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Abstract
We propose a new recognition task in the area of computational paralinguistics: automatic

recognition of eating conditions in speech, i. e., whether people are eating while speaking,

and what they are eating. To this end, we introduce the audio-visual iHEARu-EAT database

featuring 1.6 k utterances of 30 subjects (mean age: 26.1 years, standard deviation: 2.66

years, gender balanced, German speakers), six types of food (Apple, Nectarine, Banana,

Haribo Smurfs, Biscuit, and Crisps), and read as well as spontaneous speech, which is

made publicly available for research purposes. We start with demonstrating that for auto-

matic speech recognition (ASR), it pays off to know whether speakers are eating or not. We

also propose automatic classification both by brute-forcing of low-level acoustic features as

well as higher-level features related to intelligibility, obtained from an Automatic Speech

Recogniser. Prediction of the eating condition was performed with a Support Vector

Machine (SVM) classifier employed in a leave-one-speaker-out evaluation framework.

Results show that the binary prediction of eating condition (i. e., eating or not eating) can be

easily solved independently of the speaking condition; the obtained average recalls are all

above 90%. Low-level acoustic features provide the best performance on spontaneous

speech, which reaches up to 62.3% average recall for multi-way classification of the eating

condition, i. e., discriminating the six types of food, as well as not eating. The early fusion of

features related to intelligibility with the brute-forced acoustic feature set improves the per-

formance on read speech, reaching a 66.4% average recall for the multi-way classification

task. Analysing features and classifier errors leads to a suitable ordinal scale for eating con-

ditions, on which automatic regression can be performed with up to 56.2% determination

coefficient.
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Introduction

Talking whilst eating is like talking whilst not eating: good talk is good and bad talk is bad.
Shaykh al-Albaani

When dealing with speech, we normally either want to recognise what has been spoken (Auto-
matic Speech Recognition, ASR), or how it has been spoken (Computational Paralinguistics,
CP [1]). Much of ASR research has been focussing on the ‘typical’ speaker, i. e., a speaker
which is representative for the speech community and at the same time, does not display any
non-typical states such as emotions or stress, or traits such as pathology, strong idiosyncratic
traits, and suchlike.

In contrast, CP aims at identifying exactly these states and traits, mainly to endow future
technical systems with the ability to interpret and react to them appropriately. Identifying char-
acteristic features of atypical speech is also expected to help ASR performance, since dedicated
techniques, e. g., for model adaptation, could be employed.

Our research is embedded in the European iHEARu project [2], which pursues both ‘univer-
sal’ and ‘holistic’ analysis of speech, i. e., analysing multiple attributes simultaneously and
jointly. Many speech traits are still not covered by existing CP research, and we lack both
labelled data and insights into relevant acoustic features. In this article, we target eating condi-
tion—i. e., recognising if people are eating while talking, and if yes, what they are eating –, and
we identify discriminative acoustic features and investigate adequate modelling of this task. To
the best of our knowledge, neither this task nor ASR for ‘speech under eating’ have been
attempted in the literature. At second thought, this comes as a surprise; after all, eating is one
of the basic activities of human beings, and speaking while eating is possible and encountered
quite often, albeit it is often more or less stigmatised as being unpolite or even more or less dis-
gusting, according to the culture.

Related Work: A few studies do address ASR under various speaking conditions, for
instance, stress [3], emotion [4], or non-native accent [5]. Conversely, automatic assessment of
the speaking condition itself (CP) has been addressed in several studies, for example, non-
native speech [6, 7], pathological speech [8–11], or sleepiness as short- or medium-term trait
[12].

Furthermore, there are a few studies investigating speaking whilst speakers bite on a block
[13]; muscle movements under speaking and eating are dealt with in [14]. Regarding phono-
logical approaches towards speech while eating, we only are aware of one study that was not
intended to be taken fully seriously [15]. For subjects chewing gum, [16] showed “a great deal
of individual variation in articulation and acoustics between speakers, but consistent produc-
tions and maintenance of relative acoustic distances within speakers.”

Another body of literature worth to mention concerns the study of the sounds generated by
biting and chewing different types of food. The spectral composition of eating sounds gener-
ated by different types of food, e.g., crispy, crunchy, and crackly, was analysed in [17], where
the fundamental frequency of those sounds has been found to be a good indicator of the type
of food. Subjective evaluations on the pleasantness of food sounds produced by biting and
chewing various items of food have been carried out in [18]; crispy and crunchy foods appeared
to be the most appealing foods according to the generated sounds. Sensory qualities of food
sounds were evaluated in [19], using 15 sensory acoustical quality attributes. Data were ana-
lysed with the non-metric dimensional scaling (NMDS) algorithm from symmetric dissimilar-
ity matrices. Results suggested two sensory criteria for distinguishing food sounds: the
continuousness or evenness of the sound, and the loudness. Finally, subjective tests were
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performed in [20]; participants had to recognise the type of food according to the sound gener-
ated when crushing different types of food items. The author reported that the performance
obtained by human judges does not seem to depend on the familiarity or the class (e.g., vegeta-
ble, cracker) of food.

Motivation: Independent of this white spot in the literature—the automatic recognition of
eating while speaking, the list of applications for a system able to detect speech under eating
condition is rich. In the following, we will give some possible applications.

• Automatic Speech Recognition: When interacting with systems able to recognise speech in
our daily live routine, all sorts of activities influence the quality of our speech. For example,
in [21] it is reported that medical doctors using dictation software for their medical reports
dictate while eating and drinking besides other disturbance factors such as cell phone, car or
noise-rich acoustics, or exercising on treadmills. In general, one can expect degradation to
the speech recognition accuracy.
However, adapting acoustic (and linguistic) models is known to help in other cases such as
speech affected by emotion [22]. Thus, a system that knows that speech is uttered while eat-
ing, and that knows even the type of food, can adapt to cover such degradation. In addition,
confidence measures can be adapted if the system is aware of a likely degradation due to eat-
ing—again, this can be fit to the type of food.

• Speaker Identification and Verification: Similar to the above, degradation can also be
expected for the recognition or identification of a speaker. For example, in [23] it was shown
that alcohol intoxication of speakers has a negative influence on speaker recognition. Again,
either one could train suited models (e. g., asking for eating during enrollment of the speaker)
for adaptation or—probably more realistic in most use-cases—simply identify that the speech
is under eating condition and ask a speaker to speak with empty mouth or adapt confidence
measures in access systems.

• Computational Paralinguistics: One step further, other paralinguistic analysis tasks will
benefit from the knowledge of eating condition when analysing speech, e. g., when in search
of cues of emotion, personality or other speaker states and traits. For example, in [2] it could
be shown that commonly training states and traits of speakers helps to improve the recogni-
tion of each individual one. Other options include adaptation of paralinguistic models or
adaptation of confidence measures if eating condition is detected. Interestingly, the knowl-
edge of eating condition can also directly serve as feature for some paralinguistic analysis
tasks such as estimation of the stress-level, personality or social class in the sense of ‘this per-
son also speaks while eating’.

• Health monitoring: There is quite some interest in monitoring automatically eating and
drinking patterns—also termed as Monitoring of Ingestive Behaviour (MIB), e. g., by video
signals [24], accelerometers [25], piezoelectric strain gauge sensors capable of detecting skin
motion in the lower trachea [26] or movement of the lower jaw [27] or also by acoustic
sounds of chewing [28, 29], or swallowing [30–32], where also ‘contamination’ by speech is
considered among other disturbances such as motion. The motivation for MIB includes
observation of abnormal eating patterns and prevention of obesity or overweight and eating
disorders. One could further think of automatic reminders after medical treatment of the
teeth that requires a time period without food intake such as after visiting the dentist or for
tooth protection.
Smart monitoring of dietary programs can also include analysis of the type of food intake, e.
g., by ‘hearing’ if you really eat that apple or rather biscuits. Food that breaks into smaller
pieces such as crisps or biscuits can make elderly people and especially Parkinson’s patients
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choke and even endanger their life [33, 34]. Especially in the case of Parkinson’s disease
dementia, it can thus be advisable to automatically monitor the type of food consumed by
such patients [35].

• Life-logging: Measuring oneself automatically for all kinds of purposes has become a recent
trend—this includes acoustic monitoring [36] of activities: by a specially crafted wearable
acoustic sensor, the authors in [36] were able to recognise sounds produced in the throat area
for the recognition of eating, drinking, speaking, laughing, and coughing. Such data can be
uploaded into social networks or simply kept for oneself for automatic diaries. Under realistic
conditions, the authors report 71.5% recognition rate for these classes excluding coughing—a
‘speech under eating’ class is, however, not modelled. A special custom-built piezoelectric
microphone is used for similar classes’ recognition in [37]. Further, an early work [38]
reports slightly more optimistic results of “up to 99% accuracy” for acoustic eating recogni-
tion and between “80% to 100% on food type classification”.

• Social Competence: In future intelligent systems and robots, social skills will play an increas-
ingly important factor. In terms of our application, knowledge of speech while eating will
allow such systems to lead a dialogue more ‘human-like’ or—if desired—politely, such as not
disturbing or pushing for a response when detecting speech while eating, or simply wishing a
‘bon appétit’.

• Advertisement Placement: One can think also of commercial interest in presenting food
advertisement—even such that fits the current intake of a user, e. g., when controlling the
TV, game console or similar by speech under eating.

• Smart Assistance: In ‘smart’ environments such as smart homes, smart cities, smart facto-
ries, or smart cars, it is often desirable to monitor the activity of the users, e. g., to predict
likely next desires or needs of the users. Previous work in this field includes activity recogni-
tion by sound in speech controlled smart homes [39]. Use-cases could include telephone
assistance if the user is eating (excusing the user for some time or—depending on the call-
type such as an official call—waiting until eating stops or warning the user before accepting
the call), for example in the car. Care-taking robots could support healthier live styles by
offering fruits when hearing chips and cookie crunches. Finally, smart-cameras could wait if
self-portraits are shot by voice activation if eating condition is recognised.

• Security Monitoring: In high sanitation and ultra-clean environments such as chip or phar-
maceutical production, speech controlled systems could be alarmed when the user is appar-
ently consuming food in the workspace. Further, spoken-interaction-based virtual
companions in vehicles could expect reduced attention during eating or fatigue after eating
of their conductors.

• Behavioural Tutoring: A number of Serious Digital Games target the training and tutoring
for social behaviour such as in the MASELTOV project for immigrants or in the TARDIS
project for young adults’ first job interview [40]. Such a program can also detect speech
under eating condition and give feedback on its appropriateness.

• Robust Multimodality: In today’s increasingly multimodal human-machine interaction,
knowledge of speech under eating condition can be important for processing other modali-
ties such as facial action unit recognition and prediction or other bio-sensors [41]. In fact,
also for facial expression analysis even information on the type of food being taken in will be
of interest.
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• Transcription: In automatic transcription of movies or broadcasts, etc., for a deaf audience,
it may be of interest to transcribe also information on speech under eating condition to make
this detail available to them. In some delicate scenes such as a servant deliberately speaking
to a superior while eating, this may be very relevant.

• Forensics: In speech forensics, knowledge of food consumption can be a relevant detail for
investigations based, e. g., on a call.

• Ethnography of Communication: Eating and speaking are definitely amongst the most
important activities for human kind, both for surviving and cultural exchange in societies.
The ethnography of communication [42] (originally called ‘ethnography of speaking’ [43])
analyses the components of communicative events within a culture. As [44] puts it: “Speak-
ing and Eating are essential communicative systems. Together they constitute the nature and
structure of meals. . . . the ethnography of communication can document actual speech and
dialogue patterns in different types of meals and eating occasions of the present.” The semi-
nal work of [45] documented the changes of allowed and stigmatised behaviour at the table
in different cultures and different times; still nowadays, smacking, slurping, or spitting at the
table and/or in public are stigmatised in some cultures while being allowed in other ones.
Apart from detecting less accepted eating manners, a tool monitoring eating conditions
could as well be used for studying sequences of speech, eating, and speech under eating,
together with other non-verbal behaviour, in formal and less formal settings, both within our
own much studied and less studied cultures and languages.

• Speech Enhancement: Last but definitely not least, one can think also of filtering out differ-
ent kind of food noises in speech in real time to allow eating while speaking. Such an applica-
tion can detect speech under eating condition and give clean speech to the conversation
partners which could be applied for possible situations like having a long business telephone
conference or working as an employee in a call-center.

Speaking while eating is a new topic in the field of Computational Paralinguistics that will
definitely attract researchers. Such interest from the scientific community has already been
observed at the latest edition of the Interspeech Computational Paralinguistics Challenge
(ComParE 2015) [46], where the automatic recognition of the eating condition was featured as
a task. The outcome of this sub-challenge will be detailed at the end of the paper.

Motivated accordingly, let us next describe the recording of the first speech under eating
condition database before describing some first experimental results on the data and drawing
some conclusions.

Database
For our recordings the subjects were invited into a room of the Technische Universität Mün-
chen (Munich University of Technology). To achieve a high audio and video quality, the
recordings took place in a comparably low reverberant office room with equal set-up and room
conditions for each recording session. To guarantee equal light conditions, the roll-down cur-
tains were kept closed during all recordings. Instead, a light source in top and front of the sub-
jects was used, and a portable floodlight was directed to the white ceiling and illuminated the
subjects by generating a weak large-area reflection.

Before the recordings, the participants read through an information sheet telling them what
they were required to do in the experiment, and describing each task. Then, they had to sit
down in front of the recording equipment. Behind them we set up a white screen, which pro-
vided a constant white background for each recording. The subjects were instructed on the
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procedures by an experimental supervisor. For the recordings, we implemented a program
with a graphical user interface (GUI) in Matlab, enabling the subjects to indicate the start and
end points of their utterances by themselves, in order to facilitate the segmentation of the
recordings.

Prior to the actual recording, subjects performed practice trials to familiarise themselves
with the procedure. The experimental supervisor was attendant at all times for questions, help,
and to serve the food, but was sitting behind the white screen to ensure that the subjects felt
unobserved while they were eating and speaking.

For our video recordings, we used a Logitech HD ProWebcam C920 placed on top of the
computer monitor on the desk in front of the subjects. The video files are coded with an
MJPEG codec with a frame rate of 30 fps and a resolution of 1280 x 720 pixels. The audio-
stream was taken with an AKG HC 577 L headset microphone with a sampling frequency of
44.1 kHz in mono with 24 bits per sample. The external sound card MAudio Fast Track C400
was used to ensure high quality in the digitisation of the speech signal. These technical infor-
mation are summed up in Table 1.

In order to achieve maximum synchronisation of our recorded audio and video streams, we
used a trigger implemented in Matlab, and created timestamps every time a subject pressed the
start and stop buttons in the recording GUI. This allowed us afterwards to synchronise audio
and video data properly.

The participant consent was documented by a written consent statement. The consent
forms have been checked and approved by an ethic committee (TUM IRB). The participants of
the recordings were recruited via ‘word-of-mouth recommendation’. The experiment involved
30 subjects, which gave their written permission to data recording, storage, and distribution for
scientific purposes. Further, the subjects gave information about some personal data and health
issues like speech impediment, vocal tract dysfunction, difficulties in swallowing, heart and cir-
culatory problems, toothaches, being vegetarian, smoking, and alcohol consumption, which
can be found in Table 2. The data are stored in an anonymous form, so no identifying informa-
tion was collected from participants at all. Further, the subjects gave us their written consent to
illustrate audio and/or video examples as well as figures in scientific publications.

They optionally filled in further information like their age, height, weight, nationality, and
their German proficiency. Out of those 30 speakers, 15 subjects are female and 15 male, with a
mean age of 26.1 years and a standard deviation of 2.7 years. 27 of the subjects are German
native speakers; one is Chinese, one is Indian, and one has a Tunisian origin, all having a close-
to-native proficiency in German.

We decided to have food classes with partly similar consistency (e.g., CRISPS and BISCUITS)
and partly dissimilar consistency (e.g., NECTARINE vs. CRISPS), thus providing a fair variety of

Table 1. Technical setup for the recording of the audio-visual streams.

Audio

Tools AKG HC 577 L headset

MAudio Fast Track C400

Sample rate 44.1 kHz mono

Bit depth 24 bits per sample

Video

Tool Logitech HD Pro Webcam C920

Codec MJPEG

Framerate 30 fps

Resolution 1280 x 720 pixels

doi:10.1371/journal.pone.0154486.t001
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speech disturbances while eating. Moreover, the food classes represent snacks which are easy to
prepare and hence likely to be encountered in practical scenarios, have a low probability of
allergies, and enable the subjects to speak while eating. We always choose the approximately
same medium-ripe fruit, which was ready to eat and not too unripe and sour. All fruits were
cut and served directly before the recordings.

In order to control for the amount of food being consumed, and in particular to encourage
subjects to actually eat while speaking, an experimental supervisor provided the subjects with a
serving of fixed size prior to the recording of each utterance. Each recorded utterance includes
speech simultaneous with eating. The read sentences had a recording length which made it pos-
sible for the subject to record them without having to stop eating. For the spontaneous narra-
tive utterances, subjects just stopped talking, for example, to put the food to the other side of
the mouth, otherwise they were eating and chewing while speaking. Naturally, since the mouth
cavity is generally larger for men than for women and differs from subject to subject, the actual
amount of food consumed varies a bit among subjects. The serving size was personalised and
chosen such as to enable a significant effect on the subjects’ speech, while making the produc-
tion of speech feasible and audible. The chosen food, together with an approximate amount of
food served per utterance, is shown in Table 3. The subjects were advised not to eat food during
the experiment they are allergic to or they did not like to eat for any other personal reason.

Table 2. Number of subjects having special health issues.

Health issue Never Rarely Sometimes Regularly Often

Speech impediment 26 21 21 0 0

Vocal tract dysfunction 29 0 11 0 0

Difficulties in swallowing 28 21 0 0 0

Heart and circulatory problems 28 2 0 0 0

Toothaches 27 2 1 0 0

Being vegetarian 28 22 0 23 0

Smoking 13 2 8 4 3

Alcohol consumption 1 5 14 3 7

1 The subjects have masticatory disturbance and feel difficulty in chewing and swallowing under illness. Under normal health circumstances—as during

the recordings—no subject had any speech impediment, vocal tract dysfunction or masticatory disturbance.
2 The subjects eat fish but no meat.
3 The subjects prefer vegetarian food whenever possible.

doi:10.1371/journal.pone.0154486.t002

Table 3. Chosen food classes and amount of food served to the subjects while recording each
utterance.

Food ID Weight [g]

APPLE Ap 11–15

NECTARINE Ne 17–20

BANANA Ba 22–26

HARIBO SMURFS
1 Ha 5

BISCUIT Bi 5–6

CRISPS Cr 3–4

1Haribo Smurf is a specific type of jelly gum.

doi:10.1371/journal.pone.0154486.t003
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Subjects were asked to self-report on how much they like each sort of food they were going
to eat during the experiment. This was achieved by setting a continuous slider to a value rang-
ing between 0–dislike extremely and 1–like extremely. After the recording session, the subjects
were asked to specify on a 5-point Likert scale the difficulties they encountered in eating each
sort of food while speaking. Statistics from the self-reports show that BANANA was perceived as
the most liked type of food and the less difficult to eat, whereas BISCUIT was the most disliked
and difficult type of food to eat, cf. Table 4.

The recorded data consists of read and spontaneous speech. For read speech, the German
version of the frequently used standard text in phonetics “The North Wind and the Sun” (“Der
Nordwind und die Sonne” in German) was chosen [47]. The text is phonetically balanced and
contains 108 words (71 distinct) with 172 syllables. The subjects had to read the whole text
with each sort of food. Spontaneous speech was recorded by giving the subjects different topics
to talk about, e. g., their favourite travel destination, genre of music, or sports activity. Speech
of only one topic was recorded per consumed piece of food. A typical session of one subject
lasted about one hour. All in all, for the 30 subjects, 1.6 k utterances and 3:20 hours of speech
were recorded, cf. Table 5.

Even though the recording procedure allowed an automatic segmentation of speech data,
we manually segmented the obtained utterances, in order to remove parts (i.e., beginning or
ending of a sentence) that only contained ‘eating noise’. This additional segmentation

Table 4. Self-reporting on likability and difficulty of eating of food classes rated by all subjects.

Food Likability Difficulty

APPLE .73 (.20) .63 (.24)

NECTARINE .76 (.21) .47 (.23)

BANANA .77 (.20) .43 (.25)

HARIBO SMURFS .67 (.29) .45 (.26)

BISCUIT .56 (.25) .67 (.26)

CRISPS .68 (.28) .54 (.26)

The ratings of likability are in a [0–1] scale (dislike extremely: 0 and like extremely: 1). The ratings of

difficulty of eating are converted from a 5-point Likert into a [0–1] scale (very easy: 0 and very difficult: 1), to

ease comparison with reports on likability; [mean value] (standard deviation).

doi:10.1371/journal.pone.0154486.t004

Table 5. Statistics of the iHEARu-EAT database.

Read Spontaneous

Class # Duration # Duration

APPLE 196 24:47 28 4:00

NECTARINE 196 25:00 28 3:37

BANANA 210 25:21 30 3:41

HARIBO SMURFS 189 22:57 27 3:38

BISCUIT 203 25:47 29 4:08

CRISPS 210 25:58 30 3:44

NO FOOD 210 23:03 30 4:13

Total 1414 2:53:01 202 27:05

Number (#) and duration of speech utterances per class for read and spontaneous conditions. The slight difference in the number of utterances per class

is due to the fact that some subjects chose not to eat all types of food.

doi:10.1371/journal.pone.0154486.t005
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procedure guarantees that our analysis is solely based on speech data under eating condition,
and not on a mixture of speech with additional eating / biting / chewing sounds.

A selection of subjects while recording an utterance—first without eating food (left), then
eating a banana (middle) and finally eating crisps (right)—is shown in Fig 1. One can easily see
that the condition of speaking while eating imposes unusual configurations in the supra-glottal
part of the vocal tract, which thus introduces important disturbances in the production of pho-
nemes, but also on their co-articulation.

The database, including the audio-visual data and transcriptions, is licensed under the Crea-
tive Commons BY-NC-SA terms and is publicly available for academic research purpose
(http://openaudio.eu).

Automatic Speech Recognition Experiments
We perform Automatic Speech Recognition (ASR) for the iHEARu-EAT dataset using an
acoustic Hidden Markov Model with Gaussian Mixture Densities (HMM-GMM) system
trained using the Kaldi toolkit [48]. The acoustic front end consists of 13 mel-frequency ceps-
tral coefficients (MFCCs) derived from a bank of 23 filters and augmented with first and sec-
ond derivatives. The MFCCs are normalised using cepstral mean and variance normalization
(CMVN). A linear discriminant analysis (LDA) matrix is used to project the concatenation of
seven consecutive feature vectors in a sliding window into 40 dimensions followed by a maxi-
mum likelihood linear transformation (MLLT).

The acoustic models are triphone models based on maximum likelihood (ML) training.
Speaker variations are compensated by applying speaker adaptive training based on feature
space maximum likelihood linear regression (fMLLR). Triphone parameters are tied using an
automatically generated classification and regression tree (CART).

The pronunciation model is trained on a lexicon of one million German words using the
Phonetisaurus toolkit [49]. The model achieves a word error rate of 9% on a held-out test set of
unseen words. This grapheme-to-phoneme conversion model is used to generate pronuncia-
tions for words outside our base lexicon.

The initial acoustic model is trained on around 160 hours of transcribed audio material
taken from broadcast news domain. The language model (LM) is trained on text corpora that
consist of around 307 million running words including data from the newspaper TAZ, and
web collected German news articles. The vocabulary is selected out of the text corpora by
choosing the 200k top most frequent words in addition to around 6.5k words that occur in the
transcription of the acoustic data. Recognition lattices are generated using a small pruned tri-
gram LM, then lattices are rescored with a big non-pruned 4-gram LM. The LMs are smoothed
using modified Kneser-Ney (MKN) smoothing [50]. The SRILM toolkit [51] is used for train-
ing the LMs.

For training and testing on the iHEARu-EAT dataset, we first make a dataset division such
that the training and testing partitions have different speakers. Therefore, for each of the six
food types and the NO FOOD data, we selected 26 out of 30 speakers to be used for training and
the other 4 to be used for testing. Thus, the system is never trained and tested on the same
speakers. The initially trained GMMmodels are used to produce an alignment, then the whole
training data is used to re-train the GMMmodels including the six types of foods and the NO

FOOD data. Then, each type of food is used separately to train an acoustic model.
Table 6 displays the word error rates (WERs) of the ASR task, showing the impact of train-

ing with speech data while eating and without eating on the 7-class recognition task. Shown are
the WERs as measured on the testing data for each food type as well as for NO FOOD. It can be
seen that, in most cases, training on a single type of food performs better in matched testing
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Fig 1. Exemplary subjects of the iHEARu-EAT database while recording an utterance without eating food (left), eating
a banana (middle) and eating crisps (right).Unusual configurations of the supra-glottal part of the vocal tract are clearly
visible for the eating conditions.

doi:10.1371/journal.pone.0154486.g001
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conditions than training on other unmatched types of food. Note that this is just not the case
for HARIBO SMURFS and NECTARINE. Training on the union of NO FOOD data and ALL FOOD data
(multi-condition training) leads to the best results for all types of food, but not for the NO FOOD
speech. The most probable reason behind that is the increased amount of training data in the
case of multi-condition training. Thus, our conclusion is that it is better to train on clear (NO

FOOD) speech, for recognizing clear speech. Adding noisy (FOOD) speech could harm in this
case. On the other hand, to recognize noisy speech, the best way is to train on all the available
data whether noisy (FOOD) or clear (NO FOOD), so all conditions are represented in the training
set and can be learned accordingly. In this case, there is most probably not much influence of a
particular type of food as the effect on the articulation is almost similar in all food types. There-
fore, the training could benefit from all data in the multi-condition training to efficiently recog-
nize speech data from a single condition.

Automatic Classification Experiments
In the following, we show experimental results with the task of classifying the eating condition
from audio. Both binary classification (FOOD / NO FOOD) and 7-way classification (6 food clas-
ses or NO FOOD) are investigated. The evaluation procedure consists of a leave-one-speaker-out
cross validation (LOSO-CV), which ensures speaker independence in the performance evalua-
tion, as required by many practical applications. Performance is measured as the unweighted
average recall (UAR) of the classes, which represents the accuracy in a dataset with equal class
priors. This is especially important for the binary task where the class distribution is imbal-
anced and high accuracy could be achieved by picking the majority class (FOOD). UAR is calcu-
lated by the sum of recall-values (class-wise accuracy) for all classes divided by the number of
classes. The great advantage of UAR lies in the fact that, given the number of classes, chance
level is always the same, irrespective of the number of cases within classes: For two classes, it is
0.5, for three 0.33, for four 0.25, and so on. By that, UAR meets the requirements for common
language measures [52] such as standardisation, ease of interpretation, and plausibility.
Together with a confusion matrix and number of cases per class, all information can be
extracted. This is a standard measure for evaluating performance in CP and was used as com-
petition measure in the challenge (cf. [1, 53]). For binary classification, it indicates how well
both classes are recognised at the standard operating point (class posterior probability = 0.5).

Classification with ASR-related features
As a first approach, we investigate features derived from ASR output for the above mentioned
classification tasks. The hypothesis is that speech under eating condition is harder to process for
an ASR system than speech without eating; this would be reflected in objective measurements

Table 6. ASRWERs [%] using 7-way acoustic model training on the iHEARu-EAT dataset.

Train/Test Ap Ne Ba Ha Bi Cr No

Ap 13.99 21.79 24.54 30.50 31.88 28.44 6.42

Ne 21.79 24.31 25.46 35.78 34.63 34.40 9.17

Ba 17.66 23.17 24.54 33.94 34.17 28.44 8.26

Ha 20.41 26.38 27.75 32.11 31.88 30.28 11.01

Bi 20.18 25.46 32.80 30.96 27.75 25.46 11.01

Cr 18.81 25.23 26.83 31.65 28.21 23.39 8.72

No 34.17 47.02 52.29 55.05 61.93 54.36 3.90

No + All 10.32 16.74 17.20 21.79 16.51 13.99 5.28

doi:10.1371/journal.pone.0154486.t006
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on the ASR output, such as error rates. Moreover, various consistencies of food may induce dif-
ferent types of deviation in the supra-glottal configuration of the vocal apparatus, and thus in
the produced speech waveform. We derived a fairly straightforward set of ASR-related features
for our study: Firstly, we use word error rate (WER), as was already proposed in [47] for auto-
matic intelligibility rating—a task that is arguably related to the task at hand. In addition to
WER, we also consider character error rate (CER), which is insensitive to errors related to split-
ting of German compound words (e. g., Nordwind vs. NordWind). Since WER and CER require
the reference transcription, which might not be given in practical applications requiring text-
independence, we also consider reference-free measurements. The most straightforward one is
the log likelihood (LL) log p(w|xt) of the 1-best hypothesis w given the acoustic features xt,
t = 1,. . .,T, normalised by the number T of the short-term signal frames in an utterance. Fur-
thermore, we assume that a standard beam-search decoder will pursue more potential hypothe-
ses in case of low confidence, so that the real-time factor (RTF), i. e., decoding time over
utterance length, would increase in case of low intelligibility.

For ASR, the German LVCSR system described in [54] is used. Triphone acoustic Hidden
Markov Models with Gaussian mixture densities (HMM-GMMs), using 39 Perceptual Linear
Prediction (PLP) coefficients (including deltas and energy) as acoustic features xt, were trained
on 146 hours of German broadcast news speech; the language model was trained on 189 mil-
lion words of German newspaper texts. We use an ‘out-of-the-box’ system, since here, we are
not interested in optimising ASR performance, but using ASR-related measures as features for
paralinguistic classification. In particular, no adaptation is performed since that would reduce
performance differences between eating and not-eating conditions.

Before turning to automatic classification, we first confirm the usefulness of these features
by statistical analysis. Since this is an exploratory study, we use a level of α of 0.05 throughout.
First, we ran two-sided Welch two-sample t-tests with the binary class labels, e. g., NO FOOD
and FOOD. For CER andWER, we obtained t-statistics of 38.9 and 27.0, respectively, corre-
sponding to a p-value p< .001. The sign of the statistics indicates that indeed, the error rate is
significantly higher for the FOOD group. In the same vein, the t-statistic for LL has a negative
sign (-21.5), also at p< .001. Finally, the RTF exhibits a t-statistic of 44.9 (p< .001). Further,
for all of the features we find a significantly different distribution among the six food types,
providing evidence that they could also be useful for the 7-way classification task. This was ver-
ified using an analysis of variance (p< .001 for CER, WER and RTF, p< .01 for LL).

Starting from these promising results, we investigate the performance of these individual
features, as well as their combination, for the binary classification task, i. e., eating vs. not-eat-
ing, and the 7-way classification task, i. e., classifying all sorts of food plus not-eating condition.
As classifier, we used a SVM, because it has provided high performance in various CP tasks
[53, 55]. SVMs are trained using the SMO algorithm implemented in Weka’s SMO class; we
used a linear kernel and a complexity of 0.1, all others parameters are set to default.

Classification with low-level acoustic features
The second approach investigated here is the brute-forcing of low-level acoustic features,
which has been successfully applied to a variety of CP tasks [53]. In particular, the feature set
designed as baseline for the Interspeech 2013 ComParE challenge [55] and being used for the
Interspeech 2015 ComParE challenge [46] is used here, which is extracted using our own open-
source toolkit openSMILE [56].

The ComParE feature set contains 6 373 static features—functionals of low-level descriptor
(LLD) contours. The LLDs and functionals included in the set are summarised in Tables 7 and
8, respectively. This feature set is the result of continuous refinement of CP-related audio
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Table 8. ComParE acoustic feature set: Functionals applied to LLD contours (Table 7).

Functionals applied to LLD / Δ LLD Group

quartiles 1–3, 3 inter-quartile ranges percentiles

1% percentile (� min), 99% pctl. (� max) percentiles

percentile range 1%–99% percentiles

position of min / max, range (max—min) temporal

arithmetic mean1, root quadratic mean moments

contour centroid, flatness temporal

standard deviation, skewness, kurtosis moments

relative duration LLD is rising temporal

rel. dur. LLD is above 25 / 50 / 75 / 90% range temporal

rel. duration LLD has positive curvature temporal

gain of linear prediction (LP), LP Coeff. 1–5 modulation

mean, max, min, std. dev. of segment length2 temporal

Functionals applied to LLD only Group

mean value of peaks peaks

mean value of peaks—arithmetic mean peaks

mean / std.dev. of inter peak distances peaks

amplitude mean of peaks, of minima peaks

amplitude range of peaks peaks

mean / std. dev. of rising / falling slopes peaks

linear regression slope, offset, quadratic error regression

quadratic regression a, b, offset, quadratic err. regression

percentage of non-zero frames3 temporal

1: arithmetic mean of LLD / positive Δ LLD.
2: not applied to voicing related LLD except F0.
3: only applied to F0.

doi:10.1371/journal.pone.0154486.t008

Table 7. ComParE acoustic feature set: 65 low-level descriptors (LLD).

4 energy related LLD Group

Sum of auditory spectrum (loudness) prosodic

Sum of RASTA-filtered auditory spectrum prosodic

RMS Energy, Zero-Crossing Rate prosodic

55 spectral LLD Group

RASTA-filt. aud. spect. bands. 1–26 (0–8 kHz) spectral

MFCC 1–14 cepstral

Spectral energy 250–650 Hz, 1 k–4 kHz spectral

Spectral Roll-Off Pt. 0.25, 0.5, 0.75, 0.9 spectral

Spectral Flux, Centroid, Entropy, Slope spectral

Psychoacoustic Sharpness, Harmonicity spectral

Spectral Variance, Skewness, Kurtosis spectral

6 voicing related LLD Group

F0 (SHS & Viterbi smoothing) prosodic

Prob. of voicing voice qual.

log. HNR, Jitter (local & δ), Shimmer (local) voice qual.

doi:10.1371/journal.pone.0154486.t007
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features [53, 55]—the basic idea is to extract frame-wise descriptors such as auditory spectrum,
Mel-frequency cepstrum coefficients (MFCCs), loudness, fundamental frequency, and voice
quality as well as their delta coefficients, and summarise these contours over the duration of an
utterance by providing statistics such as means, moments, percentiles, statistics of local max-
ima (peaks), and linear prediction residuals (‘predictability’). More details are given in [57].
The motivation for using these features is that eating various types of food afflicts speech pro-
duction in distinct ways and produces noises characteristic for the type of food; clearly, both
speech production and noise effects are captured by the above-named features. Thus, they
seem suitable for the 7-way task.

As classifier, we used SVMs, which are able to cope very well with a large size of the feature
space. In a preliminary experiment, we obtained only limited performance gains by ‘tuning’ of
the SVM parameters; thus, to favour easy and straight-forward reproducibility, we only report
results using the default parameters, in particular using a complexity of 0.1 and a linear kernel,
as we did for the ASR-related features set.

Results and Discussion
Table 9 details the results on the binary task obtained by SVMs on ASR-related features. CER
outperforms slightly but significantly (p< .05 according to a z-test) WER, probably due to its
higher robustness (cf. above). Note that WER and CER results for spontaneous speech are not
given because at the time of writing, we have not transcribed these utterances. Yet, it can also
be seen that the best single feature is the real-time factor, which slightly outperforms other fea-
tures that require the reference transcription. RTF also works robustly on spontaneous speech,
which is not the case for the log-likelihood feature. Early fusion of the features, i. e., concatenat-
ing features before the classification step, shows that RTF and LL provide a complementary
description of the eating condition, as they allow to improve the overall performance for both
read and spontaneous speech production. For read speech, WER and CER also seem to entail
information which is complementary to RTF and LL features; here, we obtained the best per-
formance by fusing all ASR-related features.

Next, the UAR achieved on the binary and 7-way tasks by SVMs using the ComParE set of
low-level acoustic features is shown in Table 10. Note that we evaluate separate classifiers for
the binary and 7-way tasks rather than mapping the 7-way predictions to binary ones. Results

Table 9. Binary classification of eating condition.

UAR [%] Speech type

Feature Spontaneous Read All

WER – 85.3 –

CER – 90.7 –

RTF 86.9 91.8 91.8

LL 68.1 83.3 79.9

WER+CER – 90.3 –

RTF+LL 91.1 93.9 92.5

ALL – 94.9 –

Binary classification of eating condition (FOOD / NO FOOD) using ASR-related features per type of speech

(spontaneous and read as well as both): UAR using SVMs. WER and CER require knowledge of the

reference text whereas RTF and LL do not require a priori knowledge. Chance level UAR: 50.0%. WER:

word error rate, CER: character error rate, RTF: real-time factor, LL: log-likelihood.

doi:10.1371/journal.pone.0154486.t009
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obtained with the ASR-related features, as well as with the early fusion with the ComParE set
are also shown in Table 10. The ComParE feature set provided a performance close to perfec-
tion for the binary classification task, and better than any performance attained by ASR-related
features. In particular, the performance difference (ComParE set; all, read and spontaneous
speech) to the best ASR feature (RTF) is statistically significant according to a z-test, p< .001.
While this is partly expected due to the large size of the ComParE set, it is also notable because
the ComParE features can be computed with an RTF�1 on a standard PC whereas ASR
decoding showed much higher time complexity in our experiments—it remains to be investi-
gated if decoding parameters can be tuned to speed up calculation without compromising the
accuracy of eating condition classification. Although the ComParE feature set performed bet-
ter than the ASR-related features, a slight improvement was obtained by the fusion of these
two feature sets for the read speech condition.

In the 7-way classification, robust results of 62.3% UAR on spontaneous speech—with
slightly higher performance on read speech (65.6% UAR)—are obtained, which is more than
four times higher than the chance level. Even if the performance obtained by the ASR-related
features set (31.2% UAR) is two times lower than the one obtained with the ComParE feature
set, an improvement was observed by the early fusion of these feature sets for the read speech
condition. As might be expected, the overall performance obtained on spontaneous speech is
always lower than for read speech, as it is easier for the latter condition to compare the acous-
tics of speech for different types of food under the same context of production.

In addition, the classifier confusions for the 7-way task and low-level acoustic features are
shown in Table 11 as a matrix of the form ci,j = Pr(predicted class j j true class i). Thus, the diago-
nal of the matrix represents the class-wise recalls, and the average of those values represents the
UAR. As would be expected, misclassifications occur mostly between food types that have similar
consistence—APPLE and NECTARINE, BANANA and HARIBO SMURFS, and BISCUIT and CRISPS—and
hence have a similar effect on pronunciation and sound in general. This notion of similarity
motivates the introduction of a scale for eating conditions, as will be introduced next.

A Regression Approach
In CP, there is a long tradition to go from multi-way classification problems to dimensional
modelling [58] and recognition through regression, e. g., emotion recognition in the

Table 10. 2-way and 7-way classification of eating condition.

UAR [%] Speech type Chance

Spontaneous Read All

ASR-related

2-way 91.1 94.9 92.5 50.0

7-way 28.1 31.2 30.0 14.3

ComParE

2-way 91.8 98.0 97.1 50.0

7-way 62.3 65.6 65.1 14.3

ASR-related + ComParE

2-way 89.6 98.7 96.9 50.0

7-way 57.2 66.4 65.0 14.3

2-way (FOOD / NO FOOD) and 7-way classification of eating condition (6 types of food / NO FOOD) using either ASR-related features, low-level acoustic

features (ComParE set) or their combination, per type of speech (spontaneous and read as well as both): UAR using SVMs.

doi:10.1371/journal.pone.0154486.t010
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arousal-valence space [41, 59, 60]. Here, we follow a data-based approach to compute possible
one-to-one correspondences between a set of C discrete classes and points in K-D space. The
premise is that similar classes should be represented by points that lie close together. This can
be realised by applying Non-metric Multi-Dimensional Scaling (NMDS) to a symmetric

matrixD 2 R
C�C
þ of class dissimilarities, as performed in [19]. For instance, assuming that

similar classes are easily confused, we can obtain such a matrix from the class confusion
matrix C 2 [0, 1]7×7 (cf. Table 11) as

D ¼ ðdi;jÞ :¼ 1� 1

2
ðCþC⊺Þ: ð1Þ

Then, Sammon’s method [61] is used to find a representation of the classes as vectors

mi 2 R
K , i = 1, . . ., C, such that the pair-wise distances d̂ i;j ¼ jmi �mjj2 are correlated with

the original dissimilarities di,j (cf. (Eq 1)).
For K = 2, the stress value (normalised sum of squared errors) after termination of the algo-

rithm is 0.069 and the R2 of D̂ andD is 0.46; the resulting configuration is shown in Fig 2
(top). For K = 1, we obtained a solution with stress = 0.215 and R2 = 0.28, which is shown in
Fig 2 (bottom left). According to the ordering of classes along the NMDS axis, this dimension
can be interpreted as the ‘crispiness’ of the food (ranging from HARIBO SMURFS to BISCUITS), with
a ‘neutral’ point in the middle (NO FOOD). It is obvious that the 2-D solution (Fig 2 (top)) has a
circular shape with a first dimension that is highly similar to the 1-D solution, yet a hardly
interpretable second dimension; thus, we opt for the 1-D representation for the following
analyses.

We can alternatively define di,j as the Euclidean distance of the class centres i and j in the
ComParE acoustic feature space. In fact, this yields a 1-D solution with much lower stress and
higher R2 (stress = 0.073, R2 = .85), which exhibits exactly the same ordering of the six food
types along the axis, yet with a distinct separation of ‘crispy’ foods (CRISPS, BISCUIT), and NO

FOOD being an outlier. This solution is shown in Fig 2 (bottom right).
One possible explanation for the latter solution is the degree of high-frequency noise caused

by eating food, which is expected to be absent in the case of NO FOOD and strongly present in
the case of ‘crispy’ food. Fig 3 shows the frequency spectrum of the word ‘warmed up’ from a
female (left) and a male subject (right) while recording an utterance first while eating a banana
(top), then without eating while speaking (middle), and finally eating crisps (bottom). Com-
pared to NO FOOD, formants present considerably less intensity for BANANA, which might be
due to the obtrusion of the air flow in the mouth cavity resulting from the presence of the piece
of banana. CRISPS generate furthermore a high level of noise in the high-frequencies, which
might be due to the sound generated when crushing the piece of crispy food.

Table 11. Confusion matrix obtained by SVMs on the ComParE feature set in the 7-way classification of eating condition for both read and sponta-
neous speech production.

[%] Ap Ne Ba Ha Bi Cr No

Ap 55.1 24.0 4.1 5.1 5.1 5.1 1.5

Ne 21.9 44.9 14.8 11.2 3.6 3.1 0.5

Ba 5.7 18.1 48.6 22.4 1.9 0.5 2.9

Ha 6.9 11.1 7.9 69.8 0.5 2.1 1.6

Bi 7.9 6.4 1.0 1.0 72.4 10.8 0.5

Cr 6.7 3.8 1.0 3.3 12.4 72.4 0.5

No 0.5 1.4 3.8 1.0 0.5 0.5 92.4

doi:10.1371/journal.pone.0154486.t011
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In particular, we found functionals of the highest auditory frequency bands to be the most
predictive features (in terms of R2). For instance, the flatness of the delta coefficients of the
23rd frequency band, ranging from 5.28 kHz to 6.49 kHz, accounts for 28.5% of the variance of
the ‘crispiness’ dimension (t = 24.2, p< .001). We argue that this feature indicates a prevalence
of rapid energy changes in this frequency range (for crispy food), as opposed to slow changes
(for less crispy food or no food).

Conversely, the solution Fig 2 (bottom right) with NO FOOD in the middle might simply be
due to this class being robustly discriminated from the others, thus being equally dissimilar
from all other classes. Furthermore, the low R2 value for this solution might indicate that it is
less meaningful. However, in our data we still found some acoustic features that are correlated
with the ordering of classes in this solution, such as residual energies of linear prediction of
cepstra—e.g., the residual of the prediction of the third delta MFCC accounts for 23.0% of the
variance (t = -13.0, p< .001). Apparently, jelly-like foods cause ‘predictable’ phonetic content
due to a smoothing effect of impeded speech production, while crispy foods cause ‘unpredict-
able’ changes, and ‘clean’ speech is unaffected by either of these phenomena.

We can now move on to automatic regression experiments using the numeric labels derived
from the 1-D NMDS solutions, i. e., by exchanging the class labels with the abscissae displayed
in Fig 2 (bottom left or bottom right). To this end, we train and evaluate linear support vector
regression (SVR) models in LOSO-CV, using the 100 most relevant features per fold selected
by R2 with the label (on the training set of each fold). The implementation in Weka’s SMOreg

Fig 2. Solutions of non-metric dimensional scaling applied to class confusions (2-D (top), 1-D (bottom left)) or Euclidean class
center distances (1-D (bottom right)) in the 7-way task, ComParE low-level acoustic features.

doi:10.1371/journal.pone.0154486.g002
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Fig 3. Degree of high-frequency noise of the words ‘warmed up’ caused by eating. Subjects (left: female, right: male) while recording an
utterance eating a banana (top), without eating a sort of food (middle), and eating crisps (bottom).

doi:10.1371/journal.pone.0154486.g003
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class is used, with a complexity of 0.1 as for SVM. The evaluation metrics are R2 and relative
absolute error (RAE), which is the mean absolute error normalised by the chance level mean
absolute error (by always predicting the mean label). Consequently, the chance level RAE is
100% while the corresponding R2 is always zero. A more meaningful baseline for regression is
the R2 of the best single feature and the labels (cf. above on the most predictive feature types).
From Table 12, one can see that regression generally delivers robust results, outperforming the
single feature baseline by more than 20% absolute in R2. Furthermore, since regression on the
class-center-distance-based labels works better (11% absolute gain in R2), while both labels are
based on the same acoustic information, there is significant evidence that the distance-based
ones are a more meaningful dimensional representation.

iHEARu-EAT as part of the INTERSPEECH 2015 Computational
Paralinguistics Challenge
As the 7-way classification task was featured as a sub-challenge in the INTERSPEECH 2015
Computational Paralinguistics Challenge (ComParE) [46], which is a comparative evaluation
of signal processing and machine learning approaches run under the exact equal conditions for
all participants, we can expect further insight into this classification problem.

For the challenge, the iHEARu-EAT database was partitioned into a training (20 speakers)
and a testing (10 speakers) set. The results described in the challenge and those presented in
this article are thus not directly comparable, as we used in this paper a LOSO evaluation
scheme. Since the performance on the 2-way classification task was almost perfect, we decided
to use the 7-way classification task for the challenge, which provides a much larger room for
improvement compared to the binary classification task. The baseline system was build with
the same acoustic features set (ComParE 2013) and machine learning algorithm (SVM) as
used in this study. Optimisation on the complexity of the SVM was, however, performed for
the Challenge, by carrying out cross-validation on the training set. The obtained UAR baseline
performance of the proposed system was 65.9%.

All in all, 14 sites participated in this sub-challenge, from which seven papers were accepted
by the technical program committee. A large variety of techniques, ranging from feature selec-
tion techniques to (deep) neural networks, were proposed by the participants of the challenge
to solve the 7-way classification task. The use of Softmax and single hidden-layer neural net-
works using Rectified Linear Units activation function was, for example, proposed in [62].
SVM based hierarchical classification was addressed in [63], whereas a wrapper-based feature
selection approach, which combines a feature subset evaluation and a feature space search, was
addressed in [64]. Further, a rather unusual approach was followed in [65]: Instead of suppress-
ing the influence of noise to enhance the intelligibility of a spoken message, the authors empha-
sised the noisy parts of the spectrum to improve the recognition of food classes. [66] built upon

Table 12. Regression-based recognition of eating condition.

[%] SVR/100 feat. 1-best feat.

Label R 2 RAE R 2

NMDS 1-D (Conf) 45.5 69.7 23.0

NMDS 1-D (Dist) 56.2 66.8 31.9

Regression-based recognition of eating condition: Determination coefficient (R2) and relative absolute error

(RAE) obtained by SVR on the ComParE feature set, and best single feature baseline. Numeric labels

obtained from 1-D NMDS solutions (‘Conf’usions or ‘Dist’ance of class centers).

doi:10.1371/journal.pone.0154486.t012
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a deep learning language identification system, with the main idea to train a local convolutional
neural network classifier. A system, which incorporates i-vectors and functionals for segmental
features, non-linear time series features, speech rhythm, and ASR decoding based features was
proposed in [67].

Most of the contributions yield a performance above the baseline and up to 83.1% for the
winning team [68]. This best performing team has shown that the task is not only a question
of ‘brute-forcing’ but rather of compensating speaker variabilities to foster differences gener-
ated by the eating conditions. The variability compensation issue by proposing a novel
method composed of Fisher vector encoding of LLDs, speaker z-normalisation applied after
speaker clustering, non-linear normalisation of features, and classification based on Kernel
Extreme Learning Machines and Partial Least Squares regression made this team the winning
team.

Conclusions and Outlook
We have introduced the iHEARu-EAT database and performed experiments that demonstrate
the feasibility of automatic classification of eating conditions under speaking. There exists pre-
vious work on acoustic-based recognition of eating, albeit mostly with special hardware
requirements in terms of the sensor. Further, usually eating is not considered under speech,
making our database a first of its kind.

First, the impact of training with speech data while eating and without eating on the 7-class
recognition task has been shown. It has been confirmed that training on a single kind of food
performs better in matched testing conditions than training on all types of food. So, ASR for
speech under eating deteriorates when trained with clear speech, and can benefit from model-
ling different types of eating.

Further, while single, intelligibility-related ASR features are sufficient for binary classifica-
tion, the importance of low-level acoustic features for finer-grained discrimination has been
confirmed, and the complementarity of both have been shown for read speech. Acoustic fea-
tures are also consistent with a dimensional modelling of the eating condition.

Limitations of this study can be found in the exemplary but necessarily sparse choice of
food types. For specific applications, of course, other types of food had to be selected. Further,
we did not exert full experimental control over all parameters that might be relevant, which
pertains the structure and texture of the food chosen [69–71], as well as speaker characteristics
such as the vocal tract length and personality ‘background’ which might cause different ways of
chewing and accordingly [72] slightly different acoustic characteristics. We do not know yet
whether and if such differences might influence or even impede modelling and classification
performance. Note, however, that we tried to take into account such random factors by
employing a non-metric procedure for dimensional modelling and interpretation. Further,
there are, of course, other questions here as well regarding the physiology of speech and eating
which are not explored so far.

In the future, we will investigate deeper into the meaning of single acoustic features, and use
some segmentation into sub-utterance units to segregate the classification of acoustic events
(such as chewing) and speech ‘impairments’ due to eating. Furthermore, as we found that dif-
ferent test subjects exhibit distinct behaviour in speaking while eating, speaker adaptation will
be considered. The self-reports provided on the likability and difficulty of eating will also be
considered as new prediction tasks. As additional annotations to the corpus, we plan to manu-
ally transcribe the spontaneous speech utterances to enable ASR performance studies. Finally,
we will also exploit the visual channel to obtain complementary information for multimodal
fusion.
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