935 research outputs found

    Genetic Basis of Self-Incompatibility in the Lichen-Forming Fungus Lobaria pulmonaria and Skewed Frequency Distribution of Mating-Type Idiomorphs: Implications for Conservation

    Get PDF
    Fungal populations that reproduce sexually are likely to be genetically more diverse and have a higher adaptive potential than asexually reproducing populations. Mating systems of fungal species can be self-incompatible, requiring the presence of isolates of different mating-type genes for sexual reproduction to occur, or self-compatible, requiring only one. Understanding the distribution of mating-type genes in populations can help to assess the potential of self-incompatible species to reproduce sexually. In the locally threatened epiphytic lichen-forming fungus Lobaria pulmonaria (L.) Hoffm., low frequency of sexual reproduction is likely to limit the potential of populations to adapt to changing environmental conditions. Our study provides direct evidence of self-incompatibility (heterothallism) in L. pulmonaria. It can thus be hypothesized that sexual reproduction in small populations might be limited by an unbalanced distribution of mating-type genes. We therefore assessed neutral genetic diversity (using microsatellites) and mating-type ratio in 27 lichen populations (933 individuals). We found significant differences in the frequency of the two mating types in 13 populations, indicating a lower likelihood of sexual reproduction in these populations. This suggests that conservation translocation activities aiming at maximizing genetic heterogeneity in threatened and declining populations should take into account not only presence of fruiting bodies in transplanted individuals, but also the identity and balanced representation of mating-type genes

    Abundant variation in microsatellites of the parasitic nematode Trichostrongylus tenuis and linkage to a tandem repeat

    Get PDF
    An understanding of how genes move between and within populations of parasitic nematodes is important in combating the evolution and spread of anthelmintic resistance. Much has been learned by studying mitochondrial DNA markers, but autosomal markers such as microsatellites have been applied to only a few nematode species, despite their many advantages for studying gene flow in eukaryotes. Here, we describe the isolation of 307 microsatellites from Trichostrongylus tenuis, an intestinal nematode of red grouse. High levels of variation were revealed at sixteen microsatellite loci (including three sex-lined loci) in 111 male T. tenuis nematodes collected from four hosts at a single grouse estate in Scotland (average He = 0.708; mean number of alleles = 12.2). A population genetic analysis detected no deviation from panmixia either between (F(ST) = 0.00) or within hosts (F(IS) = 0.015). We discuss the feasibility of developing microsatellites in parasitic nematodes and the problem of null alleles. We also describe a novel 146-bp repeat element, TteREP1, which is linked to two-thirds of the microsatellites sequenced and is associated with marker development failure. The sequence of TteREP1 is related to the TcREP-class of repeats found in several other trichostrongyloid species including Trichostrongylus colubriformis and Haemonchus contortus

    Isolation of DNA Microsatellite Markers in the Green-lipped Mussel, Perna viridis

    Get PDF
    A total of 21 DNA microsatellites were isolated from Perna viridis lJy using a 5' anchored polymerase chain reaction technique. Primers were designed for seven microsatellite loci and the peR amplifications of these seven microsatellite loci showed that five were polymorphic with the number ofalleles per locus rangingfrom 2 to 4. These are the first set of microsatellite markers developed for this species. These markers are useful as tools for more detailed studies of the genetic backgrounds of the green-lipped musse~ P. viridis, in our country as this species is being cultured as a cheap source of protein for human consumption and has been identified as a potential biomonitoring agent for heavy metal pollution in the west coast of Peninsular Malaysia

    The horizontal gene transfer of Agrobacterium T-DNAs into the series Batatas (genus Ipomoea) genome is not confined to hexaploid sweetpotato

    Get PDF
    The discovery of the insertion of IbT-DNA1 and IbT-DNA2 into the cultivated (hexaploid) sweetpotato [Ipomoea batatas (L.) Lam.] genome constitutes a clear example of an ancient event of Horizontal Gene Transfer (HGT). However, it remains unknown whether the acquisition of both IbT-DNAs by the cultivated sweetpotato occurred before or after its speciation. Therefore, this study aims to evaluate the presence of IbT-DNAs in the genomes of sweetpotato's wild relatives belonging to the taxonomic group series Batatas. Both IbT-DNA1 and IbT-DNA2 were found in tetraploid I. batatas (L.) Lam. and had highly similar sequences and at the same locus to those found in the cultivated sweetpotato. Moreover, IbT-DNA1 was also found in I. cordatotriloba and I. tenuissima while IbT-DNA2 was detected in I. trifida. This demonstrates that genome integrated IbT-DNAs are not restricted to the cultivated sweetpotato but are also present in tetraploid I. batatas and other related species

    An overview of molecular marker methods for plants

    Get PDF
    The development and use of molecular markers for the detection and exploitation of DNA polymorphism is one of the most significant developments in the field of molecular genetics. The presence of various types of molecular markers, and differences in their principles, methodologies, and applications require careful consideration in choosing one or more of such methods. No molecular markers are available yet that fulfill all requirements needed by researchers. According to the kind of study to be undertaken, one can choose among the variety of molecular techniques, each of which combines at least some desirable properties. This article provides detail review for 11 different molecular marker methods: restriction fragment length polymorphism (RFLP), random amplified polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP), inter-simple sequencerepeats (ISSRs), sequence characterized regions (SCARs), sequence tag sites (STSs), cleaved amplified polymorphic sequences (CAPS), microsatellites or simple sequence repeats (SSRs), expressedsequence tags (ESTs), single nucleotide polymorphisms (SNPs), and diversity arrays technology (DArT)

    Allelic configuration and polysomic inheritance of highly variable microsatellites in tetraploid gynodioecious Thymus praecox agg

    Get PDF
    Polyploidy plays a pivotal role in plant evolution. However, polyploids with polysomic inheritance have hitherto been severely underrepresented in plant population genetic studies, mainly due to a lack of appropriate molecular genetic markers. Here we report the establishment and experimental validation of six fully informative microsatellite markers in tetraploid gynodioecious Thymus praecox agg. Sequence data of 150 microsatellite alleles and their flanking regions revealed high variation, which may be characteristic for polyploids with a reticulate evolutionary history. Understanding the patterns of mutation (indels and substitutions) in microsatellite flanking-sequences was a prerequisite for the development of co-dominant markers for fragment analyses. Allelic segregation patterns among progeny arrays from ten test crosses revealed tetrasomic inheritance in T. praecox agg. No evidence of frequent double reduction was detected. Polymerase chain reaction (PCR) based dosage effects allowed for precise assignment of allelic configuration at all six microsatellite loci. The quantification of allele copy numbers in PCR was verified by comparisons of observed and expected gametic allele frequencies and heterozygosities in test crosses. Our study illustrates how PCR based markers can provide reliable estimates of heterozygosity and, thus, powerful tools for breeding system and population genetic analyses in polyploid organism

    Discovery of Candidate Genes for Stallion Fertility from the Horse Y Chromosome

    Get PDF
    The genetic component of mammalian male fertility is complex and involves thousands of genes. The majority of these genes are distributed on autosomes and the X chromosome, while a small number are located on the Y chromosome. Human and mouse studies demonstrate that the most critical Y-linked male fertility genes are present in multiple copies, show testis-specific expression and are different between species. In the equine industry, where stallions are selected according to pedigrees and athletic abilities but not for reproductive performance, reduced fertility of many breeding stallions is a recognized problem. Therefore, the aim of the present research was to acquire comprehensive information about the organization of the horse Y chromosome (ECAY), identify Y-linked genes and investigate potential candidate genes regulating stallion fertility. To achieve theses goals, a direct cDNA (complementary DNA) selection procedure was used to isolate Y-linked genes from horse testes and 29 Y-specific genes were identified. All 29 genes were mapped to ECAY and their sequences were used to further expand the existing map. Copy number analysis identified 15 multicopy genes of which 9 were novel transcripts. Gene expression analysis on a panel of selected body tissues showed that some ECAY genes are expressed exclusively in testes while others show ubiquitous or intermediate expression. Quantitative Real-Time PCR using primers for 9 testis-specific multicopy genes revealed 5 genes with statistically significant differential expression in testis of normal fertile stallions and stallions with impaired fertility. Gene copy number analysis showed that the average copy number of 4 such genes was decreased in subfertile/infertile stallions compared to normal animals. Taken together, this research generated the first comprehensive physical gene map for the horse Y chromosome and identified a number of candidate genes for stallion fertility. The findings essentially expand our knowledge about Y chromosome genes in horses, open a new avenue for investigating the potential role of ECAY genes in stallion fertility which contribute to the development of molecular tools for the assessment of fertility in stallions

    Cryptic MHC Polymorphism Revealed but Not Explained by Selection on the Class IIB Peptide-Binding Region

    Get PDF
    The immune genes of the major histocompatibility complex (MHC) are characterized by extraordinarily high levels of nucleotide and haplotype diversity. This variation is maintained by pathogen-mediated balancing selection that is operating on the peptide-binding region (PBR). Several recent studies have found, however, that some populations possess large clusters of alleles that are translated into virtually identical proteins. Here, we address the question of how this nucleotide polymorphism is maintained with little or no functional variation for selection to operate on. We investigate circa 750–850 bp of MHC class II DAB genes in four wild populations of the guppy Poecilia reticulata. By sequencing an extended region, we uncovered 40.9% more sequences (alleles), which would have been missed if we had amplified the exon 2 alone. We found evidence of several gene conversion events that may have homogenized sequence variation. This reduces the visible copy number variation (CNV) and can result in a systematic underestimation of the CNV in studies of the MHC and perhaps other multigene families. We then focus on a single cluster, which comprises 27 (of a total of 66) sequences. These sequences are virtually identical and show no signal of selection. We use microsatellites to reconstruct the populations' demography and employ simulations to examine whether so many similar nucleotide sequences can be maintained in the populations. Simulations show that this variation does not behave neutrally. We propose that selection operates outside the PBR, for example, on linked immune genes or on the “sheltered load” that is thought to be associated to the MHC. Future studies on the MHC would benefit from extending the amplicon size to include polymorphisms outside the exon with the PBR. This may capture otherwise cryptic haplotype variation and CNV, and it may help detect other regions in the MHC that are under selection

    Enhanced cross-species utility of conserved microsatellite markers in shorebirds

    Get PDF
    Background: Microsatellite markers are popular genetic markers frequently used in forensic biology. Despite their popularity, the characterisation of polymorphic microsatellite loci and development of suitable markers takes considerable effort. Newly-available genomic databases make it feasible to identify conserved genetic markers. We examined the utility and characteristics of conserved microsatellite markers in Charadriiformes (plovers, sandpipers, gulls and auks). This order harbours many species with diverse breeding systems, life histories and extraordinary migration biology whose genetics warrant investigation. However, research has been largely restrained by the limited availability of genetic markers. To examine the utility of conserved microsatellite loci as genetic markers we collated a database of Charadriiformes microsatellites, searched for homologues in the chicken genome and tested conserved markers for amplification and polymorphism in a range of charadriiform species. Results: Sixty-eight (42%) of 161 charadriiform microsatellite loci were assigned to a single location in the chicken genome based on their E-value. Fifty-five primers designed from conserved microsatellite loci with an E-value of E-10 or lower amplified across a wider range of charadriiform species than a control group of primers from ten anonymous microsatellite loci. Twenty-three of 24 examined conserved markers were polymorphic, each in on average 3 of 12 species tested. Conclusion: Genomic sequence databases are useful tools to identify conserved genetic markers including those located in non-coding regions. By maximising primer sequence similarity between source species and database species, markers can be further improved and provide additional markers to study the molecular ecology of populations of non-model organisms

    Comparative transcriptome analysis and marker development of two closely related Primrose species (Primula poissonii and Primula wilsonii)

    Get PDF
    BACKGROUND: Primula species are important early spring garden plants with a centre of diversity and speciation in the East Himalaya-Hengduan Mountains in Western China. Studies on population genetics, speciation and phylogeny of Primula have been impeded by a lack of genomic resources. In the present study, we sequenced the transcriptomes of two closely related primrose species, Primula poissonii and Primula wilsonii, using short reads on the Illumina Genome Analyzer platform. RESULTS: We obtained 55,284 and 55,011 contigs with N50 values of 938 and 1,085 for P. poissonii and P. wilsonii, respectively, and 6,654 pairs of putative orthologs were identified between the two species. Estimations of non-synonymous/synonymous substitution rate ratios for these orthologs indicated that 877 of the pairs may be under positive selection (Ka/Ks > 0.5), and functional enrichment analysis revealed that significant proportions of the orthologs were in the categories DNA repair, stress resistance, which may provide some hints as to how the two closely related Primula species adapted differentially to extreme environments, such as habitats characterized by aridity, high altitude and high levels of ionizing radiation. It was possible for the first time to estimate the divergence time between the radiated species pair, P. poissonii and P. wilsonii; this was found to be approximately 0.90 ± 0.57 Mya, which falls between the Donau and Gunz glaciation in the Middle Pleistocene. Primers based on 54 pairs of orthologous SSR-containing sequences between the two Primula species were designed and verified. About half of these pairs successfully amplified for both species. Of the 959 single copy nuclear genes shared by four model plants (known as APVO genes), 111 single copy nuclear genes were verified as being present in both Primula species and exon-anchored and intron-spanned primers were designed for use. CONCLUSION: We characterized the transcriptomes for the two Primula species, and produced an unprecedented amount of genomic resources for these important garden plants. Evolutionary analysis of these two Primula species not only revealed a more precise divergence time, but also provided some novel insights into how differential adaptations occurred in extreme habitats. Furthermore, we developed two sets of genetic markers, single copy nuclear genes and nuclear microsatellites (EST-SSR). Both these sets of markers will facilitate studies on the genetic improvement, population genetics and phylogenetics of this rapidly adapting taxon
    corecore