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ABSTRACT 

 

Discovery of Candidate Genes for Stallion Fertility from the Horse Y Chromosome. 

(August 2009) 

Nandina Paria, B.S., University of Calcutta; 

M.S., University of Calcutta 

Chair of Advisory Committee: Dr. Terje Raudsepp 

 

The genetic component of mammalian male fertility is complex and involves 

thousands of genes. The majority of these genes are distributed on autosomes and the X 

chromosome, while a small number are located on the Y chromosome. Human and 

mouse studies demonstrate that the most critical Y-linked male fertility genes are present 

in multiple copies, show testis-specific expression and are different between species. 

In the equine industry, where stallions are selected according to pedigrees and 

athletic abilities but not for reproductive performance, reduced fertility of many breeding 

stallions is a recognized problem. Therefore, the aim of the present research was to 

acquire comprehensive information about the organization of the horse Y chromosome 

(ECAY), identify Y-linked genes and investigate potential candidate genes regulating 

stallion fertility. 

To achieve theses goals, a direct cDNA (complementary DNA) selection 

procedure was used to isolate Y-linked genes from horse testes and 29 Y-specific genes 

were identified. All 29 genes were mapped to ECAY and their sequences were used to 
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further expand the existing map. Copy number analysis identified 15 multicopy genes of 

which 9 were novel transcripts. Gene expression analysis on a panel of selected body 

tissues showed that some ECAY genes are expressed exclusively in testes while others 

show ubiquitous or intermediate expression. Quantitative Real-Time PCR using primers 

for 9 testis-specific multicopy genes revealed 5 genes with statistically significant 

differential expression in testis of normal fertile stallions and stallions with impaired 

fertility. Gene copy number analysis showed that the average copy number of 4 such 

genes was decreased in subfertile/infertile stallions compared to normal animals.  

Taken together, this research generated the first comprehensive physical gene 

map for the horse Y chromosome and identified a number of candidate genes for stallion 

fertility. The findings essentially expand our knowledge about Y chromosome genes in 

horses, open a new avenue for investigating the potential role of ECAY genes in stallion 

fertility which contribute to the development of molecular tools for the assessment of 

fertility in stallions. 
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CHAPTER I 

 

GENERAL INTRODUCTION 

 

OVERVIEW OF THE GENETICS OF MALE FERTILITY IN MAMMALS 

Male fertility in mammals is a complex trait and is governed by a combination of 

multiple environmental and genetic factors. Though only limited information is available 

about the latter, it has been proposed that almost 20% of the genes in mammalian 

genomes (~5,000 genes) are involved in different aspects of male fertility - sex 

determination, sexual differentiation and testicular development, spermatogenesis, sperm 

function and sperm-oocyte interactions preceding fertilization (Hargreave 2000; Matzuk 

and Lamb 2002; Carrell 2007; Krausz and Giachini 2007). Male fertility is the result of a 

well orchestrated and spatio-temporally regulated interaction of these genes, though our 

current knowledge about the role of specific genes at different stages of male 

development is limited. This also implies that very little is known about the underlying 

molecular causes of male infertility. To date only a few hundreds male fertility genes 

have been identified using mainly transgenic, knockout, or mutant rodent models 

(Matzuk and Lamb 2002; Carrell 2008; Matzuk and Lamb 2008). In the following 

sections a brief overview of current knowledge about the genetic regulation of the most 

critical steps in male fertility is presented. 

 

____________ 

This dissertation follows the style of Cytogenetic and Genome Research. 
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Male sex determination  

Male sex determination in mammals is a complex process that involves a cascade 

of molecular events and interactions among many genes. In eutherian mammals the 

onset of maleness is governed by a single gene - SRY (Sex-determining Region on Y) 

that encodes a high mobility group (HMG) family transcription factor protein. In mouse 

Sry transcripts are expressed for a brief period during early stages of gonadal 

development (between 10.5-12.5 days postcoitum) and the ability of SRY to induce testis 

development is limited to a time window of only 6 hours after the normal onset of its 

expression in XY gonads. This is an indication that SRY mainly initiates testis 

development rather than maintains testis differentiation (Hiramatsu et al. 2009; Sekido 

and Lovell-Badge 2009). Several hypotheses have been proposed regarding SRY 

function in sex determination. For example, SRY might antagonize a repressor of male 

development or might initiate transcription of one or more genes that have important 

roles in male development (Wilhelm et al. 2007a). However, in order to understand SRY 

functional pathway(s), knowledge of SRY target genes is required. With recent progress 

in deciphering the genetic component of mammalian sex determination, several other 

genes with important roles in sex determination and male development have been 

discovered. Among these are SRY-box 9 (SOX9), steroidogenic factor (SF1, now known 

as nuclear receptor subfamily 5, group A, member 1, NR5A1), GATA-binding protein 4 

(GATA4), fibroblast growth factor 9 (FGF9), wingless-type MMTV integration site family, 

member 4 (WNT4), R-Spondin1 (RSPO1) and many more. Rodent studies provide 

compelling evidence that the only downstream target of SRY is SOX9 which in turn 
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activates the rest of the male pathway genes, drives Sertoli cell formation and hence, 

testis differentiation (Sekido et al. 2004; Wilhelm et al. 2005; Sekido and Lovell-Badge 

2008). Murine Sry binds to multiple elements within a Sox9 gonad-specific enhancer and 

upregulates Sox9. Although Sry initiates maleness in the embryo, Sox9 maintains the 

later part of male development. While Sry expression is transient, Sox9 expression is 

maintained in Sertoli cells throughout life (Sekido and Lovell-Badge 2009). 

Furthermore, SRY upregulates SOX9 expression rather than initiates it. It is proposed that 

SOX9 transcriptional regulation consists of at least three phases: i) SRY-independent and 

probably SF1-dependent initiation, ii) SRY-dependent upregulation, and iii) SRY-

independent maintenance (Sekido et al. 2004). This also explains how gain-of-function 

mutations of SOX9 in humans and mice can initiate male development in female (XX) 

embryos in the absense of SRY (Polanco and Koopman 2007; Wilhelm et al. 2007b). 

Another key-role gene in the self-reinforcing pathway of male sex determination is SF1 

which initiates SOX9 transcription and thereafter, cooperatively with SRY, upregulates 

SOX9 expression. A positive feed-back loop between SF1 and SOX9 is also needed to 

maintain SF1 transcription. After SRY expression has ceased, SOX9 binds to its enhancer 

along with SF1 to maintain SOX9 expression in the absence of SRY. Therefore, 

mammalian sex determination involves the synergistic action of SRY and SF1 on a 

specific SOX9 enhancer to upregulate and maintain SOX9 expression (Sekido and 

Lovell-Badge 2008). Additionally, SOX9 binds to its own enhancer and self-regulates its 

expression. These early events in male sex determination involve mainly three critical 

genes – SRY, SF1, SOX9 and focus on the initiation and maintenance of SOX9 
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expression. SOX9, in turn, is probably the pivotal and distinguishing factor that 

influences the expression of genes that define Sertoli cell phenotype and function, such 

as anti-Mullerian hormone (AMH) and prostaglandin D2 synthase (PTGDS). A positive 

feed-forward loop between SOX9 and FGF9 activates the FGF9-FGFR2 signalling 

pathway which antagonizes the activity of RSPO1-WNT4 and suppresses ovarian 

development (Kim et al. 2006; Wilhelm 2007). FGF9, in turn, is indispensable to 

maintain SOX9 expression in Sertoli precursor cells. DAX1 acts as an anti-testis gene by 

antagonizing the function of SRY in mammalian sex determination pathways (Swain et 

al. 1998). While SOX9 activates genes critical for male development, it also represses 

the activity of genes typical to bipotential cell precursors and follicle cells. Once SOX9 

activity has reached a critical threshold, it represses SRY activity, as well as the activity 

of typical female pathway genes such as WNT4, RSPO1, DAX1 and FOXL2 (Nef et al. 

2003; Sekido and Lovell-Badge 2008).  In summary, male sex determination in 

mammals is a complex process which is sensitive to gene dosages, involves synergistic 

interactions of many genes forming a network of  positive and negative feedback or feed 

forward loops and keeps a fine balance between male and female developmental 

pathways (Sekido and Lovell-Badge 2008). However, it should be noted that most 

current knowledge about male sex determination is based on mouse models and might 

not reflect the situation in other mammalian species. A schematic representation of SRY-

SOX9 interplay in mammalian sex determination pathways is shown in Fig. 1.  
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Male sexual differentiation 

Once the sex of the embryo is determined as male, the bipotential gonad 

differentiates along the male pathway into a testis which, in turn, dictates the 

development of male secondary sex organs and the differentiation of Wolffian ducts into 

the male genital tract, viz., epididymis, vas deferens and seminal vesicles (Matzuk and 

Lamb 2008). All these events, especially the processes that lead to the proper 

Figure 1: Schematic representation of SOX9-SRY interactions at the onset of 

mammalian sex determination (Wilhelm 2007, Wilhelm et al. 2007b, Sekido and 

Lovell-Badge 2008).  
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development, growth, and descent of testes, are critical for spermatogenesis and male 

fertility. 

The complex events of male sexual differentiation are sensitive to environmental 

influences (e.g., toxins, temperature) and are regulated by many genes coding for various 

growth and transcription factors, hormones and signaling molecules (Matzuk and Lamb 

2008). As already mentioned, testis differentiation is induced by the expression of SRY 

and SOX9 in a subset of somatic cells, known as Sertoli cell precursors that develop into 

Sertoli cells. Sertoli cells, in turn, orchestrate the differentiation of all other cell types in 

males by secreting appropriate levels of signaling molecules (Wilhelm et al. 2007b). 

This leads to the formation of testis cords (the precursors of adult spermatogenic 

tubules), differentiation of Leydig cells, vascular cells and other interstitial cells such as 

fibroblasts, mast cells, macrophages and lymphocytes. Leydig cells are important for 

secreting the hormones that play vital roles in establishing and maintaining the 

secondary male sex characteristics (Wilhelm et al. 2007b). Increased proliferation and 

migration of peritubular myoid cells, Leydig cells and endothelial cells from adjacent 

mesonephros are responsible for the increase of testis size (Schmahl et al. 2000).  

An important event in male differentiation is proper descent of the testes. 

Impaired testicular descent, cryptorchidism, exposes the undescended testis for a 

prolonged time to increased temperature resulting in compromised spermatogenesis and 

reduced fertility or infertility. Cryptorchdism as a possible cause of impaired 

spermatogenesis was first described over 80 years ago (Crew 1922) and is one of the 

best-characterized risk factors for reduced male
 
fertility (Foresta et al. 2008). The 
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condition is a more common problem (2-12%) in humans, pigs, dogs, cats and horses 

compared to cattle and sheep (<1%) (Amann and Veeramachaneni 2007). Despite this, 

very little is known about the genetic causes of cryptorchidism. The Mouse Genome 

Informatics (MGI: http://www.informatics.jax.org/
1
) database describes about 44 genes 

and markers that are associated with the murine cryptorchid phenotype. Eighteen of 

these genes are also believed to be involved in unilateral or bilateral cryptorchidism in 

humans (Matzuk and Lamb 2008), though causative mutations have been found in only a 

few genes and a few individuals. For example, a single nucleotide mutation in insulin-

like factor 3 (INSL3) is associated with some, but not all, cases of human cryptorchidism 

(Feng et al. 2004; Agoulnik and Feng 2007). INSL3 is required for gradual expansion of 

the gubernaculum which, in turn, provides an anchor for normal abdominal translocation 

of the testis. Other critical candidate genes for cyptorchidism are INSL3 receptor (LGR8, 

now known as RXFP2), homeo box A10 (HOXA10) and estrogen receptor 1 (ESR1) 

(Matzuk and Lamb 2008). Over-expression of the aromatase gene (CYP19A1) can cause 

cryptorchidism by raising intra-testicular estradiol levels, introducing hormonal 

imbalance in the system (Klonisch et al. 2004). Additionally, environmental factors that 

interfere with the endocrine regulation of testicular
 
descent might also contribute to the 

etiology of cryptorchidism (Foresta et al. 2008)
 
and complicate the search for genetic 

causes. 

Compared to the well studied physiology and biochemical pathways of signaling 

molecules leading to the differentiation of primordial germ cells, not much is known 

about the genetic basis of male sexual development and differentiation in mammals. 
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There is a non-exhaustive list of about 90 candidate genes that might be associated with 

various stages of male differentiation, while single nucleotide polymorphisms (SNPs) or 

mutations have been described for only seven genes, viz., ATF3, CFTR, ESR1, ESR2, 

FGFR2, INSL3, SF1 (Matzuk and Lamb 2008). Similarly to male sex determination, 

most of the genetic studies on male sexual differentiation are based on rodent models 

and only a few have searched for candidate genes and mutations in humans or domestic 

animals (Matzuk and Lamb 2002; Wilhelm et al. 2007b; Barthold 2008; Foresta et al. 

2008). 

 

Spermatogenesis 

Mammalian spermatogenesis entails a sequence of events that are initiated in the 

testis, proceed in the epididymis, and culminate with sperm capacitation in the female 

reproductive tract. For successful sperm, these events are followed by acrosomal 

exocytosis, penetration of the oocyte zona pellucida, and fertilization (Luk et al. 2006; 

Varner and Johnson 2007; Marengo 2008). Spermatogenesis involves mitotic and 

meiotic cell divisions and both nuclear and cytoplasmic reorganizations, thus, many 

proteins are transiently or temporally expressed in a particular stage of the 

spermatogenic cycle (Cheng and Mruk 2002). This implies that spermatogenesis is under 

spatio-temporal control of many genes. A variety of approaches have identified over 

1000 genes that are specifically expressed in male germline and become active in testis 

exemplifying the complexity of the process. This also indicates that mutations in 

thousands of different genes could cause male infertility (Cooke and Saunders 2002; 
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Nayernia et al. 2003; Chenoweth 2005; Carrell 2007). Targeting specific genes that 

regulate particular processes during spermatogenesis, however, has had limited success, 

and has been carried out mainly in model species like mice and rats (Matzuk and Lamb 

2002; Nayernia et al. 2003). In contrast, very little is known about the genes controlling 

spermatogenesis and male fertility in other mammalian species, including humans and 

horses. To illustrate the complex genetics underlying spermatogenesis, a summary of 

events at different phases of this process is described below.   

 

i) Mitotic and meiotic germ cell divisions 

Male germ cell proliferation begins in embryogenesis and with the exception of a 

short prenatal-prepubertal period, spermatogonial stem cells proliferate throughout life. 

Spermatogenesis, the development of mature sperm from spermatogonia, starts at 

puberty under the influence of the hormone testosterone. Spermatogonial cells 

differentiate into diploid primary spermatocytes which then undergo meiosis. Meiosis is 

a type of cell division unique to germ cells and is needed for the production of haploid 

gametes for sexual reproduction. Synapsis of homologous chromosomes during the 

prophase of the first meiotic division is necessary for proper segregation of homologous 

chromosomes into haploid spermatids, while meiotic recombination increases genetic 

variation by exchanging alleles between paternal and maternal homologs. 

Recombination and faultless segregation of homologous chromosomes are, thus, among 

the most critical events during spermatogenesis and any mistake results in aberrant 
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sperm. The most extreme consequence of meiotic errors is the production of semen 

without sperm (azoospermia) causing complete infertility.  

Mitotic and meiotic cell divisions are controlled by hundreds of genes. Recent 

studies of transcriptional regulatory network of the mitotic cell cycle in normal human 

fibroblasts identified 480 periodically expressed genes (Bar-Joseph et al. 2008) and it 

could be expected that meiosis is regulated by even more genes. Among the 

approximately 115 genes associated with various types of sperm defects (O'Bryan and de 

Kretser 2006; Matzuk and Lamb 2008), several are critical for meiotic recombination 

and chromosome movements during meiosis. To mention a few, male mice lacking both 

copies of synaptonemal complex protein 3 (SYCP3) produce no sperm (Hughes 2008), 

mutation in chromosomal passenger protein aurora kinase C gene (AURKC) which is 

needed for normal centromere function, leads to the production of large-headed 

polyploid multi-flagellar spermatozoa causing infertility in human males (Dieterich et al. 

2009) and mutations in recombination genes such as SPO11, DMC1, MSH4 and MSH5 

cause complete arrest of germ cells at zygonema of meiosis I prophase and result in 

azoospermia both in men and mice (Gonsalves et al. 2004). Normally, aberrant germ 

cells are arrested at cell cycle checkpoints and subjected to DNA repair or, if damaged 

beyond repair, eliminated by programmed cell death also known as apoptosis (Gonsalves 

et al. 2004). Consequently, mutations in genes controlling cell cycle checkpoints, DNA 

repair mechanisms or apoptosis contribute to the production of various types of defective 

sperm (Matzuk and Lamb 2008).  
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 ii) Spermiogenesis 

The final phase of sperm development within testis is spermiogenesis. During 

this stage the haploid round spermatids undergo dramatic transformation and are finally 

released during the process called spermiation into the lumen of seminiferous tubules as 

spermatozoa (Beardsley and O'Donnell 2003; Varner and Johnson 2007). Terminal 

differentiation of spermatids involves four major events: i) acrosome biogenesis, ii) 

formation of sperm tail or flagellum, iii) chromatin condensation, and iv) removal of 

most of the sperm cytoplasm. These complex processes are critical for the development 

of fully functional sperm and at this time the sperm are most vulnerable to both 

structural and genetic defects (Varner and Johnson 2007). 

The acrosome is a large secretory vesicle located in the sperm’s head between the 

nucleus and the plasma membrane and is essential for penetration of the sperm through 

the oocyte’s zona pellucida and fertilization (Mayorga et al. 2007; Varner and Johnson 

2007; Zhao et al. 2007; Zhao et al. 2008). The absence of the acrosome, also known as 

globozoospermia, is a genetic disorder of male infertility and is characterized by the 

presence of 100% round-headed sperm lacking an acrosome (Dam et al. 2007). Studies 

in humans and mice agree that defects in acrosome biogenesis have a genetic basis, 

though very little is known about candidate genes and mutations. MGI 

(http://www.informatics.jax.org/
1
) describes about 40 murine genes and phenotypes with 

an abnormal or missing acrosome of which some though not all might be associated with 

similar conditions in humans or other mammals. For example, homozygous deletion of 

the casein kinase 2 (Csnk2a2) causes globozoospermia in mouse (Rocha and Affara 
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2000; Truong et al. 2003) but in spite of expectations, no mutations in CSNK2A2 have 

been detected in globozoospermic human patients (Pirrello et al. 2005).  

The development of the sperm tail is another key-process which directly affects 

sperm motility and involves formation of axoneme, outer dense fibres, fibrous sheath 

and mitochondrial sheath (Varner and Johnson 2007; Matzuk and Lamb 2008). Mouse 

models showing impaired sperm motility, also known as asthenozoospermia, provide 

some clues concerning potential gene defects in humans. Among proposed candidate 

genes for human asthenozoospermia, several encode known flagellar proteins such as 

axoneme associated proteins SPAG6 and SPAG16, A kinase (PRKA) anchor protein 4 

(AKAP4) and genes encoding proteins in axonemal dynein cluster (DNAI1, DNAH5 and 

DNAH11 (O'Bryan and de Kretser 2006; Matzuk and Lamb 2008). Sperm motility can 

be affected also by deletions and mutations in mitochondrial genes such as MTCYB and 

MTATP6 (Feng et al. 2008), genes governing sperm transit from epididymis, such as 

homeobox 5 (Rhox5) (Shanker et al. 2008), sperm without mobility 2 (SWM2) (Lessard 

et al. 2007) and genes regulating intracellular calcium channels and potassium currents 

in sperm, such as the CATSPER gene family (Matzuk and Lamb 2008). 

 

iii) Epididymal transit and sperm maturation  

Though sperm chromatin condensation starts during spermiogenesis, most of it 

takes place during sperm maturation in the epididymis. This process involves extensive 

cellular remodeling and results in packing the haploid genome of sperm into a compact 

transcriptionally silent structure where most histones are replaced with protamines 
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(Braun 2001; Varner and Johnson 2007). After maturation, sperm chromatin packing 

level exceeds that of a diploid somatic cell by about six fold (Braun 2001). Sperm 

chromatin remodeling has several unique features and requires expression of many male-

specific genes of which the most important and unique are protamines (Braun 2001). 

Sperm maturation is a systematic and gradual process. First, somatic histones are partly 

replaced by testis-specific histones which then are replaced by transitional nuclear 

proteins (TNP1, TNP2) and finally by protamines PRM1, PRM2 and PRM3 (van Roijen 

et al. 1998; Braun 2001). In contrast to sperm from other species, mature human sperm 

still contain a significant amount of histones, including testis-specific histone 2B 

(TH2B) (van Roijen et al. 1998). Expression and knockout studies in mouse underline 

the essential role of sperm chromatin genes and proteins in male fertility. These studies 

show that appropriate expression levels of Prm1 and Prm2 are required for male fertility 

and deletions of Tnp1 and Tnp2 cause subfertility, whereas mice with double knockouts 

for protamines and transitional nuclear proteins are completely infertile (O'Bryan and de 

Kretser 2006; Ravel et al. 2007). Mouse models also show that male fertility depends on 

the right balance between the sperm chromatin genes. For example, deletion of Tnp1 

triggers compensatory rise of the expression levels of Prm2 and Tnp2 and results in 

abnormal rod-shaped chromatin condensation, spermatozoa with blunted head tips and 

poor motility (Yu et al. 2000; O'Bryan and de Kretser 2006; Ravel et al. 2007). A 

heterozygous SNP in PRM1 gene might be associated with male infertility also in 

humans (Iguchi et al. 2006). 
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iv) Capacitation, acrosome reaction and fertilization  

The final and biologically most significant events in a sperm’s life take place in 

the female genital tract and involve sperm capacitation, sperm-oocyte recognition, 

sperm-zona binding, acrosomal exocytosis (also known as acrosomal reaction) and 

culminate with fertilization. Capacitation hyperactivates sperm by giving it elevated 

motility to successfully penetrate egg’s zona pellucida (ZP). It also destabilizes sperm's 

plasma membrane and prepares it for the acrosomal exocytosis. The latter happens when 

sperm contact the egg and the ZP proteins bind to the sperm plasma membrane 

(Mayorga et al. 2007; Varner and Johnson 2007; Zhao et al. 2007; Zhao et al. 2008). 

Acrosomal exocytosis facilitates the passage of the sperm through the zona and is 

absolutely necessary for fertilization (Mayorga et al. 2007; Varner and Johnson 2007). 

All these events are interrelated, regulated by complex biochemical pathways involving 

interactions of multiple proteins and protein complexes (De Blas et al. 2005; Mayorga et 

al. 2007; Varner and Johnson 2007). The best known of these is SNARE – a protein 

complex that controls membrane fusion and exocytosis, both in neuronal synapses and 

the sperm acrosome (De Blas et al. 2005; Kitamura et al. 2005). During recent years, the 

physiology and biochemistry of sperm capacitation and sperm-zona interactions have 

been extensively studied in mice, rats, humans and several domestic animals, including 

the horses (Varner et al. 2000; Bosard et al. 2005; De Blas et al. 2005; Neild et al. 2005; 

Obermann et al. 2005; Conner et al. 2007; Mayorga et al. 2007; Varner and Johnson 

2007). These studies have revealed a number of previously unknown critical proteins 

such as complexins I and II that facilitate acrosome membrane fusions in the mouse 
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(Zhao et al. 2007; Zhao et al. 2008), or membrane-permeant protein RAB3A which is 

needed to trigger acrosome exocytosis in humans (Lopez et al. 2007). Contrary to this, 

very little is known about the genetic regulation of these processes. Discovery of a few 

candidate genes and causative mutations has been successful mainly in the mouse and rat 

because of the possibility to study changes in gene expression at different developmental 

stages, induce targeted mutations and generate knockout models or transgenic animals. 

For example, approximately 30 murine genotypes are known to be associated with 

impaired acrosomal exocytosis and 8 genotypes which cause errors in other aspects of 

sperm-oocyte interactions (MGI: http://www.informatics.jax.org/
1
). As expected, among 

the genes causing impaired acrosomal exocytosis (IAE) are those involved in cation 

channels and calcium oscillations (Fukami et al. 2001; Jin et al. 2005), tetraspanins that 

regulate membrane fusions (Tanigawa et al. 2008) and acrosome expressed proteins (Lee 

et al. 2008), but also neurotransmitter receptors because the biochemical events in 

acrosomal exocytosis closely resemble those taking place in neuronal synapses (Sato et 

al. 2000; Meizel and Son 2005). Precise molecular functions of these and several other 

candidate genes are yet to be discovered and mouse models suggest that the events from 

sperm capacitation to fertilization are controlled by synergistic interactions of many 

genes (Nayernia et al. 2003). In summary, genetic regulation of male developmental 

pathway from sex determination to fertilization in mammals is complex and involves 

interactions of many genes. Recent discoveries that spermatogenesis is regulated also by 

epigenetic factors and that aberrant DNA methylation in control regions of imprinted 

genes expressed in sperm might be associated with human oligozoosperma (Filipponi 



 16 

and Feil 2009) indicate that the regulatory machinery governing male fertility is 

probably more complicated than currently appreciated.  

 

Chromosomal distribution of male fertility genes in mammalian genomes 

Mammalian male fertility is influenced by thousands of genes which are 

distributed throughout the genome. In order to target the likely candidate genes more 

efficiently, it is important to know whether this distribution is uniform between and 

within chromosomes or if certain genomic regions are more enriched for male fertility 

genes than others. Furthermore, the position of a gene in the genome might have 

important consequences for its function (Betran et al. 2004). With the advancement of 

gene mapping and sequencing technology, medium- to high-resolution gene maps and/or 

whole genome (WG) sequence data are available for more than 50 mammalian species 

including human, chimpanzee, model species such as mouse and rat, and a number of 

domestic animals, viz., cattle, sheep, pig, horse, dog, cat, and rabbit 

(http://www.ncbi.nlm.nih.gov/
2
, http://www.ensembl.org/index.html

3
, http://genome.ucs 

c.edu/
4
). However, to date, identification and mapping of candidate genes for male 

fertility has been successful mainly in mouse and to a limited extent in humans. The 

available data from these two species indicate that the majority of male fertility genes 

are located on autosomes and the X chromosome, while a small proportion is strictly 

male specific and reside on the Y chromosome (Charlesworth 1991; Charlesworth and 

Charlesworth 2000; Charlesworth 2002; Charlesworth and Charlesworth 2005; Gvozdev 

et al. 2005; Graves et al. 2006). A comprehensive review on mammalian fertility genes 
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was published recently by Matzuk and Lamb (2008) and describes over 460 autosomal 

and X-linked murine genes of which 208 are specifically associated with male fertility. 

Additionally, the authors list over 200 human genes that are associated with different 

human male infertility phenotypes. The review provides information about the genes, 

mutations (if known), corresponding reproduction phenotypes, fertility status (e.g., 

subfertile, infertile) and chromosomal location. For example, there are about 40 genes 

responsible for spermatid differentiation. Of these Adamts2 and Ube2b are located on 

mouse (Mus musculus, MMU) chromosome 11, Ddx25 on MMU9 and Six5 on MMU7. 

Human orthologs of these genes are located on human (Homo sapiens, HSA) autosomes 

HSA5, HSA11 and HSA19, respectively. Over 1000 genes are reported to be associated 

with spermatogenesis. To name a few, estrogen receptor 1 (ESR1) is located on MMU10 

and HSA6, c-kit oncogene (KIT) on MMU5 and HSA4, and kit ligand (KITLG) on 

MMU5 and HSA12, respectively (Galan et al. 2005; Galan et al. 2006). Overall, the 

distribution of male fertility genes among autosomes is relatively uniform with slightly 

higher numbers of genes located on gene rich chromosomes such as MMU11 and 

HSA17 (Matzuk and Lamb 2008).  

Several studies have underlined a special connection between the X chromosome 

and male fertility genes (Betran et al. 2004; Emerson et al. 2004; Wang 2004; Ellis and 

Affara 2006). First, several autosomal genes and gene families with testis-biased 

expression have been retrotransposed from X-linked genes (Emerson et al. 2004). For 

example, human CSTF2T is the retrotransposed autosomal gene originating from its X-

linked progenitor CSTF64. CSTF2T shows testis-specific expression and has been 
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mapped to HSA10q22-23 – a region involved in  reciprocal translocation in 

oligozoospermic males (Wang 2004). A mutation in an X-derived autosomal retrogene 

mUtp14b causes juvenile spermatogonial depletion (jsd) phenotype in mouse 

(Rohozinski and Bishop 2004). Second, X chromosome has a tendency to recruit genes 

involved in male reproduction from other genomic locations and is therefore 

disproportionately enriched with testis-specific genes but also with genes involved in 

brain function, signifying the role of brain in male reproductive success (Zechner et al. 

2001; Emerson et al. 2004; Wang 2004; Ellis and Affara 2006). Alternatively, 

accumulation of testis and brain genes on the mammalian X chromosomes might be 

because the same protein complexes, thus the same genes, regulate interactions between 

the sperm and the egg and between neurons in the brain (De Blas et al. 2005; Kitamura 

et al. 2005). It is likely that due to hemizygous condition in males, the X chromosome 

genes are under unique evolutionary pressure and hence, the X chromosome serves as a 

preferred location for spermatogenesis genes (Torgerson and Singh 2006). Some of the 

X-linked spermatogenesis genes, such as the Rhox (Reproductive Homeobox genes on X 

chromosome) gene family, have been so far discovered only in mice. These genes are 

present on the X chromosome in clusters, predominantly expressed in Sertoli cells of 

adult testis and are involved in spermatogenesis (MacLean et al. 2005; Daggag et al. 

2008). It has been common knowledge that X-linked spermatogenesis genes are 

expressed before sex chromosome meiotic silencing (Reinke 2004). Therefore, the 

recent discovery that 33 mouse X-linked multicopy gene families, representing 

approximately 273 spermatogenesis genes, are expressed predominantly in post-meiotic 
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cells (Mueller et al. 2008) is of outstanding importance and might fundamentally change 

our understanding about the function of reproduction related genes during male meiosis. 

The mammalian Y chromosome is typically the smallest element in the 

karyotype, and forms only about 2% of an average mammalian genome. Surprisingly, 

despite the minute size and small proportion of euchromatin compared to 

heterochromatic regions, the Y chromosome is highly enriched with male fertility genes. 

However, to grasp a better understanding of how genes present on the Y chromosome 

acquired male fertility related functions, it is necessary to appreciate the evolution of this 

unique chromosome. A detailed knowledge about Y chromosome studies in human and 

mouse and the role of Y chromosome genes in male fertility in these two species will 

underline the importance of the Y chromosome in mammalian male fertility. The 

following sections will present a comprehensive overview about the evolution, structure 

and function of the mammalian Y chromosome. 

 

MAMMALIAN Y CHROMOSOME AND ITS ROLE IN MALE FERTILITY 

 

The origin and evolution of the Y chromosome 

An hypothesis accounting for mammalian sex-chromosome evolution was first 

proposed by Susumo Ohno in 1967 suggesting that sex chromosomes in mammals 

evolved from a pair of ancestral autosomes about 300 million years ago (Ohno 1967). In 

course of evolution, one of the homologs in this ancestral chromosome pair acquired 

mutations that possibly had advantage in males. These mutations might have given rise 
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to a male sex determining locus, TDF (testis-determining factor, later known as Sex 

determining Region on Y, SRY) on one homolog which then became proto-Y 

chromosome, designating the other homolog as the proto-X chromosome. The proto Y 

started accumulating male advantage genes around the TDF, suppressing recombination 

with its homolog to keep a male-specific gene package together, and thus, creating a 

male-specific region on the Y chromosome (MSY). Suppression of recombination 

between X and Y initiated differentiation of these two chromosomes about 240-320 

million years ago, shortly after the divergence of mammalian and avian lineages (Lahn 

and Page 1999). Thereafter the Y chromosome rapidly started to accumulate mutations 

and deletions which were not eliminated efficiently by selection pressure due to gradual 

loss of recombination with the X chromosome (Charlesworth 1991). As a consequence, 

in course of millions of years of evolution the male specific and hemizygous Y 

chromosome lost the majority of the ancestral set of genes and acquired an extensive 

amount of heterochromatic material. It retained only the genes that had selective 

advantage for critical male-specific functions and were possibly detrimental to females 

(Graves 1995, 2004, 2006; Delbridge and Graves 2007). The present mammalian Y 

chromosome is typically one of the smallest elements in the genome, has lost about 1250 

of its original ~1300 genes and is a degraded version of the X chromosome. The 

outstanding evolutionary history of the Y chromosome thereby explains its unique 

specialization for genetic regulation of male reproduction. 

Due to the presence of extremely high amounts of repeats, the Y chromosome 

was regarded, until as late as mid-1980s, as a genetic wasteland with the sole function of 
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male sex determination (Polani 1981; Sinclair et al. 1990; Quintana-Murci and Fellous 

2001) and largely ignored by human, mouse and other mammalian genome mapping 

projects. However, it soon became evident that the Y chromosome has retained more 

genes than only SRY and that a few of them regulate spermatogenesis and male fertility 

(Chandley and Cooke 1994; Lahn and Page 1997, 2000; Saxena et al. 2000; Makrinou et 

al. 2001; Dorus et al. 2003; Giachini et al. 2005; Lardone et al. 2007a). These pioneering 

studies opened a new avenue for Y chromosome research in mammals and eventually 

led to sequencing of the Y chromosome in humans. 

 

Y chromosome studies in mammals 

 

Human (Homo sapiens, HSA) 

The human Y chromosome (HSAY), is approximately 60 Mb in size and largely 

(~60%) heterochromatic. The 23 Mb of euchromatic portion covers approximately 8 Mb 

on the short arm (Yp) and 14.5 Mb on the long arm (Yq) of HSAY. The 40 Mb of 

heterochromatin comprises the bulk of the distal part of HSAYq and approximately 1 

Mb at the centromere. Besides large numbers of heterochromatic repeats, another 

signature feature of HSAY is the presence of sequences with multiple copies also known 

as ampliconic sequences. The ampliconic region on HSAYq is comprised of eight 

massive palindromes and is one of the most peculiar structural features of the 

chromosome (Skaletsky et al. 2003). 
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Complete sequencing of the male-specific region of the human Y chromosome 

(MSY) revealed the presence of 156 transcriptional units which include 78 functional 

genes that collectively encode at least 27 distinct proteins. Several MSY genes are 

members of multicopy gene families of which 10 are expressed specifically in testis 

(Skaletsky et al. 2003). The HSAY gene list is still not complete because only recently 

eight more genes, all with open reading frames (ORFs), were discovered from a small 

euchromatic island within the pericentromeric heterochromatin (Kirsch et al. 2005). 

According to evolutionary origin and copy numbers the human Y chromosome genes are 

divided into four categories: X-degenerate, ampliconic, X-transposed and 

pseudoautosomal genes (Lahn and Page 1997; Skaletsky et al. 2003). 

X-degenerate genes share ancestral homology with the X chromosome and the 

present-day HSAY has retained 16 genes with a gametologue on the X chromosome, for 

example UTY-UTX or USP9Y-USP9X. X-degenerate genes are usually single copy and 

are expressed in most of the body tissues including testis, i.e., their expression is 

ubiquitous. They are usually involved in housekeeping activities but might have gained 

also other functions. The most remarkable example of X-degenerate genes is the male 

sex determination gene SRY which shares ancestral homology with X-linked SOX3 but 

has gained entirely new and unique functions on the Y chromosome (Skaletsky et al. 

2003; Sekido and Lovell-Badge 2008; Hiramatsu et al. 2009). 

Ampliconic genes, as inferred from the name, are present in multiple copies. 

They can be Y-borne (present only on Y) or have moved to the Y chromosome from 

other genomic locations. It is believed that amplification of these sequences on the Y 



 23 

chromosome has occurred mainly through gene conversion and duplications (Skaletsky 

et al. 2003). Demarcation between X-degenerate and ampliconic genes is not always 

distinct. Some X-degenerate genes such as TSPY (X-linked homolog is TSPX) or RBMY 

(X-linked homolog is RBMX) can also be present in multiple copies (Skaletsky et al. 

2003; Delbridge et al. 2004). The majority of ampliconic genes, however, show testis-

limited expression and might be involved in spermatogenesis and other male 

reproductive functions (Prosser et al. 1996; Lahn and Page 1997; Mitchell 2000; Toure 

et al. 2004a; Toure et al. 2004b; Delbridge and Graves 2007). It has been hypothesized 

that these genes have acquired multiple copies due to significant role in male fertility, so 

that a potentially harmful mutation in one copy will be compensated by multiple other 

normally functioning copies (Graves 2006). Such compensatory mechanism is necessary 

to grant normal function of genes on the hemizygous and non-recombining Y 

chromosome. A total of 9 ampliconic gene families with approximately 60 

transcriptional units are present on HSAY. 

X transposed genes, TGIF2LY and PCDH11Y, have moved to HSAY from 

HSAXq21 (Skaletsky et al. 2003) and are characteristic to human Y chromosome only. 

No X transposed genes have yet been found in other mammals including the closest 

relative of human, the chimpanzee (Hughes et al. 2005; Kuroki et al. 2006). 

Pseudoautosomal genes are present in the pseudoautosomal region (PAR) which 

is a short region of homology between the mammalian X and Y chromosomes. The 

pseudoautosomal genes behave like autosomal genes by pairing and recombining during 

meiosis (Burgoyne 1982) and are thus inherited in autosomal rather than sex-linked 
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pattern (Mangs and Morris 2007). Human sex chromosomes are exceptional among 

mammals by having two pseudoautosomal regions - PAR1 and PAR2 (Goodfellow et al. 

1986; Rouyer et al. 1986; Freije et al. 1992). PAR1 corresponds to other eutherian PARs 

while PAR2 is human specific. PAR1 is approximately 2.6 Mb, located at the terminal 

region of the short arms of the X and Y chromosomes (Goodfellow et al. 1986; Rouyer 

et al. 1986; Rappold 1993; Graves 1998), whereas PAR2 is a fairly short region 

spanning only 320 kb at the tips of the long arms of the sex chromosomes (Freije et al. 

1992). PAR1 consists of at least 24 genes that  have been characterized so far (Mangs 

and Morris 2007) while PAR2 contains only 4 genes, viz., SPRY3, SYBL1, IL9R and 

CXYorf1 of which none has been associated with likely fertility functions (Kvaloy et al. 

1994; Li and Hamer 1995). 

 

Mouse (Mus musculus, MMU) 

Besides human, mouse is the only other mammalian species with detailed 

information about the organization, gene content and gene expression profiles for the Y 

chromosome, MMUY (Mazeyrat et al. 1998; Affara and Mitchell 2000). Murine Y 

chromosome studies strongly confirm the findings in humans and show that MMUY 

contains transcriptionally active genes, a number of which are critically involved in male 

fertility and reproduction (McElreavey et al. 2002; Toure et al. 2004a; Toure et al. 

2004b; Ellis et al. 2007; Grzmil et al. 2007). Currently, 53 genes and gene families are 

assigned to MMUY (http://www.ncbi.nlm.nih.gov/mapview/
5
). Like in humans, mouse 

Y chromosome genes are either X-degenerate, belong to multicopy gene families or are 
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pseudoautosomal. Notably, MMUY multicopy gene families are murine-specific, share 

no homology with human ampliconic genes but, interestingly, carry out similar male 

fertility related functions (Ellis et al. 2007). MMUY mutations have directly been 

associated with different male infertility phenotypes (Cooke and Saunders 2002). In 

contrast to human, mouse pseudoautosomal region (PAR) is only ~ 700 kb in size, 

harbors only two genes (STS, MID1) and shares no homology with human PAR1 (Perry 

et al. 2001).  

These outstanding findings in human and mouse have encouraged Y 

chromosome studies also in other mammalian species and will be discussed in the 

following paragraphs. 

 

Chimpanzee (Pan troglodytes, PTR) 

Beside human, chimpanzee is the only species where the sequence information of 

Y chromosome is available. The sequencing of PTRY involves 12.7 Mb of MSY and 

271 kb of PAR. Sequencing of the X-degenerate portion (~9.5 Mb) of the chimpanzee 

MSY has identified 19 protein-coding and 13 transcribed genes (Hughes et al. 2005; 

Kuroki et al. 2006). 59 pseudogenes were identified in the analyzed region of PTRY. 

Notably, all genes annotated as pseudogenes in humans are also pseudogenes in 

chimpanzee with one exception CD24L4 which is a pseudogene in human is absent in 

chimpanzee (Kuroki et al. 2006). Despite the similarities, there are also pronounced 

differences between the two species - four PTRY genes viz., CYorf15a, CYorf15b, 

TBL1Y, TMSB4Y and USP9Y, have disruptions and mutations causing alteration or loss 
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of function (Hughes et al. 2005; Perry et al. 2007). In contrast to human where X-

degenerate sequences are distributed along both arm of the Y chromosome and they are 

interrupted at several points by large blocks of ampliconic, heterochromatic and other 

sequences, the X-degenerate sequences in chimpanzee are present in a single, nearly 

contiguous block on the long arm of the PTRY. Moreover, there are also differences in 

the repeat elements. For example, PTRY harbors active L1 elements and endogenous 

retroviruses whereas HSAY is more enriched with Alu elements. Two novel endogenous 

retoviruses, CERV1 and CERV2 are present in 21 copies on PTRY but completely 

absent from human genome (Hughes et al. 2005). Despite these differences, overall, 

HSAY and PTRY have a sequence divergence of 1.78% whereas for rest of the genome 

the sequence divergence between human and chimpanzee is 1.23% (Kuroki et al. 2006). 

 

Cattle (Bos taurus, BTA) 

The first radiation hybrid (RH) map of the bovine Y chromosome (BTAY) was 

generated in 2002 (Liu et al. 2002) using a 7000 rad panel of 92 cattle x hamster hybrid 

clones. The map consisted of 49 microsatellites, 3 genes and 10 Sequence Tagged Sites 

(STSs). Microsatellite and STS markers were developed from a bovine Y-specific 

library, constructed by chromosome microdissection and microcloning. Two years later 

three more genes, SRY, ANT3 (currently known as SLC25A6) and CSF2RA were mapped 

on BTAY by RH and FISH (Liu and de Leon 2004). The latter two genes and another 

gene, STS, were assigned to the bovine PAR (Moore et al. 2001). Recently the bovine 

pseudoautosomal boundary (PAB) was identified in the SHROOM2-GPR143 interval. 
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The cattle PAR is longer than the human PAR but fewer genes have been indentified in 

cattle PAR so far compared to human PAR and the PAB extends more towards the 

centromeric region of the BTAY (Van Laere et al. 2008). Polymorphism analysis of 38 

BTAY microsatellites showed that 24 have two or more alleles in cattle populations, 

whereas 7 microsatellites showed the presence of multiple copies in the same individual 

– a typical feature of Y-linked multicopy sequences (Liu et al. 2003).  

 

Pig (Sus scrofa, SSC) 

The only available porcine Y chromosome map (Quilter et al. 2002) comprises of 

10 Y-specific genes. The gene order was determined by RH analysis and later confirmed 

by dual-color FISH. Both RH mapping and FISH confirmed that the genes on SSCY are 

clustered in two groups on the porcine MSY: a distal group with 6 genes (AMELY, 

EIF2s3Y, ZFY, USP9Y, DBY and UTY) and a proximal group with 4 genes (TSPY, 

SMCY, UBE1Y and SRY). As in humans, mice and cats, the order of USP9Y-DBY-UTY 

has been evolutionarily conserved also in pigs. Since the relative order of X-Y 

gametologues on porcine sex chromosomes is conserved, it was proposed that the 

porcine X-Y homologous genes closely resemble the ancestral eutherian sex 

chromosome gene order (Quilter et al. 2002).  

 

Cat (Felis catus, FCA) 

The basic RH map of cat Y chromosome was first published in 1999 (Murphy et 

al. 1999a). The map comprises of 8 genes and provides a preliminary comparison with 
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the existing human and mouse Y chromosome maps. Three loci, USP9Y-DBY-UTY, 

showed evolutionarily conserved physical order across all three species (Murphy et al. 

1999b). As mentioned in the previous section, conserved linkage between these three 

genes was observed also in pigs (Quilter et al. 2002). It is noteworthy that the region 

containing USP9Y-DBY-UTY on FCAY corresponds to the AZFa region in humans and 

to Sxr
b

 interval in mouse where deletions are associated with spermatogenic arrest 

(Mazeyrat et al. 1998; Luddi et al. 2009). The most recent FCAY RH map contains 12 

single copy X-degenerate genes (Murphy et al. 2006). Additionally, 6 multicopy Y-

linked genes were identified using cDNA selection procedure where flow sorted Y 

chromosome DNA was hybridized to testis cDNA (Murphy et al. 2006). Expression 

profiles of all feline Y-linked genes have been studied on a panel of selected body 

tissues and full length cDNA sequences have been generated for 10 X-degenerate FCAY 

genes (Pearks Wilkerson et al. 2008). After human and mouse, FCAY is to date one of 

the best studied mammalian Y chromosomes. 

 

Dog (Canis familiaris, CFA) 

One of the first studies involving the dog Y chromosome described cloning and 

mapping of  two pseudoautosomal genes, CSF2RA and ANT3 (currently known as 

SLC25A6) on the dog sex chromosomes (Toder et al. 1997) and showed that canine PAR 

is larger than human PAR1 and extends further proximal on the short arm of the X 

chromosome. Later 10 male specific markers including the SRY gene were assigned to 

the canine Y chromosome using FISH and RH mapping approaches (Olivier et al. 1999; 
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Guyon et al. 2003b). Recent systematic gene discovery in the cat Y chromosome 

(Murphy et al. 2006) revealed that an X-degenerate gene CUL4BY and a Y-linked gene 

of autosomal origin TETY2, are both present in multiple copies also on the dog Y 

chromosome. Notably, these two genes have been found to be Y-linked so far only in 

carnivores (dog and cat) (Murphy et al. 2006). Additionally, 14 SNPs have been 

identified from CFAY sequences and used for population studies in dogs to generate the 

first dog Y chromosome phylogeny (Natanaelsson et al. 2006). 

 

Rat (Rattus norvegicus, RNO)  

Compared to the extensive Y chromosome research in mouse, the studies of the 

rat Y chromosome have been quite modest. Nevertheless, a few interesting differences 

have been discovered between the Y chromosomes of the two closely related species. As 

in most other mammals, the rat Tspy is a functional gene whereas mouse Tspy has 

become a nonfunctional pseudogene (Mazeyrat and Mitchell 1998). Studies show that 

rat Tspy is a low copy number gene with at least two copies on RNOYp – one copy 

being complete and functional, another truncated and probably nonfunctional (Dechend 

et al. 1998). Similarly to other species, rat Tspy demonstrates testis-specific expression 

(Mazeyrat and Mitchell 1998). Another RNOY gene that has attracted attention is SRY. 

While SRY in mouse and human is a single copy gene, in rat it is present in multiple 

copies. At least six full length copies of Sry have been identified on RNOY. These 

copies have a consereved coding region and conserved amino acid sequence (Turner et 

al. 2007). Expression analysis using RT-PCR showed that multiple copies of rat Sry are 
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expressed in adult testis and adrenal glands, though the possible function of the sex 

determining gene in adult testis is as yet poorly understood. 

 

Rabbit (Oryctolagus cuniculus, OCU)  

Y chromosome studies in rabbit have been limited mainly to the SRY gene. The 

2,388 bp of rabbit SRY, including the open reading frame has been sequenced and two 

repetitive sequences in the 5′ region have been identified (Geraldes et al. 2005). 

Additionally, a 7 bp insertion  polymorphism was recently discovered  in the 3′ 

untranslated region and it was shown that the rabbit SRY gene is duplicated and evolves 

under concerted evolution (Geraldes and Ferrand 2006). SRY functional studies show 

that SRY-SOX9 expression regulates gonadal morphogenesis in rabbit the same way as in 

human and other mammals but is different from mouse (Diaz-Hernandez et al. 2008). 

 

Summary of Y chromosome studies in mammals 

The data hitherto available on Y chromosomes of different mammals suggest that 

the chromosome carries functional genes but the gene content is not strongly conserved 

across species (Ehrmann et al. 1998; Liu et al. 2002; Ma et al. 1993; Mazeyrat et al. 

1998; Mitchell et al. 1991; Murphy et al. 1999b; Quilter et al. 2002). There is a small 

core set of X-degenerate genes which is shared between mammals, while most of 

multicopy genes are restricted to one species or a group of related species. Thus, through 

species-specific loss and acquisition of genes, mammalian Y chromosomes have 

acquired unique repertoires of genes and it is not uncommon that Y-linked orthologs 
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exhibit differences in copy numbers and expression patterns (Delbridge et al. 1999; 

Graves 1995). For example, TSPY, is a testis-specific multicopy gene in human and 

primates, rat, cat, cattle, goat, sheep and horse (Arnemann et al. 1987; Dechend et al. 

1998; Manz et al. 1993; Mazeyrat et al. 1998; Murphy et al. 2006; Raudsepp et al. 2004; 

Vogel et al. 1997a; Vogel et al. 1997b) but a nonfunctional single copy gene in mouse 

(Mazeyrat et al. 1998; Schubert et al. 2000a; Schubert et al. 2000b). These unique 

properties of the Y chromosome set limitations to the use of comparative genomics in Y 

chromosome research and necessitate species-specific approaches. Therefore, in order to 

develop a proper understanding of the expression and function of Y-linked genes, it is 

important to identify and analyze these genes separately within each species.  

Mammalian Y chromosomes, though variable in organization and gene content 

among species, share some important common features of which the most distinctive is 

the presence of multicopy sequences. It is proposed that due to the lack of recombination 

over most of its length, amplification of genes may be an important compensatory 

mechanism that protects functionally essential sequences from being lost through 

mutational degradation (Skaletsky et al. 2003). Since most of multicopy genes typically 

show testis-specific expression it is likely that they have roles in regulating male 

fertility. Therefore, the identification and functional analysis of Y-linked multicopy 

sequences might be a key to discover important male fertility genes in mammals. 
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Male fertility and mammalian Y chromosome genes 

In 1931, eminent evolutionary biologist and geneticist Sir Ronald Fisher 

suggested that genes involved in benefit to the male (including spermatogenesis genes) 

would accumulate on the Y chromosome (Affara and Mitchell 2000). The validity of 

these ideas was proved approximately 45 years later by the discoveries that human and 

mouse Y chromosome microdeletions and mutations are associated with diverse 

spectrum of defective spermatogenic phenotypes (Cooke and Saunders 2002; Mazeyrat 

et al. 1998; Tiepolo and Zuffardi 1976). Different portions of human and mouse MSY 

show the presence of intervals containing one or more genes that control male germ cell 

differentiation and hence, are capable of causing infertility. These intervals have been 

mapped, cloned and examined in detail for functional genes. For example, deletion of 

the distal portion of HSAYq11, a region known as azoospermia factors (AZFa, AZFb, 

AZFc) containing clusters of spermatogenesis genes causing azoospermia in humans 

(Tiepolo and Zuffardi 1976; Vogt et al. 1996). It has been shown that the deleted region 

of AZFc in infertile men, always includes DAZ (deleted in azoospermia) genes and the 

frequencies of Y chromosome microdeletions and chromosomal abnormalities are 

associated with azoospermic and oligozoospermic conditions in males (Vicdan et al. 

2004). Additionally, it has been shown that distinct regions in HSAYq11 overlapping 

with the genomic AZFb and AZFc intervals are probably involved in the pre-meiotic X 

and Y chromosome pairing process (Vogt et al. 2008). Murine Y chromosome interval 

∆Sxr
b
 contains Spy spermatogenetic factor genes, the expression of which is important 

for proper development of germ cells. Deletion of this portion of ∆Sxr
b
 impairs fertility 
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in mouse. Studies indicate that AZFa in human and Spy in mouse are both critical for 

male fertility and may be encoded by homologous genes (Mazeyrat et al. 1998). 

Although Y chromosome microdeletions account for the most important genetic 

causes of spermatogenic failure in humans, a significant proportion of patients with 

impaired spermatogenesis are not known to have Y deletions. Studies in human and 

mouse show that male infertility can be caused also by other specific changes in a 

number of Y-linked genes. A few of them will be discussed briefly in the following 

sections. 

RBMY is a member of RBM (RNA-binding motif) family and encodes a protein 

that localizes to the nucleus of all spermatogenic cell types (Elliott et al. 1996; Elliott et 

al. 1997; Elliott et al. 1998). RBMY is required for normal male fertility, but because 

RBMY is a multicopy gene, it is not easy to understand the effect of RBMY deletions on 

fertility (Kostiner et al. 1998). However, there is an indirect evidence of RBMY in 

relation to male fertility, based primarily on the correlation between the AZFb interval 

and expression of the gene encoding the RBMY protein in germ cells. Human RBMY is 

located in the AZFb interval and deletion of this region abolishes RBMY protein 

production in germ cells of affected males (Affara 2001). Since human RBMY protein 

recognizes RNA through a novel mode of protein interaction which could be important 

for the initiation of spermatogenesis (Skrisovska et al. 2007), the lack of RBMY protein 

might seriously affect the production of germ cells. Mouse studies, on the other hand, 

show that severe Rbmy deficiency causes increase in the number of abnormal sperm 

(Szot et al. 2003). Twelve potential target mRNAs that are bound to the RBMY protein 
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have been identified in mouse testis. Murine RBMY protein can bind also to its own 

transcript and may, thus, affect alternate splicing and regulate its own expression. These 

are new findings and it is necessary to further explore the role of RBMY in 

spermatogenesis (Zeng et al. 2008).  

DAZ (Deleted in AZoospermia) gene cluster was transposed to the Y 

chromosome during primate evolution but has remained at its original autosomal 

location in other mammalian species (Saxena et al. 1996; Saxena et al. 2000; Skaletsky 

et al. 2003). The gene cluster is named “deleted in azoospermia” (DAZ) because deletion 

in this region completely removes all DAZ genes in an individual and causes 

azoospermia. DAZ has a diverse spectrum of transcripts reflecting the transcriptional 

activity of all members of the gene family (Yen et al. 1997). Functional homologs of 

human DAZ genes have been found also in mouse Y chromosome and are called Dazl 

(DAZ-Like). Mice with no functional Dazl genes are sterile, whereas heterozygous mice 

with one intact copy of Dazl are subfertile due to the reduced number of germ cells. This 

indicates that the number of DAZ or Dazl copies might be important for germ cell 

production (Kostiner et al. 1998). This is supported by human studies showing that three 

different patterns of DAZ gene deletions are associated with severe oligozoospermia and 

infertility (A et al. 2006). In patients with spermatogenic arrest DAZ gene transcripts are 

localized in primary spermatocytes and DAZ gene activity seems to correspond to the 

proliferative activity of stem cells of germinal epithelium (Szczerba et al. 2006). 

TSPY (testis-specific protein, Y encoded) genes are part of DYZ5 - a clustered 

array of repeats, located on the proximal short arm of the human Y chromosome. 



 35 

Evolutionary conservation of TSPY sequence and expression pattern among primates 

suggests that TSPY might play an important role in testicular function and male fertility 

(Manz et al. 1993). Similarly to primates, TSPY genes are arranged in clusters on the Y 

chromosome of several other mammals and show sequence conservation across species 

(Mazeyrat and Mitchell 1998; Skaletsky et al. 2003). It is proposed that TSPY is 

involved in early stages of spermatogenesis to help the proliferation of spermatocytes 

(Schnieders et al. 1996; Vogel and Schmidtke 1998). Extensive amplification of TSPY 

on the Y chromosome of most studied mammals indicates that there might be a 

requirement for a critical dose of TSPY during spermatogenesis (Delbridge et al. 2004). 

Notably, infertile men have more TSPY gene copies compared to normal fertile men 

insisting that copy number difference might be the main factor that determines the effect 

of TSPY on spermatogenesis and male fertility in humans (Vodicka et al. 2007). 

UBE1Y is a Y-linked gene in mouse and several other mammals (Mitchell et al. 

1991; Quilter et al. 2002; Murphy et al. 2006) but has been lost from the Y 

chromosomes in humans, chimpanzees and old world monkeys (Mitchell et al. 1998). 

The fact that UBE1Y encodes for ubiquitin activating enzyme E1 which promotes cell 

proliferation and mitosis (Odorisio et al. 1996) makes it a strong candidate gene for 

spermatogenesis (Levy et al. 2000). This is supported by mouse studies showing that 

Ube1y is expressed exclusively in spermatogonial cells and is part of a gene cluster in 

the ∆Sxr
b
 deletion interval known to be critical for the proliferation of mitotic germ cells 

during spermatogenesis (Levy et al. 2000). 
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USP9Y (Ubiquitin-specific protease 9 Y) is located in the AZFa region of human 

Y chromosome and possesses ubquitin protease activity (deubiquitination) by which it 

might stabilize specific target proteins that are important for male germ cell development 

(Lee et al. 2003). Data about the role of USP9Y in male fertility are controversial. There 

are studies showing that a point mutation in USP9Y causes partial arrest of 

spermatogenesis at the post meiotic spermatocyte stage resulting in severe 

spermatogenic failure and infertility (Sun et al. 1999). However, recently a complete 

deletion of USP9Y was found in a normospermic man, his brother and father without any 

deleterious effect on fertility (Luddi et al. 2009). This indicates that USP9Y, previously 

considered a candidate gene for male infertility and azoospermia, does not play a key 

role in male reproduction. It is likely that USP9Y acts rather as a fine tuner to increase 

efficiency of spermatogenesis than being a direct provider of essential functions (Krausz 

et al. 2006). 

SRY, the sex determining region on Y, is indisputably the “signature” gene of the 

Y chromosome and has been studied, compared to other Y-linked genes, in more detail. 

Besides human and mouse, the coding sequence of this small, one exon gene is 

characterized in bovids (Cheng et al. 2001), horse (Hasegawa et al. 1999), rat (Turner et 

al. 2007), pig (Parma et al. 1999), sheep (Payen et al. 1996), goat (Pannetier et al. 2006) 

and rabbit (Geraldes and Ferrand 2006; Geraldes et al. 2005). SRY conserved regulatory 

regions have been identified in 10 different mammals (Margarit et al. 1998) and studied 

in detail in pigs (Boyer et al. 2006; Pilon et al. 2003). Information about SRY expression 

is available for human (Skaletsky et al. 2003), mouse (Mazeyrat et al. 1998), rat 
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(Mazeyrat and Mitchell 1998) horse (Hasegawa et al. 1999), pigs (Boyer et al. 2006; 

Pilon et al. 2003) and carnivores (Murphy et al. 2006). These studies indicate that SRY, 

despite of being the “master” sex determination factor in all eutherians, exhibits 

variation in coding and regulatory sequences, as well as in expression profile across 

species. Furthermore, SRY shows variation also in copy numbers being a single-copy 

gene in human and mouse and having multiple copies in cat, rat and rabbit (Nagamine 

1994; Bullejos et al. 1999; Skaletsky et al. 2003; Geraldes et al. 2005; Turner et al. 2007; 

Pearks Wilkerson et al. 2008). The most intriguing feature of SRY, however, is that in 

most of the species studied it is highly expressed in adult testis indicating that male sex 

determination is not the only function of SRY and it might be involved in processes 

taking place also in adult testis. 

In addition to Y chromosome microdeletions and gene mutations, some infertile 

phenotypes can be caused by transcriptional alterations of AZF genes. For example, 

infertile males with complete Sertoli cell only syndrome (SCOS) show no expression of 

RBMY, DAZ and TSPY whereas DDX3Y (alias DBY) is expressed at very low levels 

(Lardone et al. 2007b).  

In summary, studies in human, mouse and other mammals provide convincing 

evidence that Y chromosome sequences are critically involved at various stages of 

spermatogenesis and play essential roles in regulating male fertility. The critical role of 

the Y chromosome in male fertility is further underscored by the facts that about 10-15% 

of idiopathic male infertility in humans is caused by Y chromosome mutations and that 
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the currently available genetic diagnostic tests for human male infertility are exclusively 

based on Y chromosome markers (Peterlin et al. 2004). 

 

MALE FERTILITY IN HORSES 

Stallion reproduction and fertility is of vital significance to the horse industry. 

There are over 9.2 million horses in the United States and it is estimated that almost one-

fourth of horses are used for breeding purposes. Stud fees for stallions can range from a 

few thousand to half a million dollars (www.horsecouncil.org
6
). Thus, fixed expenses, 

lost potential profits and reduced revenue from impaired fertility of stallions has an 

enormous economic impact on the horse industry. Because of the structure of horse 

breeding where one stallion covers many mares, economic losses due to reduced fertility 

of stallions can be even more dramatic. In contrast to many other livestock species where 

animals are selected for fertility, stallions are selected mainly on the basis of their 

ancestry, athletic performance and overall appearance, but not for their reproductive 

potential (Colenbrander et al. 2003). Furthermore, not all stallions are subjected to a 

detailed breeding soundness examination prior to standing at stud (Colenbrander et al. 

2003) and fertility problems become apparent only later when desired foaling rate is not 

achieved. Due to this, poor fertility of breeding stallions is a serious problem worldwide. 

For example, it has been estimated that 36%-43% of prospective breeding stallions fail 

breeding soundness evaluation (Blanchard and Varner 1997; Woods et al. 2000). These 

examinations traditionally include analysis of semen parameters such as sperm count, 

sperm motility and sperm morphology (Graham 1996; Madill 2002; Colenbrander et al. 



 39 

2003; Love et al. 2003), examination of external genitalia and a general physical 

evaluation. Additionally, the sperm chromatin structure assay and the acrosomal 

responsiveness assay can be carried out to evaluate sperm functionality in more detail 

(Love and Kenney 1998; Varner et al. 2000). More indirect measures, like per-cycle 

pregnancy rate are also used to estimate stallion fertility (Colenbrander et al. 2003; Love 

et al. 2003) but these factors are influenced by management practice of both mares and 

stallions (Rousset et al. 1987; Love et al. 2003) due to which precise definition of 

fertility in stallions remains obscure. 

Of the two main factors governing stallion fertility and reproduction, 

environment has been extensively studied and optimized (Roser 2001; Madill 2002; 

Merkies and Buhr 2004) while very little is known about the role of genetics. As yet, 

only a handful of reproduction and fertility related genes have been analyzed in horses 

(Ing et al. 2004; Leeb et al. 2005; Hamann et al. 2007) and even fewer have been studied 

for their function, interactions and mutations that could lead to aberrant conditions and 

impaired fertility. The remarkable progress in equine genome mapping (Chowdhary et 

al. 2003; Penedo et al. 2005; Swinburne et al. 2006; Raudsepp et al. 2008a) which 

ultimately led to the sequencing of the whole genome (Wade et al. 2007) provides a 

unique opportunity to initiate organized genome-wide search for reproduction related 

genes in horses. However, because the equine genome is sequenced from a female 

individual, the whole genome sequence will not furnish any information on the genes 

and transcripts residing on the Y chromosome, several of which are critical for male 

reproductive development and fertility. Hence, obtaining information on the structure, 
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gene content and functional profile of the Y chromosome will be essential to identify the 

Y-linked components of stallion fertility. 

 

PRESENT STATUS OF THE HORSE Y CHROMOSOME RESEARCH 

The overall information on the structure and organization of the horse Y 

chromosome (ECAY) is limited – a situation common to other livestock and companion 

animal species. Cytogenetic studies indicate that the sub-metacentric equine Y 

chromosome (ECAY) is one of the smallest elements in the genome (Power 1988), 

consists of a large heterochromatic region which covers the entire short and majority of 

the long arm, while the tiny euchromatic region is located at the distal end of ECAYq. 

The chromosome was first microdissected in 1999 (Raudsepp and Chowdhary 1999) to 

make a chromosome-specific paint that was used for comparative mapping on metaphase 

spreads of different equids. The first formal map for the Y chromosome was generated 

by assigning STS-Y, SRY and ZFY to the Y chromosome by somatic cell hybrid analysis 

(Shiue et al. 2000). Later SRY and ZFY were localized by FISH to the long arm of the 

chromosome (Hirota et al. 2001). The first detailed physical map of horse Y 

chromosome containing 7 contigs was constructed in 2004 (Raudsepp et al. 2004b). The 

map comprises of 73 overlapping Bacterial Artificial Chromosome (BAC) clones and 

shows the linear order of 100 Sequence Tagged Sites (STSs) and 9 genes. The BACs 

spanning the minimum tiling path (MTP) of each of the contig indicate a cumulative 

coverage of ~4 Mb which corresponds to almost 20-25% of the ~15 Mb euchromatic 

region of ECAY (Raudsepp et al. 2004b). Notably, contig II in this map is composed of 
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genes, markers and BAC clones that are all present in multiple copies - a hallmark of 

mammalian Y chromosomes. 

Recently a detailed map was constructed for the horse pseudoautosomal region 

(PAR) and physically assigned to the terminal end of the long arm of the Y chromosome 

(Raudsepp and Chowdhary 2008). The map has 129 physically ordered markers (110 

STSs and 19 genes) contained in 71 BAC clones that are arranged into 2 contigs 

spanning the region. Horse, cattle (Van Laere et al. 2008) and dog (Young et al. 2008)  

are to date the only domestic animals with precisely defined pseudoautosomal boundary 

(PAB). Interestingly, a ~200 kb region was discovered in the middle of the equine PAR 

that is also present in the male specific region of the Y (MSY). Duplication of this kind 

is a novel observation in mammals and it is not clear whether this can affect sex 

chromosome pairing and segregation in male meiosis. Overall, following 

human/chimpanzee and mouse, horse is the only species where PAR is described in such 

details. The initial map of MSY and high-resolution map of PAR serve as an important 

foundation for further expansion of Y chromosome studies in horses. 

 

RATIONALE OF THE PRESENT STUDY 

The significant economic impact of stallion reproductive performance to the 

equine industry and our limited knowledge about the genetic factors governing male 

fertility, underline the urgent need to initiate systematic studies of male fertility genes in 

horses. Given the outstanding role of Y chromosome in human and mouse 

spermatogenesis, the specific focus of this research is the horse Y chromosome. The 
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rationale is that if we obtain thorough knowledge about the organization and functional 

profile of the Y chromosome, this will help us to identify key-role Y-linked male fertility 

genes in horses. The central focus of the work is, thus, isolation, identification and 

expression analysis of Y chromosome genes and ESTs (Expressed Sequence Tags). This 

information will be used to improve the existing ECAY map and develop a 

comprehensive, high-resolution map for the horse Y chromosome. Analysis of 

differential expression of Y-linked genes between normal stallions and stallions with 

fertility problems will help identify the key-role male fertility genes in horses. 

The specific goals of the project are 1) to develop a comprehensive physical map 

and gene catalogue of the horse Y chromosome and 2) identify Y-linked candidate genes 

responsible for stallion fertility. To achieve these goals, first new Y chromosome 

genes/ESTs will be isolated from horse testis. Human and mouse studies have shown 

that 99% of Y-linked genes are expressed in testis (Skaletsky et al. 2003). Therefore, 

testis should be the most informative tissue for Y chromosome gene discovery also in 

horse. A direct cDNA selection procedure (Lovett et al. 1991; Del Mastro and Lovett 

1997) will be used for new gene discovery from horse testis by hybridizing testis cDNA 

with Y-specific BAC clones and with flow sorted ECAY. This will enable the specific 

retrieval of only Y-linked testis transcripts. The Y chromosome BAC clones will also be 

used for chromosome walking and isolation of new clones to fill the gaps on the current 

map and to expand the map over the entire MSY. Expression patterns and copy numbers 

of the newly identified genes/ESTs will be analyzed to identify candidate genes for 

stallion fertility. 
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The long term goal of this project is to obtain complete sequence information for 

the horse Y chromosome. Generation of a comprehensive ECAY map in this project will 

serve as a good foundation for this goal. Detailed analysis of ECAY gene content will 

serve also as a basis for studying the evolution of ECAY compared to other mammalian 

Y chromosomes. Functional analysis of candidate genes for stallion fertility will help to 

understand the genes and gene networks regulating male fertility and develop diagnostic 

tests for early discovery of potentially infertile phenotypes in horses. 
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CHAPTER II 

 

DISCOVERY OF Y-SPECIFIC GENES FROM HORSE TESTIS AND 

GENERATION OF A DETAILED MAP FOR THE HORSE Y CHROMOSOME 

 

 

INTRODUCTION 

In order to understand the role of the Y chromosome in the biology of a species it 

is necessary to acquire detailed information about the Y chromosome organization and 

most importantly, identify all Y-linked genes and study their structure, expression 

profiles and possible functions. 

The first systematic search for genes from the non-recombining region of the Y 

chromosome (NRY), later known also as the male-specific region of Y (MSY, 

(Skaletsky et al. 2003), was carried out in humans (Lahn and Page 1997). This study 

used testis, a single complex organ, as the source of Y-linked transcripts and identified 

12 novel genes or gene families. According to expression profiles, evolutionary history 

and possible function, these human Y-linked genes were classified into two categories: i) 

genes that were expressed in many tissues including testis, had an ancestral homolog on 

the X chromosome and carried out house-keeping functions, and ii) genes that were 

expressed exclusively in testes, belonged to Y-specific gene families and were possibly 

involved in male fertility-related functions. The authors concluded that in contrast to 

other chromosomes there is a clear functional coherence of the gene content of the Y 

chromosome. 
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This first gene discovery from MSY was carried out using the direct cDNA 

selection procedure (Lovett et al. 1991) from human testis where testis cDNA served as 

a driver and a flow-sorted human Y chromosome cosmid library as a selector. Later, the 

same procedure allowed isolation of 12 Y-specific genes in the domestic cat (Felis catus, 

FCA, (Murphy et al. 2006; Pearks Wilkerson et al. 2008). Notably, six FCAY genes 

were novel, three were derived from putative autosomal progenitors and another three 

were X-degenerate. 

In horses the very first basic gene map of ECAY was built using a somatic cell 

hybrid (SCH) panel and showed synteny between STS-Y, SRY and ZFY (Shiue et al. 

2000). A year later SRY and ZFY were assigned to ECAY by fluorescence in situ 

hybridization (Hirota et al. 2001). Currently partial genomic and/or cDNA sequences are 

available for nine ECAY genes, viz., AMELY, TSPY, DDX3Y (alias DBY), USP9Y, UTY, 

TBL1Y, KDM5D (alias JARID1D, SMCY), SRY and ZFY (Agulnik et al. 1997; Raudsepp 

et al. 2004b), though no systematic efforts have been made to generate a comprehensive 

gene catalogue for the horse Y chromosome. In this study the cDNA selection procedure 

which has been successfully applied for Y chromosome gene discovery in humans and 

cats, will be adopted, and used it to identify Y-specific ESTs from horse testis. Flow-

sorted equine Y chromosome and pools of BAC clones from the ECAY contig map 

(Raudsepp et al. 2004b) will serve as two different types of selectors to capture horse 

testis cDNA sequences. Y-specific ESTs will be assigned to the existing ECAY contig 

map by STS content analysis. The cDNA sequences will also be used to identify new 

BAC clones for the expansion of the contig map. 
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OBJECTIVES 

1. Isolate and identify Y-specific genes/ESTs from horse testis by cDNA selection 

procedure. 

2. Isolate BAC clones containing the Y-specific genes/ESTs and map the BACs to 

the ECAY contig map by STS content analysis. 

3. Use STS content analysis and chromosome walking to expand the existing 

ECAY contig map and bridge gaps where possible. 

As a result, Y-specific expressed sequences and genes will be identified and used 

to construct a comprehensive, physically ordered gene map for the horse Y chromosome. 

The map will serve as a template for complete sequencing of equine MSY. ECAY-

specific transcripts will be analyzed for expression profiles to discover potential 

candidate genes for stallion fertility. Details of the experimental design and the outcomes 

of the experiments are presented in the following sections. 

 

MATERIALS AND METHODS 

 

Extraction of messenger RNA (mRNA) from horse testis 

Messenger RNA (mRNA) was isolated from normal adult horse testis using Fast 

Track 2.0 mRNA isolation kit (Invitrogen) following the manufacturer’s instruction with 

minor modifications. Briefly, about 1 g of testis tissue was homogenized using lysis 

buffer and incubated for 1 hour at 45
o
C to facilitate complete lysis of cells. Next, 950 µl 

of 5M NaCl was added to the solution and DNA was sheared using a 22 gauge needle 
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and a 20 ml syringe. After adding Oligo dT cellulose the solution was incubated for 1 

hour to ensure the binding of oligo dT cellulose to poly A tail of mRNA. The solution 

was then centrifuged at 3000 x g for 5 min at room temperature to pellet the cellulose. 

Supernatant was discarded and the cellulose was resuspended in 20 ml binding buffer. 

The centrifugation step was repeated twice and the final pellet was resuspended in low 

salt buffer to help remove the unbound materials from the cellulose. This washing step 

was repeated for three times and finally the cellulose was resuspended in 800 µl of low 

salt buffer and transferred into spin columns supplied with the kit. The columns were 

centrifuged at 5000 x g for 10 sec at room temperature to bind the cellulose with the spin 

column membrane. The flow through was discarded, 500 µl of low salt buffer was added 

to the column and centrifuged at 5000 x g for 10 sec at room temperature. The process 

was repeated for three more times to wash the cellulose. The column was placed into a 

fresh tube and 200 µl of pre-warmed (65
o
C) elution buffer was used to elute the RNA 

from the column. Elution was repeated twice. The eluted RNA solution was mixed with 

60 µl of sodium acetate and 1ml of 100% ethyl alcohol and stored overnight at -80
o
C. 

The solution was then thawed and centrifuged for 30 min at 4
o
C at maximum speed 

(13000 x g). The supernatant was removed and the pellet was centrifuged again to 

remove all remaining droplets. The final mRNA pellet was dissolved in 30 µl of elution 

buffer. DNase treatment was carried out using Turbo DNase Kit (Ambion) following 

manufacturer’s instructions. Quantity and quality of the isolated mRNA was evaluated 

using NanoDrop Spectrophotometer and Agilent Bioanalyzer (Agilent, CA) with the 

RNA 6000 Nano chip kit (Agilent, CA). 
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cDNA synthesis 

Testis cDNA was synthesized using a combination of random primers and oligo 

dT primers with Superscript II reverse transcriptase provided by Superscript Choice 

System for cDNA Synthesis (Invitrogen) following manufacturer’s instructions. Briefly, 

4 µg of testis mRNA was used for cDNA synthesis with random hexamer and oligo dT 

primers. The first and second strands of cDNA were synthesized in two steps followed 

by phenol chloroform extraction and cDNA precipitation with ammonium acetate and 

absolute alcohol. The cDNA was ligated with adapter primers, PCR amplified and 

designated as primary cDNA. 

 

cDNA selection  

Isolation of Y-specific ESTs from horse testis was carried out by direct cDNA 

selection following the protocol of Del Mastro and Lovett (1997). The PCR amplified 

primary cDNA was first pre-annealed with horse Cot-1 DNA (Cot1:cDNA ratio ranged 

from 2:1 to 15:1) for 4 hours to block repetitive sequences. In some experiments 

blocking DNA contained also cDNA sequences from UBE1Y - the most abundant ECAY 

transcript in testis - to allow better hybridization of unique and less abundant sequences 

(see discussion for explanations). Horse Y chromosome specific probes were generated 

from two sources: i) flow sorted and GenomiPhi (Amersham Biosciences) amplified 

ECAY (7000 copies provided by Cambridge Resource Centre for Comparative 

Genomics) and ii) 183 BAC clones from the ECAY contig map (Raudsepp et al. 2004b; 

Raudsepp et al. 2008b). The BAC clones were divided into 6 pools with ~30 clones in 
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each. Flow sorted ECAY and BAC pools were labeled with biotin by nick translation 

(see FISH below) and hybridized individually with pre-annealed testis cDNA for 50 

hours. Testis cDNA and biotinylated Y chromosome hybrids were captured with 

streptavidin coated paramagnetic beads (Dynabeads® M-280 Streptavidin, Invitrogen) 

and Y-specific testis cDNA was eluted. This primary selected cDNA was PCR amplified 

using adapter primers and used for a second round of hybridization to obtain secondary 

selected cDNA.  

 

cDNA cloning, sequencing and sequence analysis  

The secondary selected cDNA was PCR-amplified and cloned en masse into 

TOPO-TA cloning vector (Invitrogen) following manufacturer’s recommendations. The 

vector was transformed into One Shot Top10 E. coli DH5α chemically competent cells 

(Invitrogen), plated on LB agar plates containing ampicillin (50 µg/ml) and incubated 

overnight at 37ºC. Plasmid clones were picked and grown overnight at 37ºC in 2 ml, 96-

well culture plates containing LB media and ampicillin (50 µg/ml). Plasmid DNA was 

isolated with an alkaline lysis based kit (REAL-prep96; Qiagen) following 

manufacturer’s instructions. A random set of clone DNA was digested with EcoRI 

(Invitrogen) to confirm the presence of different inserts. All cDNA clones were 

sequenced using BigDye (Applied Biosystems) terminator chemistry, universal primers 

(T7 and T3) and ~300-500 ng of plasmid DNA as template. The sequencing reactions 

were resolved on an ABI-3730 capillary sequencer (Applied Biosystems). After the 

sequences were quality trimmed and checked for vector contamination, they were 
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assembled into contigs using Sequencher V 4.7 software (GeneCodes Co). The contigs 

were checked for the presence of repetitive elements with RepeatMasker 

(http://www.repeatmasker.org
8
) and analyzed using Discontiguous MegaBLAST 

(http://www.ncbi.nlm.nih.gov/BLAST/Blast.cgi
9
) to identify putative orthologs from 

human, mouse and other mammalian genomes. The cutoff threshold was 1e-8. The 

sequences were also aligned with horse whole genome (WG) sequence assembly 

EquCab2 (http://www.ensembl.org/Equus_caballus/index.html
10

). Because a female 

horse has been sequenced, no alignment of WG sequences with the partial cDNA 

sequences indicated the likelihood that the selected cDNA sequences were Y-specific. 

 

cDNA analysis by PCR 

 
After analysis with Discontiguous MegaBLAST the sequences with similarity to 

mammalian X- or Y-linked orthologs, sequences with weak similarity to autosomal 

genes and sequences with no significant similarity to any mammalian sequences were 

considered for further analysis. Where possible, the partial cDNA sequences were 

aligned with human and mouse Y chromosome genes 

(http://www.ensembl.org/index.html
3
) to identify likely exon/intron boundaries. Intron-

spanning or exonic primers (Table 1) were designed with Primer 3 software 

(http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi
11

).  



 

 

5
1

Table 1: Detailed information about ECAY genes and ESTs. 
 

Gene 

symbol 

Gene name Primers 5′ to 3′ Annealing 

temperature, 

°C 

Genomic

product 

size, bp 

GenBank 

accession 

No 

*AMELY Amelogenin, Y-linked F: CCAACCCAACACCACCAGCCAA 

ACCTCCCT 

R: AGCATAGGGGGCAAGGGCTGCA  

AGGGGAAT 

65 160 AB032194 

CUL4BY Cullin 4 B Y F: TGTGGGGTTCGTGTGAAATA 

R: CAAGGATCGCTGGGTCTTAC 

58 172 EU687546 

 

CYorf15 Chromosome Y open reading frame 

15 

F:CAACCATGCATTGAAAGAGG 

R:TGCACTCCGATTCTTGTTGA  

58 152 EU687545 

 

DDX3Y 

(DBY) 

DEAD (Asp-Glu-Ala-Asp) box 

polypeptide 3, Y-linked 

F:CTCGAGATCCAAAACTGCTG 

R:TGATAAAAACAGTTCAGGGTGGA 

58 68 EU687547 

 

EIF1AY Translation initiation factor 1A Y F:GATCGTGGCCTTCTGACATT 

R:TTATTTTTGGGCATGGTGGT 

58 187 ET052957 

 

*EIF2s3Y Eukaryotic translation initiation 

factor 2, subunit 3 gamma, Y- linked 

F:GAGCCATCTGTGTGATCGTC 

R:TATTCCTGGCCCTAAGCACA 

58 223  

EIF3CY 

(EIF3s8Y) 

Eukaryotic translation initiation 

factor 3, subunit C on Y 

F:CCCAAGCAGGGTACCTATGG 

R:GGACAGAAGTGACGCAATCA 

58 134 (M), 

230 (M/F) 

EU687548 

 

ETSTY1 Equus Testis-specific transcript Y1 F:GACGGACGACCTTGTGTTTT 

R:CTAGTGGCGAGTCCTTTTGG  

58 234 EU687549 

 

ETSTY2 Equus Testis-specific transcript Y2 F:ATCATCGTGGAAAGCCTCAC 

R:AGTGCTGAAGAGGCTGTGGT  

58 223 EU687550 

 

ETSTY3 Equus Testis-specific transcript Y3 F:TTACATTTGTTGCGCCATGT 

R:GCCCAAAGAAGTAACCGACA  

58 134 EU687551 

 

ETSTY4 Equus Testis-specific transcript Y4 F:TAAGGCTTCCCTCCTCCAAT 

R:CCAGTGACCCGACATACTGA 

58 175 EU687552 

 

ETSTY5 Equus Testis-specific transcript Y5 F:CAAAACCAAGAGGAGGACCA 

R:CTCCAGAGGCAGGTACTTCG 

58 210 EU687553 

 

ETSTY6 Equus Testis-specific transcript Y6 F:ACATGGCGCAACAAATGTAA 

R:TAGCTGTTTGCTGCAGTGCT 

58 245 EU687554 
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Table 1 continued 

 
Gene 

symbol 

Gene name Primers 

5′ to 3′ 

Annealing 

temperature, 

°C 

Genomic

product 

size, bp 

GenBank 

accession 

no 

ETY1 Equus transcript Y1 F:TCCAGAGCAACAACAGCAAC 

R:CATCAGTCTGCCCAAACCTT 

58 127 EU687555 

 

ETY2 Equus transcript Y2 F:TAAGGCTTCCCTCCTCCAAT 

R:CCAGTGACCCGACATACTGA 

58 850 EU687556 

 

ETY3 Equus transcript Y3 F:TTTTGGCTTGTGTCTTTCTCTG 

R:ATAGGGCCAGACTTTCACAGC 

58 150 EU687557 

 

ETY4 Equus transcript Y4 F:TGGGGATATTGGCTTAGCTG 

R:CTGGGAGCACGTCTGTATCA 

58 180 EU687558 

 

*KAL1Y Kallmann Syndrome 1 on Y F:AGGCACAGTCTTAGGGCAAA 

R: TTTTGGCATTCCCTTCTCTG 

58 231  

KDM5D 

(SMCY) 

Jumonji, AT rich interactive domain 

1D 

F: AACAGCGAGCCAATGTTTTT 

R: GCAAAATTCTGGGAAATCCA 

58 400 EU687564 

 

*MAP3K

7IP3Y 

 

Mitogen-activated protein kinase 

kinase kinase 7 interacting protein 3 

on Y 

F: GTGGAATCCCTATTGCTAAAGTTAC 

R: CCAGAGAGCTGTGACCAAG 

58 138  

MT-ND1Y Mitochondrially encoded NADH 

dehydrogenase 1 on Y 

F:CCCTCCGCTTTCCTAGACC 

R:CAACGATGGCTTGAAAGGAT 

58 100 EU687559 

 

NLGN4Y Neuroligin 4 isoform Y F:GGGGATCCATCTTTGTGTTG 

R:GTCACACAGCAGGCTCTGAC 

58 156 EU687560 

 

RBMY RNA-binding motif Y F:TTCGGCCTTCTCTTTCACAT 

R:ACTCAAGCAGCCGAAATGAT 

58 180 EU687561 

 

RFX5Y Regulatory factor X 5 on Y F:ACCCTTAGGGGGAAAAATCC 

R:TTTCGTCCCTCAAGTTCCTG 

58 201 EU687562 

 

RPS3AY Ribosomal Protein S3A F:CCGGAAGAAGATGATGGAAA 

R:CAAACTTGGGCTTCTTCAGC 

58 179 (M), 

790 (M/F) 

EU687563 

 

SRY Sex determining region Y F:TGCATTCATGGTGTGGTCTC 

R:ATGGCAATTTTTCGGCTTC 

58 200 EU687565 
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Table 1 continued 

 
Gene 

symbol 

Gene name Primers 

5′ to 3′ 

Annealing 

temperature, 

°C 

Genomic

product 

size, bp 

GenBank 

accession 

no 

*STS-Y Steroid sulfatase (microsomal), 

isozyme S on Y 

F:TGTGTGTTTCTGTCATGGGGATTACA

TC 

R:CAGACAATGTTTCCCAGTGACAATTG

ATTA 

58 210 

(M/F) 

AF133205 

TMSB4Y Thymosin (beta) 4 Y F:ACCCACCCAGCCTCTTACTT 

R:GCCTAAGCTGCCAATATCCA 

58 246 EU687566 

 

TSPY Testis-specific Protein Y F: GAAGTCAGGCACACCAGTGA 

R: TAAGGCTGCAGTTGTCATGC 

58 280 EU687567 

 

UBE1Y Ubiquitin activating enzyme Y F:TGGCCAACTCACGGCTGATCCAA 

R:CTTCTCCACTCACCCTACTTGGG 

58 210 EU687568 

 

USP9Y Ubiquitin-specific protease 9 Y F:GGTTATGAAATGGTCTCTGC 

R:CGAGTCTGTCCATCAGGAGTC 

58 228 EU687569 

 

*UTY Ubiquitously transcribed 

tetratricopeptide repeat gene, Y-

linked 

F: CAGCTGTTTTCGGTGATGAG 

R: GCCTCCTTCTCTTCGGTTG 

54 110  

YIR2 Inverted repeat 2 Y F:AGGGTTGGGCTAAGTCACCT 

R:ACCTTGGATCCAGACTCACG 

58 170 EU687570 

 

ZFY Zinc finger Y F:TGAGCTATGCTGACAAAAGGTG 

R:TCTTTCCCTTGTCTTGCTTGA 

58 186 EU687571 

 

ZNF33bY Zinc Finger protein 33b on Y F:CCACAGCAAATACAGGAGCA 

R:GTCTGACTCCTCCCCCTTTC 

58 800 (M) 

3000 

(M/F) 

EU687572 

 

 

* genes identified only from BAC end sequences and not recovered from cDNA selection 
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These primers were used for PCR amplification from genomic DNA of 5 normal 

male and 5 normal female horses to confirm their male specificity. All PCR reactions 

were carried out in 10 µl volume containing 1X buffer (Sigma Aldrich), 0.3 pmol of 

each primer, 0.2 mM dNTPs, 1.5 mM MgCl2 and 0.25 units JumpStart REDTaq DNA 

polymerase (Sigma Aldrich) and the products were resolved on 2.0 % agarose gels. 

 

cDNA mapping 

Male-specific cDNA sequences, as identified in the previous step, were mapped 

to the ECAY contig map by STS content analysis. Primers designed from cDNA 

sequences were used to PCR amplify from the DNA of the 183 Y-specific BAC clones 

that form the current ECAY contig map (Raudsepp et al. 2004b; Raudsepp and 

Chowdhary 2008). Additionally, primers from all anonymous  sequences that are present 

both in males and females, were used for STS content mapping on the 12 BAC clones 

which form the minimum tiling path (MTP) of the horse pseudoautosomal region . 

 

Presence of Open Reading Frames (ORFs) 

The sequences were analyzed for the presence of putative open reading frames 

(ORFs) using Sequencher V 4.7 (GeneCodes Co) and NCBI ORF finder 

(http://www.ncbi.nlm.nih.gov/projects/gorf/
12

) software packages. 
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Screening of male equine BAC libraries by PCR  

Primers from those cDNA sequences that were not present on ECAY contig map 

were used to screen the CHORI-241 male horse BAC library 

(http://bacpac.chori.org/equine241.htm
13

) by PCR. If BACs corresponding to some 

cDNA sequences could not be found from the CHORI-241 BAC library, TAMU 

(http://hbz7.tamu.edu/homelinks/bac_est/bac.htm
14

) and INRA (Milenkovic et al. 2002) 

male horse BAC libraries were screened. Library screening, growing BAC cultures and 

BAC DNA isolation was carried out as described earlier (Raudsepp and Chowdhary 

2008). Briefly, cDNA primers were used to screen BAC library superpools, plate pools 

and pools of rows and columns to identify individual BAC clones containing specific 

cDNA sequences. New BACs were cultured in 2YT media containing 30µl/ml 

chloramphenicol and plated on LB agar plates which also contained 30µl/ml 

chloramphenicol. Single colonies were picked and verified once again for identity by 

PCR with cDNA specific primers,   inoculated into 100ml of 2YT (with 30µl/ml 

chloramphenicol) and grown overnight at 37
o
C. BAC DNA was isolated by alkaline 

lysis method (Birnboim and Doly 1979; Birnboim 1983) using Qiagen Midiprep kit 

(Qiagen) according to the manufacturer’s instructions. End sequences of the new BAC 

clones were used for the development of STS markers, STS content mapping and 

chromosome walking. 
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BAC end sequencing  

Ends of newly isolated CHORI-241 library BAC clones were sequenced in 10 µl 

reactions using the standard T7 (5′-GCCGCTAATACGACTCACTATAGGGAGAG-3′) 

and SP6 (5′-CCGTCGACATTTAGGTGACACTATAG-3′) primers and BigDye 

chemistry. For TAMU and INRA BAC clones, short T7 (5′- 

TAATACGACTCACTAAGGG-3′) and M13 (5′-CAGGAAACAGCTATGACC-3′) 

universal primers were used. Reaction products were purified
 
through Sephadex G-50 

Spin-columns (BioMax) and resolved on an ABI-3730 capillary sequencer (PE Applied 

Biosystems). All BAC end sequences were analyzed for the contents of repeats using 

RepeatMasker and for the contents of known genes using discontiguous MegaBLAST 

(Table A1). For the repetitive BAC ends, primers were designed from the overlapping 

BAC end sequences to internally sequence the BACs with repetitive ends.  

 

STS generation and STS content mapping 

STS primers were designed from all non-repetitive BAC end sequences using 

Primer 3 software (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi
11

) and 

optimized on male and female horse genomic DNA and DNA of the BAC of sequence 

origin. The primers were used for STS content analysis on the BACs in the ECAY 

contig map to incorporate new clones into it. Details about all STS markers generated for 

the male specific region of ECAY are presented in Table A2. 
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Chromosome walking 

STS primers from the BAC ends that extended into gaps in the map were used to 

screen CHORI-241 BAC library to identify new clones. After end sequencing, primer 

design and STS content analysis the new clones were incorporated into map. Such 

‘chromosome walking’ continued until the gap was closed or the gap was flanked by 

repetitive BAC end sequences which made further walking impossible. In some cases, 

however, BAC library screening by PCR did not identify any new clones. Since only 

50% of CHORI-241 library has been pooled into PCR format, such BAC end sequences 

were used to design overgo primers for hybridizations on the high density filters 

containing the entire library. 

 

Overgo primer design and filter hybridization 

Filter hybridization was carried out with CHORI-241 BAC library filters using 

radioactively labeled oligonucleotide primers or overgos. Overgos were designed from 

non-repetitive end sequences of most outstretching BACs for each gap. The primers 

were constructed manually or using Overgo Maker program 

(http://www.genome.wustl.edu/tools/?overgo.html
15

) (Table 2).  
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Table 2: Overgo primers for EACY BACs. 

 
BACs 

 

Overgo Primers/Probes 5′ to 3′ Contig 

005.2A8T7 

 

F:GTGTTATCCAAGCTATGCTTCCTT 

R:CAACTCTTGTCAGGGCAAGGAAGC 

IV 

008.3G9T7 

 

F:GCAAGTTAAAGCAAGCAACATGGC 

R:CTGGCAATAATCAGAAGCCATGTT 

III 

015.2E9 M13 

 

F: GGTGGGTTATCGAGATCTTCTGGC 

R: AATGAATGTATGCAATGCCAGAAG 

II 

016.4C5M13 

 

F:GCCCCCACTTTTGTGGTTTCCTCC 

R:AAAGAAGAGTGAACACGGAGGAAA 

II 

017D15T7 

 

F:CCAGCTAGAGCAAAGGACACCTGC 

R:AAACCCACTGACAAGGGCAGGTGT 

I 

072G23SP6 

 

F:GATGAGAGAATAGAAGAACAGAGT 

R:AGAAGATACCCGAGACACTCTGTT 

III 

090B11SP6 

 

F:GAAGGTAACCTGGTGTGTTCCGCT 

R:TAATCACTGCTTTATTAGCGGAAC 

IV 

091.4G10M13 

 

F:CTCCGGTAGGAGAGGAAGAATAGG 

R:ATATTTAGGGTATTAACCTATTCT 

III 

110.3H12M13 

 

F:GAGTAGACTCTCAAAGAAGCCAGA 

R:CCTTGGAACTAACAAATCTGGCTT 

V 

112.1A9T7 

 

F:GCCCTCAGCCGAAGAGTTGAGAAA 

R:ACACTTACCGCCAGTGTTTCTCAA 

V 

118.1A9M13a F:CTGGGGAATGTCAGTTATTTTTGT 

R:AAAAAACCAAACCCAAACAAAAAT 

III 

118.1A9M13b 

 

F:CCATATCCTTATGTGTATCAGCCC 

R:ATCAGGGCTATTATGTGGGCTGAT 

III 

159F5SP6 

 

F:GGAGGAAAAACGTAATAAAATCTC 

R:GAGTGGTCAATCGTATGAGATTTT 

II 

168I4T7 

 

F:GGCTCACACTTCCTTCCTCTCTGA 

R:ACTTTCAAAGGGTAGGTCAGAGAG 

II 

180P20SP6 

 

F:CGTGAGCTGGTGGCTAGTCAGCCC 

R:TCCATGTAGAATTGCAGGGCTGAC 

IV 

190M2T7 

 

F:TCACCTTTGAATCATGAAACCCAA 

R:TTGAGAACTCTTTACCTTGGGTTT 

II 

331E10SP6 

 

F:GTTAAGGCAGGTTGTCCCCCAGTT 

R:CCTGCATCATCAGTGAAACTGGGG 

IV 

C-BWM13 

 

F:GATTCAGAGGCACAGACAGAAACA 

R:CCCTGCTTTCCAACTCTGTTTCTG 

I 

D-BWM13 

 

F:GCCAGTCCTGTCAGTGCTCCAATT 

R:TTATCTGTTTCACCTGAATTGGAG 

I 
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The overgos were labeled individually with 
32

P dATP and 
32

P dCTP and the 

unincorporated nucleotides were removed using Sephadex G-10 spin-columns. Labeled 

overgo probes were pooled in equal concentrations and hybridized onto the eleven high 

density filters of the CHORI-241 library using the protocol described by (Gustafson et 

al. 2003). The filters were washed three times at 42°C for 15 min in 2× SSPE and 

exposed to film over intensifying screens for four days at –80°C before developing the 

autoradiograms. The autoradiograms were inspected manually and positive BAC clones 

were identified. The clones were picked from the BAC library and grown overnight in 

96-deep-well plates containing 2YT with antibiotics. BAC clones corresponding to 

individual overgos were identified by PCR on cell lysates using STS primers from the 

same BAC end sequences from where overgos were designed. Newly identified BACs 

were used for further chromosome walking as described above. 

 

Fluorescence in situ hybridization (FISH) analysis 

FISH was used to confirm the Y-specificity of flow sorted ECAY and all BAC 

clones. FISH was also instrumental for distinguishing between single copy and 

multicopy cDNA sequences. Probe labeling, in situ hybridization, signal detection and 

image analysis was carried out according to our detailed protocol (Raudsepp and 

Chowdhary 2008). Briefly, 1 µg of probe DNA was labeled with biotin and/or 

digoxigenin using Bio-Nick or Dig-Nick Translation Kit (Roche Molecular 

Biochemicals) and hybridized to male horse metaphase and/or interphase chromosomes. 

Biotin labeled probes were detected with avidin-FITC (Vector) and digoxigenin labeled 
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probes with anti-digoxigenin-rhodamine (Roche Molecular Biochemicals). Images were 

captured and analyzed with a Zeiss Axioplan2 fluorescence microscope equipped with 

Isis v 5.2 (MetaSystems GmbH) software. 

 

RESULTS 

 

Isolation of Y-specific ESTs from horse testis 

Two rounds of cDNA selection were carried out using horse testis cDNA as a 

‘driver’ and flow sorted Y chromosome or ECAY BAC pools as ‘selectors’. From 

thousands of transcripts present in testis, such selective hybridization allowed isolation 

of only Y-specific cDNA sequences (Fig. 2). Selected cDNA was cloned and EcoRI 

digestion of 152 randomly chosen clones confirmed the presence of inserts with an 

average size of ~850bp (Fig. 3). A total of 2,400 clones (864 from BAC pools and 1,536 

from flow sorted Y) were picked, sequenced and analyzed. After vector and quality 

trimming, 1,678 sequences were assembled into 180 contigs and 100 singletons. PCR 

analysis showed that 321 sequences (19.1%; 30 contigs, 74 singletons) were male 

specific (Fig. 4). The remaining 1,357 sequences (150 contigs, 26 singletons) amplified 

both from male and female genomic DNA. Majority of these sequences aligned with 

known autosomal genes and were removed from further analysis. Fourtyfour non sex-

specific cDNA sequences which showed no significant BLAST hits, were analysed by 

STS content analysis for possible pseudoautosomal origin. 
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Figure 2: PCR results at different stages of testis cDNA selection. a. PCR 

amplified primary cDNA b. PCR amplified primary-selected cDNA, and c. 

PCR amplified secondary selected cDNA, with – 1µl (lane1) and 5µl (lane2) 

template DNA. M: molecular markers. 
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Figure 3: Restriction digestion analysis of cDNA clones. Randomly chosen 24 

cDNA clones digested with EcoRI showing inserts of different sizes (lower 

bands); upper bands represent the Topo TA vector (3.956 kb). M: molecular 

markers. 
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Figure 4: Male-specific PCR amplification. PCR amplification of  

a. CUL4BY; b. YIR2, and c. RFX5Y from genomic DNA of five male  

(lanes 1-5) and five female (lanes 6-10) horses. M: molecular markers. 
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Identification of horse Y chromosome genes and ESTs 

 
BLAST analysis of 321 male-specific cDNA sequences revealed significant 

(<1e-8) similarity with 13 known mammalian Y chromosome genes viz., DDX3Y, 

CUL4BY, CYorf15, NLGN4Y, RBMY, KDM5D (alias SMCY), SRY, TMSB4Y, TSPY, 

UBE1Y, USP9Y, YIR2, ZFY and 3 autosomal genes, (viz., EIF3C , RPS3A, ZNF33b) 

(Table 3). PCR primers for the latter three genes amplified two distinct bands: a higher 

molecular weight band which was present in both males and females, and a smaller band 

present only in male DNA (Fig. 5). Sequences of male-specific bands differed from 

autosomal PCR products by a short internal deletion and it was therefore not possible to 

design solely male-specific primers. 

Ten cDNA sequences were considered as equine specific because BLAST 

analysis did not show similarity to any mammalian sequences. These were named as 

ETSTY1-ETSTY6 and ETY1-ETY4 where ETSTY stands for Equine Testis Specific 

Transcript on Y and ETY for Equine Transcript on Y indicating whether the transcripts 

had testis-limited or broader expression profiles, respectively (will be discussed in detail 

in the following chapter). 

Finally, three cDNA sequences showed weak similarity (>1e-8) to one 

mitochondrial (MT-ND1Y), one autosomal (RFX5Y) and one Y chromosome (EIF1AY) 

gene and their annotation remains therefore tentative. 
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Figure 5: Autosomal and Y-chromosomal PCR 

amplification. PCR amplification of EIF3CY (lanes 1-2), 

RPS3AY (lanes 3-4) and ZNF33bY (lanes 5-6) from male 

(odd numbered lanes) and female (even numbered lanes) 

genomic DNA. Lower bands are present only in males 

indicating their Y-specific nature. M: molecular markers. 
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Table 3: Summary information about all genes and ESTs mapped to ECAY.  

 
Copy number Gene Symbol 

 

BAC 

 

cDNA 

Gene/EST category Presence 

of ORF 

No. of 

cDNA 

clones  

isolated 

Known homologs in other mammals 

*AMELY Single copy - X degenerate No 0 Human, pig, cattle AMELY 

CUL4BY Multicopy Heterochromatin X degenerate, multicopy Yes 1 Cat, dog CUL4BY 

CYorf15 Single copy - X-degenerate Yes 2 Human CXorf15, cat CYorf15  

DDX3Y  Single copy - X degenerate Yes 2 Human, mouse, cat, pig DDX3Y 

EIF1AY Single copy - X-degenerate No 2 Human EIF1AY 

*EIF2s3Y Single copy - X degenerate No 0 Mouse, pig, cat EIF2s3Y 

EIF3CY  Single copy - Autosomal Yes 85 Cattle, Dog, Human EIF3C 

ETSTY1 Multicopy Multicopy Novel, multicopy No 2 No significant similarity 

ETSTY2 Multicopy Multicopy Novel, multicopy No 7 No significant similarity  

ETSTY3 Multicopy Multicopy Novel, multicopy No 12 No significant similarity  

ETSTY4 Multicopy Multicopy Novel, multicopy No 9 No significant similarity  

ETSTY5 Multicopy Multicopy Novel, multicopy No 3 No significant similarity  

ETSTY6  Heterochromatin Novel, multicopy No 2 No significant similarity  

ETY1 Multicopy Multicopy Novel, multicopy No 1 No significant similarity  

ETY2 Single copy - Novel No 1 No significant similarity  

ETY3  Heterochromatin Novel, multicopy No 1 No significant similarity  

ETY4 Multicopy Multicopy Novel, multicopy No 1 No significant similarity  

*KAL1Y Single copy - X degenerate No 0 Pseudogene in human 

KDM5D 

(SMCY) 

Single copy - X degenerate Yes 3 Horse, dog, human SMCY 

*MAP3K7IP3

Y 

Single copy -  X degenerate No 0 Human MAP3K7IP3 on X chromosome 

MT-ND1Y Single copy - Mitochondrial No 1 Human MT-ND1 pseudogene on X 

chromosome, NADH dehydrogenase 1 

(MTND1) pseudogene on HSA1 
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Table 3 continued  

 
Copy number Gene Symbol 

BAC cDNA 

Gene/transcript category Presence 

of ORF 

No. of 

cDNA 

clones  

isolated 

Known homologs in other mammals 

NLGN4Y Single copy - X degenerate No 1 Human NLGN4Y, Macaca mulatta, 

chimp NLGN4X 

RBMY Multicopy Multicopy X degenerate, multicopy No 1 Human, mouse RBMY, Human, chimp 

RBMX 

RFX5Y Single copy - Autosomal No 1 Human RFX5 

RPS3AY Single copy - Autosomal Yes 1 Human RPS3A 

SRY Multicopy Single copy X degenerate Yes 43 Human, mouse, cat, pig, cattle SRY 

*STS-Y Single copy - X degenerate No 0 Mouse Stsy pseudoautosomal 

*TBL1Y Single copy - X degenerate No 0 Human TBL1Y 

TMSB4Y Single copy - X degenerate No 1 Human, mouse TMSB4Y, cattle, human 

TMSB4X  

TSPY Multicopy Multicopy X degenerate, multicopy Yes 12 Human, chimp, cat, cattle, pig TSPY 

UBE1Y Multicopy Multicopy X degenerate, multicopy Yes 54 Human UBE1, mouse, pig, cat UBE1Y 

USP9Y Single copy - X degenerate Yes 3 Human, chimp, rat, mouse USP9Y 

*UTY Single copy - X degenerate No  0 Human, mouse, pig, cat UTY 

YIR2 Multicopy Multicopy Inverted repeat, multicopy No 1 Human chromosome Y palindromes 

P1, P2, P3 and inverted repeat IR2 (P1-

P2-P3-IR2@) on chromosome Y 

ZFY Single copy - X degenerate No 3 Human gorilla, chimp ZFY, human 

ZFX 

ZNF33bY  Heterochromatin Autosomal, multicopy No 64 Equus caballus similar to zinc finger 

protein 33b (ZNF33b)  

 

* genes identified from BES only  

 



 

 

68 

Altogether, the analysis of all male specific cDNA sequences identified 29 

known or novel equine Y chromosome genes and ESTs. Four genes, viz., SRY, CUL4BY, 

RPS3AY and ZNF33bY were captured only from the experiments with flow sorted 

ECAY, 12 genes using ECAY BAC pools and the remaining 13 ESTs were identified 

from both types of experiments (Table 3).  

 

Relative abundance of Y-linked transcripts 

The most abundant male-specific transcripts were EIF3CY, ZNF33bY, UBE1Y 

and SRY represented by 85, 64, 54 and 43 cDNA sequences, respectively (Table 3). It is 

likely, that the number of EIF3CY and ZNF33bY transcripts is inflated because sequence 

analysis could not clearly distinguish between the sequences originating from Y-specific 

and autosomal transcripts of the two genes. Therefore, the most highly transcribed Y 

chromosome genes in adult horse testis are probably UBE1Y and SRY. In contrast, only 

one transcript was found for CUL4BY, ETY1-ETY4, MT-ND1Y, NLGN4Y, RBMY, 

RFX5Y, RPS3AY, TMSB4Y, and YIR2 (Table 3). 

 

Identification of open reading frames (ORFs) 

 
The presence of ORFs was identified in 10 sequences, viz., CUL4BY, CYorf15, 

DDX3Y, EIF3CY, RPS3AY, KDM5D (alias SMCY), SRY, TSPY, UBE1Y and USP9Y 

(Table 3). Because many captured cDNA sequences were short the final count for the 

presence or absence of ORFs can be done only after full-length cDNA sequences are 

available for all ECAY ESTs. 
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cDNA mapping on horse Y chromosome  

Twenty-six Y-linked genes and ESTs were mapped to ECAY contig map 

(Raudsepp et al. 2004b; Raudsepp et al. 2008b) by STS content analysis. The location of 

six genes (DDX3Y, KDM5D (alias SMCY), SRY, TSPY, USP9Y, ZFY) confirmed our 

earlier results (Raudsepp et al. 2004b) while the rest were new map assignments. 

Sequences of three ESTs (ZNF33bY, ETY3 and ETSTY6) were not found from the 

existing contig map and were used to isolate new clones from CHORI-241 library. From 

the total of 29 Y-specific genes and ESTs 12 mapped to the multicopy region, 14 to the 

remaining MSY, and ZNF33bY, ETY3 and ETSTY6 to the heterochromatic region (Fig. 

6). The linear order of all single-copy genes was determined. In the multicopy region it 

was possible to order only three genes, viz., RBMY, SRY and YIR2, because they are 

located in the same BAC clone and a complete sequence of this clone is available at 

NCBI Entrez Nucleotide, Accession AC214740. The order of the remaining genes and 

ESTs in multicopy and heterochromatic regions remain tentative. 

An additional seven genes viz., KAL1Y, TBL1Y, UTY, STSY, EIF2s3Y, 

MAP3K7IP3Y and AMELY were identified only from BAC end sequence (BES) analysis 

and not found from cDNA selection experiments. Therefore, the current gene map of 

horse MSY consists of 36 genes and ESTs (Fig. 6). 

Primers for 44 anonymous cDNA sequences that PCR amplified equally from 

male and female genomic DNA, were used for STS content analysis on the minimum 

tiling path (MTP) of horse PAR (Raudsepp and Chowdhary 2008). Three transcripts 

were initially assigned to the horse pseudoautosomal boundary (PAB) and one to ECAX, 
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adjacent to PAB. However, recent re-analysis of these sequences with RepeatMasker 

showed that all four cDNA sequences are completely repetitive and were hence 

eliminated from further study. None of the cDNA sequences analyzed in this research 

showed significant similarity to any known equine or other mammalian 

pseudoautosomal genes. 

 

Generation of a comprehensive map for ECAY  

The initial contig map of ECAY comprised of 73 BACs, 126 STS markers  and 8 

genes (KDM5D, SRY, TSPY, UTY, USP9Y, DDX3Y, ZFY, and AMELY) that were 

arranged into seven BAC contigs in MSY (Raudsepp et al. 2004b). Each contig 

contained 3-13 overlapping BACs with the exception of the multicopy region which had 

27 clones.  

Since then the map has been considerably expanded. cDNA selection in this 

study identified a number of new genes/ESTs which led to isolation of many new BAC 

clones and generation of STS markers for chromosome walking. If BAC ends were 

repetitive, internal BAC sequences were used to walk through the repeat region. An 

additional 39 new clones were found by overgo hybridizations to the CHORI-241 library 

high-density filters. Altogether, chromosome walking and BAC discovery identified 124 

new clones that added one new contig to the map (contig III with 27 BACs Figs. 6, A1) 

and were instrumental in closing two gaps. The final map spans the entire MSY and 

extends from the pseudoautosomal boundary to the heterochromatic region and even 

includes a small part of the latter. The map consists of 197 BAC clones which are 
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arranged into 5 contigs. Majority of the BAC clones (143) originate from CHORI-241 

male BAC library, though 54 BAC clones were incorporated from TAMU (42) and 

INRA (12) libraries. The use of Y chromosome from three different individuals did not 

affect the assembly of the contig map because ECAY exhibits overall very low genetic 

variability (Lindgren et al. 2004; Wallner et al. 2004). The present map contains 282 

STSs and 36 linearly ordered genes. A contig-wise summary of BES, STSs and genes 

present in horse MSY is provided in Table A3. 

Despite this progress, the map still contains four gaps (Fig. A1) which could not 

be closed because of the presence of massive repetitive sequences flanking the gaps. Co-

hybridization of BACs from either side of the gaps showed that GAP1 and GAP4 are the 

smallest, not larger than 2-3 BAC insert sizes or ~ 500 kb, while GAP2 and GAP3 are 

almost two times larger, about the size of 5-6 BAC inserts or ~ 1 megabase (Mb) each. 

Altogether, the four gaps cover at least 3 Mb of the horse MSY (Fig. A1). 
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Figure 6: Schematic representation of ECAY heterochromatic region, MSY and PAR showing the five MSY BAC contigs 

and location of 36 genes and ESTs. Gene symbols in black – newly added from cDNA selection; blue – previously mapped 

(Raudsepp et al. 2004) and red – identified from BES only. 
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FISH analysis and cDNA copy number evaluation 

FISH confirmed Y specificity of the flow sorted ECAY, the six BAC pools and 

all newly isolated BAC clones (Fig. 7a, b). FISH also allowed to distinguish between 

single-copy and multicopy BAC clones by showing the presence of one or more signals 

on metaphase or interphase chromosomes. However, FISH with multicopy BAC clones 

does not reveal whether the short cDNA sequences contained in these BACs are also 

multicopy. Therefore, direct FISH with short cDNA clones was used to evaluate copy 

number of individual genes and ESTs. The underlying rationale of this approach is the 

limited sensitivity of the FISH technique (Trask et al. 1993; Trask 2002) due to which 

signals from short (600-900 bp) cDNA sequences are visible only when these sequences 

are present in multiple copies. cDNA FISH showed that 15 genes and ESTs are present 

in multiple copies on the Y chromosome (Fig. 7c, d; Table 3, 4). Not coincidentally, 12 

markers are located in BAC clones from multicopy region (Fig. 6). The only exception 

was SRY cDNA which produced no detectable FISH signals though SRY co-localizes 

with three multicopy genes – RBMY, TSPY and YIR2 – in the same multicopy BAC 

clone (Fig. A1, Table 3). It is likely that horse SRY is a single copy gene but is inserted 

between multicopy sequences. 

cDNA from ETY3, ETSTY6 and ZNF33bY hybridized to ECAY and ECAXq21 

heterochromatin. Heterochromatic signals were obtained also with CUL4BY cDNA, 

though STS content analysis mapped this gene unequivocally to the multicopy region in 

Contig I (Fig. 6). 
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cDNA FISH allowed mainly to distinguish between single copy and multicopy 

sequences (Fig. 7), though in a few cases the signal intensity indicated also quantitative 

differences between the markers. For example, RBMY cDNA gave consistently brighter 

signals than ETSTY2 cDNA reflecting likely differences in copy numbers (Fig. 7f, g).  

 

DISCUSSION 

 

cDNA selection and ECAY gene map 

cDNA selection is a well established method to isolate expressed sequences from 

genomic regions of interest (Chen-Liu et al. 1995; Guan et al. 1996). In the case of the Y 

chromosome where gene discovery through direct sequencing or comparative mapping 

is complicated, cDNA selection has been an efficient way to obtain a broad 

representative sampling of expressed sequences from MSY and PAR in humans (Lahn 

and Page 1997; Makrinou et al. 2001) and more recently in carnivores (Murphy et al. 

2006; Pearks Wilkerson et al. 2008). The present study shows the efficacy of the method 

also in horse where 29 genes and ESTs were identified of which 23 were new for the 

horse Y chromosome. 
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Figure 7: Fluorescence in situ hybridization (FISH) using ECAY probes. FISH 

showing signals (arrows) on horse metaphase (a-d) and interphase (e-g) 

chromosomes using a. dig-labeled flow-sorted Y chromosome, b. biotin labeled pool 

of 33 ECAY BACs. An additional signal is seen on Xpter because the pool contains 

a few clones which are duplicated between MSY and PAR (Raudsepp & Chowdhary 

2008), c. dig-labeled ETSTY3 cDNA, d. biotin labeled UBE1Y cDNA,  e. co-

hybridization of BACs 124.3G9 (red) and 83H5 (green) containing single copy 

genes EIF2s3Y and AMELY, respectively, f. dig-labeled ETSTY2 cDNA, and g. dig-

labeled RBMY cDNA. 
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Although the search for ECAY genes using flow sorted Y chromosome and 183 

Y specific BAC clones was systematic, some previously mapped genes (Raudsepp et al. 

2004b; Raudsepp et al. 2008b) escaped detection. For example, AMELY was not found 

because it is expressed exclusively in tooth enamel and not in testis (Salido et al. 1992). 

STS-Y and KAL1Y escaped discovery probably because, like in humans, they might be 

non-transcribed pseudogenes (Skaletsky et al. 2003). UTY, MAP3K7IIP3Y, EIF2s3Y and 

TBL1Y were not recovered probably because they are not transcribed in sufficient 

amounts in horse testis to be captured by the cDNA selection method. A few more 

pseudogenes and low-abundance transcripts might have escaped detection. For example, 

two known mammalian Y-linked genes – HSFY and RPS4Y – have not yet been found in 

horses. It is also possible that these genes have been lost from ECAY. 

Surprisingly, we did not recover any known equine (Raudsepp and Chowdhary 

2008) or other mammalian PAR genes though initial cDNA capture for human Y 

chromosome identified all 9 PAR genes known at that time (Lahn and Page 1997). It is 

possible that PAR gene expression level in horse testis is lower than in humans and these 

transcripts escaped detection in the present study. Nonetheless, the cDNA selection 

enriched horse Y chromosome gene map with 23 new genes and ESTs. 

 

Comprehensive contig map of ECAY  

Using the initial ECAY contig map (Raudsepp et al. 2004b) as an important 

foundation, the construction of a comprehensive BAC contig map for horse MSY was 

completed in this study. The map covers most of the MSY and provides a highly 
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redundant tiling path for the sequencing of the horse Y chromosome (Fig. A1). The most 

proximal contig connects MSY to the heterochromatic portion of ECAY and four most 

distal clones extend over the peudoautosomal boundary and join MSY to the PAR 

(Raudsepp and Chowdhary 2008). The minimum tiling path (MTP) over MSY 

comprises of 59 BAC clones of which 44 are single-copy and 15 multicopy. The 

sequence-ready contig map of the horse Y chromosome is the only such resource for a Y 

chromosome among non-primate mammals. 

One of the goals of the present study was also to close gaps present in the intitial 

MSY BAC contig map (Raudsepp et al. 2004). For this several different approaches 

were used: i) cDNA selection from horse testis to enrich the map with randomly spaced 

genes and ESTs, ii)  filter hybridizations with overgo primers to identify new Y-specific 

BACs and iii) sequencing of BAC ends and internal sequences to develop more STSs for 

chromosome walking. This resulted in closing two of the six gaps  in the previous MSY 

map (Raudsepp et al. 2004b) (Fig. 6, A1). It is noteworthy that majority of the isolated 

cDNA clones mapped to the existing BACs and none to the gaps. This indicates that 

most likely the gaps do not contain any expressed sequences. It is possible that the gaps 

are enriched with repetitive sequences and have therefore largely escaped cloning into 

libraries. The gaps might also demarcate transition from euchromatic sequences into 

small interstitial heterochromatic islands. Such islands have been recently discovered 

from human MSY and are often flanked by segmental duplications (Kirsch et al. 2008). 

Whether ECAY contains similar interstitial heterochromatic islands needs further 

investigation. 



 

 

78 

Given that the CHORI-241 library average insert size is 171 kb 

(http://bacpac.chori.org/equine241.htm
13

), that the 59 MTP clones are overlapping by 

~20% and that the four gaps count for ~ 3 Mb, the size of equine MSY is estimated to be 

approximately 11 Mb. Together with PAR which is ~1.8 Mb (Raudsepp and Chowdhary 

2008) the size of the horse Y chromosome euchromatin is roughly 13 Mb. This estimate 

is close to the ~15 Mb proposed earlier (Raudsepp et al. 2004b) and will be validated 

once the complete sequence of the euchromatic ECAY becomes available.  

 

Horse Y chromosome gene catalogue 

Traditionally MSY sequences are classified as X degenerate or ampliconic 

(Skaletsky et al. 2003) reflecting their evolutionary origin and copy number. The two 

classes, however, are not always clearly distinguished. The best example is TSPY which 

represents both sequence categories. It has an ancestral single-copy and ubiquitously 

expressed homolog on the X chromosome (Delbridge et al. 2004), but has been 

amplified and has acquired testis-limited expression on the Y chromosome in human 

(Skaletsky et al. 2003), cat (Murphy et al. 2006), horse (Raudsepp et al. 2004b; this 

study), cattle, goat, sheep (Vogel et al. 1997a; Vogel et al. 1997b) and rat (Dechend et al. 

1998). In contrast, murine TSPY is a single copy gene but has lost its function (Schubert 

et al. 2000b).  

According to their evolutionary origin, the 36 horse MSY genes and ESTs 

identified and mapped in this study were classified as X degenerate, multicopy and 

acquired sequences (Fig. 6, Table 3). The former originate from ancestral proto-sex 
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chromosomes, have a gametologue on the X chromosome and are often shared between 

mammalian Y chromosomes (Graves 2006; Delbridge and Graves 2007; Waters et al. 

2007). Most of the multicopy genes have no detectable homologs in other species and 

are most likely Y-borne in horses. In contrast, acquired sequences have arrived to the Y 

chromosome from other genomic locations. 

 

X degenerate sequences 

The core set of horse X degenerate genes resembles, with minor variations, that 

of other mammals (Quilter et al. 2002; Rohozinski et al. 2002; Skaletsky et al. 2003; 

Raudsepp et al. 2004b; Murphy et al. 2006; Pearks Wilkerson et al. 2008). Like in other 

species, the majority of equine X degenerate genes are single copy sequences. Horse-

specific variations involve possible loss of some genes, viz., HSFY and RPS4Y and 

structural-functional changes in a few others. Besides TSPY, three more X degenerate 

genes - RBMY, CUL4BY and UBE1Y - have been amplified during ECAY evolution. 

RBMY is a multicopy gene in human and mouse (Mazeyrat et al. 1999; Skaletsky et al. 

2003), multiple copies of CUL4BY have been found also from carnivore Y chromosome 

(Murphy et al. 2006; Pearks Wilkerson et al. 2008), while amplification of UBE1Y 

seems to be a horse specific feature. This gene has been lost from human Y chromosome 

(Lahn et al. 2001; Skaletsky et al. 2003) but is present as a single-copy Y-linked 

sequence in cat (Murphy et al. 2006), pig (Quilter et al. 2002) and mouse (Mitchell et al. 

1991; Levy et al. 2000). Functional importance of UBE1Y in horse testis is reflected by 

the higher than average number of recovered cDNA clones (54 cDNAs, Table 3). 
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UBE1Y transcripts were so abundant that in some experiments, in order to efficiently 

recover single-copy sequences, the initial testis cDNA was pre-annealed with UBE1Y 

cDNA. However, given that similarity between UBE1Y and UBE1X coding sequences is 

high (95-98%), the recovered pool of cDNAs could originate from both gametologues 

and thus, artificially inflate the numbers. 

The most intriguing X degenerate gene, however, seems to be the male sex-

determining region on Y – SRY. Considering the known function of SRY in sex 

determination at early stages of mammalian embryonic development (Wilhelm et al. 

2007b), it comes as a surprise that SRY is transcribed at high levels from adult horse 

testis (43 cDNA clones recovered, Table 3). One explanation for elevated transcription 

levels could be gene amplification, especially in the light that SRY is a multicopy gene in 

rabbit (Geraldes and Ferrand 2006), rat (Turner et al. 2007) and cat (Pearks Wilkerson et 

al. 2008). Mapping SRY to a multicopy BAC clone, very close to three other multicopy 

transcripts (RBMY, TSPY and YIR2) (Fig. 6) indicates a possible multicopy nature of 

horse SRY. However, SRY cDNA FISH showed no hybridization signal and we infer that 

equine SRY is a single copy gene which is located in the middle of amplified sequences. 

Finally, horse SRY exhibits one more unusual feature – the sequence of the single 1420 

bp coding exon (Hasegawa et al. 1999, this study) contains a ~20 bp LTR repeat which 

was discovered during cDNA selection. It appeared that SRY transcripts could be 

recovered only when the amount of Cot1 DNA used for pre-annealing testis cDNA was 

reduced from 7.5X to 2X. Sequence analysis indicates that intra-exonic LTR or simple 

repeats are present also in mouse, rat, rabbit, dog and donkey SRY (Ensembl, 
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http://www.ensembl.org/index.html
3
; NCBI Entrez Nucleotide, http://www.ncbi. 

nlm.nih.gov/sites/entrez?db=nucleotide
16

). The functional significance of these repeat 

sequences is yet to be determined. 

 

Multicopy sequences – novel equine-specific Y-borne transcripts 

The presence of species specific, Y-borne or acquired multicopy sequences 

seems to be one of the unique and characteristic features of all Y chromosomes studied 

so far – from mammals to the fruit fly (Skaletsky et al. 2003; Raudsepp et al. 2004b; 

Gvozdev et al. 2005; Toure et al. 2005; Murphy et al. 2006; Delbridge and Graves 

2007). The horse MSY is no exception as we recovered 15 different multicopy cDNA 

sequences of which 9 were considered novel, equine-specific and Y-borne because none 

showed similarity to known autosomal or X-linked sequences. The remaining 6 ESTs 

showed sequence similarity to putative human, mouse and cat Y orthologs and human 

autosome (Table 3). It is worth mentioning that out of 10 novel ESTs found in this study 

only one (ETY2) was a single copy sequence. 

In humans where MSY sequence is available, ampliconic regions are defined as 

amplified segments of euchromatic sequences that exhibit as much as 99.9% identity 

over 10-100 kilobases to other MSY sequences (Skaletsky et al. 2003). In species where 

Y chromosome sequence information is not available, ampliconic nature of sequences is 

determined indirectly by genotyping on radiation hybrid panel (Murphy et al. 2006) or 

by FISH (Raudsepp et al. 2004b; Murphy et al. 2006). In the present study multicopy 
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status of all 15 sequences was determined solely by FISH and therefore exact copy 

number and rates of sequence similarities between amplicons remain unknown. 

Most of the novel cDNA sequences mapped to a region in the distal part of MSY 

Contig I and two sequences to the heterochromatic region (Fig. 6). Such regional 

localization of multicopy sequences, as far as known, is unique to the horse Y 

chromosome. Human ampliconic sequences are distributed among at least 5 distinct 

regions and the sequence with the highest copy number (35 copies) is TSPY (Skaletsky 

et al. 2003). In cat and mouse high numbers of amplified and expressed sequences are 

dispersed over the entire long arm of the Y chromosome and in mouse some testis-

specific gene families (Ssty, Asty) each are present in as many as 65-100 copies (Toure et 

al. 2004a; Toure et al. 2004b; Ellis et al. 2005; Murphy et al. 2006). Copy number 

difference between different multicopy cDNA sequences (based on variable intensity 

and numbers of FISH signals) was noted also in this study (Fig. 7 d, e, f). These 

observations, however, need validation and refinement by quantitative PCR and/or 

complete sequencing of horse MSY. 

Notably, we did not detect ORFs in any of the novel multicopy transcripts (Table 

3). It is possible that like in human and cats, the multicopy region of horse MSY consists 

of tandemly repeated transcription clusters that lack strong protein-coding evidence 

(Skaletsky et al. 2003; Murphy et al. 2006). Protein coding potential of these novel 

multicopy sequences will be re-evaluated once full length cDNA sequences are 

available. 
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Acquired sequences from autosomes and the mitochondrial genome 

Transposition and retroposition of genes and mRNA sequences from autosomes 

to the Y chromosome is another characteristic feature of Y chromosome evolution 

(Gvozdev et al. 2005; Delbridge and Graves 2007) and has been shown for human DAZ 

and CDY gene families (Saxena et al. 2000; Dorus et al. 2003; Skaletsky et al. 2003), 

mouse RhoA genes (Boettger-Tong et al. 1998) and cat FLJ36031Ya, TETY1 sequences 

(Murphy et al. 2006). Such gene traffic, however, is species or group specific because in 

different species different autosomal genes have acquired Y-linked counterparts. This is 

consistent with the results of the present study showing that none of the autosome-

derived genes on horse MSY (Fig. 5) are Y-linked in other mammals (Table 3). 

Identification of a tentative Y-linked homolog for regulatory factor X, 5 on Y (RFX5Y) 

is of particular interest. Autosomal RFX5 is a part of conserved upstream elements in the 

major histocompatibility complex (MHC) class-II promoter (Lochamy et al. 2007). It is, 

therefore, possible that the horse Y-linked counterpart is associated with the minor 

histocompatibility complex and Y chromosome encoded H-Y antigens (Rosinski et al. 

2008), but this conjecture needs verification in future studies. 

Lastly, one Y-linked transcript is probably a mitochondrial insertion showing 

tentative similarity (>1e-8) to MT-ND1. Though nuclear sequences of mitochondrial 

origin (NUMTs) have not yet been studied in the horse genome, the discovery of one 

from the Y chromosome is consistent with the findings in human where HSAY is highly 

susceptible for colonization by NUMTs (Ricchetti et al. 2004). An overview of all 

ECAY genes that have orthologs in other mammalian species is presented in Table 4.
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 Table 4: Comparative analysis of ECAY orthologs on the Y chromosomes of other mammalian species. 

 
Horse gene 

/transcript 

 

ECAY HSAY MMUY FCAY Other Mammalian Y 

orthologs 

References 

AMELY SC SC not found SC Chimpanzee, pig, cattle SC Skaletski et al. 2003; Pearks 

Wilkerson et al. 2008; Kuroki 

et al. 2006; Quilter et al. 2002; 

Liu et al. 2002 

CUL4BY MC not found not found MC Dog MC Murphy et al. 2006; Pearks 

Wilkerson et al. 2008 

CYorf15 SC SC, 2 isoforms not found MC Chimpanzee 2 isoforms Skaletski et al. 2003; Murphy 

et al. 2006; Pearks Wilkerson 

et al. 2008; Kuroki et al. 2006 

DDX3Y  SC SC SC SC Chimpanzee, rat, pig, cattle 

SC 

Skaletski et al. 2003; Pearks 

Wilkerson et al. 2008; Kuroki 

et al. 2006; Quilter et al. 2002; 

Liu et al. 2002 

EIF1AY SC SC not found SC Chimpanzee SC Skaletski et al. 2003; Pearks 

Wilkerson et al. 2008; Kuroki 

et al. 2006 

EIF2s3Y SC not found SC SC Pig SC Pearks Wilkerson et al. 2008, 

Quilter et al. 2002 

EIF3CY SC not found not found not found not found  

KAL1Y SC SC, pseudogene not found not found Pig, cattle PAR Skaletski et al. 2003; Quilter 

et al. 2002; Das et al. 

unpublished 

KDM5D 

(SMCY) 

SC SC SC SC Chimpanzee, dog, cattle, pig 

SC 

Skaletski et al. 2003; Pearks 

Wilkerson et al. 2008; Kuroki 

et al. 2006; Liu et al. 2002; 

Quilter et al. 2002  

MAP3K7IP3Y SC not found, X-

linked 

not found not found not found  
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Table 4 continued 

 
Horse gene 

/transcript 

 

ECAY HSAY MMUY FCAY Other Mammalian Y 

orthologs 

References 

MT-ND1Y SC SC, pseudogene,  not found not found 
not found Skaletski et al. 2003 

NLGN4Y SC SC SC not found Chimpanzee SC, cattle PAR Skaletski et al. 2003; Kuroki 

et al. 2006; Das et al. 

unpublished 

RBMY MC MC MC not found not found Skaletski et al. 2003; Toure et 

al. 2004 

RFX5Y SC not found not found not found not found  

RPS3AY SC not found not found not found not found  

SRY SC SC SC MC Chimpanzee, cattle, pig SC, 

rat MC 

Skaletski et al. 2003; Murphy 

et al. 2006; Pearks Wilkerson 

et al. 2008; Kuroki et al. 2006; 

Quilter 2002; Moore et al. 

2001; Turner et al. 2007 

STS-Y SC pseudogene PAR not found Chimpanzee pseudogene, 

cattle, pig, dog PAR 

Skaletski et al. 2003; Kuroki 

et al. 2006; Perry et al. 2001; 

Liu and de Leon 2004 

TBL1Y SC SC not found not found Chimpanzee SC, cattle PAR Skaletski et al. 2003; Kuroki 

et al. 2006; Van Laere et al. 

2008 

TMSB4Y SC SC not found not found Chimpanzee SC Skaletski et al. 2003; Kuroki 

et al. 2006 

TSPY MC MC pseudogene MC Chimpanzee, rat, cattle, 

goat, pig MC 

Skaletski et al. 2003; Mazeyrat 

and Mitchell 1998; Murphy et 

al. 2006; Pearks Wilkerson et 

al. 2008; Dechend et al. 1998; 

Kuroki et al. 2006; Quilter et 

al. 2002  
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Table 4 continued 

 
Horse gene 

/transcript 

 

ECAY HSAY MMUY FCAY Other Mammalian Y 

orthologs 

References 

UBE1Y MC not found SC 2 copies Rat SC, pig SC Murphy et al. 2006; Pearks 

Wilkerson et al. 2008; Quilter 

et al. 2002 

USP9Y SC SC SC SC Chimpanzee, rat, pig SC Skaletski et al. 2003; Pearks 

Wilkerson et al. 2008; Kuroki 

et al. 2006; Quilter et al. 2002 

UTY SC SC SC SC Chimpanzee, pig SC  Skaletski et al. 2003; Pearks 

Wilkerson et al. 2008; Kuroki 

et al. 2006; Quilter et al. 2002 

YIR2 SC palindromes P1, 

P2, P3 and 

inverted repeat 

IR2  

not found not found not found Skaletski et al. 2003 

ZFY SC SC 2 copies SC Chimpanzee, rat, pig SC Skaletski et al. 2003; Pearks 

Wilkerson et al. 2008; Kuroki 

et al. 2006; Quilter et al. 2002 

ZNF33bY MC not found not found not found not found  

 

SC: single copy, MC: multicopy 
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Heterochromatic transcripts 

One of the most intriguing findings of this study is the discovery that three 

expressed sequences (ETY3, ETSTY6 and ZNF33bY) map to the heterochromatic portion 

of ECAY. This was confirmed by STS content analysis and by BAC and cDNA FISH. 

All three ESTs are Y-linked only in horses. Transcripts ETY3 and ETSTY6 share no 

homology with the genomes of other mammals while ZNF33bY has an autosomal 

homolog in horse (ECA1: 66.5 Mb; UCSC, http://genome.ucsc.edu/
4
) and other species. 

At this stage it is not clear whether the sequences are translated because no ORFs were 

found (Table 3). This is the first time that transcriptional activity has been found in Y 

chromosome heterochromatin and has not yet been reported for any other species 

including humans (Skaletsky et al. 2003). 

Taken together, we have constructed a comprehensive sequencing-ready map for 

the horse Y chromosome and generated a detailed catalogue of 36 ECAY-linked genes. 

This is a unique resource to further investigate the Y-linked component of male fertility 

in horses. Identification of the potential ECAY candidate genes for stallion fertility will 

be the main focus of the next part of this Dissertation.  
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CHAPTER III 

 

 

EVALUATION OF THE Y-LINKED GENES AS POTENTIAL CANDIDATES 

FOR STALLION FERTILITY 

 

INTRODUCTION  

 

General observation from Y chromosomes studies in human, mouse and a few 

other mammals is that all species share a core set of X-degenerate genes. In addition, 

they also contain a number of multicopy genes. Some of the multicopy genes are 

common between species, while others are unique to a particular species or a group of 

related species (Mazeyrat et al. 1998; Liu et al. 2002; Quilter et al. 2002; Skaletsky et al. 

2003; Raudsepp et al. 2004b; Hughes et al. 2005; Kuroki et al. 2006; Murphy et al. 

2006). In some instances, a few X-degenerate genes have been amplified and acquired 

testis-limited expression in one species but have remained single copy and ubiquitously 

expressed in others (Mazeyrat and Mitchell 1998; Schubert et al. 2000b; Skaletsky et al. 

2003). Additionally, in some species Y chromosome has recruited new genes from 

autosomes or mitochondrial genome (Skaletsky et al. 2003; Murphy et al. 2006; Pearks 

Wilkerson et al. 2008). The most fascinating and unique feature of the Y chromosome, 

however, is that despite differences in the evolutionary origin of Y-linked genes, most of 

these genes tend to carry out similar male reproduction related functions in all species 

studied so far (Affara and Mitchell 2000; Ellis and Affara 2006). 
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The human Y chromosome harbors 9 ampliconic genes or gene families, viz., 

TSPY, RBMY, VCY, XKRY, CDY, HSFY, PRY, DAZ, BPY2 (Skaletsky et al. 2003). Of 

these, VCY, RBMY, TSPY, XKRY and HSFY have functional gametologs on the X 

chromosome (VCX, RBMX, TSPYL2, XKRX and HSFX1) whereas CDY and DAZ have 

autosomal homologs - CDYL and DAZL, respectively. TSPY, RBMY and HSFY are Y-

linked, multicopy genes also in several other mammals, like chimpanzee, cat, cattle and 

pig (Vogel et al. 1997a; Vogel et al. 1997b; Quilter et al. 2002; Tessari et al. 2004; 

Murphy et al. 2006). Human TSPY studies provide evidence that this gene might be 

involved in early spermatogenesis, immediately prior to the spermatogonia-to-

spermatocyte transition, it is also known to be involved in early testicular tumorigenesis 

(Schnieders et al. 1996; Lau et al. 2009). In contrast, mouse TSPY has become single 

copy and subsequently lost its function whereas TSPY in closely related rat is still 

functional (Mazeyrat et al. 1998). Notably, Y-linked homologs for human DAZ, BPY2, 

CDY and PRY have not yet been found in any of the non-primate mammalian Y 

chromosomes. Human DAZ belongs to a multicopy gene family while CDY and PRY 

each have two and BPY2 has three nearly identical copies in the palindromic region of 

HSAY. All four genes are specifically expressed in testis. The function of PRY is not yet 

known, DAZ is a critical azoospermia factor, CDY protein facilitates the replacement of 

chromatin histones with protamines, and BPY2 (VCY2) encoded protein interacts with 

ubiquitin protein ligase E3A and may be involved in male germ cell development and 

male (in)fertility (Wong et al. 2002; Dada et al. 2004; Kimmins and Sassone-Corsi 

2005). Absence of these critical male fertility genes on non-primate mammalian Y 
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chromosomes suggests that other genes or gene families must have acquired similar 

functions in other species. 

Partial sequencing of chimpanzee (Pan troglodytes, PTR) Y chromosome 

(PTRY) has identified at least 5 ampliconic structures and orthologs for 16 human X-

degenerate genes (Hughes et al. 2005; Kuroki et al. 2006). It is necessary to emphasize 

that to date there is no experimental data showing expression profiles or possible 

fertility-related functions of any of chimpanzee Y-linked genes. However, comparative 

sequencing analysis of reading frames and splice sites of the 16 human X-degenerate 

genes in chimpanzee and gorilla indicates that while all genes are intact in gorilla, 

structural and likely functional changes have taken place in chimpanzee lineage (Kuroki 

et al. 2006; Perry et al. 2007; Goto et al. 2009). Six PTRY genes, viz., CYorf15b, TBL1Y, 

TMSB4Y, USP9Y, VCY and VCY1B, have disruptions and mutations causing possible 

loss of function or production of truncated proteins (Hughes et al. 2005; Kuroki et al. 

2006; Perry et al. 2007). 

Besides human, detailed functional studies of Y-linked genes have been carried 

out only in mouse. It is well established that deletions on the long arm of mouse (Mus 

musculus, MMU) Y chromosome (MMUYq) involving highly amplified genes Sly, Asty 

and Orly cause male infertility (Toure et al. 2005; Ellis et al. 2007; Reynard et al. 2009). 

Notably, none of these gene families have been found in HSAY or other mammalian Y 

chromosomes. Analysis of gene expression profiles on a testis transcript microarray 

recently identified two more critical spermatogenesis-related murine Y-linked genes. 

Both are located on MMUYp and are significantly upregulated in the testis RNA from 
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mice with the MMUYq deletions (Ellis et al. 2005; Ferguson et al. 2009). One of the 

genes - H2al2y- encodes a novel histone family protein associated with centromeric 

heterochromatin during spermatogenesis, and has related genes on the X chromosome 

(H2al1) and an autosome (H2al2). Another gene - AK006152 - is not related to any 

known genes and appears to be MMUY-specific without any X-linked or autosomal 

homologs (Ferguson et al. 2009). 

Recently, expression profiles of Y-linked genes were studied also in cats 

(Murphy et al. 2006; Pearks Wilkerson et al. 2008). Like in humans and mice, the cat Y 

chromosome contains genes which have multiple copies, are expressed specifically in 

testis and some of these transcripts such as TETY1, TETY2 and FLJ36031Ya are novel 

and cat or carnivore specific. Furthermore, many multicopy, but not single-copy genes 

are significantly downregulated in domestic cat x Asian leopard cat sterile hybrids (W. 

Murphy unpublished observations) emphasizing the correlation between the function of 

multicopy Y-linked genes and the status of spermatogenesis. 

Proceeding from this overall compelling evidence that the male-specific region 

of the mammalian Y chromosome is evolutionarily predisposed to accumulate genes 

important for spermatogenesis, the aim of this study is to investigate whether Y-

chromosome genes are associated with fertility also in stallions. We have identified 36 

genes and ESTs in the horse Y chromosome (ECAY). All genes will be analyzed for 

their expression profiles in a panel of different body tissues including testis. The 

genes/ESTs showing testis-specific expression will be used for qRT-PCR to compare 

their expression in the testes of normal fertile stallions and stallions with various fertility 
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problems to identify potential candidate genes for stallion fertility. These goals will be 

achieved through the following specific objectives. 

 

OBJECTIVES 

 

1. Analyze the expression profiles of all ECAY genes/ESTs in a panel of normal, adult 

body tissues to identify candidate genes for stallion fertility. 

2. Compare the expression levels of all testis-specific genes/ESTs between fertile and 

infertile/subfertile stallions to identify genes that are differentially expressed between 

the two groups of animals. 

3. Generate full-length or nearly full length cDNA sequences for testis-specific ECAY 

genes/ESTs to acquire knowledge about their structure. 

This research will identify ECAY genes that are differentially expressed in 

infertile/subfertile stallions compared to normal animals and can hence, be considered as 

candidate genes for stallion fertility. The results are expected to establish an important 

foundation for the development of diagnostic tests for reproductive disorders in stallions 

in the future. 

 

MATERIALS AND METHODS 

 

Collection of tissue samples from normal horses 

Fresh necropsy samples of nine tissues (brain, kidney, heart, skeletal muscle, 

liver, lungs, spleen, seminal vesicle and testis) were obtained from two reproductively 
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normal adult male horses. Several pieces (approximately 0.5 cm
3
) of each tissue were 

collected in 1 ml of RNA-later (Ambion) to avoid degradation of RNA and stored at -80 

o
C until needed. These samples were used for isolation of messenger RNA (mRNA) and 

total RNA. 

 

Isolation of messenger RNA (mRNA) from horse tissues 

Messenger RNA (mRNA) was isolated using Fast Track 2.0 mRNA isolation kit 

(Invitrogen) following the manufacturer’s instruction with minor modifications 

(described in Chapter II).  

 

Primer design for Reverse Transcriptase PCR (RT-PCR) 

Primers for RT-PCR were designed, if possible, from two neighboring exons 

flanking an intron, using Primer 3 software (http://frodo.wi.mit.edu/cgi-

bin/primer3/primer3_www.cgi
11

). In cases where cDNA sequences were short or it was 

not possible to determine exon/intron boundaries, intra-exonic primers were used. 

Details about all primers and PCR conditions are presented in Table 5. 
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Table 5: Information about primers, reaction conditions and expected product sizes for RT-PCR analysis of all  

ECAY genes. 

 
Gene Symbol RT-PCR primers 

5′ - 3′ 

Same as  

genomic primers 

 

Ta, °C cDNA 

product size, 

bp 

Genomic DNA 

product size, bp 

ACTB F: CCCAGATCATGTTTGAGACCT 

R: CCTCGTAGATGGGCACAGT 

No 58 144 585 

AMELY F: CCAACCCAACACCACCAGCCAAACCTC 

CCT 

R: AGCATAGGGGGCAAGGGCTGCAAGGG 

GAAT 

Yes 65 160 160 

CUL4BY F:TGTGGGGTTCGTGTGAAATA 

R:CAAGGATCGCTGGGTCTTAC 

Yes 58 172 172 

CYorf15 F:CTAGGTGGCGACGCAAGTGA 

R:TGCACTCCGATTCTTGTTGA 

No 58 358 2342 

DDX3Y  F:CTCGAGATCCAAAACTGCTG 

R:GCTGGTCTGGACCTGAACTC 

No 58 181 4378 

EIF1AY F:GATCGTGGCCTTCTGACATT 

R:TTATTTTTGGGCATGGTGGT 

Yes 58 187 187 

EIF2s3Y F:GAGCCATCTGTGTGATCGTC 

R:TATTCCTGGCCCTAAGCACA 

Yes 58 223 223 

EIF3CY 

 

F:CCCAAGCAGGGTACCTATGG 

R:GGACAGAAGTGACGCAATCA 

Yes 58 134 134, 230 

ETSTY1 F:GACGGACGACCTTGTGTTTT 

R:CTAGTGGCGAGTCCTTTTGG  

Yes 58 234 234 

ETSTY2 F:ATCATCGTGGAAAGCCTCAC 

R:AGTGCTGAAGAGGCTGTGGT  

Yes 58 223 223 

ETSTY3 F:TTACATTTGTTGCGCCATGT 

R:GCCCAAAGAAGTAACCGACA  

Yes 58 134 134 

ETSTY4 F:TAAGGCTTCCCTCCTCCAAT 

R:CCAGTGACCCGACATACTGA 

Yes 58 175 175 

ETSTY5 F:CAAAACCAAGAGGAGGACCA 

R:CTCCAGAGGCAGGTACTTCG 

Yes 58 210 210 
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Table 5 continued 

 
Gene Symbol RT-PCR primers 

5′ to 3′ 

Same as genomic 

primers 

 

Ta, °C cDNA 

product size, 

bp 

Genomic DNA 

product size, bp 

ETSTY6 F:ACATGGCGCAACAAATGTAA 

R:TAGCTGTTTGCTGCAGTGCT 

Yes 58 245 245 

ETY1 F:TCCAGAGCAACAACAGCAAC 

R:CATCAGTCTGCCCAAACCTT 

Yes 58 127 127 

ETY2 F:TAAGGCTTCCCTCCTCCAAT 

R:CCAGTGACCCGACATACTGA 

Yes 58 150 850 

ETY3 F:TTTTGGCTTGTGTCTTTCTCTG 

R:ATAGGGCCAGACTTTCACAGC 

Yes 58 350 350 

ETY4 F:TGGGGATATTGGCTTAGCTG 

R:CTGGGAGCACGTCTGTATCA 

Yes 58 180 180 

KAL1Y F:AGGCACAGTCTTAGGGCAAA  

R: TTTTGGCATTCCCTTCTCTG 

Yes 58 231 231 

KDM5D 

(SMCY) 

F:AACAGCGAGCCAATGTTTTT 

R:GCAAAATTCTGGGAAATCCA 

Yes 58 191 400 

MAP3K7IP3Y F: GTGGAATCCCTATTGCTAAAGTTAC 

R: CCAGAGAGCTGTGACCAAG 

Yes 58 138 138 

MT-ND1Y F:CCCTCCGCTTTCCTAGACC 

R:CAACGATGGCTTGAAAGGAT 

Yes 58 100 100 

NLGN4Y F:GGGGATCCATCTTTGTGTTG 

R:GTCACACAGCAGGCTCTGAC 

Yes 58 156 156 

RBMY F:TTCGGCCTTCTCTTTCACAT 

R:ACTCAAGCAGCCGAAATGAT 

Yes 58 180 180 

RFX5Y F:ACCCTTAGGGGGAAAAATCC 

R:TTTCGTCCCTCAAGTTCCTG 

Yes 58 201 201 

RPS3AY F:CCGGAAGAAGATGATGGAAA 

R:CAAACTTGGGCTTCTTCAGC 

Yes 58 179 179, 790  

SRY F:TGCATTCATGGTGTGGTCTC 

R:ATGGCAATTTTTCGGCTTC 

Yes 58 200 200 



 

 

9
6

Table 5 continued 

 
Gene Symbol RT-PCR primers 

5′ to 3′ 

Same as genomic 

primers 

 

Ta, °C cDNA 

product size, 

bp 

Genomic DNA 

product size, bp 

STS-Y F:TGTGTGTTTCTGTCATGGGGATTACATC 

R:CAGACAATGTTTCCCAGTGACAATTGATTA 

n/a 58 n/a 210 (M/F) 

TBL1Y F: CACTCGAAACCAATGGAA   

R: TTCCATATCCTGGCAGTCGA 

 

n/a 50 n/a 500 (M/F) 

TMSB4Y F:ACCCACCCAGCCTCTTACTT 

R:TTGAAGAAGACGGAAACGC 

No 58 334 1123 

TSPY F:GAAGTCAGGCACACCAGTGA 

R:TAAGGCTGCAGTTGTCATGC 

Yes 58 189 280 

UBE1Y F:TGGCCAACTCACGGCTGATCCAA 

R:CTTCTCCACTCACCCTACTTGGG 

Yes 58 210 210 

USP9Y F:GGTTATGAAATGGTCTCTGC 

R:CGAGTCTGTCCATCAGGAGTC 

Yes 58 228 228 

UTY F: CAGCTGTTTTCGGTGATGAG 

R: GCCTCCTTCTCTTCGGTTG 

Yes 54 110 110 

YIR2 F:AGGGTTGGGCTAAGTCACCT 

R:ACCTTGGATCCAGACTCACG 

Yes 58 170 170 

ZFY F:TGAGCTATGCTGACAAAAGGTG 

R:TCTTTCCCTTGTCTTGCTTGA 

Yes 58 186 186 

ZNF33bY F:CCACAGCAAATACAGGAGCA 

R:GTCTGACTCCTCCCCCTTTC 

Yes 58 242 800, 3000 
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Reverse Transcriptase PCR for expression analysis 

 
RT-PCR was carried out using Superscript III One-Step RT-PCR System and 

Platinum Taq DNA polymerase (Invitrogen) in 15µl reactions containing 40 pmol of 

each primer and 10 ng of DNase-treated mRNA. RT-PCR with STS primers from a non-

transcribed sequence served as a control for mRNA possible contamination with 

genomic DNA. A housekeeping gene, beta actin (ACTB) was used as a control for RT-

PCR reactions. RT-PCR started with 30-min incubation at 50ºC, followed by 2-min hot-

start incubation at 94ºC and proceeded with 30 cycles as follows: 15 sec 94ºC, 30 sec 

58ºC, 1 min 68ºC and final extension 5 min at 68ºC. Genomic controls were run 

simultaneously with mRNA samples and RT-PCR products were visualized on 2.0% 

agarose gels. 

 

Isolation of total RNA from horse testis 

Testis tissue samples were collected from normal and infertile/subfertile horses 

(Table 9) and stored in RNA-later (Ambion) at -80ºC. Total RNA was extracted from 

testis tissues using RNeasy Mini Kit (Qiagen) following manufacturer’s protocol. In 

brief, tissue samples were carefully transferred from RNA-later into 600 µl of RLT 

buffer (with β-Mercaptoethanol) and homogenized using a glass homogenizer. The 

homogenate was centrifuged at 10,000 x g for 3 min and the supernatant was transferred 

carefully into a new tube. An equal volume of 70% ethanol was added to the clear lysate 

and mixed immediately. The solution was transferred to RNeasy spin column and 

centrifuged at 10,000 x g for 1 min to bind the RNA to the column. After on-column 
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DNA digestion with DNase in RDD buffer at room temperature for 15 min, 700 µl of 

RW1 buffer was added to the column and centrifuged at 10,000 x g for 1 min. The 

columns were washed twice with RPE buffer. RNeasy spin columns were then placed 

into fresh collection tubes, 50µl of RNase-free water was added directly into column and 

left for 2 min. Finally, the column was centrifuged at 10,000 x g for 1 min to elute total 

RNA. The quality and quantity of total RNA was analyzed using NanoDrop 

spectrophotometer and Agilent Bioanalyzer (Agilent, CA) with the RNA 6000 Nano 

chip kit (Agilent, CA). 

 

Primer design for quantitative Real Time PCR (qRT-PCR) 

Primers for qRT-PCR were designed, if possible, from two neighboring exons 

flanking an intron or from one exon using Primer 3 software (http://frodo.wi.mit.edu/cgi-

bin/primer3/primer3_www.cgi
11

). The product size of primers varied from 100 to 250 bp 

(Table 6) which is the ideal product range for qRT-PCR. The primers were first 

optimized in 10 µl volume PCR reactions containing 1X buffer (Sigma Aldrich), 0.3 

pmol of each primer, 0.2 mM dNTPs, 1.5 mM MgCl2 and 0.25 units JumpStart REDTaq 

DNA polymerase (Sigma Aldrich), and products were resolved on 2.0% agarose gels. 

Only the primers that amplified single products of the expected size and gave no extra 

bands or primer-dimers were used for qRT-PCR. 
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Table 6: Information about primers, reaction conditions and expected product sizes 

for qRT-PCR analysis of multicopy and testis specific ECAY genes. 

 
Gene Symbol qRT-PCR  primers 

5′ to 3′ 

Same as RT-

PCR 

primers 
 

Ta, °C qRT-PCR 

product size, bp 

ACTB 

Housekeeping 

control 

F: CCCAGATCATGTTTGAGACCT 

R: CCTCGTAGATGGGCACAGT 

Yes 58 144 

DDX3Y 

single copy 

control 

F:CTCGAGATCCAAAACTGCTG 

R:GCTGGTCTGGACCTGAACTC 

Yes 58 181 

ETSTY1 F:GACGGACGACCTTGTGTTTT 

R:CGCTCACAGATGACAGTAGCA 

No 58 165 

ETSTY2 F:AACCAGGAAGCCCAGTTACA 

R:GTTTGCCTCTTTGGATGAGC 

No 58 227 

ETSTY3 F:CCTAACCGACAGCCAAAGAG 

R:GCCCAAAGAAGTAACCGACA 

No 58 198 

ETSTY4 F:TAAGGCTTCCCTCCTCCAAT 

R:CCAGTGACCCGACATACTGA 

Yes 58 175 

ETSTY5 F:CGAGGTCAAAACCAAGAGGA 

R:CTCCAGAGGCAGGTACTTCG 

No 58 216 

ETSTY6 F:GCAGTAGGCAGTCGAAGGAA 

R:AATGGAAGAAGGGGCACAAT 

No 58 153 

GAPDH 

Housekeeping 

control 

F: CCTTCTCTTGCTGGGTGATTG 

R: GACAATGAATTTGGCTACAGCA 

Not used in 

RT 

58 103 

RBMY F:TTCGGCCTTCTCTTTCACAT 

R:ACTCAAGCAGCCGAAATGAT 

Yes 58 180 

TSPY F:GAAGTCAGGCACACCAGTGA 

R:TAAGGCTGCAGTTGTCATGC 

Yes 58 189 

UBE1Y F:TGGCCAACTCACGGCTGATCCAA 

R:CTTCTCCACTCACCCTACTTGGG 

Yes 58 210 
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Gene expression analysis using qRT-PCR 

The LightCycler® 480 DNA SYBR Green chemistry technique (Roche Applied 

Sciences, (Gibson et al. 1996; Heid et al. 1996) was utilized to analyze the expression 

profiles of testis-specific ECAY genes/ESTs in testis of normal and subfertile/infertile 

horses. Total RNA was directly reverse transcribed to cDNA using the TaqMan Reverse 

Transcriptase reagents (Applied Biosystems). Serial dilutions of pooled cDNA samples 

were used to generate relative standard curves and test the amplification efficiency of 

each primer. In addition to testis-specific genes of interest, one Y-linked X-degenerate 

gene (DDX3Y) and two autosomal house-keeping genes Beta Actin (ACTB) and 

Glyceraldehyde Phosphate Dehydrogenase (GAPDH) were used as references for qRT-

PCR. For each qRT-PCR assay a 20µl reaction containing ~100 ng of cDNA, 1x 

LightCycler® 480 DNA SYBR Green Master I Mix (Roche Applied Sciences) and 

10µM primers was amplified on a LightCycler® 480 Detection System (Roche Applied 

Sciences).  

 

qRT-PCR data analysis 

qRT-PCR raw data was initially analyzed using LightCycler® 480 v.1.2 software 

to generate standard curve, evaluate the efficiency of each primer pair and obtain 

maximum crossing point (Cp) values for all experimental samples. The software analysis 

of real-time PCR data is generally based on a method called "cycle-threshold" method. 

The cycle-threshold is defined as the fractional cycle number in the log-linear region of 

PCR amplification in which the reaction reaches fixed amounts of amplicon DNA. One 
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method for calculating the cycle threshold value is second derivative method which 

calculates the fractional cycle where the second derivative of the real-time fluorescence 

intensity curve reaches the Cp value (Luu-The et al. 2005; Guescini et al. 2008). The 

data obtained from LightCycler® 480 v.1.2 software were imported to qBase software 

and analyzed for relative quantitative expression of genes (Hellemans et al. 2007). p-

values to test the statistical significance of relative expression differences (fold 

induction) for each primer set were calculated using SPSS v.17 software at a cut-off 

threshold of p<0.05. 

 

Copy number analysis using qRT-PCR 

The primers designed for gene expression analysis by qRT-PCR (Table 6) were 

used also to analyze the genomic copy number of multicopy genes on a panel of 8 

normal and 12 infertile/subfertile stallions. First, primers for each gene were used to 

amplify from DNA of a normal fertile stallion. PCR products were directly cloned into 

TOPO-TA cloning vector and transformed into TOP-10 chemically competent E. coli 

cells (Procedure described in CHAPTER II). Plasmid DNA containing inserts of ECAY 

genes was isolated using QuickLyse Miniprep Kit (Qiagen) following manufacturer’s 

instructions. Standard curve was generated using serial dilutions of plasmid DNA of 

each gene as single copy control and efficiency values were calculated. Duplicate 

samples of 50 ng of genomic DNA from all 20 animals were used as templates for each 

Real Time copy number experiment. Each experiment was replicated at least twice. The 

standard curve generated for each transcript was used to calculate the concentration of 
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the genomic samples. Copy number of each gene per 3.65 pg of DNA (amount of DNA 

in a haploid cell) was calculated using a copy number calculation formula provided by 

Roche.  

 

Primer design for RACE  

Rapid Amplification of cDNA Ends (RACE) was performed using GeneRacer
TA 

Kit (Invitrogen). For the 5′ end of each partial cDNA sequence, one 5′ reverse primer 

and one 5′ nested reverse primer were designed using Primer 3 software 

(http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi
11

) in conjunction with 

GeneRacer 5′ forward primer and GeneRacer 5′ nested forward primer, respectively 

(provided with the kit) (Table 7). Similarly, for the 3′ end of each partial cDNA 

sequence, one 3′ forward primer and one 3′ nested forward primer were designed in 

conjunction with GeneRacer 3′ reverse primer and GeneRacer 3′ nested reverse primer, 

respectively (provided with the kit). In both cases, manufacturer’s instructions were 

taken into consideration while designing the primers. The nested primers had sequence 

overlap with the respective gene-specific primers to obtain more specificity of the genes 

subjected to RACE.  
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Table 7: Information about RACE primers.  

Primers 

 

Sequences 5′ to 3′ 

ETSTY1-RACE-5′R TCAGGGCCAAAAACACAAGGTCGTC 

ETSTY1-RACE-N-5′R AAAACACAAGGTCGTCCGTCCAC 

ETSTY1-RACE-3′’F CTTTCCAGATCTGCTCCGTGTGACT 

ETSTY1-RACE-N-3′F GATCTGCTCCGTGTGACTGGTGCTA 
ETSTY2-RACE-5′R GGAGGTGTGGTTACTCTCCTTGGGTTGA 
ETSTY2-RACE-N-5′R TGGTTACTCTCCTTGGGTTGAGTGC 

ETSTY2-RACE-3′F CAGCCCAAAGAAGTAACCGACACG 

ETSTY2-RACE-N-3′F CAGAAAGCCAAACCACAGCCTCTTC 
ETSTY3-RACE-5′R CCCGGGAAGGCTAACCGGAAACTAT 

ETSTY3-RACE-N-5′R CTCTGCCAAAGCTGACTGAGGAAAC 

ETSTY3-RACE-3′F ATGTGTAGGGCCAGTTGAACAGCAG 

ETSTY3-RACE-N-3′F CCAAAGAAAAACCCAGCCTCAGC 
ETSTY4-RACE-5′R GCTGTGGAGGTTATGGTTTGCCCTTG 

ETSTY4-RACE-N-5′R CGGTTTGGTTAGTTCGTGGAGGTT 
ETSTY4-RACE-3′F AACCGTACCTTCTGCAGCAACCAG 

ETSTY4-RACE-N-3′F AGGGAGCCTAGCCACAAACTGCAC 
ETSTY5-RACE-5′R TGCTCCAACTTGCCTCTCTTTTGCAG 
ETSTY5-RACE-N-5′R CTCTGCCTTTACGCATTCCCTCATAC 
ETSTY5-RACE-3′F AAGCTCACGGCATAACGGGCTAGTA 
ETSTY5-RACE-N-3′F CTGGAGGCGACGAAGTACCTCAGAA 

ETSTY6-RACE-5′R GGGTCCTGGGTCAGTTACCACAGAGG 
ETSTY6-RACE-N-5′R GCAGATGTAGTCTGGCTTCCTGGAT 

ETSTY6-RACE-3′F ATACAGACGTGCTCCCAGGCACTT 

ETSTY6-RACE-N-3′F AGGACACTGGTGGCCTTGGTCTCT 
TSPY-RACE-5′R TGGCTGACATCTGGGGGTGGTTCA 
TSPY-RACE-N-5′R TGGCTGACATCTGGGGGTGGTTCA 
TSPY-RACE-3′F GCAGCCGGAGACGGGACTGAGAGTAGG 
TSPY-RACE-N-3′F GCAGCCGGAGACGGGACTGAGAGTAGG 
RBMY-RACE-5′R GGGGGAGAGGCGTATATTGGCTTT 

RBMY-RACE-N-5′R CGATGTGAAAGAGAAGGCCGAAG 
RBMY-RACE-3′F CAGAGGGAGTGCTCGTGGTG 

RBMY-RACE-N-3′F  GCTCGTGGTGGTGGCGCACC 

GeneRacer™ 5′ Primer F CGACTGGAGCACGAGGACACTGA 

GeneRacer™ 5′ Nested 

(N)Primer F 

GGACACTGACATGGACTGAAGGAGTA 

GeneRacer™ 3′ Primer R GCTGTCAACGATACGCTACGTAACG 

GeneRacer™ 3′ Nested (N) 

Primer R 

CGCTACGTAACGGCATGACAGTG 
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Generation of full length cDNA using RACE  

To generate full length cDNA from a partial cDNA sequence, RACE was carried 

out separately for 3′ and 5′ ends. 3′ RACE was done using 3′ RACE primers and 

GeneRacer systems (Invitrogen) according to manufacturer's specifications. 

Approximately, 1 µg of total testis RNA was directly used for reverse transcriptase PCR 

for 3′ RACE. For 5′ RACE, 1 µg of total RNA was dephosphorylated, decapped and 

GeneRacer RNA oligo was ligated to the full length mRNA. The dephosphorylation of 

total RNA used for 5′ RACE helped to eliminate the truncated mRNA and non-mRNA 

from subsequent ligation with the GeneRacer oligo. However, full-length mRNA 

remained intact after dephosphorylation due to the presence of 7mG cap at the 5′ end. 

This 5′ cap was removed by pyrophosphatase keeping the full-length mRNA structure 

intact. This treatment also left available a 5′ phosphate that is required for the ligation to 

the GeneRacer RNA oligo (provided with the GeneRacer kit).  

After the modification of 5′ mRNA end, both 5′ and 3′ testis RNA were 

separately subjected to reverse transcription to synthesize cDNA as templete for RACE 

PCR using random primers for 5′ end and oligo dT primers for 3′ end reactions. The 5′ 

and 3′ RACE-ready cDNA were then used for RACE PCR amplification using gene-

specific primers (Table 7). The first-round PCR cycling conditions for RACE were: hot-

start at 94°C for 2 min; 5 cycles of 94°C for 30 sec, 72°C for 1 min; 5 cycles of 94°C for 

30 sec, 70°C for 1 min; 20 cycles of 94°C for 30 sec, 65°C for 30 sec and 68°C for 1 

min. A final extension of 10 min at 68°C completed the reaction. The PCR product 

obtained from the first round of amplification was diluted 10 times (1:10 dilution) and 1 
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µl of the dilution was used as a template for the second round of amplification (Nested 

RACE PCR) with nested primers. Nested RACE PCR was performed using the cycling 

conditions as follows: hot-start at 94°C for 2 min; 20 cycles of 94°C for 30 sec, 65°C for 

30 sec and 68°C for 2 min followed by a final extension of 10 min at 68°C. Products of 

nested RACE PCR were visualized on a 2% agarose gel. The bands were cut from gel 

and PCR products were eluted using S.N.A.P. columns provided with the kit. PCR 

products were thereafter cloned using TOPO TA Cloning Kit for Sequencing 

(Invitrogen). Transformed cells were plated on LB agar with 50 µg/ml ampicillin. 

Colonies were picked after an overnight incubation at 37°C and cultured overnight at 

37°C in LB medium with 50 µg/ml ampicillin. Plasmid DNA was extracted using either 

REAL Prep 96-well Kit (Qiagen), for large number of clones or QuickLyse Miniprep Kit 

(Qiagen), for a few number of clones depending on the number of clones to be analyzed 

at a time. Plasmid DNA was digested with EcoR1 and visualized on a 1% agarose gels. 

Plasmids containing appropriate size inserts were sequenced using universal primers as 

described in Chapter II. 

 

RESULTS 

 

Gene expression analysis by RT-PCR 

Reverse transcriptase PCR using primers for 34 ECAY genes and ESTs was 

carried out on nine equine body tissues. Primers for TBL1Y and STS-Y amplified both 

male and female genomic DNA and were not used for analysis. In total, 31 genes/ESTs 
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showed expression in one or more tissues while no expression was observed for ETY3, 

KAL1Y and AMELY. This explains why the latter two were not found from cDNA 

selection. Expression profiles could be divided into three distinct categories: i) ten 

multicopy genes/ESTs (ETSTY1-6, RBMY, TSPY, UBE1Y, ZNF33bY) were expressed 

only in testis (Fig. 8a); ii) six genes/ESTs (CUL4BY, ETY1, NLGN4Y, RFX5Y, SRY, 

YIR2) showed intermediate expression being expressed in testis and in a few other 

tissues; two genes in this group - YIR2 and SRY - were expressed predominantly in testis 

(Fig. 8b) and, iii) 15 genes/ESTs (CYorf15, DDX3Y, EIF1AY, EIF3CY, EIF2s3Y, ETY2, 

ETY4, MAP3K7IP3Y, MT-ND1Y, RPS3AY, KDM5D (alias SMCY), TMSB4Y, USP9Y, 

UTY, ZFY) were expressed in all nine tissues (Fig. 8c, Table 8). The 10 multicopy 

genes/ESTs showing testis-specific expression (Table 8) were considered as potential 

candidates for stallion fertility and were used for quantitative gene expression studies 

across a panel of testis RNA isolated from normal and infertile/subfertile stallions. 
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Table 8: Summary of the expression profiles of ECAY genes and ESTs. 

 
Gene Symbol Expression 

Pattern 

 

Expression in horse tissues 

 

Expression in 

human tissues 

Copy number 

AMELY No expression - Expressed in tooth 

enamel 

Single copy 

CUL4BY Intermediate Predominantly testis; limited in kidney, heart, spleen Not found in 

human 

Multicopy 

CYorf15 Ubiquitous Brain, kidney, heart, skeletal muscle, liver, lung, seminal vesicle, testis Ubiquitous Single copy 

DDX3Y 

 

Ubiquitous Brain, kidney, heart, skeletal muscle, liver, lung, seminal vesicle, testis Ubiquitous Single copy 

EIF1AY Ubiquitous Brain, kidney, heart, skeletal muscle, liver, lung, seminal vesicle, testis Ubiquitous Single copy 

EIF2s3Y Ubiquitous Brain, kidney, heart, skeletal muscle, liver, lung, seminal vesicle, testis Not found in 

human 

Single copy 

EIF3CY 

 

Ubiquitous Brain, kidney, heart, skeletal muscle, liver, lung, seminal vesicle, testis n/a Single copy 

ETSTY1 Testis-specific Testis Not found in 

human 

Multicopy 

ETSTY2 Testis-specific Testis Not found in 

human 

Multicopy 

ETSTY3 Testis-specific Testis Not found in 

human 

Multicopy 

ETSTY4 Testis-specific Testis Not found in 

human 

Multicopy 

ETSTY5 Testis-specific Testis Not found in 

human 

Multicopy 

ETSTY6 Testis-specific Testis Not found in 

human 

Multicopy 
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Table 8 continued 

 
Gene Symbol Expression 

Pattern 

 

Expression in horse tissues 

 

Expression in 

human tissues 

Copy number 

ETY1 Intermediate Predominantly testis and liver, limited in brain, kidney, heart, lungs, spleen Not found in 

human 

Multicopy 

ETY2 Ubiquitous Brain, kidney, heart, skeletal muscle, liver, lung, seminal vesicle, testis Not found in 

human 

Single copy 

ETY3 No expression - Not found in 

human 

Multicopy 

ETY4 Ubiquitous Brain, kidney, heart, skeletal muscle, liver, lung, seminal vesicle, testis Not found in 

human 

Multicopy 

KAL1Y No expression - Pseudogene, not 

expressed 

Single copy 

KDM5D 

(SMCY) 

Ubiquitous Ubiquitous Ubiquitous Single copy 

MAP3K7IP3Y Ubiquitous Brain, kidney, heart, skeletal muscle, liver, lung, seminal vesicle, testis Not found in 

human 

Single copy 

MT-ND1Y Ubiquitous Brain, kidney, heart, skeletal muscle, liver, lung, seminal vesicle, testis Pseudogene, not 

expressed 

Single copy 

NLGN4Y Intermediate Testis, seminal vesicle, brain Testis, prostate, 

brain 

Single copy 

RBMY Testis-specific Testis Testis Multicopy 

RFX5Y Intermediate Testis, kidney, liver, spleen Expression data not 

available 

Single copy 

RPS3AY Ubiquitous Brain, kidney, heart, skeletal muscle, liver, lung, seminal vesicle, testis Expression data not 

available 

Single copy 

SRY Intermediate Predominantly testis; limited in kidney, seminal vesicle Predominantly 

testis 

Single copy 

STS-Y n/a n/a Not found in 

human 

Single copy 

TBL1Y n/a n/a Ubiquitous Single copy 

TMSB4Y Ubiquitous Brain, kidney, heart, skeletal muscle, liver, lung, seminal vesicle, testis Ubiquitous Single copy 
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Table 8 continued 

 
Gene Symbol Expression 

Pattern 

 

Expression in horse tissues 

 

Expression in 

human tissues 

Copy number 

TSPY Testis-specific Testis Testis Multicopy 

UBE1Y Testis-specific Testis Not found in 

human 

Multicopy 

USP9Y Ubiquitous Brain, kidney, heart, skeletal muscle, liver, lung, seminal vesicle, testis Ubiquitous Single copy 

UTY Ubiquitous Brain, kidney, heart, skeletal muscle, liver, lung, seminal vesicle, testis Ubiquitous Single copy 

YIR2 Intermediate Testis, heart; limited in kidney, liver, lungs, spleen n/a Multicopy 

ZFY Ubiquitous Brain, kidney, heart, skeletal muscle, liver, lung, seminal vesicle, testis Ubiquitous Single copy 

ZNF33bY Testis-specific Testis Expression data not 

available 

Multicopy 
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Figure 8: RT-PCR results showing the expression of ECAY genes in nine body tissues. Lanes 1-brain, 

2-kidney, 3-heart, 4-muscle, 5-liver, 6-lung, 7-spleen, 8-seminal vesicle, 9-testis, 10-no mRNA 

control, 11-no RT control, 12-no genomic DNA control, 13-male genomic DNA control, 14- female 

genomic DNA control, M-100 bp marker. a. Testis-specific expression. M: molecular markers. 
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Figure 8 (contd.) 

b. Intermediate expression; c. Ubiquitous expression. 
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Comparison of gene expression between fertile and subfertile/infertile stallions 

According to our hypothesis, transcripts with testis-limited expression and with 

multiple copies on the horse Y chromosome are potential candidates for stallion fertility. 

Therefore, all 10 multicopy and testis-specific ESTs, viz., ETSTY1-6, RBMY, TSPY, 

UBE1Y and ZNF33bY were selected for quantitative gene expression studies between 

normal and subfertile/infertile stallions. DDX3Y, a ubiquitously expressed single copy 

gene, and two autosomal reference genes, ACTB and GAPDH, were used as controls. All 

primers were first optimized by regular PCR on a genomic DNA template. All markers, 

except ZNF33bY, amplified one single PCR product of the expected size. Primers for 

ZNF33bY amplified multiple products and designing new set of primers for this gene did 

not change this pattern. Since the presence of a specific PCR product is extremely 

important for quantitative real time PCR using SYBR Green Chemistry, ZNF33bY was 

excluded from further study. Testis samples from 10 normal, fertile, unrelated stallions 

and 14 infertile/subfertile stallions were used for this study (Table 9). Total testis RNA 

from three normal stallions was pooled and reverse transcribed into cDNA. Sequential 

1:2 serial dilutions were used to obtain a range of template cDNA quantities (from 

200ng to 6.25ng) for qRT-PCR reactions to generate standard curves for each primer set. 

The standard curves produced amplification efficiency values for each primer set and 

were used for final calculations (discussed later). Optimal quantity of template cDNA 

was about 100 ng, thus, this amount of cDNA from each animal was used in duplicate 

reactions for qRT-PCR assays. 
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Table 9: Information about the samples used for gene expression analysis by qRT-PCR. 

 
Sample Id 

 

Category Breed Age Clinical description 

Normal 1 

 

Normal, fertile QuarterHorse  4 yr Normal 

Normal 2 

 

Normal, fertile QuarterHorse  4 yr Normal 

Normal 3 

 

Normal, fertile QuarterHorse  4 yr Normal 

Normal 4 

 

Normal, fertile Thoroughbred 4 yr Normal 

Normal 5 

 

Normal, fertile Gypsy Vanner  n/a Normal 

Normal 6 

 

Normal, fertile n/a n/a Normal 

Normal 7 

 

Normal, fertile n/a n/a Normal 

Normal 8 

 

Normal, fertile QuarterHorse  4 yr Normal 

Normal 9 

 

Normal, fertile QuarterHorse  2 yr Normal 

Normal 10 

 

Normal, fertile n/a 2 yr Normal 

Abnormal 1 Infertile/subfertile Arabian 

 

n/a Sterile. Normal sperm count but 97% of sperm morphologically abnormal (head 

abnormalities). Low motility. 

Abnormal 2 Infertile/subfertile QuarterHorse 

 

23 yr 

 

Sterile. Very small testes and very low sperm count. Low percentage of normal 

sperm. 

Abnormal 3 Infertile/subfertile Standardbred 3 yr Autosomal trisomy (65, XY+27). Sterile, azoospermia,  

bilateral cryptorchid. 

Abnormal 4 

 

Infertile/subfertile Connemara 7 yr Sterile, azoospermia.  

Abnormal 5 

 

Infertile/subfertile n/a n/a Bilateral cryptorchid. Both testes abdominal 
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Table 9 continued 

 
Sample Id 

 

Category Breed Age Clinical description 

Abnormal 6 

 

Infertile/subfertile n/a n/a Unilateral cryptorchid 

Abnormal 7 

 

Infertile/subfertile n/a n/a Unilateral cryptorchid 

Abnormal 8 

 

Infertile/subfertile n/a  n/a Unilateral cryptorchid 

Abnormal 9 

 

Infertile/subfertile n/a n/a Unilateral cryptorchid 

Abnormal 10 

 

Infertile/subfertile n/a n/a Bilateral cryptorchid. 

Abnormal 11 

 

Infertile/subfertile Appaloosa 2 yr Bilateral cryptorchid. Both testicles deeply abdominal, close to the kidneys.  

Abnormal 12 

 

Infertile/subfertile Mustang  6 yr Unilateral cryptorchid.  

Abnormal 13 

 

Infertile/subfertile QuarterHorse  1 yr Unilateral cryptorchid.  

Abnormal 14 

 

Infertile/subfertile Thoroughbred 19 yr Infertile due to impaired acrosomal exocytosis. 
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qRT-PCR assays with each set of primers were carried out on a panel of testis 

cDNA from 24 animals. All assays were repeated at least twice to verify the consistency 

of results. The cDNA from normal stallion number 2 (Normal 2, Table 9) was used as 

inter-run calibrator to eliminate plate-to-plate variation in cases where all samples could 

not be run in a single plate. After each experiment, Cp values for each sample were 

obtained using 2
nd

 derivative max option within absolute quantification program of Light 

Cycler 480 software v. 1.2. After importing these data to the qBase software, relative 

quantification was done using ACTB and GAPDH as reference genes and the remaining 

10 genes as genes of interest. Efficiency values that were calculated for each gene earlier 

were taken into consideration while analyzing data in qBase. The results demonstrated 

that the reference genes, ACTB and GAPDH, and single copy DDX3Y were expressed at 

the same level in all animals (Fig. A2a, b), whereas all multicopy testis-specific genes 

showed differential expression between fertile and infertile stallions (Fig. A2c, d). In 

summary, ETSTY1, ETSTY5, TSPY and UBE1Y were upregulated in infertile individuals 

while all other genes demonstrated downregulation. This result was further analyzed for 

statistical significance using SPSS v. 17 software. p-values were calculated with Mann 

Whitney non- parametric test which is specifically designed for sample numbers less 

than 15 in each group (10 fertile and 14 infertile individuals). Five ESTs viz., ETSTY3-6 

and RBMY showed statistically significant differential expression between fertile and 

infertile groups with cut-off p-value 0.05 (95% level of confidence) (Fig. 9).  
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   Figure 9: qRT-PCR results showing differential expression of ECAY genes between normal fertile stallions and stallions     

   with fertility problems; * p value < 0.05, statistically significant (Mann Whitney non-parametric test). 
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Notably, ETSTY5 was significantly upregulated in infertile individuals while 

ETSTY3, 4, 6 and RBMY were significantly downregulated. Since the 14 “abnormal” 

samples were collected from stallions with a broad range of different 

infertility/subfertility phenotypes there was variation in the expression levels of the same 

genes across these individuals. For example, ETSTY1 was downregulated in seven and 

upregulated in the remaining seven infertile stallions. Interestingly, out of the seven 

stallions where ETSTY1 was downregulated, six animals were cryptorchids whereas in 

three other cryptorchids ETSTY1 was slightly upregulated (Fig. A2c). 

 

Copy number analysis by qRT-PCR 

Copy numbers for nine testis-specific multicopy genes/ESTs (ETSTY1-6, TSPY, 

RBMY, UBE1Y) were analyzed using Real Time PCR absolute quantification method 

and a panel of genomic DNA from 8 normal stallions and 12 stallions with fertility 

problems. After obtaining individual copy numbers of each animal, the average copy 

numbers of each gene across fertile and infertile/subfertile stallions (Table 10) was 

compared. The average copy numbers of the nine multicopy ECAY genes in fertile and 

infertile/subfertile stallions are summarized in Table 10 and Fig. 10. Overall, average 

copy numbers of all studied genes showed a tendency to decrease in infertile animals. 

For four ESTs, viz., ETSTY2, ETSTY6, RBMY and UBE1Y this decrease was statistically 

significant (SPSS v.17, MannWhitney non parametric test for unrelated samples). Genes 

with the highest copy numbers in both normal and abnormal animals were RBMY and 

UBE1Y (Table 10). It is, however, intriguing that during cDNA selection procedure only 
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one transcript was isolated for RBMY, while 54 cDNA clones contained UBE1Y 

(discussed in Chapter II).  

 

 

Table 10: Results of copy number analysis of multicopy ECAY genes/ESTs. 

 
Average copy number Gene 

 Normal fertile 

stallions 

Subfertile/ infertile 

stallions 

Copy number change in 

subfertile/infertile stallions 

 

ETSTY1 29 24 decrease 

ETSTY2 6 2 decrease * 

ETSTY3 22 14 decrease 

ETSTY4 39 33 decrease 

ETSTY5 2 1 decrease 

ETSTY6 2 1 decrease* 

TSPY 49 32 decrease 

RBMY 393 155 decrease* 

UBE1Y 321 205 decrease* 

 

* statistically significant change (SPSS v.17, MannWhitney non parametric test for 

unrelated samples) 
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                        Figure 10: Summary of copy number variation of ECAY genes between normal stallions and stallions  

                        with fertility problems; * p value < 0.05, statistically significant (Mann Whitney non-parametric test).
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Generation of full length cDNA 

Full length cDNA sequences were generated for three testis-specific transcripts - 

TSPY, ETSTY2 and ETSTY5 using 5′ and 3′ RACE PCR. The available partial cDNA 

sequences were used to generate sequences for the 5′ and the 3′ ends. The cDNA RACE 

PCR products for both ends were gel purified, cloned into plasmid and sequenced. The 

sequences were quality trimmed, aligned with the original cDNA sequence using 

Sequencher v1.7. The full length cDNA sequences obtained for the three genes were as 

follows: TSPY 1079 bp, ETSTY2 is 2323 bp and ETSTY5 is 1635 bp. The size of the 

horse TSPY cDNA is similar to that of human TSPY1 which is 1159 bp and the two 

sequences show 79% identity with an e-value of 6e-97. 

Y-specific RACE primers could not be designed for horse UBE1Y because its 

sequence is highly similar to UBE1X on the X chromosome. Due to the uncertainty of 

RACE-PCR procedure, full length cDNAs could not be obtained for the remaining testis 

specific transcripts. However, for some transcripts the lengths of partial cDNA 

sequences were increased as follows: ETSTY1 448 bp, ETSTY3 2591 bp, ETSTY4 2452 

bp, ETSTY6 1066 bp, RBMY 712 bp, UBE1Y 2924 bp and ZNF33bY 3602 bp. 

 

Analysis of novel equine Y sequences 

Sequences of the ten novel equine Y-specific multicopy ESTs were aligned with 

each other using Sequencher V1.7 and assembly parameters 20 for minimum overlap 

and 90% for minimum match. None of the ten ESTs showed any overlap with each 

other. However, when assembly parameters were relaxed to 10 for minimum overlap and 
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75% for minimum match, ETSTY2, ETSTY3 and ETSTY6 demonstrated substantial 

alignment identity with each other. Similarly, when the same three sequences were 

aligned in pairs using BLAST tool (http://blast.ncbi.nlm.nih.gov/Blast.cgi
9
), short 

stretches of sequences showed 75-90% identity. The remaining three sequences, 

however, did not align even at the least stringent assembly parameters and are unique to 

each transcript. 

 

Presence of open reading frames (ORFs) and evaluation of protein coding ability 

The presence of open reading frames was analyzed for all three ESTs for which 

full length cDNA sequences were obtained. TSPY cDNA has eight ORFs of which the 

longest is 807 nucleotides. The remaining seven ORFs are present at different 

overlapping regions of the longest ORF and are 693 bp, 375 bp, 366 bp, 342 bp, 330 bp, 

276 bp and 237 bp, respectively. All seven ORFs, except the shortest, encode TSPY 

protein of 269, 231, 125, 122, 114, 110 and 92 amino acids, respectively. BLASTP 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi
9
) analysis showed that horse TSPY protein is 

highly similar to TSPY proteins in human and several other mammals. However, the 79 

amino acid protein encoded by the shortest equine ORF did not show any significant 

similarity to TSPY proteins in other species. Using NCBI conserved domain database 

(http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
17

) a conserved domain, NAP 

(nucleosome assembly protein) was identified in horse TSPY protein. This domain is 

conserved in different mammalian TSPY proteins, including human, and is important for 

a diverse spectrum of cellular and molecular functions.  
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Two non-overlapping ORFs (348 bp and 333 bp) were found in ETSTY2 and 

three non overlapping ORFs (219 bp, 381 bp and 180 bp) in ETSTY5. ETSTY2 can 

potentilly encode two proteins consisting of 116 and 111 amino acids and ETSTY5 for 

three proteins with 73, 127 and 60 amino acids, respectively. No conserved domains 

were identified for ETSTY2 and ETSTY5 full length transcripts using NCBI conserved 

domain database search (http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
17

). ORF 

analysis with other novel partial cDNA sequences revealed the presence of non-

overlapping ORFs in ETSTY3 (255 bp and 159 bp), ETSTY4 (237 bp), ETSTY6 (153 bp, 

165 bp and 159 bp), ETY1 (288 bp and 276 bp) and ETY4 (123 bp and 129 bp). Each 

ORF can potentially code for proteins consisting of 85, 53 (ETSTY3), 79 (ETSTY4), 51, 

55, 53 (ETSTY6), 96, 92 (ETY1), 41 and 43 (ETY4) amino acids, respectively. None of 

these amino acid sequences showed homology with existing non-redundant protein 

sequences and reference sequence databases using NCBI protein BLAST (BLASTP) 

algorithm (http://blast.ncbi.nlm.nih.gov/Blast.cgi
9
). This supports our assumption that 

these are horse-specific expressed sequences and have no counterparts in other 

mammalian species. 

 

DISCUSSION 

 

Expression analysis of equine Y-chromosome genes 

Reverse transcriptase PCR identified 10 ECAY transcripts (ETSTY1-6, RBMY, 

TSPY, UBE1Y, ZNF33bY) that are expressed only in testis. All 10 transcripts are present 
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in multiple copies on equine Y chromosome. This is in agreement with findings in 

human, mouse and cat where multicopy Y-linked genes also tend to be expressed only in 

testis (Skaletsky et al. 2003; Murphy et al. 2006; Pearks Wilkerson et al. 2008). Besides 

these similarities, there are also lineage-specific differences. For example, RBMY is a 

multicopy and testis-specific gene in horse, human and mouse while TSPY is a 

multicopy and testis-specific gene in horse, human and cat but a single copy in mouse 

(Schubert et al. 2000a; Schubert et al. 2000b; Skaletsky et al. 2003; Murphy et al. 2006). 

UBE1Y is a single copy and intermediately expressed gene in cat (Murphy et al. 2006), 

whereas the single copy murine UBE1Y is expressed exclusively in testis (Mitchell et al. 

1991). In contrast, horse UBE1Y is present in multiple copies and like its murine 

ortholog, has testis limited expression (Fig. 8a). It is likely that horse Y-linked ubiquitin-

activating enzyme has acquired functions that are restricted to ubiquitin activation and 

protein turnover (Levy et al. 2000) specific to germ cell proliferation and is, thus, a part 

of factors regulating stallion fertility. Notably, this gene has been lost from the Y 

chromosome in human lineage (Lahn et al. 2001; Skaletsky et al. 2003). Finally, 

ZNF33b is an autosomal gene in human and other mammals, including horse, but has 

acquired multiple copies and testis-limited expression in the horse Y chromosome. 

However, ZNF33bY demonstrated the presence of multiple bands in horse testis (Fig. 

8a). This observation suggests that ZNF33bY might be a member of a multicopy gene 

family rather than being a single gene on the horse Y chromosome. The function of this 

gene is as yet unknown.  
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Six ECAY genes and ESTs (CUL4BY, ETY1, NLGN4Y, RFX5Y, SRY, YIR2) 

showed intermediate expression pattern. Until now, CUL4BY has been found to be Y-

linked only in cat and dog where it is highly amplified and has testis-limited expression 

(Murphy et al. 2006; Pearks Wilkerson et al. 2008). Horse CUL4BY is also multicopy 

but has a broader expression profile (Table 8). It is possible that equine CUL4BY is in a 

transitional stage from ubiquitous towards testis-restricted expression – a transition from 

its original housekeeping duties to spermatogenesis-related functions. NLGN4Y shows 

intermediate expression pattern in all species studied so far (mouse, human, cat and 

horse) and is expressed in reproductive tissues (testis, seminal vesicle, prostate) and 

brain (Skaletsky et al. 2003). RFX5Y is an autosomal gene in other mammals and has 

acquired a Y-linked copy only in horse. YIR2 is present in human Y chromosome but its 

expression data is not known. However, SRY - the male sex-determining region on Y 

seems to be the most interesting intermediately expressed gene. It plays the key role in 

male sex determination and is expected to be functional at early stages of embryonic 

development in mammals (Wilhelm et al. 2007b). High levels of SRY transcription in 

adult horse testis and to a lesser extent in a few other adult tissues (Table 8) indicates 

that SRY is functional in adult horses as well. It is likely that SRY has acquired some new 

functions in adult horse testis. Given its high expression level in testis compared to other 

tissues, it is possible that SRY is involved in spermatogenesis or some other male fertility 

related functions. 

The functions of the 15 ubiquitously expressed genes, viz., CYorf15, DDX3Y, 

EIF1AY, EIF3CY, EIF2s3Y, ETY2, ETY4, MAP3K7IP3Y, MT-ND1Y, RPS3AY, KDM5D 
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(alias SMCY), TMSB4Y, USP9Y, UTY and ZFY are not clear but the expression profile 

suggests that many of them might be involved in housekeeping activities. However, a 

few of these genes, viz., DDX3Y and USP9Y are located in human AZFa region which is 

one of the critical regions for spermatogenesis (Vogt et al. 1996; Skaletsky et al. 2003). 

Deletions in AZFa cause Sertoli cell only (SCO) syndrome and affect RNA metabolism 

of human spermatogenesis (Ditton et al. 2004). Decreased transcriptional activity of 

testicular DDX3Y is associated with severe spermatogenic failure and sperm maturation 

arrest in humans (Lardone et al. 2007b). In contrast, the role of murine Ddx3y in 

spermatogenesis is not so prominent and it is proposed that biological activity of Ddx3y 

might be taken over by its X-linked and autosomal homologs, Dbx and D1Pas1, 

respectively (Vong et al. 2006). USP9Y is another human AZFa gene and recent studies 

suggest that it acts as a fine tuner to improve the efficiency of male fertility related 

function but is not directly involved in spermatogenesis and sperm maturation (Krausz et 

al. 2006). This is supported by another recent study that reported a complete deletion of 

USP9Y in a normospermic, fertile man (Luddi et al. 2009). However, murine Usp9y gene 

encodes a potentially functional ubiquitin-specific protease possessing a core promoter 

region that shares several features characteristic to other testis-specific genes and thus 

might be involved in important male fertility functions (Hall et al. 2003). More 

specialized functions than housekeeping have been attributed also to KDM5D (alias 

SMCY). In mouse it is expressed in male meiosis from leptotene spermatocytes to 

spermatids and might be essential for the progression of spermatogenesis (Akimoto et al. 

2008). Possible fertility related functions of the remaining ubiquitously expressed genes 
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are not known yet but it is likely that at least some of them have roles beyond strictly 

housekeeping activities. 

Male-specific BAC clones containing TBL1Y and STS-Y were initially isolated 

using radiation hybrid mapping primers for their X-linked gametologs TBL1X and STS-

X, respectively (Raudsepp et al. 2004a). Since the BACs containing the two genes FISH 

mapped to ECAY only, they were incorporated in the ECAY contig map (Fig. 6). 

However, because of high degree of sequence similarity between the X- and Y-linked 

gametologs of TBL1 and STS we have not been able to design specific primers for 

TBL1Y and STS-Y, and therefore the two genes were excluded from expression analysis.  

 

Primary candidate genes for stallion fertility 

The ultimate goal of these Y-chromosome studies in horses is to identify markers 

and regions which are most critical for stallion fertility. The collection of genes and 

ESTs isolated in this study provides an important foundation to initiate systematic search 

for Y-linked mutations that might lead to male infertility in horses. Valuable clues about 

likely candidate genes can be found from human and mouse studies where the link 

between Y chromosome mutations and male infertility is well established (Ellis and 

Affara 2006; Ellis et al. 2007; Lange et al. 2008). Although a few single-copy Y-linked 

genes might be involved in spermatogenesis in human and/or mouse, studies indicate 

that mutations in testis-specific and multicopy transcripts are primarily associated with 

impaired spermatogenesis and male fertility. Therefore, all multicopy and testis specific 

ECAY transcripts have been chosen as the primary candidates (Fig. 8a, Table 8) to start 
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analysis with. These sequences might share functional similarity with human AZFb and 

AZFc – regions critically involved in human male infertility (Saxena et al. 1996; Saxena 

et al. 2000; Ferlin et al. 2003; Skaletsky et al. 2003). 

 

Quantitative expression analysis of primary candidate genes 

Expression levels of nine testis-specific, multicopy genes, viz., ETSTY1-6, TSPY, 

RBMY, UBE1Y were evaluated to identify their potential involvement in stallion fertility. 

Five ESTs (ETSTY3-6, RBMY) showed statistically significant differential expression 

between fertile and infertile/subfertile stallions. ETSTY5 was upregulated in all 

infertile/subfertile individuals depicting that this transcript might be related to impaired 

spermatogenesis in horses. The remaining four transcripts (ETSTY3-4, ETSTY6 and 

RBMY) were downregulated in infertile/subfertile individuals. RBMY is known to play 

an important role in human and mouse spermatogenesis (Elliott et al. 1996; Elliott et al. 

1997; Elliott et al. 1998; Kostiner et al. 1998; Affara and Mitchell 2000). Mice deficient 

in Rbmy develop abnormal sperm and are infertile (Szot et al. 2003). Downregulation of 

RBMY in stallions with fertility problems indicates that this gene might have similar 

functions also in horses. The three equine specific transcripts, viz., ETSTY3-4 and 

ETSTY6 share no homology with other mammalian genes/ESTs and there is no 

comparative information about their possible functions. However, being equine-specific, 

multicopy, testis-limited, and downregulated in infertile/subfertile stallions, make 

ETSTY3, ETSTY4 and ETSTY6 strong candidate genes for stallion fertility. 
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Four genes and ESTs (ETSTY1-2, TSPY, UBE1Y) did not show statistically 

significant differential expression between the fertile and infertile/subfertile groups of 

stallions but showed up-or downregulation in one or two individual animals. For 

example, TSPY was strongly overexpressed in only one infertile stallion but expressed at 

the same level in the remaining infertile animals and all normal controls. The stallion 

with elevated TSPY expression had a unique infertile phenotype which was not found in 

any other animals studied. The stallion had normal sperm count but reduced sperm 

motility, and 97% of his sperm were morphologically abnormal. It is therefore likely, 

that TSPY is involved in the processes that are responsible for sperm structural integrity 

and motility. It can be anticipated that if more individuals with sperm structural 

abnormalities could be analyzed, differential expression of TSPY might reach 

statistically significant values. Inclusion of more animals and more diverse infertile 

phenotypes into analysis might give significant values also to the differential expression 

profiles of ETSTY1, ETSTY2 and UBE1Y and indicate what kind of role they might have 

in stallion spermatogenesis. 

Because of the contrasting role of DDX3Y in human and mouse spermatogenesis 

(discussed above), this gene was chosen as our X-degenerate, ubiquitously expressed Y-

linked control for expression analysis. DDX3Y did not show any statistically significant 

differential expression between fertile and infertile/subfertile individuals and at this 

stage of research this gene is therefore not considered as a potential candidate for stallion 

fertility. This observation complies with mouse studies where DDX3Y  transcript does 

not show any association with spermatogenesis (Vong et al. 2006). 
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Finally, we observed individual differences in the expression levels of the same 

gene within the group of normal animals and within the group of stallions with fertility 

problems. Given that male fertility is governed by thousands of genes, it is likely that 

there are additional factors that modulate the expression of the Y-linked genes analyzed 

in this study. 

 

Effect of copy number variation on gene expression levels and male infertility 

The expression and copy number data obtained from qRT-PCR analysis allowed 

to investigate whether differential expression of a gene is correlated with its copy 

numbers and whether gene expression and copy numbers are correlated with a 

reproductive phenotype. It appeared that out of the four genes/ESTs (ETSTY2, ETSTY6, 

RBMY and UBE1Y) that demonstrated significant decrease in average copy number in 

infertile/subfertile stallions, three genes (ETSTY6, ETSTY2 and RBMY) were also 

downregulated in these individuals. Notably, downregulation of ETSTY6 and RBMY was 

statistically significant (Fig. 9). Therefore, the lower transcriptional level of the three 

genes is likely caused by decreased average copy number. In contrast, there was negative 

correlation between UBE1Y copy numbers and transcription level – in infertile/subfertile 

stallions UBE1Y has less copies but its transcription is upregulated. It is possible that 

elevated transcription compensates for the loss of UBE1Y copies, or alternatively, loss of 

copies in stallions with fertility problems is associated with a regulatory mutation which 

increases the transcriptional level of this gene. 
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It is worth to mention that the stallion with sperm morphological abnormalities 

and elevated levels of TSPY transcription (abnormal 1 Table 8, discussed in Chapter III) 

showed decrease in TSPY average copy numbers. The mechanism of such negative 

correlation between TSPY transcription and copy numbers and causes of sperm 

morphological abnormalities remain currently unclear but provide material for future 

studies.  

 

Full length cDNA sequences: structure in relation to function 

Full length cDNA sequences were obtained for three multicopy, testis-specific 

genes/ESTs: TSPY and two novel Y-linked transcripts, viz., ETSTY2 and ETSTY5. 

TSPY is an evolutionarily conserved gene on the Y chromosome of all placental 

mammals, except mouse (Vogel et al. 1997a; Vogel et al. 1997b). The full-length cDNA 

sequence of equine TSPY showed the presence of a NAP domain which is conserved 

across all known mammalian TSPY proteins. Humans have three different polymorphic 

TSPY proteins and each contains a conserved NAP domain of ~160 amino acids (Lau et 

al. 2003). NAP domain binds to Beta Cyclins and core histone proteins and plays role in 

DNA replication, cell cycle regulation, transcription and chromatin remodeling (Nagata 

et al. 1995; Compagnone et al. 2000; Chai et al. 2001; Zhang et al. 2001; Canela et al. 

2003). Mutations or dysregulation in the members of NAP gene family have been 

associated with various forms of human cancers (Chai et al. 2001). In normal individuals 

TSPY directs the spermatogonial cells to enter meiosis (Schnieders et al. 1996; Lau 

1999) and might have an additional mitotic function in the proliferation of embryonic 
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gonocytes and adult spermatogonia (Honecker et al. 2004). Consequently, the improper 

proliferation of spermatogonial cells might affect sperm production and thus, male 

fertility. Results of this study show high degree of structural similarity between the full 

length cDNA sequences of human and horse TSPY genes. Despite the fact that we were 

not able to detect statistically significant differential expression of TSPY between normal 

and reproductively challenged stallions, it could be expected that TSPY plays important 

role in germ cell proliferation also in horses. Furthermore, overexpression of TSPY in 

one infertile stallion with sperm morphological defects (see above) indicates that the 

function of TSPY might be more complex than recognized today. 

Full length cDNA and the corresponding protein sequences of ETSTY2 and 

ETSTY5 are novel and equine specific and share no significant similarity with other 

known mammalian sequences. Therefore no comparative analysis of the two ESTs could 

be done. 

 

Novel ECAY sequences 

cDNA selection studies identified 10 novel horse-specific Y-linked transcripts. 

Six of these (ETSTY1-6) were expressed only in testis, one (ETY1) showed intermediate 

expression pattern, two (ETY2, ETY4) were expressed ubiquitously, whereas ETY3 did 

not show any expression in the panel of nine normal adult body tissues. ESTs ETSTY1-6 

were used for further studies as potential candidate genes for stallion fertility due to their 

multicopy nature and testis-specific expression. Four of these transcripts (ETSTY3-6) 
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demonstrated differential expression between fertile and infertile/subfertile individuals 

and are considered as strong candidate genes for stallion fertility. 

The Y-linked novel transcripts are shown to be associated with spermatogenesis 

and other male fertility related function in human and mouse. For example, human DAZ 

(Deleted in Azoospermia) is a novel Y-linked gene cluster. Complete deletion of DAZ 

causes azoospermia (Yen et al. 1997), while  three different patterns of partial DAZ 

deletions are associated with severe oligozoospermia and infertility (A et al. 2006). DAZ 

gene transcripts are shown to be localized in primary spermatocytes and DAZ gene 

activity seems to correspond to the proliferative activity of stem cells of germinal 

epithelium in patients with spermatogenic arrest (Szczerba et al. 2006). These findings 

strongly support the association of novel Y-linked genes (DAZ cluster) with 

spermatogenesis and thus, male fertility in human. Murine Sly (Sycp3-like Y-linked) is a 

novel multicopy gene on MMUY, is abundantly expressed in mouse spermatids and 

deletion of this gene may contribute to the abnormal sperm head development (Toure et 

al. 2005). Sly may also have a role in the development of acrosome and the regulation of 

gene expression in spermatids. Sly deletions lead to spermatogenic defects and male 

infertility in mouse (Reynard et al. 2009). Moreover, recent studies identified two novel 

Y genes in mouse, AK006152 and H2al2y. Both are expressed specifically in spermatids 

indicating their role in mid to late spermatid development. Overexpression of these novel 

MMUY genes can potentially cause abnormal sperm head development and hence 

contribute to male infertility (Ferguson et al. 2009). To date, three multicopy novel 

genes (FLJ36031Ya, TETY1 and TETY2) have been identified in cat Y chromosome 
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(Murphy et al. 2006). All three are expressed exclusively in cat testis and though the 

function of these genes is not yet clear, their testis-specific expression and multicopy 

nature indicates likely involvement in feline male fertility.  

Findings in human, mouse and cat strongly suggest that novel, testis-specific 

genes in the horse Y chromosome (e. g., ETSTY1-6) also carry out important male 

fertility related functions. However, molecular details and genetic mechanisms of these 

functions remain topics for future studies. Partial sequence similarity between ETSTY2, 

ETSTY3 and ETSTY6 questions the uniqueness of these sequences – do they represent 

different regions of the same gene or are they transcripts of different genes. Based on 

sequence analysis using Sequencher V1.7 software we infer that the three sequences are 

not parts of a single transcript because at higher stringency parameters (90% and 20 

nucleotides) there is no alignment between them. However, sequence similarity at lower 

stringency (<70% and 10 nucleotides) suggests that ETSTY2, ETSTY3 and ETSTY6 

might be members of the same gene family. This is in agreement with the results of STS 

content analysis showing that ETSTY2 and ETSTY3 map to the same BAC clones in the 

multiocopy region in the distal part of Contig1 (Fig. A1). However, ETSTY6 maps to 

different BAC clones and is located in the heterochromatic region which is several 

megabases proximal to the multicopy region. It is anticipated that generation of full- 

length cDNA sequences for these transcripts or complete sequencing of the horse MSY 

will resolve the relationships between the three sequences. Otherwise, the presence of 

gene families is a typical feature of the mammalian Y chromosome. For example, human 

TSPY gene family contains a cluster of genes: TSPY1, TSPY2, TSPY3 and TSPYL (TSPY- 
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Like) which are not identical but share some sequence homology with each other and 

most likely carry out similar functions. The presence of novel, species-specific and male 

fertility related gene families, like DAZ in humans (Skaletsky et al. 2003) and Sly in 

mouse (Reynard et al. 2009), seems to be a characteristic feature of Y chromosomes. 

Our findings comply with these facts and show that such novel gene families are present 

also on the horse Y chromosome. 

This study demonstrates the discovery and analysis of potential Y-linked 

candidate genes for male fertility in horses. First, transcriptional analysis of all Y-linked 

genes on a panel of body tissues identified those genes that are expressed specifically in 

testis. Next, qRT-PCR studies showed that some of these genes are differentially 

expressed in normal stallions compared to stallions with fertility problems. Gene copy 

number analysis showed that there is a correlation between gene expression level and 

copy numbers and that is associated with stallion fertility. Finally, full-length, nearly full 

length or partial cDNA sequences were obtained for several multicopy testis-specific 

transcripts and analyzed for their protein coding abilities. Taken together, besides human 

and mouse this is the first systematic search for Y-linked male fertility genes in 

mammals and the first of its kind in domestic species. 
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CHAPTER IV 

 

 

CONCLUSIONS AND FUTURE WORK 

 

 

CONCLUSIONS  

This research represents the first systematic discovery, mapping and functional 

analysis of Y chromosome genes and ESTs in the horse. Although high-, medium- or 

low-resolution Y chromosome maps are available for a number of mammalian species, 

viz., human (Skaletsky et al. 2003), mouse (Mazeyrat et al. 1998), chimpanzee (Hughes 

et al. 2005; Kuroki et al. 2006), cattle (Liu et al. 2002), pig (Quilter et al. 2002), cat 

(Murphy et al. 1999a; Murphy et al. 2006; Pearks Wilkerson et al. 2008) and dog 

(Guyon et al. 2003a; Guyon et al. 2003b), direct association between Y-linked genes and 

male fertility has been shown so far only in humans and mice (Elliott et al. 1998; Matzuk 

and Lamb 2002; Skaletsky et al. 2003; Delbridge et al. 2004; Szczerba et al. 2006; 

Carrell 2008; Matzuk and Lamb 2008). Therefore, the present study is the first where the 

expression profiles, transcription levels and copy numbers of Y-linked genes have been 

related to male fertility in a species other than human and mouse. Given that stallion 

fertility is an important concern for the horse industry, the importance of the present 

findings cannot be underestimated. Although the research has focused on only a small 

fraction of the equine genome, it is an essential contribution to our understanding about 

the genetic component of male fertility in horses. Besides, detailed knowledge about the 

organization, gene content and functional profiles of the horse Y chromosome provides 

critical comparative information about the evolution of the sex chromosomes in 
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mammals. Finally, the high-resolution contig map of equine MSY is a foundation for 

complete sequencing of the horse Y chromosome – thus adding missing data to the 

female-based horse whole-genome-sequencing project. 

 

FUTURE WORK 

The comprehensive map of horse MSY presented in this study and the detailed 

map of the pseudoautosomal region (PAR), (Raudsepp and Chowdhary 2008) provide 

valuable resource for clone-based complete sequencing of the horse Y chromosome. 

Furthermore, the 197 BAC clones and 318 linearly ordered genes and STS markers in 

the contig map will serve as important landmarks for sequence assembly. Such 

landmarks are particularly essential for assembling Y chromosome sequences which are 

known to contain gene families, repetitive sequences, segmental duplications and 

palindromes (Skaletsky et al. 2003). 

Complete sequencing of ECAY euchromatic region will aid the discovery of new 

Y-linked genes and will provide detailed information about the organization of the 

known genes. Knowledge about gene structure is necessary to identify regulatory 

elements, evaluate protein coding abilities and relate the structure to potential functions 

of these genes. Complete sequence data will also be instrumental for determining precise 

copy numbers of ECAY genes, identifying members of gene families and discovering 

copy number variations between individuals – both within normal population and 

between fertile and reproductively abnormal animals. Identification of minor sequence 

differences between individual copies of multicopy sequences will provide tools to 
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determine by PCR Y chromosome microdeletions or other rearrangements in the 

multicopy region of ECAY. 

It is equally important to continue and expand the collection of samples (tissue, 

RNA, DNA) from stallions with a broad range of subfertile/infertile phenotypes. Only 

this way it will be possible to find out, for example, whether equine TSPY is indeed 

associated with sperm structural integrity or which Y-linked genes cause azoospermia 

and how. Larger number of samples is needed also to understand the role of other Y-

linked genes - those which are not multicopy, testis-specific and novel. For example, it is 

not clear what kind of fertility related functions, if any, are carried out by X-degenerate 

genes or the genes that have been recruited to the Y chromosome from mitochondrial 

genome or autosomes. 

The collection of ECAY genes, ESTs and STSs identified in this study will be a 

small but unique addition to equine whole genome analysis tools. Genes and ESTs will 

add Y-chromosome component to the gene expression arrays. The currently available 

platforms - the Texas A&M 21,000 element oligoarray (Chowdhary unpublished) and 

the Affymetrix 12,000 element oligonucleotide GeneChip (Nixon et al. 2008) - do not 

contain any expressed sequences from the Y chromosome. Sequences of Y-linked genes 

and ESTs will also be essential for the construction of custom-made specialized 

oligoarrays to study differential expression of sex and reproduction related (SRR) genes 

in horses and identify key-role male fertility genes genome-wide. Finally, with the horse 

genome sequenced and draft assembly available, it is anticipated that like in other 

species, whole genome tiling arrays will soon be constructed also for the horse. Y 
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chromosome sequences will, thus, be an important addition to the otherwise female-

based genomic sequence data. 

ECAY multicopy genes and variations in their copy numbers between normal 

individuals and between different fertility phenotypes is of particular interest. Recent 

studies in human and mouse demonstrate that genes present in regions of copy number 

variations (CVNs) are expressed in lower and in a more variable fashion than genes 

mapped elsewhere in the genome and can have a global influence on the transcriptome 

(Henrichsen et al. 2009). It has been proposed that copy number changes might influence 

gene expression through the perturbation of transcript structure (Reymond et al. 2007). 

CNVs have also been associated with various diseases or disease susceptibility 

phenotypes (Breunis et al. 2008; Hollox et al. 2008). It will, thus, be interesting to find 

out to which extent these properties of global CVNs apply to the multicopy 

genes/sequences in the horse Y chromosome.  

Taken together, the findings of this study add new and important information to 

the current understanding of the genetic component of stallion and mammalian male 

fertility. Identification and characterization of a number of potential male fertility genes 

takes us a step closer to the ultimate goal of the genetics of stallion fertility– identify 

key-role genes, causative mutations and develop molecular diagnostic tests for early 

detection of subfertile/infertile individuals, so that owners and breeders can make 

informed decisions. 
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APPENDIX  

 

 

Table A1: Detailed information about horse MSY BAC end sequence (BES) analysis. 

 
BES GenBank 

Acc. No.  

Size, bp GC% BLAST significant 

similarity (<E-10) to 

known genes 

Microsatellites Other repeats 

002E4-SP6 CT864643 701 32.4     LINE1 

002E4-T7 CT864644 714 36.1   (AC)16, (AT)11 LTR/ERV1, simple repeat, SINE 

003.4H8-M13   880 46.1     no repeats 

003.4H8-T7   979 43.9     LINE1 

003A5-SP6 CT825159 631 39.1     SINE 

003A5-T7 CT825160 706 43.2     MER34C, LTR/ERV1 

005.2A8-M13   889 39.1     DNA/MER1_type, 

DNA/AcHobo, LINE1 

005.2A8-T7  878 45.9     LTR/ERVL 

006B10-SP6 CT827035 387 43.7     no repeats 

006B10-T7 CT826936 1031 38.3     DNA/MER2 

008.3G9-M13   632 41.8     no repeats 

008.3G9-T7   758 39.1     SINE 

011B8-SP6 CT840125 749 37.9   (CT)3 CC (CT)1 CC 

(CT)7 

Simple repeat, LTR/MaLR 

011B8-T7 CT840126 769 36.4     no repeats 

012.2E5-M13   716 31.4     DNA/MER2 

012.2E5-T7   281 42.3     SINE 

012G3-SP6 CT841047 282 38.7     simple repeat, LTR/MaLR 

012G3-T7 CT841048 456 49.8     no repeats 

013E2-SP6 CT865642 1323 39.2     LINE1 

013E2-T7 CT865502 1313 34     LINE1, LTR/ERV1 

015.2A9-M13   635 44.9     LTR/ERVL 

015.2A9-T7   535 33.3     low complexity 

015.2E9-M13   445 41.8     SINE 

015.2E9-T7   389 34.7     LINE1 
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Table A1 continued 

 
BES GenBank 

Acc. No.  

Size, bp GC% BLAST significant 

similarity (<E-10) to 

known genes 

Microsatellites Other repeats 

016.4C5-M13   182 52.7     no repeats 

016.4C5-T7   312 35.9     LINE1 

017.2C11-M13   869 37.1     LINE1 

017.2C11-T7   712 31.2     LINE1, low complexity repeat 

017D15-SP6 CT939410 636 47.5     LINE1 

017D15-T7 CT939412 742 33.8     LINE2 

018K2-SP6   865 36.3     no repeats 

018K2-T7   855 37.2     LINE1 

019D21-SP6 CT961235 882 42.1     LTR/MaLR, SINe/MIR, LINE1 

019D21-T7 CT961236 524 46     LTR/ERVL, LINE2  

020.1G12-M13   858 43.7     Low complexity repeat 

020.1G12-T7   777 45.2     no repeats 

020B4-SP6 CT938442 502 39.8     no repeats 

020B4-T7 CT938444 342 33.6     LINE1 

020L18-SP6 CT939014 756 39.6     LTR/ERV1 

020L18-T7 CT939015 567 44.4   (TG)7 CG (TG)7 LINE1, simple repeat, SINE 

022.4 E3-M13   822 47.9     LINE1 

022.4 E3-T7   706 35.8     LINE1 

022G3-SP6 CT941801, 

ET052928 

400 47.3     no repeats 

022G3-T7 CT941802, 

ET052929 

720 53.7     no repeats 

022P7-SP6 CT942195 744 52     no repeats 

022P7-T7 CT942196 468 32.9     LINE1, DNA/MER2 

024.4G8-M13   760 49.7     SINE, LINE1 

024.4G8-T7   939 37.2     no repeats 
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Table A1 continued 

 
BES GenBank 

Acc. No.  

Size, bp GC% BLAST significant 

similarity (<E-10) to 

known genes 

Microsatellites Other repeats 

024I23-SP6 CT942381 849 47.9     no repeats; but amplifies both 

male and female 

024I23-T7 CT942288 928 38.4     no repeats 

026.4A6-M13   311 35.4     LINE1 

026.4A6-T7   347 45.8     no repeats 

026B21-SP6 CT951493 714 43.4     LINE1 

026B21-T7 CT951494 783 38.7     LINE1 

027.1A2-M13   1169 40.5     LINE1 

027.1A2-T7   294 41.2     no repeats 

027A12-SP6 CT952155 772 38.7     no repeats 

027A12-T7 CT952156 761 32.5     LTR/MaLR, simple repeat 

027B13-SP6   698 42.4     LTR/MaLR 

027B13-T7 CT952199 555 38.7     no repeats 

032H24-SP6 CT957174 638 39.5     LINE2 

032H24-T7 CT957175 444 49.8     SINE/MIR 

032K15-SP6 CT957292 633 47.1     LINE2, simple repeat 

032K15-T7 CT957293 693 41     no repeats 

034 E15-SP6 CT958457 605 39.8     no repeats 

034 E15-T7 CT958458 588 44.5     no repeats 

037.4D11-M13   558 39.8     LINE1 

037.4D11-T7   637 44.4     LINE1 

037D12-SP6 CT960488 814 36.2     LINE1 

037D12-T7 CT960489 667 31.8     LINE1 

039P6-SP6   334 43.7     no repeats 

039P6-T7   619 40.7     no repeats 

041O19-SP6 CT967953 682 34.9     LINE1 

041O19-T7 CT967954 508 31.9     low complexity 

042.4B5-M13   785 48.7     LINE1 

042.4B5-T7   968 34.3     LINE1 
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Table A1 continued 

 
BES GenBank 

Acc. No.  

Size, bp GC% BLAST significant 

similarity (<E-10) to 

known genes 

Microsatellites Other repeats 

047.1H3-M13   332 36.4   (TG)14 LINE1, simple repeat 

047.1H3-T7   704 35.8     LTR/ERV1 

047.2A3-M13   701 40.8     no repeats 

047.2A3-T7   855 36.1     LTR/ERVL, SINE, LINE1, 

DNA/MER2 

047B7-SP6 CT964598 422 36.3     LINE1, DNA/hAT-Charlie  

047B7-T7 CT964599 384 39.6     LINE1 

049.2F10-M13   1016 41.6     SINE. MIR 

049.2F10-T7   1181 45     SINE 

049.3F11-M13   955 35.4     SINE, ERE1 

049.3F11-T7   884 38.8 CRISP3, 2e-06   no repeats 

049J16-SP6 CT969091 753 32     LINE1 

049J16-T7 CT969092 641 35.7     LINE1 

052H5-SP6 CT972580 684 35.1     LINE1, low complexity 

052H5-T7 CT972585 573 38.6     no repeats 

054A8-SP6 CT973016 462 42.2     LINE1 

054A8-T7 CT973017 455 44.4     no repeats 

054F13-SP6 CT973230 703 43     no repeats 

054F13-T7 CT973231 542 33.9     LTR/ ERV1 

054J7-SP6 CT973393 670 35.1     LINE1 

054J7-T7 CT973394 620 50.2     no repeats 

055N19-SP6   720 30.4     LINE1 

055N19-T7   800 36.7     LINE1 

060D8-SP6 CT976605 856 39     SINE, LINE1 

060D8-T7  CT976606 645 44.3     LTR element 168 bp in the end  

061.4H6-M13   931 41.6     simple repeats 

061.4H6-T7   940 38.4     LINE1, SINE 

061G21-SP6 CT977473 335 62.7     no repeats 

061G21-T7 CT977474 368 31     SINE 
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Table A1 continued 

 
BES GenBank 

Acc. No.  

Size, bp GC% BLAST significant 

similarity (<E-10) to 

known genes 

Microsatellites Other repeats 

061J18-SP6 CT977591 201 37.3     no repeats 

061J18-T7 CT977592 395 34.4     LINE1 

063H12-SP6 CU002478 253 45     no repeats 

063H12-T7 CU002479 803 35.7     LINE1 

063I4-SP6   353 47.9     SINE 

063I4-T7 CU002511 922 42.6     SINE 

064P16-SP6 CU003552 685 35.2     LINE1 

064P16-T7 CU003553 610 64.4     no repeats 

066M24-SP6 CU001288 412 40.3     no repeats 

066M24-T7 CU001289 511 46.8     no repeats 

067.1G8-M13   712 35 NLGN4Y 85.0% 

NLGN4X 86.6% 

(BLAT) 

  no repeats 

067.1G8-T7   716 28.9     simple repeat, low complexity, 

LINE1 

067.4G1-M13   1185 43.4     SINE, LINE1 

067.4G1-T7   Sequence not 

available 

        

069 E11-SP6 CU000182 757 50.2     LINE1 

069 E11-T7  479 47.6     no repeats 

070F17-SP6 CU138007 264 50   (CTCA)5 LTR/MaLR, simple repeat 

070F17-T7 CU138008 541 42     NCBILTR/ERV1, SINE 

072G23-SP6 CU004599 824 37.9     LINE1  

072G23-T7 CU004600 765 35.6     LINE1  

072G7-SP6 CU004572 783 36.4     LINE1 

072G7-T7 CU004573 764 39.1     no repeats 

074P12-SP6 CU006411 780 42.2     LINE1 

074P12-T7 CU006412 439 33.6     LINE1 

077M19-SP6 CU006998 596 40.3     LINE1, LTR, low complexity 

077M19-T7 CU006999 305 44.3     no repeats 
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Table A1 continued 

 
BES GenBank 

Acc. No.  

Size, bp GC% BLAST significant 

similarity (<E-10) to 

known genes 

Microsatellites Other repeats 

079.4H1-M13   718 41.4     no repeats 

079.4H1-T7   621 35.6     LINE1 

080.4F7-M13   499 45.5     SINE, LINE1 

080.4F7-T7   544 41.4     no repeats 

081F24-SP6 CU011589 325 41.2     LINE1 

081F24-T7 CU011590 465 36.8     LINE1 

081F8-SP6 CU011557 804 38.1     no repeats 

081F8-T7 CU011558 648 36.7     no repeats 

083H5-SP6 CU017259 701 32.1     LINE1, low complexity 

083H5-T7 CU017260 751 32.8     LINE1, DNA/MER1, low 

complexity, simple repeat 

086.2F8-M13   1002 37.4     SINE 

086.2F8-T7   1088 39.2     SINE, DNA/MER1, LTR/MaLR 

086J1-SP6 CU022552 667 29.8     LINE1, LTR 

086J1-T7 CU022553 575 34.4     LINE1 

087.3A5-M13   867 40.9     no repeats 

087.3A5-T7   1057 37     LINE1 

089.3B11-M13   483 39.5     LTR and LINE1  

089.3B11-T7   833 39.7     DNA/MER1, DNA/AcHobo, 

LINE1 

090B11-SP6 CU015692 492 31.5     LINE1 

090B11-T7 CU015693 396 39.7     LTR/ERVL 

090G18-SP6 CU015913 737 42.2     LINE1 

090G18-T7 CU015914 691 41.8     LTR/MaLR, LINE1 

090P8-SP6 CU016271 510 45.3     SINE, LTR 

090P8-T7 CU016272 524 35.1     LINE1 

091.4G10-M13   568 40.3     LTR/ERV1 
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Table A1 continued 

 
BES GenBank 

Acc. No.  

Size, bp GC% BLAST significant 

similarity (<E-10) to 

known genes 

Microsatellites Other repeats 

091.4G10-T7   782 39.3     LINE1 

095.4B8-SP6   sequence not 

available 

n/a     n/a 

095.4B8-T7   193 36.3     no repeats 

095.4F10-M13   690 47     LTR element  

095.4F10-T7   607 44     no repeats 

097D2-SP6 CU019809 854 38.9   (AT)2 C (AT)25 simple repeat, SINE, DNA/MER 

097D2-T7 CU019810 821 37.8 CRISP1 3e-75   SINE 

100.3A11-M13   644 44.3     no repeats 

100.3A11-T7   718 37.2     LINE2 

100.4F5-M13   681 41.3     LINE1 

100.4F5-T7   716 36.5     LINE2 

100H13-SP6 AJ542956 868 43.2     LTR/MaLR 

100H13-T7 AJ542957 804 34.1     LINE1 

101H8-SP6 AJ576754 1032 37.7     SINE 

101H8-T7 AJ576755 1164 39.6     LINE1 

102J15-SP6 AJ584337 837 33.2     low complexity 

102J15-T7 AJ584338 882 37.8     LINE1 

103.3A6-M13   1078 46.2     SINE, LINE1 

103.3A6-T7   sequence not 

available 

n/a     n/a 

106F1-SP6 CT007963 899 46.9     LINE1 

106F1-T7 CT008006 873 40.8     LINE1 

106J17-SP6   743 44.4 NLGN4X   0.0   no repeats 

106J17-T7   772 39.5     LINE/CR1 

107.3H9-M13   816 39.3     LINE1, SINE 

107.3H9-T7   763 52.6     LINE1 

108.4C7-M13   490 50.4     no repeats 
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Table A1 continued 

 
BES GenBank 

Acc. No.  

Size, bp GC% BLAST significant 

similarity (<E-10) to 

known genes 

Microsatellites Other repeats 

108.4C7-T7   1150 44     no repeats 

110.3H12-M13   1042 37.2 EIF2S3 1e-63   LTR/MaLR, snRNA 

110.3H12-T7   1002 40     simple repeat 

111.2F5-M13   1044 41.9     LINE1, SINE 

111.2F5-T7   1182 45     LINE1 

112.1A9-M13   1443 45.6     LINE1 

112.1A9-T7   1450 49.4     simple repeat 

112C10-SP6  585 37.8     LINE1 

112C10-T7  913 38.2     LINE1 

112E12-SP6 CR955686 587 49.7     no repeats 

112E12-T7 CR957122 494 36.4     LTR/MaLR 

114E24-SP6 CT006488 636 37.4     LINE1 

114E24-T7 CT006811 720 38.1     DNA/MER1 

114I17-SP6 CT006994 431 34.6     SINE/MIR 

114I17-T7 CT007019 463 40.2     no repeats 

117.4F7-M13   928 32.5     MER2  

117.4F7-T7   757 38.6     SINE and LINE1  

118.1A9-M13   781 41.6     LINE2 

118.1A9-T7   680 28.1     LINE1 

118L7-SP6 CU025610 840 47.7     LINE1 

118L7-T7 CU025611 1111 37.8   (AC)5 AT (AC)13 simple repeat 

118N21-SP6 CU025698 396 40.4     no repeats 

118N21-T7 CU025699 745 34.5     no repeats 

119K22-SP6 CU026858 314 27.7     LINE2 

119K22-T7   426 36.6     LINE1, SINE/Alu 

120.1A5-M13   1042 34.8  AMELY   DNA/tip100 

120.1A5-T7   648 38.5     SINE, LINE1 

120A19-SP6 CU027080 220 55     LINE1  
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Table A1 continued 

 
BES GenBank 

Acc. No.  

Size, bp GC% BLAST significant 

similarity (<E-10) to 

known genes 

Microsatellites Other repeats 

120A19-T7 CU027081 362 58.3     no repeats 

121G24-SP6 CU028694 622 42.8     no repeats 

121G24-T7 CU028695 523 33.3     LINE1 

121H9-SP6 CU028712 513 31.2     LINE1, SINE 

121H9-T7 CU028713 793 34.4 horse MAP3K7IP3     

8e-76; ECAX 24.1. 

Human MAP3K7IP3 

1e-66;  HSAX 30.7;  

  no repeats 

124.3G9-M13   477 33.5     DNA/MER2 

124.3G9-T7   852 39.4     LTR/MaLR 

125.3G11-M13   711 42.3     SINE, LTR, MER2 

125.3G11-T7   644 39     no repeats 

125H6-SP6 CU029932 674 26.3     LINE1 

125H6-T7   847 40.3     LINE1, SINE 

126G2-SP6 CU029327 522 39.7     no repeats 

126G2-T7  866 37.6     SINE, LTR present 

129K23-SP6 CU033122 528 53.6     no repeats 

129K23-T7 CU033123 409 46     LINE1 

131N23-SP6 CU034701 559 33.8     SINE, LINE1 

131N23-T7 CU034702 590 29     LINE1 

132K10-SP6 CU035255 560 42     DNA/MER1, SINE 

132K10-T7 CU035256 590 38.8     LTR/ERV1 

132N15-SP6 CU035402 533 41.8     no repeats 

132N15-T7 CU035403 551 43.8     no repeats 

134H14-SP6 CU036544 623 62.9     no repeats 

134H14-T7 CU036545 584 37.2     LINE1 

134I16-SP6 CU036592 688 55.2     no repeats 

134I16-T7 CU036593 667 49     no repeats 
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Table A1 continued 

 
BES GenBank 

Acc. No.  

Size, bp GC% BLAST significant 

similarity (<E-10) to 

known genes 

Microsatellites Other repeats 

137I17-SP6 CU038728 423 44.9     no repeats 

137I17-T7 CU038729 484 45.7     DNA/MER2 

139C20-SP6 CU040631 686 46.8     LINE1 

139C20-T7 CU040632 746 41.8     LINE1 

140J20-SP6 CU039506 801 40.6     LINE1 

140J20-T7 CU039507 817 38.8     LINE1 

140M23-SP6 CU039648 885 36.8     LINE1 

140M23-T7 CU039649 879 30.8     LINE1 

142O2-SP6 CU044834 569 40.1     LINE1 

142O2-T7 CLY074, 

CU044835 

529 50.3     no repeats 

144B9-SP6 CU045683 711 40.4     LINE1 

144B9-T7 CU045684 508 49.4     no repeats 

145I6-SP6 CU046684 781 35.1     LINE1 

145I6-T7 CU046685 624 41.7     LINE1 

147K8-SP6 CU048189 792 39.8     LINE1 

147K8-T7 CU048190 770 36.9     LINE1 

148G3-SP6 CU048698 509 36.1     LINE1 

148G3-T7 CU048699 1218 48.7     low complexity 

149H18-SP6 CU049495 633 54.3     no repeats 

149H18-T7  CU049496 652 36.5     LINE1 

152E2-SP6   772 35.6     no repeats 

152E2-T7   429 42.2     LTR/MaLR 

152G20-SP6 CU051535 569 54     LINE1 

152G20-T7 CU051536 590 37.5     LINE1 

155B8-SP6   851 65.7     no repeats 

155B8-T7   949 37.7     LINE/RTE 

155M11-SP6 CU054469 604 41.7     LINE1 
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Table A1 continued 

 
BES GenBank 

Acc. No.  

Size, bp GC% BLAST significant 

similarity (<E-10) to 

known genes 

Microsatellites Other repeats 

155M11-T7 CU054470 673 38.3     LTR/MaLR, SINE/MIR 

159E3-SP6 CU056230 551 36.5     no repeats 

159E3-T7 CU056231 555 27     SINE 

159F5-SP6 CU056277 591 27.1     no repeats 

159F5-T7 CU056278 576 32.1     DNA/MER1 

160K10-SP6 CU057249 719 28.9     low complexilty 

160K10-T7 CU057250 758 60.4     LINE2 

165 E24-SP6 CU060545 660 45.6     no repeats 

165 E24-T7 CU060546 580 37.4     LINE1 

167N20-SP6 CU062306 385 34.8     Low complexity, SINE/MIR 

167N20-T7 CU062307 630 31.7     low complexity 

168I4-SP6 CU061376 929 35.8     LINE1 

168I4-T7   1008 39.8     LTR/ERVL, LINE1 

168O8-SP6 CU061645 609 49.1     LINE1 

168O8-T7 CU061646 551 37.1     LTR/ERVL-MaLR, LINE1  

172 E14-SP6 CU079797 549 39     no repeats 

172 E14-T7 CU079798 626 35.1     LINE1, low complexity 

172D14-SP6 ET052930 354 56.2     no repeats 

172D14-T7 ET052931 539 35.1     LINE1, low complexity 

172I8-SP6   657 38.5     LINE1 

172I8-T7   839 38.9     no repeats 

179K8-SP6 CU083108 560 61.4     low complexity, LINE1, Alu 

179K8-T7 CU083388 604 48.3     LTR/ERVL, SINE 

180P20-SP6 CU084740 777 36.3     DNA/MER1, low complexity 

180P20-T7 CU084545 780 35.8     LTR/ERV1 

181B18-SP6 CU085205 506 43.7     SINE, LTR 

181B18-T7 CU085127 567 44.4     LINE1 

185M14-SP6 CU087822 684 34.9     no repeats 
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Table A1 continued 

 
BES GenBank 

Acc. No.  

Size, bp GC% BLAST significant 

similarity (<E-10) to 

known genes 

Microsatellites Other repeats 

185M14-T7 CU088298 390 36.4     LINE1 

186J13-SP6   320 39     LINE1 

186J13-T7   560 36     LINE1 

188E20-SP6 CU088810 693 41.4     SINE 

188E20-T7 CU089040 1131 48.2     LINE1, low complexity 

190M2-SP6 CU091407 1150 40.4     LINE1 

190M2-T7 CU091759 1124 37.7     no repeats 

205D10-SP6 CU100955 552 41.5     LINE1, LINE2 

205D10-T7 CU100417 522 35.6 CRISP3/TPX1 6e-12   LINE1 

207D10-SP6 CU102230 660 38.2     LINE1 

207D10-T7 CU102329 649 61.8     no repeats 

207P5-SP6 CU102452 632 51.1     no repeats 

207P5-T7 CU102185 649 46.1     LTR, ERV1 

209K10-SP6 CU103461 777 34.7 KAL1 4e-112   no repeats 

209K10-T7 CU103487 761 34.4     LINE1 

215C6-SP6 CU108088 632 36.6     SINE/MIR  

215C6-T7 CU107955 605 45.1     DNA/Tip100, SINE 

244B13-SP6 CU126429 525 44.4     DNA/MER2 

244B13-T7 CU126281 306 50.3     no repeats 

263G23-SP6 CU140369 698 47.9     simple repeat 

263G23-T7 CU139968 632 46.4     no repeats 

264G20-SP6 CU141122 658 60.3     Low_complexity  

264G20-T7 CU143373 612 44.4     DNA/TcMar-Tigger 

269J9-SP6 CU143890 758 30.6     SINE/MIR  

269J9-T7 CU143890 629 39.9     LTR/ERVL, DNA/MER1 

272B4-SP6 CU147224 611 33.2     LINE1 

272B4-T7  872 32.8     LINE1 
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Table A1 continued 

 
BES GenBank 

Acc. No.  

Size, bp GC% BLAST significant 

similarity (<E-10) to 

known genes 

Microsatellites Other repeats 

275P16-SP6 CU148527 799 33.4     no repeats 

275P16-T7 CU148738 760 38.9     LINE1 

278M12-SP6 CU148483 593 33.4 UTY (BLAT)   no repeats 

278M12-T7  CU148207 660 52     no repeats 

280P20-SP6 CU151385 349 55.6     LINE1 

280P20-T7 CU151203 655 33.9     LINE1 

291D19-SP6 CU152144 645 32.4     low complexity, LINE1 

291D19-T7 CU152471 656 35.7     LINE1 

309A2-SP6 CU168483 528 47     no repeats 

309A2-T7 CU168709 482 48.1     no repeats 

318M1-SP6 CU168992 584 31.8     LTR/ERV1 

318M1-T7 CU169153 558 37.3     no repeats 

324H11-SP6 CU207515 627 55.7     no repeats 

324H11-T7 CU208053 566 49.5     LINE1 

325B20-SP6 CU208562 682 45.2     DNA/hAT-Charlie, LTR/ERVL-

MaLR    

325B20-T7 CU208331 687 48.5     SINE/MIR  

329G16-SP6 CU210328 678 31.7     MER1 

329G16-T7 CU210572 670 34     MER2 

331E10-SP6 CU199001 697 40.6     LTR/MaLR 

331E10-T7 CU199033 716 38.3 CRISP3/TPX1 8E-39   LTR/ERV1, LTR/MaLR 

335P13-SP6 CU184042 708 34.6     SINE/MIR 

335P13-T7 CU184277 684 33     LINE1 

338A6-SP6 CU203349 648 27.2     no repeats 

338A6-T7 CU203043 673 30.6     no repeats 

341G20-SP6 CU204940 648 36.1     LINE1 

341G20-T7 CU204493 678 33.3     LINE1 

344A12-SP6 CU312820 767 37.3     no repeats 
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Table A1 continued 

 
BES GenBank 

Acc. No.  

Size, bp GC% BLAST significant 

similarity (<E-10) to 

known genes 

Microsatellites Other repeats 

344A12-T7 CU312716 738 36.6     LINE1 

377O23-SP6 CU236334 653 36     no repeats 

377O23-T7 CU236809 581 42     LTR/ERVL 

394K12-SP6 CU246464 663 43.1     LINE1 

394K12-T7 CU246587 621 48.1     no repeats 

395L19-SP6 CU248760 594 44.9     no repeats 

395L19-T7 CU248652 526 33.5     LINE1 

406I22-SP6 CU257716 625 36.3     LINE1 

406I22-T7 CU258117 483 40.2     LINE1 

415H8 -SP6 CU264902 687 37.1     LINE 

415H8 -T7 CU264886 577 38     LINE1 

417N24-SP6 CU265590 674 35.2     SINE/MIR 

417N24-T7 CU265575 725 35.3     no repeats 

418J18-SP6 CU267189 750 46.9     no repeats 

418J18-T7 CU266817 754 47.9     LINE1 

422E23-SP6 CU271235 598 38.1     no repeats 

422E23-T7 CU271261 567 32.3 KAL1 4e-97   no repeats 

437I11-SP6  CU301860 716 34.8     SINE/MIR 

437I11-T7 CU301866 679 33.9     SINE 

450C22-SP6 CU286553 334 33.8     LINE1 

450C22-T7 CU286365 314 33.8     no repeats 

456J9-SP6 CU289788 683 41.4     LINE1, SINE 

456J9-T7 CU289914 731 38.6     LINE1 

504H13-SP6   856 31.1 ZFY 4e-29   low complexity repeats 

504H13-T7   869 33.8     LINE1 

510F11-SP6  854 32.7     no repeats 

510F11-T7  788 36.4     LINE1 

ABW-M13   193 52.3     simple repeats 

ABW-T7   209 38     no repeats 
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Table A1 continued 

 
BES GenBank 

Acc. No.  

Size, bp GC% BLAST significant 

similarity (<E-10) to 

known genes 

Microsatellites Other repeats 

BBW-M13   157 43.9     no repeats 

BBW-T7   214 35.5     LINE1 

CBW-M13   177 46.3     no repeats 

CBW-T7   768 34.1     LINE1 

DBW-M13   150 52     LINE1 

DBW-T7   195 50.8     simple repeats 

EBW-M13   693 41.4     no repeats 

EBW-T7   1131 48.2     no repeats 

FBW-M13   1056 39.7     DNA/MER2 

FBW-T7   1385 42.2     LINE1, LTR/ERV1 

GBW-M13   993 39.6     LINE1, SINE 

GBW-T7   990 37.5     no repeats 

HBW-M13   247 52.2     simole repeats, LTR 

HBW-T7   232 47.8     no repeats 

JBW-M13   238 55     no repeats 

JBW-T7   660 39.3     LINE1 

LBW-M13   642 34.6     LINE1 

LBW-T7    1121 39     LTR 

MBW-M13   1146 43.5     SINE 

MBW-T7   1092 37.5     LINE1 

OBW-M13   1055 43.3     LINE1 

OBW-T7   1094 44.1     no repeats 
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Table A2: Detailed information about the STS markers on horse MSY contig map.  

 
STS marker Primers 5′ to 3′ Size, 

bp 

Ta °C Male or 

female 

amplification 

GenBank Accession and alias symbol 

002E4-T7 F: CCACAGCAGTGATGAGATGG 

R: TGCCAAGTTTTACCTGGTCTC 

218 58 M/wF   

003.4H8-M13 F: GATTAAGAGCCCAGGAGAGG 

R: TTGGCTGGAGACTTGGTAGG 

250 64 M   

003.4H8-T7 F: GCAACAGAAAGCACAGAGG 

R: TGCCAGGACCATCTCAGG 

174 62 M   

003A5INT1 F: TCAGTGGGTCTGTTTCATGC 

R: TTGCCTCCATGATTTTCTCC 

157 58 M/wF   

003A5INT2 F: GCTACAGCTTGGTCCTCTGC 

R: AGTGCAATACGGGAGTCAGG 

241 58 M/wF   

003A5-SP6 F: GCCCCATCCATCAGTTTTTA 

R: TGCATTTCTTCATTCCACTCC  

157 58 M CT825159 

005.2A8-M13 F: TCAGAATGGAGCTGCCTAAAA 

R: GGCCCTGGCTTTTCTTTATT 

274 58 M   

005.2A8-T7 F: GTCAATCCTGCTGCCCTTAG 

R: TGAGCAAGCAAATGGAAAGA 

247 58 M   

006B10-SP6 F: GCGAGGTGGCTTCTCTTATG 

R: TACGCAGTTGTCGAACTTGG 

199 58 M CT827035 

006B10-T7 F: CTTGCAATCACGTGGAAGAA 

R: TTGAATGCCACAGGTAAGGA 

207 TD60 M CT826936 

008.3G9-M13 F: TTGTAGGCATTGTGCCAGTT 

R: GGGCTTGTAAGAGACCCACA 

243 58 M   

008.3G9-T7 F: TGACAACATTCTGGCAGGAG 

R: TGAGCACCCAAACCATGATA 

161 58 M/wF   

011B8-SP6 F: GATGATAAGTGCTCTTCATTTGTGA 

R: TGGGAAAAGTGGTTGGAGTG 

232 58 M CT840125 
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Table A2 continued 

 
STS marker Primers 5′ to 3′ Size, 

bp 

Ta °C Male or 

female 

amplification 

GenBank Accession and alias symbol 

011B8-T7 F: ACCGGCTTGAGAGAGAATGA 

R: ACCTTTGGGAAAATGCCTCT 

174 58 M CT840126 

012.2E5-M13 F: TGGGTTTCTTGGAATCCTGA 

R: CCAGTGAAGGGGGACATCA  

249 60 M BV140783, CLY041 

012.2E5-T7 F: CCCCTCTTGCTGAGTTTTTG 

R: ACAGCAAACCAAACCCTACG 

150 60 M BV140831, CLY037 

012G3-SP6 F: AGCAGCCTTCTAGCTTCGTT 

R: CTTGTGCCCTCCATTTTTGT 

204 58 M/wF  CT841047 

012G3-T7 F: CCATCCAAATCTGTCCTGCT 

R: CCCAGCAGACCTTGTTTGTT 

213 58 M/F CT841048 

013E2-T7 F: CAGACCAGAAGCTGAAGAAGAG 

R: GGGCTGCATACAAGGAAAGT 

331 65 M BV140783, CLY042 

015.2A9-M13 F: CCCATGACCTGTCCATACTG 

R: AACCAAGCCACATTTCATCG 

182 60 M BV140824, CLY028 

015.2A9-T7 F: GGAGGCCACAGAGTGTTTTT 

R: GAAAGGTTGTCTCCATCTTTCCT 

185 60 M BV140822, CLY022 

015.2E9-M13 F: GCCAGTACATGGCCAGAGTT 

R: GGAGCTCTGTGAATGGAAGC 

159 50 M   

016.4C5-M13 F: GTGGCAGTCTGGGTTACGTT 

R: AAGCAAACCAAGGAGAAGCA 

215 50 M   

017.2C11-M13 F: CCCAAAGTGGAATGTGAGAG 

R: AAATTACCACTTGTGTAAGGTGAACA 

150 58 M/F   

017.2C11-T7 F: TCATCATTCTTTGGCATTTG 

R: CCAACACTCAGGCAATTTGA 

194 58 M   
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Table A2 continued 

 
STS marker Primers 5′ to 3′ Size, 

bp 

Ta °C Male or 

female 

amplification 

GenBank Accession and alias symbol 

017D15-SP6 F: GCTGCCTGAAACCTGACTTC 

R: TACTCCAAGTGCCAAGCTCA 

176 65 M BV140807, CLY083  

 

017D15-T7 F: AGTGGGTTTCAGGCAAAATG 

R: GGCACTTGTCTTCTCGGTGT 

209 65 M BV140806, CLY082 

018K2-SP6 F: GGTTTGACCCAAGCAAAGAA 

R: TGGGAAATGAAATTGCACAC 

209 58 M/F   

019D21-SP6 F: AGCTCCTCTGGGCACCTATC 

R: GGAAAAACTGCTCCATTCCTC 

111 58 M   

019D21-T7 F: TTTTCCTTGGCCTTTACTCC 

R: GCAAAGAATTTAGGCCTGGT  

217 60 M   

020.1G12-T7 F: TCTGGGTTCTGGATCTGACTG 

R: GACTCGGCCTGAAGCTAATG 

173 62 M   

020L18-SP6 F: TCAATAGCCATGGTGAGCTG 

R: TTCCAACCTCATTCCCTTTG 

166 58 M   

020L18-T7 F: GCTCCTTCTTGTGGCACAGT 

R: TCTTTGTAATCAGTAGCCCCATT 

407 58 M   

022.4 E3-M13 F: CCGATTCCAAACCATGAGAT 

R:AGGAAGTCAGCACCTTGCAT 

138 65 M BV140843, CLY066 

022G3-SP6 F: ACCTCAGTAGGGGGCTTCTC 

R: GTGGAACAGGGTAAGGCAAA 

154 58 M   

022P7-SP6 F: GCAATGGGACTGTGGAAAAT 

R:TTTTCACCTCAGCCCTCAAC 

383 151 M/F   

024.4G8-M13 F: ACAGTCTCCTGCTGGTTTCC 

R: AATTTCAGCCTCCTTTCCA 

156 60 M BV140847, CLY091 

024.4G8-T7 F: TCATCTCGTATCTCCTCATATCC 

R: TCCCTATCCTTGTTGAAAATCC 

495 60 M BV140846, CLY090  
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Table A2 continued 

 
STS marker Primers 5′ to 3′ Size, 

bp 

Ta °C Male or 

female 

amplification 

GenBank Accession and alias symbol 

024I23-T7 F: ATCTGCTTCGGCCTTCTCTT 

R: GGTGTACCCTGCTTCTCGT 

101 65 M BV140808, CLY101 

026.4A6-M13 F: CTCCCCTCCTCCCACATTAT 

R: GGCAGCAGATCAACTACCTG 

153 60 M BV140825, CLY029 

026.4A6-T7 F: TCGGTGACATCAGCAAAATG 

R: TACCCCGAATCCAGATCCTC 

192 55 M BV140823, CLY026 

026B21-SP6 F: CAAGGAAGCCAGGAAGAGTG 

R: GTCTCTGGCCCATGAGTGAT 

160 60 M   

027.1A2-M13 F: AACACCCAACCACATAGAGGA 

R: GGGCCGTTGTTGAGTCTTAG 

190 60 M   

027.1A2-T7 F: AGGGAGGTCTATGGAGAAGG 

R: ATTTTTAGCTTGCCCTTTGG 

296 65 M BV140841, CLY059  

027A12-SP6 F: GCCCATGCTAAATTTGTGCT 

R: CTAATTGAGGGGCAACCAAA 

237 58 M   CT952155 

027A12-T7 F: CATTTTTGCTGTTTCCCACA 

R: CAGGAAGACAACCAGAAAAACC 

162 58 M   CT952156 

027B13-SP6 F: GAAACTGCCAGTGAGACAAGG 

R: TGTCTGGCATAGGAACTCAAG 

698 58 M/wF   

027B13-T7 F: CATGCTGTAATAAGACTGAGAAGA  

R: ACAGAGGAACCAGTTATTGCAT 

183 58 M/wF CT952199 

032H24-SP6 F: TCAAAAGGGTAAGGTGCAGAG 

R: GCCAGAAAATGGCAATAGTTT 

160 60 M   

032H24-T7 F: AAATGACAGCGTGTGGGAGT 

R: ACAGGACAGGTCCAGGTGAG 

163 60 M/F   

039P6-SP6 F: GCAAAGGCTCTGAGAGAGGA 

R: GGCCACATGTCCTGTGTGTA 

161 58 M   
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Table A2 continued 

 
STS marker Primers 5′ to 3′ Size, 

bp 

Ta °C Male or 

female 

amplification 

GenBank Accession and alias symbol 

039P6-T7 F: CATTTCTGATCCCCTCTTGG 

R: GCCAAGATGCTCTTGATGGT 

155 58 M/F   

041O19-T7 F: ATTACATTTGCCCCAGACCA 

R: CTCTTGCTTCAGCGGTCTTT 

249 58 M   

042.4B5-M13 F: TTGGGGAGACTTACCCACCT  

R: AGAGGCGTTAGGGTTGGTTT 

100 60 M   

042.4B5-T7 F: TGGCTCTTTGTGTGGTGTAA 

R: TCCACAGACCCATGCAAATA 

238 60 M   

047.1H3-M13 F: GGATCCTATGTCCTAGTTTGGAA 

R: TTTTTGTTCTTACCATTCATACAACA 

113 58 M/wF   

047.1H3-T7 F: TTATGTCGACTTTGCCTGGA 

R: AGAATTCCATTAACAAGTTTTGGT 

107 58 M/F   

047.2A3-M13 F: ACCCTTGTCACCTTCCAGTG 

R: CCTGCCCCTTATTCTTGTGA 

194 58 M/wF   

047.2A3-T7 F: GCTGAGTCAACATCTCACATAGC 

R: GCCTTAAGATAACATCTGTGACCA 

127 58 M/wF   

049.2F10-M13 F: GCACCAATACGCTAGAGTCCA 

R: GCTTGGCCATGTTAAGTGCT 

176 61 M   

049.2F10-T7 F: GTTGGATCCTGCTGTGGACT 

R: ACAGCGTCCTTGATGCTTCT 

212 60 M   

049.3F11-M13 F: TCAGCAGCAGCAGTAAGTGA 

R: ACGGTCAACCCATCTGTGAT 

172 60 M   

049.3F11-T7 F: GCGAGTTCTGAGGACCAGAG 

R: GACCTGCCAACCAGTGATCT 

173 61 M  

052H5-T7 F: GAACTCGCCTGTGGTTTCA 

R: GCCTGAATAAGATGCTGTCAAG 

142 65 M BV140796, CLY071 
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Table A2 continued 

 
STS marker Primers 5′ to 3′ Size, 

bp 

Ta °C Male or 

female 

amplification 

GenBank Accession and alias symbol 

054A8-T7 F: GATGACCACGGGTTCTCAGT 

R: CCGTTCTCCTTCAGTCCAAG 

181 64 M/F   

054F13-SP6 F: GCAGGGGCCTTAGTGATATG 

R: CATGTCTTGATCTGCCAGGA 

189  58 M    

054F13-T7 F: TTGGGCTCAAGAAGTGGTTT  

R: TCTGCAGGTTCTTTGGATCA 

164 58 M    

054J7-T7 F: GTGTGATCTGCTGTGCTTGG 

R: GCAGTTGCTGTGTGACTGTAGG 

163 65 M BV140803, CLY079 

055N19-INT F: TTTCAGCCATCCTTTCCAAC 

R: CGTGGATTGCTCCTTTGTTT 

231 58 M   

060D8-T7 F: GACAGGAGGCACGTAAAGGA 

R: ATCTCCCCATCCCAAACTTC 

171 61 M/F   

061.4H8-M13 F: CCACATTTTACACATGCCACA 

R: CCCAGAAAGACACCGTAACAA 

117 62 M/F   

061G21-SP6 F: CAGGGATCGCAGACTCTAGG 

R: AGAGAGGGTGCAGAGCAAAA 

227 58 M   

061G21-T7 F: TCTTCAGGAACGACAAACCA 

R: AAGGTACATTTTCCCCACTGAA 

150 58 M   

061J18-SP6 F: TTGGTAGGATTTCCCATAGGTG 

R: TGATAGGTGAACAAACTTGAGGA 

219 58 M   

063H12-SP6 F: ACCTCAGTAGGGGGCTTCTC 

R: GTGGAACAGGGTAAGGCAAA 

155 58 M   

063I4-SP6 F: CAGCTACTTGTGGTCTGGTCA 

R: GGACTGACTGTAAGAGCCCACT 

103 65 M BV140776, CLY020 

063I4-T7 F: TGTGACGGAGGCCAAAATTA 

R: ACTCCACATCAGGGTTGGTT 

110 58 M BV140774, CLY016 
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Table A2 continued 

 
STS marker Primers 5′ to 3′ Size, 

bp 

Ta °C Male or 

female 

amplification 

GenBank Accession and alias symbol 

064P16-T7 F: TCAGAGATGGGCATTTTCAC 

R: CCTTATTCAAACAGCGTCCA 

212 65 M BV140805, CLY081 

066M24-SP6 F: TTGGCTGCTCTCAGAATTGA 

R: GGATTGTGCATGTCATCTCG 

169 58 M CU001288 

066M24-T7 F: ATGTGGGGACTGGTTCACAT 

R: GGGGAGCTTTCACAATCAAA 

243 58 M CU001289 

067.1G8-M13 F: AGCTTTTTGGCCTTGTTCAG 

R: TGCTTTGGGAACTGACATTTT 

206 58 M   

067.1G8-T7 F: CAAAAGCCACTGCAGGATTA 

R: CATGAATATGTGGGATTACATGG 

182 58 M/wF   

069 E11-T7 F: CAGCCCTGGCATGTCTATTT 

R: GTTGCGAAGGGCTCTACAAG 

237 60 M/F   

070F17-SP6 F: TTCCTTCAAGATCCCGTGAG 

R: CACAGTTGCTCCATTGGTCA 

217 58 M   

070F17-T7 F: GCCAAATGTGACCCAAGAGA 

R: CCAGGAAGGAGCTAACACCA 

102 62 M/F   

072G23-SP6 F: AGGTTTGGGGTTTTGTTTCC 

R: CTGATGGTCCAATGTCCTCA 

163 58 M/wF CU004599 

072G23-T7 F: TTGTTCTGCTCCTTTCAGCA 

R: CTTGCACTTACGCAGTTCCA 

162 58 M CU004600 

072G7-SP6 F: CCGTCTCAACTATATTTCAAAGTTTTT 

R: CGCAGGTCATCACTTCTCTG 

194 58 M   

072G7-T7 F: CAACGCTTTCTTCTGACTCTG 

R: TTTTCCTGCCCTGTTTATCA 

215 58 M   

077M19-T7 F: AGCCTGGGGTTGATATGG 

R: CTGTTCGAGATTCAGGTTGG 

216 65 M BV140801, CLY077 
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Table A2 continued 

 
STS marker Primers 5′ to 3′ Size, 

bp 

Ta °C Male or 

female 

amplification 

GenBank Accession and alias symbol 

079.4H1-M13 F: AGTCCACACCACCACAGTGA 

R: TGATGGGAGTGGGAGTTTTC 

248 60 M   

080.4F7-M13 F: TTTAACCACTCAGCCACAAGG 

R: CTTAACCACTGTGCCACCAA 

245 60 M/F   

080.4F7-T7 F: ATCACTGTTGGTCGGCACTC 

R: TCTGCACATCAGCCTTGTTC 

187 60 M   

081F8-SP6 F: GCAAAGGCTCTGAGAGAGGA 

R: CCATGCTTCTTGACCAGACA 

182 58 M/wF CU011557 

081F8-T7 F: CAAACTACCACCTCCCAAGAA 

R: ACCAAAGGCACAAAGCAGTC 

194 58 M CU011558 

083H5-T7 F: TGCCCTTATCTACGTTTTGG 

R: TCTGCAAAGCTGGATCTCTT 

123 58 M BV140789, CLY054 

086.2F8-M13 F: GGTCCAGAATGCCTGAGTAA 

R: AGAGACCTTTTGTGGGTGGA 

396 65 M BV140826, CLY032 

086.2F8-T7 F: CTGCCTATCTCCATTCTTCATAC 

R: AGTGTTTTGGGGCAAGTGTT 

153 65 M BV140830, CLY036 

086J1-SP6 F: TCAACTTAGCGACTTCCTAGCC 

R: TTCAAAAATTCGATGTTGTCC 

351 63 M BV140795, CLY070 

086J1-T7 F: GCCAGGATCGTGAGATATGG 

R: AACGTGCACGAGATAAGATGG 

151 67 M BV140794, CLY069 

087.3A5-M13 F: CAAGGGAAATGGAGTCAAGG 

R: AAAGAAAGTGTGTGTGTGTCAGG 

201 65 M BV140828, CLY034 

089.3B11-

M13 

F: GTCTTGTCCCCATCCTTTGA 

R: TGGCCCCATCTCTTATCAAC 

158 60 M   

089.3B11-T7 F: CACAGCCTGAATGCAAAATG 

R: TATCTATGTTTTTGATGTTATTGACG 

161 60 M   



 

 

1
9
1

Table A2 continued 

 
STS marker Primers 5′ to 3′ Size, 

bp 

Ta °C Male or 

female 

amplification 

GenBank Accession and alias symbol 

090B11-SP6 F: TTGCTTGTGGTATTTCCTTGC 

R: CCTTTCTTCTTTCCTTACATGC 

150 65 M BV140791, CLY057 

090B11-T7 F: AGTGGTTAAGGCACAATCCA 

R: CCCCTACATCAGTTCAACTTTTT 

166 60 M BV140788, CLY052 

090G18INT F: GGAGCAGATGTCAGCATTCA 

R: GCCTTTGGTGGCTGATTTTA 

246 60 M   

090G18-T7 F: AAATCCAAACAGATATGACAAAGA 

R: GATTAAGTCTCTGCTGCCATC 

155 60 M   

091.4G10-

M13 

F: AACTCCGGTAGGAGAGGAAG 

R:AAGGAGATGGACTCTTTTATTATTCC 

152 54 M   

095.4B8-T7 F: TATAAGGGTACATGCAATTCTAACAAA 

R: CAAAGTCACGTGCTGCAGTT 

150 60 M   

095.4F10-

M13 

F: GGGACAAAACCACTGAATGC 

R: GCTGTTGCTAGGTGGGAAGA 

250 62 M   

095.4F10-T7 F: TTTTGCTTGCCACATCCATA 

R: CTCACGCAACTGAAAGTCCA 

212 60 M/F   

097D2-SP6 F: TTTGGTTTCCCACTCTCTGTG 

R: CTTCCTTTGCAGGCTAGTGA 

190 58 M BV140810, CLY103 

097D2-T7 F: GCAAGATTGGAAACATGAAGC 

R: TCACATTTCTTCTTTGCTCTATGC 

177 65 M BV140777, CLY021 

100.3A11-

M13 

F: AATTCGTCTGCCACTGGAAC 

R: AAAAAGCGACAATGGAGTCG 

217 55 M   

100.3A11-T7 F: TCCCCTGACCACTAAGGTTG 

R: CTTCACATGGCGTGAAAATG 

197 58 M   

100.4F5-M13 F: AGAGGATCCGTCACGATTTG 

R: TGGAGCCTTCTGAGGTTAGC 

162 58 M   
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Table A2 continued 

 
STS marker Primers 5′ to 3′ Size, 

bp 

Ta °C Male or 

female 

amplification 

GenBank Accession and alias symbol 

100.4F5-T7 F: TGCAAAATTCAAAGGTCAGC 

R: GGCAACAGATGCCTGGTATT 

152 58 M   

100H13-SP6 F: GGTATTTGCCCAGTGACCAG 

R: TCCCTGCAGTGCATTGTAAA 

165 62 M/F AJ542956 

101H8-SP6 F: GTTGTGCCCTAAGGCAGGTA  

R: TTGGCAAACTATGCCGAGTA 

170 58 M   

102J15-SP6 F: CCACAGTGCATACAGCAACC 

R: GCTGATCTGCTTGTTTTCTGG 

190 58 M/wF   

103.3A6-M13 F: GTGGAACTGCGCACTGCTTA 

R: CAGGAACATTAGGCCTCAGC 

150 65 M BV140840, CLY058 

106F1-SP6 F: ATCTGAAGGTGGAGGTGCTG 

R: TCTGCTCTCCTGGGGTTCTA 

244 58 M   

106F1-T7 F: CTCCTGATGACCATGGGACT 

R: TGCCCTAATGTCTGGCTTTT 

153 58 M   

106J17-SP6 F: ATGCCTTCTACCACCACTGC 

R: ACCACTGCACTGAGCATGAC 

161 58 M/F   

106J17-T7 F: TGGCATCTCTCATTCACCAA 

R: TGTAAGCAACCAGTGGAACG 

158 58 M   

107.3H9-T7 F: GTCAGCACGACAGCTCACAG 

R: ACAGCAATAGTCCACCAGCA 

247 68 M   

108.4C7-M13 F: AGCGAGGTCTGCACTTTCC 

R: GCGGGGAGTACATCAGTTCC 

156 66 M BV140827, CLY033 

108.4C7-T7 F: CTACGTGAAGGAATGTGTCTGG 

R: GATGTTTCTAAAGTCCAGCAAGG 

150 60 M BV140832, CLY038 

110.3H12-M13 F: GGGCCAGAATATGCAAGGA 

R: GATGTGTTTGTGTGCCTCTGTT 

182 60 M BV140834, CLY047 
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Table A2 continued 

 
STS marker Primers 5′ to 3′ Size, 

bp 

Ta °C Male or 

female 

amplification 

GenBank Accession and alias symbol 

110.3H12-T7 F: GCCTCAAGTAGAACCACATCC 

R: GCATCCAGAACAGCAAACC 

300 60 M BV140837, CLY050 

111.2F5-M13 F: TGGAGAATTCACTGGCTGTC 

R: AAATGAAATAGCTGCAATGAAGT 

102 60 M BV140842, CLY060  

111.2F5T7 F: GGCAGGAATCCCACACATAA 

R: CAGGAACATTAGGCCTCAGC 

116 60 M   

112.1A9-M13 F: AACAGAACCACTGCACTAAACC 

R: CAGATTCCCTTGGCTGACC  

358 60 M BV140835, CLY048 

112.1A9-T7 F: TGTCAGCTTTGCCATTGTCT 

R: TCTGCCTGAAATGAAAGGAA 

226 62 M BV140836, CLY049 

112E12-SP6 F: CTCCTTAGGGTCTGCAGTGG 

R: TTGTGGACAGGCCTGGTAAT 

216 58 M/wF CR955686 

112E12-T7 F: AGTTGGGACCCTCAACTGC 

R: AGGCATGCATCATCTCACAG 

177 58 M/F CR957122 

114E24-T7 F: GTGTGCACTAGGCACCCTCT 

R: TCAGGTGCTTGCCTCATGTA  

240 58 M CT006811 

114I17-SP6 F: CCCCATGGTGTTATTCATGT 

R: GTGGCATTTCCAAAAATCAG 

172 58 M   

114I17-T7 F: GAGCCACAGCACATTTCTCT 

R: CAGGTTATCCCGTGACAAAG 

215 58 M   

117.4F7-M13 F: TGGGTTTCTTGGAATCCTGA 

R: CCAGTGAAGGGGGACATCA 

248 55 M   

117.4F7-T7 F: ATATGCCAGACATGGCACTG 

R: GCCCTGATCTAACTACTGCCAATC 

148 60 M   

118.1A9-M13 F: TGAAAACAAAAACCGAACAGG 

R: ATGGCATGCAAACACAAAAA 

157 58 M   
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Table A2 continued 

 
STS marker Primers 5′ to 3′ Size, 

bp 

Ta °C Male or 

female 

amplification 

GenBank Accession and alias symbol 

118L7-SP6 F: GGGCTACAGGAGGACATGAG 

R: GCACAAGTTTGGCCGATT 

177 60 M   

118L7-T7 F: ATCTGCTCCCCTTTGGTTTT 

R: CCCCAGATTTACTGCCTTTG 

225 55 M   

118N21-SP6 F: GAGAGGGAGAGAGGTGGACA 

R: GGGAATGTTCTATTGCTCCAA 

275 58 M/F CU025698 

118N21-T7 F: GCAAATAAAAGTGGGGGACA 

R: TCATGTGGGAACCAGAGACA 

153 58 M/F CU025699 

119K22-SP6 F: CTGGGTCTAGCCCCTTATCC 

R: ATCGAGGGCTTGAAGCTGTA 

158 50 M   

120.1A5-M13 F: ACAGTGCGTTCTGTGGTGAT 

R: AGTGAGCTGAGAATGCTTTGG 

174 60 M BV140838, CLY053 

120.1A5-T7 F: GAACCAGCACTGCTCATCAA 

R: CCTCCAGAATGTCTCCTCCA 

210 60 M BV140839, CLY055 

120A19-SP6 F: CTGGCTGGAGTGCGATCT 

R: ACAACCCGTCGGATTCTCC 

151 55 M   

120A19-T7 F: GACTAACCACGTTGGGGAGA 

R: TATACATGTGCTGGGCTTGG 

151 58 M   

121G24-SP6 F: CCTTGAGTCATTGCCCTCAT 

R: GTTGGTGAAGCACATGTTGG 

246 58 M/wF   

121H9-T7 F: TCTGAGACCTTGCGAATCCT 

R: TGAATCCTTTCCCAGTTCCA 

166 58 M   

124.3G9-T7 F: TTACCAAGTCGCTGTGGTCTT 

R: GATTCTGCATTTCTTGAGCTCTT 

151 58 M   

125.3G11-T7 F: TGTGCATGAAATCTGGACTCA 

R: TGCTGTGTAGGAGGCATTTG 

164 65 M/F   
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Table A2 continued 

 
STS marker Primers 5′ to 3′ Size, 

bp 

Ta °C Male or 

female 

amplification 

GenBank Accession and alias symbol 

125H6INT F: CAAAAGGAACAACCCCACTC 

R: TTCACATGACAGATTCAGCAAA 

242 55 M   

125H6-T7 F: CCAGCACCCTACTTTGAGGA 

R: AGGGCATGGGAACTTTAACC 

204 58 M/wF   

126G2-SP6 F: TCAGGCAGGAGAGCTGATTT 

R: CAGATGGGTGTGTCCTCCTT 

249 58 M   

126G2-T7 F: GCAACTTGCACTGATTGTCC 

R: ATTTGTGTGGAGGGCAGGT 

200 58 M   

129K23-SP6 F: ACACACATACCTGGCTGTCC 

R: GGTGAGCAGATCCCACTTCC 

112 67 M BV140875, CLY076  

129K23-T7 F: GGGGAAAACTCCAAAGCAG 

R: CAGGGGAACAAAGCCAGAG 

133 65 M BV140800, CLY075  

131N23-SP6 F: GCTTGTCCTAATTTGCCTCTG 

R: CTTTGAGGACGGGTAAATTG 

152 58 M   

132K10-SP6 F: AGGGGCATCTTCACTCACTC 

R: ATGTCACAAGGTCCCTGAGC 

220 58 M   CU035255 

132N15-SP6 F: GAGCCACAGCACATTTCTCT 

R: CAGGTTATCCCGTGACAAAG 

214 58 M   

132N15-T7 F: TGTCACAGCCATCTTTCAGA 

R: GTCTGCAGGCTCTCATGATT 

186 58 M   

134H14-SP6 F: AAGGGAAAGCAGGTTCCAGT 

R: ACAAGCGGTCTGAGGACACT 

191 60 M   

134I16-SP6 F: AGTTGAAGCAAGTGTGTGTGG 

R: CGGACTACGCCAAGAAAAGG 

188 62 M   

134I16-T7 F: CCATAGAGTGAGAGCTGATTG 

R: TTGTTTTCCTTTTGGACTGG 

238 62 M   
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Table A2 continued 

 
STS marker Primers 5′ to 3′ Size, 

bp 

Ta °C Male or 

female 

amplification 

GenBank Accession and alias symbol 

137I17-SP6 F: AAGGCCAAAGACATTCTCCA 

R: ACCTCCTGAGTTGGCTGAGA 

213 62 M CU038728 

139C20-SP6 F: GTGGGTCTTCTTGTGGCAGT 

R: ACAAGAGAGGGCCCTGGAC 

109 58 M   

142O2-T7 F: AATATCCACAACCCCTCTTCC 

R: CGGAGCATAGTAGCCAGACC 

155  58 M   

144B9-T7 F: TCAATGGCCCAAAGGTCTAC 

R: GGGGAGCACCAGATATGAGA 

156 58 M   

145I6-SP6 F: AGGCAAGTTGTAGGAAGAGCA 

R: TTTAAAAGGATCATTTCATTCCA 

164 58 M CU046684 

145I6-T7 F: AACGGCCCAGGCTAGAGTAT 

R: AGAGGTGGTTTGCCTTGCTA 

213 58 M CU046685 

148G3-T7 F: CAGAGGAGCGTCTTCCAGTT 

R: GGGTTTTTCCCCCAGTTTT 

159 60 M BV140785, CLY045 

149H18-SP6 F: GCGGTCTCAGTTTCTCTTCC 

R: CTGCTTCTTTCGCCTCTCC 

242 65 M BV140784, CLY043 

152E2-SP6 F: CGGTGAATTTTGAGGAAGGA 

R: TGTGCCTTTGTCAGGAATCT 

174 TD60-

50 

M/F   

152E2-T7 F: CAGCATGAGAAAGAACTATAATAGGC                                   

R: AACAAAACATGGTCGATGTAGAGA 

150 58 M   

152G20-SP6 F: GATGAGGGGCTATTCAGGTT 

R: ATCCCACACGTGAACTGTCT 

246 58 M   

152G20-T7 F: TTACTCCAGGTAACGCTTGC 

R: GAAAAGCCTGTCCTCCTCTC 

182 58 M   

155B8INT F: TAGCACCCAGGAGGTGTAGG 

R: CCTGCGACTAAATTGTTCTTCC 

165 60 M   
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Table A2 continued 

 
STS marker Primers 5′ to 3′ Size, 

bp 

Ta °C Male or 

female 

amplification 

GenBank Accession and alias symbol 

155B8-T7 F: GGTACCAAAGGCACCAGAGA 

R: CCTCCTAAAGATGGCATGGA 

225   60 M   

155M11-T7 F: GGGGAGAGGATCTTCATAGGG 

R: TCCAGGCTGCCATGTTTTA 

247 50 M/wF   

159E3-SP6 F: TGAGCCCCCACAGTAATTTT 

R: TGAAGCCAGCCAGAGTTTTT 

237 58 M   

159E3-T7 F: TGGTAAGCAACTAAGATGAAAAGG 

R: CATCAACACAAAAGTTAGACAGGAA 

246 58 M   

159F5-SP6 F: ATGCGTTAGCCCACTCAAAG 

R: TTTTTGCTGTGGTCTCTGGA 

241 58 M   

159F5-T7 F: CCACAGCAATGACAAACTGC 

R: AGTGTTGGGCATCAGGTTTC 

169 58 M   

160K10-SP6 F: TCACGTCCCTCAACAAACAC 

R: GGGACACGGTAATGAGGAAA 

198 60 M   

160K10-T7 F: CAGCTCAGGGAAGAGACAGG 

R: CATTTCCACACGGAAGTCCT 

247 60 M/wF   

165 E24-SP6 F: ACCCAGCCAAAAGCAGATAC 

R: CTGAGGCCAGGTGTGGAG 

171 62 M   

167N20-SP6 F: CCATGGAAAGTGCAATGGTT 

R: GCATCTAGAAAAATGGAAGGTGA 

214 58 M/wF CU062306 

167N20-T7 F: CTCCAAACCTCCACTTCCAG 

R: GAGCTGCTGGTCGATTTTTC 

187 58 M/wF CU062307 

168I4-SP6 F: TCAGAAGGGGAAGAGAGTGG 

R: AGGCTCGGCTCGATTTTT 

138 55 M   

168I4-T7 F: CCATTTCAACTCCTGATCCA 

R: AAGGGTAGGTCAGAGAGGAAGG 

101 65 M BV140781, CLY031 
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Table A2 continued 

 
STS marker Primers 5′ to 3′ Size, 

bp 

Ta °C Male or 

female 

amplification 

GenBank Accession and alias symbol 

168O8INT-2 F: AAGTTCCTGAAATCCCACTCC 

R: CATCTGAACCCCACTTCACC 

200 58 M   

168O8INT-3 F: ATACCTGGGAGAGGAATTGG 

R: CAAGGAAAGGACCGTGTAGG 

310 58 M   

172I8-T7 F: GCCCTTTCCTTCTCTCTCAC 

R: GCCACCACACGAGAATAAAC 

196 60 M   

179K8-T7 F: TCATAAGCCTCAGTGGAAGC 

R: CCCTTTTACTTCTCCCCAAA 

200 58 M   

180P20-SP6 F: CCCGTCCTTGTACTTTGGAG 

R: ATTTCACATGGCCCCTAATC 

128 60 M BV140790, CLY056 

180P20-T7 F: ATAAATGCCGGAATCCATGC 

R: CCCCATGGGAATGGTAAAGT 

181 52 M BV140787, CLY051 

181B18-SP6 F: CCCGCCAAGTCTATTTCC 

R: CAGTTAGTGGGAGGTGAGACG 

156 60 M   

185M14-SP6 F: TCAAGACTCTATCACAGCACTAAACAG 

R: AAGGGTCCACCTCAGTCACA 

100 50 M   

185M14-T7 F: AACCCATTTTCTCACAGTCTTG 

R: CAACACAAGTTGGAATGAGATG 

106 60 M BV140782, CLY039 

186J13-T7 F: AATCATAAACAGTCCATGGTCA 

R: TCAGTTCTCCCACCTGGATA 

151 58 M   

188E20-SP6 F: TCAGGTGAAGATTAAAGGAAGC 

R: GGGAATCCAACCAATAAGGAA 

250 58 M BV140780, CLY030 

188E20-T7 F: CTCAGTGTCAGCAGGTTCCA 

R: TGCAGCTCTCTATCAGAACAGG 

185 58 M BV140778, CLY023 

190M2-SP6 F: CTGATGCAGGTTTCACTGG 

R: GAGTCAGAGAGCTGGAACTGG 

109 67 M BV140775, CLY018 
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Table A2 continued 

 
STS marker Primers 5′ to 3′ Size, 

bp 

Ta °C Male or 

female 

amplification 

GenBank Accession and alias symbol 

190M2-T7 F: CAGCATGGCTTCACTATTTCC 

R: TTTAGACAGGCAGAATCAGTTCC 

164 66 M BV140874, CLY015 

205D10-T7 F: GGGCTATGGCCTAGGAGAAC 

R: CTAGCAAAACATCTTGTGACAGTA 

169 62 M   

207D10-T7 F: AAGGGAAAGCAGGTTCCAGT 

R: ACAAGCGGTCTGAGGACACT 

191 58 M   

207P5-T7 F: CTGGAGTTCCATTGGGAGGT 

R: CACTCACAGGCAGCACATTT 

169 58  M/F CU102185 

209K10-SP6 F: TGGCTTCCTGCTGAAAGATT 

R: ATGGCAGCAAGTTTCTCTGG 

203 62 M   

215C6-SP6 F: AGCTTGGGTTCATGGTCAAA 

R: CCTCTCCCTATGGATCATGC 

221 58 M CU108088 

244B13-T7 F: GCTGGACAAATCGGTGTCTT  

R: CCTTGTGGACTATGCCACCT 

171  62 M CU126281 

263G23-SP6 F: GTGCCTCTGGGCATATCTTT 

R: TAATGTCAGCGGAGATGCAG 

150 58 M/F CU140369 

263G23-T7 F: GATGACCACGGGTTCTCAGT 

R: GGCCCAGGGATTAATTTTGT 

168  58 M CU139968 

269J9-SP6 F: CCGTGGCAACAAATGTTAGA 

R: CCAGAGAATGCTCCTGAACC 

191 58 M CU143890 

269J9-T7 F: CCATGGCAATATCTCCCTTT 

R: CCTGCAAATTGTGTGAAAGC 

184 58 M CU143373 

275P16-SP6 F: GGATCCTTACCACAGCCAGA 

R: CACATGAGGATATGAGGAGATACG 

249 58 M   

275P16-T7 F: CGACTCACTATAGGGGAGAGGA 

R: GGTGCTCTTCGTTACCTGGA 

157 58 M   
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Table A2 continued 

 
STS marker Primers 5′ to 3′ Size, 

bp 

Ta °C Male or 

female 

amplification 

GenBank Accession and alias symbol 

278M12-SP6 F: GTTGGCAGACGTAAGAAATGC 

R: TGAAAATGCTGGTTTTGTGG 

244 58 M   

278M12-T7 F: TATTACGGCCGTTACCAAGC 

R: GTGCCTGGATAGGCACATTT 

189 55 M   

280P20-SP6 F: CACAGTCATTTCTGGGATGC 

R: CCTGAGACTATGGGCAGTGA 

242 58 M   

291D19-T7 F: TGAGTTTGTGGTTAAAATGACAGG 

R: GGAGACAAATAGATGGACTCAGAA 

115 62 M   

318M1-T7 F: AAGTCAGGGACCAGCAAAGA 

R: TCCCTCTGAGAACCCAAATG 

193 58 M   

324H11-SP6 F: GACAGGACAGCGGAGTAAGC 

R: GTCCAGCAATGCACTCAGAA 

191 60 M   

324H11-T7 F: GCTGCCTGAAACCTGACTTC 

R: CATACACATGTCCCCTGCAA 

217 60 M   

329G16-SP6 F: CTCACCACTTGTTCTGGAAGC 

R: GGTGGAACTACTTGCTCATGG 

204 60 M   

331E10-SP6 F: TCATTAGGTCCTGGGCTCAC 

R: ATTGTTGGATGCTGGGACTC 

172 58 M/wF   

331E10-T7 F: CAGTTTCCCCACACTGAACC 

R: TCCATGGAGCATAGTGGATTC 

105 58 M/wF   

335P13-SP6 F: AAATGCCAGACACCTTCCAG 

R: TTCTCCTGTTTTTCCTTTTTCG 

210 58 M   

338A6-SP6 F: TCAACCCTGAATCCAGTCTCT 

R: TGCCTACTCTTCCCCCTAAAA 

249 62 M   

338A6-T7 F: CTGGGGATTTTGCTTGATGT 

R: CATGGGGAAATTCTATTTTAGGC 

154 58 M   
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Table A2 continued 

 
STS marker Primers 5′ to 3′ Size, 

bp 

Ta °C Male or 

female 

amplification 

GenBank Accession and alias symbol 

341G20-T7 F: GCAAGGAATGATGCACAAGA 

R: ATTCCTTTGGTGTGCCTTTG 

178 58 M   

344A12-SP6 F: AACCTTGCCTACGGGCTTAT 

R: ATGTTTGTCCCCTTGTCAGG  

152 58 M CU312820 

377O23-SP6 F: GAATGCACATGTAGTGCCGTA 

R: TGACTGATGCAGCAGGAAAG 

151 58 M   

394K12-SP6 F: TTCCATATGCCAAGGAAGC 

R: TTGTCTAGGACAATGTTTTTCAGG 

151 60 M   

394K12-T7 F: GGGAATCTTGAGTCGCTTTG 

R: GCCTTACTCTGAGGCTGTGG 

249 60 M   

395L19-SP6 F:ACCCTGAATGCCAGTCTTTG 

R: CTGCCCAGTTTTCTCCTCAG 

 170  58 M   

417N24-SP6 F: CCCTAGGGCAGGTAAACAGA 

R: TTGGCAAACTATGCCGAGTA 

164 58 M   

417N24-T7 F: GCAATGCAAACGAGAACAGA 

R: AACAGCCAACCTCAGAGGAA 

239 58 M   

418J18-SP6 F: TCTGCTGGCACATTTGTTCT 

R: CCAAAAGTTCAGGCAGCAAT 

250 58 M   

418J18-T7 F: CTCCCCCTCCAAACTACACCA 

R: GGGAGGGAGCAAAGTTCTCT 

163 58 M   

422E23-SP6 F: GGCAGCATTTTGGTAGAAGC 

R: ATAGCGGGGTGGATGTACTG 

177 58 M   

422E23-T7 F: ACGCAAAAGGTTCATTACCG 

R: TTTCCATCTGTCATCCAATCAG 

175 55 M   

437I11-SP6 F: GCAATGCAAACGAGAACAGA 

R: AACAGCCAACCTCAGAGGAA 

239 60 M   



 

 

2
0
2

Table A2 continued 

 
STS marker Primers 5′ to 3′ Size, 

bp 

Ta °C Male or 

female 

amplification 

GenBank Accession and alias symbol 

437I11-T7 F: GAGGATTTCCCTTCCCACAT 

R: TGCGTCCAATATGTCTACCC 

241 60 M   

450C22-T7 F:CCTGTTACAGCTCCGCTTTT 

R:CTGGTTGCCCAATTTGTTCT 

151 58 M  

504H13-SP6 F: CCCTTCCGCACTGTAAATGT 

R: TCCTGTTACCCACACAACCA 

163 58 M   

510F11-SP6 F: GGCAAACTATACCTAGCAC 

R: TCCGCAGTCTGATAGAGCAA 

213 58 M   

510F11-T7 F: AATCTGGGGAAGCTGTGCTA 

R: TTGATGGTGGCAGAATGAGA 

155 58 M   

ABW-M13 F: GCGAGGGGTGAGTTATTGAA 

R: TTAGCTGGCCCTTCCCTTAT 

193 60 M BV140869, CLY088  

ABW-T7 F: TATGGAACCCCTTCTGCAAG 

R: CCTGCCGACATGACAAAATA 

209 65 M BV140868, CLY087 

BBW-M13 F: CAGTCCTGTCAGTGCTCCAA 

R: CATGGCACAATGCAACTAGG 

157 60 M CLY063, CLY063 

BBW-T7 F: CCCACCTCAGGATATTGCAT 

R: GCAGTGGTGTACAAAGACAGCA 

214 65 M BV140862, CLY061 

CBW-M13 F: GAGGAGAAGTGCCTTAAATTCC 

R: CCCAGAAAATCGTTCATTCC 

177 60 M BV140870, CLY089 

DBW-M13 F: GTGCCTGGGGATTCTCAGAT 

R: 

GTATAGTTTGGAAGGTGCTAAACACAG 

150 60 M BV140866, CLY065 

DBW-T7 F: CTGCTGAGCAAGGGGTTAAG 

R: CGAGTGTTTCAGCAAACAGG 

195 65 M BV140865, CLY064 

EBW-M13 F: TTAGAATGGGCTTGGCTCCT 

R: ACAGCTTTGAGGGATGGTTC 

179 60 M BV140858, CLY025 
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STS marker Primers 5′ to 3′ Size, 

bp 

Ta °C Male or 

female 

amplification 

GenBank Accession and alias symbol 

EBW-T7 F: TTGAGCCCTTGTTTCTGTCC 

R: CAGGGAAGTAGGGAGTGACC 

165 60 M BV140859, CLY027 

FBW-T7 F: AGCTGATCGAACCCATAACC 

R: CTCTCCCAATGCCCTTCC 

173 60 M BV140861, CLY044 

GBW-T7 F: ACTTTGCACTTGCCCCATAA 

R: TCCCAGCTAAAAAGGTACTCC 

120 60 M BV140860, CLY040 

HBW-M13 F: GTTGCTCTGGGTTTTCTTCC 

R: ACTCACCATCACACGACACC 

247 60 M BV140872, CLY093 

HBW-T7 F: CGTACTGCTTTTAGCTTGAGACC 

R: AAGAGGTGAGTCCGTTGACC 

236 60 M BV140871, CLY092 

JBW-M13 F: CCTCTGCTGGTCACCTTCTG 

R: TTCCACATAGAAGCCCCCTA 

242 60 M BV140873, CLY094 

MBW-M13 F: AGAAGGAGCCTGAGACAAGG 

R: CTCAACACCCAGTCTTTTTGG 

154 60 M   

OBW-M13 F: TGTGGCAGAGTGAGCTTTCC 

R: CATTCCAGTAGAGGGCTTCC 

348 60 M BV140856, CLY017 

OBW-T7 F: CCAAAACTAATGAGAGCCGTGA 

R: CACAGACTCAGGAGCAGGAA 

173 60 M BV140857, CLY019 

SH2A1 F: CGGTGTCAGGTTTTGGACTT 

R: AAGGATTCTGCTGCCCTCAT 

747 64 M BV005744 

SH3B14 F: GTGACCTCCCAGGAGCTGT 

R: TCTGCCTATGCTCTGGTGAA 

486 64 M BV005745 

SH3B19 F: AAGCCTTTCATGGAAATTGG 

R: TTACGCAGACATCCTGGACA 

255 58 M BV005720, Y3B19 

SH3B6 F: AGAGTGCGATTTGTGATGG 

R: AGAGTCAGAAGAAAGCGTTGAT 

492 64 M BV005718 
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Table A2 continued 

 
STS marker Primers 5′ to 3′ Size, 

bp 

Ta °C Male or 

female 

amplification 

GenBank Accession and alias symbol 

SH3B8 F: CCCAAGTTCCTTGCCATC 

R: AAATTGAAGAGGCCCCAAAG 

472 58 M G72337, Y3B8 

Y2B17 F: TTCAGTCCTGCTTTCTCCTCA 

R: CAGGATGTGCCATGTGATTG 

528 58 M G72335 

Y3B1 F: TGGGTTAATGGGATTTGGTG 

R: CAAGCACAGCTCTGTATCAA 

508 58 M G72336 

Y3B12 F: GGGAGGCACTGGAAAGTACA 

R: GGTGGAGGAATCAGCTGGAG 

400 58 M G72338 

YA16 F: TGACTGGAAATTGAAGATG 

R: TTGTAGCAACAAAGTAACAC 

157  58 M BV005729 

YE1 F: CTTCACTCCCGACCAAGAGA 

R: GTGTGTCGTGCCGTGTTTAC 

199 58 M BV005727 

YH12 F: CGAACAGGTGACGAAGCATC 

R: GCAGACATGCACACCAACC 

98  58 M BV005747 

YJ10 F: AGTTCCCCTGCACACCT 

R: TGCCTCCCACAGCCATAC 

215 64 M BV005728 

YM2 F: TGGTTCAGATGGTGTATTTTGTT 

R: TTTGCAGCCAGTACCTACCTT 

119 58 M BV005725 

YP9 F: AAGCACTGCCTTTTGGAATC 

R: AACCCTGGACTTTCTTTGAA 

216 60 M BV005726 

 

 

(M: male, F: female, M/F: male and female; M/wF: male and weak female)  
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Table A3: Summary information about the MSY contig map. 

 
Contigs Genes STSs Number of 

BACs 

Average BES 

size, bp 

GC% of BES Number and % of 

repetitive BES 

Heterochromatin 3 3 2 557 46.2 2 (50%) 

Single copy 2 33 28 756 42.7 8 (14.3%) Contig I 
Multicopy 13 63 52 623 42.6 41(39.2%) 

Contig II  11 87 55 777 42.1 31(28.1%) 
Contig III  2 47 27 660 38.5 9(16.7%) 
Contig IV  2 31 20 683 38.0 10 (25%) 
Contig V  3 18 13 856 31.1 8 (30.7%) 

Total/Average 36 282 197 701 40.1 109 (29.1%) 
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Figure A1: Comprehensive map of the male specific region of the horse Y chromosome. 
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a. GAPDHa. GAPDH

 
 

Figure A2: Expression analysis of ECAY genes and reference genes in normal fertile and infertile/subfertile (abnormal) 

stallions (represented data obtained directly from qBase software) a. Expression of GAPDH (reference gene): showed uniform 

expression across fertile and subfertile group of animals. 
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Figure A2: Expression analysis of ECAY genes and reference genes in normal fertile and infertile/subfertile (abnormal) 

stallions (represented data obtained directly from qBase software) (contd.) b. Expression of ACTB (reference gene): showed 

uniform expression across fertile and subfertile group of animals. 
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Figure A2: Expression analysis of ECAY genes and reference genes in normal fertile and infertile/subfertile (abnormal) 

stallions (represented data obtained directly from qBase software) (contd.) c. Expression of ETSTY1 (multicopy, testis-

specific): showed differential expression in subfertile/infertile (abnormal) group compared to normal, fertile group of stallions. 
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Figure A2: Expression analysis of ECAY genes and reference genes in normal fertile and infertile/subfertile (abnormal) 

stallions (represented data obtained directly from qBase software) (contd.) d. Expression of ETSTY6 (multicopy, tetis-specific): 

showed differential expression in subfertile/infertile (abnormal) group compared to normal, fertile group of stallions. 
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