on template matching of
complete symbols [3].

In this project, template matching in time and fre-
quency range as well as projections have been imple-
mented and compared. It turned out, that the approach
based on vertical projection of the ROI of each staff is
the fastest as it reduces the problem from 2D to 1D signal
processing. Furthermore, it is less sensitive to scaling and
it easily provides all symbols in correct order, due to the
fact, that the ROI of the staff is processed from left to
right. The algorithm for detecting the musical symbols
within the ROI of the staffs is described in fig. 7.

for all staffs
find clef

find beat sign

if distance(beat sign, clef) > threshold
look for accidentals

for all beats
while symbol 6= beat bar

recognizenotes/breaks
if

∑
notes/breaks < beat sign

search fordotted notes
if beat bar = repeat mark

storerepeat info in structure
if beat bar = double bar

check for newaccidentals/beat sign

Fig. 7. Algorithm for detecting musical symbols
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Fig. 8. Violine clef, bass clef, and their vertical projections

First, clef, beat sign (if any), and accidentals (if any)
are detected at the beginning of each ROI. Clefs and
accidentals can be easily distinguished based on their
vertical projections (see fig. 8 for an example). For the
beat sign, template matching by XOR of the scaled ROI
of the symbol and the templates is used.

Afterwards, notes and breaks are recognized based on
vertical and horizontal projections. As an example, fig. 9
shows some notes and their vertical projections. Due to
the different shapes, this projection can used to determine
the duration of the note, which is 1/1, beat bar, 1/2,
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1/8, 1/4, 1/8 in that example. A horizontal projection
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Fig. 9. Notes and their vertical projections

of the ROI of each single note is used to determine its
pitch. As an example, fig. 10 shows these projections for
the first four notes in fig. 9. Ignoring the values related
to projections of the staff lines, one obtains maximums
which results in g4, a4, h4, and c5.
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Fig. 10. Horizontal projections of the first four notes in fig. 9

When a beat bar is found, it is checked whether the
durations of all detected notes and breaks corresponds to
the beat sign. If not, it is searched for missed dotes. In
case of a double beat bar, it is looked for new accidentals
and beat sign. Accidentals in front of notes are currently
not analysed, but will be allowed later on.

All processed symbols are stored in a MatLab struc-
ture staff by staff and beat by beat. In cases, where no
accidental or beat sign it detected, its value is taken from
the previous staff.

Finally, a MIDI structure is generated from the Mat-
Lab structure and it is used to control the robotic arms.

IV. CONCLUSION & FUTURE WORK

A MatLab-based music score recognition system has
been developed. It is now able to analyse musical score
sheets and to built a MIDI structure, which can be used
to control two robotic arms playing a Theremin. In the
future, the processing speed of the MatLab script should
be further optimized and the number of musical symbols
to be recognized will be extended in order to analyse
more complex score sheets for other instruments, like
piano or violin, too.

The main purpose of developing the whole system,
depicted in fig. 2, is to introduce engineering students
to a wide range of problems in an exciting way. The
Theremin can be used to explain basics of circuit theory
and the operation of the robotic arms for control theory.
Several digital signal processing algorithms can be inves-
tigated and compared using the optical vision system and
a new module for sound analysis and synthesis which is
just under development.
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Abstract—Two simplifying assumptions were made
in a frequency-domain formulation of an integrable
1D transmission-line cochlear model: (1) the parallel
impedance representing the basilar membrane impedance
is a series LRC circuit whose resonant frequency varies
exponentially with the distance x from the stapes; and
(2) the characteristic impedance Z0(s) with the complex
angular frequency s is independent of x so that no wave
reflection occurs which comes from the nonuniformity
of the parallel and/or the longitudinal impedance, ex-
cept at the stapes and helicotrema. When Z0(s) is real
(respectively, complex), we can get an integrable passive
(respectively, active) model. In this paper, we review a
cascaded transmission-line model consisting of two active
sections and one passive one. Such an active-passive-active
model is shown to give a solution to Zweig et. al.’s cochlear
compromise problem and Zwislocki’s sharp maximum
vs. wave reflection paradox and provide a computational
model for simulating Kemp echo.

I. INTRODUCTION

The classical nonuniform transmission-line model of
the cochlea is characterized by two quantities as func-
tions of distance x from the stapes and the complex
angular frequency s = σ + jω with the angular fre-
quency ω and a real-valued σ (see for review [1]–
[5]): (1) the distributed parallel impedance representing
the basilar membrane impedance Y −1(x, s); and (2)
the series impedance representing the reticular lamina
and outer hair cell, as well as the fluid that connects
adjacent parallel sections together, Z(x, s), as shown
in Fig.1, where E,P0, U0, PL, UL, ZG, and ZL denote
the eardrum pressure, stapes pressure at x = 0, stapes
volume velocity, pressure difference at the helicotrema
(x = L), fluid volume velocity at the helicotrema, middle
ear transfer characteristic and helicotrema characteristic,
respectively. Furthermore, P (x, s), U(x, s), Ub(x, s) de-
note the pressure difference between two scalae at x,

～

Z
OC
(x)dx

Z
BM

(x)dx
-１

U(x)

P(x)

jωρ R
f

jωm(x)
W(x)dx

x x+dx

s(x)
jω

s(x)
jω

r(x)

Fig. 1. Left:Simplified cochlea transmission-line model with the
series impedance Z(x, s) and paralell admittance Y (x, s) per unit
length; Right:Z(x, s) and Y (x, s) of classical models.

fluid volume velocity, basilar membrane velocity, respec-
tively. In electrical communication engineering, instead
of Y (x, s) and Z(x, s), the characteristic impedance
Z0(x, s)(=

√

Z(x, s)/Y (x, s)) and the propagation con-
stant γ(x, s)(=

√

Z(x, s)Y (x, s)) are often discussed.
Unlike in most of well-known cochlear transmission-

line models, we have previously given cochlear
transmission-line models [6], [7], where Z0(x, s) is
indepedent of x, i.e., Z0(x, s) = Z0(s) but the propa-
gation constant is a function of x and s so that no wave
reflection occurs which comes from the nonuniformity
of Y (x, s) and/or Z(x, s), except at the stapes and heli-
cotrema. Furthermore, we have shown that when Z0(s) is
real (respectively, complex), the resulting transmission-
line becomes a passive integrable cochlear model [6]
(respectively, an active [7] and hybrid one [8]).

In this paper, we briefly review that such a class of
cochlear transmission-line models without wave reflec-
tion has good agreement with physiological experimental
data [9]– [11]. Furthermore, we give frequency charac-
teristics and travelling wave in such models.

II. NONUNIFORM TRANSMISSION-LINE MODEL

WITH CONSTANT CHARACTERISTIC IMPEDANCE

A number of cochlear mechanics have been proposed
(see for review [1]–[5]). In the well-known cochlear
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transmission-line models, the pressure difference P (x, s)
across the scala media and the volume velocity U(x, s)
of the fluids at x are assumed to satisfy the nonuniform
transmission-line equations as shown in Fig.1:

∂P (x, s)

∂x
= −Z(x, s)U(x, s), (1)

∂U(x, s)

∂x
= −Y (x, s)P (x, s). (2)

Under the condition that as shown in the right figure of
Fig. 1, the longituidinal coupling is fluid coupling, e.g.,

Z(x, s) = ν(x) + sμ(x) (3)

and the scala media is modeled mechanically as a linear
array of harmonic oscillators, i.e.,

Y −1(x, s) = sm(x) + r(x) + k(x)/s, (4)

the solution P (x, s) and U(x, s) to the above nonuni-
form transmission-line equations are given by the use
of the WKB approximation technique (see for review
[12],[13]).

On the other hand, two simplifying assumptions were
made in two integrable transmission-line models of
the cochlea [6], [7]: (1) Y −1(x, s) is a series LRC
circuit whose resonant frequency is given by β(x) =
β0e−ax; and (2) Z(x, s) is determined by the char-
acteristic impedance Z0(s) which is independent of
x, namely, Z(x, s) = Z2

0 (s)Y (x, s) so that no wave
reflection occurs which comes from the nonuniformity
of Y (x, s) and/or Z(x, s), except at the stapes and/or
helicotrema. Thus the second assumption gives an inte-
grable transmission-line equations:

∂P (x, s)

∂x
= −Z0(s)γ(x, s)U(x, s), (5)

∂U(x, s)

∂x
= −γ(x, s)

Z0(s)
P (x, s). (6)

Not using the WKB approximation technique, we can
get the solutions of P (x, s) and U(x, s) in a rigorous
form:

P (x, s) = Ad e−Γ(d,x;s) + Bd eΓ(d,x;s) (7)

U(x, s) =
Ad

Z0(s)
e−Γ(d,x;s) − Bd

Z0(s)
eΓ(d,x;s) (8)

where

Γ(d0, d1; s) =

∫ d1

d0

γ(x, s) dx (9)

and Ad and Bd are constants to be determined by
the boundary conditions at x = d. The first terms of

P (x, s) and U(x, s), Ade−Γ(d,x;s) and
Ad

Z0(s)
e−Γ(d,x;s),

P(x, s)

x x+dx

(x, s)dx Ls(x)

Rs(x)

Cs(x)

(x, s)dx

U(x, s)

U (x, s)bLp(x)

G(x)

Cp(x)

Zo (s)= (x, s) (x, s)
Y
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Z
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P P
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Fig. 2. Left:Short section of a passive electrical transmission-line;
Right:Short section of an active electrical transmission-line.

respectively are referred to as the incident waves and the

second terms BdeΓ(d,x;s) and
Bd

Z0(s)
eΓ(d,x;s) are referred

to as the reflection waves.
Note that both of P (x, s) and U(x, s) are to be wave-

reflectionless, defined by

P (x, s) = A0 e−Γ(0,x;s), U(x, s) =
A0

Z0(s)
e−Γ(0,x;s) (10)

if and only if both of the generator impedance ZG(s)
and the load impedance ZL(s) in the transmission-line,
as shown in Fig.1, are matched to the characteristic
impedance Z0(s). (i.e., ZG(s) = ZL(s) = Z0(s).)
Namely, such a transmission-line satisfies the maximum
power-transfer theorem in the circuit theory. Thus this
assumption is quite distinct from the assumptions in
most of well-known transmission-line models that the
characteristic impedance is a function of x and s and
the propagation constant is independent of x.

Assuming that the parallel impedance is a series LRC
circuit, defined by

Y −1(x, s) = sL(x) + R(x) +
1

sC(x)
, (11)

(together with the condition that L(x) = L0eax, C(x) =
C0eax, R(x) = R0,) or the resonant frequency and the
loss function are defined by

β(x) =
1

√

L(x)C(x)
= β0e−ax, β0 =

1√
L0C0

, (12)

δ(x) = R(x)

√

C(x)

L(x)
= δ0, δ0 = R0

√

C0

L0
. (13)

We have get a passive transmission-line model [6] with a
resistive characteristic impedance Z0(s) = ZP

0 = r and
hence with a parallel LGC circuit Z(x, s) = ZP (x, s),
as shown in Fig.2. Furthermore, we have shown that
several numerical results of the passive model give good
agreement with the experimental data by Békésy and
Rhode (see Figs. 4-7).

On the other hand, an inductive characteristic
impedance ZA

0 (s) = r + sM and hence Z(x, s) =
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Fig. 3. Real parts of the series impdedance Z in the active
transmission-line model as a function of f and x.
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Fig. 4. Amplitude characterstics of the transfer function in the active
transmission-line model as a function of place x.

ZA(x, s) = ZA
0 (s)

2
Y (x, s), (together with the condition

that L(x) = L0eax, C(x) = C0eax, R(x) = R0e−ax)
led us to get a locally active model [7], [8] with sharp
frequency characteristics as reported by Sellick et al.
(see Figs. 4 and 6). The continued-fraction expansion
of ZA(x, s) gives a network synthesis of ZA(x, s),
represented by a parallel LGC −L in series circuit with
locally negative resistances R1(x) and R2(x) as shown
in Fig.3.

Let us introduce the input impedance and the reflection
coefficient of the transmision-line at x, respectively
defined by

Zin(x, ω)=
P (x, ω)

U(x, ω)
, (14)

ρ(x, ω)=
B0e

Γ(0,x,ω)

A0e−Γ(0,x,ω)
=

Zin(x, ω) − Z0(ω)

Zin(x, ω) + Z0(ω)
.(15)

The assumption that ZG = ZL = Z0(ω) gives

P (x, ω) = P (0, ω)e−Γ(0,x,ω), Ub(x, ω) = Y (x, ω)P (x, ω).
(16)

Figures 4-7 show numerical results of the basilar mem-
brane velocity in active/passive models as a function of
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Fig. 5. Phase characterstics of the transfer function in the active
transmission-line model as a function of place x.
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transmission-line model as a function of frequency f .

x and f , respectively. The parameters of these models
are given as
⎧

⎪

⎪

⎨

⎪

⎪

⎩

Active : r = 36.0,M = 2.3 × 10−4, L0 = 1.78 × 10−6,
R0 = 1.5, C0 = 2.78×−6, a = 0.08,

Passive : r = 3.4, L0 = 2.385 × 10−7, R0 = 1.45,
C0 = 2.132 × 10−7, a = 0.263.
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Fig. 8. Cascaded transmission-line model which consists of two
active sections with ZA

0 (s) and γA(x, s) in the (0, �1) and (�2, L)
regions and one passive section in the (�1, �2) region with ZP

0 (s)
and γP (x, s) in order to make savings of active mechanisms, where
Γ(d0, d1; s) =

∫ d1

d0

γ(y, s)dy with γ(y, s) = γA(y, s) or γP (y, s).

III. ACTIVE-PASSIVE-ACTIVE MODELS WITH

CONSTANT CHARACTERISTIC IMPEDANCE

In this paper, we present a cascaded transmission-line
model [8] which consists of two active sections in the
(0, 
1) and (
2, L) regions and one passive section in
the (
1, 
2) region in order to make savings of active
mechanisms, as shown in Fig.8. Such a cascaded active-
passive-active (APA) transmission-line can be easily
solved by using both of four reflection coefficients
ρ(x, s) and input impedances Zin(x, s) at x = 0, 
1.
2, L
as follows:

ρ(0, s)=
(1 + ρ(
1, s))Z

P
0 − (1 − ρ(
1, s))Z

A
0

(1 + ρ(
1, s))ZP
0 + (1 − ρ(
1, s))ZA

0

e−2ΓA(0,�1;s),

ρ(
1, s)=
(1 + ρ(
2, s))Z

A
0 − (1 − ρ(
2, s))Z

P
0

(1 + ρ(
2, s))ZA
0 + (1 − ρ(
2, s))ZP

0

e−2ΓP (�1,�2;s),

ρ(
2, s)=
ZL − ZA

0

ZL + ZA
0

e−2ΓA(�2,L;s),

and Zin(x, s) is calculated by fomula (15). (In the
case, fomula (15) Z0 is treated as ZA

0 or ZP
0 ).

Such an APA model with only 7 parameters i.e., a,
β0, δ0, ReZ0, ImZ0, 
1, 
2, as well as ZG(s) and ZL(s),
provides a computational model in the following sense:
(1) both of the transfer characteristic P (x, s)/E and the
input impedance at the eardrum ZT (s), defined by

ZT (s) = ZG(s) + Zin(0, s) (17)

can be easily obtained; and (2) the application of the
Inverse Laplace Transform to ZT (s) gives the model
response for simulating Kemp echo. In particular, this
model is shown to give a concrete model of the an-
tiresonator as a possible secondary resonance of the
cochlear partition [14] and furthermore to provide a
simple solution to the cochlear compromise problem [12]
and the sharp maximum versus wave reflection paradox
[15].

IV. CONCLUSIONS

We have reviewed a class of transmission-line with
the constant characteristic impedance and given a cas-
caded transmission-line model consisting of two active
sections with the complex-valued constant characteristic
impedance and one passive one with the constant real-
valued characteristic impedance. Such an active-passive-
active model has been shown to give a solution to
the the cochlear compromise problem [12] and sharp
maximum vs. wave reflection paradox [15] and provide
a computational model for simulating Kemp echo using
the inverse Laplace transform of the input imedance at
the eardrum. This work was supported in part by ERATO
Aihara Complexity Modelling Project, JST, and Grants-
in-Aid for Scientific Research of Japan Society for the
Promotion of Science, no.20360174.
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Abstract— The standard reinforcement learning methods do 
not scale up well for complex tasks and a solution to this 
drawback is to decomposing a learning task into a set of 
subgoals. In this paper we propose a new algorithm for 
identifying and evaluating subgoals automatically based 
on a new complex network centrality measure. 
Investigating two benchmark problems, the results show 
that the proposed method outperforms current well-
known centrality based approaches. 

I. INTRODUCTION 
Reinforcement Learning (RL) is an approach for 

autonomous agents to improve their performance while 
interacting with an environment [1]. In the 
Reinforcement Learning framework, the interaction of 
the agent and an environment can be represented by a 
Markov Decision Process (MDP) framework. A finite 
MDP is a tuple , , , , where S is a finite set of 
states,  A  is a finite set of actions,  T: S A S
0  1  is a state transition probability function and 
R: S A  is a reward function. At each decision 
stage, the agent is in a state s   S  and executes an 
action  a   A with probability , , ’  which leads to 
state    and obtains a reward  which is an 
either static or stochastic function of the current state 
and the action performed by the agent. The agent’s 
goal is to find a map from states to actions, called 
policy, which maximizes the expected discounted 
reward over time, ∑ , where 1  is a 
discount factor and rt is the reward obtained at time t.  

Standard RL methods do not scale up well for 
complex tasks. There are two principal approaches for 
improving RL performance in complex environments. 
The first approach is to apply approximates of a value 
function and the second approach is decomposing a 
learning task into a set of simpler subtasks [3-4], 
leading to skills. This decomposition leads to the 
reduction of the size of an agent’s state space and 
expedites the learning procedure. To represent skills, 
we use the options framework [3]. An option is a 

temporally-extended action, specified by a triple 
, ,   where  denotes the option’s initiation set, 

i.e., the set of states in which the option can be 
invoked;  is the option’s policy, mapping states 
belonging to  to a sequence of actions; and  denotes 
the option’s termination condition, where  denotes 
the probability that the option terminates in state s. In 
this paper, the Macro-Q-Learning algorithm [3] is 
exploited to optimize policies for agent’s actions, i.e. 
primitive actions and options. Using a skill means that 
the agent follows the policy of that skill until it 
reaches a termination node. Due to the longer 
execution time of skills comparing to the primitive 
actions, the penalty, i.e. negative reward, assigned to a 
skill is higher than primitive actions. Consequently; 
developing useless skills leads to low learning 
performance. A common way is to define a set of 
subgoals consisting in reaching some strategic states. 
These states are believed to have crucial importance to 
reach and help accomplishing the task considerably. 
Appropriate selection of skills effectively simplifies 
learning of the task. The skills could be predefined by 
the designer but it is not usually easy to find them for 
complex tasks [3-4]. Therefore, it is preferable that the 
agent acquires these skills automatically which in fact 
is the goal of this paper. 

There are three approaches to identify subgoals 
automatically. The first approach is frequency based 
and uses the information how often a state has been 
visited by the agent [5-6]. Next is policy based in 
which the agent, first learns a task and then analyzes 
the learned policy for certain structural properties [7-
8]. Finally, the third method is graph theoretic 
approaches where the agent’s transition history is 
mapped to a graph and then, the states within strongly 
connected regions are identified as subgoals [9-14]. 
Menache et al. [9] have used the Max Flow-Min Cut 
algorithm to find bottleneck states while in [10-12] the 
states space is partitioned using some graph clustering 
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algorithms. On the other hand, Simsek and Barto [13] 
and Ajdari et al. [14] showed that the node centrality-
based measures can be utilized as an effective measure 
not only for finding but also evaluating the subgoals. 

According to the definition and application of skills, 
Ajdari et al. [14] characterized the candidate subgoals 
as follows. The candidate subgoals should (a) 
frequently contribute in solutions to be reused in 
several tasks, (b) lie on rather long and hard-to-find 
solutions to be used for the abstraction of subgoals, 
and (c) have some centrality property to decrease the 
average time of exploration. In addition to above 
conditions, from the computational complexity point 
of view, the skill acquisition method must be 
applicable for problems with a large state space. There 
are several centrality measures that numerically 
quantify the importance of nodes in a graph [15] 
including betweenness centrality, closeness centrality, 
stress centrality, graph centrality and connection graph 
stability (CGS) centrality [14].  

Here, we propose a new algorithm for identifying 
and evaluating subgoals automatically. Investigating 
two benchmark problems, the results show that the 
proposed method outperforms current well-known 
centrality based methods. The rest of the paper is 
organized as follows; in section 2 the proposed 
method is presented. The benchmark tasks, simulation 
and results are described in section 3 and section 4 
contains concluding remarks. 

II. PROPOSED METHOD 
Our proposed algorithm is as follows: (1) the agent 

starts exploring the environment until stop conditions 
are met, (2) the agent’s state space history is mapped to 
a graph, (3) the nodes of the obtained graph are scored 
based on CGS centrality (4), the top most scored 
nodes, i.e. nodes with score higher than a predefined 
threshold, are considered as candidate subgoals, (5) the 
set of candidate subgoals is reduced to the most 
important subgoals, (6) for each subgoal, a skill is 
developed and is added to the agent’s action set. 
Afterwards, the agent can either select a primitive 
action or a skill, in each state and updates its 
corresponding policy based on gained reward. 

A. Subgoal set discovery 
For subgoal identification and selction, recently, we 

proposed a node centrality measure called connection 
graph stability (CGS) centrality which is defined as the 
weighted sum of the path length of shortest paths 
crossing a node [14]. This measure fulfills all three 
mentioned properties for detecting nodes related to 
useful skills. The CGS concept was first introduced by 
Belykh et al. [16] as a score assigned to the edges of 
the graph to find a sufficient condition for 
synchronization in a network of coupled dynamical 
systems. It is worth mentioning that the computational 
complexity of this measure and node betweenness 

centrality is similar by exploiting Brandes algorithm 
[15] with minor modifications to involve the length of 
the paths. In order to find subgoals, the nodes with a 
CGS value less than a threshold are eliminated while 
the rest are considered as candidate subgoals and are 
preserved for further investigation. This is due to fact 
that it is highly expected that the subgoals are within 
the high-centrality nodes. We will show that the 
proposed method is not sensitive to this threshold.  

B. Subgoal set pruning 
Normally, the neighboring nodes of the most 

central nodes have also high centrality values and 
using a simple thresholding may result in redundant 
nearby subgoals. To avoid such results, we propose to 
create a properly weighted graph of candidate 
subgoals. This graph will be decomposed into a set of 
clusters with one main subgoal in each. By definition, 
a cluster is a subset of nodes which are strongly 
connected to each other, but are weakly connected to 
the nodes outside. We start with a complete graph 
whose nodes are the candidate subgoals and assign the 
edge weights as follows, 

  ,     3  

where is the weight of the edge connecting nodes i 
and j,  is the node CGS score of , and presents 
the co-betweenness centrality of nodes i and j, defined 
as the number of shortest paths that make use of nodes 
i and j simultaneously [17]. Using this weighting 
scheme, the candidate subgoals that are highly 
correlated, i.e. lie on many similar shortest paths, 
become highly coupled, while the rest are rather 
loosely coupled. 

In order to find the main subgoals, the weighted 
graph is divided into some clusters using the Fast 
Newman clustering algorithm which has been proved 
to have both good performance and low computational 
complexity i.e. log , where n and m are 
number of nodes and edges, respectively and d is the 
depth of the dendrogram describing the network 
community structure [2]. After clustering, the nodes 
with maximum node CGS in their own clusters are 
taken as the final subgoals. 

C. Creating skills   
In this paper, we focus on subgoal identification. 

However, there is also some prior knowledge about 
proper selection of the initiation set and the policy of 
each skill that can be extracted from the state 
transition graph. But for the sake of simplicity, we 
consider all nodes of the graph as initiation set of each 
skill and the probabilities of the policy are set equal. 
Further investigation on this topic is under progress. 
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III. SIMULATION AND RESULTS 

A. Environments and benchmarks 
The proposed method is tested on two benchmark 

tasks namely “grid room” and “taxi driver” worlds 
which are briefly introduced in this section.   

Two-room grid world shown in figure 1.a, consists of 
two rooms connecting each other through two doors. 
The agent is located at a randomly selected start point 
and asked to find a randomly selected goal point. The 
agent has four primitive actions, namely to move  up, 
down, left and right. In the corresponding state 
transition graph, the cells are represented as nodes 
which are connected to their four neighbors. Then, we 
randomly select 60 tasks (namely 60 pairs <start, goal> 
locations). Each task is performed 100 times 
(episodes). The agent receives a reward of 1000 at the 
goal state and a reward -1 for all other states. To set the 
exploitation and exploration trade-off, our agents select 
out of policy, i.e. random, actions with probability of 
0.1, i.e. the agent uses an -greedy policy [1] with 

0.1. The learning rate α and the discount factor γ 
are set to 0.1 and 0.9 respectively.  

 

a) b) 
Figure 1 a) two-room grid world domain   b) Taxi driver domain.  

Taxi driver world, shown in figure 1.b, consists of a 
5x5 grid with 4 special cells (RGBY). A passenger 
should be picked up from a cell and then dropped off 
in a destination cell, where the pickup and drop off 
nodes are two randomly chosen cells from the set of 
RGYB nodes. The corresponding graph of state 
transition graph consists of two identical grids (one for 
the case that the taxi is searching for the passenger and 
one for the case when the taxi has picked up a 
passenger and is looking for the drop off location) that 
are connected through a pair of nodes belonging to the 
set of RGBY nodes (the nodes where a change of state 
is possible). In each episode, the location of the taxi is 
chosen randomly. The taxi must pick up the passenger 
and deliver him, using the primitive actions up, down, 
left, right, Pickup, Putdown. For each iteration, a 
sequence of 300 episodes was considered. The taxi 
receives a reward of +20 for successfully delivering the 
passenger, -10 for attempting to pickup or drop off the 
passenger at incorrect locations and -1 for other 
actions. The other parameters were set same as in the 
two-room grid problem.  

B. Results 
Fig 2.a and 2.b show the result of the node CGS 

centrality scoring of the corresponding graphs of the 

mentioned benchmark problems. The lighter color of 
cells corresponds to the higher centrality scores. As it 
was expected the nodes around main subgoals, e.g. 
neighbors of hallway doors in the two-room grid 
world, have also high centrality scores.  

The next step is the elimination of the redundant 
subgoals which can be done by thresholding or, as it is 
proposed, by clustering. By varying the threshold, 
different numbers of nodes are extracted as subgoals. 
For example, in the grid world, when the threshold is 
set to 0.3, there are 22 candidate subgoals extracted as 
it is marked in figure 2.a by either ‘C’ or ‘F’ symbols. 
In the taxi world, the candidate subgoals, extracted 
when the threshold was set to 0.4, are presented in 
figure 2.b. It can be seen from figure 2.a and 2.b that 
most of founded candidate subgoals are neighboring 
states, since they lie on the same paths with the 
doorways and therefore centrality scores of these 
nodes are rather high. Thus, the thresholding step will 
detect these states as candidate subgoals. If we 
considered these redundant subgoals for creating skills 
we may create some complexity and additional 
penalties to an agent while obtaining no benefits. 
Actually, if we set the threshold to t=0.95 we would 
just extract the doorways which are the most effective 
subgoals in the grid world. No such threshold can be 
found that lead to extraction of only principal subgoals 
in the taxi world, since the cells (2, 3) and (4, 3) have 
higher centrality values comparing to the RGBY cells.  

  
a) b) 

 
c) d) 

Figure 2 The assigned node CGS score to the (a) two-room grid
and (b) taxi driver domain. The number of identified subgoals 
resulted from thresholding and applying the clustering approach 
as the function of the threshold values (c) two-room grid and (d) 
taxi driver domain.  Further descriptions are given in the text. 

 The final subgoals can be identified using our 
proposed clustering approach. In the figures 2.a and 
2.b final subgoals are specified with symbol ‘F’ in the 
corresponding cells. It can be seen that the proposed 
step is able to identify the final subgoals precisely. 
Figure 2.c and 3.d compares the number of identified 
subgoals using thresholding and the proposed 
approaches when the threshold value slides from zero, 
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i.e. extract all nodes, to one, i.e. extract no node. It can 
be seen that our method has effectively reduced the 
sensitivity of appropriate threshold selection. 

After identifying useful subgoals, skills are 
developed according to each found set of nodes based 
on the option framework. Here, we compare the result 
of subgoal identification based on thresholding and on 
clustering approaches. For this purpose, we repeat the 
experiments for the case that the agent extracts the 
subgoals by thresholding or by applying the proposed 
clustering approach on the candidate subgoals. Figure 
4 shows the average obtained reward in a two room 
grid world when the threshold was set to 0.3. In this 
figure, the gained reward as the function of episodes is 
shown for three different configurations, namely,  (a) 
‘without option’ where the agent uses standard RL, i.e. 
just trained based on primitive actions, (b) 
‘thresholded option’ where the agent extracts the 
subgoals based on threshodling of the candidate 
subgoals and then selects two subgoals among them 
randomly, and (c) ‘clustered thresholded options’ 
where the agent extracts the final subgoals by the 
proposed approach. In this experiment the agent was 
able to gain higher than 95% of the maximum average 
reward after only 8 episodes when the subgoals were 
extracted using the proposed approach while this point 
is reached by ‘thresholded option’ and ‘without skill’ 
approaches after 18 and 84 episodes respectively. It is 
worth mentioning that if the agent does not develop 
skills it will gain more reward in average in the very 
first episodes because in these episodes the policies of 
the skills are not optimized yet and this will lead to a 
large amount of penalty. We report the same 
qualitative trend in taxi world task. 

 

Figure 4  Average reward obtained in a two-room grid world 
when the agent use standard RL, i.e. without options, use options 
extracted from thresholding, i.e. Option (Thr), and options 
extracted from threshoding consequenced by clustering 
approaches, i.e. Option (Thr+C).    

IV. CONCLUSION 
In this paper, a novel graph theoretic based subgoal 

discovery method is presented. The main contribution 
of the method is to utilize complex network theory 
measures for improving the subgoal identification 
process in the option framework. In particular, the 
CGS centrality was defined and applied for candidate 

subgoal ranking and extraction. Then, co-betweenness 
measure of the extracted candidates were used to create 
a weighted graph of candidates where a low cost 
clustering algorithm can be used to extract principal 
subgoals as the cluster centers. Our method results in 
identifying useful subgoals to improve the agents 
learning performance to reach the main goal. 
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Abstract— Prediction of time-series data in natural world are
very important. For example, if nonlinear time-series data are
predictable, we can take adequate action for problem of weather.
In this study, we propose two prediction methods for time-
series data using coupled oscillators system. We predict chaos
time-series data like the natural phenomena by these methods.
The chaos time-sires data are made by the Chua’s circuit. The
prediction results of time-series data are compared with two our
methods. We show possibility of predictable by actual circuit.

I. introduction

Predictions of the time-series data of natural world are very
important for human, and a lot of researches are carried out
up to now[1][2]. A lot of things of the natural world such
as the atom, neurons, and planets are oscillating. These are
connected by each other, and operate as a system. Therefore,
time-series data of a lot of natural things are oscillatory
solutions. Coupled oscillators system can make complex
phenomena[3][4].

The time-series data is generally predicted with statistics,
a state space model, a Karman filter and so on. We think that
the oscillatory solution should be used for the prediction.

In our previous study, we proposed a method using
Runge-Kutta method and normalized equations of lattice
oscillator[5]. However, the prediction was used numerical
equations without features of the OP-Amps. Further, an input
signal source was optimized for normalization of circuit equa-
tions. Therefore, to make an actual circuit of this prediction
system is hard.

In this study, the lattice oscillators constructed by van
der Pol oscillators are simulated using Runge-Kutta method
and PSpice, and predict the time-series data of the Chua’s
circuit. Simulations by PSpice include features of OP-Amp,
and include the input signal source that is constructed by only
a voltage source. Additionally, values of all elements is used
realistic values.

The prediction results of time-series data using PSpice
are compared from the prediction results using Runge-Kutta
method.

We show possibility of predictable by the actual circuit of
our method by using PSpice.

II. Prediction using Runge-Kutta method

A. Circuit model for Runge-Kutta method

In this study, 9 van der Pol oscillators are coupled as a
lattice by inductors(see Figs. 1(a) and 1(b)), and we predict
time-series data by this circuit. In this method, an arbitrary
signal f (t), that is synthesized and predicted, is presented
as a current of an inductor Lout2, because circuit equations
should be normalized and simplified(see Fig. 1). Therefore,
an input part is substituted the inductor Lout2 and an arbitrary
voltage signal source. An output signal h(t) of the voltage
signal source is shown as follows:

h(t) =
1

Lout2

∫
f (t)dt. (1)

In this method, we can predict in ideal condition because
the measurement instrument and input power source are con-
sidered. Each oscillator are called OSC(k, l). In our method,
future time-series data are predicted from past time-series data
by a circuit which is like a filter. Therefore, to input past time-
series data from outside is needed. The time-series data is
input to each oscillator through each outside inductor Lout.
Each oscillator includes a negative resistance, an inductor
L, and a capacitor C. Prediction results are gotten as time-
series data of a voltage of OSC(k, l). We want to analyze this
circuit by using Runge-Kutta method. Therefore, normalized
equations of this circuit should be used. The parameters of
this circuit are set as Figs. 1(a) and 1(b). The all oscillators
are used same parameters, and the all coupling inductors are
used same inductance. All inductors Lout2 for inputting time-
series data are used one value. The voltage of each oscillator
is called v(k,l). Moreover, the electric current that flows to the
inductor of each oscillator is named i(k,l). An arbitrary time-
series data are input from an inductor Lout2 and voltage signal
source. We control the voltage signal source to be a current of
Lout2 is the arbitrary time-series data synthesis and prediction
time-series data are output as the current i(1,1) of OSC(1,1).
The nonlinear resistance of each oscillator is approximated as
follows.

f (v(k,l)) = −g1v(k,l) + g3v3
(k,l). (2)
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The circuit equation is normalized by the following equations.

t =
√

LCτ, i(k,l) =

√
Cg1

3Lg3
x(k,l), v(k,l) =

√
g1

3g3
y(k,l),

α(k,l)−(m,n) =
L

L(k,l)−(m,n)
, ε(k,l) = g1

√
L
C
.

(3)

[corner]

dx(k0,l0)

dτ
= y(k0,l0),

dy(k0,l0)

dτ
= −x(k0,l0) + α(k1,l1)−(k2,l2)(x(k3,l3) − x(k0,l0))

+ α(k4 ,l4)−(k5 ,l5)(x(k6,l6) − x(k0,l0)) + αout(k0,l0)(xs − x(k0 ,l0))

+ ε(k0,l0)(y(k0,l0) − 1
3

y3
(k0,l0)).

(4)

(k0, l0, k1, l1, k2, l2, k3, l3, k4, l4, k5, l5, k6, l6)=⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
top − le f t : (0, 0,0, 0,0, 1, 0, 1, 0, 0, 1, 0, 1,0),

top − right : (0, 2,0, 1,0, 2, 0, 1, 0, 2, 1, 2, 1,2),
bottom − le f t : (2, 0,2, 0,2, 1, 2, 1, 1, 0, 2, 0, 1,0),

bottom − right : (2, 2,2, 1,2, 2, 2, 1, 1, 2, 2, 2, 1,2).

[center(k = 1 and l = 1)]

dx(1,1)

dτ
= y(1,1),

dy(1,1)

dτ
= −x(1,1) + α(1,0)−(1,1)(x(1,0) − x(1,1))

+ α(1,1)−(1,2)(x(1,2) − x(1,1)) + α(0,1)−(1,1)(x(0,1) − x(1,1))
+ α(1,1)−(2,1)(x(2,1) − x(1,1))

+ ε(1,1)(y(1,1) − 1
3

y3
(1,1)).

(5)

[side]

dx(k0,l0)

dτ
= y(k0,l0)

dy(k0,l0)

dτ
= −x(k0,l0) + α(k1,l1)−(k2,l2)(x(k3,l3) − x(k0,l0))

+ α(k4 ,l4)−(k5 ,l5)(x(k6,l6) − x(k0,l0))
+ α(k7 ,l7)−(k8 ,l8)(x(k9,l9) − x(k0,l0) + αout(k0 ,l0)(xs − x(k0,l0))

+ ε(k0,l0)(y(k0,l0) − 1
3

y3
(k0,l0)).

(6)

(k0, l0, k1, l1, k2, l2, k3, l3, k4, l4, k5, l5, k6, l6, k7, l7, k8, l8, k9, l9)=⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
top : (0, 1, 0, 0, 0, 1, 0, 0,0, 1, 0, 2, 0, 2, 0, 1, 1, 1, 1,1),
le f t : (1, 0, 1, 0, 1, 1, 1, 1,0, 0, 1, 0, 0, 0, 1, 0, 2, 0, 2,0),

right : (1, 2, 1, 1, 1, 2, 1, 1,0, 2, 1, 2, 0, 2, 1, 2, 2, 2, 2,2),
bottom : (2, 1, 2, 0, 2, 1, 2, 0,2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1,2).

Each nonlinearity and coupling parameter must be adjusted
individually, because we synthesize and predict time-series
data by these circuit equations. Therefore, each ε and α are
renamed as ε(k,l) and α(k,l)−(m,n).

B. Prediction method using Runge-Kutta method

We use a time-series data of Chua’s circuit as an original
time-series data. Parameters of Chua’s circuit on pp.24 of [6]
are used. The original time-series data is assumed as f (t). A
prediction of the original time-series data is assumed as g(t).
The original time-series data of continuous data are divided
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Fig. 1. Circuit model for Runge-Kutta method.

Time of synthesized data t2 [τ]

Time of original data t1 [τ]

0

0 10T

10T 20T

20T
30T

original data f(t1)

prediction (synthesis) data g(t2)

(a) (b) (c) (d) (e) (f) (g) (h)

part of prediction

part of synthesis

17T

7T 15T

25T

Fig. 2. Relation between synthesis time-series data and original time-series
data (Runge-Kutta method).

by time period of arbitrary length T , and are predicted. Our
system is predicted future time-series data from past time-
series data. The details of procedure of our method are shown
as follows, and an example of synthesis and prediction are
shown in Fig. 2.

1) The original data from f (0) to f (10T ) is added to our
system, and data from g(0) to g(10T ) is synthesized at
the same time. The original data are shown in Fig. 2.
The synthesis data are shown in Fig. 2. In the Fig. 2,
time axis of synthesis data differs from time axis of
original data.

2) The synthesized data g(t):(7T ≤ t ≤ 10T ) are adjusted
to values close to f (t):(17T ≤ t ≤ 20T ) by changing
each parameter and eighteen initial values of oscillators.
Each initial value is set plus f (10T ) or minus f (10T )
independently.

3) The original time-series data from f (10T ) to f (20T ) is
added to the adjusted system, and time-series data from
g(10T ) to g(20T ) is synthesized at the same time. The
synthesis data g(t):(10T < t ≤ 20T ) are considered as
prediction data.

4) A prediction period is fixed from 10T to 15T because
to predict for long time is difficult.

If the time-series data g(t):(10T < t ≤ 15T) is close to
f (t):(20T < t ≤ 25T), we can consider that g(t):(10T < t ≤
15T) predicts the original time-series data(see Fig. 2). We
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Fig. 3. Circuit model for PSpice(OP-Amp:TL082).

predict long time data repeating this method.

III. Prediction using PSpice

In this section, we predict the same time-series data by
PSpice.

A. Circuit model for PSpice

The prediction circuit for PSpice is shown in Fig.3．This
circuit and above circuit are same circuit basically. However,
in this circuit, we conscious an actual circuit. This circuit
includes registers of coupling inductors. Original time-series
data are input from an arbitrary voltage signal source. Synthe-
sis and prediction time-series data are output as the voltage
v(1,1) of OSC(1,1). The capacitances are used from 1500nF
to 1nF. The resistances are used from 10MegΩ to 10Ω. The
inductances are used from 150mH to 0.1µH.

B. Prediction method using PSpice

We basically predict time-series data by same method,
which is shown in above section. The details of procedure of
our method are shown as follows, and an example of synthesis
and prediction are shown in Fig.4.

1) The original data from f (0) to f (2T ) (α) is added to our
system, and data from g(0) to g(2T) (β) is synthesized
at the same time(see Fig.4).

2) The synthesized data g(t) : (T ≤ t ≤ 2T ) are adjusted to
values close to f (t) : (7T ≤ t ≤ 8T ) by changing many
parameters and many initial values of oscillators. We
adjust all parameters as like full solution search. How-
ever, when the synthesis data is very close to original
data, we stop to adjust the parameters. Therefore, we
can think a probability of global minimum, which our

   

 0  T  2T  3T  4T

0 5T 7T 10T

Prediction (synthesis) data g(t1)

Original data f(t1)

Time of original data t1[τ]

Time of synthesized data t1[τ]

Part of synthesis
Part of prediction

α

β

γ

δ

Fig. 4. Relation between synthesis time-series data and original time-series
data (PSpice).

results is, is low. Each initial values is set plus f (6T ),
minus f (6T ) or 0, independently.

3) The original time-series data from f (t) : (2T < t ≤
3T )(γ) is added to the adjusted system, and time-series
data from g(t) : (2T < t ≤ 3T )(δ) is synthesized at the
same time. The synthesis data g(t) : (2T < t ≤ 3T ) are
considered as prediction data.

4) A prediction period is fixed from 2T to 3T because to
predict for long time is difficult.

If the time-series data g(t) : (2T < t ≤ 3T ) is close to f (t) :
(8T < t ≤ 9T ), we can consider that g(t) : (2T < t ≤ 3T )
predicts the original time-series data (see Fig.4). We predict
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Fig. 5. Prediction results

TABLE I
Comparison of mean absolute errors and error rates.

0-T T-2T 2T-3T 3T-4T 4T-5T 5T-6T 6T-7T 7T-8T 8T-9T 9T-10T
Runge Mean absolute errors 0.010766 0.005188 0.009479 0.049336 0.024742 0.043291 0.131468 0.017386 0.084017 0.054813
-Kutta Error rate[%] 0.5409 0.8552 0.9861 2.5543 1.2519 3.0564 6.4987 0.8130 6.6471 11.022
PSpice Mean absolute errors 0.032161 0.037112 0.035688 0.006525 0.001489 0.028941 0.012496 0.006792 0.040905 0.001294

Error rate[%] 1.5909 5.2871 4.3139 0.2968 0.0749 2.1890 0.5778 0.3102 3.0528 0.3540

long time data repeating this method.

IV. Comparison between prediction results of Runge-Kutta
method and PSpice.

The composite prediction result using Runge-Kutta method
and the original data are shown in Fig.5(a). The composite
prediction result using PSpice and the original data are shown
in Fig.5(b). We can confirm that the result of PSpice is better
than the result of Runge-Kutta method. However, the Runge-
Kutta method synthesizes during 3T , and predicts during 5T .
In other hand, PSpice synthesizes during T , and predicts
during T . We can think that to obtain good results by using
PSpice are easier than to obtain good results by using Runge-
Kutta method. However, the adjustment of our method using
PSpice is difficult.

The error rates are shown in Table I.
The mean error rate is calculated as follows:

The error rate =
Mean absolute errors
Maximum amplitude

×100 [%](7)

The result of PSpice is better than the result of Runge-
Kutta method in 7 domains of 10 domains. The mean error
rates of PSpice results are large in the domain where change
is sharp. Because the adjustment of our method using PSpice
is difficult. In the Runge-Kutta method, a mean error rate
between the prediction time-series data and the original time-
series data is 3.42%. In PSpice, a mean error rate is 1.80%.

V. Conclusion

In this study, the lattice oscillator constructed by van der
Pol oscillators was simulated using Runge-Kutta method and
PSpice, and we predicted the time-series data of the Chua’s
circuit using the lattice oscillator. Moreover, the prediction

results of time-series data using PSpice were compared with
results using Runge-Kutta method. The mean error rates in
our methods using Runge-Kutta method and using PSpice
were 3.42% and 1.80%, respectively. Therefore, we can say
that we were able to predict well. In other words, we can
think that possibility of predictable by the actual circuit of
our method is shown. However, synthesis using Runge-Kutta
method was easier than synthesis using PSpice, because the
changed parameter is few, and the time efficiency is good.
The mean error rate in our system using Runge-Kutta method
enough is small. Therefore, we can think that prediction
efficiency is good when the Runge-Kutta method is used.
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Abstract—We propose a circuit technique to implement
an A/D converter based on a scale-adjusted β-map utilizing
a discrete-time integrator, which is a basic and preferred
circuit element in integrated circuits. We, then, propose
switched-capacitor (SC) scale-adjusted β A/D converter
circuits in order to verify the proposed technique. In
addition, we confirm the proposed circuits through SPICE
simulations with ideal circuit elements. Moreover, we apply
the proposed circuits to a chaos generator, which is robust
against non-idealities of the circuit elements and noise.

I. INTRODUCTION

A data conversion method based on a β-map (β-
converter) was proposed [1]. The β-converter is more
stable than the pulse code modulation (PCM) type con-
verters in a sense that the PCM-type converters suffer
from deviations of the threshold value of the quantizer,
mismatches of the gain of the internal amplifier, and
circuit noise. In the worst case, the PCM converters
will diverge. In contrast,

∑

Δ-type converters are stable;
however, usually its input signal should be oversampled
in order to obtain reasonable accuracy. The β-converter
is robust against device and parameter mismatches in the
circuit like

∑

Δ-type converters; at the same time, the
β-converter has almost optimal rate distortion property
like PCM-type converters.

Recently, in order to further improve the performance
of the β-converter, interval analyses were used to pro-
pose a decoding algorithm and a guideline for the circuit
design parameters, which minimize the decoding errors
[2]–[4]. In addition, a data-conversion method based on
a scale-adjusted β-map (scale-adjusted β-converter) was
proposed where the gain of the internal amplifier and the
tolerance of the quantizer threshold can be independently

determined, which alleviates restrictions on the circuit
design [2]–[4]. The scale-adjusted β-converter includes
the original β-converter as its special case.

Block diagrams for circuit implementation of the β-
and scale-adjusted β-converters (analog-to-digital (A/D)
converters) were given in Refs. [1] and [4], respectively.
However, the proposed schematic diagrams are not suit-
able for actual circuits, in particular, for integrated circuit
implementation of these A/D converters.

In this paper, we propose a circuit technique to
realize the scale-adjusted β A/D converter utilizing a
discrete-time integrator, which is a basic and preferred
circuit element in integrated circuits, as a core element.
We, furthermore, propose switched-capacitor (SC) scale-
adjusted β A/D converter circuits in order to verify the
proposed technique. In addition, we show the validity of
the SC scale-adjusted β A/D converter circuits through
SPICE simulations with ideal circuit elements.

Because the β-map and the scale-adjusted β-map are
eventually locally onto, trajectories from all initial con-
ditions (the inputs for the converters in this case) will be
confined within a finite interval. Therefore, the proposed
A/D converter circuits can be used as a chaos generator,
which is robust against deviations and mismatches of
circuit parameters, by only altering the clock waveforms
of the A/D converter circuits. Moreover, different chaotic
dynamics can be easily obtained by altering the circuit
parameters. Another advantage of the circuit is that we
can easily determine the initial condition by the input of
the circuit. A SPICE simulation result for the proposed
chaos generators is also shown.
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II. DATA CONVERTER BASED ON THE

SCALE-ADJUSTED β-MAP

The scale-adjusted β-map S(·) [2]-[4] is given by

S(x) =

{

βx, x ∈ [0, γν),
βx − s(β − 1), x ∈ [γν, s),

(1)

where ν ∈ [s(β − 1), s) is a threshold parameter, 1 <
β < 2 is a radix of the conversion, γ = 1/β, and s > 0
is a scaling parameter. When s = (β − 1)−1, the scale-
adjusted β-map is equivalent to the β-map C(·) [1] given
by

C(x) =

{

βx, x < γν,
βx − 1, x ≥ γν.

(2)

By introducing a discrete-time tn (n is an integer),
eq. (1) can be written as a one-dimensional discrete-time
dynamical system as

x(tn+1) = S(x(tn))

=

{

βx(tn), x(tn) ∈ [0, γν),
βx(tn) − s(β − 1), x(tn) ∈ [γν, s).

(3)

Moreover, we define a binary variable b(tn) ∈ {0, 1} as

b(tn) = Qθ(x(tn)) =

{

0, x(tn) ∈ [0, θ),
1, x(tn) ∈ [θ, s),

(4)

where Qθ(·) is a quantizer with its threshold of θ = γν.
As a result, eq. (3) can be rewritten as

x(tn+1) = βx(tn) − b(tn)s(β − 1). (5)

Now, we sample an analog input signal xinput at t = t1.
That is,

x(t1) = xinput. (6)

Then, by iterating eq. (5) from t = t1 to t = tL (L
is a bit-length), we obtain a binary output sequence
BS(xinput) which corresponds to the analog input xinput

as
BS(xinput) = (bLbL−1 · · · b1)β,s, (7)

where bn = b(tn) (n = 1, 2, . . . , L), b1 = b(t1) is the
LSB, and bL = b(tL) is the MSB.

The tolerance σν of the threshold parameter ν is given
as [2]-[4]

σν = s(2 − β). (8)

Therefore, the threshold θ of the quantizer Qθ(·) can be
fluctuated within the tolerance σθ given by

σθ = γσν = γs(2 − β) = s(2γ − 1). (9)

Therefore, a large fluctuation of θ is acceptable in circuit
implementation.

On the other hand, the value of β can be estimated
from two output bit-sequences by solving the character-
istic equation [1], [4]. Therefore, the scale-adjusted β
A/D converter is also robust against the deviation of β
from its optimal value.

III. IMPLEMENTATION OF THE SCALE-ADJUSTED β
A/D CONVERTER WITH A DISCRETE-TIME

INTEGRATOR

A block diagram of the A/D converter based on the
scale-adjusted β-map was given in Ref. [4]. However,
the diagram is not suitable for a practical circuit, in
particular, for an integrated circuit.

By the way, a discrete-time integrator is a most
common circuit element for the sampled-data analog
circuits. The reasons for this would be; 1) Many useful
and practical circuit configurations for the discrete-time
integrators, which are insensitive to the non-idealities
and mismatches of the circuit devices, parasitic devices,
and noise, are already available; 2) Circuit techniques for
the discrete-time integrators such as switched-capacitor
(SC) and switched-current (SI) circuits are readily avail-
able and mature with accumulated knowledge through a
large number of working examples.

Therefore, we implement the A/D converter based
on the scale-adjusted β-map given by eq. (5) with the
discrete-time integrator as follows. We first rewrite eq.
(5) and eq. (4) using the z-transformation as

X(z) = βX(z)z−1 − B(z)z−1s(β − 1), (10)

B(z) = Qθ(X(z)), (11)

where X(z) and B(z) are z-domain variables for x(tn)
and b(tn), respectively. Form the above equations, we
finally obtain

X(z) = s(1 − β) · z−1

1 − βz−1
· Qθ(X(z)). (12)

This result shows that we can realize the A/D converter
based on the scale-adjusted β-map using a discrete-time
backward-Euler damped-integrator with damping factor
of β, and the quantizer Qθ(·).

IV. SC CIRCUIT IMPLEMENTATION OF THE

SCALE-ADJUSTED β A/D CONVERTER

We use a SC circuit technique, as an illustration, to
implement the scale-adjusted β A/D converter with a SC
integrator. Let us consider a SC integrator circuit shown
in Fig. 1. The z-domain transfer function of this circuit
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Fig. 1. A SC integrator circuit.

is given by

Vo(z) =
Cf

Ci
· z−1

1 −
(

1 + Ck

Ci

)

z−1
· Vi(z), (13)

where Vo(z) and Vi(z) are z-domain variables for vo and
vi in Fig. 1, respectively. By comparing eq. (12) and eq.
(13), we see that we can implement eq. (12) with the SC
integrator in Fig. 1 by setting

Vo(z) = X(z), Vi(z) = Qθ(X(z)),
Cf

Ci
= s(1 − β), Ck

Ci
= β − 1.

(14)

However, 1 < β < 2 implies −1 < 1−β < 0. Therefore,
Cf/Ci should be negative, which is impossible with real
capacitors. Therefore, we introduce a negative quantizer
˜Qθ(·) as

˜Qθ(·) ≡ −Qθ(·) (15)

Then, we can modify the assignments in eq. (14) as

Vo(z) = X(z), Vi(z) = ˜Qθ(X(z)),
Cf

Ci
= s(β − 1), Ck

Ci
= β − 1.

(16)

As a result, Cf/Ci > 0.
A possible SC circuit for the scale-adjusted β A/D

converter is shown in Fig. 2. The clock waveforms that
drive the circuit are shown in Fig. 3.

In the above implementation, the capacitor value of
Cf depends on both s and β; therefore, the freedom
in the circuit design is restricted. In order to solve this
problem, we introduce a quantizer ˜QS

θ (·) whose binary
output level takes 0 and −s instead of 0 and 1 as

˜QS
θ (·) = −s × Qθ(·) = s × ˜Qθ(·). (17)

By replacing ˜Qθ(·) in Fig. 2 by ˜QS
θ (·), we can realize

the scale-adjusted β A/D converter with the same circuit
configuration in Fig. 2 by setting

Vo(z) = X(z), Vi(z) = ˜QS
θ (X(z)),

Cf

Ci
= β − 1, Ck

Ci
= β − 1.

(18)

In this implementation, the binary sequence bS
n obtained

from the circuit is

−bS
n = −s · bn = ˜QS

θ (x(tn)). (19)

Ci
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Cf
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θ
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A
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B

B

B
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C

C
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A

Fig. 2. A possible SC circuit for the scale-adjusted β A/D converter.
The circuits inside the chain lines and the clock φC can be omitted
for a chaos generator when a setting for the initial condition is not
needed.

A

B

C

.........

b1 b2 b3 b4 b5 bL-1 bL b1 b2 b3.......b6

t1 t2 t3 t4 t5 t6 tL-1 tL t1 t2 t3

Fig. 3. The clock waveforms driving the circuit in Fig. 2 for the
bit-length of L. The sample-timings for the binary sequence bi are
also shown.

V. APPLICATION TO A CHAOS GENERATOR

If we set L = ∞, the circuit in Fig. 2 works as a chaos
generator with the output chaotic sequence x(tn). The
initial condition of the circuit can be easily set by xinput.
If the initial condition does not need to be determined,
the circuits inside the chain lines in Fig. 2 and the clock
φC can be omitted.

The trajectory of x(tn) of the circuit is eventu-
ally confined within an invariant interval ranging from
ν − s(β − 1) to ν. Therefore, the proposed circuit can
stably and robustly generate chaotic attractors even with
inevitable circuit non-idealites and noise.

VI. SPICE SIMULATIONS

The SC scale-adjusted β A/D converter circuit in Fig.
2 was simulated by SPICE with ideal devices in order
to confirm the circuit implementation. The value of β
is usually estimated from the output binary sequences
[1]-[4]. However, we assume in the simulations that the
value of β is known because the aim of the simulations
is to confirm the functionalities of the circuit under ideal
conditions. We chose β = 5/3, s = 3 for simulations.
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We, first, simply checked the output bit-sequence
bi obtained from the circuit. Table I shows examples
of the obtained bit-sequences and those obtained from
numerical calculations for L = 8. As shown in the table,
the proposed circuit correctly converts the input xinput

to the binary bits.
Second, conversion errors were calculated from the

SPICE simulation results. We use L = 13 to obtain an
equivalent resolution of 2−8. The results are shown in
Fig. 4 for different values of the quantizer threshold
θ = γν when the input xinput was altered. We also
derived the conversion errors for different values of input
xinput when we changed θ as shown in Fig. 5. From
these figures, the proposed circuit properly converts
the input signal xinput regardless of the value of θ.
This demonstrates the robustness of the proposed circuit
against the deviations of θ.

Finally, we set L = ∞ in the proposed circuit to
realize a chaotic generator. Figure 6 shows an example of
the chaotic attractor obtained from the SPICE simulation
with θ = 1.44. As shown in the figure, the chaotic
attractor is confined within the interval (ν − s(β − 1) =
0.4 ≤ y(tn) ≤ ν = 2.4).

VII. CONCLUSION

We have proposed the technique to realize the A/D
converter based on the scale-adjusted β-map using the
discrete-time integrator. The discrete-time integrator is
most useful, common, and preferred circuit element in
integrated circuits. Therefore, the proposed technique is
suitable to integrate the scale-adjusted β A/D converter
as an IC form. In addition, we have shown possible
SC circuits for the scale-adjusted β A/D converter. The
SPICE simulation results with the proposed circuit have
confirmed the validity of the proposed technique and the
SC circuit implementation. Moreover, we have derived
the robust chaotic generator from the SC scale-adjusted
β A/D converter circuit. This work was supported in part
by ERATO Aihara Complexity Modelling Project, JST,
and Kakenhi (20300085).
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TABLE I
OUTPUT BIT-SEQUENCES FROM THE SPICE SIMULATIONS AND

NUMERICAL CALCULATIONS WITH L = 8.

Input Threshold Output Bits
xinput θ SPICE Numerical Error

1.21 00001000 00001000 0
0.1 1.5 00000110 00000110 0

1.79 00000101 00000101 0
1.21 01000100 01000100 0

0.5 1.5 00110101 00110101 0
1.79 00110100 00110100 0
1.21 10010100 10010100 0

0.95 1.5 10010100 10010100 0
1.79 01110101 01110101 0
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Abstract—For designing PCBs (printed circuit boards),
it is very important to find out the locations and the
frequencies giving large peak values of the voltages.
Electrostatic capacity exists between the wire lines of
PCBs. The characteristics of the capacitors depend on
the distance between the wire lines. From this reason, we
have to analyze circuits including nonlinear capacitors. In
that case, the frequency characteristics become distorted,
compared with linear circuits. If the distortion becomes
large, the characteristics has unstable region. In this
article, we propose a SPICE-oriented algorithm to analyze
frequency characteristics with unstable region and to find
the peaks of the frequency characteristics.

I. INTRODUCTION

In this study, we propose a SPICE-oriented algorithm
to analyze frequency characteristics of nonlinear circuits
and to find more exact peak voltages of the frequency
characteristics. Although they may be found by the
standard transient analysis of SPICE, it is difficult to
find the exact peaks when the quality factor (Q) is very
large. In the SPICE, analysis is every fixed spacing.
Because of this, we may pass over them if we choose
a large step size. Furthermore, the frequency character-
istics of nonlinear circuits often have unstable regions.
Such regions cannot be obtained the standard methods
using SPICE. In our algorithm, we derive the sine-cosine
circuit [1][2] from the nonlinear circuit. Next, the Fourier
transformation circuit [3] is used to obtain the response
of nonlinear elements. When we analyze this circuit with
the transient analysis of SPICE, we may pass over the
exact peaks. In order to avoid this problem, we apply
the differentiator and the nonlinear limiter [4]. Finally,
we apply the STC (solution trace circuit) [5] to obtain
the frequency characteristics even when the curve has
unstable regions.

Section 2 shows how to use the sine-cosine circuits

and the Fourier transformation circuit. Section 3 explains
the peak search algorithm with the differentiator and the
nonlinear limiter. Section 4 explains the tracing of the
frequency characteristics curve by using STC. Illustrated
example of the proposed algorithm is shown in Sec. 5
and Sec. 6 concludes the article.

II. SPICE-ORIENTED HARMONIC BALANCE

ALGORITHM

A. Sine-cosine transformation

Sine-cosine transformation based on the HB (har-
monic balance) method such that the determining equa-
tion is solved by transient analysis of SPICE. We discuss
the sine-cosine circuit corresponding to the determining
equation of the HB method. If we set the voltage through
a capacitorC

vC = VCS sinωt+ VCC cosωt, (1)

the currentiC is given by

iC = C
dvC
dt

= −ωCVCC sinωt+ ωCVCS cosωt. (2)

Thus, the coefficients ofsinωt andcosωt are described
by

ICS = −ωCVCC , ICC = ωCVCS . (3)

Namely, the capacitor is replaced by coupled voltage-
controlled current sources in the sine-cosine transforma-
tion of the HB method. In the same way, let the current
through an inductorL be

iL = ILS sinωt+ ILC cosωt. (4)

Then, the voltagevL is given by

vL = L
diL
dt

= −ωLILC sinωt+ ωLILS cosωt. (5)
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Thus, the coefficients ofsinωt, cosωt are described by

VLS = −ωLILC , VLC = ωLILS . (6)

Namely, the inductor is replaced by coupled current-
controlled voltage sources in the sine-cosine transforma-
tion.

As an example, Fig. 1 shows a LRC ladder circuit and
Fig. 2 shows the corresponding sine-cosine circuits.

Fig. 1. LRC ladder circuit.

Fig. 2. Sine-cosine circuit for Fig.1.

B. Fourier transformation circuit

In this study, we use the Fourier transformation circuit
in order to realize the characteristics of nonlinear capac-
itors. Figure 3 shows the Fourier transformation circuit.
Suppose the input and output waveforms as follows:{ i(t) = I1 cosωt+ I2 sinωt

v(t) = V1 cosωt+ V2 sinωt
. (7)

The characteristics of the electric current which flows
through a capacitor can be indicated as

i = dq/dt = (∂q/∂v)(dv/dt). (8)

From Eq. (8), the coefficients for electric chargeq(t) of
sinωt, cosωt are described by

q(t) = − 1

ω
I2 cosωt+

1

ω
I1 sinωt. (9)

From this, input of Fourier transformation circuit
model i(t) is changed as

q(t) = Q1 cosωt+Q2 sinωt, (10)

and from Eq. (8), the characteristics of a nonlinear
capacitor is expressed with an equation usingq(t) and
v as v = G(q). We expandG(q) to Fourier series,

Fig. 3. Fourier transformation circuit.

and obtain the coefficients of the voltages by using the
trapezoidal formula as follows.

V1 =
1

π

∫ 2π

0
(G(q) cosωt)d(ωt)

=
1

2K
(G0 +G2K) +

1

K
(G1 cos

π

K

+G2 cos
2π

K
+ . . .+G2K−1 cos

(2K − 1)π

K
),

(11)
V2 =

1

π

∫ 2π

0
(G(q) sinωt)d(ωt)

=
1

K
(G1 sin

π

K
+G2 sin

2π

K

+ . . .+G2K−1 sin
(2K − 1)π

K
). (12)

where∫ b

a
G(q)d(ωt) =

h

2
(G0 +G2K)

+h(G1 +G2 + . . .+G2K−1),

h =
π

K
,Gi = G(q(ti)),

ωti = 0, π/K, ..., (2K − 1)π/K, 2π. (13)

K is a number which divides the region ofa to b.

III. PEAK SEARCH ALGORITHM

We search the peaks by using differentiator and non-
linear limiter. The frequenciesω at the peak voltages
satisfy

d|v(ω)|
dω

= 0, (14)
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on the characteristics curve. Hence,|v(ω)| need to be
firstly differentiated by a differentiator. In order to find
the exact peak points, the output is limited and expanded
with a nonlinear limiter, which consists of a limiter and
nonlinear diode as shown in Fig. 4.

Fig. 4. Nonlinear limiter.

We suppose the characteristics of the limiter as fol-
lows:

va =


−Vmax : for vin < −VL

k vin : for − VL ≤ vin ≤ VL

Vmax : for VL < vin

, (15)

The output of the nonlinear limiter is given by

iout =

{
Is exp(λva) : for va > 0
−Is exp(−λva) : for va < 0

, (16)

as shows in Fig. 5.

Fig. 5. Characteristics of nonlinear limiter.

The expansion factor ofk is large enough. In order to
complicate the analysis, we include nonlinear diodes in
nonlinear limiter. Thus, the analysis near the zero points
(an input of Fig. 5) is executed with a very small step
size. In our algorithm, the nonlinear limiter is connected
to differentiator. Input of the nonlinear limiter is equal
to the slope of the voltage wave. From this reason, we
can analyze the curve finely around peak voltages.

IV. T RACE FOR UNSTABLE REGION

Since we set time as frequency, we can not analyze
unstable region. In this section, we explain STC (solution
trace circuit) for change a horizontal axis into a voltage
vω from time (namely, frequency).

STC is based on the arc-length method [6][7]. Those
voltages are differentiated with respect to the timet

Fig. 6. STC (Solution trace circuit).

instead of the arc-lengths by using differentiators. They
are transformed to the corresponding voltage sources
with current controlled voltage source (CCVS). Next,
each voltage is squared and transformed to the current
source. We have

Is =
p∑

i=1

(
dvi
dt

)2

(17)

as shown in Fig. 6. If we set the voltage of nodea as
v̇ω, Iω = v̇2ω can be obtained by multiplier and voltage
controlled current source VCCS (MVCCS). Thus, the
additional constant current source in Fig. 6 realize to
satisfying the arc-length method by Eq. (17). Then, the
node voltagev̇ω is integrated to obtainvω. Note thatR
in Fig. 6 is a very large resistance used only to avoid
the L-J cut-set.

In this study,vω in Fig. 6 is equal toω in the main
circuit. The value of newvω depends on voltages of main
circuit, and the voltages depend on the lastvω. Repeating
the calculations, the STC traces the value ofω.

V. I LLUSTRATIVE EXAMPLE

Fig. 7. LRC ladder circuit including nonlinear capacitor.

Fig. 8. Sine-cosine circuit for Fig. 7.
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As an example we consider the LRC ladder circuit
including nonlinear capacitors as Fig. 7. Figure 8 is the
sine-cosine circuit for Fig. 7. In Fig. 7,L1 = L2 =
L3 = L4 = 0.1H, and the nonlinear characteristics of
C1, C2, C3, C4 are the same. We setK = 10 and the
characteristics of the nonlinear capacitors areG(q) =
q+0.8q3. The voltages of the CCVS in Fig. 7 are inputted
to the STC. We setvω in Fig. 6 asω for the frequency
characteristics.

Fig. 9. Plot of frequency characteristics forR=0.1Ω.

Fig. 10. Plot of frequency characteristics forR=0.05Ω.

Fig. 11. Plot of frequency characteristics forR=0.01Ω.

The simulated results are shown in Figs. 9, 10 and
11 for the cases ofR = 0.1Ω, 0.05Ω and 0.01Ω,

respectively. The horizontal axis isω and the vertical
axis is the voltage through the nonlinear capacitorC4.
We name the peaks of the curves as peak1, peak2, peak3
and peak4 from the left. We can see that the peaks of the
curves become inclined as reducing the resistance (this
corresponds to increase the effect of the nonlinearity).
Although the unstable region appears in the case of
R = 0.01Ω, we could trace the curve successfully as
shown in Fig. 11. We can also notice that the step size
around the peak becomes smaller by the effect of the
nonlinear limiter. We should mention that each frequency
characteristics curve could be obtained by a single run
of the transient analysis of SPICE.

VI. CONCLUSIONS

We have proposed a SPICE-oriented algorithm to
analyze frequency characteristics with unstable region
and to find the peaks of the frequency characteristics.
By combining the sine-cosine circuits, the Fourier trans-
formation circuit, the nonlinear limiter and the solution
tracing circuit, the frequency characteristics curve can
be obtained even if the curve has unstable region. The
simulation results of the LRC ladder circuit with non-
linear capacitors showed the efficiency of the proposed
method. The analysis of printed circuit boards using our
proposed method is our future research.
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Abstract—In this paper, we examine the effect of switch-
ing delay in a PWM-1 controlled circuit based on the
laboratory experiment. First, we propose a circuit model
containing switching delay and explain its behavior. Then,
we derive the Poincaŕe maps to analyze the properties.
Finally, we discuss the effect of switching delay by using the
Poincaré map and one dimensional bifurcation diagrams.
Moreover, we show the bifurcation phenomena in a circuit
with switching delay.

I. INTRODUCTION

In the electrical engineering, pulse-width modulation
(PWM) is used as a control method of power conversion
circuit [1]-[4]. In particular, the pulse-width modulation
of the first kind (PWM-1) has a property that the switch
shifts only once in each time of period. Maityet al.
reported the nonlinear property of discrete map and the
existence of bifurcation phenomena in a PWM-1 con-
trolled buck converter [5]. However, the narrow analysis
of it is difficult due to the reason that its circuit dynamics
is described by high dimensional system. Thus, we have
proposed a simplest circuit model that is constructed by
the switching part of PWM-1 controlled buck converter
circuit as one of the effective way to examine the
fundamental property of PWM-1 controlled circuit [6].

On the other hand, most of the previous researches
assumed that the switching action behaves ideally. How-
ever, the various unexpected effect occur with the switch-
ing action in the practical systems. Banergeeet al.
reported switching nonidealities and its greatly influ-
ences into the circuit dynamics based on the labora-
tory experiment [7]. Therefore, we have studied the
dynamical effect of missed switching action in a simplest
interrupted system [8]. However, there is no study about
the influence of missed switching action in an interrupted
electric circuit with PWM-1 control.

In this paper, we discuss the effect of switching delay
in a PWM-1 controlled circuit based on the laboratory
experiment. First, we propose a simplest circuit model
containing switching delay and explain its behavior.

Then, we derive the Poincaré map to analyze the prop-
erties in a circuit with switching delay. Finally, we
discuss the effect of switching delay and the bifurcation
phenomena in a circuit with switching delay by using
the experimental results.

II. DYNAMICS OF THE CIRCUIT

We propose an interrupted electric circuit with switch-
ing delay in Fig. 1, where the circuit is constructed
by the switching part of PWM-1. In this figure, the
capacitance voltagev is sampled at the beginning of
the clock interval by the sample hold amplifier (S/H).
Then, it is compared with the reference voltage by the
comparator (C), and control signal is generated. Here,
we artificially make a time delaytd into the control
signal by using some logical elements. Now, we set
the circuit parameters as :R = 20[kΩ], C = 0.1[µF],
E1 = 0.0[V], E2 = 3.0[V], T = 2.0[ms]. Moreover, the
circuit equation is defined as

RC
dv

dt
=

{

−v + E1 : switch A
−v + E2 : switch B

. (1)

Next, we explain the dynamics of the circuit. Figure
2 (a) shows the behavior of PWM-1 controlled circuit
with ideal switching. In this figure,S(t) corresponds
to the reference voltage, wherevU and vL means the
maximum and minimum voltage. Let us suppose thatvk

is the initial value att = kT . Basic switching rule of the
circuit with ideal switching is classified into three types.
If the parameters satisfyvU ≤ vk, the switch keeps state
A until the next clock arrives. Also, the switch remain
state B until the next clock pulse appears if the condition
vk ≤ vL is satisfied. On the other hand, the switch
obeys state A during the timeta under the condition
of vL < vk < vU, and then it changes to state B. Note
that ta is the time thatvk becomes equal to the reference
voltageS(t).
On the other hand, time delaytd arises with the every
switching action in a PWM-1 controlled circuit with
switching delay (see Fig. 2 (b)). We know that the

18th IEEE Workshop on Nonlinear Dynamics of Electronic Systems (NDES2010)

26-28 May 2010, Dresden, Germany 118



S/H

v c
A B

R R

E E

clock

t

tT

1 2

V

V
U

L

delay

C

Fig. 1. PWM-1 controlled circuit with switching delay.

appearance of switching delay makes almost all of the
behavior of waveform during the clock interval different,
however the fundamental switching logic is same as the
ideal switching case. Figure 2 (c) shows the experimental
result of the capacitance voltage in the circuit with
switching delay.

III. POINCARÉ MAP

We firstly define the three types of bordersD1, D2 and
D3 to classify the waveform in the circuit with switching
delay.

D1 = vU, D2 = vL , D3 =
(T − td)(vU − vL)

T
+ vL (2)

Note that the borderD3 is only used in a circuit with
switching delay. If the waveform starts atD3, the switch
changes from state A to B when the next clock pulse
arrives. Using these borders, the waveform during the
duration of clock interval can be classified into nine types
in the circuit with switching delay. Note that we need the
information ofvk andvk−1 that is the solution att = kT
andt = (k − 1)T to classify the consecutive waveform.
This means that the circuit with switching delay must
be described by two dimensional discrete system. Thus,
we define the variable functionuk that satisfiesuk+1 =
vk. Poincaré map in the circuit with switching delay is
described by the following equations.

xk+1= Adjx + Bdj , x ∈ Idj (j = 1, 2 · · · 9) (3)

Here,x is defined asx =
[

uk vk

]

⊤

,
and theAdj andBdj(j = 1, 2 · · · 9) are given by

Adj =

[

0 1

0 e
−

T

RC

]

,

Bd1 =

[

0

E1 + (E2 − E1)e
−T+td

RC
− E2e

−
T

RC

]

,

Bd2 =







0

E2 + (E1 − E2)e
−T+td+ta(vk)

RC

+(E2 − E1)e
−T+td

RC
− E2e

−
T

RC






,

Bd3 =

[

0

E2(1 − e
−

T

RC )

]

, Bd4 =

[

0

E1(1 − e
−

T

RC )

]

,
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Fig. 2. Behavior of the waveform.

Bd5 =

[

0

E2 + (E1 − E2)e
−T+td+ta(vk)

RC
− E1e

−
T

RC

]

,

Bd6 =

[

0

E2 + (E1 − E2)e
−T+td

RC
− E1e

−
T

RC

]

,

Bd7 =







0

E1 + (E2 − E1)e
−T+td

RC + (E1 − E2)e
ta(uk)+td−2T

RC

−E1e
−

T

RC






,

Bd8 =







0

E2 + (E1 − E2)e
−T+ta(vk)+td

RC + (E2 − E1)e
−T+td

RC

+(E1 − E2)e
ta(uk)+td−2T

RC
− E1e

−
T

RC






,

Bd9 =

[

0

E2 + (E1 − E2)e
−2T+td+ta(uk)

RC
− E1e

−
T

RC

]

.

(4)
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Here,ta(x) is expressed in the following equations.

ta(x)=
x − vL

vU − vL
T (5)

Poincaré map in the circuit with ideal switching can
be defined in the same way. Note that we let the
Poincaré map in the circuit with ideal switching as
the two dimensional discrete system to compare the
circuit with switching delay in this paper. Furthermore
Iij(j = 1, 2, 3) andIdj(j = 1, 2 · · · 9) correspond to the
existence region of the classified waveform in a circuit
with ideal switching and a circuit with switching delay
(see Fig. 3).

IV. EXPERIMENTAL RESULT

Figure 3 shows the Poincaré map in a circuit with
ideal switching and a circuit with switching delay based
on the laboratory experiment. It is clear that the time
delay td greatly influences into the circuit dynamics,
because the new types of region are constructed in a
circuit with switching delay. We notice that a part of the
Poincaré mapBd7, Bd8 andBd9 depend on the values
of uk andvk (see Eq. (4)). In other words, the Poincaré
map in the circuit with switching delay is described
by the two dimensional discrete system. However the
Poincaré map in the circuit with ideal switching is also
described by one dimensional discrete system because its
all regions depend on only the value ofvk [6]. Therefore
we attribute that the structure of Poincaré map is varied
due to the appearance of switching delay.
Then we discuss the bifurcation phenomena in a cir-
cuit with switching delay. Figure 4 exhibits the one
dimensional bifurcation diagram in a circuit with ideal
switching and a circuit with switching delay, respec-
tively. Additionally, Fig. 5 shows the corresponding
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Fig. 3. Experimental results of the Poincaré map. (vU = 2.5[V],
vL = 0.5[V] and T = 2.0[ms])
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Fig. 4. One parameter bifurcation diagram. (T = 2.0[ms] and
vU = 2.5[V])

experimental results with Fig. 4 (b). We can observe
various kinds of periodic waveforms and chaotic at-
tractor. For example, there is the period-1 waveform
at vL = 0.5[V] (see Figs. 5 (a)). Also, the period-1
waveform becomes the period-2 waveform through the
period doubling bifurcation atvL = 0.91[V]. Moreover,
the period-6 waveform exists atvL = 1.8[V] (see Figs.
5 (c)). After that border-collision bifurcation occurs and
the chaotic attractor is generated atvL = 1.9[V]. This
results show that the period doubling bifurcation or
border-collision bifurcation concern the behavior of the
waveform in the circuit with switching delay.
Finally, we examine the effect of switching delay with
the one dimensional bifurcation diagram. We can ob-
serve that the appearance of switching delay makes the
existence region of the periodic waveform and chaotic
attractor different. For example the existence region of
the period-1 waveform becomes small. It is occurred
depending on the period doubling bifurcation, and the
red line in these figures show the appearance of a period
doubling bifurcation. The specific condition of the period
doubling bifurcation at red line is given by

e−
T

RC +
E1 − E2

vU − vL
Te

−T+td+ta(vk)

RC + 1 = 0. (6)
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Thus, the existence region of the period-1 waveform is
reduced by switching delay because the time delaytd is
a positive value in Eq. (6).

Consequently, the period doubling bifurcation or the
border-collision bifurcation relate to the behavior of the
waveform in the circuit with switching delay. Moreover,
the appearance of switching delay exerts an influence
on the circuit dynamics because it makes the structure
of Poincaré map and the existence region of the various
kinds of waveform different from the circuit with ideal
switching.

V. CONCLUSION

In this paper, we examined the effect of switching
delay and show the bifurcation phenomena in the sim-
plest circuit model based on laboratory experiment. As a
result, the period doubling bifurcation or border-collision
bifurcation relate to the behavior of the waveform in the
circuit with switching delay. Moreover, the appearance
of switching delay has an effect on the circuit dynamics
because it makes the structure of Poincaré map and the
existence region of the various kinds of waveform dif-
ferent from the circuit with ideal switching. Concretely,
the Poincaré map in the circuit with switching delay is
described by two dimensional discrete system and the
existence region of the period-1 waveform is reduced by
switching delay. In addition, we consider that a similar
effect and bifurcation phenomena are observed in the
PWM-1 controlled high dimensional circuit, because our
circuit model is constructed by the switching part of
PWM-1 controlled buck converter circuit.
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Abstract—The main purpose of this paper is to clarify
the qualitative mechanism in the current mode controlled
buck-boost converter containing spike noise. First, we
explain the basic switching rule in the circuit with ideal
switching and the circuit with spike noise, respectively.
Then, the Poincaŕe map is derived for the rigorous
analysis. Finally, we show some analytical results based
on the Poincaŕe map. In particular, we pay attention to
the dynamical effect of spike noise in the circuit including
discontinuous conduction mode (DCM).

I. INTRODUCTION

Power conversion DC/DC converters are widely used
in the field of electrical engineering, and have been thor-
oughly studied in the past decade under the assumption
of the theoretical switching action [1]–[4]. However,
there are various kinds of unavoidable switching non-
idealities such as time delay via the circuit’s elements
(switching delay), high frequency ripple (spike noise)
and so on. In particular, Ref. [5] reported that the above
missed switching actions make the bifurcation structure
of DC/DC converters different, and greatly influences
into the circuit dynamics. Although, there is no paper
that have analyzed the effect of missed switching actions
except for Refs. [5]–[7]. Therefore, we have proposed
a simplest class of interrupted electric circuit and its
mathematical model based on the switching action of
the converter circuit operated in continuous conduction
mode (CCM), and analyzed it in detail [8], [9]. How-
ever, dynamical effect of missed switching action in
the circuit dynamics including discontinuous conduction
mode (DCM) does not studied at all. To develop the
fundamental circuit theory of DC/DC converters, we
need to examine the effect of missed switching action
in the circuit dynamics with DCM.

This paper addresses the first step to analyze the
dynamical effect of missed switching action in the circuit
dynamics with DCM. The current mode controlled buck-
boost converter is used as the circuit model. First, we

explain the behavior of the waveform in the circuit
with ideal switching and the circuit with spike noise,
respectively. Then, we classify the consecutive waveform
during the clock interval utilizing the critical value,
and derive the Poincaré map for the rigorous analysis.
Finally, we discuss the qualitative mechanism of the
circuit with spike noise based on the Poincaré map. In
particular, we pay attention to the effect of spike noise
in the circuit dynamics containing DCM.

II. C IRCUIT AND SWITCHING RULE

Figure 1 shows the current mode controlled buck-
boost converter. In this paper, we let the capacitance
voltagev is a constant valueE0, under the assumption of
the capacitanceC and resistanceR are large enough for
the clock intervalT . Thus, the circuit equation is given
by

di

dt
=



























Ed

L
, : state 1

−
E0

L
, : state 2

0, : state 3

, (1)

where state 1, state 2 and state 3 are defined as

• state 1:S conducting,D blocking and0<i<iref
• state 2:S blocking,D conducting and0<i<iref

L
C

vEd

R

S

Q

Q clock
t

T

R

Iref
D

i
E0

S

Fig. 1. Current mode controlled buck-boost converter
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• state 3:S andD both blocking andi = 0.
Let us suppose thatτ = t/(RC) and y = i/Iref are
used as the dimensionless variables. Moreover, we set a
variableM = E0/Ed in the following analysis.

Figure 2 shows the behavior of the waveform in
the circuit with ideal switching and the circuit with
spike noise. Note that the detailed analysis in the circuit
with ideal switching has been already conducted in Ref.
[4], however, we show the conceptual diagram of the
waveform in the circuit with ideal switching in terms
of the comparison between the circuit with spike noise.
Here, the operation time of spike noise does not influence
into the circuit dynamics so much, because it is short
enough for the clock interval [5]. Thus, we ignore the
operation time of spike noise in the following analysis
to study the fundamental property of the circuit (see Fig.
2 (b)). The basic switching rule falls into three types as
follows:

1) the switch changes from state ON to OFF if the
waveform hits the reference value,

2) the switch changes from state OFF to ON if the
clock pulse is impressed when the switch is set at
state OFF,

3) the switch keeps state OFF until the next clock
pulse is impressed if the waveform reaches to zero,

where the switching rule 2) does not be applied if the
maximum size of spike noiseh reaches to the reference
value. In addition, the circuit dynamics includes DCM

ON OFFONOFF
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y
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(k+1)T (k+2)T (k+3)T (k+4)T

yk+1
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(a) Circuit with ideal switching
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(b) Circuit with spike noise

Fig. 2. Conceptual diagrams of the waveform in the circuit

if the waveform reaches to zero.

III. POINCARÉ MAP

Basic behavior of the waveform during a duration
of clock interval T in the circuit with spike noise is
classified into five types (see Fig. 3) by the critical values
D1, D2, D3 andD4.

D1 =1−T, D2 =1−T+
1

M
, D3 =1−h, D4 =MT (2)

Note that we need the information ofyk andyk−1 that
is the waveform atτ = kT andτ = (k−1)T to classify
the waveform during the clock interval. In addition, we
define the variable functionxk that satisfiesxk+1 = yk,
and let Isj (j = 1 ∼ 10) that are the regions of the
classified waveforms.

Is1 ={xk, yk| yk < D1},
Is2 ={xk, yk|D1≤yk <D3 or (D3≤yk, xk≤D1)},
Is3 ={xk, yk|D2 ≤ yk, xk ≤ D1},
Is4 ={xk, yk|D3 ≤ yk,D1 < xk},
Is5 ={xk, yk|D3 ≤ yk < D4,D1 < xk},
Is6 ={xk, yk|D1≤yk <D3 or (D3≤yk <D2, xk≤D1)},
Is7 ={xk, yk|D1 ≤ yk < D2},
Is8 ={xk, yk|D2≤yk < D3 or (D3≤yk, xk≤D1)},
Is9 ={xk, yk|D4 ≤ yk,D3 ≤ yk,D1 < xk},
Is10 ={xk, yk|D3 ≤ yk,D1 < xk},

(3)
Therefore, we can define the Poincaré map in the circuit
with spike noise as follows:

xk+1 =























































































[

yk

yk + 1

]

, (xk, yk) ∈ Is1

[

yk

−M(yk+T−1)+1

]

,(xk, yk) ∈ Is2, Is6, Is7

[

yk

0

]

, (xk, yk) ∈ Is3, Is8

[

yk

yk − MT

]

, (xk, yk) ∈ Is4, Is9

[

yk

0

]

, (xk, yk) ∈ Is5, Is10

.

(4)
The consecutive waveform during the clock interval

is classified into three types in the circuit with ideal
switching by using the borderD1 and D2. Likewise,
we call the region in the circuit with ideal switching
as Ii1, Ii2 and Ii3 in the following analysis. Note that
the circuit with ideal switching is described by the one
dimensional discrete system. However, we treat it as the
two dimensional discrete system in order to compare the
circuit with spike noise.
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Fig. 3. Classified waveforms during the clock interval

IV. QUALITATIVE MECHANISM

Figures 4 and 5 show the structure of Poincaré map
in the circuit with ideal switching and the circuit with
spike noise. Note that behavior of the waveform during
the clock interval in color-coded red, blue, purple, green
and orange regions correspond to Fig. 3 (a), (b), (c),
(d) and (e), respectively. Now, we can define the four
types of Poincaré map in the circuit with spike noise as
follows:

1) case 1 :h 6= 0 andD4 < D3 and0 ≤ 1 − MT ,
2) case 2 :h 6= 0 andD3 ≤ D4 and0 ≤ 1 − MT ,
3) case 3 :h 6= 0 andD3 < D2 and1 − MT < 0,

Ii2
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Fig. 4. Structure of the Poincaré map (ideal switching)

4) case 4 :h 6= 0 andD2 ≤ D3 and1 − MT < 0,
where case1–4 are shown in Fig. 5. Structure of the
Poincaré map in the circuit with spike noise different in
form compared with the circuit with ideal switching. We
find out that the new type of switching rule that is the
switch keeps state OFF during the clock interval greatly
influences into the circuit dynamics (see green or orange
regions in Fig. 5). Figures 6 and 7 show the examples
of waveform and its corresponding Poincaré map in the
circuit with ideal switching and the circuit with spike
noise. It is clear that appearance of spike noise causes
the new regionIs4, Is5 andIs9. In particular, regionIs4

makes the new mapping point in the Poincaré map (see
Fig. 6 (b)). As the results, some effects of spike noise
such as expansion of the invariant set, appearance of
the coexisting attractor can be observed in the circuit.
On the other hand, spike noise can make the operation
time of DCM long. For example, we can observe that
the regionIs5 constructs the new mapping point in the
Poincaré map, and makes the operation time of DCM
long in Fig. 7 (b). In general, it can be said that the
circuit dynamics with spike noise tend to be in DCM in
the lower parameter value ofT compared with the circuit
dynamics with ideal switching under the condition of
D2 ≤ D3. Note that spike noise does not influence into
the circuit behavior under the condition ofD3 ≤ D2
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Fig. 5. Structure of the Poincaré map (spike noise)

18th IEEE Workshop on Nonlinear Dynamics of Electronic Systems (NDES2010)

26-28 May 2010, Dresden, Germany 124



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2  2.5  3

y→

τ→

 0

 0.5

 1

 0  0.5  1

y k→

xk→

D1

Ii1

Ii2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2  2.5  3

y
→

→

 0

 0.5

 1

 0  0.5  1

y k→

xk→

D1
Is2

Is1

D1

D3Is4

(a) Circuit with ideal switching (h = 0.0) (b) Circuit with spike noise (h = 0.1)

Fig. 6. Examples of the waveform and its Poincaré map in the circuit dynamics does not including DCM (T = 0.3, M = 2.0).
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Fig. 7. Examples of the waveform and its Poincaré map in the circuit dynamics including DCM (T = 0.51, M = 2.0).

in the circuit, because both of the circuit dynamics
with ideal switching and spike noise including DCM
at the same time under the condition ofD3 ≤ D2.
Consequently, we can conclude that appearance of spike
noise makes the new type of waveform that the switch
keeps state OFF during the clock interval (see Fig. 3 (d),
(e)), and effects in the circuit dynamics.

V. CONCLUSION

We have analyzed the buck-boost converter contain-
ing spike noise based on the Poincaré map. First, we
explained the basic switching rule in the circuit. Then,
the Poincaré map in the circuit with spike noise was
derived for the rigorous analysis. Finally we discuss
the qualitative mechanism and dynamical effect of spike
noise in the circuit based on the Poincaré map. As the
results, we could be conducted that (1) appearance of
spike noise makes the new type of waveform that the
switch keeps state OFF during the clock interval, and
effects in the circuit dynamics (2) the circuit dynamics
with spike noise tend to be in DCM in the lower param-
eter value ofT compared with the circuit dynamics with
ideal switching under the condition ofD2 ≤ D3 (3) spike
noise did not influence into the circuit dynamics under
the condition ofD3 ≤ D2. Detailed bifurcation analysis

in the circuit dynamics with DCM and investigation
into the effect of missed switching action in more high
dimensional system is our future work to be studied.
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Abstract— We have constructed a two-
compartment model of the dopaminergic neuron based 
on the FitzHue-Nagumo oscillators with nonlinear 
recovering for each compartment. The compartments 
correspond to the soma and dendrites differing by the 
value of small parameter. The influence of stimuli 
(applied current for the somatic compartment and 
synaptic activation for the dendritic compartment) on 
the model has been studied. We have shown that 
activation of AMPA and NMDA synaptic currents 
leads to neuron firing high-frequency bursts. The 
mechanisms underlying the high-frequency oscillations 
are investigated. 

Dopaminergic neurons situated in the midbrain 
and basal ganglia play a key role in motor activity 
and behavioral response formation. They are active 
and generate periodical or irregular spike trains as 
well as high frequency bursts [1,2] (fig. 1). The 
frequency of periodic or irregular spike train is 1-5 
Hz, whereas the frequency of spikes in the bursts may 
exceed 20 Hz [2,3]. Long-term depolarization of the 
soma of the neuron is not able to produce the high 
frequency burst because it results in suppression of 
neuron activity [4,5]. But it is possible to speak about 
correlation between high-frequency bursts and 
activation of NMDA- and AMPA-receptors. It was 
shown [6-8] that in vitro slices stimulation of 
NMDA-receptors may evoke such bursts. The role of 
AMPA-receptors has not been fully understood. On 
the one hand, there are some papers (for example, 
[9]), in which it was demonstrated that only 
activation of NMDA-receptors may produce high-
frequency burst generation. On the other hand, in [10] 
it was shown that it is necessary to combine 
activation of receptors of both types for obtaining 
high-frequency generation.  

Recently the phenomenological [11], and 
Hodgkin-Huxley-like [12-14] models of the 
dopaminergic neuron were proposed. These models  

consist of electrically coupled compartments. The 
first compartment describes soma dynamics, wheras 
the other compartments (at least one) mimic dendrites 
behavior. In the framework of the phenomenological 
model based on FitzHue-Nagumo oscillators [11] and 
Hodgkin-Huxley-like [12, 13] models it was 
demonstrated that high-frequency bursts generation 
cannot be a result of the soma stimulation by the 
applied current. In the model based on the Hodgkin-
Huxley equations [14] the influence of applied 
current on the soma compartment and action of 
NMDA- and AMPA-receptors stimulation on 
dendritic one are studied. It was shown that activation 
of NMDA-receptors may initiate high- frequency 
bursts, whereas activation of AMPA-receptors leads 
to suppression of neuron activity. Disadvantages of 
this model are complexity and a great amount of 
model parameters. The goal of our work was 
construction of a simple model describing different 
mechanisms of high- frequency burst generation. As 
distinct from the model in [11] we used FitzHue-
Nagumo oscillators with nonlinear recovering for 
describing compartments and also investigated the 
influence of NMDA- and AMPA-receptors 
activation.  

 
Fig. 1. An oscillogram of high‐frequency activation in 

vitro of a dopaminergic neuron in black matter of midbrain 
induced by synaptic stimulation of NMDA‐ and AMPA‐

receptors [10] (stimulation duration is shown by black line). 

I. MODEL 
The model consists of two compartments 

imitating behavior of the soma and the dendrite (fig. 
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2). Each compartment is described by FitzHue-
Nagumo equations in the form [15]:  
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Indexes s and d correspond to the compartments 

describing the soma and the dendrite, respectively. 
Variables us and ud qualitatively represent membrane 
potentials of the compartments, variables vs and vd 
model dynamics of calcium ion concentration. εs and 
εd are small parameters determining slowness of 
variables vs and vd  in comparison with us and ud. 
Because of different sizes of the soma and the 
dendrite, the value of the somatic small parameter εs 
is much smaller than the value of the dendritic small 
parameter εd (further, for definiteness εs=0.06, 
εd=0.6). Parameter d is electric coupling strength.  

D(x  -x )i j SOMA DENDRITE
jext

AMPA
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Fig. 2. Schematic representation of the model. 

Functions f(u) and g(u) have the following form: 
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Control parameters js and jd determine 
spontaneous activity of the compartments (without 
external stimuli). jstis represents the action of applied 
current (for the somatic compartment), jstid describes 
the action of synaptic stimuli (for the dendritic 
compartment). gAMPA is AMPA-channel maximum 
conductivity, gNMDA is maximum conductivity of 
NMDA-channel, ENMDA and EAMPA are reversal 
potentials of the channels. In our work conductivity 
of AMPA-receptors did not depend on variable u. 
The form of NMDA-receptors conductivity gNMDA(u)  
was taken from [8]. Concentration of Mg2+ was 
considered to be constant.  

II. DYNAMICS OF THE ISOLATED 
COMPARTMENTS OF THE MODEL 

A. Bifurcation Analysis 
As compartments of the model are described by 

the same FitzHue-Nagumo equations with different 
values of small parameters, we considered 
bifurcations of a compartment:  
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for different values of parameters ε, j and α without 
external stimulus (jsti=0). 
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Fig. 3.  One-parametric (a) and two-parametric (b) 
bifurcation diagrams for α= 0.01.  In (a) the heavy line shows the 
limit cycle, thin lines demonstrate equilibriums (O1, O2 and O3); 
solid and dashed lines correspond to stable and unstable solution, 

respectively. In (b) curves γSN1 and γSN2 correspond to saddle-
node bifurcations, curve γH1 corresponds to Andronov-Hopf 

bifurcation. 

Consider the case ε=0.1 and α=0.01. For j<j1 
only one stable equilibrium – stable node О1 exists on 
phase plane (fig. 3a). At j=j1 saddle-node bifurcation 
takes place, and saddle О2 and unstable node О3 
appear. Three equilibriums co-exist on the phase 
plane of system (3) up to the value of the control 
parameter j=j2 (j∈(j1,j2)). A saddle-node separatrix 
loop bifurcation occurs here: О1 and О2 disappear, 
and a limit cycle L1 is born from heteroclinic 
connection. At j=j3 Andronov-Hoph bifurcation takes 
place: limit cycle disappears and equilibrium О3 
becomes stable. Thus, for the values of control 
parameter  j∈(j2,j3) on the phase plane of system (3) 
there exists only one stable attractor – limit cycle L1. 
Note that as the limit cycle was born from 
heteroclinic connection, its period tends to infinity for 
j→j2.  

Such bifurcation scenario holds true within some 
interval of values of parameterα. Also there are two 
more ways of limit cycle birth (homoclinic 
bifurcation or subcritical Andronov-Hopf 
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bifurcation), but these cases will not be considered 
here. 

A two-parametric bifurcation diagram for system 
(3) is presented in fig. 3b. Position of the curves 
corresponding to saddle-node bifurcations does not 
depend on parameter ε. As Andronov-Hopf 
bifurcation takes place at smaller values of parameter 
j, at ε=ε1 there is a merge point of curves γSN1 and γH1. 
This means that for ε>ε1 there is no periodic solution. 
In other words, with increasing parameter ε the 
interval of parameter j, in which oscillations are 
observed, increases and then disappears.  

B. Action of External Stimuli on 
Isolated Compartments  
Here we consider the action of applied current jext 

and synaptic currents initiated by activation of 
AMPA- and NMDA-receptors on isolated somatic 
and dendritic compartments. For definiteness, let us 
set parameter values in the following way: 
js=jd=0.48, β=3, ENMDA=0, EAMPA=0, [Mg]=10. As 
was mentioned above, experimental data indicates 
that applied current cannot initiate substantial 
increase of compartment frequency, whereas synaptic 
stimuli are able to do so [6-10]. For instance, this 
concerns NMDA-current. In our model soma 
oscillations have an almost constant amplitude and 
their frequency weakly increased with the growth of 
parameter jext up to jext≅2.25 (fig. 4a,b). In the 
neighborhood of this value, the oscillation amplitude 
abruptly reduces to zero, while the frequency rapidly 
grows. Such behavior is attributed to disappearance 
of the limit cycle (which is the image of oscillations 
on the phase plane) through the supercritical 
Andronov-Hopf bifurcation. For the dendritic 
compartment, increasing of applied current results in 
oscillations with slower amplitude (in comparison 
with the soma) and rapid growth of frequency, but 
leads to fast activity suppression.  

Activation of AMPA-receptors decreases the 
amplitude of soma oscillation and increases the 
frequency severalfold (fig. 4c,d). For the same 
stimulus, oscillation of the dendritic compartment has 
rapidly increasing amplitude and quickly decreasing 
amplitude. Activation of NMDA-receptors results in 
smaller reducing of both compartment oscillations and 
does not suppress their activity in a wider interval of 
parameter gNMDA (fig. 4e,f). The frequency of soma 
oscillations grows only slightly, whereas dendritic 

frequency increases severalfold. So, in our model 
activation of AMPA- and NMDA-receptors leads to 
different consequences: activation of both types of 
receptors results in drastic frequency growth, but 
activation of AMPA-receptors rapidly decreases 
oscillation amplitude, and then suppresses activity.  
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Fig. 4.  Dependence of amplitude and frequency of the 
isolated compartments on applied current and conductivity of 
synapses with AMPA- and NMDA-receptors. Dashed curves 

correspond to the soma, solid curves correspond to the dendrite.  

III. ACTION OF EXTERNAL STIMULI ON THE 
INTEGRAL MODEL 

Electric coupling synchronizes the compartments 
of the model but, as the compartments are non-
identical, full synchronization in system (1) is 
impossible. Nevertheless, even for small values of the 
coupling strength, frequency synchronization is 
observed. So we fixed the coupling strength value so 
as to obtain frequency synchronization (d=5).  

Stimulation of AMPA-receptors substantially 
increases the frequency of oscillations and at the 
same time reduces their amplitude (fig. 5a,b). At 
gAMPA≅0.8 there is suppression of neuron activity 
through the supercritical Andronov-Hopf bifurcation. 
Activation of NMDA-receptors in the same interval 
of parameter values results in weak reducing of 
oscillation amplitude only (fig. 5b). The frequency of 
oscillations grows slower than for activation of 
AMPA-receptors, hence higher values of gNMDA are 
needed for obtaining comparable frequency (fig. 5c). 
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Consider parameter gNMDA varying in time. Assume 
that (as in fig. 6a) at t=350 the value of gNMDA 
increases jumpwise from 0 up to 0.4, and at t=750 the 
action of stimulation ceases. During stimulation the 
oscillation frequency rapidly increases, whereas the 
amplitude remains almost unchanged. After the end 
of stimulation, the neuron returns to the regime of 
low-frequency oscillations.    
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Fig. 5.  Dependence of amplitude and frequency of system 

(1) on conductivity of synapses with AMPA- and NMDA-
receptors. Dashed curves correspond to the soma (εs=0.06), solid 

curves correspond to the dendrite (εd=0.6).  

IV. CONCLUSION 
In the presented work we constructed the two-

compartment model of dopaminergic neuron on the 
basis of FitzHue-Nagumo oscillators with nonlinear 
recovering.  The compartments corresponded to the 
soma and the dendrite differing by the values of small 
parameters εs and εd (εs<<εd). As a result the 
dendritic compartment had a wider region of external 
simuli (jext, gAMPA, gNMDA) in which oscillations exist in 
comparison with the somatic compartment.  In other 
words, somatic periodic activity had a rougher 
character than the dendritic one. Note that as was the 
case for the model proposed in [14], only such a 
functional feature underlies frequency limitation.  

We considered the case of limit cycle birth 
through heteroclinic connection. A characteristic 
feature of this scenario is zero frequency (infinite 
period) at the bifurcation point. Any minimal external 
stimulus at the point results in rapid growth of 
oscillation frequency. It is the class 1 of spiking 
system by classification in [16].  

Stimulation of AMPA-receptors and applied 
current have the same impact on the frequency of the 
isolated compartments. Similarly to [14], such 

stimulation rapidly increases the frequency of 
dendrite oscillations and at the same time suppresses 
activity. The frequency of soma oscillations changes 
slower.  In contrast to the model [14], there is a small 
difference between the amplitude of the soma and of 
the dendrite. As a result, activation of AMPA 
receptors leads to rapid reducing of oscillation 
amplitude but not to activity suppression as it was in 
[14]. Stimulation of NMDA receptors has a weaker 
impact. On the other hand, neuron activity 
suppression does not occur in a wide range of 
parameter gNMDA. Such structural stability may 
underlie reliable observation of experimental 
oscillation frequency growth in the case of NMDA-
receptors activation, whereas AMPA intensity should 
be set more accurately to avoid oscillation 
suppression.     
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Fig. 6. High frequency burst oscillogram initiated by short 

time activation of NMDA-receptors (gNMDA changes jumpwise 
from 0 at t=350 up to 1,2 and back to 0 at t= 750, js=jd=0.48).  
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Abstract—There are significant interests in the research
of complex network theories in recent years. One of the
most attractive aspects is the synchronization of complex
networks. Enlightened from the ideas of spike-timing
dependent plasticity (STDP), we improve and extend an
adaptive principle to complex networks with different
degrees and frequency distributions within the context
of the Kuramoto model. This paper mainly investigates
the adaptive scheme in two kinds of complex networks.
Comparing with other weighted or unweighted coupling
schemes, it is shown that the adaptive coupling scheme
has a better performance in phase synchronization and
communication efficiency.

Index Terms—Complex networks, Phase synchroniza-
tion, Adaptive coupling scheme, Heterogeneities.

I. INTRODUCTION

Since the seminal work on the small-world phe-
nomenon by Watts and Strogatz [1], the structure and
dynamics of complex networks have recently attracted
lots of interests from a variety of fields [2]. In particular,
the synchronization of complex networks has various
applications and important research value [3, 4]. Among
various different synchronization states, such as complete
(CS), phase (PS), lag (LS) and generalized (GS) synchro-
nization [5], PS [6] occupies a crucial position. In real
world complex systems, such as brain and rhythmical
activities, information is exchanged over the network
mostly in the form of timing, such as frequency and
phase, but not amplitude [7]. To study this case, the
Kuramoto model [8] has been a paradigm [9].

In the collective dynamics of emergence phenomenon,
efficiency is an important issue in the context of infor-
mation transmission and processing, and in problems of
synchronization, it is related to the connection cost [10,
11]. In order to improve the efficiency of synchronization
and reduce the connection cost, heterogeneity is a key
factor that one must affront [12].

In recent years, the characterization of spike-timing
dependent plasticity (STDP) has attracted increasing
interests [13, 14]. Enlightened from these ideas, some of
us have proposed an adaptive principle [15] to generalize
the Kuramoto model for the study of highly regular lat-
tices. In this paper, we improve and extend the principle
to complex networks with heterogeneous frequency and
degree distributions. By simulating two kinds of complex
networks and comparing the adaptive coupling scheme,
it is shown that the adaptive scheme could suppress
the negative effects of the heterogeneity and the phase
synchronization is enhanced obviously. The remainder
of the paper is organized as follows. In Sec. II, we
present the new adaptive coupling scheme. Numerical
experiments are carried out in Sec. III. Section IV
summarizes our conclusions.

II. ADAPTIVE AND WEIGHTED COUPLING SCHEME

We consider the dynamics of an ensemble of N
coupled oscillators on top of complex networks within
the context of the Kuramoto model (KM). The original
KM corresponding to a uniform, all-to-all, and sinusoidal
coupling is described by the equations:

θ̇i = ωi +
λ

N

N
∑

j=1

sin(θj � θi) (i = 1, . . . , N). (1)

Here ωi are natural frequencies distributed with a
given probability density g(ω), θi are phases of individual
oscillators, and λ is the coupling constant. The factor
1/N is introduced in order to ensure a good behavior
of the model in the thermodynamic limit N → ∞ . In
order to study the KM on top of complex networks, we
reformulate Eq. 1 to the form:

θ̇i = ωi +

N
∑

j=1

λijAij sin(θj � θi) (i = 1, . . . , N), (2)
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where λij is the coupling strength between pairs of
connected oscillators. Aij is the connectivity matrix, i.e.
Aij = 1 if i is connected to j and Aij = 0 otherwise.

In a previous work [15], some of us pro-
posed a new adaptive coupling scheme (K̇ij =

ε [� |sin (γ(θi � θj))| � Kij ]) for the KM on top of regular
lattices based on the essential ideas of STDP. In this
paper, we develop the adaptive coupling scheme. The
recent development of the weighted coupling structure
aiming at the heterogeneity in topology is introduced
to the new adaptive scheme [20]. The elements of
the coupling matrix describing interaction between two
oscillators, for instance i and j, are controlled by the
following equation:

dλij

d( t)
= ε

[

�

kβ
i

|sin (γ(θi � θj))| � λij

]

. (3)

In actual cases of weakly coupled oscillators, the
phase parameter could not be obtained directly, but is
represented in sine or cosine form. This is why we
adopt the sinelike form in the paper. The simulation
results showed that the average coupling costs of the
linear and the sinelike adaptive schemes are the same
[15]. For different settings of γ , the adaptive scheme
corresponding to γ = 0.5 has the best performances in
the average coupling cost and synchronization speed.

Rewriting the dynamic equation (3) as

dλij

d(ε t)
=

�

kβ
i

|sin (γ(θi � θj))| � λij ,

we see that the parameter ε, as the time scale, only
determines the evolution rate of the dynamic equation.
Larger ε will accelerate the global synchronization.The
combination of the parameters � and kβ

i could adjust
the adaptation range of the dynamical coupling. For
fixed ε and � > 0, the larger degree a node has, the
smaller coupling strength could be achieved. We adopt
� = 1 to improve the performance in the aspect of the
heterogeneity in topology [16]. The adaptation function
|sin (�(θi � θj))| implies that the coupling coefficients
grow stronger for the pairs of oscillators which have
larger phase incoherence. Fig. 1 shows the learning
curves of the adaptation function for different values of
γ. The curves are similar with the curve of the additive
STDP learning law. The learning curve of STDP could
be symmetric about origin [18] or a shifted point in X-
axis [17], while the learning curve we used is symmetric
about Y-axis. This difference could be ascribed to the
directionality of coupling.

Fig. 1. The learning curves of the adaptation functions with different
γ: γ = 0.5 (...), γ = 0.75 (-.-), and γ = 1.0 (–).

III. NUMERICAL EXPERIMENTS

A. Scale-free Networks

Heterogeneities both in the degrees and intrinsic fre-
quency distributions could restrain synchronization in
scale-free networks accordingly [19]. Therefore, we use
the new adaptive coupling scheme (Eq.3) to enhance the
synchronization of scale-free networks.

The scale-free network is produced following the BA
procedure [19, 20]. Starting from a set of m0 nodes, a
new node is introduced to m (m ≤ m0, m = 3 has been
set) older ones at each time step. The natural frequencies
ωi and the initial values of θi were randomly drawn
from a uniform distribution in the interval (�0.5, 0.5) and
(�π, π), respectively. In order to determine which pairs
of nodes are synchronized and find out the clusters, we
utilize the procedure proposed in [21]. The dynamical
coherence of every pair of connected oscillators can be
written like this:

Dij = Aij

∣

∣

∣

∣

∣

lim
∆t→∞

1

∆t

∫ tr+∆t

tr

ei[θi(t)�θj(t)]dt

∣

∣

∣

∣

∣

, (4)

where tr is the starting time of integral. Based on
the coherence matrix the authors defined a new order
parameter [21]:

rlink =
1

2Nl

N
∑

i=1

N
∑

j=1

Dij (5)

which measures the fraction of links that are synchro-
nized in the network. Nl =

∑N
i=1 ki is the total number

of the degrees. We define the measure of average wiring
cost as the average of the coupling strength over all
connections in the network:

Cost =





N
∑

i=1

N
∑

j=1

Kij





/

Nl (6)
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where is the coupling strength of the connection between
node i and j.

Here we compare performances of five different cou-
pling schemes under the same configurations and average
wiring cost (Eq. 6):

1st Scheme :λadp
ij = ε

[

�

kβ
i

|sin (γ(θi � θj))| � λij

]

, (3)

2nd Scheme :λd&f
ij = Cd&f |ωi � ωj |µ

/

kβ
i , (7)

3rd Scheme :λdgr
ij = Cdgr

/

kβ
i , (8)

4th Scheme :λfrq
ij = Cfrq |ωi � ωj |µ , (9)

5th Scheme :λequ
ij = Cequ. (10)

� and � are set to be 1 in the schemes. The weights
of the second coupling schemes (Eq. 7) correlate with
both the heterogeneities in intrinsic frequency and re-
verse degrees while the third (Eq. 8) the fourth (Eq.
9) coupling schemes correlate with the heterogeneity in
intrinsic frequency or reverse degrees respectively. The
fifth scheme (Eq. 10) has coupling distribution with equal
strength. In the last four schemes, the constants C are
set with different values to achieve different coupling
strength.

Fig. 2 displays the obtained order parameters versus
the average wiring cost of the five coupling schemes.
From the figures we see that the adaptive coupling
scheme (1st Scheme) has the best performance of global
synchronization. In order to achieve large fractions (
rlink ≥ 80% in Fig. 2) of all possible links that are
synchronized in network, the adaptive coupling scheme
has faster speed than the other four schemes.

Fig. 2. rlink of the five schemes under same average wiring cost
on top of the scale-free network. The network size is 1000.

B. Modular Networks

Many complex networks in nature have several levels
and are composed of certain sub-networks with differen-
tiated internal and external connectivity that form com-
munities. This kind of networks is named as Modular
Networks [22]. An example of these modular networks is
the mammalian brain [23]. In light of the results of above
sub-sections we apply the adaptive scheme to modular
networks in this sub-section. A common benchmark of
random network with community structure on several
hierarchical levels [22] is utilized. We prescribe 16 areas
that represent the first organizational level, each one
embedding 16 nodes. At the second organization level
of the network, we prescribe 4 compartments, each one
embedding four different areas of the first level. The
initial values of θi are randomly selected from a uniform
distribution in the interval (�π, π).

We compare the adaptive scheme with constant cou-
pling scheme in modular networks under same configura-
tions and same average wiring cost. The synchronization
matrix B is utilized to describe the collective behavior of
the oscillator system. The elements of the synchroniza-
tion matrix B of clusters could have only two values, i.e.
0 and 1. If the value is 1, it implies that the corresponding
pair of oscillators have synchronized. We multiply the
elements of matrix B with the frequencies, and visualize
them with color code in the two columns of Fig. 3.

From the figures we see that when the average wiring
cost is extremely small (0.0064, for instance), the two
schemes could not achieve synchronization either in
all areas (Fig. 3 a1 and a2). However, when the first
organizational level of the adaptive coupling scheme has
achieved synchronization (Fig. 3 b2) and the average
wiring cost achieves 0.021, only a few areas of the
constant scheme achieve synchronization on the first
organization level, whereas in the rest areas only a few
nodes get synchronized (Fig. 3 b1). Moreover, when
the average wiring cost achieves 0.0434, the second
organizational level of the adaptive scheme achieves
synchronized (Fig. 3 c2), but the constant coupling
scheme only gets synchronized on the first level and none
compartments in the second level is synchronized (Fig.
3 c1). These imply that the adaptive coupling scheme
has better synchronization performance than constant
coupling scheme in efficiency.
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Fig. 3. We represent the clusters and frequencies of the oscillators.
The plots of the two-dimension figures denote the items of the
synchronization matrix B. The color code denotes the frequency. The
average wiring cost is labeled under each figure.

IV. CONCLUSION

In this paper we investigate the synchronization issues
of a developed adaptive coupling scheme in complex
networks of Kuramoto phase oscillators. Our main con-
cern is the migration of the negative effects introduced
by the heterogeneities in intrinsic frequency and degree
distributions. The idea of the adaptive coupling law is
enlightened from the developments of the brain and
neural science, especially from the character of the
STDP. We study the adaptive coupling scheme on top
of two kinds of complex networks. Simulation results
reveal that the adaptive scheme has good performance in
efficiency and could achieve a more reasonable coupling
dynamics.
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Abstract—In this paper, we propose an Improved Di-
vided Chaotic Associative Memory for Successive Learning
(IDCAMSL). The proposed model is based on the Di-
vided Chaotic Associative Memory for Successive Learning
(DCAMSL) which was proposed in order to improve
the storage capacity. In most of the conventional neural
network models, the learning process and the recall process
are divided, and therefore they need all information to
learn in advance. In the IDCAMSL, the learning process
and the recall process are not divided and its one-to-many
associations ability is superior to that of the DCAMSL.

Index Terms—Successive Learning, Associative Memory,
Chaotic Neural Network, Multi-Winner Competition

I. I NTRODUCTION

Recently, neural networks are drawing much attention
as a method to realize flexible information processing.
Neural networks consider neuron groups of the brain in
the creature, and imitate these neurons technologically.
Neural networks have some features, especially one of
the important features is that the networks can learn to
acquire the ability of information processing. In the filed
of neural network, many models have been proposed.
Many of those models, the learning process and the
recall process are divided, and therefore they need all
information to learn in advance.

However, in the real world, it is very difficult to get all
information to learn in advance. So we need the model
whose learning and recall processes are not divided. As
such model, the Improved Chaotic Associative Memory
for Successive Learning (ICAMSL)[1] and the Divided
Chaotic Associative Memory for Successive Learning
(DCAMSL)[2] have been proposed. However, their one-
to-many associations ability is low.

In this paper, we propose an Improved Divided
Chaotic Associative Memory for Successive Learning
(IDCAMSL). The proposed model is based on the

DCAMSL. In the proposed IDCAMSL, the learning pro-
cess and the recall process are not divided. When an un-
stored pattern set is given to the network, the IDCAMSL
can learn the patterns successively. Moreover, the one-
to-many associations ability of the proposed IDCAMSL
is superior to that of the conventional DCAMSL.

II. I MPROVED DIVIDED CHAOTIC ASSOCIATIVE

MEMORY FORSUCCESSIVELEARNING

A. Outline of IDCAMSL

Here, we explain the outline of the proposed Improved
Divided Chaotic Associative Memory for Successive
Learning (IDCAMSL). The proposed IDCAMSL has
three stages; (1) Pattern Search Stage, (2) Distributed
Pattern Generation Stage and (3) Learning Stage.

When an unstored pattern set is given to the network,
the proposed IDCAMSL distinguishes an unstored pat-
tern set from stored patterns and can learn the pattern
set successively. When a stored pattern set is given, the
IDCAMSL recalls the patterns. When an unstored pat-
tern set is given to the network, the IDCAMSL changes
the internal pattern for input pattern set by chaos[3] and
presents other pattern candidates (we call this the Pattern
Search Stage). When the IDCAMSL can not recall the
desired patterns, the distributed pattern is generated by
the multi-winners competition[4] (Distributed Pattern
Generation Stage), and it learns the input pattern set as
an unstored pattern set (Learning Stage).

B. Structure of IDCAMSL

The proposed IDCAMSL is a kind of the hetero-
associative memories. Figure 1 shows the structure of
the IDCAMSL. This model has an Input/Output Layer
(I/O Layer) composed of conventional neurons and some
Distributed Representation Layers (DR Layers) com-
posed of chaotic neurons[3]. In this model, there are the
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Fig. 1. Structure of Proposed IDCAMSL.

connection weights between neurons in each DR Layer
and the connection weights between the Input/Output
Layer and each DR Layer. As shown in Fig.1, the
Input/Output Layer has plural parts. The number of parts
is decided by depending on the number of patterns
included in the pattern set. In the case of Fig.1, the
Input/Output Layer consists ofP parts corresponding
to the patterns 1∼P . In this model, when a pattern set
is given to the Input/Output Layer, the internal pattern
corresponding to the input patterns is formed in the DR
Layer. Then, in the Input/Output Layer, an output pattern
set is recalled from the internal pattern. The IDCAMSL
distinguishes an unstored pattern set from stored patterns
by comparing the input patterns with the output patterns.

In this model, the output of therth DR Layer at the
time t+1, xDr

i (t+1) is given by the following equations.

xDr

i (t + 1) = φD(ξr
i (t + 1) + ηr

i (t + 1) + ζr
i (t + 1))(1)

ξr
i (t + 1) = ksξ

r
i (t) +

M∑
j=1

vr
ijAj(t) (2)

ηr
i (t + 1) = kmηr

i (t) +
Nr∑
j=1

wr
ijx

Dr

j (t) (3)

ζr
i (t + 1) = krζ

r
i (t) − αr(t)x

Dr

i (t) − θr
i (1 − kr) (4)

In Eqs.(1)∼(4), M is the number of neurons in the
Input/Output Layer,vr

ij is the connection weight between
the neuronj in the Input/Output Layer and the neuron
i in the rth DR Layer,Nr is the number of neurons in
the rth DR Layer,wr

ij is the connection weight between
the neuroni and the neuronj in the rth DR Layer,
αr(t) is the scaling factor of the refractoriness in therth
DR Layer at the timet, ks, km andkr are the damping
factors, andθr

i is the threshold of the neuroni in therth
DR Layer.φD(·) is the following output function:

φD(ui) = tanh(ui/ε) (5)

whereε is the steepness parameter.
The output of the neuronj in the Input/Output Layer

corresponding to the internal pattern in therth DR Layer

at the timet, xIOr

j (t) is given as follows.

xIOr

j (t) = φIO

(
Nr∑
i=1

vr
ijx

Dr

i (t)

)
(6)

φIO(u) =

{
1 , u ≥ 0
−1 , u < 0

(7)

C. Pattern Search Stage

In the Pattern Search Stage, until the IDCAMSL
recalls the desired patterns, the following two procedures
are repeated. If the IDCAMSL can not recall the desired
patterns, when the stage is repeatedTs times (In this
paper,Ts is set 10), the IDCAMSL finishes the stage.

1) Pattern Assumption: In the proposed IDCAMSL,
only when the input patterns are given to all parts of
the Input/Output Layer, the patterns are judged. When
the input patternAj(t) is similar to the recalled pattern
xIOr

j (t), the IDCAMSL can assume that input patterns
is one of the stored patterns. The IDCAMSL outputs the
pattern formed by the internal pattern in the DR Layer.
The similarity rates(t) is defined by

s(t) = max
r

(s1(t), · · · , sr(t), · · · , sR(t)) (8)

sr(t) =
1

M

M∑
j=1

Aj(t)x
IOr

j (t) (r = 1, · · · , R) (9)

whereR is the number of the DR Layers andsr(t) is
the similarity between the input pattern and the output
pattern at the timet in therth DR Layer. The IDCAMSL
regards the input patterns as a stored pattern set, when
the similarity rates(t) is larger than the thresholdsth

(s(t) ≥ sth).
2) Pattern Search: When the IDCAMSL assumes

that the input patterns are an unstored pattern set, the
IDCAMSL changes the internal patternxDr

i (t) for the
input pattern by chaos and presents the other pattern
candidates.

In the chaotic neural network, it is known that dynamic
association can be realized if the scaling factor of the
refractorinessαr(t) is suitable. Therefore in the proposed
model,αr(t) is changed as follows:

αr(t) = ((αr
max(t) − αmin)

×(1 − sr(t)) + αmin)/αDIV (10)

αr
max(t) = Mvr

max + Nrw
r
max (11)

vr
max = max

(
|vr

11|, · · · , |v
r
ij |, · · · , |v

r
NM |

)
(12)

wr
max = max (|wr

11|, · · · , |w
r
ii′ |, · · · , |w

r
NN |) (13)

where αmin is the minimum of α, αr
max(t) is the

maximum ofα in the rth DR Layer at the timet, and
αDIV is the constant.
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D. Distributed Pattern Generation Stage

In the Distributed Pattern Generation Stage, the dis-
tributed pattern corresponding to the input patterns is
generated by the multi-winners competition[4].

In the proposed IDCAMSL, only one distributed pat-
tern is generated in ther∗th DR Layer. r∗ is decided
by

r∗ = argmin
r

(
s1
max, · · · , sr

max, · · · , sR
max

)
(14)

sr
max = max

(
s1
r , · · · , s

p
r , · · · , s

P
r

)
(15)

sp
r =

1

Mp

Mp∑
j=1

Ap
j (t)x

IOrp

j (t) (16)

whereR is the number of DR Layers,P is the number
of parts decided by depending on the number of patterns
included in the pattern set,Ap

j (t) is the strength of the

external inputj of the partp at the timet, x
IOrp

j (t) is the
output of the neuronj of the partp in the Input/Output
Layer corresponding to the internal pattern in therth
DR Layer at the timet, sp

r is the similarity rate between
Ap

j (t) andx
IOrp

j (t) andMp is the number of neurons of
the partp in the Input/Output Layer.

In the proposed model, r∗ is decided by
Eqs.(14)∼(16). Therefore, patterns that have common
parts are properly stored in different module.

1) Calculation of Outputs of Neurons in I/O Layer:
When the input patternA(t) is given to the Input/Output
Layer, the output of the neuronj in the Input/Output
Layer xIO

j is given by

xIO
j = φIO(Aj(t)). (17)

The output functionφIO(·) is given by Eq.(7).
2) Calculation of Initial Output of Neurons in DR

Layer: The output of the neuroni in the r∗th DR Layer
x

Dr∗ (0)
i is calculated by

x
Dr∗ (0)
i = φD

 M∑
j=1

vr∗

ij xIO
j

 (18)

wherevr∗

ij is the connection weight from the neuronj
in the Input/Output Layer to the neuroni in the r∗th
DR Layer andM is the number of neurons in the
Input/Output Layer. The output functionφD(·) is given
by Eq.(5).

3) Competition between Neuron in DR Layer: The
competition dynamics is given by the following equation:

xDr∗

i = φD

(
Nr∗∑
i′=1

wr∗

ii′x
Dr∗

i′

)
(19)

wherexDr∗

i′ is the output of the neuroni′ in ther∗th DR
Layer,wr∗

ii′ is the connection weight between the neuron
i and the neuroni′ in the r∗th DR Layer andNr∗ is the
number of neurons in ther∗th DR Layer.

E. Learning Stage

In the Pattern Search Stage, if the IDCAMSL can not
recall the desired pattern set, it learns the input pattern set
as an unstored pattern set. The Learning Stage has two
phases; (1) Hebbian Learning Phase and (2) anti-Hebbian
Learning Phase. By this learning, the connection weights
are changed to learn the input patterns.

1) Hebbian Learning Phase: In the Hebbian Learning
Phase, until the similarity rates(t) becomes 1.0, the
update of the connection weights is repeated.

If the signs of the outputs of two neurons are same,
the connection weight between these two neurons is
strengthened.

The connection weight between the Input/Output
Layer and the DR Layervr∗

ij and the connection weight
in the DR Layerwr∗

ii′ are updated as follows:

v
r∗(new)
ij = v

r∗(old)
ij + γ+

v x
Dr∗ (comp)
i Aj(t) (20)

w
r∗(new)
ii′ = w

r∗(old)
ii′ + γ+

w x
Dr∗ (comp)
i x

Dr∗ (comp)
i′ (21)

whereγ+
v is the learning rate of the connection weight

vr∗

ij in the Hebbian Learning Phase, andγ+
w is the

learning rate of the connection weightwr∗

ii′ in this phase.
2) Give Up Function: When the similarity rates(t)

does not become 1.0 even if the connection weights are
updatedTn times, the IDCAMSL gives up to memorize
the pattern set. If the IDCAMSL gives up to learn
the pattern set, the anti-Hebbian Learning Phase is not
performed.

3) Anti-Hebbian Learning Phase: The anti-Hebbian
Learning Phase is performed after the Hebbian Learning
Phase. In this phase, the connection weightsvr∗

ij and
wr∗

ii′ are changed in the opposite direction in the case
of the Hebbian Learning Phase. The anti-Hebbian learn-
ing makes the relation between the patterns is learned
without destroying the stored patterns.

In this phase,vr∗

ij andwr∗

ii′ are updated by

v
r∗(new)
ij = v

r∗(old)
ij − γ−

v x
Dr∗ (comp)
i Aj(t) (22)

w
r∗(new)
ii′ = w

r∗(old)
ii′ − γ−

w x
Dr∗ (comp)
i x

Dr∗ (comp)
i′ (23)

where γ−

v (γ−

v > γ+
v > 0) is the learning rate of the

connection weightvr∗

ij in this phase, andγ−

w (γ−

w > γ+
w >

0) is the learning rate of the connection weightwr∗

ii′ in
this phase.
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(a) t = 1 (b) t = 2 (c) t = 10

(d) t = 11 (e) t = 12 (f) t = 13

(g) t = 21 (h) t = 22 (i) t = 23

(j) t = 24 (k) t = 28

Fig. 2. Successive Learning in Proposed Model.

III. C OMPUTEREXPERIMENT RESULTS

In this section, we show the computer experiment
results to demonstrate the effectiveness of the proposed
IDCAMSL.

A. Successive Learning and One-to-Many Associations

Figure 2 shows the successive learning and one-to-
many associations in the proposed IDCAMSL. As seen
in Fig.2, the patterns “lion”, “penguin” and “duck” were
given to the network att=1 and “lion”, “monkey” and
“mouse” were given to the network att=12. Then these
pattern sets were trained as new patterns. Att=23,
the pattern “lion” was given to the network, then the
IDCAMSL recalled pattern sets corresponding to the
input pattern. From these results, we confirmed that the
proposed IDCAMSL can learn patterns successively and
realize one-to-many associations.

B. One-to-Many Associations Ability

Here, we examined the one-to-many associations abil-
ity of the proposed IDCAMSL. In this experiment, we
used the IDCAMSL which has 200 neurons in the
Input/Output Layer and 300 neurons in the DR Layer. We
used random patterns which have one-to-many relations,
and the only common parts were given to the network
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Fig. 3. One-to-Many Associations Ability.

in this experiment. Figure 3 shows the average of 100
trials. In this figure, the horizontal axis is the number
of patterns in one-to-many relation, and the vertical
axis is the ratio of the number of recalled patterns
divided by the number of patterns corresponding to the
input pattern. In this figure, the one-to-many associations
ability of the Divided Chaotic Associative Memory for
Successive Learning (DCAMSL)[2] is also shown for
reference. From these results, we confirmed that the one-
to-many associations ability of the proposed IDCAMSL
is superior to that of the conventional DCAMSL.

IV. CONCLUSIONS

In this paper, we have proposed the Improved Divided
Chaotic Associative Memory for Successive Learning
(IDCAMSL) based on the DCAMSL[2]. In the proposed
IDCAMSL, the learning and recall processes are not
divided. When an unstored pattern set is given to the net-
work, the IDCAMSL can learn the pattern successively.
We carried out a series of computer experiments and con-
firmed that the proposed IDCAMSL can learn patterns
successively and realize one-to-many associations, and
the one-to-many associations ability of the IDCAMSL
is superior to that of the conventional DCAMSL.
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Abstract—We study motif abundance profile in neural
network models wherein the strengths of the synapses are
governed by spike-timing-dependent plasticity (STDP) and
compare that with the profile of real C. elegans neural
network to identify robust qualitative features.

I. INTRODUCTION

Developments in network theory has led to statistical
concepts and tools to study the structure and dynamics
of complex networks [1]. Using these concepts, it was
shown that large-scale structure of neuronal networks
have scale-free and small-world properties [2], [3]. For
a better understanding, it is necessary to identify factors
determining the structure of neuronal networks. Apart
from genetical aspects and geometric constraints, some
self-organization process may be envisaged to play an
important role in determining the connectivity structure
of neuronal networks. Since a neural network processes
different sensory inputs, it should thereby adapt itself to
its experiences. In biological scenario, we have the learn-
ing scheme of spike-timing-dependent synaptic plasticity
(STDP) [4] which says that a synapse is strengthened
when the presynaptic neuron fires shortly before the
postsynaptic one, and the synapse is weakened instead
when this temporal order is reversed. In particular, during
the development of neuronal network, some synapses
may become extremely weak to be entirely eliminated.
For example, it is known that the brain has a very dense
population of synaptic connections just after the birth
and most of these connections are pruned in the course
of development [5]. Such a pruning takes place even in
the smaller size C. elegans network [6]. This pruning
is reflected by the irreversible deletion of synapses with
strength below a certain threshold.

Recent initial explorations to test this line of thinking
have been encouraging leading to important insights on
large-scale structure of neuronal networks [7], [8]. In
Ref.[7], some of us have considered a simple model
of coupled chaotic maps wherein the coupling strengths
changed according to a STDP learning rule. It was shown

that starting from a globally coupled network a stationary
network with a broad degree distribution was obtained
[7]. Similar results were obtained in Ref.[8] using a
continuous Fitzugh-Nagumo model. These developments
suggest that the STDP learning dynamics may play an
important role in determining the structure of neural
networks. In order to confirm this conjecture, a closer
investigation of the local network structure within real-
istic neuron model networks driven by STDP learning
rule needs be performed.

In this paper, we have studied realistic neuronal mod-
els with STDP learning rule and show that STDP-driven
evolved networks are similar to the real network in C.
elegans in their local wiring structure. We have compared
the local structure of STDP-driven evolved networks
with real C. elegans network by studying the occurrence
of different network motifs. Network motifs are patterns
(sub-graphs) that recur within the network much more
often than expected at random [9]. The characterization
of complex networks using their network motif profile
has become very popular owing to the fact that different
subnetworks are thought to carry out different functions
in the network and the abundance of certain subnetworks
can decide the overall character of the network.

II. METHODS

A. Neuron models

In this paper, we study two neuronal models: the
Leaky Integrate-and-Fire (LIF) model and the Hodgkin-
Huxley (HH) model using the NEST Simulation Tool
[10]. The parameter values for our simulations of the LIF
model were taken from Ref. [11] and HH model from
Ref. [12]. We do not consider inhibitory synapses that
are extremely rare between interneurons in the C. elegans
network [13]. In both models, the synaptic conductance
gi(t) is given by gi(t) = gm

∑N
j=1 wij(t)

∑
k f(t − tkj ),

where N is the number of neurons, gm is the maximum
value of the synaptic conductance, wij is the weight
of the synaptic connection from the ith neuron to the
jth neuron, f(t) describes the shape of the postsynaptic
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current, tkj is the timing of the kth spike of the jth
neuron.

B. STDP learning rule

In our simulations, the weights of different synaptic
connections, wij , get modified (∆wij) via a STDP
learning rule which depends on the temporal difference
∆t = tj − (ti + τd), where tj and ti are the spike time
of the postsynaptic neuron j and presynaptic neuron
i, respectively, and τd is the delay time of the spike
transmission from neuron i to neuron j. The weight
modification factor ∆wij is given by the equation:

∆wij(∆t) =

{
λ exp(−|∆t|/τ+) if ∆t ≥ τd

−λα exp(−|∆t|/τ−) if ∆t < τd,
(1)

where learning rate λ = 0.0001 and wij are constrained
in the range [0, 1]. α introduces a possible asymmetry
between the scale of potentiation and depression and the
time constants τ+ and τ− control the width of the time
window.

C. Network Motifs

We have used the Mfinder software [9] by U. Alon’s
group to determine the three-node network motifs in our
STDP-driven networks. The abundance of each subgraph
i is quantified by the Z-score, zi = Nreal

i −〈Nrand
i 〉

std(Nrand
i )

, where
N real

i is the abundance of subgraph i in the real network,
〈N rand

i 〉 and std(N rand
i ) are the mean and standard

deviation of abundance of subgraph i in an ensemble
of 1000 random networks generated by preserving the
same number of incoming, outgoing and mutual edges
at each node compared to the real network. If zi > 0
(zi < 0) then the subgraph i is over-represented (under-
represented) and is designated as a motif (anti-motif) [9].
The significance profile (SP) of different subgraphs in a
network is the vector of Z-scores normalized to length

1: SPi = zi /
√∑13

i=1 z2
i . SP shows the relative signifi-

cance of subgraphs and is important for comparison of
networks of different sizes and degree sequences [14].

III. EVOLUTION OF NEURAL NETWORKS WITH STDP

A. Basic phenomena

We start our simulations of the STDP-driven prun-
ing process with an all-to-all connected network where
neurons are stimulated by different periodic patterns
repeatedly with period Tpattern. We truncate all the
patterns from Poisson spike trains with the same average
firing rate fPoisson = 50Hz. This average firing rate
corresponds to a 20ms spike interval and is consistent

with the width of STDP time window. In all cases, the
peak synaptic conductances and the neuron potentials
are initialized with a random uniform distribution. Most
of the peak synaptic conductances are pushed toward
zero or gm after development. The threshold for synaptic
pruning is set to g = 0.005nS. We analyze the occurrence
of triad motifs in the resulting steady-state network of
the investigated neuronal models.

We follow the above-outlined approach to study four
cases with different configurations. We refer to the first
case as “basic configuration”, and the later cases are
variations of the first case. In the “basic configuration”,
we simulate a network of N = 100 LIF neurons which
is similar in size to the C. elegans subnetwork of somatic
interneurons. An asymmetric time window τ+ = 16.8ms
and τ− = 33.7ms was used in the STDP rule which
provides a reasonable approximation of the observed
synaptic modification in actual experiments [15]. We
take α = 0.525 along with the asymmetric time window
resulting in the ratio A−τ−/A+τ+ = 1.05 similar to that
in Ref. [11]. We set the other parameters as follows: the
synaptic delay τd = 10ms, the maximum peak synaptic
conductance gm = 0.3nS, and the period of input
patterns Tpattern = 2s. We also study three variations
of the “basic configuration”: “Symmetric configuration”,
where the asymmetric time window is replaced with a
symmetric one (τ+ = τ− = 20.0ms), and α = 1.05
to preserve the ratio A−τ−/A+τ+ = 1.05; “HH model
configuration”, where LIF model is replaced by the HH
model; “Large network configuration”, where the net-
work size is enlarged to 200 neurons, and gm = 0.2nS.
For all four cases, we repeat our simulations 10 times
with different input patterns and initial values.

The SPs of triads for the four configurations men-
tioned above along with that for the C. elegans neuronal
network is shown in Fig. 1. It is seen that all four STDP-
driven evolved networks have very similar SPs with
triads 7, 9 and 10 as motifs, and triads 1, 2, 4, and 5 as
anti-motifs, as in the SP of the C. elegans network which
belongs to the second superfamily reported in [14]. The
SP curves for the four STDP-driven evolved networks
are even more similar to the C. elegans subnetwork
of interneurons. We find that this phenomenon does
not depend on the neuron model, the symmetry of
the time window or the network size, and thus must
reflect some intrinsic characteristic of STDP. Recently,
it was shown that the three motifs, feedforward loop
(FFL;triad 7) and the mixed-feedforward-feedback loops
(MFFL1,MFFL2;triad 9,10) perform important neural
computation and cognition tasks in the cell providing
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an explanation for the abundance of these motifs in
the real network [16]. Our results show that STDP
may be a potential mechanism which could develop
these important motifs abundant in neuronal networks
in second superfamily [14].
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Fig. 1. Comparison of SPs for (a) four different STDP-driven
evolved networks and (b) C. elegans neuronal networks (the sub-
network of somatic interneurons, the somatic network, the whole
neuronal network using the old wiring diagram [17]). We also show
the triad subgraph dictionary in this figure.
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Fig. 2. Comparison of triad frequency spectra for STDP-driven
evolved networks and C. elegans neuronal network. (a) subnetwork
of somatic interneurons and (b) somatic network in C. elegans.
STDP-driven evolved networks in (c) basic and (d) large network
configurations.

There are small differences between our evolved net-
works and the subnetwork of interneurons in C. elegans
like triads 1, 2 and 8 have relatively lower negative
SP, while triads 3 and 7 have relatively higher positive

SP compared to the C. elegans neuronal network (cf.
Fig. 1). STDP tends to form feedforward structures [18]
and reflect the causal relations between neurons, which
could lead to over-representation of cascades (triad 3)
and FFL (triad 7), and under-representation of cycles
(triad 8). On the other hand, we have neglected other
mechanisms such as short-term plasticity and hundreds
of gap connections that are present in C. elegans. The
neuron models and parameter setting may also be dif-
ferent from C. elegans. Since, all these factors could
influence the results and have not been accounted in the
simulated models, the reported similarities between the
evolved and real networks are even more striking. In
Fig. 2 we see that the STDP-driven evolved network for
the “basic configuration” even develops a similar triad
frequency spectra as that of C. elegans.

B. The role of neuronal inputs.

We have simulated neurons with other spike trains
such as stochastic Poisson spike trains and periodic
regular patterns apart from periodic patterns obtained
from Poisson spike trains. For these different spike trains,
we either do not obtain a steady distribution of peak
synaptic conductances or else find a similar SP. The
complexity of correlations between neuronal inputs is
crucial for the similarities in SPs.

Based on our simulations, there seems to be two
ways to achieve a constant distribution of peak synaptic
conductances through STDP: one to use constant tem-
poral correlations between inputs and the other through
repeated input of the same temporal sequences [19]. To
investigate the first case, we utilize a simple method
to generate sufficiently complex temporally correlated
inputs: A non-periodic Poisson spike train with average
firing rate 50Hz is randomly delayed 100 times to
generate the inputs for 100 neurons. The random delay
time Td follows a uniform distribution between [1ms, T],
and we have studied two cases: T=20ms and T=200ms.
Considering that the width of time window in STDP and
average spike interval are both ≈20ms, the case T=20ms
corresponds to a simple relation structure of temporal
correlations between neuronal inputs, while the case
T=200ms corresponds to a more complex relation struc-
ture. In Fig. 3(a), we see for the case T=200ms, the SP
is quite similar to that of network of interneurons in C.
elegans, and the only difference lies in the abundance of
triad 12. However, for the case T=20ms, we do not obtain
similar result. Thus, STDP may play a fundamental role
in development of the local structure of neuronal net-
works, but we should also pay attention to the complexity
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of correlations between neuronal inputs. However, this
simple scheme of temporally correlated inputs did not
generate a triad frequency spectrum similar to that of C.
elegans (cf. Fig. 3(b-c)). For the case T=200ms, we get
more triads corresponding to feedforward structures, i.e.
cascades (triad 3), FFL (triad 7) and MFFL (triad 9 and
10), but did not obtain any subgraph corresponding to
triads 6, 8 and 11. This may be because the correlation
scheme we utilize here is not complex enough compared
to real scenario. In C. elegans, because of the stochastic
characteristic in the environment, inputs of interneurons
could have very complex temporal correlations.

Fig. 3. Comparison of SPs and triad frequency spectra for the C.
elegans interneuron subnetwork and STDP-driven evolved networks
with correlated stochastic inputs.

IV. CONCLUSIONS

Our simulations mimic the STDP pruning process
during course of development within realistic neuronal
models where neurons are stimulated with periodic or
complex temporally correlated spike trains. In the resul-
tant STDP-driven evolved networks, three triads FFL,
MFFL1 and MFFL2, which perform important neural
computation and cognition tasks, were over-represented
compared to randomized networks. The SPs of STDP-
driven evolved networks are similar to that in the C.
elegans neuronal network, especially the subnetwork
of interneurons. Also, the triad frequency spectrum of
STDP-driven evolved network in certain configurations
is similar to that of C. elegans. The exact role of neuronal
input in determining the network structure is yet not clear
but it seems some amount of complexity is needed. The
sparsity of the C. elegans neuronal network could be also
achieved by the STDP-driven evolved network. These
observations suggest that STDP-driven self-organization

could be a candidate mechanism to generate the local
structure of C. elegans neuronal network.
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Abstract— We report the construction and operation of 
a novel chaotic electronic oscillator for which a detailed 
model admits an exact analytic solution. The circuit is 
modeled by a hybrid dynamical system including both 
a continuous differential equation and a discrete 
switching condition. The analytic solution is written as 
the linear convolution of a symbol sequence and a fixed 
basis pulse, similar to conventional communications 
waveforms. Waveform returns sampled at switching 
times are conjugate to a shift map, effectively proving 
the circuit is chaotic. We show the analytic solution 
accurately reconstructs a measured waveform, thereby 
confirming the efficacy of the circuit model. 

I. INTRODUCTION 
It is commonly assumed that the complexity of 

chaos precludes straightforward analytic solution. 
However, this is not necessarily true [1-2]. For 
difference equations, it has been explicitly shown that 
trajectories of the shift map and baker’s map can be 
written as the convolution of a random process and an 
acausal basis pulse [3]. A similar construction is 
available for analogous continuous-time waveforms 
[4-6]. Yet in some sense, these toy systems are of 
limited interest, since they are not derived as an 
accurate model for a real physical system. 

In this paper, we report the construction and 
operation of a novel chaotic electronic oscillator for 
which a detailed model admits an exact analytic 
solution. The oscillator is a hybrid circuit, containing 
both analog and digital components. A mathematical 
model contains a second order differential equation 
coupled to a switching condition controlling a binary 
state. Importantly, the model admits an exact analytic 
solution, which is written as a linear convolution of a 
binary sequence and a fixed basis pulse. Successive 
returns at discrete transition times exactly satisfy a 
shift map, thereby proving the oscillator is chaotic. 

In operation, the electronic circuit generates 
waveforms that closely agree with the analytic 
solution. Sampled at switching times, the circuit 
generates a shift map consistent with the analytic 
model. Using symbols extracted from a measured 

waveform, we construct the corresponding analytic 
solution and find it closely matches the observed 
waveform. Together, these observations confirm that 
the exactly solvable analytic model provides a good 
representation of the electronic circuit. 

II. ELECTRONIC CIRCUIT 
A hybrid electronic oscillator, with both analog 

and digital components, is shown in Fig. 1. This 
circuit was constructed using commercially available, 
discrete components on a solderless breadboard. The 
analog operational amplifiers are all type TL082, 
which are powered using ±15 V. The diodes are all 
type 1N4148. The digital integrated circuit is a dual 
positive-edge-triggered D flip flop (SN54LS74AJ), 
which is powered with +5 V. The digital and analog 
components share a common ground. 

In the figure, certain analog components are 
grouped by dashed boxes. The grouping labeled R  
comprises an active circuit realizing a negative 
resistor. The grouping labeled L is an impedance 
converter providing a nearly ideal inductor. Also 
significant is the capacitor labeled C, which connects 

R  and L to a virtual ground provided by an 
operational amplifier. For the nominal circuit values 
shown in the figure, we have C = 1.3 µF, L = 2.7 H, 
and R  is tunable by a variable resistor. 

The left side of this circuit is a standard RLC 
harmonic oscillator, except the resistance is negative. 
Thus, this part of the circuit is modeled as 

 0, s
dv v diC i L v v
dt R dt

      (1) 

where v is the tank voltage, i is the current through the 
inductor, and vs is a feedback voltage applied to the 
inductor. We introduce the dimensionless time 

 t
T

   (2) 

where 

 22
4

LT RC
R C L




 (3) 
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and 2  . As we show below, the period T is the 
return time for the oscillator. Equations (1) are then 
written as 

   
2

2 2
2 2 0s

d v dv v v
dd

  


      (4) 

where the parameter 

 
2

T
RC

   (5) 

is the dimensionless negative damping. For the circuit, 
we only consider 0 ln 2  . 

The right side of the schematic contains digital 
logic circuitry. In the top trace, an operational 
amplifier is configured as a comparator to detect the 
sign of the voltage v. The subsequent diode and 
voltage divider convert the saturated amplifier output 
to digital logic levels. The middle trace uses a current-
to-voltage converter to give 

 d d
dvv R C
dt

   (6) 

where Rd is the feedback resistor. A second 
comparator then detects the sign of this voltage. The 
following capacitor, diodes, and difference amplifier 
generate a short trigger pulse for any transition in the 
comparator output. Thus, the middle trace generates a 
trigger pulse whenever the derivative of the tank 
voltage v changes sign. This trigger signal is also 
scaled to digital logic levels. 

The logic signals from the top two traces control a 
flip flop in a 54LS74 integrated circuit. The flip flop is 
configured here to store the sign of the tank voltage at 
the last transition in the sign of dv dt . This output is 

fed back to the oscillator via the bottom trace. A 
summing circuit with fixed gain shifts the digital 
signal to the symmetric levels ±V, and the feedback 
signal vs is applied to the tank inductor. 

As such, the feedback circuit is modeled by the 
switching condition 

   00 sgns
dv v V v V
dt

     (7) 

meaning that, whenever the derivative of the tank 
voltage v passes through zero, the feedback voltage vs 
is set to the sign of the tank voltage times the fixed 
magnitude V. Furthermore, the feedback voltage is 
held constant until the next trigger event when the 
derivative dv dt  vanishes. An offset voltage V0 is 
included to account for any small, yet unavoidable, 
asymmetry in the electronic circuit. 

III. ANALYTIC SOLUTION 
The circuit dynamics are modeled by the ordinary 

differential equation (4) with the switching equation 
(7). Defining the dimensionless states 

 0 0, sv V v Vu s
V V
 

   (8) 

we obtain the dimensionless hybrid system 

    2 22 0u u u s          (9) 

and 

       0 sgnu s u      (10) 

where a dot represents a derivative with respect to the 
dimensionless time . 
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Fig. 1. Chaotic hybrid oscillator circuit. 
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Significantly, an exact analytic solution to the 
hybrid system (9) and (10) can be found [6]. Here we 
write the solution as  

       [ ],m
m

u s P m s s   



     (11) 

where the square brackets indicate the largest integer 
less than or equal to the argument, and ms  is a 
sequence of binary symbols, 1. The basis pulse is 

  

   

 

1 , 0

1 , 0 1

0, 1

e

P e





  

   







  



   

 


 (12) 

where 

   cos sine    


   
 

 (13) 

is the oscillatory component. The veracity of this 
solution can be confirmed by direct substitution. 

We note the solution (11) satisfies   0u n  , 

 1 2 0u n   , and      sgn 1 2 sgnu n u n   for 
all integer n. Thus, the switching transitions defined 
by equation (10) only occur at integer dimensionless 
times. Significantly, successive returns at integer 
times satisfy the recursion relation 

      1 1 nu n e u n e s       (14) 

which is a shift map with slope e . For 0  , the 
slope of the return map is everywhere greater than 
one. Since the map is also closed on the unit interval 
for ln 2  , the shift map (14) is necessarily chaotic, 
implying the hybrid system is also chaotic. 

IV. MEASURED WAVEFORM DATA 
The negative resistor was adjusted to obtain 

chaotic dynamics. For R ~ 6.5 k, the circuit 
oscillates chaotically with a fundamental frequency 
near 84 Hz. Waveforms v, vd, and vs were sampled at 
100 kHz using a data acquisition device and a PC. To 
reduce sampling noise, the oversampled data were 
smoothed using a running average over a window of 
ten samples. 

Fig. 2 shows a typical measured time series for the 
tank voltage v. Also shown is the corresponding 
digital signal vs, which switches between two fixed 
points, ±V. After each switching event, the tank 
voltage exhibits growing oscillations about the fixed 
point. When the oscillation gets large, a switching 
event is triggered. Fig. 3 shows a phase space 
projection of v and vd for a four-second trajectory. 
From analysis of the measured signal vs, we estimate 
the amplitude scale V = 0.81 V and offset 
V0 = -0.02 V. 

Using the nominal circuit values and equations (3) 
and (5), we estimate T = 0.012 s and 0.7 ~ ln 2  . 
However, more precise estimates for T and  are 
derived from analysis of the measured waveform. 
Using transitions detected in vs, we determine the 
return times tn where 0dv dt   and 0v V V  . The 
average return time is 1n nT t t  , which gives 
T = 0.0119 s. A return map for the successive returns 
v(tn) is shown in Fig. 4. This map is in agreement with 
the analytic solution (14), which predicts the slope 
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Fig. 2. Typical time series measured from the circuit. The 

oscillating waveform is the tank voltage v, while the square wave 
is the discrete switching state vs. 
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Fig. 3. Phase space projection of measured circuit waveforms. 
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1e  . Using a linear least squares fit to each 
segment of the measured return map, we obtain 

1.92e  , so that  = 0.65. 
We also directly confirm the agreement between 

the oscillator circuit and the analytic model. From the 
measured switching signal vs, we extract the symbol 
sequence sn. For the 4-second waveform, a total of 
336 symbols are obtained. Using these symbols and 
the precise estimates of T and , the corresponding 
analytic waveform is constructed using equations (8) 
and (11). We note the sum in the analytic model is 
evaluated for just the known symbols, so the analytic 
solution is not exact; however, the exponential nature 
of the neglected terms implies the error in the 
truncated solution is negligible. A typical portion of 
the measured waveform and analytic solution are 
shown in Fig. 5(a). In this plot, the two waveforms 
overlap and are indistinguishable, which indicates 
remarkable agreement. In Fig. 5(b), the difference v 
between the measured waveform and analytic solution 
is shown on a finer scale. The close agreement 
between the two waveforms confirms the reliability of 
the circuit model. 

V. CONCLUSIONS 
In this paper we showed a chaotic oscillator circuit 

that is accurately modeled by an exactly solvable 
hybrid system. Although the circuit oscillates at low 
frequencies (~84 Hz), a higher frequency version of 
this oscillator may prove useful for technological 
applications of chaos. For example, the circuit 
provides an antipodal chaotic waveform, which may 
be preferable for proposed chaotic communication 
approaches based on encoding message signals in 
symbolic dynamics [7-8]. The existence of a fixed 
basis pulse suggests that a simple matched filter may 
be realized for detecting and decoding the received 

symbols. Along these lines, we have recently 
identified a significant relationship to the synthesis of 
reverse-time chaos with linear filters [9]. The 
development and application of a practical matched 
filter for chaotic oscillators is the subject of our 
current research efforts. 
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Laboratorio sui Sistemi Complessi, Scuola Superiore di Catania
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Abstract—In this paper, starting from the dissipative
form of the nonlinear oscillator proposed in [1], a new
non-autonomous PWL chaotic circuit is designed and
implemented. The circuit has been then experimentally
investigated and the bifurcation diagram with respect to
the frequency of the forcing signal has been experimentally
derived.

I. INTRODUCTION

Since its discovery, chaos has attracted the interest of
circuit engineers. On one hand, it allowed to correctly
characterize phenomena appearing in some circuits and
that, before, were classified as parasitic, unwanted, or
multiple coexisting oscillations. On the other hand, cir-
cuit engineers directed their efforts towards the design
and implementation of chaotic waveform generators. In
many cases, the design of such circuits started from
the equations of a mathematical model and allowed
the study and characterization of the system dynamics.
Electronic circuits have been in fact used to study a
wide range of complex dynamics, also including strange
non-chaotic attractors [2], multi-scroll attractors [3], and
synchronization [4].

In this work, we take into account the following
equations:

ẋ = y − a1x
ẏ = −bx− a2y + sin(ωt) + s(x)

(1)

with s(x) = 1
2(|5x+1| − |5x− 1|). Eqs. (1) represent

the dissipative form of the system studied in [1]. In fact,
in the limit of zero dissipation (a1 = a2 = 0) they can
be rewritten as:

ẍ + bx = sin(ωt) + s(x) (2)

In the theoretical study of the conservative system (2),
performed in [1], chaotic behavior in the Smale sense for
ω =
√

2 is proven.
In this work, we experimentally characterize this

system, by implementing an analog electronic circuit
governed by Eqs. (1) and showing some examples of

the different dynamics that can be obtained by varying
the frequency of the forcing signal.

As it can be noticed, the nonlinearity of system (1) is
a piecewise-linear (PWL) function. Since the beginning
of the studies on chaos in electrical circuits, this way to
define a nonlinearity has provided a simple and efficient
tool for the design and analysis of chaotic circuits.
The most paradigmatic autonomous circuit able to show
chaotic behavior, i.e. the Chua’s circuit [5], is indeed
based on a PWL nonlinearity.

PWL nonlinearity is also commonly found in nonau-
tonomous chaotic circuits. For instance, the dissipative
oscillator consisting in a resistor-inductor-diode series
introduced in [6] has been analyzed by using a PWL
approximation of its nonlinearity. The authors disclosed,
by means of circuital simulations, a period-doubling
route to chaos. Other examples of PWL dissipative
nonautonomous oscillators can be found in [7], [8].

Given the nature of the nonlinearity of system (1),
among possible approaches for the design and imple-
mentation of electronic circuits modelling dynamical
systems the approach based on the concept of State
Controlled Cellular Nonlinear Network (SC-CNN) has
been chosen since it provides an easy alternative design
method, particularly advantageous in the case of PWL
nonlinearities.

A Cellular Nonlinear Network (CNN) [9] is an analog
signal processing system based on the local interaction
of simple first-order nonlinear circuits: the CNN cells.
The SC-CNN [10] consists in a generalization of the
CNN paradigm in which CNN cells locally share infor-
mation not only about their outputs, but also about their
state variables. SC-CNNs have been used to implement
different examples of dynamical systems [10], [11], [12].

II. THE ELECTRONIC CIRCUIT

A CNN can be defined as an array of locally intercon-
nected first-order systems, the so-called CNN cells [9],
[13]. The generic CNN cell is characterized by a state
variable xj , by an output variable yj , and by a set of
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tunable parameters that defines the interactions between
cells. Among the numerous applications of CNNs (e.g.
image processing and spatio-temporal phenomena emu-
lation [14], locomotion control [15], and so on), we are
interested to the property that any arbitrary dynamical
system can be implemented suitably choosing the set of
parameters and, thus, suitably connecting the CNN cells
[10], [16], [17].

Since a CNN cell is a first-order dynamical system,
the implementation of the model in Eqs. (1) requires two
interconnected CNN cells. For the sake of simplicity, in
the following the state equations of a SC-CNN made of
two cells are given:

ẋ1 = −x1 + a11y1 + a12y2 + s11x1 + s12x2 + i1
ẋ2 = −x2 + a21y1 + a22y2 + s21x1 + s22x2 + i2
y1 = 0.5(|x1 + 1| − |x1 − 1|)
y2 = 0.5(|x2 + 1| − |x2 − 1|)

(3)
where it should be mentioned that using the standard

operational amplifiers (OP-AMPs) [10] a more gen-
eral output nonlinearity is actually implemented: yj =
0.5(|αxj + 1| − |αxj − 1|).

Fig. 1. The new dissipative circuit. The values of the components are
the following: R1 = R5 = R7 = Rf1 = Rf3 = Rf5 = Rp = 1kΩ,
R2 = R3 = R12 = 2kΩ, R4 = R6 = 3.3kΩ, R8 = R10 = 5kΩ,
R9 = Rf6 = 470kΩ, R11 = 16.5kΩ, Rf2 = Rf4 = 330kΩ,
C1 = C2 = 100nF .

In order to implement an electrical analogue of the
second-order differential equation (2), let us first rewrite
Eq. (2) in terms of a system of two first-order differential
equations as follows:

ẋ = y
ẏ = −bx + sin(ωt) + s(x)

(4)

where s(x) = 1
2(|5x + 1| − |5x− 1|).

To let the state variables x and y oscillate within the
voltage supply limits, Eq. (4) need to be scaled. The
state variables are scaled by a factor 1

2 , and the time
variable by a factor k = 3000 which also permits a faster
observation of the system behavior. The scaled system
reads as follows:

dX
dτ = kY
dY
dτ = k(−bX + 1

2 sin(kωτ) + 1
2S(X))

(5)

where S(X) = 1
2(|10X +1|− |10X−1|) and kτ = t.

Comparing Eqs. (5) to Eqs. (3) the values of the CNN
parameters can be derived. In particular: a11 = a12 =
a22 = 0, a21 = k

2 , s11 = s22 = 1, s12 = k, s21 = −bk,
i1 = 0, i2 = k

2 sin(kωτ), and α = 10. A SC-CNN with
two cells and the parameters listed above has been then
designed. The complete scheme is reported in Fig. 1.

The architecture of the circuit follows the approach
described in [10], [11] where the state variables of the
system to be implemented are associated to voltages
across the capacitors of the circuital analogue and OP-
AMPs are used to implement the CNN cells. In fact,
suitable configurations of the OP-AMPs allow to imple-
ment inverting and non-inverting adders, integrators, and
nonlinear elements following standard design guidelines
[18]. In particular, referring to the circuit shown in Fig. 1,
the two state variables X and Y of Eqs. (5) are associated
with the voltage across the two capacitors C1 and C2,
respectively, and the nonlinearity is simply implemented
by taking into account the saturation of the OP-AMP
U6. The other OP-AMPs are: U2 and U4 (arranged in a
Miller configuration) perform the integration of Ẋ and
Ẏ , U3 and U5 (arranged in an inverting configuration
with gain G = −1) invert the sign of the state variable;
U1 is an algebraic adder.

The analysis carried out above is based on ideal as-
sumptions on the circuit elements. However, it should be
noticed that dissipative terms are introduced, and for this
reason the real dynamics of the circuit is represented by
Eqs. (1). In our case the dissipative terms are associated
with the non-ideal behavior of the Miller integrators. In
fact, the transfer functions of such blocks (OP-AMPs
U2 and U4) do not have a zero pole (as in the integrator
ideal case). More precisely, the low frequency pole of
such transfer functions is placed in s = − 1

RfiCi

which
implies a dissipative term 1

kRfiCi

. Hence, the equations
of the circuit read as follows:
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dX
dτ = k(Rf4Rf5

R6R7

Y − 1
kRf4C2

X)
dY
dτ = kRf2Rf3

R4R5

(−Rf1Rf5

R1R7

X + Rf1

R2

sin(Ωτ)+

+Rf1

R3

Vsat −
1

kRf2C1

Y )

(6)

where Ω = kω and Vsat is the PWL nonlinearity. The
values of the components are reported in the caption of
Fig. 1 and match Eqs. (6) with k = 3000. In particular,
we have set Rf3

R5

= 1, Rf5

R7

= 1, Rf1Rf5

R1R7

= 1, Rf1

R2

= 1
2 and

Rf1

R3

= 1
2 . The dissipative terms are 1

kRf4C2

= 1
kRf2C1

=
0.01.

III. EXPERIMENTAL CHARACTERIZATION

The circuit has been realized in a discrete-components
board and has been extensively investigated. It has been
experimentally observed that a fundamental parameter
is the frequency of the sinusoidal forcing signal, which
motivated a deep analysis performed with respect to this
parameter. In fact, varying the frequency of the forcing
signal, a wide range of dynamical behaviors, from limit
cycles to chaotic attractors, has been observed. All the
data collected in the experiments have been acquired by
using a data acquisition board (National Instruments AT-
MIO 1620E) with sampling frequency fs = 200kHz for
T = 4s (i.e. 800000 samples for each time series).
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Fig. 2. Experimental bifurcation diagram of variable Y with respect
to the forcing frequency. f =

Ω

2π
ranges from 1Hz to 800Hz.

In [1] it is shown how system (2) exhibits a chaotic
behavior for the nominal value of the parameter ω =√

2. For our electrical analogue this corresponds to a
frequency of the forcing signal f = 675Hz. At this
frequency, the dissipative system also exhibits a chaotic
attractor as shown in Fig. 3(a).

We have then investigated a much larger range of
frequency with respect to [1] and found many other

regions of chaotic behavior. The experimental bifurcation
diagram with respect to the forcing frequency f = Ω

2π is
shown in Fig. 2. For frequencies below 25Hz, the system
periodically oscillates. Increasing the forcing frequency,
sudden windows of chaotic behavior have been observed.
For further increases of the forcing frequency other
periodic behaviors have been observed. Examples of the
dynamical behavior exhibited by the circuit are shown
in Figs. 3 and 4.
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Fig. 3. Phase planes X−Y for different forcing frequencies f =
Ω

2π
:

(a) f = 675Hz, (b) f = 25Hz, (c) f = 40Hz, (d) f = 65Hz.

A large window of periodic behavior has been ob-
served in the range of the forcing frequency 307−515Hz
in which the system evolves on a periodic orbit whose
amplitude increases for f < 480Hz. Then the amplitude
of the periodic orbit collapses and a new window of
chaotic behavior is observed. Furthermore, in two dis-
tinct ranges of the forcing frequency, i.e. 517− 529Hz,
and 575 − 579Hz, transient chaos [19] has been also
found. In Fig. 5(a), showing the trend of the two state
variables, the transition from a chaotic to a periodic
behavior is illustrated. In Fig. 5(b) the corresponding
trajectories in the phase plane are shown.

IV. CONCLUSIONS

The analysis of nonlinear nonautonomous circuits
like Duffing or Van der Pol oscillators disclosed their
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Fig. 4. Phase planes X−Y for different forcing frequencies f =
Ω

2π
:

(a) f = 170Hz, (b) f = 270Hz, (c) f = 488Hz, (d) f = 550Hz.
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Fig. 5. Transient chaos for f = 579Hz. (a) Trend of the state
variable X and (b) phase plane X − Y , in blue the transient chaotic
trajectories, in dashed line (red) the steady-state limit cycle.

capability to show complex (and in particular chaotic)
behavior. In this paper, starting from a nonlinear mathe-
matical model of a nonautonomous oscillator introduced
in [1], we discussed its physical implementation through
a SC-CNN based circuit. The non-ideal characteristic
of circuital elements and, in particular, of integrators
based on OP-AMPs is responsible for the introduction
of dissipative terms. Thus, the implemented circuit is the
dissipative form of the original nonautonomous circuit. It
has been deeply experimentally investigated, in particular
with respect to the frequency of the forcing sinusoidal

signal, in order to characterize its dynamical behavior.
As in the conservative case, we found that the frequency
of the forcing signal is a fundamental parameter for
the dissipative circuit, giving rise to a wide range of
dynamical behaviors.
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[8] S. Özoguz, A.S. Elwakil, “On the Realization of Circuit-
Independent Nonautonomous Pulse-Excited Chaotic Oscillator
Circuits”, IEEE Trans. Circuits Syst.-II 51, 552–556, 2004.

[9] L.O. Chua, T. Roska, “The CNN paradigm”, IEEE Trans. Cir-
cuits Syst.-I 40, 147–156, 1993.

[10] P. Arena, S. Baglio, L. Fortuna, G. Manganaro, “Chua’s circuit
can be generated by CNN cells”, IEEE Trans. Circuits Syst.-I 42,
123–125, 1995.

[11] P. Arena, S. Baglio, L. Fortuna, G. Manganaro, “How state
controlled CNN cells generate the dynamics of the Colpitts-like
oscillator”, IEEE Trans. Circuits Syst.-I 43, 602–605, 1996.

[12] F. Zou, J.A. Nossek, “A chaotic attractor with Cellular Neural
Networks”, IEEE Trans. Circuits Syst. 38, 811–812, 1991.

[13] L.O. Chua, T. Roska, Cellular Neural Networks and Visual
Computing: Foundations and Applications (Paperback), (Cam-
bridge University Press), 2005.

[14] L.O. Chua, CNN: A Paradigm for Complexity, (World Scientific,
Singapore/River Edge: NJ), 1998.

[15] M. Frasca, P. Arena, L. Fortuna, Bio-Inspired Emergent Control
Of Locomotion Systems, World Scientific Series on Nonlinear
Science, Series A Vol. 48, 2004.

[16] M. Bucolo, L. Fortuna, M. Frasca, M.G. Xibilia, “A generalized
Chua cell for realizing any continuous n-segment piecewise-linear
function”, Int. J. Bif. Chaos 11, 2517–2527, 2001.

[17] L. Fortuna, A. Rizzo, M.G. Xibilia, “Modeling complex dy-
namics via extended PWL-based CNNs”, Int. J. Bif. Chaos 13,
3273–3286, 2003.

[18] A.S. Sedra, K.C. Smith, Microelectronic Circuits, (Oxford Uni-
versity Press, USA), 2003.

[19] C. Grebogi, E. Ott, J.A. Yorke, “Crises, sudden changes in
chaotic attractors, and transient chaos”, Physica D 7, 181–200,
1983.

18th IEEE Workshop on Nonlinear Dynamics of Electronic Systems (NDES2010)

26-28 May 2010, Dresden, Germany 149



Shil’nikov Chaos and Mixed-mode Oscillation  
in asymmetry-induced Chua Circuit 

 
Satyabrata Chakraborty and Syamal Kumar Dana  

  Central Instrumentation, Indian Institute of Chemical Biology  
(Council of Scientific and Industrial Research), Kolkata 700032, India 

e-mail: skdana@iicb.res.in  
 
 

 
 

Abstract—Experimental evidences of Shil’nikov type 
homoclinic chaos and mixed-mode oscillations (MMOs) 
are presented in asymmetry-induced Chua's oscillator. 
The asymmetry plays a crucial role in the related 
homoclinic bifurcations. The asymmetry is introduced 
in the circuit by forcing a DC voltage or by coupling a 
second Chua circuit in resting state.  
  

I. INTRODUCTION 
The Shil'nikov type homoclinic chaos [1, 2] deals 

with a saddle focus with real and complex conjugate 
eigenvalues, (γ, σ±jω) in 3D systems. The trajectory 
of the homoclinic chaos escapes spirally from the 
saddle focus in 2D eigensapce and re-injects into it 
along the stable eigendirection for systems with γ<0, 
σ>0 and ⎪γ/σ⎪>1. A reverse direction of the 
trajectory of the homolcinic chaos is seen when γ>0, 
σ<0 and ⎪γ/σ⎪>1. In period-parameter space, the 
period of limit cycle (period-n: n0, n=1, 2, 3…) 
increases asymptotically with a control parameter as 
it approaches a homoclinic orbit and in close vicinity 
of this bifurcation point, instabilities appear yet 
bounded to the saddle focus.  

Several numerical studies [3-11] showed 
evidences of MMOs as a transition route to the 
Shil'nikov type homoclinic chaos with control 
parameter in slow-fast systems. The MMO is defined 
as a periodic oscillation with alternate appearance of 
large amplitude oscillations and low amplitude 
oscillations of different time scales. The sequence of 
MMOs is observed in the intermediate periodic 
regimes of the parameter space of the dynamical 
system. The MMOs is denoted by Ls, where L and s 
are the number of large and small amplitude 
oscillations respectively. The L remains fixed for a 
set of selected system parameters. The number of 
small oscillation (s) is stable in a periodic window but 
it is highly irregular in chaotic windows. For different 

sets of selected parameters, MMOs with L =1, 2, 
3,…. may be observed. As a control parameter is 
tuned to the homoclinic point, the number of small 
oscillations increases while the trajectory moves 
closer and closer to a saddle. However, for a fixed L, 
the number of small oscillations s increases in the 
alternate periodic windows intermediate to chaotic 
windows in parameter space. Finally, the state of 
homoclinic chaos denoted by L∝ is reached when the 
number of small oscillations s becomes finitely very 
large but highly irregular, which is reflected as large 
fluctuations in return time of homoclinic spiking.  

In this paper, we report experimental observations 
of the Shil'nikov type homoclinic chaos in Chua's 
circuit from a viewpoint of induced asymmetry. In 
Chua circuit, like many other systems, the dynamics 
usually changes with a parameter from stable 
equilibrium to limit cycle by supercritical Hopf 
bifurcation and to chaos via period-doubling (PD). 
With further changes in parameter, the system shows 
period-adding bifurcation when a sequence of 
periodic windows appear intermediate to chaotic 
windows in parameter space. The periodic windows 
are created via SN bifurcation of the chaotic states 
while the periodic states again move to chaotic states 
via PD. Subsequently, the dynamics follows a reverse 
PD before moving to period-1 and then to unstable 
limit cycle via subcritical Hopf bifurcation. The 
original Chua circuit model has inversion symmetry. 
It has two inherent time scales: one for both the 
revolving cycles around either of the symmetric 
equilibrium points and another the large cycle 
covering the two symmetric scrolls. However, these 
two time scales cannot help inducing homoclinic 
bifurcation. A third time scale is introduced in the 
Chua circuit by inducing asymmetry in the system 
using either an external DC forcing or by coupling 
(unidirectional or bi-directional) another Chua circuit 
in resting state. One of the double scroll attractors 
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thereby shrinks in size and creates an additional time 
scale in the overall dynamics. In fact, the asymmetry 
plays a crucial role in the observation of MMOs and 
homoclinic chaos.  

 
  

II. EXPERIMENTAL SET UP: ASYMMETRIC 
CHUA’S CIRCUIT  

The forced Chua circuit is shown in Fig.1. A DC 
voltage is forced at the C1 capacitor node to induce 
asymmetry in the attractor. The model of the 
asymmetry-induced Chua's circuit is given by 

 
and  

 
where G=1/R1 and Ga, Gb are the slopes in the inner 
and outer regions [12] respectively of the piecewise 
linear characteristic f(VC1). The slopes Ga and Gb are 
determined by 

The state variables VC1, VC2 are the voltages measured 
at nodes of capacitors C1 and C2 respectively and, and 
IL is the current through the inductance L 
respectively. The DC source Vdc is connected to the 
Chua's circuit using a voltage divider network using 
resistances Rx and Ry, where V0=Vdc(1+Rx/Ry). The 
DC forcing induces asymmetry in the double scroll 
attractor when one of the scrolls is shrinked in size 
and thereby one additional time scale is introduced, 
which characterizes the small amplitude oscillation. 
To facilitate fine control of the strength of 
asymmetry, a series resistance RC is connected 
between the voltage divider and the VC1 node of the 
Chua's circuit. The original model has three stable 
foci, one near the origin with eigenvalues (γ, −σ±jω) 
and other two at inversion symmetric positions with 

eigenvalues (-γ, σ±jω). The basic characteristic of the 
eigenvalues of all the saddle foci remains unchanged 
in the asymmetric system. 
    

        Fig.1: Asymmetric Chua’s oscillator:±9V supply 
 
 

 
 
 
 
 

                                                
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
Fig.2: Homoclinic chaos in asymmetry-induced Chua's Circuit: 
(a) time series of  experiment for R1=1370.1Ω, RC=47.25kΩ, 
Rx=9.33kΩ, Ry=1.73kΩ in lower plot, (b) return time of small 
amplitude oscillations,  (c) 3D trajectory in the right plot is 
reconstructed using experimental time series of VC1(t), VC2(t) and 
delayed VC1(t-2) along the X-axis, Y-axis and Z-axis respectively. 
R1=1370.1Ω, RC=47.25kΩ, Rx=9.33kΩ, Ry=1.73kΩ. 
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III. HOMOCLINIC CHAOS 
 
For selected R1 and RC, a time series from 

experiment is shown in Fig.2(a), which gives clear 
evidence of Shil’nikov type homoclinic chaos as a 
train of high amplitude spikes with irregular 
switching to small amplitude oscillations. The time 
series of the homoclinic chaos is seen as a MMO 
(2s:L=2) with fluctuating number of small amplitude 
oscillation (s). The number of small amplitude 
oscillations decides the time interval of the large 
amplitude spiking, whose successive time intervals 
are highly uncorrelated as reflected in the time series 
as well as in the return time of large amplitude 
oscillations in Fig.2(b). For stable small amplitude 
oscillations, the return time must show a fixed point 
along the 450 line. We have calculated the time 
interval of the maxima of small amplitude 
oscillations from the measured time series instead of 
calculating the time interval of large amplitude 
oscillations, and then the successive time intervals 
t(i) are plotted against the previous interval t(i-1) as 
shown in Fig.2(b). As a result we find interesting 
mutivalued structure in the return map, which is an 
important signature [13-15] of homoclinic chaos. 
This confirms the complexity of the small amplitude 
oscillations, which causes large fluctuations in the 
time interval of the large amplitude oscillations.    

 Fig.3: Period parameter bifurcation RC=47.25kΩ, Rx=9.33kΩ, 
Ry=1.73kΩ. 

 
The 3D trajectory of Shil’nikov chaos as obtained 

from experiment is shown in Fig.2(c). The trajectory 
moves towards the saddle focus at one end along its 
stable eigendirection indicated by the arrows. When 
the trajectory comes in close proximity to this saddle 
focus, it escapes out spirally. Next it spirals in 
towards the saddle focus origin before totally 
escaping away along the unstable eigendirection of 

this saddle focus. Finally the trajectory takes two 
global turns around the third saddle focus at the other 
end before reinjecting into the first saddle focus. In 
reality, the trajectory of the 3D unstable orbit 
approaches homoclinicity to two different saddle 
foci, one at the origin and the other at one end of the 
attractor.  

In our experiment, we set the asymmetry by 
Rx=9.33kΩ, Ry=1.73kΩ and RC =47.25kΩ, and then 
decrease R1 from 1524Ω. As R1 is decreased, the 
circuit dynamics moves from stable focus to limit 
cycle via supercritical Hopf bifurcation at 
R1=1524Ω and a transition to 2-band chaos occurs 
via a sequence of PD. The period-parameter 
bifurcation in Fig.3 shows asymptotic increase in 
period with decrease in R1 indicating an approach to 
homoclinicity. A large amplitude limit cycle 20 for 
R1=1373.3Ω is seen at the highest point (A) of the 
right bifurcation diagram in Fig.3. The instability 
started just beyond this point with further decrease in 
R1 and the instabilities continue until R1=1363.7Ω 
when it stops with the re-appearance of another large 
amplitude limit cycle (20) which corresponds to the 
top (A*) of the left bifurcation diagram in Fig.3. A 
stable limit cycle (period-2) reappears [16] at 
R1=1339Ω, which moves to 10 (period-1) limit cycle 
at R1=1337Ω via reverse PD and finally loses 
stability via subcritical Hopf bifurcation for 
R1<1337Ω. Each of the local maxima in the period-
parameter bifurcation, indicates an approach to 
homoclincity, however, it is difficult to observe them 
in a single experiment due to their extreme sensitivity 
to control parameter. We focus, in our first 
experiment, on evidences of homoclinicity related to 
MMO (2s) in the R1 interval of (1363.7Ω, 1373.3Ω). 
In the parameter interval, R1=[1363.7Ω, 1373.3Ω)],  
several complex behaviors such as MMO, 
homoclinic chaos are observed [16]. We observed a 
sequence of MMOs interspersed by chaotic states in 
the parameter interval of R1=(1363.7Ω, 1373.3Ω) as 
a route to homoclinic chaos (2s) at R1=1370.1Ω. 
However, it becomes very difficult to identify the 
periodic MMOs, in this experiment, due to their 
extremely narrow interval in the selected parameter 
space.  
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Fig.4: Mixed Mode Oscillation: R1=1357Ω and Rx=1858Ω, 
Ry=333Ω. Period of MMO is plotted in parameter space. 
Intermediate to the periodic windows of MMOs (L=2) with 
increasing number (s=4, 5, 6, 7, 8, 9, 10) of small amplitude 
oscillations, there exist chaotic windows. 

Fig.5: Experimental Mixed Mode Oscillations. R1=1357Ω and 
Rx=1858Ω, Ry=333Ω. Mixed mode oscillations from top to 
bottom for L=2 and s=4, 5, 6, 7, 8, 9, 10.  RC values are 78.9kΩ, 
69.9kΩ, 65kΩ, 62kΩ, 59kΩ, 57kΩ and 55kΩ respectively. 

 
 

IV. MIXED MODE OSCILLATION 
We set up a second experiment with parameters, 

Rx=1858Ω, Ry=333Ω and find similar sequence of 
events as described above but with clear evidences of 
periodic MMO. For selected RC =47.14kΩ,  the 
parameter R1=1357Ω is tuned to observe homoclinic 
chaos. However, we observed the sequences of 
periodic MMOs with intermediate chaotic states when 
we use RC as a control parameter keeping other 
parameters unchanged. The period-parameter 
bifurcation in Fig.4 shows devil’s staircases with 
asymptotic increase in period while approaching 
homoclinicity with decease in RC. We are able to 

observe a sequence of periodic MMOs (2s) with a 
maximum number of small oscillations s=10 for 
RC=55kΩ. The interval in RC parameter for the MMO 
becomes narrower with increasing small oscillation 
(s). It is evident that as RC is slowly tuned from 85kΩ 
corresponding the MMO (s=4) to 55kΩ (s=10), the 
interpsike intervals increase by two fold. Thus, by 
fine-tuning the asymmetry parameter, we are able to 
reach a close vicinity of the homoclinic orbit with 
much larger (s>>10) number of small oscillations. 
The time series of periodic MMOs are shown in Fig.5. 
The Y-scale is arbitrarily chosen since different time 
series are either scaled up or down for visual clarity. 

 

V. CONCLUSION 
Experimental evidence of Shil’nikov type homoclinic 
chaos is presented in asymmetry-induced Chua 
circuit. The asymmetry is induced by DC volatage 
forcing which plays a crucial role in the process of 
transition to homoclinic chaos. Interesting to note that 
we observed similar kind of homoclinic chaos and 
MMOs in two Chua circuits coupled either in 
unidirectional or bi-directional mode when one of 
them is in resting state.   
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Abstract—We observe and analyze particular synchronization
phenomena on a lattice of coupled oscillators. Wave-motion
phenomena which propagate phase differences can be observed
on the system in steady states, when the system has nonlinearity.
We call this wave-motion phenomena “phase-inversion waves.”
The phase-inversion waves have some behaviors, which are
propagation, reflection, extinction, and penetration. In this paper,
a penetration mechanism between a vertical phase-inversion wave
and a horizontal phase-inversion wave is made clear. Further-
more, a reflection mechanism between two phase-inversion waves
is made clear.

I. INTRODUCTION

In this world, there are synchronization phenomena in every
where[1]. The synchronization phenomena are existing among
atoms, sea waves, planets and so on. There are synchronization
phenomena also among humans as rumors, trends, and so
on. Therefore, the synchronization phenomenon is researched
in various fields. For example, there is research of synchro-
nization phenomena of a lot of fireflies[2].We investigate
and analyze the synchronization phenomena on the coupled
oscillator systems[3]. In our previous study, we discovered
the wave-motion which propagates phase difference, which is
around 180 degrees, between adjacent oscillato rs on coupled
oscillators system as a ladder and as a lattice. We call
the wave-motion “phase-inversion wave.” The phase-inversion
waves can be observed in steady states[4]. There are the
phase-inversion wave propagating to vertical direction and the
phase-inversion wave propagating to horizontal direction on
the lattice coupled oscillators system.

In this study, attracting forces to in-phase or anti-phase
synchronization are investigated on one parameter-set where
the phase-inversion waves can be observed. A penetration
mechanism between the vertical phase-inversion wave and
the horizontal phase-inversion wave and reflection mechanism
between two phase-inversion waves are made clear by instanta-
neous frequencies of each oscillator, phase differences between
adjacent oscillators, and the attracting forces.

II. CIRCUIT MODEL

A lot of van der Pol oscillators are coupled by inductors L0

as a lattice(see Fig. 1). The number of column and the number
of row of this system are assumed as “M+1” and “N+1.” We

name each oscillator OSC(k,l). A voltage of each oscillator is
named v(k,l), and a current of inductor of each oscillator is
named i(k,l)(see Fig. 1). The circuit equations of this circuit
model are normalized by Eq. (1), and the normalized circuit
equations are shown as Eqs. (2)–(6).

i(k,l) =
√

Cg1

3Lg3

x(k,l), v(k,l) =
√

g1

3g3

y(k,l),

t =
√

LCτ, d
dτ = “ · ”, α = L

L0

, ε = g1

√

L
C .

(1)

[Corner–top] (left:(a, b)=(0, 1). right:(a, b)=(N, N − 1).)
dx(0,a)

dτ = y(0,a), (2)
dy(0,a)

dτ = −x(0,a) + α(x(0,b) + x(1,a) − 2x(0,a))

+ ε(y(0,a) −
1

3
y3
(0,a)).

[Corner–bottom] (left:(a, b)=(0, 1). right:(a, b)=(N, N − 1).)
dx(M,a)

dτ = y(M,a), (3)
dy(M,a)

dτ = −x(M,a) + α(x(M−1,a) + x(M,b)

− 2x(M,a)) + ε(y(M,a) − 1
3y3

(M,a)).

[Center] (0 < k < M . 0 < l < N .)
dx(k,l)

dτ = y(k,l), (4)
dy(k,l)

dτ = −x(k,l) + α(x(k+1,l) + x(k−1,l) + x(k,l+1) + x(k,l−1)

− 4x(k,l)) + ε(y(k,l) − 1
3y3

(k,l)).

[Edge]
(top:(a, b)=(0, 1).bottom:(a, b)=(M, M − 1).both:0<

l <N .)
dx(a,l)

dτ = y(a,l), (5)
dy(a,l)

dτ = −x(a,l) + α(x(a,l−1) + x(a,l+1) + x(b,l) − 3x(a,l))

+ ε(y(a,l) − 1
3y3

(a,l)).

(left:(a, b)=(0, 1). right:(a, b)=(N, N − 1). both:0<k<M .)

dx(k,a)

dτ = y(k,a), (6)
dy(k,a)

dτ = −x(k,a) + α(x(k−1,a) + x(k+1,a) + x(k,b) − 3x(k,a))

+ ε(y(k,a) − 1
3y3

(k,a)).
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Fig. 1. Circuit Model.
A B

Fig. 2. The phase-inversion waves on 20x20 oscillators(α:an attractor of each
oscillator(current vs. voltage), β:a sum of voltages of adjacent oscillators(sum
of voltage vs. time)).

The α corresponds to the coupling parameter of each oscillator.
The ε corresponds to the nonlinearity of each oscillator. This
system is simulated by the fourth order Runge-Kutta methods
using Eqs. (2)-(6). The phase-inversion waves are shown in
Fig. 2. Figure 2–A expresses attractor of each oscillators.
Figure 2–B expresses itinerancy of phase difference sum of
voltages of adjacent oscillators is shown along the time.

III. ATTRACTING FORCE

Attracting forces to in-phase or anti-phase synchroniza-
tion are investigated on one parameter-set where the phase-
inversion waves can be observed(see Fig.3). Attracting forces
are observed as follows:

1) The phase differences between all adjacent oscillators
are fixed as arbitrary value in the lattice system.

2) The phase difference between OSC(1,4) and OSC(1,5)
after one period from initial value is analyzed along the
initial phase difference is changed.

A vertical axis of Fig.3 expresses a variation of phase differ-
ence per one cycle. An upper direction shows attracting force
to in-phase. A downward direction shows attracting force to
anti-phase. A horizontal axis shows initial phase differences.
Therefore, the length of line shows a attracting forces at each
phase difference. Attracting force to in-phase is the strongest
in 40 degrees. Attracting force to anti-phase is the strongest
in 130 degrees.

IV. BEHAVIOR OF PHASE-INVERSION WAVES

We can observed some behaviors of phase-inversion waves
on above systems. These behaviors are a propagation, a reflec-
tion at an edge, a reflection between phase-inversion waves,
distinction and a penetration. Moreover, these behaviors can
be classified by frequencies, because three frequencies are
observed in steady states. The synchronizations for vertical
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Fig. 3. Attracting forces.

Fig. 4. The detection method of frequencies and the phase differences.

direction and for horizontal direction needs to be considered,
because this system is 2 dimensional array. Therefore, three
type synchronizations are observed as follows:

1) OSC(k, l)–OSC(k, l + 1), OSC(k, l)–OSC(k, l − 1),
OSC(k, l)–OSC(k+1, l), and OSC(k, l)–OSC(k−1, l):
in-phase synchronization.

2) {(OSC(k, l)–OSC(k, l+1) and OSC(k, l)–OSC(k, l−1):
in-phase synchronization. OSC(k, l)–OSC(k+1, l), and
OSC(k, l)–OSC(k − 1, l): anti-phase synchronization.}
or {OSC(k, l)–OSC(k, l + 1), and OSC(k, l)–OSC(k,
l−1): anti-phase synchronization. OSC(k, l)–OSC(k+1,
l), and OSC(k, l)–OSC(k +1, l): int-phase synchroniza-
tion.}

3) OSC(k, l)–OSC(k, l + 1), OSC(k, l)–OSC(k, l − 1),
OSC(k, l)–OSC(k+1, l), and OSC(k, l)–OSC(k+1, l):
anti-phase synchronization.

In this paper, we call the 1st type synchronization “in-and-in-
phase synchronization.” The 2nd type synchronization is called
“in-and-anti-phase synchronization.” The 3rd type synchro-
nization is called “anti-and-anti-phase synchronization.” An
each instantaneous frequency f(k,l) of OSC(k, l) is obtained in
each synchronization type. In the 1st situational synchroniza-
tion, f(k,l) is fin−in. In the 2nd situational synchronization,
f(k,l) is fin−anti. In the 3rd situational synchronization, f(k,l)

is fanti−anti.
These behaviors are shown in Table I. There is a disap-

pearance by collision of two phase-inversion waves other than
these phenomena.

V. MECHANISM

We analyze about the penetration and reflection of the two
phase-inversion waves.

The phase-inversion wave shows in Fig.2. The mechanisms
are made clear using instantaneous frequency of each oscil-
lator and phase difference between adjacent oscillators. The
coupling parameter is fixed as α = 0.01, and nonlinearity is
fixed as ε = 0.05. An equation of the instantaneous frequency

18th IEEE Workshop on Nonlinear Dynamics of Electronic Systems (NDES2010)

26-28 May 2010, Dresden, Germany 155



TABLE I
CHARACTERISTICS OF THE PHASE-INVERSION WAVES.

Names of behaviors
Itinerancies of instanta-

neous frequencies
Phenomena

Propagations

fin−in ⇔ fin−anti,
&

fin−anti ⇔ fanti−anti

The phase-inversion waves propagate to vertical direction or horizontal direction.

The vertical phase-inversion waves move from the horizontal phase-inversion waves

independently.

Penetrations fin−in ⇔ fanti−anti

Two phase-inversion waves arrives at an oscillator from vertical direction and horizontal

direction, and each phase-inversion wave penetrates each other.

Reflections at an edge

fin−in ⇔ fin−anti,
&

fin−anti ⇔ fanti−anti

When an phase-inversion wave arrives at an edge, the phase-inversion wave reflects

and propagates to where they came from. Sometime this phenomenon is happened with

penetration.

Reflections between two

phase-inversion waves

fin−in ⇔ fin−anti,
&

fin−anti ⇔ fanti−anti

When two phase-inversion waves coming from the opposite directions arrive to two

adjacent oscillator at same time, the phase-inversion waves reflect and propagate to

where they came from.

fin-in
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fanti-anti

Time[τ]
(a)Instantaneous frequency

Ins
tan

tan
eo

us 
Fre

qu
en

cy

-20

 

0
 20
 40
 60
 80

 100
 120
 140
 160
 180

(b)Phase difference
Time[τ]

Ph
ase

 D
iff

ere
nc

e [
de

gre
e]

Φ(5,6)(5,7)
        and
Φ(6,5)(6,7)

Φ(5,4)(6,4)
        and
Φ(4,5)(4,6) Φ(5,5)(6,5)

        and
Φ(5,5)(5,6)

Φ(4,5)(5,5)
        and
Φ(5,4)(5,5)

f(5,7)
 and
f(7,5)

f(6,5)
 and
f(5,6)

f(4,6)
 and
f(6,4)

f(5,4)
 and
f(4,5)

f(5,5)

1

2

3

4

Fig. 5. Transitions of phase difference and frequencies by penetration a
phase-inversion wave.

of OSC(k, l) is calculated as follows. The instantaneous
frequency is named f(k,l)(a) where “a” expresses the number
of times of the peak value of the voltage. Time of a peak
value of the voltage of OSC(k, l) is assumed as τ(k,l)(a)(see
Fig.4). Similarly, τ(k+1,l)(a) and τ(k,l+1)(a) are decided. The
f(k,l)(a) is obtained by Eq.(7).

f(k,l)(a) =
1

τ(k,l)(a) − τ(k,l)(a − 1)
. (7)

The phase difference is calculated as follows. A phase
difference between OSC(k, l) and OSC(k + 1, l) and a phase
difference between OSC(k, l) and OSC(k, l+1) are calculated.
The phase differences are assumed as Φ(k,l)(k+1,l)(a) and
Φ(k,l)(k,l+1)(a) respectively(see Fig.4). The Φ(k,l)(k+1,l)(a)
and Φ(k,l)(k,l+1)(a) are obtained by Eq.(8).

Φ(k,l)(k+1,l)(a) =
τ(k,l)(a) − τ(k+1,l)(a)

τ(k,l)(a) − τ(k,l)(a − 1)
× 360 [degree]

Φ(k,l)(k,l+1)(a) =
τ(k,l)(a) − τ(k,l+1)(a)

τ(k,l)(a) − τ(k,l)(a − 1)
× 360 [degree].

(8)
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Fig. 6. Transitions of phase difference and frequencies by reflection between
two phase-inversion wave.

A. Penetration Mechanism

We can observe the phenomenon of penetration. A mecha-
nism of penetration is shown in Tab. II and Fig. 5. The vertical
axis of Fig. 5(a) is the instantaneous frequency, and horizontal
direction is time. The vertical axis of Fig. 5(b) expresses the
phase differences, and horizontal direction expresses time.

B. Reflection mechanisms between two phase-inversion waves

We can observe the reflection phenomenon between two
phase-inversion waves which are arrives at two adjacent oscil-
lators at same time from opposite directions respectively. We
shows mechanism in Table III. In Fig.6(a), the vertical axis is
the instantaneous frequencies, and the horizontal axis is time
In Fig.6(b), the vertical axis is the phase differences, and the
horizontal axis is the time.

VI. CONCLUSION

An attracting forces to in-phase and to anti-phase were made
clear by all adjacent oscillators being fixed as arbitrary phase
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TABLE II
PENETRATION MECHANISM(SEE FIG.5).

no. Vertical direction Horizontal direction

0 Now, phase-inversion waves, which changes phase states from in-phase

synchronization to anti-phase synchronization, are arrived at oscillators

of 7th row line from oscillators of 8th row line.

Now, phase-inversion waves, which changes phase states from in-phase

synchronization to anti-phase synchronization, are arrived at oscillators

of 7th column line from oscillators of 8th column line.

1 Φ(6,5)(7,5) is increasing toward 180 degrees. f(6,5) slowly starts to

increase from fin−in to fin−anti, after Φ(6,5)(7,5) start to increase,

because an attracting force to in-phase is weak around 0 degree(see

Fig.3). f(6,4) also starts to increase from fin−in, because a phase-

inversion wave of adjacent vertical direction arrives at 6th row line at

the same time. f(6,4) changes toward fin−anti, because horizontal

wave does not arrives at OSC(6,4) yet.

Φ(5,6)(5,7) is increasing toward 180 degrees. f(5,6) slowly starts to

increase from fin−in to fin−anti, after Φ(5,6)(5,7) start to increase,

because an attracting force to in-phase is weak around 0 degree(see

Fig.3). f(4,6) also starts to increase from fin−in, because a phase-

inversion wave of adjacent vertical direction arrives at 6th column line

at the same time. f(4,6) changes toward fin−anti, because horizontal

wave does not arrives at OSC(4,6) yet.

2 Φ(5,5)(6,5) and Φ(5,4)(6,4) start to increase toward 180 degrees,

because f(6,5) and f(6,4) increase toward fin−anti.

Φ(5,5)(5,6) and Φ(4,5)(4,6) start to increase toward 180 degrees,

because f(5,6) and f(4,6) increase toward fin−anti.

3 A horizontal phase-inversion wave and a vertical phase-inversion wave arrives at OSC(5,5). f(5,5) starts to increase to fanti−anti by
horizontal phase-inversion wave and vertical phase-inversion wave rapidly. f(4,5) and f(5,4) start to increase from fin−in to fanti−anti,
because Φ(5,4)(6,4) and Φ(4,5)(4,6) start to increase toward 180 degrees.

4 Therefore, Φ(4,5)(5,5) starts to increase toward 180 degrees because

f(5,5) increases toward fanti−anti. Because an attracting force to

anti-phase is weak around 180 degrees, Φ(4,5)(5,5) arrives at 180

degrees slowly(see Fig.3).

Therefore, Φ(5,4)(5,5) starts to increase toward 180 degrees because

f(5,5) increases toward fanti−anti. Because an attracting force to

anti-phase is weak around 180 degrees, Φ(5,4)(5,5) arrives at 180

degrees slowly(see Fig.3).

The phase-inversion waves penetrate each other by above mechanism.

TABLE III
REFLECTION MECHANISM BETWEEN TWO PHASE-INVERSION WAVES(SEE FIG.6).

no. upside down side

0 Now the phase states of horizontal direction are fixed in in-phase synchronization. The phase states of vertical directions around OSC(5,5)
are anti-phase synchronization The phase-inversion wave changing from anti-phase to in-phase synchronization arrives on 3rd row and 6th
row line from 0th row line and 9th row line respectively.

1 f(3,5) starts to decrease from fin−anti to fin−in, because

Φ(2,5)(3,5) started to change from anti-phase to in-phase. f(3,5)

slowly changes, because an attracting force is weak force around anti-

phase synchronization(see Fig.3).

f(6,5) starts to decrease from fin−anti to fin−in, because

Φ(6,5)(7,5) started to change from anti-phase to in-phase. f(6,5)

slowly changes, because an attracting force is weak force around anti-

phase synchronization(see Fig.3).

2 Φ(3,5)(4,5) starts to changing from anti-phase to in-phase, because

f(3,5) started to decrease from fin−anti to fin−in.

Φ(5,5)(6,5) starts to change from anti-phase to in-phase, because

f(5,5) started to decrease from fin−anti to fin−in.

3 f(4,5) starts to decrease from fin−anti to fin−in slowly, because

Φ(3,5)(4,5) started to change from anti-phase to in-phase.

f(5,5) starts to decrease from fin−anti to fin−in slowly, because

Φ(5,5)(6,5) started to change from anti-phase to in-phase.

4 Φ(4,5)(5,5) are fixed anti-phase, because the frequencies of OSC(4,5) and OSC(5,5) are same itinerancy. Therefore, f(4,5) and f(5,5) stop
between fin−anti and fin−in, and f(4,5) and f(5,5) start to increase to fin−anti again.

5 Φ(3,5)(4,5) can not stop at in-phase synchronization, because reflec-

tion phase-inversion wave arrives in a moment again.

Φ(4,5)(5,5) can not stop at in-phase synchronization, because reflec-

tion phase-inversion wave arrives in a moment again.

Two phase-inversion waves reflect by above mechanism.

difference.
A penetration mechanism between the vertical phase-

inversion wave and horizontal phase-inversion wave was made
clear by instantaneous frequencies of each oscillator, phase
differences between adjacent oscillators and the attracting
forces. Furthermore, a reflection mechanism between two
phase-inversion waves was made clear by instantaneous fre-
quencies of each oscillator, phase differences between adjacent
oscillators and the attracting forces.
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Abstract—We outline a novel clustering algorithm based
on Hebbian-like learning in inhomogeneous coupled map
lattices. The algorithm is nonparametric and the number
of clusters does not have to be specified. It is capable of
detecting clusters of complex shape and it can distinguish
between clusters and noisy background data. The cluster-
ing resolution can be controlled by two parameters. We
report on the properties of the algorithm and we discuss
its advantages and potential drawbacks.

I. INTRODUCTION

The problem of finding appropriate groupings in a
data set is referred to as clustering problem. In the
last few decades numerous different clustering methods
have been developed. They can be roughly divided into
parametric and nonparametric approaches. Parametric
approaches rely on some specification of the data struc-
ture. Nonparametric approaches, in contrast, make no or
few assumptions about the clusters. Some nonparametric
approaches, such as superparamagnetic clustering ([1],
[2]), rely on the idea that clusters can emerge on the
basis of local interactions between data items by means
of self-organisation. In [3] an algorithm was proposed
that exploits the idea of cluster self-organisation based
on Hebbian-like learning in integrate-and-fire networks,
making the clusters arise out of the interplay between
neural activity and changes in network connectivity.
In this contribution we adapt and implement the idea
of Hebbian learning for clustering using coupled map
lattices, unifying the ideas presented in [3] and [4].
Compared to integrate-and-fire networks, the simulation
of coupled map lattices is potentially faster since it puts
the dynamics on a more abstract level. We outline our
concept of Hebbian clustering with coupled map lattices
by means of a 2D test data set and we report on a
nontrivial 3D example.

II. HEBBIAN LEARNING IN COUPLED MAP LATTICES

We first translate a given d−dimensional data dis-
tribution with N points {ri} into an undirected graph
by connecting each point to its k nearest neighbours.
To each edge (i, j) of the resulting graph a positive
connection strength is appointed according to

J(i,j) = exp(−(ri − rj)2/(2a)2), (1)

where the scaling factor a is equal to the average distance
of connected points. J(i,i) is set to zero. Following the
principles sketched in [4], a real variable xi ∈ [−1, 1]
is assigned to each point. The time evolution of these
variables is given by

xi(t + 1) =
1
Ci

∑

j

Jijf(xj(t)) (2)

where Ci =
∑

j Jij and f(x) = 1 − 2x2 is the logistic
map. The variables xi are randomly initialised. During
the time evolution, they are updated in a fixed but
arbitrary order. After each update of a variable xi, the
weights J(i,j) are adapted according to a Hebbian-like
learning rule: If the value of a connected variable xj is
synchronised, i.e. within a certain learning window τ ,
then the connection J(i,j) is strengthened until it reaches
a maximum at 1, otherwise it is weakened:

If |xi − xj | < τ : J(i,j) = max(1, d1J(i,j))

If |xi − xj | ≥ τ : J(i,j) = J(i,j)/d2 (3)

where d1 > 1 is the strengthening factor and d2 > 1
is the weakening divisor. In order to eliminate one
parameter we set d2 = k. The choice of the other
parameters is discussed below. A complete update of
all the variables is called an iteration. After a couple of
iterations the network structure enters a stable phase (see
below) and the update process is terminated. The final
clusters correspond to the final connectivity components.
In Fig. 1 this idea is illustrated by means of a 2D test
set consisting of N = 900 points.
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Fig. 1. a) 2D test distribution with two clusters (N1 = 200 and N2 = 300) embedded into a background distribution (N3 = 400). b)
Corresponding connectivity graph for k = 10. c) For the parameters d1 = 1.1, d2 = k, τ = 0.2, two clusters were identified. d) The
identification is based on the resulting connectivity graph. e,f) The parameters d1 = 1.1, d2 = k, τ = 0.3 reveal more clusters.

A. Termination and Cluster Identification

The self-organisation at work ensures that almost all
the weights quickly tend to either 0 or 1. In Fig. 2, based
on the 2-dimensional toy example shown in Fig. 1, the
fraction of weights with 0.05 < J(i,j) < 1 is depicted
for various learning window sizes in dependence on the
number of iterations. It shows a rapid decay of this
fraction below about 5%, independent of the window
size. Hence after a couple of iterations, the network
structure ceases to change (up to some small changes).

Fig. 2. Fraction f of connections with intermediate weight 0.05 <
J(i,j) < 1 in dependence on the number of iterations for different
learning window sizes (0 < τ < 2).

On the basis of this observation, the algorithm is
terminated if 1) either the fraction of weights with
0.05 < J(i,j) < 1 is smaller than 5% or if 2) a maximal
predefined number of iterations is reached, for which
50 was chosen. The choice of the values 0.05, 5% and
50 is somewhat arbitrary. Similar values can be chosen
without a relevant effect on the results.
After termination, the clusters are identified as the strong
connection components of the final network, i.e. connec-
tions smaller than 1 are cut and the components of the
resulting graph are determined.

B. Role of Learning Rule Parameters

The influence of τ :
The size of the learning window τ influences the clus-
tering resolution. For small values, synchronisation is
difficult and only a few small clusters are detected,
corresponding to the regions of highest data density.
For intermediate values, usually more and larger clusters
can be found. They merge to bigger units for larger
values of τ . Clear clusters are typically stable over a
longer interval of τ . We demonstrate the role of τ by
means of a 2D example with two clear cluster structures
embedded into a background distribution (N1 = N2 =
200, N3 = 100, k = 10, d1 = 1.1, see Fig. 3 a)). Over
a substantial interval between about 0.1 and 0.6, two
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clusters, consisting of about 200 points each, dominate
the scenery. Hence the average cluster size for this
interval is around 200 (Fig. 3 b)). It is smaller for
somewhat larger values of τ since a couple of small
clusters emerge and the number of clusters increases
(Fig. 3 c)). Finally, the average cluster size increases
for very large values of τ since the clusters are merged.
The number of clusters for large τ oscillates between
1 and 2, revealing a certain instability of the algorithm
in this range, which is due to different initial conditions
(see C).

Fig. 3. (a) 2D test set with 500 points. b) Average cluster size N
in dependence on the learning window size τ . c) Number of clusters
#N in dependence on the learning window size τ .

The influence of d1:
d1 plays a similar role as τ . For small values only
very dense regions can cluster. We thus find many

small clusters. For large values all the connections are
strengthened, which results in one big cluster only. For
the window size used τ = 0.2, the two clusters shown
in Fig. 3 a) can be found for intermediate values of d1

in the range between 1.1 and 1.3. In this region, two
clusters of about the size 200 can be found ( Fig. 4 a)
and b)).

Fig. 4. a) Number of clusters #N in dependence on the learning
factor d1 b) Average cluster size s in dependence on d1.

The influence of k:
k does not influence the results significantly. This obser-
vation confirms the picture of a robust self-organisation
of the network structure resulting from the learning rule
used.

C. Initial Conditions
The random initialisation of the network variables

{xi} can lead to an accidental strengthening of weak
connections in the beginning, which can influence the
final results in an undesired direction. We found that the
problem can be removed by introducing a settling phase
in the beginning during which learning is disabled.

III. 3D EXAMPLE

In [3] a 3-dimensional data set was introduced with
two entangled rings embedded into a background dis-
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Fig. 5. a) Non-trivial clustering task with two rings embedded in a background distribution (N = 620 points in total). Clusters found for
the parameters b) k = d2 = 5, d1 = 1.05, τ = 0.22 and c) k = d2 = 5, d1 = 1.05, τ = 0.3.

tribution. The corresponding clustering task is nontrivial
and it cannot be solved by most standard algorithms such
as K-means clustering. Hebbian clustering approaches,
in contrast, can solve the task with ease. In Fig. 5
the results of our approach are shown for two different
parameter choices. Compared to Hebbian clustering with
integrate-and-fire networks, the results seem to be a bit
more sensitive to the choice of the parameters (compare
results in [3]). However, when choosing appropriate
parameters, the individualities of the two rings can be
worked out perfectly. The example clearly demonstrates
two advantages of the approach: It is able to determine
clusters of arbitrary shape and it provides an integrated
noise cleaning since it is able to distinguish clusters from
a background distribution.
We also compared the time performance of integrate-
and-fire networks with our approach. The comparison
yields almost identical running times with slight advan-
tages for coupled map lattices. Both algorithms have an
inherent time complexity of the order O(N2), where N
is the size of the data set.

IV. CONCLUSION

We demonstrated that the idea of clustering based
on Hebbian learning can be adapted for coupled map
lattices. The mechanism of cluster formation is similar
to Hebbian clustering in integrate-and-fire networks pre-
sented in [3]. Since coupled map lattices are defined
by rather simple dynamics compared to integrate-and-
fire networks, we expected that clustering with coupled
map lattices would be a bit faster, but the current
implementation in Matlab did not show a clear speed
advantage. The number and the size of the resulting
clusters depend on the choice of the learning parameters.
They allow the resolution or granularity of the clustering
to be controlled. This fact, however, raises the question
how the optimal clustering resolution should be chosen.

Clear cluster structures can be detected by scanning
a whole range of possible learning values since clear
clusters typically occur in a longer interval. Compared
to integrate-and-fire networks, Hebbian clustering with
coupled map lattices seems to be rather more sensi-
tive to the choice of the parameters. Moreover, the
detailed results seem to be slightly dependent on the
initial condition, whereas integrate-and-fire networks are
almost completely unsusceptible to the initialisation.
Fortunately, the influence of the initial condition can
be successfully removed by introducing a settling phase
without learning.

In future work, we intend to test a slightly adapted
Hebbian learning rule, based on mutual information. This
measure was used in [4] to determine the synchronicity
of two elements and we believe that it is less suscepti-
ble to parameter changes. Furthermore, inspired by the
paradigm of self-organising maps (e.g. [5]), we want to
shift the focus to the question of how Hebbian learning
clustering can be utilised to visualise high-dimensional
data.
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Abstract—A novel dynamical model of synaptic trans-
mission based on the FitzHugh-Nagumo system with non-
linear recovery properties was proposed. The model ac-
counts for typical features of synaptic transmission such as
synaptic threshold and delay. The dynamics of an ensemble
of Morris-Lecar neurons interconnected by means of such
synaptic couplings was investigated. It was shown that an
ensemble demonstrate various structurally stable modes
of transient dynamics in the form of sequential transitions
between different metastable oscillatory states.

I. INTRODUCTION

Many neurophysiologic experiments have indicated
that some neural processes related, for example, with
performing of different cognitive tasks (memory, at-
tention, psychomotor coordination, and so on) are ac-
companied only by transient activity at the level of
individual neurons or small enough groups of neurons
[1-3]. As a result of such processes a certain sequence
of transitional activity phases appears in neural network.
It is clear that such activity of neural networks cannot be
understood within the framework of classical models of
nonlinear dynamics which are based on the concept of
attractor because here the main effect is achieved long
before the system reaches its neighborhood. Therefore,
to adequately describe transient and sequential neural
processes a novel class of models should be developed.
One of the popular points of view is that such models
should be based primarily on the concept of metastable
states. Transient dynamics here is formed by sequential
switching between these states. Recently several phe-
nomenological models based on the metastable states
concept have been proposed [4-7]. These models operate
with variables characterizing averaged activity of neural
networks. To describe the dynamics of such variables
either a generalized Lotka-Volterra system or a Wilson-
Cowan system is used. It has been shown that under ap-

propriate conditions a stable heteroclinic channel appears
in the phase space of the models. This channel represents
a mathematical image of transient activity. Indeed, the
channel is formed by a set of trajectories in the vicinity
of a heteroclinic skeleton which consists of saddles and
unstable separatrices which connect their surroundings.
Each trajectory of the channel sequentially passes the
neighborhoods of saddle fixed points ”staying” there for
some (finite) time. However, the models have significant
limitations. First of all, they do not account for dynam-
ical properties of individual neurons. Another limitation
consists in significant simplification of architecture and
properties of interneuron synaptic couplings.

In this work we propose a model demonstrating var-
ious structurally stable transient dynamics and taking
into account individual properties of neurons. The model
represents an ensemble consisting of three Morris-Lecar
neurons [8]. The transition of excitation between them
is realized by means of chemical synapses.

II. MODEL

Consider an ensemble of three neurons with excitatory
synapses. The dynamics of such ensemble can be de-
scribed by the following system of ordinary differential
equations:

C
dvi
dt

= −gL(vi − vL)− gCaM∞(vi)(vi − vCa)− (1)

−gKni(vi − vK) + Iexti − gsynsi(vi − vrev),

dni

dt
=

n∞(vi)− ni

τn(vi)
, (2)

dri
dt

= f1(ri)− si − k1, (3)

dsi
dt

= ε(f2(ri)− si − k2 − µ
3∑

j=1,
j ̸=i

H(vj − θji)), (4)

i, j = 1, 2, 3.
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The neurons dynamics is given by the two-variable
Morris-Lecar (ML) neuronal model (1)-(2), equations
(3)-(4) describe synaptic couplings between neurons.
Here, the variables vi, ni correspond to the membrane
potential and the state of activation of K+ channels
of the i-th neuron, C is the capacitance of the mem-
brane. The parameters gL, gCa, gK are the maximal
conductances associated with the leak, Ca2+ and K+

transmembrane currents, respectively; vL, vCa, vK are
the corresponding reversal potentials; Iexti are the ex-
ternal currents. The voltage-dependent gating functions
M∞(v), n∞(v) and τn(v) are given by:

M∞(v) = 0.5

[
1 + tanh

(
v − v1
v2

)]
,

n∞(v) = 0.5

[
1 + tanh

(
v − v3
v4

)]
,

τn(v) =

[
ϕ cosh

(
v − v3
2v4

)]−1

,

where v1 = −0.01, v2 = 0.15, v3 = 0, v4 = 0.3,
ϕ = 1. The coupling between neurons is defined by
adding the synaptic current term −gsynsi(vi − vrev) to
the right side of equation (1). The parameter gsyn is the
maximal synaptic conductance and vrev is the synaptic
reversal potential. The variable si characterizes how the
postsynaptic conductance depends on the presynaptic po-
tentials vj , (j ̸= i). To describe the dynamics of synaptic
interneuron interaction we introduce a phenomenological
model in the form of equations (3),(4), where

f1(r) = r − r3

3
,

f2(r) =

{
αr, r < 0
βr, r ≥ 0

,

H(x) = (1 + exp(− x

Kp
))−1,

Kp = 0.001, α = 0.5, β = 2, ε = 0.005, µ = 0.07,
k1 = −0.666, k2 = −0.5. The parameters θji charac-
terize the initial times of synaptic activation processes
caused by input information signals. In the ML neuronal
model (equations (1),(2)) values of parameters are fixed
as follows: C = 1, gL = 0.1, gCa = 1.1, gK = 2,
vL = −0.5, vCa = 1, vK = −0.7, gsyn = 0.0409,
vrev = 0.5, Iexti = 0.13, (i = 1, 2, 3). With these
parameter values the uncoupled single neuron is in the
rest state.

III. SYNAPTIC COUPLING DYNAMICS

The term −sigsyn(vi − vrev) in the right side of
equation (1) models synaptic current that can changes

the membrane potential of the i-th neuron vi. Activation
variable si shows the dependence of postsynaptic con-
ductance on presynaptic potential vj . Here, we propose
a new phenomenological dynamical model of synapse
possessing the threshold features and realistic form of
synaptic current as well as synaptic delay.

The FitzHugh-Nagumo system (equations (3),(4) with
µ = 0) in the parameters region, where it has three equi-
librium states, was used here for describing dynamics of
variable si. Let us consider in detail an activation process
of synaptic coupling in our model. If the condition
vj < θji is satisfied for all the neurons membrane
potentials, then all the functions H(vj − θji) ≈ 0 and
equations (3),(4) can be rewritten as follows:

dri
dt

= f1(ri)− si − k1, (5)

dsi
dt

= ε(f2(ri)− si − k2).

Under the chosen parameter values, the system (5) has
a phase portrait presented in fig. 1a. In this case, for
any initial conditions the system comes to the rest state
associated with stable equilibrium state O1. Parameters
k1 and k2 are chosen such, that the ordinate of this
equilibrium state is equal to zero. There is also saddle
equilibrium state O2 in phase plane. Stable separatrix of
this state defines the activation threshold of the system.
Assume that at some moment the potential of the j-th
neuron exceeds θji value. Then, function H(vj − θji)
rapidly takes on the value equal to unity (H is close to
Heaviside function) and for throughout the period when
vj > θji, equations (3),(4) are written in the form:

dri
dt

= f1(ri)− si − k1, (6)

dsi
dt

= ε(f2(ri)− si − k2 − µ)).

At the same time, the initial conditions for system (3),(4)
are defined by dynamics of the previous system (5) and
correspond to its equilibrium state O1. In fig. 1b the
phase portrait of system (6) is presented. In this case
there is only one attractor of the system – stable limit
cycle L. Note, that transformation of the phase portrait,
presented in fig. 1a, into the one, illustrated in fig. 1b
is realized through Andronov-Hopf bifurcation, loop of
separatrix W s

1 and W u
1 and saddle-node bifurcation of

limit cycle. However, appearing modes have no signifi-
cant influence on dynamics of system (3),(4), because the
function H(vj−θji) takes one of two possible values 0 or
1 rather quickly. The trajectory of system (6), originating
from equilibrium state O1 returns to the vicinity of stable
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Fig. 1. Phase portraits of system (3),(4) for: (a) vj < θji; (b)
vj > θji. (c) Fragment of trajectory forming in system (3),(4) as a
result of processes of its activation and inactivation; (d) Evolution of
variable si(t) caused by changing of membrane potential vj .

limit cycle L in accordance with dynamics of system (6).
When the variable vj becomes less than θji, the system
dynamics is described by equations (5), i.e. the trajectory
returns to the vicinity of equilibrium state O1. Therefore,
dynamics of synapse is caused by both systems (5) and
(6) in turn. If the excess of potential vj over θji is
multiple, then some trajectory T (fig. 1c) appears in the
phase plane of variables (ri, si). This trajectory consists
of fragments of trajectories of systems (6) (dot line)
and system (5) (solid line) in turn. If the representation
point finds itself to the right of separatrix W s

1 after the
presynaptic potential ceases to increase, then the system
returns to the vicinity of equilibrium state O1 according
to system (5) dynamics. This process is followed by
“powerful” pulse change of variable r, i.e. activation of
synaptic coupling. In this case evolution of variable s has
a typical form for synaptic current (fig. 1d). Separatrix
W s

1 defines activation threshold for synaptic coupling.

The time needed for the representation point to find itself
to the right of separatrix W s

1 determines synaptic delay
in our model. Thus, the parameters θji in system (1)-
(4) control the start of synaptic processes and synaptic
delay is defined by dynamical properties of two “joining”
nonlinear systems.

IV. TRANSIENT DYNAMICS

Consider dynamics of the model (1)-(4). All the
neurons are in the rest state at the initial moment.
Suppose one of the neurons (for example, the second
one) to be affected by external current (information
signal). It causes change of membrane potential v2(t).
When the variable v2(t) exceeds the value of θ2i synaptic
coupling between the second and the i-th neurons may
be activated. In the phase plane of system (3),(4) there
appears trajectory T which in some time exceeds the
threshold corresponding to separatrix W s

1 , and causes an
increase of variable si (fig. 1d). Increasing of variable si
means appearance of synaptic current coming to the i-th
neuron.

In the presence of synaptic current, the dynami-
cal system (1),(2), describing the i-th neuron, is non-
autonomous and is defined in three-dimensional phase
space. System (3),(4) contains small parameter ε, and,
therefore variation of variable si in time is rather slow
in comparison with the evolution of variables vi, ni.
Therefore, to the first approximation one can suppose
variable si in system (1),(2) to be a quasistatically vary-
ing parameter. The bifurcation diagram of system (1),(2)
where si is playing a role of parameter is presented in
fig. 2a. If si < sd ≈ 0.724, the system has the only
stable equilibrium state P1. When si = sd, saddle-node
bifurcation of limit cycles takes place. Two limit cycles
arise in phase plane – stable Cs and unstable Cu (fig. 2a).
Further increasing of si leads to collapse of unstable limit
cycle. For si = sh ≈ 1.092, the equilibrium state loses its
stability as a result of subcritical Andronov-Hopf bifur-
cation. For si > sf ≈ 1.327, two more equilibrium states
appear - saddle P2 and unstable P3 (fig. 2a). Therefore,
if si > sh, the only attractor of system (1),(2) is stable
limit cycle Cs. In non-autonomous phase space, a one-
parametric si-set of stable equilibrium states P1 and limit
cycles Cs form stable one-dimensional M s

st(0) and two-
dimensional M s

c (0) integral manifolds, respectively. For
0 < ε ≪ 1, there are integral manifolds M s

st(ε) and
M s

c (ε) close to M s
st(0) and M s

c (0) in system (1),(2).
Fig. 2b illustrates a numerically obtained trajectory in
non-autonomous phase space laying in manifolds M s

st(ε)
and M s

c (ε). The trajectory includes an oscillating part
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related to the phase of transient oscillating activity of a
neuron, and the part corresponding to the phase of rest
state of a neuron.
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Fig. 2. Dynamics of system (1),(2) for changing si value. (a) One-
parametric bifurcation diagram; (b) The trajectory forming in non-
autonomous phase space for changing si(t).

We considered the process of activation of a neuron
and described dynamical mechanism of arising of the
process. Activation of other neurons of the ensemble
occurs analogously. As a result, some transient sequence
of oscillating phases of activity occurs in the ensemble.
Compile a matrix Θ of θji, where θjj = 0, (j = 1, 2, 3).
Numerical investigation of system (1)-(4) has shown, that
any Θ matrix corresponds to some sequence (“path”) of
transient states of activity of neurons of the ensemble. In
fig. 3 we present two transient sequences corresponding
to two different Θ matrices, where θji takes one of three
values: −0.2,−0.146, 0.2. Transient dynamics of system
(1)-(4) does not necessarily consist in changing of a
sequence of single activation neurons. It has been found,
that the phases of activity of neurons may be not single
and may take place irregularly.

V. CONCLUSION

In this work we propose a new dynamical model
of synaptic coupling based on the FitzHugh-Nagumo
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Fig. 3. Examples of transient dynamics of system (1)-(4) corre-
sponding to two different Θ matrices: (a) θ21 = −0.2, θ12 = θ23 =
−0.146, θ13 = θ32 = θ31 = 0.2; (b) θ21 = −0.2, θ13 = θ32 =
−0.146, θ12 = θ23 = θ31 = 0.2.

system with nonlinear recovery properties. The model
accounts for important properties of synapses such as
synaptic threshold and delay. Synaptic delay in the model
is not introduced artificially but is formed by its non-
trivial dynamics. The duration of delay depends on
the amplitude of external stimulus. By means of such
synaptic couplings we form an ensemble of globally
coupled Morris-Lecar neurons and study its dynamics.
We show that such ensemble demonstrates various struc-
turally stable regimes of transient dynamics in the form
of sequential transitions between different metastable
oscillatory states.
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Abstract—The aim of this manuscript is to explain
the interesting nonlinear dynamical behavior of a cell
belonging to a class of memristor oscillators we aim
to couple through memristors and/or resistors for the
realization of networks for pattern recognition tasks. In
particular, we shall first study existence, location and
stability of the equilibria of the dynamical system. Then
we shall summarize the theoretical methodology we used
to prove that such a system may undergo a Heteroclinic
bifurcation and a Hopf bifurcation.

I. INTRODUCTION

The memristor (i.e. memory-resistor) is a bipole char-
acterized by a nonlinear relationship between the time in-
tegrals of current and voltage. It was discovered by Chua
back in 1971 [1]. In 1976 [2] introduced a more general
class of dynamical systems, the so-called memristive
systems, which includes the memristor as a special case.
Recently in [3] the notion of memristive systems was
further extended to encompass capacitive and inductive
devices. The first experimental proof of the existence of
a memristor in nature was realized at Hewlett-Packard
Labs in 2008 [4] by exploiting the coupling between
solid-state electronic and ionic transports occurring in a
nanoscale device under an external bias voltage.

The inclusion of memristive systems in integrated
circuits may considerably extend the circuit functionality.
Memristive systems could be employed for the realiza-
tion of ultra-dense non-volatile memories. Furthermore,
their use in electronic neural networks could allow the
reproduction of complex neural processes. For example,
coupling among adjacent electronic neurons of a network
performing associative memory operations was recently
realized through memristor emulators in [5].

In this work we shall first detect a suitable mathe-
matical model for a class of oscillators employing mem-
ristive bipoles, including, as a sub-class, the nonlinear
memristor oscillators derived from Chua’s oscillators
by replacing Chua’s diodes with memristors in [6],
where an incorrect mathematical model was presented

and analyzed for each oscillator. We shall then get a
thorough understanding of the dynamics of a simple
second-order oscillator from that sub-class. We shall give
some details of the theoretical methodology we adopted
to prove that such a dynamical system may display both
an Heteroclinic Bifurcation and a Hopf Bifurcation.

II. M EMRISTIVE OSCILLATORS

In this section we shall determine an appropriate
mathematical model for a whole class of oscillators with
memristive bipoles. Oscillators from this class shall be
later used to design associative and dynamic memories.

A linear bipole is characterized by the following
constitutive equations:

L(D)u(t) = y(t) (1)

whereu andy denote the input and output to the linear
bipole respectively, andL(D) is a linear rational function
of the time-differential operatorD = d

dt . On the other
hand, the constitutive equations of a memristive bipole
may be written as:

y = g(x, u, t)u, Dx = f(x, u, t) (2)

whereu andy are the input and output to the memristive
bipole respectively,f(·) is a scalar continuous function
defining the time evolution of the state variablex of
the memristive bipole andg(·) is the scalar nonlinear
Lipschitz input-output response of the memristive bipole.
Connecting the one port of a linear bipole with that
of a memristive bipole, depending on the choice of the
input and output variables to the bipoles, one of the two
Kirchhoff’s Laws will impose a connection constraint on
(1) and (2), thus yielding the general Lur’e model of an
oscillator with a memristive bipole:

L(D)u(t) = −g(x, u, t)u, Dx = f(x, u, t) (3)

The constitutive equations of a memristor are:

y = g(x, u, t)u = h(x)u, Dx = u (4)
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Fig. 1. A second-order oscillator with a voltage-controlled memris-
tor.

Inserting (4) into (3) yields the general Lur’e model of
an oscillator with a memristor:

L(D)u(t) = −h(x)u (5)

Dx = u (6)

It is crucial to realize that (5)-(6) are redundant and
may thus be rewritten in a more compact form. In fact,
integrating both sides of (5), that is multiplying each
side of (5) by D−1 =

∫
dt, using (6) and defining

h(x) = dk(x)
dx , we get:

L(D)x = −k(x). (7)

The class of oscillators modeled by (7) includes as a sub-
class all the memristor oscillators presented in [6], whose
authors, however, presented and studied an incorrect
redundant mathematical model for each oscillator, thus
drawing wrong conclusions regarding the corresponding
dynamical behavior.

III. SECOND-ORDER MEMRISTOR OSCILLATOR

Our final aim is to propose networks of oscillators
modeled by (7) and coupled through resistors or mem-
ristors for pattern recognition tasks. To this end, let us
pick one of the circuits presented in [6], the second-order
oscillator with a voltage-controlled memristor shown in
Figure 1. Applying Kirchhoff’s Laws to the circuit and
modeling the memristor with (4), whereu = v and
y = iM denote the voltage across and the current through
the memristor respectively, we get the equations in terms
of currents and voltages:

iM = h(ϕ)v, CDv = i − iM , Ri − v = LDi (8)

wherei is the current flowing through the inductor andx
represents the fluxϕ through the memristor. Integrating
both sides of each equation in (8) and observing thatv =
Dϕ, an equivalent set of equations in terms of charges
and fluxes is obtained:

qM = q(ϕ), CDϕ = qL − qM , RqL − ϕ = LDqL (9)

whereq, qL andqM denote the charges in the capacitor,
the inductor and the memristor respectively. After a
few algebraic manipulations (9) may be turned into the
following non-redundant state equations:

Dx1 = αx2 − αqM (x1) (10)

Dx2 = −ξx1 + βx2 (11)

where α = 1
C , β = R

L and ξ = 1
L , while the state

variables are defined asx1 = ϕ andx2 = qL. Note that
the order of the dynamical system (10)-(11) is2. The
authors in [6] derived the state equations of the oscillator
from (8), thus presenting and analyzing a redundant
third-order dynamical system and drawing incorrect con-
clusions with regard to the dynamic behavior of the
oscillator.

It is straightforward to derive the Lur’e model of (10)-
(11). For reasons of limited available space, here we
report only the final expression omitting the calculations,
which will appear in a more extended version of this
paper:

L(D)x1 = −qM (x1) (12)

whereqM (x1) denotes the flux-dependent charge in the
memristor andL(D) = D2

−βD+αξ
α(D−β) . As expected from

Section II, (12) could be derived from (7) after setting
x to x1 andk(x) to qM(x1). The charge-flux nonlinear
relationship of the memristor is set toqM(x1) = bx1 +
(a − b)(1

2 (|x1 + 1| + |x1 − 1|)). The equilibria of (10)-
(11) are the intersections on thex1 − x2 plane between
the linex2 = ξx1

β andx2 = qM (x1). Let us assume that
b > a > 0. In this case we have:

1) a single equilibrium point, i.e.x0 = (x̄1, x̄2) =
(0, 0), if ξ

β < a or if ξ
β > b;

2) ∞ equilibria, i.e. (x̃1, x̃2) ∈ {(x1, x2) ∈ R
2 :

x2 = ax1 ∀x1 ∈ [−1, 1]}, if ξ
β = a;

3) 3 equilibria, i.e. x0, x+ = (x̂1, x̂2) =(
β(a−b)
ξ−βb , ξ(a−b)

ξ−βb

)
andx− = −x+, if a < ξ

β < b.

Here we shall consider the most interesting case, that is
case3 in the above list. The Jacobian matrix of (10)-(11)
is:

J =

(
−α{b + a−b

2
[sgn(x1 + 1) − sgn(x1 − 1)]} α

−ξ β

)
(13)

The trace and determinant of (13) atx0 areτ0 = β−aα
and∆0 = α(ξ − aβ) respectively. Note that in this case
∆0 > 0, therefore the stability of the origin depends
on the sign ofτ0. It follows that the origin is unstable
for α < β

a . The sign of∆0 −
τ2

0

4 will establish how
trajectories behave in the neighborhood of the origin. It
turns out that spiral behavior occurs forα1 < α < α2,

18th IEEE Workshop on Nonlinear Dynamics of Electronic Systems (NDES2010)

26-28 May 2010, Dresden, Germany 167



whereα1,2 =
2ξ−aβ±

√
4ξ(ξ−aβ)

a2 , while nodal behavior is
observed otherwise.

The trace and determinant of (13) atx+ are τ+ =
β − bα and ∆+ = α(ξ − bβ) respectively (the same
holds forx−). Note that in this case∆+ < 0, therefore
x+ exhibits an unstable saddle behavior. The sign of
τ+ will establish which of the two real eigenvalues is
larger in absolute value. It turns out that forα > β

b the
evolution of the system along the stable manifold is faster
than along the unstable manifold. Unlike the position of
the equilibria, their stability depend onα.

Furthermore, we theoretically proved that dynamical
system (10)-(11) may undergo a Heteroclinic Bifurcation
from which a stable limit cycle is born. Due to the
limited available space, we shall present the details in a
future manuscript. Here we summarize our methodology.
Focusing on thex1 − x2 state plane, after derivation
of the analytical expressions for the stable and unstable
manifolds of the saddles we then detected the intersec-
tions of the same manifolds with thex1 = ±1 lines. We
then analytically solved (10)-(11) within the linear region
characterized by|x1| < 1 and derived the necessary
conditions for the existence of a Heteroclinic orbit, that is
the necessary conditions for the system to evolve through
the specified linear region from the intersection of the
unstable manifold ofx− with the x1 = −1 line to the
intersection of the stable manifold ofx+ with thex1 = 1
line. One of the two conditions yields the analytical
expression of the time interval, call it∆t, needed for the
state-space trajectory to follow the above mentioned path
as a function of parametersa, b, ξ, β andα, while the
other one imposes a constraint on the relationship among
these parameters. If both these conditions are satisfied,
the dynamical system (10)-(11) exhibits a Heteroclinic
Bifurcation. Let us seta = 0.02, b = 2, ξ = 0.1 (in
Figure 1 we chooseL = 10) andβ = 0.1 (in Figure 1
we assumeR = 1). In Figure 2 we show the eigenvalues

λ1,2 = τζ

2 ±

√
τ2

ζ
−4∆ζ

2 whereζ denotes0 for x0 (left) and
+ for x+ (right). Note that the eigenvalues forx− are
identical to those forx+. In agreement with the above
theory, in this particular casex0 is an unstable node for
0 < α < 0.0253, an unstable focus for0.0253 < α < 5,
a stable focus for5 < α < 989.9747 and a stable node
for α > 989.97. On the other hand bothx+ andx− are
saddles for any value ofα (for α < 0.05 the positive
eigenvalue is larger than the negative one in absolute
value). Also, as parameterα is gradually increased, this
particular dynamical system first has no stable attractors
for 0 < α < 0.17, than a stable cycle is born as
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Fig. 2. Left: Eigenvalues of the origin, that isx0, as parameterα
is swept from0.005 to 10 with a step interval of0.005. Highlighted
are the eigenvalues relative to the cases when the originx0 is about
to turn from an unstable node to an unstable focus (red squares, α =
0.025), when a stable limit cycle is born as a result of a Heteroclinic
Bifurcation (red circles,α = 0.17), and when the cycle collides with
the origin that turns from an unstable focus to a stable focusaccording
to a Hopf Bifurcation (red diamonds,α = 5). Right: Eigenvalues of
x+ as parameterα is swept from0.005 to 10 with a step interval
of 0.005. Note the location of the eigenvaluesλ1,2 = ±0.0707 (red
squares) forα = 0.05, below (above) which the absolute value of the
positive real eigenvalue is greater (smaller) than that of the negative
real eigenvalue.

a result of a Heteroclinic Bifurcation forα = 0.17
(this value ofα is derived from the second of the two
conditions for the existence of a Heteroclinic orbit, while
the other condition yields∆t = 10.9731s). As α is
further increased, the period and amplitude of the cycle
shrink until the cycle itself collides with the origin and a
Hopf Bifurcation takes place forα = 5. For larger values
of α the only stable attractor of the system is the origin.
The left plot of Figure 3 depicts the3 equilibria (red
asterisk markers) together with the steady-state attractors
of the system for three different values ofα, that is close
to its birth (black curve,α = 0.171), when it appears to
be considerably reduced in size (blue curve,α = 1),
and close to its collision with the origin (red curve,
α = 4.9675). On the other hand, the right plot of Figure
3 reports the time waveform of the flux oscillationx1 for
α = 1. In order to capture the nonlinear oscillations,
the Describing Function (DF) Technique [7], [8] was
applied to the Lur’e model of the oscillator (12). Here
we shall only summarize our theoretical findings. Letting
x1(t) ≈ A + B sin ωt, whereA andB denote the bias
and the amplitude of the flux oscillation respectively, we
first derived the DF approximation for the nonlinearity
qM (x1) through long analytical calculation of integrals
[8], then we expanded (12) (equating bias values, sine
and cosine coefficients on each side) to finally get a set
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Fig. 3. Left: Steady-state attractor of the dynamical system after
numerical integration of (10)-(11) fora = 0.02, b = 2, ξ = 0.1 and
β = 0.1. Parameterα is set to a value of4.9675, i.e. close to the
occurrence of the Hopf bifurcation (red curve), of1, where the size of
the cycle is smaller than at the cycle birth (blue curve) and of 0.171,
close to the appearance of the Heteroclinic bifurcation(black curve).
Here the equilibria of the system for our particular parameter choice,
i.e. the originx0 = (0, 0) and the two saddlesx+ = (1.98, 1.98)
andx

−
= −(1.98, 1.98), are shown with red asterisk markers (note

that the position of the equilibria does not depend onα). Right:
Time waveform ofx1 = ϕ after numerical integration of (10)-(11)
for a = 0.02, b = 2, ξ = 0.1, β = 0.1 andα = 1.

of three DF algebraic equations. From the first of these
we determined the analytical expression forω:

ω =
√

αξ − β2 (14)

The corresponding graph ofω versusα for a = 0.02,
b = 2, ξ = 0.1 and β = 0.1 is reported on the left
plot of Figure 4 for0.17 < α < 4.99. The expressions
for the biasA and the amplitudeB of the nonlinear
oscillation may not be analytically determined from the
other two DF algebraic equations; however, one of them
is an identity forA = 0. Inserting this value forA into
the other one, solving the resulting equation forB with
a = 0.02, b = 2, ξ = 0.1 andβ = 0.1, the behavior of
the amplitude of the flux oscillation as a function ofα
is reported on the right of Figure 4. Note that forα > 5
the origin turns from an unstable into a stable focus (see
left plot of Figure 2) and limit cycle behavior disappears,
as expected from our previous theoretical findings. For
a = 0.02, b = 2, ξ = 0.1 and β = 0.1 and setting
α = 1 (chooseC = 1 in Figure 1), numerical solution
to the DF algebraic equations yieldA = 0, B ≈ 1.12
andω ≈ 0.3. This is confirmed by numerical integration
of (10)-(11) for our special parameter choice and it is
clear from the left plot of Figure 3.

IV. CONCLUSIONS

In this work we investigated the interesting nonlinear
dynamical behavior exhibited by a Memristor Oscillator
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Fig. 4. Left: Plot of (14) as parameterα is swept from 0.17 to 4.99
with a step interval of 0.01. Right: Behavior of the amplitude B of
the flux oscillation as parameterα is swept from 0.17 to 10 with a
step interval of 0.01 according to the numerical technique explained
in the text.

belonging to a class of cells used in Networks for Asso-
ciative and Dynamic Memory applications. In particular,
we presented a theoretical methodology to give evidence
of the occurrence of Heteroclinic and Hopf Bifurcations
in such a dynamical system.
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Abstract—In this paper we shall put forward a novel 
chaos neuron model and investigate the dynamic 
properties of memory retrievals. The present 
artificial neuron model is defined by such periodic 
input-output mapping as the Tchebycheff function of 
the second kind. It is apparently shown that the 
present neural network with a periodic activation 
function has an ability of the retrievals of the 
embedded patterns superior than the conventional 
neural network with such a monotonous mapping. 
This advantage is considered to be as a result of the 
nonmonotonous property of the periodic mapping 
which involves a chaotic behaviour of the neurons. 
It is also found that the present chaos neuron model 
has a remarkably larger memory capacity than the 
conventional association  system with the 
monotonous dynamics. These findings are considered 
to result from the chaotic dynamics to avoid at an 
unfavourable spurious states. 

 

              I. INTRODUCTION  
 

To date the associative models have been extensively 
investigated on the basis of the autocorrelation 
characteristics of the embedded patterns. Since the 
foundations of the retrieval model by Anderson[1], 
Kohonen[2], and Nakano[3], many works related to 
such an association model of the inter-connected 
neurons with a autocorrelation matrix have been 
reported by Amari[4], Amit et al.[5] and Gardner[6]. 
So far it has been known that the capacity of the 
autocorrelation associative model is estimated as 
~0.15N at most for N neuron systems. This is 
considered as the result of the unfavourable spurious 
memory states increasing drastically with the 
increasing network size or N. In addition, as is well 
known nowadays, the performance is usually 

depressed especially for the strongly correlated ( or 
non-orthogonal ) embedded patterns (L). To avoid 
this problem, a few chaotic neural networks have 
beeninvestigated by Inoue and Nagayoshi[7], Aihara 
et al.[8], Nakagawa and Okabe[9], Nakamura and 
Nakagawa[10], Kasahara and Nakagawa[11]. Therein 
chaotic behaviour has been shown to be available for 
the optimization problems or the memory retrievals. 
Very recently the neuro-dynamics with a 
nonmonotonous mapping have been very recently 
reported by Morita[12], Yanai & Amari[13]. They 
noticed that the nonmonotonous mapping in a neuron 
dynamics provides an advantage of the memory 
capacity compared with the conventional associatron 
with a monotonous mapping. This improvement of 
the autocorrelation association model was explained 
as a result of a certain orthogonalization of the 
apparent synaptic weight matrix[13]. That is, a 
nonmonotonous neuron dynamics involves itself a 
one-step orthogonalizing procedure in the dynamic 
retrieval process.  Further, as a special case of the 
nonmonotonous mapping, we have put forward a 
periodic activation function to realise a novel chaos 
neuron[14-16]. Therein we have elucidated that such 
a chaos neural network has a noticeable advantage in 
memory searching and the auto-associative model 
superior than the previous chaos neuron model with a 
monotonous activation function[8-10]. 

In this work, let us propose a noble association 
model with a periodic mapping instead of the 
previously investigated nonmonotone ones[12,13]. In 
practice the Tchebycheff function of the second kind 
is introduced in the nonlinear neuron dynamics in 
similar to the previous work[14-16]. Such a periodic 
mapping is found to have an ability to escape from an 
unfavourable spurious metastable state as a result of 
such a nonmonotonous property of the mapping as 
well as the resultant chaotic behaviour of the neurons. 
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In addition the presently proposed chaotic dynamics 
will be found to promote the memory capacity of the 
neural network. In the next section a theoretical frame 
work will be reviewed to construct the periodic 
dynamics related to chaos. Then some computational 
results will be given in III to show the ability with 
respect to the memory capacity. Finally a few 
concluding remarks will be addressed in IV to show 
the effect of the chaos in the present neuro-dynamics. 

II. THEORY  
We shall start with deriving the dynamic rule for the 
present neural network. For this purpose let us define 
the internal state and the corresponding output of the i 
th neuron as iσ  and is , respectively, which have to 
be related each other in terms of the following 
nonlinear mapping[13,14] in terms of the 
Tchebycheff function, 
 

 1sin sini i
vs σ
τ

−⎛ ⎞= ⎜ ⎟
⎝ ⎠

(0 1)τ< ≤   (1) 

where ν  is a constant.  
Then the Lyapunov function E may be defined as  

 

{ }† †

1 1 1

1 1
2 2

N N N

ij i j i i i i i
i j i

E w s s ds dsλ σ σ
= = =

= − + +∑∑ ∑ ∫ ∫
      (2) 
where iλ  (1 )i N≤ ≤  are constants to be determined 
as mentioned below, †  denoted the conjugate 
quantities and /dH N ijw  is the connection matrix 
defined as, 

     ( ) †( )

1

L
r r

ij i j
r

w e e
=

= ∑  ;    (3)  

here ( )r
ie  (1 ,1 )i N r L≤ ≤ ≤ ≤  are the binary 

embedded vectors to be retrieved.   
     The updating dynamics may be introduced as 

   †( 1) ( )i i
i

Et t
s

σ σ η ∂
+ = −

∂
 ,   (4) 

where η  is a constant.   Substituting eq.(2) into 
eq.(4), one finds 

( )
1

( 1) 1 ( ) ( )
N

i i i ij j
i

t t w s tσ λ σ η
=

+ = − + ∑ .  (5) 

So as to assure the equilibrium point at a retrieval 

point together with ( 1) ( ),i it tσ σ+ =  
( 1) ( ),i is t s t+ =  / 1ν τ =  as well as eq.(1),  one has 

the following constraint,  
 
    iη λ=  .    (6) 
 
For the present model, the Frobenius-Perron equation 
is defined as  

( )
1

1
( ) ( ) ( )p d p fσ ξ ξ δ σ ξ

+

−
= −∫    .  (7) 

From eqs.(1) and (7), the invariant measure ( )p σ  
eventually leads to  

 
2

1( )
1

p σ
π σ

=
−

 .    (8) 

 
Hence the Lyapunov exponent  is readily derived as 
 

1

1

( )( ) log log ( / )dfd p
d

ξλ ξ ξ α α ν τ
ξ

+

−
= = =∫  (9) 

Therefore it has to be noted that the chaos strength 
may be controlled in terms of the parameter α . 

Finally we shall concentrate our interest on the 
control method of the parameter τ in eq.(4). As 
expected by eq.(9) with a fixed ν , τ  is closely 
related to the chaotic behaviour of the neuron. 
Therefore τ   has to be even smaller than 1 so as to 
involve the chaos dynamics. On the other hand, in 
order to accomplish a complete association, τ  must 
be controlled towards 1 near a complete retrieval 
point, where only one overlap is to become +1 or -1 
whereas all the others must completely vanish. 
According to this respect, we may control τ in the 
following manner, 
 
    ( 1) ( ) (1 ( ))t t tτ τ κ τ+ = + −    (10) 
where  κ  is a relaxation parameter to control 
τ .  Finally τ  is to be reset to a sufficiently small 
constant ε  according to the following condition as 
 
     if t  =0 or  ( 1) ( )s t s t ε+ − < ( )tτ ε→ = . (11) 
 
                     III.     RESULTS 
 
In this section let us show the association properties 
of the present model in comparison with the 
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monotonous dynamic system. 
First of all we shall present a few examples of the 
dynamic behaviour of the present chaotic model. 
Here κ and ε are set to 0.8 and 610− , respectively, 
below if not mentioned. The initial state (0)is (1≤i≤N) 
was also set to a random pattern which is apart from 
an embedded pattern with the Hamming distance H d . 
The embedded pattern vectors were randomly picked 
up from 2N  patterns to be different each other.    
Hereafter the number of neurons is set to 100 if not 
mentioned.   In Fig. 1(a)-(c) , the dynamics for the 
memory retrievals are depicted for the several loading 
rates L/N.    Herein the Hamming distance dH , i.e. 
the distance from a target pattern to be retrieved, was 
set to 20. 
 

 
 

 
 

 
 
Fig.1   The overlap dynamics during the memory 
retrievals for the several loading rates /L N . 
 
From this result, one may confirm the advantage of 
the presently proposed chaos associative memory 
model with the Tchebycheff activation function in 
comparison with the conventional non-chaotic 
models[1]-[6]. 
     Then let us present the memory retrieval 
properties for 200 trials for different set of the 
embedded vectors in Figs.2(a) and (b) for a few 
Hamming distances /dH N .  
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Fig.2   Memory retrieval properties.  
 
  

To conclude this work, we shall present memory 
capacities, which are defined as the area of the 
memory retrieval curves in Fig.2, for the present 
model in Fig.3.    
 

 
Fig. 3 Memory capacities vs the Hamming distance. 
 

                            IV  Conclusions 
In this paper we have proposed a chaotic memory 
retrieval model with a periodic function as an 
activation function which relates the internal state 
σ to the output s. In practice the Tchebycheff function 
of the second kind was utilised so as to involve 
chaotic dynamics in the autoassiciative memory . 
Although such a periodic mapping does no longer 
assure the monotonous decreasing of the energy, it 
may prevent the system from an unfavourable 
trapping at spurious states. At the same time the 
dynamic memory retrieval characteristics of such a 
chaos neural network is found to be improved in 
comparison with the conventional 
models including the chaos neural networks with the 
monotonous mapping[9-11]. 
 
 

REFERENCES 
[1] J.A.Anderson:Math. Biosci.14(1972)197. 
[2] T.Kohonen: IEEE Trans.C-21(1972)353. 
[3] K.Nakano: IEEE Trans. SMC-2(1972)380. 
[4] S.Amari: Biol. Cybern.26(1977)175. 
[5] D.J.Amit, H.Gutfreund, and H. Sompolinsky:Phys. Rev. 
Lett.55 (1985)1530. 
[6] E. Gardner: J. Phys. A19(1986)L1047. 
[7] M.Inoue and A.Nagayoshi: Phys.Lett.A158(1991)373. 
[8] K.Aihara, T.Numajiri, G.Matsumoto, and M.Kotani: 
Phys. Lett. A116 (1986)313. 
[9] M.Nakagawa and M. Okabe: J. Phys. Soc.of 
Jpn.61(1992)L1121. 
[10] K.Nakamura and M.Nakagawa:J. Phys. Soc. of 
Jpn.62(1993)2942. 
[11] T. Kasahara and M. Nakagawa: IEICE Trans. on 
Fundamentals A (1994, in press). 
[12] M.Morita :Neural Networks 6(1993)115-126. 
[13] Hiro-F.Yanai and S.Amari: Proc. of ICNN'93, San 
Francisco (1993)1385-1390. 
[14] M. Nakagawa: Proc. of ICONIP'94, Seoul,Vol.1 
(1994)609. 
[15] M. Nakagawa: Proc. of ICDC'94,Tokyo,Vol.2 (1994) 
pp.603-607. 
[16] M. Nakagawa: J. Phys.Soc.Jpn.64(1995)pp.1023-1031. 
[17] M. Nakagawa:IEICE Trans. on Fundamentals E78-A 
(1995)pp.412-423 

18th IEEE Workshop on Nonlinear Dynamics of Electronic Systems (NDES2010)

26-28 May 2010, Dresden, Germany 173



Detecting unstable periodic spatio-temporal states of
spatially extended chaotic systems

Alexander E. Hramov and Alexey A. Koronovskii
Faculty of Nonlinear Processes; Saratov State University;

Astrakhanskaya, 83, Saratov, 410012, Russia; Email: aeh@nonlin.sgu.ru

Abstract—In this paper we have proposed the method
of detection of unstable periodic spatio-temporal states of
spatially extended chaotic systems. The application of this
method is illustrated by consideration of two different
systems: (i) fluid model of Pierce diode which is one of
the fundamental system of the physics of plasmas and
(ii) complex one-dimensional Ginzburg-Landau equation
demonstrating different regimes of spatio-temporal chaos.

I. INTRODUCTION

Unstable periodic orbits (UPOs) embedded into
chaotic attractors are well-known to play an important
role in the dynamics of systems with a small number of
degree of freedom [1]. The chaotic regime may be char-
acterized by means of the set of UPOs [2]. A universal
and powerful tool for exploration of chaotic dynamics,
UPOs proved to be especially efficient in context of
chaotic synchronization [3], [4] and the problem of chaos
controlling [5]. In the last case UPOs may be stabilized
by means of the weak influence on system dynamics by
small variation of control parameter [5] or with the delay
feedback [6].

In spatially extended systems the unstable periodic
spatio-temporal states (UPSTSs) exist [7] which are
similar to UPOs in chaotic systems with a small number
of degree of freedom. In particular, chaotic dynamics of
spatially extended systems may be controlled by stabi-
lizing such UPSTSs [8]. Therefore, one of the important
problems connected with the study of distributed chaotic
system is finding these UPSTSs. It is appropriate to
suggest that the methods aimed at the search of UPOs
of dynamical systems with small dimension of phase
space may be adapted to spatially extended systems. The
method proposed by D. Lathrop and E. Kostelich [9], as
an example, had been used to pick out UPSTSs for the
fluid model of Pierce diode [10]. This method is based on
the obtaining of the histograms describing the frequency
of system returning to the vicinity of UPOs (in low-
dimensional systems) or UPSTSs (in spatially distributed

systems), respectively. Nevertheless, this method applied
to spatially extended systems is rather imprecise and
time-consuming.

In this report we describe the modification of the
method of P. Schmelcher and F. Diakonos (SD–method)
[11], [12] allowing precise detection of UPSTSs in spa-
tially extended chaotic systems [13]. As the example of
analysis of spatially extended chaotic system we consider
the complex Ginzburg-Landau equation (CGLE) and the
fluid model of Pierce diode.

II. DETECTION OF UPSTS OF CHAOTIC DYNAMICS

IN THE PIERCE DIODE

As the primary system under study we have used
the fluid model of Pierce diode [14], [15] being one of
the simplest beam-plasma systems demonstrating chaotic
dynamics. It consists of two plane infinite grids pierced
by the electron beam (see. Fig. 1). The entrance charge
density ρ0 and velocity v0 are maintained constant.
The space between the grids is evenly filled by the
neutralizing ions with density |ρi/ρ0| = 1. The dynamics
of this system is defined by the only parameter, the so-
called Pierce parameter α = ωpL/v0, where ωp is the
plasma frequency, L is the distance between grids. With
α > π Pierce instability develops, which leads to the
appearance of the virtual cathode. At the same time, with
α ∼ 3π, the instability is limited by non-linearity and the
regime of complete passing of the electron beam through
the diode space can be observed. In this case the system
can be described by the partial differential equations:

∂v

∂t
+ v

∂v

∂x
=

∂ϕ

∂x
,

∂ρ

∂t
= −∂(vρ)

∂x
,

∂2ϕ

∂x2
= α2(ρ− 1),

(1)
with the boundary conditions:

v(0, t) = 1, ρ(0, t) = 1, ϕ(0, t) = ϕ(1, t) = 0. (2)

In equations (1)–(2) the non-dimensional variables
(space charge potential ϕ, density ρ, velocity v, space
coordinate x and time t) are used (see [15], [16]).
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Fig. 1. Schematic diagram of Pierce diode

One of the core problems related to the spatially
extended system consideration is the infinite dimension
of the “phase space” W∞. As a consequence, the state
U(x, t) of the system of study should be considered
instead of vector x(t) in Rn as in the case of the
flow systems. For the system (1) this state U(x, t) =
(v(x, t), ρ(x, t), ϕ(x, t))T is the vector of the functions
characterizing the system dynamics. After the transient
finished the set of the states U(x, t) may be considered
as attracting subspace W s of the infinite–dimensional
“phase space” W∞ of the spatially extended system
under study. If the dimension of this subspace is finite,
the finite-dimensional space Rm of variables may be
used to describe the dynamics of the spatially extended
system.

In is well-known that SD-method was developed to
the UPOs detection in the systems with discrete time,
although it may be also applied to the flow systems [12]
by means of reducing them to maps with the help of
Poincaré secant. In order to apply the SD method to an
extended system, we assume that its infinite-dimensional
phase space possesses the low-dimensional attracting
invariant subspace W s, and the desired solution lies
in this subspace. Further, we construct the auxiliary
system y(t) in which the vector field y is in one-to-one
correspondence with W s.

The stationary states U0(x, t) = U0(x) of the spa-
tially extended system correspond to the fixed points
in the phase space of the auxiliary system, while the
periodic spatio-temporal states of (1) are in one-to-one
correspondence with the periodic orbits of the finite-
dimensional system y(t). Therefore, UPSTSs of spatially
extended system may be found by means of the detection
of UPOs of the auxiliary finite-dimensional system.

There are many well-known methods for applying
low-dimensional variable space to describe the behavior
of the spatially extended system, among which a typical
one is the mode expansion method. Therein we propose
the use of the variables taken from several points xi

of the extended system space to construct the finite
dimensional system

y(t) = (ρ(x1, t), . . . , ρ(xm, t))T , (3)

where m is the dimension of the auxiliary system,
xi = iL/(m + 1), i = 1,m. In comparison with the
other known methods (for example, Galerkin method),
such approach allows us to undergo easily from the
spatially extended system state U(x, t) to the low–
dimensional vector y(t) without any additional calcu-
lations.

For the system under study (1) we have estimated the
dimension of the auxiliary vector y(t) as m = 3. This
assumption is based on the results of the consideration
of the finite-dimensional model of the Pierce diode dy-
namics obtained with the help of Galerkin method [15].

To confirm meeting of the requirements of the one-
to-one correspondence between state U(x, t) of the spa-
tially extended system and vector y(t) of the constructed
auxiliary system with the small number of degree of
freedom we have used the neighbour method [17]. We
have examined that the distance d(y1,y2) = ||y1 − y2||
between two vectors y1 = y(t1) and y2 = y(t2) taken
in the arbitrary moments of time t1 and t2 is close to
zero if and only if the distance S(U1,U2) between two
different states U(x, t1) and U(x, t2) of the spatially
extended system taken in the same moments of time t1
and t2 is also small. The distance S(U1,U2) has been
defined as

S(U1,U2) =
(∫ 1

0
‖U1 −U2‖2 dx

)1/2

, (4)

where ||·|| is Euclidian norm. According to the neighbour
method it means that there is the one-to-one correspon-
dence between U(x, t) and y(t), therefore we can use
the constructed auxiliary low dimensional system y(t)
to find UPTSTs by means of SD–method.

Having constructed the auxiliary flow system (3) we
can use SD-method to detect UPOs in it and UPSTSs in
the initial spatially extended chaotic system (1), respec-
tively. In R3 space a plane ρ(x = 0.25, t) = 1.0 has been
selected as Poincaré secant. Let us denote the vectors
y(tn) = (1, ρ(0.5, tn), ρ(0.75, tn))T corresponding to
the n-th crossing the selected secant surface by the
trajectory y(t) as yn. Then the description of the system
dynamics can be made with the help of the discrete map

yn+1 = G(yn), (5)

where G(·) is the evolution operator. Obviously, it is
impossible to find the analytical form for the operator
G, but numerical integration of the initial system of
partial differential equations (1) can give us a sequence
of values {y}n, generated by the map (5).
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ρ(x,t)
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t

Fig. 2. The spatio-temporal dynamics of the charge density ρ(x, t)
of the electron beam of Pierce diode. The oscillations for the selected
control parameter value α = 2.858π are chaotic both in space and
time
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Fig. 3. The dependence of ρn(x = 0.75) upon the number of
iteration of SD–method for the UPSTS of the length 1

SD–method for picking out UPOs in the map (5)
supposes consideration of the following map [12]:

yn+1 = yn + λC [G(yn)− yn] , (6)

where λ = 0.1 is the method constant and C is a certain
matrix of the set Ck. Each of matrices Ck should have
only one non-vanishing entry +1 or −1 in row and
column, i.e., they are orthogonal. In works [11], [12] it
was shown that map (6) under the appropriate choice of
the matrix C allows to stabilize effectively the unstable
saddle periodical orbits of systems (5) and (3). A tra-
jectory of transformed system (6) starting in the domain
of attraction of a stabilized fixed point converges to it.
Therefore, the UPOs of a chaotic dynamical system (5)
can be obtained by iterating the transformed systems (6)
using a robust set of initial conditions.

The system (6) allows to find only the UPOs of length
1. To consider UPOs of length p the map

yn+1 = yn + λC [Gp(yn)− yn] , (7)

should be considered instead of (6) where G(p)(·) is p-
times iterated map (5). As far as the spatially extended
system and the auxiliary flow system are considered,
only the p-th crossing of the Poincaré secant by the
trajectory y(t) should be taken into account.

So, by numerical iteration of the map (7) with different
values of p one can find the set of the unstable periodic
spatio-temporal states of the extended system (1). How-
ever, there is a problem concerning with searching the

ρ(x,t)

x
t

a

ρ(x,t)

x
t

b

Fig. 4. The distribution of space charge density ρ(x, t) correspond-
ing to the unstable spatio-temporal states with the following lengthes
p periods T : (a) p = 1, T = 4.2; (b) p = 4, T = 18.9

state U(x, tn+1) at the moment tn+1 based on the known
vector yn+1. Indeed, we know only the coordinates of the
state y(tn+1) in the Poincaré secant but we don’t know
the corresponding distribution of ρ(x, tn+1), v(x, tn+1)
and ϕ(x, tn+1), and, correspondingly, we do not know
the state U(x, tn+1) of the extended system (1). How-
ever, as we have determined above with the help of
the nearest neighbours method the state y(tn+1) in the
Poincaré secant uniquely defines the corresponding state
U(x, tn+1) belonging to the attracting finite-dimensional
subspace W s of the infite-dimensional phase space W∞.
To obtain this spatially state U(x, tn+1) mentioned
above we have used the following procedure. The system
of partial differential equations (1) is integrated (and vec-
tor y(t) is calculated) untill some vector y(ts) is close to
the required one yn+1 with some demanded precision:
||yn+1−y(s)|| < 10−3. When this condition is satisfied,
the state U(x, ts) corresponding to the found vector y(s)
are considered as the required one U(x, tn+1) and then
the next iteration according to (7) should be done.

The spatio-temporal chaotic dynamics of the charge
density ρ(x, t) in the Pierce diode is shown in Fig. 2 for
α = 2.858π. Applying the modified SD-method allows
to find the demanded periodical time-space states. The
convergence of the iteration procedure (7) is illustrated
by Fig. 3 which shows the dependence of the density
ρn(x = 0.75) in the moments of time when the trajectory
y(t) in R3 space crosses the Poincaré secant upon the
number of iteration n of the SD–method when the UP-
STS of the length p = 1 is studied. One can see clearly
that the iteration process of SD–method converges to
the value corresponding to the unstable time-periodical
spatio-temporal state of the system. Fig. 4 shows the
distribution ρ(x, t) corresponding to the USTSs with
different periods T detected by means of SD-method.

III. DETECTION OF UPSTS IN CGLE

To show the universality of the proposed approach
we also report the results of detecting the UPSTSs for
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Fig. 5. The spatio-temporal dynamics |u(x, t)| of the Ginzburg-
Landau equation for the length (a) L = 12.63 and (b) L = 13.25
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Fig. 6. The evolution of the module |u(x, t)| corresponding to the
UPSTSs with: (a) p = 1, T = 12.1 (L = 12.63; m = 3); (b) p = 3,
T = 20.2 (L = 13.25, m = 4)

the one-dimensional complex Ginzburg-Landau equation
(CGLE). The CGLE is a fundamental model for the
pattern formation and turbulence description [18].

We have considered one-dimensional CGLE

∂u/∂t = u− (1− iα)|u|2u + (1 + iβ)∂2u/∂x2 (8)

with periodical boundary conditions u(L, t) = u(0, t).
All calculations were performed for a fixed system
parameters α = β = 4 and random initial conditions.

The system length L has been chosen as the control
parameter. In our study we examined two values of the
control parameter: L1 = 12.63 and L2 = 13.25. For both
these values L CGLE demonstrates the spatiotemporal
chaotic regime (Fig. 5). One can see easily that the
second case is characterized by more complex irregular
spatio-temporal chaotic dynamics. Indeed, in the first
case (L = 12.63) the chaotic dynamics is characterized
by only one positive Lyapunov exponent Λ1 = 0.04,
while the second chaotic regime (L = 13.25) is charac-
terized by two positive Lyapunov exponents Λ1 = 0.10
and Λ2 = 0.07. Applying the modified SD-method to
the spatially extended CGLE we can find the demanded
UPSTSs as well as for the fluid model of Pierce diode.
We have constructed the vector (3) of the auxiliary low
dimensional system as y(t) = (u(x1, t), . . . , u(xm, t))T ,
where m is the dimension of the auxiliary system vector,
xi = iL/m, i = 1,m.

In contrast to the fluid model of Pierce diode the
dimension m of the auxiliary vector y(t) is unknown
for CGLE. Therefore, we have to try to find UPSTSs by
means of the SD-method (7) for the different values of

the dimension m starting from the minimal dimension
value m = 3. If the required UPSTS is not found for the
selected value of the auxiliary vector dimension m∗, the
SD-method procedure should be repeated for the greater
dimension value m = m∗ + 1. For the system length
L = 12.63 the dimension of the auxiliary system m = 3
is found to be adequate for the correct UPSTSs detection.
As it was mentioned above the system behavior is char-
acterized by one positive Lyapunov exponent. For the
more complicated case L = 13.25 (when the behavior
of CGLE is characterized by two positive Lyapunov ex-
ponents) the dimension of the auxiliary vector should be
taken as m = 4 for UPSTSs to be detected successfully.

Fig. 6a shows the evolution of the profile |u(x, t)|
corresponding to the UPSTS with period T = 12.1
detected by means of SD-method for the system length
L = 12.63, when the dimension of the auxiliary vector
has been chosen as m = 3. The analogous evolution of
the profile |u(x, t)| with T = 20.2 is shown in Fig. 6b
for L = 13.25 and m = 4.

IV. CONCLUSION

We have proposed the method of the detection of
UPSTSs of spatially extended chaotic systems which is
the extension of the well known SD-method. The effec-
tiveness of this method is illustrated by the consideration
of the fluid model of Pierce diode and CGLE.
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Abstract—The phase-flip bifurcation is studied in a
simple model of two oscillators coupled with time delay.
The dynamics the system is analytically studied, and the
dynamical mechanism of the effect is discovered and
explained.

I. INTRODUCTION

Synchronization of coupled oscillators is an universal
fundamental effect and has been observed and studied
in many fields of physics, engineering, chemistry and
medicine (see, for example, [1-5]). One of important
problems in this direction is to examine the effect of
time delay on synchronization of coupled oscillators
systems. Time-delayed coupling can present in most
physical and biological systems like optical laser devices,
electromechanical systems, physiological systems, etc.
This time delay can arise from finite propagation speed
of signals or from other reasons.

Studying of synchrony of oscillators with time-
delayed coupling has been the topic of a number of
recent investigations. One of interesting effects observed
in time-delay coupled systems is the so-called phase-flip
bifurcation [6,7]. This bifurcation corresponds to sharp
change of synchronization mode from in-phase to anti-
phase while smooth varying of time delay. Phase-flip
bifurcation was demonstrated in a series of systems, such
as coupled Rossler oscillators, semiconductor lasers with
optical feedback, coupled van der Pol-Fitzhugh-Nagumo
neurons, Chua oscillators and other.

In the present report we suggest a simple model of
time delay-coupled oscillators in which we analytically
study synchronization and phase-flip bifurcation. The
results of our study discover the dynamical mechanisms
underlying this effect.

II. MODEL

As the base model of our study we consider two
oscillators with cycle periods T1 = 1/ω1 and T2 = 1/ω2

and describe them by their phases φj with dφj/dt = ωj .
These phases vary in interval [0;1], and at φj = 1 the
j-th oscillator reaches threshold, emits a pulse and resets
its phase to zero. The coupling between the oscillators
is organized as follows. Each pulse, emitted by one of
oscillators, reaches another and acts on it after some
time delay τ . An input pulse yields a state change of the
oscillator that consists in phase shift ∆φj = −µ sinφj

that depends on its present phase value and coupling
strength µ:

φnew
j = φj +∆φj .

This pair of delay-coupled oscillators is formally de-
scribed by the following dynamical system:

dφk

dt
= ωk − µ

+∞∑
j=1

δ(t− (tmj + τ)) sinφk,

where k,m = 1, 2 and k ̸= m. Here tkj are the moments
of k-th unit firing: φj(t

k
j ) = 1. The summarizing is

carried out by the moments tmj + τ when pulses from
m-th oscillator act on k-th oscillator.

For the convenience of further studying let us intro-
duce a vector −→

ξ , characterizing the state of system as
follows:

−→
ξ =

{
φ1, φ2, x

1
1, x

1
2, ..., x

2
1, x

2
2, ...

}
,

where xkj = t − tkj is time, passed from the moment tkj
of k-th oscillators firing.

All the components of vector −→
ξ grow uniformly

almost all the time expect a countable set of moments
in which some specific events take place. These events
are: 1) firing of one of units, either 2) action of a pulse
on one of units. Let us determine the moments when the
nearest of these events takes place if we have system
state −→

ξ in moment t.
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The nearest firing of k-th unit takes place in the
moment t′ = t+ θk, where

θk =
1− φk

ωk
.

In this case vector −→ξ changes as follows:

φk(t
′) = 0,

φm(t′) = φm(t) + ωmθk,

xk1(t
′) = 0,

xkj (t
′) = xkj−1(t) + θk,

xmj (t′) = xmj (t) + θk,

where m ̸= k.
The nearest pulse arrival to the k-th unit from another

takes place in the moment t+ ϑk, where

ϑk = τ − xmnm
,

where nm = max
j>0

{
j|xmj < τ

}
.

In this case the components of −→ξ change as follows:

φk(t
′) = φk(t) + ωkϑk + µf(φk(t) + ωkϑk),

φm(t′) = φm(t) + ωmϑk,

xk,mj (t′) = xk,mj (t) + ϑk.

To define the nearest of these events we compare
the values θ1, θ2, ϑ1, ϑ2 and find the minimal value
of them, which corresponds the nearest event. Using
equations this we construct a map G :

−→
ξ (t) 7→ −→

ξ (t′)
that defines the system state transformation between the
nearest events.

III. SYNCHRONIZATION

Let’s proceed to studying of mutual synchronization
possibility in the system of two time-delay coupled
oscillators . Let both units oscillate synchronously with
some common period T . We introduce a Poincare secant
φ2 = x21 = 0 and study how the system state changes
during one period T between two moments of second
unit firing t2j and t2j+1. During this time the events
consisting in oscillators firing or pulses actions may
occur in different sequences. For example, the sequence
may be the following: the first unit fires, then it gets a
pulse from the second unit, then the second units fires,
and then it gets a pulse from the first unit, and so on.
For each sequence of these events we can get a cor-
responding expression for Poincare map. Generalizing

these expressions for all possible cases, we’ll get after
some analysis the following map:

H =


φ1 = ω1(T −∆) + a,

x11 = T −∆,

x1,2j = x1,2j−1 + T,

where

∆ =
1− φ1 − b

ω1
,

T =
1− c

ω2
,

a = −µ(1− α) sin
(
ω1(τ −∆− x2n2

)
)
,

b = −µα sin
(
φ1 + ω1(τ − x2n2

)
)
,

c = −µ sin
(
ω2(τ − x1n1

)
)
,

n1 =

[
τ +∆

T

]
,

n2 =

[
τ

T

]
+ 1,

α =

{
0, ∆ < τ mod T,
1, ∆ > τ mod T,

if n1 = 0 we take x10 = −∆.
Synchronous modes of the system corresponds to fixed

points of the Poincare map H . Finding these fixed points
we get after some analysis:

x1j = jT −∆,

x2j = (j − 1)T,

φ1 = ω1(T −∆) + a.

This fixed point corresponds to a periodical solution
of the system, which means mutual synchronization of
oscillators. Looking at the form of this solution one can
see that the values T and ∆ have easy physical sense. T
is just a common period of units firing, and ∆ is a time
delay between instants of first and second units firing, or
interpulse delay. Using the previous system we get the
following equations for T and ∆.

−µ sin (ω1 ((τ −∆) mod T ))) = 1− ω1T,

−µ sin (ω2 ((τ +∆) mod T ))) = 1− ω2T.

Solving these equations we can get the expressions
for the values of T and ∆ that fully characterize syn-
chronous mode of the system dynamics. Linearizing the
map H near its fixed point we can study the stability of
the corresponding periodical solution.
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IV. RESULTS AND DISCUSSION

We now present our results for synchronization of two
oscillators interacting with time delay obtained with the
help of mathematical formalism described above. The
series of diagrams in Fig. 1 represents the characteristics
of periodical solutions of the system. We plot the value
of relative interpulse delay ∆/T versus the coupling time
lag τ . Solid lines correspond to stable solutions, dashed
lines correspond to unstable ones. The coupling strength
µ = 0.1, the intrinsic frequencies of the units are ω1 = 1
and ω2 = 1.01 in Fig. 1a, ω1 = 1 and ω2 = 1.1 in Fig.
1b.
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0

1 2 3 5

t

D/T

0

1

4

(a)

0.2

0.4

0.6

0.8

0

1 2 3

t

D/T

0

1

4 5

(b)

Fig. 1. Synchronization modes of the system for (a) ω1 = 1,
ω2 = 1.01 and (b) ω1 = 1, ω2 = 1.1. Solid line correspond to
stable solutions, dashed lines correspond to unstable ones. Blue color
corresponds to in-phase synchronization, red color corresponds to
anti-phase synchronization.

As we can see, the system has a number of periodical
solutions which exist in definite intervals of time lag
τ . In each such interval a pair of stable and unstable
solutions exists. On the border of each such interval
the corresponding fixed points disappear through saddle-
node bifurcation. This means that synchronization of
oscillators is possible inside these intervals (the so-called
synchronization intervals). The size of these intervals
decreases with grow of frequency mismatch between the
oscillators (compare Figs. 1a and 1b).

The value of interspike delay ∆ strongly differs from
one synchronization interval to another. Depending on
the relative interspike delay ∆/T we will speak about
”in-phase” and ”anti-phase” synchronization. Synchro-
nization is called ”in-phase”, if ∆/T ∈ [0; 0.25) or
∆/T ∈ [0.75; 1); synchronization is ”anti-phase”, if
∆/T ∈ [0.25; 0.75). Notice that the intervals correspond-
ing in-phase and anti-phase synchronization alternate
when τ grows. The fact of great importance is that the
width of synchronization intervals enlarges with growth
of τ . For large values of τ neighboring intervals may
even intersect. In this case two or more synchronous
solutions exist for one value of time lag τ , and the
system becomes multistable. Exactly because of this
property phase-flip bifurcation may occur in the system
when in-phase and anti-phase solutions coexist in some
parameters region.

0.2

0.4

0.6

0

1 1.5

t

D/T

t
1

t
2

A B C

C D
B

Fig. 2. Phase-flip bifurcation in the system of delay-coupled
oscillators. Blue line corresponds to in-phase synchronization brunch,
red line corresponds to anti-phase one.

To illustrate this property let us change the lag time
from 1 to 1.5 while ω1 = 1 abd ω2 = 1.01. The
behaviour of the system is illustrated in Fig. 2, where
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the relative interspike interval ∆/T is plotted versus the
lag time τ . For τ < τ1 only in-phase synchronization is
possible, so we move across the line AB. For τ ∈ [τ1; τ2]
both in-phase and anti-phase solutions exist, but the
system stays in-phase synchronized, so we are at line
BC. For τ > τ2 the system switches to anti-phase
synchronization, so we jump to line C ′D, which is
phase-flip bifurcation. Now if we will decrease τ from
1.5 back to 1 we will move across line DC ′B′BA.

Hereby, the phase-flip bifurcation is concerned with
the following properties of the system. Firstly, it is multi-
stability or more concretely bistability that takes place in
some parameters region. Secondly, it is disappearing of
one synchronous mode in the border of multistablity area
in the result of saddle-node bifurcation and continuation
of existence of the other mode. As a result of these
two properties the phase flip bifurcation takes place. One
of its interesting features is hysteresis behaviour of the
system while varying time delay τ .
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Abstract—We propose a theoretical model to study
the T-point-Hopf bifurcation. The phenomena numeri-
cally found in a modified van der Pol-Duffing electronic
oscillator as well as in Chua’s equation strongly agree
with the results deduced from the model.

I. INTRODUCTION

In a parameterized three–dimensional system of
autonomous differential equations, a T–point is a
point of the parameter space where a special kind
of codimension–two heteroclinic cycle occurs (see
[1] and the references therein). A more degenerate
scenario appears when one of the equilibria involved
in such a cycle undergoes a Hopf bifurcation. This
degeneration, which corresponds to a codimension–
three bifurcation, is called T–point–Hopf and has
been recently studied for a generic system [2].
However, the presence of Z2-symmetry may lead to
the existence of a double T–point–Hopf heteroclinic
cycle, which is responsible for the appearance of
interesting global behavior that we will study in this
paper.

The theoretical model proposed is based on the
construction of a Poincaré map. The existence of cer-
tain kinds of homoclinic and heteroclinic connections
between equilibria and/or periodic orbits is proved
and their organization close to the T–point–Hopf
bifurcation is described.

II. T–POINT–HOPF BIFURCATION OF THE ORIGIN

In the case of a supercritical Hopf bifurcation of
the origin we are going to study a three-parametric
family of smooth (in variables and parameters) three-
dimensional dynamical systems, for (d1, d2, µ) in a
neighborhood of the origin, satisfying the following
hypotheses:

(H1) Every system of the family is invariant under
the change of variables (x, y, z) → (−x,−y,−z),
i.e., it is Z2-symmetric.

(H2) Every system of the family possesses three
stationary points: one of them, Q1, situated at the
origin of the phase space and the other two, Q+

2

and Q−
2 , which are mapped onto each other by the

symmetry.
(H3) Near Q1 it is possible to choose coordi-

nates (x, y, z) in such a way that the flow, in a
neighborhood of this equilibrium, is generated by the
equations 




ṙ = r(µ− r2),
ν̇ = ω,
ż = λz,

(1)

where (r, ν) are the polar coordinates of (x, y), ω
does not vanish, λ is positive and µ is the principal
parameter of the Hopf bifurcation.

Let us call Γ1 the saddle periodic orbit that
emerges, for µ > 0, from the Hopf bifurcation of
Q1.

(H4) Near Q−
2 it is possible to choose coordinates

(X, Y, Z) in such a way that the flow, in a neighbor-
hood of this equilibrium, is generated by the linear
equations 




Ẋ = PX − ΩY,

Ẏ = ΩX + PY,

Ż = −ΛZ,

(2)

where P and Λ are positive numbers and Ω does not
vanish.

Note that, using the Z2-symmetry, it is enough to
work with one of the symmetrical equilibrium points
(for example, Q−

2 ) and the conclusions will be valid
for the other one (Q+

2 ).
In the neighborhoods of Q1 and Q−

2 we can
consider four transversal sections to the flow (see
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Figure 1) that can be defined, in the new coordinates,
as

Σ1 = {(x, y, z); z = h} ,
Σ2 = {(X,Y, Z); Z = H} ,
Σ3 = {(X,Y, Z); Y = 0} ,
Σ4 = {(x, y, z); y = 0} ,

(3)

where h and H are small enough positive numbers.
From now on, in this section, we take θ = −ω/λ,

φ = (ω/λ) log h, ∆ = P/Λ, Θ = Ω/Λ and Φ =
(−Ω/Λ) log H .

(H5) There exist two points (X0, 0, 0) ∈ Σ3,
(x0, 0, 0) ∈ Σ4, with X0 > 0 and x0 > 0, and
four numbers A,B,C, D ∈ R, satisfying C 6= 0 and
AD − BC 6= 0, such that the flow between Σ3 and
Σ4, restricted to a neighborhood of (X0, 0, 0) maps
(X, 0, Z) onto (x, 0, z) where

(
x− x0

z

)
=

(
A B
C D

) (
X −X0

Z

)
. (4)

(H6) There exist four numbers a, b, c, d ∈ R,
satisfying ad − bc 6= 0, such that the flow between
Σ1 and Σ2, restricted to a neighborhood of (0, 0, h),
maps (x′, y′, h) onto (X ′, Y ′, H) where

(
X ′

Y ′

)
=

(
d1

d2

)
+

(
a b
c d

) (
x′

y′

)
. (5)

Theorem 1: (see proof in [3])(T–point–Hopf of
the origin) Consider a three-parametric family
of smooth (in variables and parameters) three-
dimensional dynamical systems satisfying hypothe-
ses H1-H6. Then, in a neighborhood of the origin
of the space of parameters (d1, d2, µ), the following
degeneracies exist:

1) A (supercritical) T–point–Hopf bifurcation for
(d1, d2, µ) = (0, 0, 0).

2) A semi-straight line of T–points between Q1

and Q−
2 given by (d1, d2) = (0, 0) and µ ≤ 0.

3) An elliptical paraboloid of EPC–points
(Equilibrium-Periodic orbit Cycle) between Γ1

and Q−
2 . The paraboloid is given by

µ =

∥∥∥∥∥∥

(
a b
c d

)−1 (
d1

d2

)∥∥∥∥∥∥

2

2

, (6)

where ‖ · ‖2 stands for the euclidean norm.
4) One cylindrical surface, with logarithmic spiral

cross section, of homoclinic connections to Q1.

2
+Σ2 Σ4Σ3

Σ1
Q2

− Q1

Q

µ < 0

Σ2 Σ4

Σ1

Σ3

Q2
− Q1

Q2
+

µ = 0

Q2
− Q1

Q2
+Σ2 Σ4Σ3

Σ1

µ > 0

Fig. 1. Different types of heteroclinic cycles depending on the
values of µ. The transversal sections used in the construction of
the full Poincaré map and the two-dimensional unstable manifold
of Γ (for µ > 0) have been also sketched.

The equations of this surface, parameterized by
Z and µ < 0, are
(

d1

d2

)
=

(
X0 − D

C
Z

)
Z∆H−∆

(
cos(Θ log Z + Φ)
sin(Θ log Z + Φ)

)
.

5) A logarithmic spiral of Shil’nikov-Hopf bifur-
cations [4] whose equations, parameterized by
Z, are
(

d1

d2

)
=

(
X0 − D

C
Z

)
Z∆H−∆

(
cos(Θ log Z + Φ)
sin(Θ log Z + Φ)

)
,

when µ = 0.
6) A solid region of homoclinic connections to Γ1

whose equations, parameterized by s ∈ [0, 2π),
Z > 0 and µ > 0, are
(
d1

d2

)
= −

(
a b
c d

)(√
µ cos(s)√
µ sin(s)

)

+
(
X0 − D

C
Z

)
Z∆H−∆

(
cos(Θ log Z + Φ)
sin(Θ log Z + Φ)

)
.

For every point of this region there are also
heteroclinic connections between Q1 and Γ1.
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d1

d2

µ

SH

Hom−PO

Hopf

Hom

TP

EPC

TP-H

Fig. 2. Location of the different kinds of heteroclinic and
homoclinic connections related to Q1 and Γ in the space of
parameters (d1, d2, µ). The following notation is used: T–points
(TP), EPC–points (EPC), T–point–Hopf (TP-H), homoclinic con-
nections to Q1 (Hom), homoclinic connections to Γ (Hom-PO)
and Shil’nikov-Hopf points (SH). The plane µ = 0 is the surface
of Hopf bifurcations of the equilibrium Q1.

7) A surface of homoclinic connections to Q−
2

whose equations are
(

d1

d2

)
= −r̂

(
τ (Σ4, Σ1) ;x0 +

A

C
z, µ

) (
a b
c d

)

×
(

cos(θ log z + φ)
sin(θ log z + φ)

)
,

where

r̂(τ(Σ4, Σ1);x, µ)

=





xz−
µ

λ h
µ

λ

√
µ

µ− x2 + x2z−
2µ

λ h
2µ

λ

if µ 6= 0,

x√
1 +

2x2

λ
log

(
h

z

) if µ = 0.
(7)

8) A surface of heteroclinic connections between
Q−

2 and Q+
2 whose equations are

(
d1

d2

)
= r̂

(
τ (Σ4, Σ1) ;x0 − A

C
z, µ

) (
a b
c d

)

×
(

cos(θ log z + φ)
sin(θ log z + φ)

)
,

where r̂ is given by (7).

Note that, due to the Z2-symmetry, each global
connection considered in the theorem has a sym-
metric one for the same value of the parameters.
Moreover, the surfaces given in items 7 and 8
are symmetric, up to first order, with respect to
(d1, d2) = (0, 0).

III. APPLICATION TO ELECTRONIC CIRCUITS

In this section we will consider two Z2-symmetric
circuits. This numerical study have been done with
AUTO [5]. The first one is genealogically related to
the classical Rayleigh and van der Pol oscillators [6].
After a suitable re-scaling, the corresponding state
equations of this circuit are

ẋ = −(ν + β)
r

x +
β

r
y − a3

r
x3 +

b3

r
(y − x)3,

ẏ = βx− (β + γ)y − z − b3(y − x)3 − c3y
3,

ż = y.

In accordance to other previous works [6], [2] we fix
r = 0.6, a3 = 0.328578, b3 = 0.933578 and c3 = 0.

First we show the presence of Shil’nikov-Hopf
homoclinic bifurcations in the vicinity of the detected
T–point–Hopf. A projection of the corresponding
curve appears in Fig. 3(a) together with the T-point
curve TP. This Shil’nikov-Hopf homoclinic curve
spirals around the T–point–Hopf as predicted by our
model (see the curve SH in Fig. 2). Moreover the
homoclinic orbits we have obtained in the continua-
tion are good to visualize nice approximations to a
cycle between a periodic orbit and an equilibrium
(see Fig. 3(b)): in the first part of the pulse it
approximates the connection between the equilibrium
and the periodic orbit and in the second one it is close
to the connection between the periodic orbit and the
equilibrium.

As a second example, we consider Chua’s equation
that models a simple electronic circuit exhibiting a
wide range of complex dynamical behaviours. Such
equation is derived in [7] considering the case of a
cubic nonlinearity:

ẋ = α(y − ax3 − cx),

ẏ = x− y + z, (8)

ż = −βy − γz.
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Fig. 3. (a) Projection onto the (ν, β)-plane of the curve of
Shil’nikov-Hopf bifurcations in the (ν, β, γ)-parameter space. (b)
Temporal profile of a homoclinic orbit of the nontrivial equilibria
for ν = −0.9.

A parameter γ is included in this equation in order
to take into account small resistive effects in the
inductance of the circuit. In this numerical study
of Chua’s equation, β, c and α are taken as bi-
furcation parameters and the other two are fixed,
namely a = −1, γ = 0.3 > 0, in accordance with
previous works (see [3] and the references therein).
Two partial bifurcation sets are shown in Fig. 4 on
both sides of the T-point-Hopf bifurcation (in this
case the Hopf bifurcation is exhibited by non-trivial
equilibria [3]).
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Abstract—We present a circuit with only one nonlin-
earity, exhibiting complex dynamics characterized by the
presence of several degeneracies of equilibria (triple-fold
zero degeneracy and degenerate Takens-Bogdanov) and
degenerate global bifurcations.

I. INTRODUCTION

An important problem in the field of electronic devices
consists in designing simple electronic systems exhibit-
ing a great variety of dynamical behavior. Among these
simple electronic devices, we can cite the Chuas circuit,
with only one nonlinearity.

We study the circuit schematically represented in
Fig.1, which consists of two simple devices: one of them
has two branches and is linear, and the other one is one-
dimensional with a nonlinearity i(V ), which is modelled
by a third-degree polynomial:

i(V ) = A0 −A1V + A3V
3, with A0, A1, A3 > 0.

i(V ) C

b
V

R1

IL1

L1

R2

C2VC2

Fig. 1. Electronic circuit.

The equation of the model can be written by:

ẋ = f(x)− βy1 + ry2,

ẏ1 = x− αy1, (1)

ẏ2 = x− y2,

being f(x) = −γ0 + µx− γ0

2 x3, γ0 = 3

√
2A2

0A3/(Cω),
µ = r (A1R2 − 1), r = C2

C ≥ 0, α = R1
L1ω

≥ 0, β =
1

Cω2L1
> 0 and ω = 1

R2C2
.

II. LOCAL BIFURCATION ANALYSIS

The system (1) can be embedded in a wider family:

ẋ = f(x) + cTy, ẏ = bx + My, (2)

where x ∈ R, y ∈ R2, M is a 2×2 matrix and b, c ∈ R2.
This corresponds to a pair of subsystems (one of them
linear) linearly interconnected.

Our first goal is to determine how we must design
system (2) in order to have an equilibrium point which
has a triple-zero eigenvalue. This is a very interesting
situation because, as we will see later, we are able to
determine parameter regimes where complex dynamics
(periodic, quasi-periodic, chaotic, ...) can be predicted.

The starting point consists of determining the equilib-
ria of system (2). The equilibria satisfy My = −bx. A
first hypothesis, det(M) = ∆ 6= 0, will be assumed in
order to assure the presence of an isolated equilibrium
(otherwise, the non-existence or the appearance of a
straight line of equilibria could arise).
It is easy to show that the equilibrium (x,y) satisfies

f(x) =
(
cT M−1b

)
x, y = −xM−1b.

In particular, by intersecting the curve z = f(x) with
a straight line passing through the origin with slope
cT M−1b the abscissa x is obtained. By varying this
slope we can have different numbers of equilibria.

Let us denote a = f ′(x). Then, using the Taylor
expansion for f(x) around x = x, and translating the
equilibrium (x,y) to the origin by x̃ = x−x, ỹ = y−y,
we get

ẋ = ax + cTy + g(x), ẏ = bx + My,

where we have dropped the tildes and denoted

g(x) =
f ′′(x)

2!
x2 +

f ′′′(x)
3!

x3 + · · · .

The equilibrium (x,y) in system (2) undergoes a triple–
zero degeneracy for the parameter values:

TZ ≡





a + τ = 0,
cTb− aτ −∆ = 0,
a− cT M−1b = 0
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where τ = trace(M).
We obtain, by normal form bifurcation analysis (see [1]),
the following result.

Theorem 1: Let assume f ′′(x̄) 6= 0. The system (2)
near TZ in the parameter space is C∞–locally equivalent
up to order 3, to the unfolding:





ẋ = y,
ẏ = z,
ż = ε1 + ε2y + ε3z − 1

2x2 + A1xy

+A2xz + B1x
2y + B2xz2,

(3)

where ε1 = sig(cT M−1b−a)∆2(a−cT M−1b)2+O(2),
ε2 = cTb−∆−τcT M−1b+O(2), ε3 = τ +cT M−1b+
O(2), A1 = τ/∆, A2 = −1/∆, B1 = −(11f ′′′(x̄)τ∆ +
18f ′′2(x̄)∆ + 18f ′′2(x̄)τ2)/(54f ′′2(x̄)∆3), B2 =
(7f ′′′(x̄)∆ + 18f ′′2(x̄)τ)/(72f ′′2(x̄)∆4).

The analysis of local bifurcations of equilibria in
system (3) has been considered in [2]. It can be shown
that there is a saddle-node bifurcation of the origin at
ε1 = 0, giving rise to two equilibria (x±, 0, 0) where
x± = ±√2ε1.

There are two further codimension-one local bifur-
cations, corresponding to Hopf bifurcations of each
equilibrium that appear after the saddle-node.

Moreover, the origin of system (3) presents two
codimension-two bifurcations:
Takens–Bogdanov: ε1 = ε2 = 0, ε3 > 0. The singular-
ity is cusp type, and the following bifurcations emerge:
Saddle–node bifurcation of the origin, subcritical Hopf
bifurcation of equilibrium (x−, 0, 0) and repulsive ho-
moclinic connections curve of equilibrium (x+, 0, 0).
Hopf–zero: ε2 > 0, A1 6= 0, A2 6= 0. Generically, from
the Hopf–zero point the following bifurcations emerge:
Saddle-node bifurcation of the origin, subcritical Hopf
bifurcation of equilibrium (−√2ε1, 0, 0), supercritical
Hopf bifurcation of equilibrium (

√
2ε1, 0, 0), secondary

Hopf bifurcation of periodic orbits, and global connec-
tions of equilibria (the global connections are unstable
for A1A2 < 0, and stable for A1A2 > 0).

These two-codimension points have the following
nonlinear degeneracies out of TZ: Degenerate Takens–
Bogdanov and degenerate Hopf–Zero:

DTB





ctb− aτ −∆ = 0,
a− ctM−1b = 0,
aτ + τ2 −∆ = 0,
a + τ 6= 0.

DHZ





a + τ = 0,
ctb + a2 = 0,
a− ctM−1b = 0,
ctb− aτ −∆ < 0

For a complete detail of the bifurcation set, see [3], [4],
respectively.

III. GLOBAL BIFURCATIONS

In this section, we will present some numerical results
that correspond to the case of the electronic circuit.
Specifically, we take in system (2):

b = (1, 1)T , c = (−β, r)T , M =

(
−α 0
0 −1

)
.

The equilibrium (x̄, ȳ) = (1, 1/α, 1) undergoes the
following codimension three bifurcations:

TZ ≡




αc = r+1
r , βc = (r+1)3

r2 ,

µc = 3
2γ0 + 2r+1

r ,

DTB ≡





αc =
(

r+1
r

)1/2
, βc = (r+1)2

r ,

µc = (r + 1)
(

r+1
r

)1/2 − r + 3, r > 0

DHZ ≡




αc = r+1
r−1 , βc = r(r+1)2

(r−1)2 ,

µc = 2r
r−1 + 3

2γ0, r > 1.

The numerical computation which we will present
have been performed with AUTO97, see [5], and fixing
the values r = 2, γ0 = 2. Our strategy will be
the following one. We will take slices α = constant
of the tridimensional parameter space (α, µ, β) in the
neighbourhoods of the codimension-three bifurcations
of equilibria analytically detected. Concretely, for the
values of r and γ0 fixed above, a degenerate Takens-
Bogdanov bifurcation of homoclinic type DTB takes
place at the critical values αc ≈ 1.22474, µc ≈ 4.67423
and βc = 4.5. A triple-zero degeneracy TZ occurs
when αc = 1.5, µc = 5.5 and βc = 6.75. Finally,
the degenerate Hopf-zero bifurcation takes place at the
critical values αc = 3, µc = 7 and βc = 18.

First, we take two slices α =constant in both sides of
the degenerate Takens-Bogdanov bifurcation of homo-
clinic type. As it occurs for αDTB ≈ 1.22474, we will
study the (µ, β)-parameter bifurcation planes for α = 1
(see Fig.2) and α = 1.3 (see Fig.3).

Notice that the elements which appear have been
previously detected in the analytical study. In the first
case (α = 1), we can see:
• The saddle-node bifurcation SN where the equilib-

ria Eq± emerge (being Eq+ the equilibrium whose
x-component is greater).

• The subcritical Hopf bifurcation h+ of Eq+.
• The homoclinic bifurcation ho− of Eq−.
In the second case (α = 1.3), the following bifurca-

tions appear:
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Fig. 2. A partial bifurcation set for system (1) with α = 1,
r = 2, γ0 = 2, near the degenerate Takens-Bogdanov point.
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Fig. 3. A partial bifurcation set for system (1) with α = 1.3, r = 2,
γ0 = 2, near the degenerate Takens-Bogdanov point. In the lower
part, there is a zoom of the Takens-Bogdanov point.

• The saddle-node bifurcation SN where the equilib-
ria Eq± emerge.

• The supercritical Hopf bifurcation h+ of Eq+.
• The degenerate Hopf bifurcation Dh+. After this

point, the Hopf bifurcation h+ is subcritical.
• The saddle-node bifurcation of periodic orbits sn,

arising from Dh+.
• The homoclinic bifurcation ho− of Eq−.
The curve of principal homoclinic connections ho−,

that emerges from the point TB when Eq− is a saddle
equilibrium, presents for α = 1.3 some degeneracies not
deduced from the analytical study of local bifurcations.
The first one, D1aho−, is caused by the transition of
the equilibrium from saddle to saddle–focus, for µ ≈
4.89430, β ≈ 5.062574. Since the double eigenvalues
are not determining (an eigenvalue is called determining

if it is the eigenvalue closest to the imaginary axis) the
homoclinic bifurcation remains tame.

If we denote by (ρ ± iω, λ) the eigenvalues of the
equilibrium, the second degeneration on ho−, D2bho−,
that occurs for µ ≈ 4.88714, β ≈ 5.05304 is produced
when δ =

∣∣ ρ
λ

∣∣ = 1 (resonant eigenvalues). The transition
from tame to chaotic homoclinic orbit occurs at this
point.

Next, for µ ≈ 4.96895, β ≈ 5.14656, a new degen-
eration D3ho− appears when δ = 1

2 (zero-divergence).
The last degeneration we have detected in the parameter
range shown in Fig.3, D1bho−, when µ ≈ 9.27268, β ≈
9.43127, is caused by the transition from saddle–focus
to saddle of the equilibrium. In this last degeneration
is where the curve sn ends, since now the double
eigenvalues are determining.

To analyze these codimension-two global bifurcations
we continue, in the (α, µ, β)-parameter space, the
codimension-two curves of degenerate homoclinic con-
nections. We start from the degenerate points present on
ho− for α = 1.3 in the parameter range shown in Fig.3,
namely D1aho−, D1bho−, D2bho− and D3ho−.

In this way, the projection of such curves onto the
(α, µ) plane is shown in Fig.4. We can see how several
curves emerge from the triple-zero point TZ:
• the locus of homoclinic orbits with a double-real

eigenvalue, D1aho−, where the transition of the
equilibrium Eq− from saddle to saddle-focus oc-
curs. Since the double eigenvalues are not deter-
mining in the vicinity of the point TZ, the homo-
clinic bifurcation remains tame and the bifurcation
set does not contain bifurcation curves at which
limit cycles can bifurcate other than of the pri-
mary homoclinic branch. The endpoint of D1aho−
is a new codimension-three point TD1ho−, for
α ≈ 1.19775, µ ≈ 4.62032, β ≈ 4.33534, since
the eigenvalues are of the form (−λ,−λ,λ) with
λ ≈ 0.4837. On the other side of TD1ho−, a
curve D1bho− emerges. Now the double eigen-
values are determining and therefore, the bifurca-
tion set contains an infinite number of bifurcation
curves emerging from the codimension-two bifur-
cation D1bho−. Moreover, a new codimension-
three point, TD3ho−, appears on D1bho−, for
α ≈ 1.14937, µ ≈ 4.71602, β ≈ 4.2506, when
the eigenvalues are of the form

(
−λ

2 ,−λ
2 , λ

)
with

λ ≈ 1.27531.
• the curve D2bho− where the equilibrium is a

saddle-focus, and the leading stable and unstable
eigenvalues are resonant. This curve ends at the
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codimension-three point TD1ho−.
• the curve D3ho− where the equilibrium is a saddle-

focus and the divergence of the vector field (1) van-
ishes at the equilibrium. It ends at the codimension-
three point TD3ho−.

We note that the two new organizing centres of codi-
mension three detected: TD1ho− (where the equilibrium
Eq− has the transition focus-node and at the same time
δ = 1) and TD3ho− (where the equilibrium Eq− has
the transition focus-node and at the same time δ = 1

2 )
have been neither analytically nor numerically treated in
the literature.

The analysis of the codimension-three degenerate
Takens-Bogdanov bifurcation DTB shows that from this
point emerges a curve of degenerate homoclinic connec-
tion (zero trace of the equilibrium). We expect that this
degenerate homoclinic connection curve joins the points
DTB and TD1ho−. Then to detect such a homoclinic
degeneration we take a value of α between αTD1ho− ≈
1.19775 and αDTB ≈ 1.22474, namely α = 1.21.

For this last value of α, the homoclinic connection
ho− that emerged attractive from TB changes to repul-
sive when it crosses the degeneration point D2aho−,
for µ ≈ 4.64381, β ≈ 4.40857 (degeneracy predicted by
the local analysis of the degenerate Takens-Bogdanov
point DTB). From this point now we continue in the
three-parameter space the curve D2aho−, where the
equilibrium is saddle type and the stable and unsta-
ble leading eigenvalues are resonant. We observe in
Fig.4 that D2aho− exists between the codimension-three
points DTB and TD1ho−.

Finally we continue in the (α, µ, β)-parameter
space, the codimension-two curves of degenerate homo-
clinic connections ho+, namely D1aho+, D2bho+ and
D3ho+. We start from the degenerate points present on
ho+ for α = 2.29

The projection of such curves onto the (α, µ) plane
is shown in Fig. 5, where we can see how these curves
of degenerate global bifurcations of the homoclinic con-
nections of the equilibria Eq+ and Eq− emerge from the
triple-zero point TZ.
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Abstract—Echo State Networks are a special class of re-
current neural networks, that are well-suited for attractor-
based learning of motor patterns. Using structural multi-
objective optimization, the trade-off between network size
and accuracy can be identified. This allows to choose
a feasible model capacity for a follow-up full-weight
optimization. It is shown to produce small and efficient
networks, that are capable of storing multiple motor
patterns in a single net. Especially the smaller networks
can interpolate between learned patterns using bifurcation
inputs.

I. INTRODUCTION

Neural networks are biological plausible models for
pattern generation and learning. A straight-forward way
to learn motor patterns is to store them in the dynamics
of recurrent neuronal networks. For example, Tani [1]
argued that this distributed storage of multiple patterns in
a single network gives good generalisation compared to
local, modular neural network schemes [2]. In [3] it was
shown that it is not only possible to combine previously
stored motor patterns to generate new ones, but also
to establish an implicit functional hierarchy by using
leaky integrator neurons with different time constants
in a single network. This network can then generate
and learn sequences by use of stored motor patterns
and combine them to form new, complex behaviours.
Tani [3] uses back-propagation through time (BPTT, [4]),
that is computationally complex and rather biologically
implausible. Echo State Networks (ESNs, [5]) are a
special kind of recurrent neuronal networks. They are
very easy and fast to train compared to classic, gradient-
based training methods.

The general idea behind ESNs is to have a large, fixed,
random reservoir of recurrently and sparsely connected
neurons. Only a linear readout layer that taps this reser-
voir needs to be trained.

0

0

1

u(t)
y(t)

a

b

sensor readings

W in

W out

W back

W res

Fig. 1. General structure of an echo state network. Solid arrows
indicate fixed, random connections, while dotted arrows aretrainable
readout connections. The output [α,β] sets the joint angles of a bi-
articular manipulator, e.g., a bio-inspired active tactile sensor. Joint
angles are fed back via the back-projection weight matrixW

back.

Typically, the structural parameters of ESNs, for ex-
ample the reservoir size and connectivity, are choosen
manually by experience and task demands. This may
lead to suboptimal and unnecessary large reservoir struc-
tures for a given problem. Smaller ESNs may be more
robust, show better generalisation, be faster to train and
computationally more efficient. Here, multi-objective op-
timization is used to automatically find good network
structures and explore the trade-off between network size
and network error.

II. ECHO STATE NETWORK

A basic, discrete-time ESN with a sigmoid activation
function was implemented in Matlabc©2009b. The pur-
pose of this ESN was to control the joints of a bi-articular
manipulator that could serve as a bio-inspired, active
tactile sensor. The overall goal was to use the input to
the ESN to set the tactile sampling pattern as desired.
The state update equations used are:

y(n) = Woutx(n)
x(n+ 1) = tanh(Wres

x(n) +Winu(n+ 1)+
Wbacky(n) + ν(n))

(1)
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where u, x and y are the activation of the input,
reservoir and output neurons, respectively.ν(n) adds
a small amount of uniformly distributed noise to the
activation values of the reservoir neurons. This tends to
stabilize solutions, especially in models that use output
feedback for cyclic attractor learning [6].Win, Wres,
Wout and Wback are the input, reservoir, output and
back-projection weight matrices. All matrices are sparse,
randomly initialised, and stay fixed, except forWout.
The weights of this linear output layer are learned using
offline batch training. During training, the teacher data is
forced into the network via the back-projection weights
(teacher forcing), and internal reservoir activations are
collected (state harvesting). After collecting internal
states for all training data, the output weights are directly
calculated using ridge regression. Ridge regression uses
the Wiener-Hopf solutionWout = R−1P and adds a
regularization term (Tikhonov regularization):

Wout = (R+ α
2I)−1P (2)

whereα is a small number,I is the identity matrix,
R = S′S is the correlation matrix of the reservoir states
andP = S′D is the cross-correlation matrix of the states
and the desired outputs. Ridge regression leads to more
stable solutions and smaller output weights, compared to
ESN training using the Moore-Penrose pseudoinverse. A
value ofα = 0.08 was used for all simulations in this
paper.

III. M ULTI -OBJECTIVE NETWORK STRUCTURE

OPTIMIZATION

Multi-objective optimization (MO) is a tool to ex-
plore trade-offs between conflicting objectives. In the
case of ESN optimization, the size of the reservoir
versus the network performance is the main trade-off.
In MO, the concept of dominance replaces the concept
of a single optimal solution in traditional optimization.
A solution dominates another, if strictly one objective
value is superior and all other objectives are at least
equal to the corresponding objective values of another
solution. Following this definition, multiple (possibly
infinite) non-dominated solutions can exist, instead of
a single optimal solution. The set of non-dominated or
pareto-optimal solutions is called the pareto front of
the multi-objective problem. The goal of MO is to find
a good approximation of the true (best) pareto front,
but usually MO algorithms converge to a local (sub-
optimal) pareto front due to complexity of the problem
and computational constraints.

Usually, the structural parameters of an ESN are
chosen manually by experience and task demands. Here,
the full set of free network parameters was optimized
using MO. The MO was performed with the func-
tion ’gamultiobj’ from the Matlab Genetic Algorithm
and Direct Search (GADS) Toolbox, that implements a
variant of the ’Elitist Non-dominated Sorting Genetic
Algorithm version II’ (NSGA-II algorithm, [7]). The
network structure was encoded into the genotype as
a seven-dimensional vector of floating-point numbers.
The first six structural parameters were the sparsity and
weight range of the input-, reservoir- and back-projection
weights. The seventh parameter was the number of
reservoir neurons. The search range of the algorithm was
constrained to[0, 1] for the sparsity values, to[−5, 5] for
the weight values and to[1, 100] for the reservoir size
([1, 500] for the 4-pattern problem). The optimization
was started with a population size of 1000 and converged
after around 120 generations. In each iteration of the
MO, all genomes were decoded into network structures,
the networks were trained and then simulated with
random initial activations for 1000 frames per pattern. In
order to neglect the initial transient behaviour, the first 50
iterations of network output were rejected. The network
output and the training patterns are usually not in-phase.
The best match between training pattern and network
output was searched by phase-shifting both output time
courses by± 50 frames relative to the training pattern
and calculating the mean Manhattan distance across
all pairs of data points. The training error was then
defined as the smallest distance found in that range.
The acceptable error threshold (fig.2) is expressed as the
percentage of the amplitude of the training patterns, that
is 1.0 units for all patterns. The pareto front for a circular
pattern (fig.2a) reveals that even very small networks are
capable of learning and generating two sine waves with
identical frequency and 90◦ phase shift. The smallest
network found had only 3 reservoir neurons. Including
the two output neurons, the overall network size was 5.
In comparison, 7 neurons are required for this task when
using gradient-based learning methods [8]. Network size
increases with the complexity of the motor pattern, and
especially when having to store multiple patterns in a
single network. Storing 4 patterns in a single network
required 166 reservoir neurons to reach an error below
5% (fig.2d).

IV. FULL OPTIMIZATION OF THE NETWORK WEIGHTS

From the pareto front of the two-pattern task, four
candidate network structures were selected and opti-
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Fig. 2. Minimum reservoir size depends on task complexity. All
panels show a set of pareto-optimal solutions (red circles)and the
final population (blue crosses). (a) Learning a simple, circular pattern.
All networks with 3 or more neurons show an error below 1%. (b)
Pareto-front for the figure eight pattern. Learning this pattern requires
a notably larger reservoir. Please note the different scaling of the error
compared to the easier circle task. Networks with 17 or more neurons
have an error below 5%. (c) Storing two motor patterns (circle and
figure-eight) as cyclical attractors in a single networkrequires 37
or more reservoir neurons for errors below 5%. (d) Simultaneous
learning of four patterns required 166 neurons.
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into weight values, preserv-
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mized further, using a single-objective genetic algorithm.
This time, all network weights except the output layer
were fully optimized. The output layer was still trained
by ridge regression. An initial random population of
200 parents was created from the network structure
information of the selected candidate solutions with 4,
14, 26 and 37 reservoir neurons. Network weights were
constrained to[−5, 5] and decoded from the genome
with a threshold function that preserves sparsity. The
threshold function sets a weight to zero, if the genome
value is between -1 and 1, see fig.3.

The Genetic Algorithm (GA) options were set to
ranked roulette wheel selection, 20 elitist solutions, 80%
crossover probability with scattered crossover and self
adaptive mutation. Other options were left at their default
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Starting from the best multi-objective solution, 20 GA runswere
performed. a) Green crosses indicate the best fitness valuesof each
run. Black squares indicate the overall best solutions thatwere found.
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Fig. 5. Optimal weight range and connectivity depends on reservoir
size. Network structure after full-weight optimization ofthe selected
networks from fig.4. a) Weight range of all non-zero weights of the
reservoir (red), the back-projection weights (green) and the input
weights (blue). b) Connectivity (percentage of non-zero weights).
Boxplots show 5%, 25%, 50%, 75% and 95% quantiles of N=20
datapoints. * p < 0.05; ** p < 0.01

values (see GADS toolbox, Matlab2009b). The GA-
optimization was repeated 20 times for each network
size. Fig. 4a shows the improvement in performance
compared to the MO structure optimization run. A small
network with only 14 reservoir neurons could reproduce
the learned patterns with an error of 2.3%. Weight
range and connectivity after optimization was analysed
with an unpaired Wilcoxon rank sum test. Significant
differences in connectivity and weight range were found
(fig. 4b) with a clear trend for smaller reservoir weights
and less reservoir connectivity with increasing network
sizes. Both input- and back-projection weights tend to
increase with reservoir size (fig. 4a). Although standard
ESNs usually have full connectivity for input- and back-
projection weights, evolutionary optimization seems to
favor sparse connectivity for smaller networks, when
given the choice (fig. 4b).
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Fig. 6. Dynamic behaviour of selected networks with different
reservoir sizes (blue trajectories). Shifting the dynamics of the
networks by gradually changing the two input values from 1.0to 0.0
and from 0.0 to 1.0, respectively, in 15 steps. Changing the input to
the network causes a slow morphing between the two learned patterns,
allowing the generation of new patterns that were not explicitly
trained. Especially the small networks keep stable with no chaotic
regions. Larger networks tend to converge to fixed points forinput
values other than zero or one (blue dots).

V. DYNAMIC NETWORK BEHAVIOUR

Most of the smaller networks show an unexpected
behaviour. They are able to interpolate between the
learned patterns, generating novel, not explicitly trained
outputs. Fig. 6 shows the dynamical responses from
the fittest networks of section IV. The first input value
was changed gradually in 15 steps from 1.0 to 0.0,
while the second input was changed from 0.0 to 1.0.
A gradual morphing from the circular to the figure-eight
pattern can be observed. It is surprising, that already
a small ESN with six reservoir neurons can store two
different patterns. Larger networks tend to converge to
fixed points for input values other than the trained ones.
This interpolation effect might be applied to complex
and smooth behaviour generation for neural network
controlled robots.

VI. CONCLUSIONS

Using MO, good candidate network structures can
be selected as starting points for a followup whole-
network optimization and fine-tuning using genetic al-
gorithms. The resulting pareto front helps to identify
small and sufficiently efficient networks that are able
to store multiple motor patterns in a single network.
This distributed storage of motor behaviours as attractor
states in a single net is in contrast to earlier, local
module based approaches."If sequences contain simi-
larities and overlap, however, a conflict arises in such
earlier models between generalization and segmentation,
induced by this separated modular structure."[3]. By
choosing a feasible model capacity, over-fitting and the
risk of unwanted - possibly chaotic - attractor states
is reduced. Also, with the right choice of the network

size, an interesting pattern interpolation effect can be
evoked. Instead of using a classic genetic algorithm
for fine-tuning of the network weights, new, very fast
and powerful black box optimisation algorithms [9] [10]
could further increase network performance and allow
to find even smaller networks for better generalisation.
ESNs can be used for direct control tasks ( see [11])
and scale well with a high number of training patterns
and motor outputs [12]. A more complex simulation,
for example of a humanoid robot, will show if direct,
attractor-based storage of parameterized motor patterns
is flexible enough for complex behaviour generation.
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Abstract—In this paper we investigate a novel algorithm
for concurrent control of a multiple-limb robotic structure
(i.e. an humanoid robot). The approach is based on the
reformulation of the well known Central Pattern Genera-
tor (CPG) paradigm by using a set of parallel Recurrent
Neural Networks (RNNs) which are synchronized in a well
defined sequence of states in order to attain a reliable
locomotion control strategy in a humanoid robot. On
the contrary of classical algorithms, like pseudo-inverse
Jacobian, the proposed RNN approach is at the same
time fast, flexible and robust to configuration singularities
providing a sub-optimal solution to direct and inverse
kinematic problems. Thanks to the modularity nature of
this approach, a full body model is proposed: multiple
RNN structures control each limb in a humanoid robot
model. The whole control system has been tested first in a
kinematic and then in a dynamic simulation environment.
Finally an experiment with a humanoid robot is also
reported.

I. INTRODUCTION

Robotic multi-limb structures are widely used in re-
search as test-bed for biologically relevant models [1]
[2]. The control of these kinds of structures is complex
and often implies high computational capabilities or pre-
programmed motion control. The biological paradigm of
the Central Pattern Generator (CPG) can be considered
to impose a certain sequence of states on the arms and
legs of a robot. In some cases, a redundant configuration
can be used, increasing the complexity needed to define
a model of the structure and to develop a reliable con-
trol algorithm. The robustness against singularities, the
capability to face angular constraints in the joint space
or other constraints in the operating workspace (e.g.
obstacle avoidance) are important aspects that have to be
considered [3] [4] [5]. In embedded control platforms, an
important performance index that can be, therefore, con-
sidered is the computational power. In fact, it constrains
the control frequency and therefore the possibility to
develop an algorithm on a low MIPS microcontroller unit

(mcu) for real-time applications. The proposed approach
is based on the already developed Mean of Multiple
Computations (MMC) Recurrent Neural Network (RNN)
algorithm which provides a fast, flexible and robust to
configuration singularities sub-optimal solution to the
discussed problems [6], [7]. In biological movement
planning, the weighting of inputs from various limb
segments might be biased toward an explicit representa-
tion of the whole limb [8] [9] [10]. This representation
is also somatotopically distributed, allowing multiple
(redundant) representations of the same limb parts. This
rule adapts both to cerebral and to cerebellar cortex [11].
Taking inspiration from these considerations, the MMC
approach represents a candidate, yet simple model of
such an integrated network organization [12]. It provides
a framework in which a global, distributed and redundant
representation of the limb parameters is encoded, provid-
ing a concurrent natural solution to the Inverse Kinematic
(IK) and Direct Kinematic (DK) problem iteratively,
with the addition of a robust real-time adaptation to
external obstacles. From the pure algorithmic point of
view the MMC approach provides also a selectable
precision-speed trade-off. This paper is organized in four
main sections. In Section II the general MMC model is
discussed. In Section III control strategy is described.
Section IV presents experimental results and finally in
Section V results of the proposed model are analyzed
and compared with the most common velocity domain
algorithms.

II. MODEL DESCRIPTION

Since many years neural networks have been largely
used to solve manipulator control problems, in which the
set of variables involved in the process are combined in
a single pattern [13]. The output values are retrieved by
completion of an even partially defined pattern given as
input. The MMC is an interesting method introduced
in [6], and further exploited in [2], that can be used to
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create a model of multi-link, m-dimensional structure by
using simple geometrical relations between arcs of the
same complete graph. Going deeper into details we can
consider as a simple example, a planar manipulator with
three Degrees of Freedom (DoF) like that one shown
in Fig. 1. The procedure herewith exposed can be fur-

Fig. 1. A planar manipulator consisting of three vector segments:
L1, L2, L3. The joint angles are: α, β and γ. The end-effector
position is indicated by the vector R;D1 and D2 are two additional
vectors describing the diagonals.

ther extended to more complex structures using simple
principles of the graph theory. The modeling phase is
important for successive formalization strategies. In fact
the proposed control mechanisms are strictly related to
the characteristics of the MMC-based model formulated
for the redundant manipulator. The main idea followed
to construct an MMC-based model is that, looking at the
serial manipulator as a geometrical multi-link structure,
it is possible to compute each geometric quantity (i.e.
vectors ∈ R2 in the example) in several ways, using
different graph paths, and then average over them. For
instance the complete pattern for the planar structure
depicted in Fig.1 can be expressed with the vector
P = (L1,L2,L3,R,D1,D2) .

III. LIMBS MODEL AND CONTROL STRATEGIES

In order to kinematically model both arms and legs,
different structures have been considered. As introduced
different geometrical structures have been considered to
model arms and legs. The modeled geometrical structure
for each arm (i.e. left and right) is a three links serial
structure with three Degrees of Freedom (DoF) (from
θarm,1 to θarm,3 for each arm). The geometrical structure
used for each leg is a four links serial structure with five
(from θleg,1 to θleg,5 for each leg) DoF and therefore
more than one DoF are computed with the same geo-
metrical quantity (e.g. two relative joints are associated
with the same link).

A. Control strategies

The robot control can be easily conceptually divided
into high level (behavior) control, and low level (gait and

Fig. 2. Simple behavior selection loop implemented through visual
processing and robot control. Segmentation and Feature Extraction
(SFE) block performs image processing algorithm to detect object
distance d. Behavior evaluation is achieved with a binary threshold
dth.

Fig. 3. Control scheme for each arm for a given absolute reference
input pattern, Pd. PC is the Pattern Constructor, MMCx, MMCy

and MMCz are the three-dimensional linear computational net-
works. NLB is the Non-Linear Block and miniARM is the manipulator
itself (simulator or real robot). Pj are the MMC input pattern while
Aj are the outputs. θd are the desired angular values and θ are the
read joints values.

grasping strategies) control.
1) Robot behavior: The robot overall behavior is

controlled through simple visual frame-based decision
making through direction of walking and grasping. The
behavior selection loop is shown in Fig. 2. The Seg-
mentation and Feature Extraction block (SFE) processes
image from on-board camera (Img) and it uses distance
d for discrimination.

2) Grasping: As introduced, two different position
controlled MMC with three links have been used to con-
trol recognized object grasping. The simplest extension
of the two-dimensional positioning of a planar redundant
serial manipulator (Fig. 1) introduced in the previous
section (deeply described in [6]) is the three-dimensional
positioning of the end-effector for the redundant serial
manipulator in space (i.e. R3). Each vector component of
the geometrical links is processed, iteration after iteration
by a different linear MMC network and then given as
input at the non linear block (NLB), as shown in Fig. 3.

3) Walking gait: For the described legs control strat-
egy, the walking gait is obtained using a state dependent
reference (from S1 to S6) for each leg and a state
transition model with transition conditions (as sketched
in Fig. 4). Two position and orientation controlled
MMCs have been used for convergence toward reference
within the state. State dependent offset are introduced in
θleg,1 (off-sagittal plane hip angle) and θleg,5 (off-sagittal
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Fig. 4. Algorithm block diagram with relative orientation error
feedback (eO) and absolute position reference (Pd). Reference Com-
parator (RC) block computes eO with respect to desired orientation.
Ln are the last link components while Lnd are the reference
components. As shown in the state transition model (on the right),
the general state slegs lead toward the nearest walking state (i.e. the
one with the minimum overall distance).

plane ankle angle) for balance control. As depicted in
Fig. 4, in the algorithm block diagram, the low level
control strategy guides the system (i.e. the single leg)
towards the desired orientation through a relative error
feedback. Therefore the feedback for the orientation error
(eO) is analyzed. The distance between two different
leg states can be defined, in the simplest case, as the
Euclidian distance between the two end-effector points.
Furthermore, overall distance (and therefore the whole
system state) can be computed as the mean distance of
both legs).

IV. SIMULATION AND EXPERIMENTAL RESULTS

The considered robot has 18 DoF, through revolute
joints: three joints for each arm and six joints for each
leg. The physical structure can be mapped, as requested
for the MMC modeling, into the geometric theoretical
model links. Due to the chosen real robot architecture,
angular limits are not equal for each joint.

A. Experimental Setup

As described in the previous section, each presented
control strategy has been tested both in simulation and
on real robot. The proposed algorithms have been im-
plemented both in the PC and in a custom mcu-based
board. Respectively a Dual Core Intel Centrino 2.2 GHz
host computer with 2GB of RAM and an UC3A AVR32
mcu with 66MHz of maximum clock and only 64KB of
RAM were used as comparison platforms (Fig. 5).

As sketched in Fig. 5, in our first implementation
the overall robot control can be split in two levels: low
level (hardware) control and high level control. The low
level control is, in all cases, achieved thanks to a mcu-
based board that is used both to acquire information
from the distributed sensory system and to control the
actuators. Moreover a serial bus is used for low level
communication purposes. The high level control and the

Fig. 5. Hardware configuration of the experimental setup: low level
microcontroller AVR32 board, actuators and sensors bus architecture
and high level control host computer.

Fig. 6. Left leg end-effector position through different states (on
the left). Relevant coordinates (robot sagittal plane) have been plotted
with respect to time. Simple sketch of the geometrical structure in
which legs are mapped (on the right)

data logging are made through a host PC connected
to the board via serial interface (with a USB-to-serial
transceiver).

In the second (embedded) version of the control
algorithm all the MMC-based calculations are directly
executed locally in the mcu-based board while the PC
is just used for data logging and for the Virtual Reality
(VR) simulation environment.

B. Simulation and Experimental Results

In order to test performance of the designed con-
trol structure, trajectories followed in both walking and
grasping behaviors have been analyzed. The center point
trajectory of the foot-base (i.e. end-effector of leg serial
structure) of one leg during sequence in the walking
behavior is depicted in Fig. 6. The distance from a
known object is estimated based on simple segmented
image feature (e.g. area in px2 or maximum edge of
minimum rectangle containing object). After the object
area (i.e. camera estimated distance under threshold dth)
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Fig. 7. Multiple snapshots of grasping sequence. End of walking
(i.e. d < dth) and start of grasping (on the left). MMC iterations are
executed in parallel on both arms (center). Grasping sequence ends
when both arm position errors go below error tolerance (on the right).

is reached the arms start to converge toward the selected
centroid, as shown in Fig. 7.

V. RESULT ANALYSIS

Although the iteration number needed to reach the
desired reference strongly depends on the chosen param-
eters and on the particular given reference, in order to es-
timate the algorithm performance, multiple comparisons
with common algorithms for kinematic inversion, such
as pseudo-inverse Jacobian (J∗) and Jacobian transpose
(J t), have been considered. It must be taken into account
that in the J∗ the joint limit constraints are introduced
in the form of an additional task to be completed
while in the J t no joint limitations are considered.
Free parameters were chosen to maximize convergence
speed keeping a non-overshoot condition on end-effector
positioning. As it is possible to see in TABLE I the
performance in terms of number of iterations needed
for convergence(i.e. ‖ eP ‖≤ et) are comparable with
already known algorithms for the generalized MMC
model. TABLE I also gives an idea of time needed for
each iteration both in PC and in embedded platforms
(MCU).

TABLE I
ALGORITHM PERFORMACES

Method Iterations Time/iterations [s]
MMC(PC) 80 4.1 · 10−4

MMC(MCU) 80 3.6 · 10−3

Jt(PC) 450 8.1 · 10−3

J∗(PC) 150 9.2 · 10−3

VI. CONCLUSIONS

Forward and inverse kinematic problem solving for
redundant serial manipulator is one of the classical
problems in industrial robotics. In this field, the most
common tasks, such as end-effector position and orien-
tation control, are already well solved from the classic
algorithms. In this work a fast, reliable algorithm able to

solve at the same time both position and orientation tasks
is proposed. Its implementation on an embedded mcu-
based board has been tested and a real robot application
has been developed. Furthermore the extension to multi-
limb structure (e.g. a humanoid robot) is presented for
walking and grasping behavior. The problem is addressed
not only in presence of angle limits but also in a
dynamically changing environment even in a mcu-based
hardware.
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Abstract—Understanding of how the brain makes an
effective compact internal representation (CIR) of time
evolving situations in a given landscape is a challenging
problem. Before proceeding to such a task we here discuss
a model where immobile obstacles are placed in an arena.
We show how an internal representation differs from the
apparently similar diffusion case.

I. INTRODUCTION

The real world is a continuously changing environ-
ment whose complexity often makes useless rigid reac-
tive behaviors. Animals during long evolution developed
mechanisms that enable predicting the future and a
purpose-based selection of behaviors. Growing exper-
imental evidence suggests that these mechanisms rely
on the ability of generating an Internal Representation
(IR) of the body and external environment and on the
parallel virtual “simulation” of possible alternative. The
IR should account both for spatial (static) structure of the
environment and for time-dependent changes (moving
obstacles). Here we restrict consideration to the former.

The existence of neuroanatomical substrates responsi-
ble for the high-level static or time-dependent functions
mentioned above has been supported by the finding of
mirror neurons. These cells respond both when a subject
makes a particular action and when there is another
individual performing the same action thus leading to
mere copying or, more important, planning ahead. Indeed
it seems that mirror neurons can react on the intention
to perform a purpose-based action.

Recent theoretical research on IR (although the first
record goes back to 1943 [1]) elucidated its main ad-
vantage: it allows detaching the behavior from direct
environmental control by, e.g., inhibition of the motor
execution. This enables responses of the organism to
features of the world that are not directly present and
hence to appropriately plan ahead. Besides, IR can

be evoked mentally (without direct sensory input) to
evaluate potential solutions. It is widely believed that IR
is a prerequisite of a cognitive behavior [2]. Particularly,
the IR concept has been used to control a multisegmented
manipulator with redundant degrees of freedom [3].
Specific feed-forward networks and Recurrent Neural
Networks (RNNs) have been used as holistic models of
geometrical structures like bodies with arms and legs
(see, e.g., [4], [5] and references therein). It has been
shown that such networks can operate as forward models,
inverse models or any mixed combination. Later in a
series of papers [5], [6], [7], [8] it has been argued
that IR based on RNNs assembled using simple building
blocks can implement working memory. Namely, it has
been shown that RNNs can store and then reproduce
some specific static and time-evolving situations. It has
been shown that a network of n neurons can learn and
then replicate a sequence of up to n different frames
[8]. Another promising application of the IR approach is
the construction of sensory-motor maps that implement
external anticipation of the sensory information. For
example, it has been shown that echo state networks can
successively learn forward models for a blind navigation
in a square shaped static environment [9]. Toussaint [10]
argued that standard sensory-motor maps lack a proper
neural representation and proposed the use of neural field
models. Then motor activation induce anticipatory shifts
of the activity peak in the sensory-motor map, which
in turn can be used more naturally for planning and
navigation in a maze.

II. SKETCH AN OF IRNN

Let us consider an agent moving in an arena with
the objective to reach a target (Fig. 1A). Here just for
illustration we consider a static obstacle in the arena. We
assume that the target emits or reflects a sensory signal,
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Fig. 1. A. Sketch of an arena containing agent, target, and obstacles.
The agent perceives all objects in the arena and creates an internal
representation of itself and of the environment with the goal of
reaching the target avoiding collisions with the obstacles. B. General
block-scheme architecture of the IRNN consisting of two coupled
subnetworks: i) Trajectory Modeling and ii) Causal neural networks.
The TM-RNN receives sensory information, simulates trajectories of
all objects (except the agent) and maps them into the CNN, which
creates the CIR of the static or time-dependent situation.

e.g., sound or light, which is perceived by the agent. We
assume that a path to the target can be found.

Figure 1B shows a sketch of the IRNN. It consists
of two coupled subnetworks: Trajectory Modeling RNN
(TM-RNN) and Causal Neural Network (CNN). The
TM-RNN receives a sensory information either directly
from the sensory system or from another brain area (e.g.,
memory). In the latter case, in most general circum-
stances, the IRNN takes part in completely or partially
mental (i.e., without direct observation of the environ-
ment) simulations of time-dependent situations. The TM-
RNN should be trained by real trajectories. Once the
training is deemed finished the network becomes capable
of simulating arbitrary trajectories of objects using as an
input only their initial conditions.

To create a suitable IR the agent has to synchronize
its possible motions with those given by the TM-RNN
for the obstacles. This is achieved in the CNN that is
a two dimensional (N × M) lattice of locally coupled
neurons that geometrically reproduces the arena, i.e.,
position of a neuron in the lattice described by the pair of
indexes (i, j) corresponds to the actual (x, y)-coordinates
in the arena (Fig. 1). Such mapping is the simplest
but not unique. The assumption of complete sensory

knowledge of the environment suggests the egocentric
reference frame for the CNN, i.e., the agent maps itself
into the origin of the neuronal lattice (red bigger neuron
in Fig. 1B). Such reference frame has been argued
to be used by insects [11], although more complex
navigational systems have hierarchical organization de-
pending on the context. For instance, honeybees switch
between the egocentric and allocentric reference frames
depending on whether they are flying along an unknown
or a familiar route, respectively [12].

III. MATHEMATICAL MODELING

Let us choose one specific decision making problem: a
search for paths to the target (e.g., the shortest or safest).

Then the emergence of a CIR in the IRNN can
be viewed as a result of virtual exploration of the
environment. Conceptually, a number of identical virtual
agents start from the agent’s initial position and perform
a random search in the lattice space until they explore
completely the “arena” or some of them reach the target
image in the CNN. Then the distribution of the virtual
agents in the CNN lattice defines the CIR and the optimal
strategy.

For a static case (immobile obstacle) the output of
the TM-RNN (Fig. 1B) is time independent, and hence
it just maps the immobile objects into the CNN whose
dynamics models the process of virtual exploration

ṙij = d∆rij − rijpij (1)

where rij is the neuron state variable, representing the
concentration of virtual agents at the cell (i, j); the time
derivative is taken with respect to the mental (inner)
time τ ; ∆rij = ri+1,j + ri−1,j + ri,j+1 + ri,j−1 − 4rij

denotes the discrete Laplace operator describing the
local (nearest neighbor) interneuronal coupling, whose
strength is controlled by d; and pij accounts for the
target:

pij =

{

1, if (i, j) is occupied by target
0, otherwise

(2)

Note that a target need not to be a real entity (as an
object or place) existing in the environment, instead it
is designated by the agent’s motivation layer. The target
is not an external constraint but an internal emergent
property of the brain, whose influence we model by
the reactive term in (1). Obstacles are indeed external
constraint whose biological identity suggests that they
shape the IR through altering states of the neurons
corresponding to the obstacle boundaries. We assume
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that the obstacles are solid non-penetrable objects, hence
a virtual agent reaching an obstacle frontier rebounds and
continues exploring the arena.

Stable steady states are the only attractors in the
phase space of the dynamical system (1). At τ = 0
no virtual agent exists, hence we set rij(0) = 0 for all
CNN cells except those occupied by the agent, where
rij(τ) = ra for τ ≥ 0. Then the trajectory in Ψ defined
by these initial conditions tends to one of the steady
states r∗ij ∈ Ψ, which is the CIR of the given static
situation. By unfolding this steady state into the three-
dimensional lattice space we get a stationary pattern
that can be used to trace curves or paths starting at
the agent location and crossing normally the contour
lines. We note that r∗ij satisfies the Laplace equation, and
consequently the created pattern has no local minima.
This ensures that all paths (except a null set) derived
from this approach end at the target, and hence we obtain
multiple possibilities to reach the target.

The described dynamical process yielding the CIR has
certain similarities with the classical diffusion in a 2D
reservoir. However, in the classical approach: i) the agent
is not explicitly present in the model, while the target
is postulated; and ii) the obstacles absorb the diffusing
substance (zero boundary conditions). To illustrate the
differences we performed two simulations involving the
classical and IRNN approaches.

Fig. 2. Moving in a static environment. A. Classic 2D diffusion with
a constant source at the target position (marked by circle) creates
potential field with a single maximum and several saddle points.
Then there exists a unique path from the agent (triangle) avoiding
obstacles (grey rectangles) to the target. B. The IRNN approach
yields a set of paths starting at the agent position and ending at the
target. The agent is free to chose among different possibilities, e.g.,
by minimizing the path length (solid thick curve) or by rising safety
(dashed curve), under additional constraint that it must pass between
the two obstacles. Parameter values: (60 × 60) lattice, ra = 1,
d = 2.5, τmax = 103.

Figure 2A shows an example of the potential field
and paths to the target obtained using the classical

diffusion with zero boundary conditions at the obstacle
and arena frontiers. The target is a source of a “gas”
that freely diffuses forming a potential field. Then valid
paths are curves radially leaving the target position and
perpendicular to the contour lines. As a consequence
there exists a unique trajectory connecting the target and
location where the agent is supposed to be (Fig. 2A,
thick line).

Figure 2B shows the pattern r∗ij (concentration of
virtual agents) obtained by the IRNN. We notice that the
explicit modeling of the agent leads to multiple curves
connecting the agent and the target locations. Thus we
achieve a CIR, where the agent has freedom to chose
among different possibilities. We also notice that the
pattern (Fig. 2B) has smooth transitions between actual
obstacles and empty space. This accounts for uncertainty
in the obstacle dimensions and positions. Then path
planning from the agent to the target can naturally
include the level of safety, i.e., selection among different
choices can minimize, e.g., the risk of crashing against
an obstacle or/and the length of the path. The strategy
can also include additional conditions, such as to pass
through the gap between two obstacles (dashed curve vs
thick solid curve in Fig. 2B), which is impossible in the
classical approach.

IV. ABOUT FUTURE WORK

The above discussed IR of static environments can-
not be applied directly to time-dependent situations. At
present we are working on it. Worth signaling in that IR
indeed offers new perspectives for the decision making
and it is said to be a prerequisite for a cognitive behavior.
A big challenge in the IR research is to understand
how the brain makes a compact effective description of
complex, time-evolving situations, in such a way that
they can later be stored in (presumably static) long term
memory and then retrieved on purpose.

CIR is an abstract construction of “what can be done”,
i.e., it is not reducible to a search for a best trajectory,
since the solution fitness may be subjective or/and goal-
dependent. Nevertheless, once the time-dependent prob-
lem is solved, one of the straightforward applications of
CIRs could be universal path planning. Finally note that
the IRNN approach makes it susceptible for biophysical
verification.
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Abstract— We show that learning and retrieval of 
hierarchically organized information is possible, 
although this information is not given explicitly and no 
hierarchical structure can be found in the network. For 
the simulation, we use a simple, one-layered RNN 
consisting of IC units and a very simple learning rule 
based on teacher forcing [3,4], following the ideas 
presented in [2], which are guided by the observation 
that children learn superordinate concepts from 
implicitly given information. Specifically, we show that 
the agent is able to chunk different sensory inputs to 
represent the same object in memory, but nevertheless 
is able to distinguish between the different stimuli if, 
during learning, a supervisor labels the different 
stimuli with the same name. 

I.  INTRODUCTION 
How is memory organized? The classical 

assumptions refer to the observation that items found 
in the world can be ordered using a hierarchical 
system. For example, different individual objects with 
some common properties may be categorized as cows. 
Together with other objects, e.g. horses, they may be 
grouped as mammals, or, on a higher level, as 
animals. Such a tree-like hierarchy has been proposed 
by early AI to organize objects occurring in the world 
within a storage of an artificial system [1]. This 
proposal was paralleled by the suggestion that the 
architecture of the human memory may follow such a 
hierarchical structure, too. There are a number of 
findings in agreement with this view (for an extensive 
review see [2]), in turn triggering the question how 
this principle could be realized in terms of neuronal 
structure, and, of course, followed by the question 
concerning the mechanisms that allow such a structure 
to be learned by a neuronal network.  

The problem is complicated by the fact that a strict 
tree-like hierarchy is not sufficient to explain basic 
observations. Even when focusing on animals only, 
which, using the evolutionary tree, can be ordered in 
such a way, humans can use and do use other 
structures as, for example, grouping all flying animals 
like birds, bats, and insects together in one category. 

This means that hierarchies are not strict but may be 
variable. To deal with these questions, [2] have 
proposed a fascinating solution, using a one layered 
RNN and a specific BP algorithm. In this approach, 
hierarchies are not explicitly given during learning, 
but emerge in a self-organized way.  

In this article, inspired by the ideas of [2], we will 
propose a similar solution using an even simpler RNN 
and a very simple learning rule. The number of 
learning steps is very small. 

II. THE MODEL 

A. General Properties of the Model 
Following [2], we use a recurrent neural network 

(RNN) containing 27 units as the memory of an agent.  
Each object perceived by the agent can be stored as a 
vector of five properties which represent the 
individual object (4-legged, surface texture, color, 
name, plus a further one called Identifier being 
explained later-on). 

In principle, the agent may also be able to record 
the location where (and, if required) the time when it 
has observed this object. To maintain a slot for storing 
this information, but nevertheless keep the network 
simple, we introduce a specific unit, called Identifier. 
Note that for each new situation experienced, a new 
Identifier unit has to be chosen.  

Therefore, in our example, each object can be 
stored by a vector containing 14 components 
(Identifier, name, and, for each of the three remaining 
properties (4-legged, surface texture, color) a four-
component subvector). This 14-component vector 
when being stored may be called an episodic memory 
element. 

To investigate the properties of our system, we use 
a much simpler set of items compared to that used in 
the work of O’Connor et al. [2]. We have four objects 
only, two cows, Frieda and Emma, one horse, and a 
table.  
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To minimize possible confusion, words that will be 
given to the system by a supervisor, will in the 
following be written with capital first letters. 

We start with an agent that has no sensory 
experience and no innate categories. Imagine, for 
example, that the agent is confronted with a cow 
equipped with some properties which a human 
observer may call 4-legged, black-and-white colored, 
cow-type fur, and which by a supervisor is being 
named Frieda. Recall that this agent is not able to 
apply such categories, just experiences sensory input 
that it will store in its memory representing one 
specific object.  

After having seen and learned the 14-component 
vector representing cow Frieda, the agent may see 
another cow, named Emma, according to information 
given by a supervisor. The sensory input of this new 
object may look a bit different and is also stored. For 
example, Emma’s color may correspond to what is 
sometimes called red-colored, and Frieda’s black-
colored. Similarly the 4-legs of Emma and Frieda may 
look a bit different, but still more similar than the 4-
legs of the horse and of the table. Another object seen, 
also 4-legged, also with a fur, but brown in this case, 
is named ‘Horse’. The agent may also see an object 
being named ‘Table’, colored white, constructed of 
wood and containing four legs, too.  

By learning these objects, the agent is able to build 
up an episodic memory. But can it also be able to 
represent some kind of hierarchy, for example by 
combining the two objects named Frieda and Emma 
as “cow”, or the two cows and the horse as “animal”? 
As has been stated in [2], children do learn the 
hierarchical relation not by being explicitly trained 
that “Frieda is a cow” or “cows and horses are 
animals”, but by being confronted with an object, for 
example Frieda, that is, instead of being named 
“Frieda”, at another opportunity named “Cow” by a 
supervisor. Applying this suggestion to the training 
procedure, here, as did [2], the two objects Frieda and 
Emma, may, in other training sessions, be called 
‘Cow’ instead of ‘Frieda’ or ‘Emma’. The two cows 
and the horse may correspondingly be called 
‘Animals’. Furthermore, the agent may be told that the 
different surfaces observed in these three objects 
Frieda, Emma and horse are named ‘Fur’, although 
looking different in detail. In addition, in the 
corresponding way the agent may learn that all the 
objects are characterized as being ‘4-Legged’. 

To make the structure of the relation between the 
elements a bit more complex, the somewhat different 
colors of the two cows are given by the supervisor the 
category ‘Colored’, that of the (brown) horse and the 
(white) table as ‘Uni’. Correspondingly, in some 
training sessions the items Frieda and Emma, but not 
horse and table, may be replaced by ‘Names’, here 
standing for names of individuals. Thus, altogether, 
we have now 7 higher-level, or superordinate 
categories (Cow, Animal, 4-Legged, Names, Fur, 
Colored, Uni).  

The structure of this environment is given in Fig. 
1. The figure illustrates that there is no strict tree-like 
hierarchy but that instead various forms of overlap can 
be found. The properties marked by the gray area 
characterize one object and may be termed basic-level 
concepts, the other items situated outside the gray 
areas are called superordinate concepts. Items that in 
the training situations are replaced by each other 
forming different training vectors are connected by 
dashed arrows.  

How can this environmental structure be 
represented in neuronal terms, i.e. how can the 
information be learned and how can it be used for 
retrieval? 

B. The Network 
To be able to represent the three properties (4-

legged, surface texture, color) we reserved four units 
for each, requiring 12 components in total. As each of 
the four objects further is characterized by an 
identifier and a name, altogether we require 20 
components for the four objects. In addition we have 
seven superordinate concepts, each component of 
which is represented by one neural unit, leading to a 
network containing 27 units in total.  

As lower level units should be able to activate 
higher level units, but also in turn, higher level units 
may activate lower level units, we require recurrent 
connections between all units. Therefore, the RNN 
consists of 27 units fully recurrently connected.  

Using a recurrent network, of course, raises 
stability problems. Therefore, a fundamental 
requirement for such a system being functional is that 
only a limited number of units should be activated 
after any external input has been provided. Second, if 
possible, the activity should not grow unlimited. 
Earlier studies have shown that these requirements 
can be fulfilled by using RNNs consisting of so called 
IC units [3,4].  
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An IC unit has the following specific properties [3,4]. 
As in traditional recurrent networks, a weighted sum 
of the recurrent inputs is determined: 

 
Each unit also has an external input Ii(t). The output of 
the unit is given by 

 
Furthermore,  

 
forming the nonlinear characteristic of a rectifier. For 
learning, an error value is computed locally  

  
and used to train the weights of unit i according to 

 (1) 
where ε > 0 is the learning rate.  

Learning is performed by providing the input 
vector and waiting for two iterations per learning step 
(ε = 0.9). Makarov et al. have shown in [4] that, using 
this type of RNN and this learning rule, the stable 
values do not depend on the temporal order of the 
input vectors given, provided each vector is given 
often enough.  

Results presented in another paper (Cruse and 
Schilling, submitted [5]) show that in our network 
training is very fast. If only objects as such have to be 

learned, two presentations of each object are 
sufficient. If all situations depicted in Fig. 1, i.e., 27 
items with partly overlapping hierarchies 
(corresponding to 22 input vectors) should be learned, 
15 presentations of each vector are sufficient to reach 
97% of final weight values.  

Testing the behavior of the trained network 
revealed that all individual objects and all 
superordinate concepts could be retrieved without 
cross talk, while the expected hierarchical relations 
are illustrated without explicit training and no 
hierarchical structures being preinstalled. Exploiting 
this property, it was further possible to simulate 
bottom-up and top-down priming.  

III. RESULTS 
Here we concentrate on the following problem. A 

crucial implicit assumption in our above mentioned 
and most other such training studies is that the agent 
shows a property that at first sight appears to be 
obvious but is not. When the agent is experiencing a 
specific object, say Frieda, a second time again, it is 
assumed that the agent recognizes this object as being 
the same. This faculty is by no means trivial because 
the object may be seen from a different perspective, a 
different angle, a different illumination, and therefore 
the stimuli might physically be quite different. But 
even if it looked the same, the problem remains. How 
should one know that it is the same object and not a 
different one looking similar? How is it possible to 
recognize the different stimuli as representing the 
same object? One solution might be that there is a 
supervisor who gives the same name (e.g., Frieda) to 
the different stimuli. 

In the following we test whether this proposal is 
sufficient to solve this problem within our framework. 
To this end, we use the same network and the same 
learning structure. However, we do not use four 
different objects for this task, but now the table and 
three versions, or aspects, of cow Frieda. This means 
that the components Identifier, 4-legged, surf and 
color are different for the three cows seen, but they all 
have the same name Frieda. In other words, we use 
the training vectors (Identifier1, 4-legged1, surf1, 
colored1, Frieda), (Identifier2, 4-legged2, surf2, 
colored2, Frieda), (Identifier3, 4-legged3, surf3, 
colored3, Frieda) and, as in the earlier experiment, the 
object table. Superordinate concepts as Cow, Animal, 
4-Legged are applied as above, too. Note that the 

 
 

Fig. 1. Illustration of the four objects and how the training 
vectors are constructed. Basically the four vectors marked in 
gray represent the four objects. The dashed arrows connect 
superordinate items with those basic level items that they are 
replacing to form new training vectors. 
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three different Identifiers may represent different 
contextual aspects including some measure of time.  

After training (30 epochs using 20 training vectors 
and 27 units) we obtain the following results. If any 
identifier of the three aspects of Frieda is stimulated, 
the vector of the four properties of all three aspects 
plus the name unit (Frieda) are activated, in addition 
with units Cow and Animal. Stimulation of any other 
property of the cow vector leads to the corresponding 
result.  

If the neuron representing Frieda is stimulated, 
correspondingly all the aspects of Frieda including, of 
course, unit Frieda, are activated. Superordinate 
vectors might take over activity from basic level units. 
Units Cow or Animal do not show up (but become 
activated when using the delayed switching off the 
input version described by Cruse and Schilling [5]. 

When stimulating the unit representing Cow or 
Animal, the corresponding results have been 
observed, with unit Frieda being not activated (unless 
we use the delayed switching off the stimulus 
version).  

Stimulation of a superordinate unit as are 4-
Legged, Fur, or Colored, leads to an activation of all 
aspects of the cow except the local component of the 
stimulated superordinate unit. Stimulating 4-Legged, 
in addition, activates the components of object table. 

Thus, using our training procedure, different 
episodic situations can be combined, i.e., chunked in 
the memory, if a supervisor characterized them with 
the same name. But nevertheless, the individual 
episodic memory could be recalled as well. 

IV. DISCUSSION 
In this article, we simulate a memory system that 

represents memory elements of different hierarchical 
levels, eventually termed superordinate concepts, 
basic-level concepts and subordinate level elements 
[1], but without explicitly implementing a hierarchical 
structure into the network. As a main difference to the 
approach of [2] we use a RNN with specific units 
which allow for a very simple learning rule. Different 
to our approach, [2] used supervised learning which 
requires a separation of input layer and output layer, 
i.e., the target vector. Instead, we use the same layer 
for both input and target vector. Therefore, during 
training there is no mechanism required telling the 
network which is input and which is target.  

O’Connor et al. [2] operate on the level of verbally 
described features for which appropriate detectors are 
assumed to be given. However, the framework can 
also be applied in a more general way. Here we 
studied two different approaches. For the word units, 
we, too, apply feature detectors, which might be 
realized as RNN that represent the individual words 
(but these networks are not shown here). Beyond that, 
for the basic-level concepts apart from names, we 
instead assume a naive system that is only equipped 
with object recognizers (i.e. the capability of figure-
ground separation) and sensors, but no specific feature 
detectors as, for example, a “fur-detector”. Rather we 
assume neural networks that monitor physical 
properties like color, shape, tactile stimulation etc. 
Thereby, the representations can be grounded and 
thus, in principle, be applied to an autonomous robot.  

In our first approach, these properties may vary 
from object to object, i.e., from, for example, cow 
Frieda to cow Emma, but are assumed invariant if the 
same object is seen later again. In the second approach 
(Sect. III), we realize that the sensory input may even 
vary for a given object. The results have shown that 
also in this case chunking is indeed possible. In our 
approach, the adequate information required for 
chunking is given by a supervisor. However, other 
possibilities not studied here could be imagined. 
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Abstract—During the last years considerable attention
was focused on finding original robotics structures with
new mechanics solutions, to face with complex tasks. An
interesting solution consists in realizing hybrid robots.
In this paper, the design and realization of a modular
hybrid robot, named TriBot, is presented. Its structure
is constituted by two wheel-legs modules, an optimal
solution for walking in rough terrains and to overcome
obstacles. Moreover, a manipulator was added to improve
the capabilities of the system that is able to perform
various tasks: environment manipulation, object grasping,
obstacle climbing and others. All these characteristics
make the TriBot a suitable test-bed for many applications
in cognitive robotics.

I. I NTRODUCTION

Recently, there is a significant interest in the de-
velopment of robots capable of autonomous operations
in complex environments. Critical issues to be solved
to succeed in these operations are: terrestrial mobility,
reduced power consumption, efficient navigation and
adaptive control strategies, robust communication pro-
tocols and a suitable payload. Depending on the tasks
taken into consideration, the robot should be able to
deal with either structured or unstructured environments,
where the terrain is not a priori known. The most proper
platforms to work in regular terrains are wheeled robots.
Wheels, in fact, are relatively simple to control and allow
a vehicle to move quickly over flat terrains. On the other
side, a major advantage of legs over wheels is their
ability to gain discontinuous footholds. This aspect is
beneficial on irregular, discontinuous terrains, found in
most real-world missions. In addiction, to make a robot
as much autonomous as possible, power consumption
is of notable importance. This aspect is more easily
attainable for wheeled robots than for the legged ones.
On the other hand, multi-legged robots are more robust,
in fact they can continue moving also with the loss of a
single leg, while in wheeled vehicles a damaged wheel

could cause the end of mobility. To have advantages of
wheeled and legged robots, it is possible to design a
hybrid robot combining the simplicity of wheels with
the advantages of legs. Examples of wheel-legs robots
are Prolero, Asguard, RHex and Whegs [1], [2], [3].

Following this research line, in this work, a bio-
inspired robot, named TriBot, is proposed. Its mechanical
structure joins the advantages both of legs and wheels,
exactly as wheel-legs robots previously mentioned but, in
addiction, it is equipped with a manipulator that allows
to add new features to the whole structure. Using this
additional module, in fact, the robot is not only able
to overcome obstacles otherwise unreachable with the
only use of wheel-legs, but it is also possible to grasp
and carry light objects or to push a buttons and to do
small and precise movements. Moreover, the manipulator
can help the robot in the case of loss of balance of
the structure. All these features allow to use this robot
to test locomotion control strategies, navigation control
algorithms using multi-sensor data fusion and algorithms
devoted to control multi-link manipulators. Exploiting
these basic abilities, the TriBot is an ideal structure for
the implementation of cognitive algorithms where the ba-
sic behaviors are enhanced with new capabilities learned
from the environment constraints, for the implementation
of complex action-oriented perception skills.

II. ROBOT DESIGN

In this section, we discuss about the mechanical and
electronic characteristics of TriBot, an autonomous mo-
bile hybrid robot.

The mechanical design of the robotic structure and
the first prototype are shown in Fig.1. The robot has a
modular structure, in particular it consists of two wheel-
legs modules and a two-arms manipulator. The two
wheel-legs modules are interconnected by a passive joint
with a spring that allows only the pitching movement.
This joint facilitates the robot during climbing, in fact,
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(a) (b)

(c) (d)

Fig. 1. Robot TriBot. (a) AutoCAD design; (b) Physical realization;
(c) Robot TriBot during a climbing action and (d) while is taking an
object.

the body flexion easily allows, in a passive way, to
adapt the robot posture to obstacles. Each wheel-leg is
composed by three spokes that describe a circle of 12cm
of diameter and they are 6mm thick. These spokes can be
moved in two different directions; if each spoke faces the
convex part toward the motion direction, the movement
results to be more smooth because the wheel-leg has a
quasi-continuous contact with the terrain. Whereas the
other configuration is better in overcoming obstacles
because there is more grip with the terrain. Moreover,
the central part of the robot is connected to a manip-
ulator, that consists of two arms with three degrees of
freedom, through an actuated joint. This joint allows the
manipulator to move in different configurations. When it
is moved down, the arms act as legs. This configuration
is useful in rough terrain to increase the robot stability
and to improve climbing capabilities. Furthermore, the
manipulator adds the possibility to perform small and
precise lateral movements otherwise impossible with the
only use of wheel-legs. This kind of behavior can be
useful when, for instance, the robot has to orient op-
portunely in order to take correctly an object. Whereas,
when the manipulator is moved up, it is possible to use it
for manipulation purposes. In this configuration the robot
can push obstacles or bottoms, move sliding doors, grasp
and carry objects.

III. H ARDWARE ARCHITECTURE

The hardware architecture of the robot TriBot follows
the modularity of the structure. The hardware structure of
TriBot is managed by two microcontroller-based boards
connected through a bus in configuration master/slave,
that manage motors and sensors distributed on the
structure. Furthermore, through a computer, using a RF
wireless XBee module, it is possible to acquire data
and send commands generated by a high level control
algorithm. It is possible, in fact, to read data from the
distributed sensory system embedded in the manipulator.
In particular, on the manipulator, four distance sensors
have been distributed for obstacle detection and a series
of micro-switches are used to detect collisions and to
grasp objects. Moreover, photo-resistances were added
on the low side of the central module. They allow to
recognize if the robot is placed on an object of a specific
colour that, for the robot, can represent a target to be
reached. The sensory system is needed for autonomous
navigation and to use the robot as test bed for perceptual
algorithms. For these reasons, to implement targeting
and homing strategies, a hearing circuit, inspired by
phonotaxis in crickets [4], has been also included. The
aim is to give the robot the ability to approach sound
sources, reproducing the behavior shown by the female
cricket to follow a particular sound chirp emitted by
a male cricket. Furthermore, one of the most useful
and rich senses that guide animal’s actions is the visual
system. Therefore, the robot is equipped with a wireless
camera that can be used for landmark identification,
following moving objects and other higher level tasks.
All these sensor modalities have been included in the
robot in order to make the system able to safely move
in unknown environments.

IV. RESULTS

In this section some preliminary results on the TriBot
are presented.

First of all a test on the maximum velocity has been
done. To measure the maximum speed of the robot
an experimental set-up including a tapis-roulant, with
a speed control, was used. The result obtained is 46
cm/sec. Experiments to test the climbing capabilities
were also performed. Using only wheels, TriBot is able
to agilely overcome obstacles up to 8 cm. The robot
is not able to overcome a higher obstacle because the
spokes are not able to hook the top surface of the
obstacle. Therefore, when the obstacle is higher than
8 cm, wheels are not enough to overcome it. At this
point, the manipulator can be used, in fact it allows
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TABLE I
MAIN CHARACTERISTICS OF THE WHEEL-LEGS ROBOT.

Asguard Whegs TriBot
Height x 44x95x50 cm 12x51 cm 12x36x20 cm
Length x (manip. down)

Width 23x28x20 cm
(manip. up)

Weight 11.5kg - 1.95kg
Velocity 2.1 body 3 body 1.64 body

length/s length/s length/s
(200 cm/s) (153 cm/s) (46 cm/s)

Wheel radius 22 cm 10 cm 6 cm
Maximum 1.1 times 1.5 times 1.8 times

obstacle height wheel radius wheel radius wheel radius

to hook the top of the obstacle with its arms. Using
this system, TriBot succeeds in overcoming obstacles of
about 10cm. Another application of the manipulator is
object grasping. Different tests have been accomplished
grasping various objects. The maximum payload resulted
to be about 300g. Videos of the described experiments
are available on the web [5]. TriBot structure and per-
formance can be compared with other hybrid wheel-legs
robots among which Whegs and Asguard. The TriBot has
reduced dimensions if compared with most of the wheel-
legs robots and comparable performance for locomotion.
Table I summarizes the main characteristics of TriBot
compared with other two wheel-legs robots: Whegs and
Asguard. The performance, in term of maximum speed,
are lower than the other robots, whereas the climbing
capability are better thanks to the improvement intro-
duced by the manipulation module that, at the same time,
allows to increase the number of basic behaviors that can
be performed.

Another interesting parameter that can be used to
compare TriBot with other robots is the Energetic Per-
formance. To measure energy efficiency, an increasingly
accepted parameter is the “Specific Resistance”,ε, a
measure proposed originally by Gabrielli and von Kar-
man [6] in 1950:

ε = P/(mg·v) (1)

where m is the robot mass, g is the gravity acceleration,
P is its average power consumption at a particular
speed. The range of values (i.e. for normal walking,
movement at maximum speed on a flat terrain and for
obstacle climbing) of the “Specific Resistance” for the
robot TriBot compared with other robotic platforms are
here reported. Unfortunately for Asguard and Whegs the

parameter are not published, so the comparison is done
with other known robots. RHex robot Specific Resistance
ranges betweenε = 2.5− 14 [2], while for Gregor I,
an asymmetric hexapod robot inspired by a cockroach,
the performance on uneven terrains wasε = 42− 70
[7]. The robot MiniHex, a bio-inspired mini robot, has
a Specific Resistance on even terrain ofε = 12.5 [8].
The results for the Tribot,ε = 0.9, have been obtained
during the movement at maximum speed in a flat terrain,
while during obstacle climbing using both wheels and
manipulator, the value isε = 3.2. Therefore, the range
of TriBot Specific Resistance can be considered more
than acceptable.

V. COGNITIVE ALGORITHMS ON THE TRIBOT

As already discussed above, the structure of the Tribot
was specifically built to handle with complex environ-
ments, to allow the robot to efficiently face with uneven
terrains and above all to lead to the emergence of new
behaviors through learning in real time to face with new
situations, using a network of sensory modalities. To this
aim, the basic ability of the robot should be to navigate
in changeable conditions. To do this, modern robotic
systems use multiple sensors because one knowledge
source is often unable to provide all of the information
necessary for inspection and manipulation tasks [9].
For these reasons, to implement targeting and homing
strategies, different kinds of sensors, such as distance
sensors, contact sensors, target sensors, a visual sensor
(wireless camera) and a hearing sensor have been added
on the robotic structure.

Moreover, walking robots performance can be im-
proved taking inspiration from insect, that can run stably
over rough terrains at high enough speeds to challenge
the ability of proprioceptive sensing and neural feedback
to respond to perturbations within a stride [10]. A
network of neurons, implementing the Central Pattern
Generator (CPG), is used to control the rhythmic move-
ments typical in many animals. This concept has been
found useful in robotics, especially when the control of
a locomotion system requires the concurrent activation
of many actuators. An example of bio-inspired mini
robot controlled using a VLSI chip that implement a
CPG through a CNN-based structure is presented in
[8] referring to a hexapod robot. The CPG approach
could be very efficient in controlling also a hybrid
robot like the Tribot; in fact the CPG final aim is to
impose suitable phase displacements among the vari-
ous legs. In this perspective, it could be interesting to
synchronize, with a suitable phase displacement, the
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locomotion behavior of the front manipulator and the
three spoke wheels. In fact, considering the structure
of the wheels, the trajectory followed by the robot
depends on the synchrony of the touching down of the
wheels. In the concave configuration, if the wheels are
in phase, the trajectory is a straight line, otherwise a
particular curvature will be obtained. Moreover, complex
steering strategies could be implemented via the phase
synchronization of the front manipulator and the wheel
movement. Going up from the basic motion capabilities,
a Recurrent Neural Network (RNN) can be used to learn
many behaviors, sequence processing tasks, algorithms,
realtime learning strategies that are not learnable by
traditional machine learning methods. All these features
allow to use the robot TriBot to implements more com-
plex skills. Different correlation-based navigation algo-
rithms, based on an unsupervised learning paradigm for
spiking neural networks, called Spike Timing Dependent
Plasticity (STDP), were implemented on the TriBot, in
order to learn and increase its behavioral capabilities.
A complete neural architecture, in fact, that allows to
control the robot in order to find an object and to perform
the basic behaviours available for the robot, has been
presented in [11]. A similar spiking neural architecture,
that allows the robot to avoid obstacles and to recognize
and reach targets, was tested using the robot TriBot. The
STDP learning strategy implemented allows the robot to
learn high-level sensor features, based on a set of basic
reflexes, depending on some low-level sensor inputs. An
important features that is being implemented to enhance
the potentialities of this strategy is the forgetting capa-
bility that allows the robot to cope with environmentally
changing conditions. This characteristic is also common
in nature: insects can learn to associate specific odors
to food but they are also able to modify this association
on the basis of the environmental changes. Other kinds
of cognitive algorithms can be tested using this robot.
Finally, another interesting field of study that can be
investigated is the area of collective and cooperative
behaviour in swarm of robots. Groups of mobile robots,
such as TriBot robots, can, in fact, be developed, in
order to have the possibility to study group architectures,
resource conflicts, emergence of cooperation.

VI. CONCLUSION

In this paper a hybrid modular mini robot has been
presented. Its peculiar characteristics consists in the
design of legs: each one is realized with a tri-spoke ap-
pendage and actuated by a single motor. The TriBot takes
inspiration from the tri-spokes leg used in the Whegs

robot, but, instead of a three pairs of whegs, only two
modules have been used and two legs with three degrees
of freedom have been included in the frontal part of the
robot. This frontal module is used both for locomotion
and manipulation purposes. The proposed structure joins
the advantages of two typologies of structure (wheeled
and legged) joining them to deal with different kinds
of scenarios. The manipulator, positioned in the front
part of the robot, proved to be useful in overcoming
obstacles, moreover it allows the robot to grab objects, to
avoid to lose stability during climbing and to complete
small and precise movements. The robot presented in
this paper has been demonstrated to be an appropriate
platform for testing different kinds of control algorithms,
such as locomotion control strategies (i.e. Central Pattern
Generator), Recurrent Neural Network to control the
manipulator, targeting and homing strategies and others.
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Abstract—In this report we compare the characteristics
of two types of the intermittent behavior (type-I inter-
mittency in the presence of noise and eyelet intermittency)
supposed hitherto to be the different phenomena. We prove
that these effects are very similar to each other. The cor-
rectness of our conclusion is proven by the consideration
of different sample systems, such as quadratic map, Van
der Pol oscillator and Rössler system.

I. INTRODUCTION

Intermittency is well-known to be an ubiquitous phe-
nomenon in nonlinear science. Its arousal and main
statistical properties have been studied and characterized
already since long time ago, and different types of
intermittency have been classified as types I–III [1], on–
off intermittency [2], [3], eyelet intermittency [4] and
ring intermittency [5].

Despite of some similarity (the presence of two dif-
ferent regimes alternating suddenly with each other in
the time series), every type of intermittency is governed
by its own certain mechanisms and the characteristics
of the intermittent behavior (such as the dependence of
the mean length of the laminar phases on the control
parameter, the distribution of the lengths of the laminar
phases, etc.) of different intermittency types are distinct.
There are no doubts that different types of intermittent
behavior may take place in a wide spectrum of systems,
including cases of practical interest for applications
in radio engineering, medical, physiological, and other
applied sciences.

This report is devoted to the comparison between
characteristics of type-I intermittency in the presence
of noise and eyelet intermittency taking place in the
vicinity of the phase synchronization boundary. These
types of the intermittent behavior seem to be different
and determined by the distinct causes. First of them
is observed near the saddle-node bifurcation point in
the system enforced by the external stochastic signal.
The second one takes place in the vicinity of the phase

synchronization boundary in two coupled deterministic
chaotic oscillators and it is explained in terms of the
synchronization of the unstable periodic orbits embedded
into chaotic attractors. Moreover, these types of inter-
mittency are known to be characterized by the different
theoretical laws. Nevertheless, we show here that these
two types of the intermittent behavior considered hitherto
as different phenomena are, in fact, very similar to each
other.

II. RELATION BETWEEN TYPE-I INTERMITTENCY

WITH NOISE AND EYELET INTERMITTENCY

First, we consider briefly both eyelet intermittency and
type-I intermittency in the presence of noise following
conceptions accepted generally. The main arguments
confirming the similarity of these types of the intermit-
tent behavior are given afterwards.

A. Type-I intermittency with noise

The intermittent behavior of type-I is known to be
observed below the saddle-node bifurcation point, with
the mean length of laminar phases T being inversely
proportional to the square root of the criticality parameter
(εc − ε), i.e.

T ∼ (εc − ε)−1/2, (1)

where ε is the control parameter and εc – its bifurcation
value corresponding to the bifurcation point [1]. The
influence of noise with the intensity D on the system
results in the transformation of the characteristics of
intermittency [6], [7], [8], with the intermittent behavior
being observed in this case both below and above the
saddle-node bifurcation point εc. In the supercritical
region [8] of the control parameter values (above the
point of bifurcation, ε > εc) the mean length T of the
laminar phases is given by

T =
1

k
√

ε− εc
exp

(
4(ε− εc)3/2

3D

)
, (2)
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with Equation (2) being applicable in the region

D2/3 ¿ |ε− εc| ¿ 1 (3)

of the control parameter plane [6], [9]. In this region
the criticality parameter (ε− εc) is large enough and,
therefore, the approximate equation

ln T ∼ D−1(ε− εc)3/2 (4)

may be also used (see [7] for detail) instead of (2).
In turn, the distribution p(τ) of the laminar phase

lengths τ is governed by the exponential law

p(τ) = T−1 exp (−τ/T ) . (5)

Note also, that the theoretical expression (2) is not
applicable for the extremely small values of the criticality
parameter (ε−εc) i.e., for (ε−εc) → +0, that is caused
by the major transformation of the system behavior when
the control parameter ε undergoes from the supercritical
region to the subcritical one, since the assumptions made
in the supercritical region for deriving Eq. (2) stops being
correct and, therefore, Eq. (2) becomes inapplicable to
the mean length of the laminar phases estimation.

B. Eyelet intermittency

For the chaotic systems in the vicinity of the phase
synchronization boundary (if the natural frequencies of
oscillator and external signal are detuned slightly) two
types of the intermittent behavior and, correspondingly,
two critical values are reported to exist [4]. Below
the boundary of the phase synchronization regime, the
dynamics of the phase difference ∆ϕ(t) features time
intervals of the phase synchronized motion (laminar
phases) persistently and intermittently interrupted by
sudden phase slips (turbulent phases) during which the
value of |∆ϕ(t)| jumps up by 2π. For two coupled
chaotic systems there are two values of the coupling
strength σ1 < σ2 being the characteristic points which
are considered to separate the different types of dynam-
ics. Below the coupling strength σ1 the type-I intermit-
tency is observed, with the power law T ∼ (σ1−σ)−1/2

taking place for the mean length of the laminar phases,
whereas above the critical point σ2 the phase synchro-
nization regime is revealed. For the coupling strength
σ ∈ (σ1; σ2) the super-long laminar behavior (so called
“eyelet intermittency”) should be detected. For eyelet
intermittency (see, e.g. [4]) the dependence of the mean
length T of the laminar phases on the criticality param-
eter is expected to follow the law

T ∼ exp(k|σ2 − σ|−1/2) (6)

or
ln(1/T ) = c0 − c1|σ2 − σ|−1/2, (7)

(c0, c1 and k are the constants). The analytical form of
the distribution of the laminar phase lengths has not been
reported anywhere hitherto for eyelet intermittency.

C. The similarity of the considered types of behavior

Although type-I intermittency with noise and eyelet
intermittency seem to be quite different phenomena,
they are really close to each other. Indeed, it is well-
known that for the periodically forced weakly nonlinear
isochronous oscillator (in the case of a small frequency
mismatch) the complex amplitude method may be used
to find the solution describing the oscillator behavior in
the form

u(t) = Re a(t)eiωt. (8)

For the complex amplitude a(t) one obtains averaged
(truncated) equation

ȧ = −iνa + a− |a|2a− ik, (9)

where ν is the frequency mismatch, and k is the (renor-
malized) amplitude of the external force. For the small
ν and large k the stable solution

a(t) = Aeiφ = const (10)

corresponds to the synchronous regime, with the syn-
chronization destruction corresponding to the local
saddle-node bifurcation associated with the global bi-
furcation of the limit cycle birth. Therefore, below the
boundary of the synchronization regime the dynamics of
the phase difference

∆ϕ(t) = ϕ(t)− ωet (11)

(where ϕ(t) is the phase of the driven oscillator, ωe —
the frequency of the external harmonic signal) demon-
strates time intervals of phase synchronized motion (lam-
inar phases) interrupted by phase slips (turbulent phases).
The mean length T of the laminar (synchronous) phases
depends on the criticality parameter according to the
power law (1) corresponding to the type-I intermittency.

At the same time, the behavior of the periodic and
chaotic systems in the vicinity of the onset of the
synchronization in many cases is very similar. Thus, both
for two coupled chaotic Rössler systems and driven Van
der Pol oscillator the same scenarios of the synchronous
regime destruction have been revealed [10]. Moreover,
under certain conditions the dynamics of chaotic sys-
tems may be considered as a random perturbations [7],

18th IEEE Workshop on Nonlinear Dynamics of Electronic Systems (NDES2010)

26-28 May 2010, Dresden, Germany 211



including the system behavior near the onset of the syn-
chronous regime. E.g., for two coupled Rössler systems
the behavior of the conditional Lyapunov exponent in
the vicinity of the onset of the phase synchronization
regime is governed by the same laws as in the case
of the driven Van der Pol oscillator in the presence of
noise [9]. Obviously, one can expect that the intermittent
behavior of two coupled chaotic oscillators near the
phase synchronization boundary (eyelet intermittency) is
close to intermittency of type-I in the presence of noise
in the supercritical region.

III. NUMERICAL VERIFICATIONS

To prove the concept of the similarity of intermitten-
cies being the subject of this study we consider several
examples of the intermittent behavior classified both
as eyelet intermittency (two coupled Rössler systems)
and type-I intermittency with noise (quadratic map and
driven Van der Pol oscillator).

A. Two coupled Rössler systems

As we have mentioned above, the intermittent behav-
ior of two coupled chaotic oscillators in the vicinity of
the phase synchronization boundary is classified tradi-
tionally as eyelet intermittency [4].

The system under study is represented by a pair of uni-
directionally coupled Rössler systems, whose equations
read as

ẋd = −ωdyd − zd,
ẏd = ωdxd + ayd,
żd = p + zd(xd − c),

ẋr = −ωryr − zr + σ(xd − xr),
ẏr = ωrxr + ayr,
żr = p + zr(xr − c),

(12)

where (xd, yd, zd) [(xr, yr, zr)] are the Cartesian coordi-
nates of the drive [the response] oscillator, dots stand
for temporal derivatives, and σ is a parameter ruling
the coupling strength. The other control parameters of
Eq. (12) have been set to a = 0.15, p = 0.2, c = 10.0.
The ωr–parameter (representing the natural frequency of
the response system) has been selected to be ωr = 0.95;
the analogous parameter for the drive system has been
fixed to ωd = 0.93. For such a choice of the control
parameter values, both chaotic attractors of the drive
and response systems are phase coherent. The instanta-
neous phase of the chaotic signals ϕ(t) can be therefore
introduced in the traditional way, as the rotation angle
ϕd,r = arctan(yd,r/xd,r) on the projection plane (x, y)
of each system.

(σ2-σ)-1/21284
-10

-8

-6

ln(1/T)

(σ-σc)3/2x105124
102

T

a

103

104 b

Fig. 1. The points obtained numerically for two unidirectionally
coupled Rössler oscillators (12) are shown by symbols “•”. The
theoretical laws (7) and (4) are shown by the solid lines. (a)
Eyelet intermittency: the dependence of ln(1/T ) on the parameter
(σ2 − σ)−1/2. The critical value is σ2 = 0.042. (b) Type-I intermit-
tency with noise: the dependence of the mean laminar phase length
T on the parameter (σ − σc)

3/2, with the ordinate axis being shown
in the logarithmic scale. The critical value is σc = 0.0345

In Fig. 1 one and the same result of the numerical
simulation of two coupled Rössler systems (12) is shown
in different ways to compare obtained data with the ana-
lytical approximations for eyelet intermittency (Fig. 1, a)
and type-I intermittency with noise (Fig. 1, b). The de-
pendence of T on (σ2 − σ) is shown in the whole range
of the coupling parameter strength values (Fig. 1, a) to
make evident the deviation of numerically obtained data
from law (7) far away from the onset of the phase
synchronization. The coupling strength σ plays the role
of the control parameter. Note, however, that the critical
points σc and σ2 used for the eyelet intermittency and
type-I intermittency with noise relations, respectively,
do not coincide with each other and their values are
different. The critical point σ2 ≈ 0.042 relates to the
onset of the phase synchronization regime in two coupled
Rössler systems. The point σc ≈ 0.0345 used in (2) and
(4) corresponds to the saddle-node bifurcation point if
the chaotic dynamics being the analog of noise could
be switched off. The value of this point has been found
from the dependence of the conditional zero Lyapunov
exponent on the coupling strength (see for detail [9]).

One can see, that the intermittent behavior of two cou-
pled Rössler systems may be treated both as eyelet and
noised type-I intermittency, with the excellent agreement
between numerical data and theoretical curve in both
cases.

B. Driven Van der Pol oscillator with noise

The second sample dynamical system to be considered
is Van der Pol oscillator

ẍ− (λ− x2)ẋ + x = A sin(ωet) + Dξ(t) (13)
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Fig. 2. The points obtained numerically for driven Van der Pol
oscillator with the stochastic force (13) are shown by symbols “•”.
The theoretical laws (7) and (4) are shown by the solid lines. (a)
Eyelet intermittency: the dependence of ln(1/T ) on the parameter
(A2 −A)−1/2. The critical value is A2 = 0.029. (b) Type-I inter-
mittency with noise: the dependence of the mean laminar phase length
T on the parameter (A−Ac)

3/2. The critical value is A = 0.0238

driven by the external harmonic signal with the ampli-
tude A and frequency ωe with the added stochastic term
Dξ(t). The values of the control parameters have been
selected as λ = 0.1, ωe = 0.98. For the selected values
of the control parameters and D = 0 the dynamics of
the driven Van der Pol oscillator becomes synchronized
when A = Ac = 0.0238 that corresponds to the saddle-
node bifurcation. To integrate Eq. (13) the one-step Euler
method has been used with time step h = 5× 10−4, the
value of the noise intensity has been fixed as D = 1.

On the one hand, as it was discussed above, the
intermittent behavior in this case have to be classified
as type-I intermittency with noise. The corresponding
dependence of the mean length of the laminar phases on
the criticality parameter (A−Ac) is shown in Fig. 2, b.
If the amplitude A of the external signal exceeds the
critical value Ac the exponential law T ∼ exp(α(A −
Ac)3/2) is expected to be observed. To make this law
evident the abscissa in Fig. 2, b has been selected in the
(A − Ac)3/2-scale and the ordinate axis T is shown in
the logarithmic scale. One can see again the excellent
agreement between the numerically calculated data and
theoretical prediction (4). The distribution of the lengths
of the laminar phases p(t) obtained for A > Ac also
confirms the theoretical curve (5), see Fig. 7 in [8].

On the other hand, trying to choose the corresponding
values of A2 for the driven Van der Pol oscillator (13)
one can find out that the intermittent behavior of this
system also may be identified as eyelet intermittency.
Indeed, in Fig. 2, a one can see the very good agreement
between the numerically obtained mean lengths T of the
laminar phases for the different values of the coupling
parameter and theoretical law (7) corresponding to the

eyelet intermittency. Note also, that for the well chosen
values of A2 the dependence T (A2 − A) in the axes
((A2 − A)−1/2, ln(1/T )) behaves in the same way as
the corresponding function T (σ2−σ) in the axes ((σ2−
σ)−1/2, ln(1/T )) for two coupled Rössler systems (12).

C. Quadratic map with stochastic force & Van der Pol
oscillator driven by the chaotic signal

We have also considered the characteristics of the in-
termittent behavior of the quadratic map with stochastic
force and Van der Pol oscillator driven by the chaotic sig-
nal. We have found in both cases that the dependencies
of the mean length of the laminar phases on the critical
parameter may be approximated by both (7) and (4) as
well as for two coupled Rössler systems and driven Van
der Pol oscillator with noise considered above. It allow
us to state about the similarity of the eyelet intermittency
and type-I intermittency with noise.

IV. CONCLUSION

Having considered two types of the intermittent behav-
ior, namely eyelet intermittency and type-I intermittency
with noise we prove that these effects are the very similar
types of the dynamics and may be considered as one and
the same type of the system behavior.
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[1] P. Bergé, Y. Pomeau, and C. Vidal, L’Ordre Dans Le Chaos
(Hermann, Paris, 1988).

[2] N. Platt, E. A. Spiegel, and C. Tresser, Phys. Rev. Lett. 70, 279
(1993).

[3] A. E. Hramov and A. A. Koronovskii, Europhysics Lett. 70, 169
(2005a).

[4] A. S. Pikovsky, G. V. Osipov, M. G. Rosenblum, M. Zaks, and
J. Kurths, Phys. Rev. Lett. 79, 47 (1997a).

[5] A. E. Hramov, A. A. Koronovskii, M. K. Kurovskaya, and
S. Boccaletti, Phys. Rev. Lett. 97, 114101 (2006).

[6] J. P. Eckmann, L. Thomas, and P. Wittwer, J. Phys. A: Math.
Gen. 14, 3153 (1981).

[7] W. H. Kye and C. M. Kim, Phys. Rev. E 62, 6304 (2000).
[8] A. E. Hramov, A. A. Koronovskii, M. K. Kurovskaya,

A. A. Ovchinnikov, and S. Boccaletti, Phys. Rev. E 76, 026206
(2007a).

[9] A. E. Hramov, A. A. Koronovskii, and M. K. Kurovskaya, Phys.
Rev. E 78, 036212 (2008).

[10] A. E. Hramov, A. A. Koronovskii, and M. K. Kurovskaya, Phys.
Rev. E 75, 036205 (2007b).

18th IEEE Workshop on Nonlinear Dynamics of Electronic Systems (NDES2010)

26-28 May 2010, Dresden, Germany 213



Bifurcation of a simplified model of the boost
converter with solar cell input
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Abstract—This paper studies a simple switched dynam-
ical system based on the boost converter. The input is a
solar cell that is modeled by a piecewise linear current-
controlled voltage source. A variant of peak-current-
controlled switching is used in the converter. Applying the
mapping procedure, the system dynamics can be analyzed
precisely. We have analyzed basic bifurcation phenomena
and have clarified that the model can repeat period-
doubling and border collision bifurcations alternately.
Such phenomena can not occur in the case of dc input.

I. INTRODUCTION

The switched dynamical system (SDS) is character-
ized by nonlinear switching among several continuous-
time sub-dynamics and the switching can cause a variety
of bifurcation phenomena [1]-[5]. The SDS relates to
many engineering systems including switching power
converters. Analysis of the dynamics is important not
only as a fundamental study but also for design of desired
circuit operation. For example, the analysis has been
provided basic information to improve system stability
and EMI in power converters [5]-[6].

This paper presents a simple SDS relating to the
photovoltaic systems that are important in renewable
energy technology [7]-[11]. In the SDS, the input is
an equivalent model of a single solar cell [7] and
is converted to the output via a boost converter. For
simplicity, we introduce a simple model of the solar
cell: a current-controlled voltage source (CCVS) having
2-segment piecewise linear (PWL) characteristics. The
boost converter is controlled by a switching rule that
is a variant of peak-current-controlled switching [6].
Applying a simplification technique in [12] [13], the
SDS dynamics can be integrated into analysis of a one
dimensional map of the switching phase. The phase map
is described explicitly using the exact piecewise solution
of the PWL circuit equation. Using the map, we have
analyzed the SDS in a parameter subspace. We have
clarified that the model can repeat period-doubling and
border collision bifurcations alternately in a route to

oV
iV

S

DL i

+

−

iV

i0

br− slope

pV

pI

ar− slope

oV
iV

S

DL i

+

−

iV

i0

br− slope

pV

pI

ar− slopeiV

i0

br− slope

pV

pI

ar− slope

Fig. 1. Circuit model of the boost converter with a solar sell

chaotic behavior. This alternation is impossible in a PWL
phase map of the dc-dc converters [12].

Precise analysis of global stability and bifurcation phe-
nomena is very hard without the novel PWL modeling
of the solar cell. In existing works, the solar cells are
described by exponential forms and the small signal
analysis for local stability has been mainstream [9] [10].

II. THE CIRCUIT MODEL

Fig. 1 shows a circuit model of the SDS where the
CCVS has two-segment PWL characteristics.

Vi(i) =

{

−rb(i − Ip) + Vp for i > Ip

−ra(i − Ip) + Vp for i ≤ Ip
(1)

where i ≥ 0 and Vi(i) ≥ 0 are assumed. This CCVS
can be regarded as a simplified model of solar cells
[7]. Although the solar cells are usually described by
a voltage-controlled function, the function is one-to-one
and the current-controlled description is convenient to
derive circuit equation for inductor current. The constant
voltage source V0 represents the output load derived by
simplification in the case where the time constant of the
load is much larger than the control clock period [12].
The boost converter has a switch S and a diode D which
can be either of the two states.

State 1: S conducting and D blocking
State 2: S blocking and D conducting

The switching rule is defined by :

State 2 → State 1: when i = J− > 0.
State 1 → State 2: at t = nT and i > J−
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Fig. 2. Switching rule

where T is a clock period and J− is the lower threshold
that controls the valley current as shown in Fig. 2. since
J− is positive, this switching prohibits discontinuous
conduction mode where both S and D are blocking. The
rule is a variant of the peak-current-control [1] [6] and
can cause various phenomena discussed afterward. The
circuit dynamics is described by

L
di

dt
=

{

Vi(i) for State 1
Vi(i) − Vo for State 2

(2)

where Vo > Vi(0) = Vp + raIp is satisfied in the
boost operation. we define the dimensionless variables
and parameters:

τ =
t

T
, x =

i

Ip
, y(x) =

Vi(Ipx)

Vp
, α =

raIp

Vp

β =
rbIp

Vp
, q =

Vo

Vp
, γ =

TVp

LIp
, X− =

J−
Ip

(3)

Using these, Eq. (2), Eq. (1) and the switching rule are
transformed into

dx

dτ
=

{

γy(x) for State 1
γ(y(x) − q) for State 2

(4)

y(x) =

{

−β(x − 1) + 1 for x > 1
−α(x − 1) + 1 for x ≤ 1

(5)

SW Rule:
State 2 → State 1: when x = X− > 0.
State 1 → State 2: at τ = n and x > X−.

The dimensionless 5 parameters can be classified into
two categories: ( α, β, q ) that characterizes ”solar cell
and load” and ( γ, X−) that characterizes ”switching
control”. Using the exact piecewise solution, we can
calculate waveform precisely and typical examples are
shown in Fig. 3. As parameters vary, the fundamental
periodic orbit with period 1 (Fig. 3 (a) ) is changed into
a variety of periodic/chaotic orbits.
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Fig. 3. Typical waveforms for α = 0.5, β = 9.0, q = 1.6 and
X− = 0.7. (a) γ = 1.0, (b) γ = 0.85, (c) γ = 0.6825 on B1, (d)
γ = 0.55, (e) γ = 0.44, (f) γ = 0.4315105 on B2, (g) γ = 0.4292,
(h) γ = 0.35.

III. PHASE MAP AND BIFURCATION

In order to analyze bifurcation phenomena, we derive
the one-dimensional map. As shown in Fig. 4, let τn

denote the n-th switching time at the lower threshold
X−. Since τn determines τn+1, we can define a one-
dimensional map

τn+1 = F (τn), τn ∈ R
+ (6)

where R
+ denotes positive reals. Using the exact piece-

wise solution, we can describe the map explicitly. Since
the normalized clock period is 1, we introduce a phase
variable θn = τn mod 1. Using this, we can define the
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phase map f from unit interval I ≡ [0, 1) to itself:

θn+1 = f(θn) ≡ F (θn) mod 1, for θn ∈ I (7)

As shown in Fig. 5, this phase map consists of convex
curves and is different from PWL phase map of the dc-
dc converters [12]. Here we give several definitions for
periodic behavior. A point p is said to be a k-periodic
point if p = fk(p) and p �= f l(p) for 1 ≤ l < k where
f l(xp) = f(f l−1(p)) and f0(p) ≡ p. A 1-periodic point
is referred to as a fixed point. A periodic point p is said to
be unstable and stable for initial value if |Dfk(p)| > 1
and |Dfk(p)| < 1, respectively, where Dfk(p) is the
slope of fk at p.

For simplicity, we focus on bifurcation of fundamental
periodic behavior in the 2-dimensional parameter sub-
space of (X−, γ). Let us consider basic bifurcation with
typical phase maps in Fig. 5. First, the map has stable
fixed point p1 (Fig. 5 (a)) that corresponds to stable
periodic orbit (SPO). As γ decreases, the p1 becomes
unstable and the SPO is changed into the unstable
periodic prbot (UPO) through the first period doubling
bifurcation set D1 = {�p | Df(p1) = −1} where �p ≡
(α, β, γ, X−, q). For the SPO and UPO corresponding to
p1, we have calculated the dimensionless average power:

PA =
1

Np

∫ Np

0
x(τ)y(τ)dτ (8)

where the period Np = 1 for the SPO and UPO. Fig. 6
shows PA and |Df(p1)| calculated by exact piecewise
solution. We can see that the UPO has larger average
power than the SPO and can have the maximum power
point for parameter γ. In the parameter space, we have
confirmed that the maximum power point (MPP) for
γ located near D1. This is important information to
construct efficient MPP trackers [8]-[11].

As γ exceeds D1, the stable 2-periodic points appear
(Fig. 3 (b)). It corresponds to the SPO with period 2
in Fig. 3 (b). Since the map does not has peak such
as the logistic map, the period-doubling cascade can
not occur and the 2-periodic points changed into the
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Fig. 5. Typical phase maps for α = 0.5, β = 9.0, q = 1.6
and X− = 0.7. (a) Stable fixed point p1 for γ = 1, (b) Unstable
fixed point p1 and stable 2-periodic points for γ = 0.85, (c) 2-
periodic points near the first border collision bifurcation set B1 for
γ = 0.6825, (d) Stable fixed point p2 for γ = 0.55, (e) Stable 2-
periodic points for γ = 0.44, (f) Stable 2-periodic points near the
second border collision bifurcation set B2 forγ = 0.4315105, (g)
Stable 3-periodic points for γ = 0.4292, (h) Chaos for γ = 0.35.

second stable fixed point p2 (Fig. 5 (d)) through a
border collision bifurcation [2]. The p2 corresponds to
the SPO with period 2 in Fig. 3 (d). Note that the
p2 can not be stable in the PWL phase map of dc-dc
converters [12]. At this bifurcation, in the map (Fig. 5
(c)), 0 becomes the 2-periodic point; and in the time
domain, the state-dependent switching at threshold X−
collides with the period-2 time-dependent switching at
time τ = n, e.g., x(3 − ε) = X−, x(3) = X− + ε,
x(3 + ε) = X− and ε → 0 in Fig. 3 (c). This is
a kind of border-collision bifurcation [2] because the
points (τ, x) = (2m, X−) are tips of the control signal
and the orbit grazes the tips. This first border collision
bifurcation set is given by B1 = {�p | F (0) = 2}. Then p2
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becomes unstable and stable 2-periodic points (Fig. 5 (e))
appear through the second period-doubling bifurcation
set D2 = {�p | Df(p2) = −1}. After that, the 2-periodic
points are changed into stable 3-periodic points (Figs.
5 (g) and 3 (g)) through the second border collision
bifurcation set B2 = {�p | 2 < F (0) < 3, F 2(0) = 4}.
At the B2, the state-dependent switching collides with
the period-4 time-dependent switching ( Figs. 5 (f) and 3
(f)). Note that the second period-doubling is impossible
the PWL phase map of dc-dc converters [12] because
the p2 can not be stable. After that the 3-periodic points
are changed into various periodic points and into chaos
( Figs. 5 (h) and 3 (h) ). Using the explicit formula of
the map, the bifurcation sets can be calculated precisely.
Fig. 7 shows a bifurcation diagram.

IV. CONCLUSIONS

The SDS based on the boost converter with a solar
cell input has been studied in this paper. Applying
the PWL modeling for the solar cell, we have derived
the phase map and have analyzed the basic bifurcation
phenomena precisely. Future problems are many, includ-
ing the following: analysis of the power characteristics,
classification and evaluation of various switching rules,
and design of practical circuits.
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Abstract—For the first time the passive synchronization 
of spin-wave self-modulation frequencies with the help 
of magnetostatic wave signal-to-noise enhancer which 
was placed in active ring resonator is carried out. 
Appearance of passive synchronization causes the self-
generation of repetition chaotic dissipative soliton 
trains. The ability to control a soliton-repetition 
interval by the change of ring gain is shown. 

I. INTRODUCTION 
It’s well known, that in nonlinear dispersive 

mediums the solitary waves or solitons can be 
propagated [1]. In the microwave (MW) frequency 
range such medium is ferromagnetic thin film in 
which the modulation instability of magnetostatic 
waves (MSW) is observed, and the envelope soliton 
trains are formed. In recent years the active ring 
resonators are used for compensation of MSW linear 
losses. In this case the joint use of the modulation 
instability, frequency filtering and mod 
synchronization causes the self-generation as bright 
and dark MW magnetic envelope soliton trains in the 
active ring resonators [2, 3]. The spectra of such 
signals are line and their spectral components are 
corresponded to the mod frequencies. Such localized 
structures generated in the systems with the gain and 
losses are called the dissipative solitons [4]. The 
principal difference between the dissipative and 
Schrödinger solitons is a generation of first ones even 
in the case when a wave propagated through 
nonlinear dispersive medium is stable [5]. 

The signal that has a line spectrum can be formed 
in a one mode generation regime because of the 
presence of three magnon (3M) decay processes of 
MSW in a ferromagnetic film. These processes cause 
the self-modulation of MSW signal generation by the 
spin waves [5, 6]. In this case the relaxation 
oscillations are observed in a time domain. The 
increase of a ring gain stipulates the stochastization 

of MW signal spectrum and the break of repetition 
pulse trains. However the recent experiments showed 
that the usage of a passive or active resonator in 
active ring with ferromagnetic film causes the 
generation of repetition chaotic MW pulse trains 
[5, 7]. The spectrum of such signal is continuous, the 
envelope has the quasiperiodic law of change with 
the spin wave self-modulation frequency and a MW 
signal is chaotic. The self-generation of repetition 
chaotic MW pulse trains is connected with the self-
synchronization of spin wave self-modulation 
frequencies, for example, on a weak nonlinearity of a 
power amplifier. 

The goal of this report is an experimental research 
of a passive synchronization of spin wave self-
modulation frequencies with the help of a nonlinear 
passive element that has a back dynamic 
characteristic. The nonlinear elements with such 
response are used in optics for the passive harmonic 
synchronization of ring modes and generation of 
ultra-short pulses [4]. In the MW frequency range of 
such element is a nonlinear MSW transmission line 
which was called the MSW signal-to-noise enhancer 
[8]. 

II. EXPERIMENTAL SETUP 
The active ring resonator (see fig. 1) consists of two 

GaAs power amplifiers 1, 7 and a feedback circuit 
including a volume resonator 2, two variable 
attenuators 4, 8, nonlinear magnetostatic surface wave 
(MSSW) delay line 6 and MSSW signal-to-noise 
enhancer 10. Each power amplifier has a gain 
coefficient K ~ 32 dB in the frequency band 2-4 GHz. 
The usage of two power amplifiers in the active ring is 
necessary for ensuring the MW signal power level 
higher than the threshold of 3M decay processes at the 
input of each nonlinear transmission line. The MSSW 
delay line has two short-circuit microstrip lines with 
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the width of w1 = 70 μm. The distance between 
microstrip lines is d=3 mm. The yttrium iron garnet 
(YIG) film is placed under microstrip lines. The 
MSSW signal-to-noise enhancer consists of a 
microstrip line that has the meander form with the 
distance between microstrip lines l = 6 mm. The 
microstrip line has the width of w2 = 500 μm and YIG 
films are placed over it. All YIG films have the 
thickness of t = 40 μm, saturation magnetization of 
4πM0 = 1680 Gs and a loss parameter of 
2∆H = 0.69 Oe. The volume resonator has the 
resonant frequency f0 = 2.8 GHz, the losses at resonant 
frequency A0 = -1.8 dB, the loaded Q factor QL = 560. 
It’s used in the active ring for ensuring the generation 
in the MSSW signal-to-noise enhancer frequency 
band. The value of the external bias magnetic field H0 
is set in such a way that 3M decay processes of 
MSSW are allowed. In the case of the MSSW delay 
line its central frequency at which the losses have a 
minimum value coincides with the f0 at H01 = 415 Oe. 
In the case of the MSSW signal-to-noise enhancer its 
central frequency at which the losses have a maximum 
value coincides with the f0 at H02 = 270 Oe. 

 

 
 

Fig. 1. Schematic diagram of the active ring resonator 

 
The main part of power from the volume resonator 

output is returned into the active ring, whereas the 
lesser part via directional decoupler 3 is fed to the 
inputs of Agilent ESA-L E4408B spectrum analyzer 
and Agilent Infinium DSO81004B real time 
oscilloscope. The signal power level at the inputs of 
the MSSW delay line and the MSSW signal-to-noise 
enhancer is controlled by the two channels N1912A 
power meter that is connected to the active ring via 
directional couplers 5 and 9, respectively. 

III. EXPERIMENTAL RESULTS AND DISCUSSIONS 
The active ring resonator contains two nonlinear 

transmission lines with ferromagnetic films: the 
MSSW delay line and the MSSW signal-to-noise 
enhancer, as shown in fig. 1. The nonlinearity of both 

lines is connected with the 3M decay processes that is 
the cause of nonlinear MSSW loss appearance. A self-
generation of the nonlinear pulse trains is connected 
with the availability of the nonlinear MSSW delay 
line in an active ring resonator [5, 6]. It’s well known 
[9], that a presence of high level nonlinear losses in a 
MSSW delay line stipulates the short MW pulse 
formation from the rectangular pulses that have a 
large duration. In this case a pulse front has smaller 
loss level than a falling edge of the pulse. Also known 
[10], that a transformation of the MW pulse can be 
stipulated by the presence of nonlinear losses in a 
MSSW signal-to-noise enhancer. In this case a pulse 
front has higher loss level than a falling edge of the 
pulse. Thus the joint use of a MSSW delay line and a 
MSSW signal-to-noise enhancer has to stipulate the 
formation of short MW pulses. 

The dynamic response of the MSSW signal-to-
noise enhancer is shown in fig. 2 (curve 1). This 
response has a nonlinear dependence of the output 
power Pout from the input power Pin. In this case a 
MW signal with a small power level (Pin<0 dBm) has 
a loss value Asm ≈ -32 dB and a MW signal with a 
large power level (Pin>+25 dBm) has a loss value 
Alg ≈ -16 dB. Thus the small power level spectral 
components of a complex signal propagating through 
the MSSW signal-to-noise enhancer will be 
suppressed stronger than the large power level 
spectral components. In fig. 2 the dynamic response of 
the MSSW delay line is also shown (curve 2). In this 
case a MW signal with a small power level is 
attenuated on a value smaller than a MW signal with a 
large power level. Thus the delay line has the dynamic 
response of a power limiter and the dynamic response 
of the signal-to-noise enhancer is back to it. 
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Fig. 2. The dynamics responces of the MSSW signal-to-noise 
enhancer and the MSSW delay line are mesured at f0 
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Fig. 3. (Left) Power spectra and (right) time domains of the microwave signal generated in the active ring resonator at G = 0 (a), 
G = 0.55 dB (b) and G = 0.55 dB, H02=0 (c) 

 
The most intriguing results are shown in fig. 3. 

These results are obtained at various values of a ring 
gain G. At G=0 (see fig. 3a) the power level of a MW 
signal generated in the active ring is higher than the 
threshold power level of the 3M decay processes. In 
this case the MW signal is not a monochromatic 
signal because the self-modulation of MSSW by the 
spin waves is appeared. The simultaneous presence in 

the active ring the spin wave self-modulation 
frequencies and the MSSW signal-to-noise enhancer 
with the back dynamic response cause the formation 
in a time domain the chaotic MW pulses with the 
pulse-repetition interval larger than 50 μs. In this case 
the spin wave self-modulation frequency has the value 
below 20 kHz. The further increase of a ring gain 
stipulates the increase of the integral power level of 
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the chaotic MW signal at the inputs of the MSSW 
signal-to-noise enhancer and the MSSW delay line. 
As shown in fig. 3b, the spin wave self-modulation 
frequency is increased, and the pulse-repetition 
interval is decreased with the increase of G. In a time 
domain the periodic dissipative soliton train is 
observed. The envelope of such nonlinear pulses has 
the periodic law of change with the spin wave self-
modulation frequency, and the MW signal is chaotic. 
The soliton duration measured at the half-level of 
instantaneous amplitude is equal to τd = 1.3 μs. This 
value is larger than a pulse-repetition interval 
Tr = 10.4 μs on the order of magnitude. As shown in 
fig. 3a,b the spin wave self-modulation frequency 
tends to zero (a pulse-repetition interval tends to 
infinity) with the decrease of G in the active ring 
resonator with the MSSW signal-to-noise enhancer. In 
this case the spectrum of a chaotic MW signal tends to 
the spectrum of a single MW pulse. 

The further ring gain increase causes the decrease 
of pulse-repetition interval and the increase of the spin 
wave self-modulation frequency. However, as the 
spectrum width of the chaotic MW signal is larger 
than the effective frequency band of the MSSW 
signal-to-noise enhancer the dissipative soliton train is 
broken. 

The appearance of the periodic law of the envelope 
change is connected with the phase synchronization of 
the spin wave self-modulation frequencies of the 
chaotic MW signal. Such synchronization is set 
through the suppression of the small power level 
spectral components by the MSSW signal-to-noise 
enhancer. “The narrowing” of the chaotic MW signal 
spectrum is well observed from the comparison of the 
results obtained at the presence (see fig. 3b) and the 
absence (see fig. 3c) of the external magnetic field of 
the MSSW signal-to-noise enhancer. The absence of 
H0 causes the absence excitation of MSSW in a 
ferromagnetic film and the absence of the 3M decay 
processes of MSSW. In this case the signal-to-noise 
enhancer has not the back dynamic response. The 
chaotic MW signal spectrum at H0 = 0 (see fig. 3c) is 
wider than the spectrum obtained at H0 ≠ 0 (see 
fig. 3b) and the periodic dissipative soliton train at 
H0 = 0 is disappeared. 

IV. CONCLUSION 
The further research of the passive synchronization 

of the spin wave self-modulation frequencies in the 

active ring resonators with ferromagnetic films should 
be directed on the study of the ultra-short pulse 
generation. Such research can be implemented with 
the help of wideband frequency-selective elements 
and of the nonlinear MSW transmission lines on the 
basis of two coupled ferromagnetic films [11]. 
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Abstract— We study properties of traveling waves and 
oscillations in a bistable ring of unidirectionally 
coupled maps. A kinematical model of the traveling 
waves shows that the duration of transient oscillations 
increases exponentially with the number of elements 
when coupling is weak. The probability density 
function of the duration of oscillations generated under 
random initial conditions has a power law form. 
Further, oscillations are stabilized through period 
doubling bifurcations as the strength of coupling 
increases.  

I.  INTRODUCTION  
In some spatially extended systems, it has been 

shown that the duration of transient states increases 
exponentially as system size increases (exponential 
transients). It was first found in a bistable reaction-
diffusion equation, in which the motion of transient 
kinks (fronts) and kink-antikink pairs (pulses) is 
exponentially small with domain length and pulse 
width so that these patterns last exponentially long 
time until the media reach one of spatially 
homogeneous steady states [1]. It has also been found 
in spatiotemporal chaos in a coupled map lattice [2] 
and a reaction-diffusion model [3], transient cycles in 
an asymmetric neural network [4], irregular firings in 
a network of pulse-coupled neurons [5] and transient 
sequences in a continuous-time Hopfield network [6]. 
In these systems with exponential transient, systems 
never reach asymptotically steady states in a practical 
time when system size is large, and transient states 
can play important roles in actual systems, e.g. 
information processing in nervous systems.  

Recently, we showed that exponential transient 
oscillations in a ring of unidirectionally coupled 
neurons (a ring neural network) and derived its 
kinematics [7]. Transient oscillations are pulse waves 

rotating networks and difference between the speeds 
of two pulse fronts decreases exponentially with an 
interval between the fronts. Consequently, it takes 
exponentially long time until fronts merge and a 
pulse disappears so that oscillations cease. This 
kinematics is qualitatively the same as that of the 
motion of kink patterns in the above-mentioned 
reaction-diffusion equation [1].  

In this study, we consider traveling waves and 
oscillations in a bistable unidirectional coupled map 
lattice (CML) of ring structure. It has been pointed 
out that long-lasting transient oscillations exist in the 
CML [8]. We show that the CML possess the same 
properties as those of a ring neural network, which 
are derived with the same kinematical equation [7]. 
The duration of pulse waves increases exponentially 
with pulse width. The distribution of the duration of 
oscillations occurring from random initial states has a 
power law tail up to a cut-off, and the mean duration 
of the oscillations increases exponentially with the 
total number of elements. Further, oscillations are 
stabilized as coupling strength increases, in which 
stable sequences of period two are generated from 
stable steady states through period doubling 
bifurcations. This mechanism is similar to that of a 
ring neural network with inertia [9].  

II. A MODEL AND ITS KINEMATICS  
We consider the following ring of unidirectionally 

coupled maps.  
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where t is a discrete time, xn is the state of the nth  
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element, N (≥ 3) is the number of elements and c (> 0) 
is coupling strength. The map is cubic, the elements 
are linearly connected and the CML is bistable (xn = 
±c1/2, 1 ≤ n ≤ N). Until reaching one of the stable 
steady states, the CML shows transient oscillations, 
which are traveling waves rotating in the ring.  

Figure 1 shows examples of transient oscillations 
obtained with computer simulation of Eq. (1) with c = 
0.2 and N = 20. Values of initial states (xn(0)) were 
randomly drawn from Gaussian white noise with 
mean zero and SD 0.1 (N(0, 0.12)). The states x1(t) of 
the first element are plotted in upper panels, and 
spatiotemporal patterns in the states of the elements 
are plotted in lower panels, in which black and white 
regions correspond to the states of positive and 
negative sings, respectively. The CML is divided into 
two blocks in a short time, the fronts (boundaries) of 
which propagate in the direction of coupling (from 
bottom to top in the lower panel), which is a traveling 
relaxational pulse wave (the upper panel). The states 
of the elements change their signs when pulse fronts 
pass so that the CML oscillates. Transient oscillations 
may cease quickly (a) or last a long time (b) 
depending on initial states.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Examples of transient oscillations in a CML  
It is expected that the propagation of pulse waves 

is described by the same kinematical equation of that 
in a ring neural network [7]. First, a symmetric pulse 
wave (a periodic solution of Eq. (1)) of equal pulse 
width exists. Although it is unstable, it is obtained 
with computer simulation of Eq. (1) under a 
symmetric initial condition  

 
  )(),1( 0

2/1
0

2/1 Nnlcxlncx nn ≤≤−=≤≤=   (2) 
 

where l0 = lh ≡ N/2 for even N. Figure 2 shows the 
propagation time ∆t of a pulse front per element, i.e. 
the time required for the propagation over one unit 

distance (one element) with c = 0.2 in Eq. (1). Plotted 
are a logarithm of ∆t(lh) - ∆t∞ (∆t∞ = ∆t(lh = 12 )) as a 
function of pulse width lh (= N/2) (the number of 
elements in one pulse), which is approximated as  

 
 )2/()exp()( Nlalbtlt hhh =−+∆=∆ ∞  (3)   

 
where a ≈ 1.515, b ≈ 28.277, ∆t∞ ≈ 5.952. The speed 
of a pulse front depends on the exponential of pulse 
width. Using 1/∆t(l) as the speed of a front with the 
backward pulse width l, we obtain a kinematical 
equation for a change in pulse width l  
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It should be noted that the speed of a front depends 
on the forward pulse width in a ring neural network. 
Linearization of Eq. (4) can show that a symmetric 
pulse wave (l = N/2) is unstable, while it is stable in 
the subspace: xn+N/2 = xn (1 ≤ n ≤ N/2).  

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Propagation time of a pulse front  
III. PROPERTIES OF TRANSIENT OSCILLATIONS   

First, we consider the duration T of transient 
oscillations in asymmetric pulse waves, which are 
generated under the initial condition Eq. (2) with 1 ≤ 
l0 < N/2. Equation (4) can be solved and the duration 
T of transient oscillations (pulse waves) is obtained 
by l(T) = 0 with l(0) = l0 [7]. Since it is rather 
redundant, we use the equation with N → ∞ and 
obtain  
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It can be shown that the duration T in Eq. (5) agrees 
with that obtained with Eq. (4) for N ≥ 10. Figure 3 
shows a semi-log plot of the duration T of oscillations 
against initial pulse width l0 with c = 0.2 and N = 21. 
Plotted are the results of computer simulation of Eq. 
(1) (closed circles) and T(l0) in Eq. (5) (a solid line). 
The duration increases exponentially with l0, and Eq. 
(5) agrees with the simulation results.  

 
 
 
 
 
 
 
 
 

 
 
 

Fig. 3. Duration of transient oscillations with l0  
Next, we consider oscillations generated under 

random initial conditions. Since random initial states 
quickly turn into pulse waves as Fig. 1, we can 
consider initial pulse width l0 to be distributed 
uniformly in (0, N/2). The probability density 
function h(T) of the duration of oscillations is derived 
with Eq. (5) as  
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The duration is distributed in a power law form (~ 
1/T) up to a cut-off T(N/2), which is given by Eq. (5). 
It can be shown that the duration is distributed 
exponentially over the cut-off by using Eq. (4).  

Figure 4 shows a log-log plot of the probability 
density function of the duration, in which a histogram 
obtained with 104 runs of computer simulation of Eq. 
(1) with c = 0.2 and N = 20 under random initial 
conditions: xn(0) ~ N(0, 0.12) (closed circles) and h(T) 
in Eq. (6) (a solid line) are plotted. They agree with 
each other in (10, T(N/2)), where  T(N/2) ≈ 3 × 106.  

The mean and variance of the duration of 
oscillations occurring from random initial states also 
increase exponentially with the number of elements. 
Using Eq. (6), they are given by  
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The coefficient of variation (CV) increases in 
proportion to the square root of the number of 
elements. Figure 5 shows the mean duration of 
oscillations, in which estimates with 104 runs of 
computer simulation of Eq. (1) with c = 0.2 and xn(0) 
~ N(0, 0.12) (closed circles) and m(T) in Eq. (7) (a 
solid line) are plotted. Both agree with each other 
though the simulation results are slightly larger than 
Eq. (7).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Histogram of  the duration of oscillations  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Mean duration of oscillations  
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IV. STABILIZATION OF OSCILLATIONS   

The exponential dependence of the speed of a pulse 
front on pulse width comes from the monotonic linear 
relaxation of xn to the steady states ±c1/2 occurring 
alternately in oscillations. It has then been shown that 
oscillations are stabilized in the presence of inertia, in 
which changes of xn are described by second-order 
differential equations and the approach of xn to the 
steady states is oscillatory [9]. It is thus expected that 
oscillations in the CML are also stabilized when the 
eigenvalues of Jacobian at the steady states become 
negative and the approaches to them become 
oscillatory. Linearizing Eq. (1) at xn = c1/2 leads to  
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where λ is the eigenvalues of the Jacobian matrix, 
which lie on a circle with center (1 - 3c, 0) and radius 
c in the complex plane. When the number N of 
elements is even, the smallest eigenvalue is negative 
(λmin < 0) for c > 1/4, the absolute value of it is equal 
to the largest eigenvalue (|λmin| = λmax) at c = 1/3, and 
it is less than -1 (λmin < -1) for c > 0.5.  

In computer simulation of Eq. (1), stabilization of 
oscillations was observed when c > 0.5, in which the 
period doubling bifurcations of the steady states 
occur and stable sequences of period two are 
generated. Figure 6 shows stable oscillations obtained 
with computer simulation of Eq. (1) with N = 20 and 
c = 0.52 (a), c = 0.60 (b). Small oscillations at pulse 
peaks appear (a), and further increases in c cause 
chaotic wave forms (b).  

V. DISCUSSION  
It is known that exponentially long transient 

spatiotemporal chaos exists in the window of period 
three in the logistic CML [2]. We showed that 
another mechanism of exponential transients in the 
CML due to the symmetry of the bistable map. The 
linear relaxation to the steady states causes 
exponentially small differences in the speeds of 

traveling waves, which makes their duration 
exponentially long. Effects of asymmetry in the map 
and spatiotemporal noise are of interest as shown in a 
ring neural network [10].  

Although the properties of transient oscillations 
were well explained with the kinematical equation of 
traveling waves, the values of parameters (α, β) were 
obtained only experimentally. The direct derivation 
of them from dynamics of Eq. (1) has not been done 
and is future work.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Stable oscillations with c = 0.52 (a), c = 0.60   
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Abstract—We propose an electrical transmission lattice
exactly ruled by a fifth order Klein-Gordon equation. It is
experimentally shown that this medium transmits energy
even outside its band-bass via the supratransmission effect.
Moreover, a bistable behaviour is also revealed.

I. INTRODUCTION

These past years the development of nonlinear trans-
mission lines has allowed to experimentally investigate
the propagation of nonlinear wave in various media,
such as the Fitzhugh-Nagumo model [1], the Toda
lattice [2] and more recently the Klein-Gordon lattice
[3]. Moreover, the properties of these nonlinear circuits
inherited from natural systems has allowed to design
efficient signal processing tools in real hardware devices
via the concept of Cellular Neural Networks [4]. For
instance, propagation failure of nerve impulse has been
quantified in a Fitzhugh-Nagumo electrical lattice rep-
resenting a myelinated nerve fiber [5]. Promising image
processing applications have been pointed out with this
biological system [6]. Stochastic resonance [7], another
phenomenon introduced to explain how neurons can
detect weak stimuli using noise has also been reported
in electronic circuits with potential applications [8], [9].
Lastly, Coherence Resonance [10]- a nonlinear effect
allowing to account for the activity of neuron even in
absence of stimuli - has been observed in an electronic
device [12]. In summary, designing electronic circuits
mimicking the behaviour of natural systems is of crucial
interest to develop new processing applications. Among
these natural systems, those deriving from the nonlinear
Schrödinger equation, which has relevance in the field of
high speed communication in optical fibers, has recently
revealed the possibility to transmit energy when excited
outside their bandpass by a sinusoidal driving [13]. In
this paper, we report this phenomenon of supratransmis-
sion in a real electrical transmission line obeying to the
fifth order Klein-Gordon equation.
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Fig. 1. The Klein-Gordon electrical lattice (Top) and the nonlinear
element NLE (inside the broken lines). C = 100nF , L = 0.947mH
and Lk = 1.1mH . r′ and r correspond to the serie resistors of the
self-inductors.

II. THE NONLINEAR LATTICE

A. Equation of the Network

The nonlinear electrical lattice of fig. 1 consists of
N=45 elementary cells coupled via a lossy inductor with
inductance Lk and resistor r. Each elementary cell is
realized with a capacitor C in parallel with the nonlinear
element NLE represented inside the inset of fig. 1.
Applying Kirchoff laws at the nodes of the lattice, the
voltage evolution at the nth node un(t) is ruled by the
following set of differential equations:

C
d2un

dt2
+

rC

Lk

dun

dt
+

r

Lk
iNL,n +

diNL,n

dt

=
1
Lk

(un+1 − 2un + un−1), (1)

In eq. (1), iNL,n represents the current through the nth

nonlinear element.
As shown inside the inset of fig. 1, this nonlinear circuit
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includes three AD633JNZ analog multipliers and two
TL081CN operational amplifiers such that the voltage un

and the nonlinear current iNL,n through the self inductor
obey to

diNL,n

dt
+

r′

L
iNL,n =

1
L

f(un),

with f(un) = un − u3
n

3!
+

u5
n

5!
. (2)

In eq. (2), r′ denotes the internal resistance of the self
inductor L of the nonlinear element.

If we assume that the coupling inductor Lk and
the feedback inductor L of the nonlinear element have
the same quality factor, then it involves the equality
r/Lk = r′/L. Substituting eq. (2) into eq. (1) and using
the previous equality, the differential equation which
rules the voltage at the nth node of the lattice reduces
to

d2un

dt2
=

1
LkC

(un+1 − 2un + un−1)

− r

Lk

dun

dt
− 1

LC
f(un). (3)

Setting the transformation c2
0 = 1/LkC, ω2

0 = 1/LC and
Γ = r/Lk, eq. (3) can be normalized under the following
form:

d2un

dt2
− c2

0 (un+1 − 2un + un−1)

+ Γ
dun

dt
+ ω2

0f(un) = 0. (4)

According to Eq. (4), our experimental device exactly
corresponds to a typical fifth order Klein-Gordon chain
with dissipative coefficient Γ, coupling c2

0 and nonlinear-
ity weight ω2

0 . When the nonlinearity is f(un) = sinun,
we note that we obtain the well known sine-Gordon
equation [11].

In this paper, we focus on the case where one end
of the chain (the node 0) is sinusoidally driven with an
amplitude A and a frequency f . Therefore, the voltage
u0(t) obeys to

u0(t) = A cos 2πft. (5)

Moreover, we set the value of the self inductors and
capacitors to C = 100nF , L = 0.947mH and Lk =
1.1mH .

B. Dispersion curve of the network

The experimental analysis of the dispersion curve
has been carried out by setting the frequency f of
the sinusoidal driving. Next, using an oscilloscope, we
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Fig. 2. Experimental and theoretical dispersion curves of the Klein-
Gordon chain. The solid line is obtained with the theoretical law (6),
while the crosses correspond to the experimental data. Component
values: C = 100nF , L = 0.947mH and Lk = 1.1mH

determine the first node n of the lattice such that the
voltage at this node is in phase with the sinusoidal
excitation. For the given frequency, the corresponding
wave number k is then k = 2π/n. It provides the
experimental data plotted with crosses in fig. 2 which
reveal a typical bandpass behaviour with two cut off
frequencies f0 = 15.17KHz (usually called gap) and
fmax = 36KHz. For weak amplitudes of the sinusoidal
driving, the linear theory allows to analytically express
the dispersion relation of the electrical chain under the
form

f =
ω0

2π

√
1 + 2

c2
0

ω2
0

(1− cos k). (6)

In Fig. 2, the theoretical law (6) confirms the bandpass
behaviour of the system since it matches with a perfect
agreement the experimental data.

III. BEHAVIOUR OF THE CHAIN IN THE GAP

In this section, we focus on the effect of a sinusoidal
excitation whose frequency is chosen below the gap f0 =
15.17KHz. Especially, we analyze the behaviour of the
electrical Klein-Gordon lattice versus the amplitude of
the sinusoidal driving.

A. Weak amplitude: evanescent wave

In the case where the amplitude is weak, we have
recorded in fig 3 the temporal evolution of the voltage
at different nodes of the lattice, namely n = 0 (initial ex-
citation), n = 2, n = 4 and n = 6. The amplitude of the
sinusoidal excitation is very damped when it reaches the
4th node of the lattice and vanishes at the node number 6.
As highlighted by Geniet and Leon, who have considered
sine-Gordon lattices without dissipative coefficient (that
is eq. (4) with Γ = 0 and f(un) = sinun), this strong
decrease of the amplitude is a specific feature when
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U 0 ( t )
U 2 ( t )
U 4 ( t )U 6 ( t )

Fig. 3. Temporal evolution of the voltage U0(t), U2(t), U4(t) and
U6(t). The amplitude and the frequency of the sinusoidal driving are
respectively set to 2.8V and f = 12.5KHz.

the chain is excited in the Gap [13]. Indeed, they have
shown that the decrease of this evanescent wave obeys
an exponential law. To verify this exponential decrease
of the amplitude, we have plotted the peak amplitude of
each node of the network versus node number n in Fig.
4. These experimental data are then compared in fig. 4
to the following law:

max(un) = Aexp(−λn), (7)

where A corresponds to the amplitude of the sinusoidal
driving and max(un(t)) represents the peak amplitude
reached by the voltage un(t). Note that, the exact
values of the parameter λ and A are deduced by a
least square method between the experimental data and
the theoretical law (7). As shown in Fig. 4, with the
identified parameters values λ = 0.449 cell−1 and
A = 2.89 V , the agreement between the experimental
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Fig. 4. Exponential decrease of the sinusoidal excitation along the
network when the forcing frequency is chosen in the Gap. Crosses:
experimental data, solid line: theoretical law (7) obtained with a least
square method. The amplitude and the frequency of the sinusoidal
driving are respectively set to 2.8V and 12.5KHz.
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Fig. 5. Bifurcation diagram of the experimental Klein-Gordon lattice
(right)- Temporal evolution of u5(t) for f = 12.5KHz (left): (a)
A = 2.95 V > A∗sup and (b) A = 2.93V < A∗sup.

data and the theoretical model is the best. Therefore, for
weak amplitudes of the sinusoidal driving, our Klein-
Gordon electrical lattice behaves in the gap like the sine-
Gordon chain considered by Geniet and Leon [13].

B. Amplitude of the Forcing exceeding a critical value:
supratransmission

We now consider the case where the amplitude of the
forcing exceeds a critical value A∗sup. In the case of the
sine-Gordon chain without dissipation, Geniet and Leon
have shown that beyond a critical amplitude of forcing
the system undergoes a bifurcation and transmits energy
by mean of nonlinear mode generation. We propose
here to experimentally determine this critical amplitude
versus the forcing frequency by observing the temporal
evolution of the voltage u5(t).

As explained in the previous section, below a crit-
ical amplitude A∗sup, the sinusoidal excitation is not
transmitted in the medium since its amplitude vanishes.
Indeed, as shown in Fig. 5.(b), the amplitude at the node
n = 5 is very damped since we obtain 240mV when
the amplitude of the driving is 2.92V and its frequency
f = 12.5KHz.

As we increase the amplitude of the driving up to A =
2.95V , the voltage at this node is no more negligible.
Indeed, as shown in Fig. 5.(a), the maximum amplitude
of the cell number 5 reaches 2.4V instead of 240 mV .
It means that when the amplitude is around 2.94V , the
medium undergoes a bifurcation and transmits energy
by mean of nonlinear mode generation via the effect of
supratransmission [13], [14], [15].

Using this methodology, we note for each frequency
the amplitude A∗sup for which we obtain a transition
from the very damped wave to the nonlinear wave of
strong amplitude. It provides the bifurcation diagram
at the right of figure 5 where the curve of the critical
amplitude A∗sup versus f divides the parameters plane
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Fig. 6. Bistable behaviour of the system. The frequency of the
sinusoidal driving is set to 12.5KHz. The vertical dotted lines
correspond to the two critical amplitudes A∗inf and A∗sup allowing
the system two switch from its two states.

in two regions. The first region is located below the
critical curve and corresponds to weak amplitude values
of the driving which does not allow supratransmission.
By contrast, the second part of the diagram provides
the range of parameters (A, f) which induces a wave
with a large amplitude in the medium and which enables
supratransmission.

C. Bistability

Another interesting behaviour often hightlighted in
nonlinear media sharing this supratransmission effect
is bistability [16], [17]. In fact, there exists a second
critical value of the driving amplitude A∗inf at which the
bifurcation in the reverse direction occurs.
More precisely, starting from the region of fig. 5 which

enables supratransmission, the critical amplitude of the
driving A∗inf allowing to come back to the first area
is lower than the critical amplitude A∗sup introduced in
the previous section. The existence of this hysteresis
property can be easily shown by plotting the peak
amplitude attains by the voltage of the node number 5
versus the amplitude A of the sinusoidal excitation. This
experimental curve is represented in fig 6.
It confirms that the critical amplitude A∗sup of the driving
for which the transition occurs between weak and strong
amplitude waves is greater than the critical amplitude
A∗inf that induces the transition in the reverse direction.

IV. CONCLUSION

In this paper, we have presented an electronic lattice
whose main advantage is to be exactly ruled by a 5th

order Klein-Gordon equation. Therefore, it constitutes a

convenient tool to investigate information transmission
in media deriving from the nonlinear Schrödinger equa-
tion. Especially, we have experimentally reported the
possibility for this pass-band type medium to transmit
energy by generating nonlinear modes when it is excited
outside its bandpass. Therefore, our work could be of
crucial interest in the field of information transmission
to understand how the energy of these nonlinear modes
can be localized to induce train of solitons [14], [15].
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Abstract—An array of resistively and capacitively
shunted Josephson junctions with nonsinusoidal current-
phase relation is considered for modelling the resistive
transition in high-Tc superconductors. The emergence of
higher harmonics, besides the sinusoid Ic sinÁ, is expected
for dominant d-wave symmetry of the Cooper pairs,
random distribution of potential drops and dirty grains,
or in nonstationary conditions. We show that additional
cosine term acts by modulating the global resistance, due
to the weak-links whose transition occurs through mixed
superconductive-normal states.

I. INTRODUCTION

Arrays of Josephson junctions are under intensive
investigation for their potential implementation as su-
perconductor quantum bits and ability to model several
fundamental phenomena in disordered superconductive
films [1], [2], [3], [4], [5], [6], [7], [8], [9], [10],
[11], [12]. In particular, the resistively and capacitively
shunted Josephson Junction model (RSJ model) has been
adopted to describe the resistive transition in granular
superconductors [13], [14], [15], [16], [17]. In the con-
ventional RSJ model, the Josephson current is the simple
sinusoid IS(Á) = Ic sinÁ, where Ic is the critical current
and Á = µ2−µ1 the phase difference of the superconduc-
tor order parameters Δ1 exp(iµ1) and Δ2 exp(iµ2) [18].

Sign and magnitude of Ic are affected by the gap
function symmetry and relative orientation of the su-
perconductor electrodes. According to the microscopic
approach, the current-phase relation can be expressed as:

IS(Á) ∝
∫ +∞

−∞
[1− 2f(E)]Im[IE(Á)]dE , (1)

with f(E) the electron energy distribution and
Im[IE(Á)] the spectral current, which depend on ma-
terial, geometry and nonequilibrium conditions. The

current-phase relation (1) can be written as an n-order
Fourier series [19], [20]:

IS(Á) =
∑

n≥1

[
Ĩn sin(nÁ) + J̃n cos(nÁ)

]
. (2)

When the sum is restricted to the 1st order, Ĩn sin(nÁ)
reduces to the familiar sinusoidal Josephson current
Ic sinÁ. The term J̃n cos(nÁ) is the quasi-particle-pair-
interference current (QPIC). Deviations from the si-
nusoidal shape have been experimentally observed at
temperatures below Tc because, in general, these effects
are of the second order. In the vicinity of Tc, they have
been theoretically predicted and observed in normal-
metal weak-links, as a consequence of the depairing
either by proximity effect by supercurrent or in long
junctions or in far-from-equilibrium conditions [19]. A
disordered polycrystalline superconductor is a nonhomo-
geneous system with wide variability of the physical and
chemical properties of the grains. For current I ∼ Ic
and voltage 0 < V < Vc in the vicinity of the
transition, nonequilibrium effects arise in the weak-links
making their relevant properties spatially and temporally
dependent on the external drive [16], [17], [21], [22],
[23], [24], [25], [26], [27]. When a polycrystalline super-
conductor undergoes the transition, far-from-equilibrium
condition, due to the abrupt voltage drops across the
grains, may result in the emergence of higher harmonics
according to the local voltage values, geometry and
material composition of the grains. In the presence of
evolution equations which are nonlinear -such as those of
Josephson Junctions- intrinsic localized modes (ILM) are
obtained as solutions of sine-Gordon equations. Theses
solutions are characterized by being time-dependent and
spatially localized as opposed to translationally invariant
lattices, in the absence of disorder or defects, where an
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Fig. 1. Two-dimensional Josephson junction array representing
a granular superconductor. Circles represent superconducting grains
connected by weak-links. The bias current Ib is injected to the left
electrode and collected from the right electrode. Equivalent circuit of
the weak-link between the grains i and j is shown in the zoom. The
linear resistor Rij , the linear capacitor Cij , the nonlinear inductor
Ln,ij and memristor Mn,ij are connected in parallel. The current
Iij flows from grain i to grain j. Vij is the voltage drop across the
weak-link.

initially localized excitation distributes its energy over
the entire system. Deviations from the simple sinusoidal
shape in the I-V characteristics of single Josephson
junctions and arrays as an effect of the formation of
intrinsic localized modes have been reported in [26],
[27]. The-pair-interference current J̃n cos(nÁ) emerges
when the pair-symmetry is broken and it is expected to
come into play when the junctions are partly dissipative.
This may occur in the mixed state, i.e. in the vicinity of
Tc, for current I ∼ Ic and voltage 0 < V < Vc.

In this work, we put forward a model of the
superconductive-resistive transition where a network
of resistively and capacitively shunted nonsinusoidal
Josephson junctions are considered. The network of
weak-links, modeled as nonsinusoidal Josephson junc-
tions, should be particularly relevant when the effect of
nonequilibrium in the presence of disorder and nonlin-
earity should be taken into account in the transition of
granular superconductors.

II. MODEL

A two-dimensional array of Josephson junctions is
sketched in Fig. 1. The bias current Ib is injected to
the left electrode and collected from the right electrode.
Circles represent superconducting grains connected by
weak-links. According to the RSJ model, the current Iij

flowing through each junction is:

Iij = Cij
dVij

dt
+

Vij

R
+ IS,ij(Áij) + ±IL,ij . (3)

where Cij and Rij are the shunt capacitance and resis-
tance between grains i and j, IS,ij(Áij) is the Josephson
current, ±IL,ij is the Langevin fluctuation source. The
voltage drop across the junction is given by:

Vij = Vi − Vj =
ℏ
2e

dÁij

dt
, (4)

with Áij the phase difference of the order parameters in
the grains i and j. In the usual RSJ model, IS,ij(Áij)
is a simple sinusoid, whereas in the present work the
nonsinusoidal form given by Eq. (2) is considered.
Therefore, the current Iij flowing through each junction
connecting the grains i and j writes as:

Iij = Cij
dVij

dt
+

Vij

Rij
+

+
∑

n≥1

[Ĩn,ij sin(nÁij) + J̃n,ij cos(nÁij)] + ±IL,ij . (5)

Iij is given by the sum of the following contributions:
the charging current through the shunt capacitance Cij ,
the Ohmic current through the shunt resistance Rij ,
the n Josephson current sources Ĩn,ij sin(nÁij) and
J̃n,ij cos(nÁij) and the Langevin current.
The equivalent circuit of each junction is highlighted
in the circle of Fig. 1. It corresponds to a parallel
connection of a linear capacitor Cij , a linear resistor
Rij , a parallel of n inductors Ln,ij (related to the
Ĩn,ij sin(nÁij) terms) and a parallel of n memristors
Mn,ij related to the J̃n,ij cos(nÁij) terms (we use the
notation memristor after [28]). Eq. (5) can be written
more compactly as:

Iij = Cij
dVij

dt
+

Vij

R
+

+
∑

n≥1

Ic,n,ij sin(nÁij + Áo,n,ij) + ±IL,ij , (6)

with:
Ic,n,ij =

√
Ĩ2n,ij + J̃2

n,ij (7)

and:

Áo,n,ij = arctan(
J̃n,ij

Ĩn,ij
) (8)

Josephson junctions are usually classified in terms of
the Stewart-McCumber parameter ¯c = ¿RC/¿J with
¿RC = RC and ¿J = Áo/2¼IcRo, as overdamped
(¯c ≪ 1), general (¯c ≃ 1) and underdamped (¯c ≫ 1).
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Fig. 2. Josephson junction characteristics of a weak-link with
current-phase relation IS(Á) = Ic sin(Á) (the blue line), IS(Á) =
Ĩ1 sin(Á) + J̃1 cos(Á) with Ĩ1 = 1mA and J̃1 = 0.5mA (the pink
line). The generalized Stewart-McCumber parameter is ¯∗

c = 45.

For the nonsinusoidal junction described by Eq. (6),
the generalized Stewart-McCumber parameter can be de-
fined as ¯∗

c = ¿RC/¿
∗
J , with ¿∗J = Áo/(2¼

∑
n Ic,n,ijRo).

Eq. (6) can be numerically solved for an arbitrary
number n of harmonics. Nonetheless, we restrict our
discussion to the following case relevant to the physics
of superconductors:

IS,ij(Áij) = Ĩ1,ij sin(Áij) + J̃1,ij cos(Áij) , (9)

The scheme of the current-voltage characteristics of an
underdamped (¯∗

c ≫ 1) Josephson junction obtained by
solving Eq.(6) is shown in Fig. 2. In particular, the
blue line in Fig. 2 refers to the simple sinusoid, the
pink line to IS,ij(Áij) given by Eq.(9). The intermediate
states are characterized by voltage drops in the range
0 < Vij < Vc,ij and current Iij = Ic,n,ij . Upon current
(voltage) decrease starting from the normal state, the
behavior is always resistive, implying that the system
reaches the superconductive ground state without explor-
ing the intermediate states.

For overdamped junctions (¯∗
c ≪ 1), the intermediate

states are characterized by voltage drop and current
respectively in the range 0 < Vij < 2Vc,ij and Ic,n,ij <
Iij < Ic,n,ij [2Vc,ij ]. Upon increasing and decreasing the
external drive, the current-voltage behavior is the same,
hence no hysteresis is observed.

In the general case (¯∗
c ≈ 1), the I − V curve is

partly hysteretic. Upon increasing the external drive, the
intermediate states are characterized by a voltage drop
in the range 0 < Vij < Vc,ij and current equal to Ic,n,ij .
As the external drive decreases, the backward current
lies slightly below the forward current. It is worthy

of remarks that with the nonsinusoidal current phase
relation the capacitive effect is reduced in comparison
to the simple sinusoidal case.

III. RESULTS AND DISCUSSION

As stated above, the resistive transition is modeled by
using a network of weak-links, with Josephson junction
characteristics given by Eq. (6). The solution of the net-
work is obtained by a system of Kirchhoff equations that
has been already used for the simple sinusoidal Joseph-
son current characteristics in [16]. We have routinely
solved the Kirchhoff equations of the networks by using
the generalized RSJ model Eq. (6) with weak-links with
nonsinusoidal current-phase relation given by Eq. (2)
in the temperature range just below Tc. The network
is biased by constant current Ib. The superconductor-
insulator transition is simulated by solving the system of
Kirchhoff equations at varying temperature. The critical
currents Ĩn,ij and J̃n,ij are assumed to vary on tem-
perature according to the linearized equations Ĩn,ij =
Ĩo,n,ij (1− T/Tc) and J̃n,ij = J̃o,n,ij (1− T/Tc) , where
Ĩo,n,ij and J̃o,n,ij are the lowest temperature values of
Ĩn,ij and J̃n,ij . Hence, the critical current Ic,n,ij depends
on temperature according to Ic,n,ij = Ico,n,ij (1− T/Tc),

with Ico,n,ij =
√

Ĩ2o,n,ij + J̃2
o,n,ij . In order to take into

account the disorder of the array, Ĩn,ij and J̃n,ij are taken
as random variables, distributed according to Gaussian
functions with mean values Ĩo,n and J̃o,n and standard
deviations ΔĨo,n = ΔJ̃o,n.

By effect of the temperature increase and consequent
reduction of the critical current, the weak-link with the
lowest value of the critical current Ic,n,ij = Ic,min

switches to the intermediate state and, then, becomes
resistive when Vij > Vc. The resistive transition of the
first weak-link has the effect to set the value of the
voltage drop across the other weak-links in the same
layer. The result is the formation of a layer of weak-
links either in the resistive or in the intermediate state. As
temperature further increases, the critical current Ic,n,ij
further decreases. More and more weak-links gradually
switch from the superconductive to the intermediate state
and then to the resistive state. The term J̃n,ij acts by in-
creasing the critical current value of the weak-link in the
intermediate state in the layers undergoing the transition.
It is worthy to remark that the increase of critical current
is relative to the fraction of normal electrons in the mixed
states. The onset of J̃n,ij cos(nÁij) is indeed triggered
by the elementary resistive transition of the weak-link
with the lowest critical current, since it is related to
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Fig. 3. Resistive transition of a two-dimensional network with
current-phase relation of the form IS,ij(Áij) = Ĩ1,ij sin(Áij) +
J̃1,ij cos(Áij). The average value of the critical current Ĩ1,ij is
1mA. The curves correspond to different average values of the
critical current J̃1,ij , namely J̃1,ij = 0mA, J̃1,ij = 0.5mA,
J̃1,ij = 0.75mA and J̃1,ij = 1mA. The normal resistance Ro is
1Ω equal for all the junctions.

the partly broken pair-symmetry of the weak-links in
the intermediate state. It has no effect on the links in
the superconductive state, neither on those in the fully
resistive state.

Fig. 3 shows the curves of the resistive transi-
tions obtained with current-phase relation IS,ij(Áij) =
Ĩ1,ij sin(Áij)+ J̃1,ij cos(Áij) for a two-dimensional 30×
30 network. The curves correspond to different values
of the term J̃1,ij . The values of the critical currents are
Ĩ1,ij = 1mA and J̃1,ij ranging from 0 to 1mA. The stan-
dard deviation of the critical currents is ΔIo,n = 0.5mA.
Initially, the weak-links are in the superconductive state,
thus the network resistance is negligible. As temper-
ature increases, the weak-link with the lowest critical
current switches to the intermediate state and then to
the resistive state with the consequent onset of the term
J̃n,ij cos(nÁij) and redistribution of the currents. One
can notice that the curves overlap at the beginning of the
transition, whereas become more separated when T →
Tc, implying that the effect of the term J̃n,ij cos(nÁij)
is more relevant as the transition approaches its end.
The amplification of the J̃n,ij cos(nÁij) effect, as the
resistance increases, means that J̃n,ij acts as modulation
of the resistance. The modulation effect due to J̃n,ij can
be noted at the level of each elementary transition step.

IV. CONCLUSIONS

The nonsinusoidal current-phase relation has been
considered in the resistively shunted Josephson junction
model for describing the superconductive transition. By
solving a system of Kirchhoff equations for the array
of nonsinusoidal Josephson junctions, it is found that
additional cosine and sine terms modify the transition
curves by changing resistance and Josephson coupling.
The model might be relevant for Cooper pairs with d-
wave dominant over s-wave symmetry.
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Abstract—In this paper an order reduction technique for
higher dimensional nonlinear oscillator models based on
a center manifold approach is presented and its appli-
cation to oscillator design will be discussed. Therefore
the influences of parasitic elements and other structural
extensions of the dynamical behavior of oscillators can
be incorporated in oscillator modeling. Using the order
reduction technique a generalized second order model
will be derived where parameters of the higher order
model are included. Moreover by using an Andronov-Hopf
bifurcation analysis the reduced system can be studied with
respect to stability as well as the oscillator amplitude and
frequency. The concept is applied to the design of LC-Tank
MOS voltage controlled oscillators (VCOs).

I. INTRODUCTION

Nowadays the design of LC-Tank MOS VCOs, an
essential basic circuit block of GHz communication
systems, is a rather difficult problem with respect to
the very restrictive specifications. Therefore an oscillator
design approach based on the linear circuit paradigm,
modified by some nonlinear circuit aspects (see e. g.
[1], [2]), becomes inefficient, since elaborate circuit
simulations are needed to fit the specifications of the
oscillator (see [3], [4], [5]). Therefore an alternative
design approach based on a complete nonlinear circuit
paradigm is needed. The behavior of nonlinear oscillators
cannot be discussed using the linearization of the circuit
equations since a non-hyperbolic linear system results
due to the theorem of Hartman and Grobman (e.g. [6]).
We find out that the well-known Barkhausen and Nyquist
criteria (e.g. [7]) cannot be interpreted by means of
the linear circuit paradigm. Instead it is used to fit the
condition of a non-hyperbolic system (see Mandelstam
et al. [8] and Mathis [3]). As a conclusion we have to
emphasize that nonlinear oscillator models are not only
useful for a more precise oscillator modeling and design,
but also for a better understanding of the behaviour of
oscillators. However, nonlinear oscillator models provide
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Fig. 1. 5-dimensional circuit model of a LC-Tank VCO.

an opportunity to reduce time-consuming optimizations
by circuit simulators.
In contrast to the circuit analysis of oscillators
parametrized circuit models are needed for oscillator
design where the parameters can be used to adapt an
oscillator architecture to the specifications. Since it is
known from the Andronov-Hopf theorem that the sta-
tionary behavior of regular sinusoidal oscillators takes
place on 2-dimensional manifolds many nonlinear os-
cillator design approaches are based on second order
systems. Novel nonlinear design concepts that included
the nonlinearity of the varactors and the nonlinearity
of the active devices were presented in [9], [10], [11]
lately. Due to the parasitic elements of the used inductors
and transistors realistic oscillator models have a state-
space dimension exceeding two. As a result, a second
order differential equation can only be derived if a total
capacitance and a total inductance are defined. Usually,
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these approximative total elements can only be defined
near a certain frequency, but this is not possible for
nonlinear elements. In order to optimize selected circuit
properties different VCO architectures have been ex-
panded by structural circuit extensions; e.g. filter circuits
[12]. Most of these additional circuit elements cannot
be considered in the 2-dimensional model approaches.
In order to circumvent these difficulties and to study
asymmetrical effects, higher dimensional circuit models
are needed; see [13].
In the presented approach we use an order reduction
technique based on the center manifold approach to
extract a second order differential equation for the
description of nonlinear oscillators. All steps are per-
formed in a semi-symbolic manner in order to include
parameters in the equations to use it for the design
of oscillators. The method is applied to the standard
LC-Tank VCO architecture, which has been expanded
by an additional filter capacitance [12]. The proposed
approach allows to study and visualize the influence of
circuit asymmetries and structural circuit extensions on
the dynamical behavior of oscillators.

II. HIGHER DIMENSIONAL CIRCUIT MODEL

Fig. 1 shows the standard LC-Tank VCO architecture
which has been expanded by an additional filter capac-
itance Cp in order to improve the phase noise behavior
of the VCO [12]. The ohmic losses of the circuit are
summarized in the resistances R1 and R2. For the sake of
simplification, the capacitance of the two MOS varactors
[11] is modeled by the constant capacitances C1 and
C2, and the bias current is provided by an ideal current
source Ibias. If we assume that the MOS transistors T1
and T2 stay in saturation

ID = K · (VGS − Vth)2 with K =
µnCox

2

Wn

Ln
, (1)

the following circuit equations in a 5-dimensional state
space can be derived:

dvCp

dt
=

1

Cp
·
[
K · (v2 − vCp

− VTH)2

+ K · (v1 − vCp
− VTH)2 − Ibias

]
diL1

dt
=
v1 − VDD − iL1

·R1

L1

diL2

dt
=
v2 − VDD − iL2

·R2

L2

dv1
dt

=
1

C1
·
[
−K · (v2 − vCp

− VTH)2 − iL1

]
dv2
dt

=
1

C2
·
[
−K · (v1 − vCp

− VTH)2 − iL2

]

(2)

The transconductance K includes the electron mobility
µn, whereas Wn und Ln are the width and the length of
the channel of the MOS transistors and Cox is the oxide
capacitance. Obviously the capacitance Cp cannot be in-
corporated into a second order model in a direct manner.
By using a reduction method based on a center manifold
approach, it is possible to obtain a two dimensional
system of differential equations of the LC-Tank VCO
with filter capacitance, that maintains the dynamics of
the 5-dimensional system. The center manifold approach
is well-known in mathematics and oscillator analysis and
therefore the reader is left to the literature for further
details [4], [6], [14], and [15].

III. REDUCTION OF THE LC-TANK VCO EQUATIONS

AND THE ANDRONOV-HOPF BIFURCATION

In this section we use the above mentioned reduction
approach to the describing equations (2) of the VCO
in fig. 1. The specifications of the VCO are based on
bluetooth applications with a center frequency of 2.4
GHz and a tuning range from 2.1 GHz to 2.7 GHz.
We use a 0.25 µm CMOS process (SGB25V) from the
company IHP. The capacitances C1,2 are set to 500 fF,
which corresponds to the lower limit of the tuning range.
For the filter capacitance we choose a suitable value
of Cp=1 pF [12], [2]. The parasitic ohmic resistance
of the VCO circuit is summarized in R1,2=21 Ω. The
supply voltage is set to 2.5 V. We choose an inductor of
L1,2 = 11nH . The transconductance K is a free param-
eter that is related to the width Wn of the cross-coupled
MOS pair by (1). In order to study the Andronov-
Hopf bifurcation the eigenvalues of the linearized system
matrix are considered in dependence of K and Wn,
respectively. We are interested in a bifurcation parameter
µ that does not change the frequency of the VCO. By
means of root locus curves it can be shown that K
and therefore Wn is a suitable bifurcation parameter.
Therefore we use µ =

√
K as bifurcation parameter and

obtain a system of differential equations in the following
form

ẋ = F(x,K) mit F(0,K) = 0. (3)

In the equilibrium point the system can be developed by
means of a multidimensional Taylor series

ẋ = A(K) · x + f(x,K) mit f(x,K) = O(‖x‖2),
(4)
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where the Jacobi matrix A(µ) for our example VCO is
given by A(µ) =

109 ·

−126.49·µ 0 0 63.246·µ 63.246·µ
0 −1 0 90.909·10−3 0
0 0 −1 0 90.909·10−3

126.49·µ −2·103 0 0 −126.49·µ
126.49·µ 0 −2·103 −126.49·µ 0

 .
(5)

The Andronov-Hopf bifurcation point arise at µb =
7.9057 · 10−3, where the corresponding Wn can be
calculated by Wn = 2Lnµ

2/µnCox. The remaining
nonlinear part is given by f(x, µ) =

1012 ·


v21 ·µ2−2·v1·vCp ·µ2+v22 ·µ2−2·v2·vCp ·µ2+2·v2Cp

·µ2

0
0

−2·v2Cp
·µ2+4·v2·vCp ·µ2−2·v22 ·µ2

−2·v2Cp
·µ2+4·v1·vCp ·µ2−2·v21 ·µ2

 .
(6)

In order to study small derivations from the bifurcation
point µb we introduce µ = µb + ∆µ and reformulate the
differential equations in the following manner

ẋ = A(µb) · x + A(∆µ) · x + fb(x,∆µ). (7)

Note, that a center manifold is defined only in the
bifurcation point: However the center manifold is em-
bedded into a family of integral manifolds which are
parametrized by µb near the bifucation point. From the
above mentioned center manifold approach we know
that a linear transformation is necessary in order to
decompose the system into a stable and a center part

d

dt

[ xc1

xc2

]
= 109 ·

[
0 13.447

−13.447 0

]
·
[ xc1

xc2

]
+
[
fc1
fc2

]
, (8a)

d

dt

[ xs1

xs2

xs3

]
= 109 ·

[
−1 13.447 0

−13.447 −1 0
0 0 −1

]
·
[ xs1

xs2

xs3

]
+

[
fs1
fs2
fs3

]
,

(8b)

with fc1,2 = fc1,2(xc,xs,∆µ) and fs1,2,3 =
fs1,2,3(xc,xs,∆µ). Due to the symmetry of the circuit
the non-zero real and the imaginary parts are equal. The
center manifold can be represented by

xs = h(xc,∆µ). (9)

A quadratic polynomial approximation of the center
manifold h(xc,∆µ) is given by

φi(xc1, xc2,∆µ) =ai · x2c1 + bi · x2c2 + ci ·∆2
µ+

+di · xc1·xc2 + ei · xc1 ·∆µ + fi · xc2 ·∆µ
(10a)

where i = {1, 2, 3} and the coefficients are: a1 =
−216.210−6, a2 = 2.21310−3, a3 = −31.4710−3, b1 =
216.210−6, b2 = 4.36910−3, b3 = −31.3810−3, d1 =
4.35310−3, d2 = −541.210−6 and d3 = 62.3310−3.

Fig. 2. Transient trajectory in the center manifold (projection into
the subspace {xc1, xc2, xs3}).

It is noticeable that the ∆µ-dependent coefficients ci,
ei and fi with i = {1, 2, 3} are zero. The resulting
reduced nonlinear system of second order that describes
the dynamical behavior near the equilibrium point is of
the following form

ẋc = Ac · xc + fc(xc,∆µ, φ(xc,∆µ)). (11)

The dynamic of this system is illustrated in fig. 2.

IV. INFLUENCES OF ASYMMETRIES IN THE CIRCUIT

As a consequence of our circuit modeling we can
show that the circuit symmetry of the LC-Tank VCO
architecture results in special properties of the associate
mathematical models. In order to consider the impact
of circuit asymmetry on the LC-Tank VCO architecture
we introduce a substantial asymmetry in the circuit in
fig. 1 by setting C1 to 300fF and C2 to 700fF. In
contrast to the quadratic polynomial approximation of
the symmetrical model (10a) the coefficients e1,2,3 and
f1,2,3 are not zero anymore for the asymmetrical case.
We observe a linear dependency of these coefficients
with respect to the variation of the bifurcation parameter
∆µ. Fig. 3 shows some integral manifolds, projected
into the subspace {xc1, xc2, xs2}, for different parameter
values of ∆µ. In comparison to the center manifold with
∆µ = 0 we observe distortions of the integral manifolds.
Obviously the dynamics of the system are perturbed;
see fig. 3. Fig. 4 shows an integral manifold for the
symmetrical VCO case in which a numerically calculated
limit cycle is embedded. The integral manifold was cal-
culated by using a 3rd order polynomial approximation
for the center manifold. This result illustrates that by
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Integral Manifold ∆ µ= 0.02
Integral Manifold ∆ µ =0.03

∆

Fig. 3. Integral manifold in dependency of ∆µ (projection into the
subspace {xc1, xc2, xs2}).

Fig. 4. Limit cycle embedded into the integral manifold for ∆µ=
0.012 (projection into the subspace {xc1, xc2, xs2}).

using a more precise VCO model (using a 3rd order or
higher center manifold approximation) the dependency
of the system dynamics on the bifurcation parameter can
be obtained even for a symmetrical designed LC-Tank
VCO circuit. Therefore, our approach can be used for a
geometrical study of the asymmetries within the VCO
and a visualization of the overall VCO dynamics. It can
also be used to classify VCO circuits.

V. CONCLUSIONS

In this paper an order reduction technique is realized,
that is based on the concept of center manifold. We
illustrate this approach by means of a VCO model with
a 5-dimensional state space. It was shown that a second
order model can be derived which is not only valid
near the bifurcation point that is near the oscillatory
frequency of the VCO. Furthermore, the dynamics of
the circuit can be studied in dependency of structural
and parametric disturbances of the circuit. This was
illustrated by considering asymmetries within the VCO.
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