389 research outputs found

    Review of Research on Speech Technology: Main Contributions From Spanish Research Groups

    Get PDF
    In the last two decades, there has been an important increase in research on speech technology in Spain, mainly due to a higher level of funding from European, Spanish and local institutions and also due to a growing interest in these technologies for developing new services and applications. This paper provides a review of the main areas of speech technology addressed by research groups in Spain, their main contributions in the recent years and the main focus of interest these days. This description is classified in five main areas: audio processing including speech, speaker characterization, speech and language processing, text to speech conversion and spoken language applications. This paper also introduces the Spanish Network of Speech Technologies (RTTH. Red Temática en Tecnologías del Habla) as the research network that includes almost all the researchers working in this area, presenting some figures, its objectives and its main activities developed in the last years

    Models and Analysis of Vocal Emissions for Biomedical Applications

    Get PDF
    The International Workshop on Models and Analysis of Vocal Emissions for Biomedical Applications (MAVEBA) came into being in 1999 from the particularly felt need of sharing know-how, objectives and results between areas that until then seemed quite distinct such as bioengineering, medicine and singing. MAVEBA deals with all aspects concerning the study of the human voice with applications ranging from the neonate to the adult and elderly. Over the years the initial issues have grown and spread also in other aspects of research such as occupational voice disorders, neurology, rehabilitation, image and video analysis. MAVEBA takes place every two years always in Firenze, Italy

    I hear you eat and speak: automatic recognition of eating condition and food type, use-cases, and impact on ASR performance

    Get PDF
    We propose a new recognition task in the area of computational paralinguistics: automatic recognition of eating conditions in speech, i. e., whether people are eating while speaking, and what they are eating. To this end, we introduce the audio-visual iHEARu-EAT database featuring 1.6 k utterances of 30 subjects (mean age: 26.1 years, standard deviation: 2.66 years, gender balanced, German speakers), six types of food (Apple, Nectarine, Banana, Haribo Smurfs, Biscuit, and Crisps), and read as well as spontaneous speech, which is made publicly available for research purposes. We start with demonstrating that for automatic speech recognition (ASR), it pays off to know whether speakers are eating or not. We also propose automatic classification both by brute-forcing of low-level acoustic features as well as higher-level features related to intelligibility, obtained from an Automatic Speech Recogniser. Prediction of the eating condition was performed with a Support Vector Machine (SVM) classifier employed in a leave-one-speaker-out evaluation framework. Results show that the binary prediction of eating condition (i. e., eating or not eating) can be easily solved independently of the speaking condition; the obtained average recalls are all above 90%. Low-level acoustic features provide the best performance on spontaneous speech, which reaches up to 62.3% average recall for multi-way classification of the eating condition, i. e., discriminating the six types of food, as well as not eating. The early fusion of features related to intelligibility with the brute-forced acoustic feature set improves the performance on read speech, reaching a 66.4% average recall for the multi-way classification task. Analysing features and classifier errors leads to a suitable ordinal scale for eating conditions, on which automatic regression can be performed with up to 56.2% determination coefficient

    Preferential decoding of emotion from human non-linguistic vocalizations versus speech prosody

    Get PDF
    This study used event-related brain potentials (ERPs) to compare the time course of emotion processing from non-linguistic vocalizations versus speech prosody, to test whether vocalizations are treated preferentially by the neurocognitive system. Participants passively listened to vocalizations or pseudo-utterances conveying anger, sadness, or happiness as the EEG was recorded. Simultaneous effects of vocal expression type and emotion were analyzed for three ERP components (N100, P200, late positive component). Emotional vocalizations and speech were differentiated very early (N100) and vocalizations elicited stronger, earlier, and more differentiated P200 responses than speech. At later stages (450–700 ms), anger vocalizations evoked a stronger late positivity (LPC) than other vocal expressions, which was similar but delayed for angry speech. Individuals with high trait anxiety exhibited early, heightened sensitivity to vocal emotions (particularly vocalizations). These data provide new neurophysiological evidence that vocalizations, as evolutionarily primitive signals, are accorded precedence over speech-embedded emotions in the human voice

    Models and analysis of vocal emissions for biomedical applications

    Get PDF
    This book of Proceedings collects the papers presented at the 3rd International Workshop on Models and Analysis of Vocal Emissions for Biomedical Applications, MAVEBA 2003, held 10-12 December 2003, Firenze, Italy. The workshop is organised every two years, and aims to stimulate contacts between specialists active in research and industrial developments, in the area of voice analysis for biomedical applications. The scope of the Workshop includes all aspects of voice modelling and analysis, ranging from fundamental research to all kinds of biomedical applications and related established and advanced technologies

    Evaluation of room acoustic qualities and defects by use of auralization

    Get PDF

    Models and analysis of vocal emissions for biomedical applications: 5th International Workshop: December 13-15, 2007, Firenze, Italy

    Get PDF
    The MAVEBA Workshop proceedings, held on a biannual basis, collect the scientific papers presented both as oral and poster contributions, during the conference. The main subjects are: development of theoretical and mechanical models as an aid to the study of main phonatory dysfunctions, as well as the biomedical engineering methods for the analysis of voice signals and images, as a support to clinical diagnosis and classification of vocal pathologies. The Workshop has the sponsorship of: Ente Cassa Risparmio di Firenze, COST Action 2103, Biomedical Signal Processing and Control Journal (Elsevier Eds.), IEEE Biomedical Engineering Soc. Special Issues of International Journals have been, and will be, published, collecting selected papers from the conference

    Separation of Vocal and Non-Vocal Components from Audio Clip Using Correlated Repeated Mask (CRM)

    Get PDF
    Extraction of singing voice from music is one of the ongoing research topics in the field of speech recognition and audio analysis. In particular, this topic finds many applications in the music field, such as in determining music structure, lyrics recognition, and singer recognition. Although many studies have been conducted for the separation of voice from the background, there has been less study on singing voice in particular. In this study, efforts were made to design a new methodology to improve the separation of vocal and non-vocal components in audio clips using REPET [14]. In the newly designed method, we tried to rectify the issues encountered in the REPET method, while designing an improved repeating mask which is used to extract the non-vocal component in audio. The main reason why the REPET method was preferred over previous methods for this study is its independent nature. More specifically, the majority of existing methods for the separation of singing voice from music were constructed explicitly based on one or more assumptions

    Stress and emotion recognition in natural speech in the work and family environments

    Get PDF
    The speech stress and emotion recognition and classification technology has a potential to provide significant benefits to the national and international industry and society in general. The accuracy of an automatic emotion speech and emotion recognition relays heavily on the discrimination power of the characteristic features. This work introduced and examined a number of new linear and nonlinear feature extraction methods for an automatic detection of stress and emotion in speech. The proposed linear feature extraction methods included features derived from the speech spectrograms (SS-CB/BARK/ERB-AE, SS-AF-CB/BARK/ERB-AE, SS-LGF-OFS, SS-ALGF-OFS, SS-SP-ALGF-OFS and SS-sigma-pi), wavelet packets (WP-ALGF-OFS) and the empirical mode decomposition (EMD-AER). The proposed nonlinear feature extraction methods were based on the results of recent laryngological studies and nonlinear modelling of the phonation process. The proposed nonlinear features included the area under the TEO autocorrelation envelope based on different spectral decompositions (TEO-DWT, TEO-WP, TEO-PWP-S and TEO-PWP-G), as well as features representing spectral energy distribution of speech (AUSEES) and glottal waveform (AUSEEG). The proposed features were compared with features based on the classical linear model of speech production including F0, formants, MFCC and glottal time/frequency parameters. Two classifiers GMM and KNN were tested for consistency. The experiments used speech under actual stress from the SUSAS database (7 speakers; 3 female and 4 male) and speech with five naturally expressed emotions (neutral, anger, anxious, dysphoric and happy) from the ORI corpora (71 speakers; 27 female and 44 male). The nonlinear features clearly outperformed all the linear features. The classification results demonstrated consistency with the nonlinear model of the phonation process indicating that the harmonic structure and the spectral distribution of the glottal energy provide the most important cues for stress and emotion recognition in speech. The study also investigated if the automatic emotion recognition can determine differences in emotion expression between parents of depressed adolescents and parents of non-depressed adolescents. It was also investigated if there are differences in emotion expression between mothers and fathers in general. The experiment results indicated that parents of depressed adolescent produce stronger more exaggerated expressions of affect than parents of non-depressed children. And females in general provide easier to discriminate (more exaggerated) expressions of affect than males
    corecore