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1 Introduction 

In the last 20 years, there has been an important expansión of research in speech technology in 
Spain: the number of research groups has increased from 3 to more than 20 distributed all along 
the Spanish geography in more than 20 different universities and research centres. Important 
companies like Telefónica I+D created a specific Speech Technology División (now integrated 
in other divisions more oriented to multimedia applications) for developing their own products. 
Additionally, small spin-off companies appeared, such as Verbio and Agnitio, among others. 

This expansión has been motivated by an increase in the investment from the European 
Commission, Spanish Ministry of Education, and local administrations, but also, by the interest 
of using speech as an important modality when developing Human-Computer interaction 
applications. At the beginning, these applications were focused on services over the telephone 
like information delivery or ticket reservation services. Nowadays, the main applications 
including speech technology are focused on developing advanced interfaces for mobile devices, 
automatic multimedia indexing and accessing tools, and new applications for people with 
special needs. 

This increase in the number of research groups focused on speech technology has 
allowed, on the one hand, to deal with a wide range of applications involving these 
technologies: from audio processing for extracting speech in multimedia contents, to 
multimodal and multilingual spoken dialogue applications, including also speech translation, 
oral communication disorder detection, applications oriented to people with disabilities, etc. 
And, on the other hand, to face all the official languages in Spain: Castilian, Catalán, Basque 
and Galician, with their corresponding dialectal diversity. 

This paper provides a review of the main áreas of speech technology addressed by 
research groups in Spain, their main contributions in the recent years and the main focuses of 
interest these days. 

The paper is organised as follows: section 2 describes the Spanish Network on Speech 
Technology; Section 3 and 4 are focused on Audio Processing and Speaker Characterization 
respectively. Section 5 describes advances on Speech and Language Processing. Section 6 
describes Spoken Language Applications and, finally, section 7 summarizes the main 
conclusions. 

2 Spanish Network on Speech Technology 
Ten years ago, Prof. Antonio Rubio led a group of researchers for creating the Spanish Network 
of Speech Technology (RTTH: Red Temática en Tecnologías del Habla: www.rthabla.es). 
Nowadays, this network includes more than 250 researches from more than 20 different Spanish 
universities and research centres. Table 1 summarizes the most relevant figures of the main 
research groups involved in this network. 

http://www.rthabla.es


Table 1. Main figures of the Spanish Network on Speech Technology 
Main figures (in the last 5 years) 

Researchers 
Universities, Research Centres and Companies 
European projects 
Public or prívate projects 
Research events organized 
Publications in JCRjournals 
Papers at relevant international conferences 
Patents 

Number 
>250 
>22 
>20 
>300 
>35 
> 180 
>350 
> 10 

As it is shown, the high number of researchers reveáis an important critical mass on these 
technologies in Spain which are responsible for a high number of EU or domestic projects, and 
which were responsible for important amount of research events organized during the last 5 
years. This activity has generated important results like journal and conference publications, and 
patents. 

The RTTH has three main objectives: 

• The first one is to support research activities on speech technologies in order to 
complement the main activities developed inside target oriented research projects. 

• Secondly, considering the relevance of the financial and human resources for boosting 
a research área, the RTTH has the target of attracting new investments (from 
companies and governments) and new researchers to this research field. 

• Finally, the RTTH defines a collaborative framework for all Spanish research groups 
working on speech technologies. 

The main activities performed by the RTTH during the last years have been the 
following: 

• The RTTH has promoted every two years the "Jornadas en Tecnologías del Habla" 
since 2000. Previous workshops were held in Sevilla (2000), Granada (2002), 
Valencia (2004), Zaragoza (2006) and Bilbao (2008). The last one was organized as 
an international event in Vigo (November 2010) with the ñame FALA 2010. This 
workshop was a joint event including "VI Jornadas en Tecnología del Habla" and II 
Iberian SLTech Workshop. In these workshops, there have been relevant talks given 
by international experts in these technologies. 

• Another important activity is to organize awards for Ph. D. students: 
o At every workshop, there are a number of awards from 3 to 6 for the best papers 

presented in the workshop where the first author is a Ph. D. student. 
o Additionally, every year there is an award for the best JCR paper published by a 

Ph. D. student as a result of his/her doctoral thesis. 
• Additionally, the RTTH organizes meetings between several research groups in order 

to promote new research projects with the collaboration of those groups. 
• Finally, RTTH collaborates with the SIG-IL (Special Interest Group on Iberian 

Languages) of ISCA (International Speech Communication Association). 
In the next section, the paper describes the main áreas of interest on which the Spanish 

research groups focus. This description is organized in four sections: audio processing including 
speech, speaker characterization, speech and language processing, and spoken language 
systems. 



3 Audio Processing including Speech 
This section integrates technologies for acoustic environment characterization, voice activity 
detection (VAD) and multimedia processing for audio segmentation. 

3.1 Acoustic environment characterization 
One important área of interest that has appeared recently is the characterization of the acoustic 
environment. Initially, this characterization had the target of modeling the acoustic noise in 
order to increase the robustness of the applications when extracting the speech from a specific 
acoustic environment. Nowadays, this área also includes the possibility of extracting useful 
information about the speaker environment: activity performed, mean of communication, 
existence of other speakers or sound sources, speaker location, user's current situation, and so 
on, which potentially enhance the description of a location and user's activities (Ma, 2006; Chu, 
2008). A context denotes a location with different acoustic characteristics, such as a coffee 
shop, outside street, or a quiet hallway. This new application (extracting useful information) is a 
new research field with an important activity in Spain. 

The most frequent approach has been based on recognition of specific events or sounds 
(Cai, 2006). Only a few systems have been proposed to model raw environment audio without 
pre-extracting specific events or sounds (Buera, 2007; Eronen, 2007). 

When detecting and classifying acoustic events the main target is to extract a particular 
type of event (speech, music, coughs, ...) and the time position from a mixed general acoustic 
material. This field of interest has grown rapidly during the last years (Ntalampiras, 2009; 
Pórtelo, 2009) proposing this detection in a wide range of possible applications such as meeting 
rooms, hospitals, and public places, and for audio segmentation of broadcast news. The 
detection task is more difficult when there is an important overlap of these acoustic events or 
even with speech: detecting isolated acoustic events shows a high recognition rate when 
considering a small number of possible events. When dealing with overlapped acoustic event, 
the use of complementary video information has shown its usefiílness to detect audio sources. In 
Spain, a pioneering research work has recently been done on AED/C applied to meeting-room 
acoustic events in the framework of the CHIL project (http://chil.server.de) (Temko, 2009a, 
2009b; Butko, 2011;). In the Albayzín 2010 Evaluation (http://fala2010.uvigo.es), there was a 
competition on Audio Segmentation, using a Catalán broadcast news datábase from the 3/24 TV 
channel (Albayzín, 2010). Additional research on speech and music segmentation was 
developed in (Gallardo-Antolín, 2010). 

An important information that can be extracted from the acoustic environment is the 
location of the acoustic source, specially where the speaker is situated. This aspect can report 
valuable information for improving advanced human-computer interfaces considering speech as 
a main modality. Some applications of this location information are: 

• To select the track a robot can follow in order to interact to the user in a better way. 

• To steer a camera towards the active source, enhancing the audio stream via 
microphone-array beamforming for speech recognition (a challenging task in 
smartroom scenarios, given the severe degradation of the speech signal due to noise 
and room reverberation effects). 

• To provide accumulated information for person identification, and to recognize 
location-based events (AMIDA, 2007). 

http://chil.server.de
http://fala2010.uvigo.es


Speaker localization has been investigated using computer visión systems (Fernández, 
2007; Pizarro, 2009), audio source location systems (Lathoud, 2007) and mixed approaches 
based on audio-visual fusión (Chen, 2004; Gatica-Perez, 2007). Additionally, it is interesting to 
remark that microphone array speech recognition (i.e., the integration of beamformer with ASR) 
has been also investigated (Moore, 2003) but it still has low performance compared to cióse talk 
speech recognition. This task is even more complex in the case of several speakers talking at the 
same time in a meeting (Shriberg, 2001). 

3.2 Voice activity detection 
There are many advantages of using speech-based applications in order to improve Human 
Computer Interaction systems (especially over the telephone). But these applications have a 
poor performance when the main speaker is embedded in noisy environments (for example in 
bars), where many far-field speakers are speaking almost all the time. In particular, it is very 
common to find, in mobile phone scenarios, many situations in which the target speaker is 
situated in open environments surrounded by far-field interfering speech from other speakers. 
This factor contributes to a reduction in the speech-based application performance, producing an 
unsatisfactory experience for the user. 

Because of this, Voice Activity Detection (VAD) is a relevant task for speech-based real-
world applications considering one microphone (De la Torre, 2006), or specifically to exploit 
the availability of microphone array signáis to improve VAD results for far field speech 
(Lathoud, 2007). Currently, most VADs are focused on the detection of speech acquired in 
noisy conditions. Some VADs take the speech-non speech decisión based on statistical 
properties of features derived from the signal, that differ from speech to non speech periods 
(Górriz, 2005). Other approaches are based on models that represent speech or non-speech (De 
la Torre, 2006). Others VAD applications reduce the amount of signal to be processed or 
transmitted and define the noise parts in order to estímate the background noise features. 

The most relevant databases widely used for VAD evaluation are those developed under 
the AURORA project (i.e. AURORA-2, -3 and -4 databases). 

3.3 Multimedia processing for audio segmentation 
In many applications, considering complementary modalities for extracting information can 
significantly improve the results. For example, the analysis of audiovisual streams for detecting 
and segmenting speaker activity is a helpful task for speaker diarization (González-Jiménez, 
2007a, 2007b; Alba-Castro, 2008; Argones-Rúa, 2008; Argones-Rúa, 2009). Another example 
is face recognition that can increase the reliability of speaker identification when adapting the 
system to a specific speaker. On the other hand, lips tracking can be used for enhancing speech 
recognition, mainly in noisy environments (in the street), whenever the video resolution and 
quality allow extracting accurate information from the lips área (Perez-Freire, 2004). In Spain, 
there is a Datábase of TV-news acquired from TV streams, called Transcrigal-DB. 

4 Speaker Characterization 

This section includes speaker recognition and diarization, language recognition, emotion 
recognition, and voice disorder detection. 



4.1 Speaker recognition and diarization 
Speaker recognition consists of detecting the identity of the person who is speaking in a specific 
moment. Detecting this identity automatically requires two phases: enrolment and verification. 
During enrolment, the speaker's voice is recorded and a number of features are extracted in 
order to créate a voice model. In the verification phase, a speech sample is compared against a 
previously created voice model. In the last years, there has been a predominance of a 
combination systems approach (fusión) for taking advantage of non-correlated information for 
identifying the speaker (Brummer, 2007). Non-correlated information is mainly obtained firom 
several algorithms that analyze speaker characteristics using different pieces of information 
extracted firom complementary levéis: acoustic, phonetic, prosodic, or lexical levéis. 

Gaussian Mixture Model (GMM) has been widely used for modelling the speaker 
characteristics related to his/her identity considering information firom the short-term spectral 
level (acoustic level). Nowadays, systems based on Support Vector Machines (SVM) have 
demonstrated a good performance in the task by using a discriminative approach (Campbell, 
2006) in comparison to a generative approach (as in GMM). In the last five years, in order to 
improve the performance, there has been an increasing interest in extracting features firom 
higher levéis of information present in speech, such as pronunciation variation, linguistic 
content, prosody, which happened to be very useful in automatic speaker recognition (Gonzalez-
Rodriguez, 2007). It is also important to remark that speech-based techniques can be combined 
with information coming firom others modalities in order to improve the system performance 
(Ortega-García, 2010). 

In recent years, several groups have developed speaker recognition systems based on 
Joint Factor Analysis (JFA) (Kenny, 2008) due to the fact that this approach allows to model 
several sources of variability and compénsate them, increasing the performance of the systems. 
This trend has led to the development of systems based on i-vectors (also known as total 
variability factors) (Dehak, 2011), which aim at modelling the overall variability and try to 
compress the essential and useful information into a low-dimensional space where speakers are 
modelled. Thanks to these new proposed techniques the Equal Error Rate (EER) has decreased 
below 2% for verification tasks as the ones proposed in the Speaker Recognition Evaluations 
(SRE) organized by NIST, in which several Spanish groups usually take part. 

An important research field that has increased its interest in the last years has been 
speaker diarization. This subject consists of segmenting an input audio stream into 
homogeneous segments according to the speaker identity, annotating speech with speaker turns. 
The main applications of detecting automatically speaker turns are, among others: 

• To incorpórate additional information for automatic audio indexing of meetings with 
speech firom several people. 

• When combined with speaker recognition and adaptation techniques, to improve 
speech recognition performance by adapting the acoustic modeling to a specific 
speaker 

Speech diarization started being applied to a high quality recording scenario: broadcast 
news recordings with a high SNR (Ferreiros, 2000; Meignier, 2006). Nowadays, speech 
diarization has been applied to recordings of meetings and lectures which is a task that has 
shown a much higher level of error. The diarization error rate (DER) in these cases increases 
firom 8% to 20%. This increment is due to several aspects like the existence of overlapping 
speakers. Very low diarization errors (around 1%) have also been achieved for two speaker 
telephone conversations as a supporting task for speaker verification systems (Kenny, 2010; 
Vaquero, 2011) based on the aforementioned Factor Analysis approach. 



Speaker diarization is a combination of an unsupervised speaker segmentation (finding 
speaker change points in an audio stream) and speaker clustering (grouping together speech 
segments on the basis of speaker characteristics) which can use a bottom-up or a top-down 
strategy (Tranter, 2006). In early research, segmentation and clustering were performed 
independently in two steps. Nowadays, segmentation and clustering are done simultaneously 
and iteratively. One of the critical problems in speaker diarization is to define the cluster 
comparison measure in order to decide if two segments must be merged or not. The widely used 
distance measure is a modification of the Bayesian Information Criterion (Anguera, 2006; 
Wooters, 2007). When there are several microphones recording at the same time, it is possible 
to use this information for improving the performance: a successfiíl method for joining speaker 
vocal tract features and speaker localization features was presented in Pardo (2007). New 
methods have recently appeared to compare clusters with very good performance in terms of 
computational complexity (Vijayasenan, 2009), and performance (Gallardo-Antolín, 2006; 
Anguera, 2009; Nguyen, 2009). 

In the Albayzín 2010 Evaluation (http://fala2010.uvigo.es), there was a competition on 
Speaker Diarization, using a Catalán broadcast news datábase firom the 3/24 TV channel 0. 

4.2 Language identification 
Language identification faces the problem of identifying the language used by a speaker in an 
audio recording. In this field, the main techniques used are very similar to those used in speaker 
recognition. The first research efforts showed that high-level systems performed better than 
acoustic systems, although there have been some improvements in acoustic systems since then. 
Both techniques are applied in a similar way in speaker and language fields, with high-level 
techniques for language recognition including phonotactic and prosodic modeling (Torre-
Toledano, 2009; Caraballo, 2010). Recently, Factor Analysis approaches have also been 
successfully applied to the language recognition task allowing the compensation of inter-session 
variability (Brümmer, 2009), and outperforming the existing acoustic systems. In the Albayzín 
2010 Evaluation (http://fala2010.uvigo.es), there was a competition on Language Identification, 
using a TV broadcast speech datábase (Rodríguez-Fuentes, 2010). 

4.3 Emotion recognition 
Using the speech signal for recognizing the speaker emotion is a new research field very 
interesting for the domain of human-computer interaction and affective computing dedicated 
mainly to three main applications: 

• To improve efficiency and friendliness of human-machine interfaces. 
• To allow for monitoring of mood state of individuáis in demanding working tasks. 

• To add information into automated medical or forensic data analysis systems (Taylor, 
2005). 

Recently, there has been an important research effort (Scherer, 2003), but the problem is 
still open (Navas, 2005; Barra-Chicote, 2010; Luengo, 2010). Although a lot of research has 
been done on defining good features of emotional speech signal, no widely acknowledged set of 
speech signal features has been defined. Nowadays, the main target is to find a feature vector for 
performing the classification task. Related to the emotional speech modelling and classification, 
it is possible to find traditional classification methods like neural network, SVM, LDA or QDA 
(Kwon, 2003; Fragopanagos, 2005). 

http://fala2010.uvigo.es
http://fala2010.uvigo.es


4.4 Oral Communication Disorders 
In the last decade, there has been in Spain an important increment of research groups working 
on automatic techniques for detecting oral communication disorders which includes voice 
pathologies, speech impairments or language impairments. Oral communication disorders are 
very frequent in the population: it is estimated that 20% of people suffer or have suffered from 
dysphonic voice. The automatic detection of oral communication disorders can be useful for 
medical applications both in diagnostic and therapy systems. Additionally, the information 
extracted from these techniques contributes to characterize the speaker, helping to improve a 
speaker identification system, for example. The evaluation of the voice quality by means of 
biometric features appears as individual problems that can be used for medical or forensic 
scenarios, complementing the voice characteristics. New technologies are helping to analyse 
videoendoscopic high and low speed sequences, allowing progress on understanding the 
phonatory process and establishing correlations with the parameters extracted from the acoustic 
record. These correlations are still not well known, and it is necessary to invest more time and 
effort on finding the relationship between changes at the biomechanical level with the voice 
register and the estimated glottal wave. One way to address this study is a multimodal approach, 
mixing speech and video processing techniques (Yan, 2006; Lohscheller, 2008; Zang, 2010). A 
relevant aspect is to define the relationship between the glottal waveform (obtained from 
Electroglottography) and inverse methods (by inverse filtering of voice, or by synthesis from 
the high or low speed videoendoscopic images). 

Most state-of-the-art systems designed to detect voice or speech disorders use the speech 
trace and classification strategies based on statistical and probabilistic methods (Bayesian 
networks, HMMs, GMMs, etc.) or neural networks (MLP, RBF, SVM, etc.) (Godino-Llorente, 
2004). There is also a large amount of feature extraction approaches (Godino-Llorente, 2006a, 
2006b) classifying them into long-term averaged parameters (HNR, NNE, GNE, VTI, jitter, 
shimmer, tremor, LTAS spectrum, etc.) and short-term parameters (MFCC, LPCC, PLP, etc). 

Traditionally, voice pathology detection methods have been developed and evaluated 
considering sustained phonation of vowels. Nowadays, the use of continuous voice is a new 
challenge, as well as the use of complexity measurements and biomechanical parameters 
estimated from the speech (Godino-Llorente, 2006b; Sáenz-Lechón, 2006; Osma-Ruiz, 2008a; 
Fernández-Pozo, 2009) or the use of multimodal information for generating a speech evaluation, 
including videoendoscopic images. 

A very interesting problem in this área of research is the datábase generation, having the 
support of a medical team and the possibility of accessing a group of patients suffering from 
voice disorder, which is a complex problem. 

5 Speech and Language Processing 

This section includes Automatic Speech Recognition (ASR) and Text To Speech (TTS) 
conversión. ASR and TTS technologies have obtained information from speech analysis and 
production studies. These studies are focused on phonation and glottal level processes 
considering the source-filter theory by Gunnar Fant. In the last years, these studies have been 
applied in order to define automatic strategies for evaluating the voice quality. In relation to 
speech perception, the main research lines have evolved to psychophysiological studies by 
means of simulation strategies. This simulation has been possible thanks to the reproduction of 



biophysical and perceptual phenomena in a simulation workbench. Some important references 
on speech production and perception models are (Gandour, 2007; Munkong, 2008; 
Rauschecker, 2009; Gómez, 2009a, 2009b). 

5.1 Automatic Speech Recognition 
In the state-of-the-art, all speech recognizers developed so far are based on two sources of 
knowledge: phone acoustic characterization and language structure. Their objective is to reduce 
the word error rate (WER) of the speech recognition system, that is, the number of 
misrecognized words, to the minimum. 

In almost all current speech recognition systems, the acoustic modelling is based on 
Hidden Markov Models (HMMs). For each allophone (a characteristic pronunciation of a 
phoneme), one HMM model is calculated as a result of a training process carried out using a 
speech datábase. A speech datábase consists of several hours of transcribed speech (composed 
of files with speech and text combined, where it is possible to relate the speech signal to the 
words pronounced by the person). In the 1970-1980s some authors such as Baum (1972), 
Jelinek (1976), and Rabiner (1988), contributed in a decisive way to speech recognition research 
by establishing the basis of the theory of the Hidden Markov Models (HMM), which have 
survived to our time. But it is also true that this modeling is not enough and it is still necessary 
to invest much effort in order to reach a performance like that of human beings in the same 
conditions. 

Given that HMMs are statistical models, it is possible to modify and adapt the model 
parameters to reduce the word error rate (WER), by adapting the models to special acoustic 
characteristics: high level of noise (Buera, 2007; Jinyu, 2007), or speaker variability (Leggetter, 
1995; Lee, 1998). These basic techniques have been expanded in more recent works like Miguel 
(2008). It is possible to adapt the model to a new task by discriminative training by taking errors 
into account for correcting the models (Jiang, 2006). In the field of very large vocabulary 
systems, there are many recent innovations (Aubert, 2002; Livescu, 2007) which have decreased 
the WER while achieving reasonable computing times. 

Statistical performance depends strongly on the amount of data used to train the models. 
Datábase acquisition is a very costly process because it requires linguistic experts for manually 
transcribing the speech pronounced by different speakers. Because of this, only important 
companies or important research centres with a large experience in this technology can offer 
speech recognition systems with the highest warranty of having enough robustness and 
flexibility. In the speech community, there are two main associations that sell speech databases 
for research and development: LDC (Linguistic Data Consortium: http://www.ldc.upenn.edu/) 
and ELRA (European Language Resources Association: http://www.elra.info/). The main 
speech databases collected for Spanish, Catalán, Galician, and Basque have been developed and 
generated in Spanish centres. Some examples are Albayzin (Moreno, 1993) and the datábase 
collected in the SpeechDat project (van den Heuvel H et al, 2001). 

Research groups in Galicia, Catalonia, and the Basque Country have developed ASR 
systems in Catalán, Galician and Basque with characteristics comparable to those in Castilian. 

The second source of knowledge included in a speech recognizer is the language 
modeling (Nadas, 1984). This model complements the acoustic knowledge with information 
about the most probable sequences of words. The language modelling (LM) task is stated as the 
problem of designing appropriate models that approximate the probability of a given text. 
Therefore, given a sentence or text made up of several words, the main target of LM is to model 
the probability of each word, given the model. Generally speaking, there are two main 

http://www.ldc.upenn.edu/
http://www.elra.info/


approaches for language modelling: statistical- and grammar-based language models. In these 
approaches, there are several models for approximating the actual language probability 
distribution. For instance, hierarchical models use context-free grammars to capture long term 
dependencies (Benedí, 2005). However, one of the most widespread models is the n-gram 
model (Rosenfeld, 1994; Goodman, 2001), which obtains surprisingly good performance 
although it only captures short-term dependencies. 

A very attractive research área that has increased its interest has been Remote Speech 
Recognition (RSR). This increment has been due to the fast development of wireless networks 
and mobile devices connected to them. The main problem of these devices is their size and 
weight. The size opens new possibilities to apply speech recognition in the interface, but the 
weight limits the computation power of these devices. RSR tries to overeóme these constraints 
by moving the most complex computational tasks of speech recognition to a remote server 
(Peinado, 2005; Gómez, 2006, 2007, 2009; Carmona, 2010). There are two possibilities for the 
implementation of an RSR system: Network Speech Recognition (NSR), where the whole 
recognition system resides in the network, and the speech signal is sent through the network, or 
Distributed Speech Recognition (DSR), where the client includes a local front-end that 
processes the speech signal in order to obtain the specific features used by the remote server 
(back-end) to perform recognition. NSR systems do not require modifications on the client 
terminal, although speech needs to be coded in order to reduce the traffic. This also involves 
information loss that may affect speech recognition performance. The ETSI STQ-Aurora 
working group has been working on defining a standard front-end to facilítate its integration in 
commercial mobile devices. 

Without any doubt, the main problem of the ASRs is to deal with noisy speech. In these 
circumstances, the ASR performance degrades considerably. In order to avoid this degradation, 
there are two main research tendencies. The first one consists of enhancing the speech to 
improve its perceptual quality by reducing the acoustic noise. In this line, traditional techniques 
such as Spectral Subtraction and Wiener filtering are being widely used (Gallardo-Antolín, 
2002). In recent years, different techniques have been proposed for single-channel and multiple-
channel speech enhancement (a review can be found in (Krishnamoorthy, 2009)). Other 
approaches, more suitable for dealing with multi-speaker environments, are based on the 
enhancement of LP residuals or Computational Auditory Scene Analysis (CASA). For the case 
of multi-channel methods, speech enhancement is provided by exploiting the spatial diversity 
produced by the different locations of desired and undesired sound sources in space (Maganti, 
2007). 

Secondly, another strategy is to extract more robust features firom speech in order to 
reduce the degradation produced by the noise. Some approaches have been proposed based on 
feature normalization or filtering of the temporal trajectories of the acoustic parameters (Nadeu, 
1997, 2001; Vicente-Peña, 2006). A review of some of these methods can be found in Peinado 
(2006). 

5.2 Text to speech conversión 
Similar to ASR, the other important research área in speech technology during the last ten years 
has been Text To Speech (TTS) conversión. In this área, there are mainly two approaches: unit 
selection and statistical parametric speech synthesis. 

• The unit selection has been the main technique during the last twenty years. This 
technique reaches quite natural speech by concatenating acoustic and prosodic units 
selected firom a large corpus (Hunt, 1996; Raux, 2003; Navas, 2006; Escudero, 2007) 



containing hundreds of realizations of each phoneme in different contexts, so that the 
amount of signal processing required after the concatenation is minimal. This 
approach has several problems: the first one is that the system quality depends 
significantly on the amount of speech data available (the number of speech chunks to 
concaténate). Secondly, this strategy has a reduced flexibility: the synthetic speech is 
strongly conditioned by the content of the corpus in terms of style, speaker, dialect etc. 
When some of these aspects must be changed, it is necessary to record a new datábase. 
In order to avoid these problems, voice transformation techniques have been proposed 
(Stylianou, 2009), but they have not reached the level of performance obtained with 
statistical TTS. 

• The second technique is based on Hidden Markov Models (HMMs) (Zen, 2009). This 
approach has become very popular due to the high degree of flexibility that results 
from the statistical parametric representation of the voice. Such systems can genérate 
speech adapted to different styles, speakers (Erro, 2010), or dialects (Yamagishi, 
2009). However, the quality of the synthetic speech is degraded by the limitations of 
the parameterization, the modelling capabilities of HMMs, and oversmoothing. 

Using statistical TTS has permitted to adapt a TTS to any conditions in an easier way. 
Special interest has appeared in adapting the TTS for generating different emotions (Barra-
Chicote, 2010; Erro, 2010). 

Research groups in Catalonia, Galicia, and the Basque Country have developed TTS for 
Catalán (Bonafonte, 2008), Galician (García-Mateo, 1998; González-González, 2004), and 
Basque (Navas, 2002) with comparable characteristics to Castilian ones. 

6 Spoken Language Applications 

This section includes spoken language understanding and translation, spoken dialogue systems, 
voice-activated question answering (QA), and applications for people with special needs. 

6.1 Spoken Language Understanding 
This process consists of extracting semantic information or "meaning" (related to the specific 
application domain) from the speech recognizer output (sequence of words). Semantic 
information is represented by means of semantics concepts. A semantic concept consists of an 
identifier and a valué (sequence of words that generated the concept). For example: we could 
have a concept TURN while the valué is "to the right". We could classify the language 
understanding techniques in two types: statistical (or data-driven) and rule-based techniques. 

• Data-driven approaches. Many data-driven systems depend on statistical models to 
derive the corresponding semantic representation from an input utterance. A simple 
but effective semantic decoding model is the Hidden Markov Model (HMM), which 
was adopted in the AT&T's CHRONUS (Pieraccini, 1993). Wang (2001) proposed a 
semi-automatic grammar learning methodology by taking advantage of múltiple 
information sources, such as automatically generated témplate grammar from semantic 
schema, the semantically annotated corpus, syntactic constraints, and grammar library. 
In order to infer a good quality grammar, the grammar learning approaches often 
require a large amount of annotated data or linguistic experts. 

• Rule-based techniques. In this case, the relations between semantic concepts and 
word sequences are defined manually by an expert. These approaches have been based 



on grammar-based parsers interleaving syntax and semantics (Seneff, 1992; Dowding, 
1993), or purely semantic (Ward, 1994; Wang, 1999). The rule-based techniques can 
also be classifíed into two types: top-down and bottom-up strategies. In the first case, 
the rules are conceived in such a way to obtain the semantic concepts from a global 
analysis of the whole sentence. In the bottom-up strategy, the semantic analysis is 
performed starting from each word individually and extending the analysis to 
neighborhood context words. This extensión is done to find specific combinations of 
words that genérate a semantic concept. 

An emerging trend of spoken language understanding is to combine the rule-based and 
data-driven methods in order to make use of their advantages (Wang, 2002). 

6.2 Spoken language translation 
Related to spoken language translation, statistical approaches have achieved performance levéis 
comparable to those achieved by knowledge-based Machine Translation (MT) algorithms, 
which have been around for more than half a century. The best performing translation systems 
are based on various types of statistical approaches, including example-based methods, finite-
state transducers and other data-driven approaches. The progress achieved over the last 10 years 
is due to several factors such as efficient algorithms for training, context dependent models, 
efficient algorithms for generation, more powerful computers and bigger parallel corpora, and 
automatic error measurements. 

Specifically in the European Community, where the language diversity still represents an 
important drawback for the integration process, a large amount of resources has been invested in 
R&D in this technology. As a representan ve example of such effort, the following projects can 
be mentioned: C-Star, Eutrans, Verbmobil, LC-Star, Nespole!, Fame, TC-Star, SMART, 
EURO-MATRIX and PHAUST (Och, 2003; Chiang, 2007; Koehn, 2007; Waibel, 2008; 
PHAUST, 2010). The consortium has participated in several of them. In Spain the main 
research project focused on language translation between the official languages in Spanish is 
AVIVAVOZ (Marino, 2006). However, no matter the recent progress, MT technology is still far 
from achieving satisfactory performance and quality levéis (Casacuberta, 2004; Crego, 2006; 
Marino, 2006; Gispert, 2008; Costa-Jussá, 2009a, 2009b). Other groups have focused MT 
algorithms on translating speech into sign language (San-Segundo, 2008), allowing deaf people 
to access to spoken language contents. 

There is a large parallel and monolingual corpus for developing statistical MT systems in 
several languages as Catalán, Spanish, English, Arabic, Chinese, Germán, Italian, French, and 
other European languages. In particular, the Catalan-Spanish corpus includes 10 years of the 
paper edition of a local newspaper containing 100 millions of words. 

6.3 Spoken Dialogue Systems 
Design, implementation and evaluation of Spoken Dialogue Systems are complex tasks which 
can involve many different áreas described previously (González-Ferreras, 2009): voice signal 
processing, speech synthesis and recognition, speaker and context characterization, language 
modelling, and general spoken act planning. 

Similar to language modeling and understanding, the dialogue modeling techniques can 
be divided into two main types: statistical (or data-based) and knowledge-based modelling. In 
any case, the dialogue modelling techniques rely on the use of dialogue meaningful units which 



are usually coded as Dialogue Acts (DA). The definition of the set of DA labels is usually 
related to the specific task the dialogue system must cope with. 

The statistical modelling strategies consist of defining a statistical model (Partially 
Observable Markov Decisión Processes - POMDP or Bayesian Belief Networks) and training 
the model parameters using an important amount of data (Griol, 2008; Sanchís, 2008; 
Fernández, 2009). In this case, it is not necessary to be an expert to design the dialogue but a lot 
of data (transcribed dialogues in similar conditions) are needed in order to train the model. 
POMDP are regarded as the most powerful state-of-the-art models for dialogue systems, but 
they need huge amounts of data to train the parameters of the model (which include transition, 
emission, and reward function parameters). Bayesian Belief Networks are a special case because 
although it is a statistical model, this paradigm can also be used as a framework for expert 
knowledge representation if there are not enough data for training. 

In the case of knowledge-based dialogues, it is necessary to define a dialogue model to be 
used as implementing architecture for representing the expert knowledge. Within the speech 
community, we can find several dialogue models based on expert knowledge. The most 
important ones are the following: 

• Finite State Machine Model. The dialogue model is based on a finite state machine: 
each state is associated with a different dialogue turn (San-Segundo, 2005). The 
dialogue flow is specified by the state order in the finite state machine. The main 
advantage of this model is its simplicity: when we define the state sequence, the 
dialogue flow is fixed. On the other hand, this model presents a high degree of rigidity 
and does not allow mixed-initiative dialogue managers to be developed. 

• Frame-based model. In this case, the dialogue model is based on frames (D'Haro, 
2005). For every goal in the dialogue, we define a frame associated to it. A dialogue 
goal is part of the functionality provided by the system. This model is more complex, 
but is more flexible and allows mixed initiative dialogues by both the user and the 
system. The user can say the commands in any order and the same order-independent 
behaviour happens for the command items specification. 

• Hierarchical model. The hierarchical model is similar to the frame model. The 
difference is that, in this case, a new representation level between the goal and their 
items is introduced. In this case, a hierarchical structure is used to represent the main 
goals/actions of the interface, their sub-goals/sub-actions and the items associated with 
each sub-action. 

In Spain, in the last 5 years the most relevant projects related to spoken dialogue systems 
are EDECÁN (www.edecan.es) and SD-TEAM (www.sd-team.es). 

6.4 Voice-activated Question Answering Applications 
Another important área of interest is developing Voice-activated Question Answering (QA) 
applications. This interest is due to the need of providing mobile devices with more attractive 
functionalities. There is also an increasing interest in improving access to information systems, 
particularly in the way this information can be accessed, i.e., voice interfaces, mobile devices, 
etc. But today, only research prototypes have been developed (Harabagiu, 2002; Hori, 2003; 
Sanchís, 2006; González, 2008; Turnio, 2009; Sibel, 2009a, 2009b). Progress in QA depends 
strongly on advances on ASR technologies applied to open vocabulary domains. There are 
many examples of these kinds of possible applications: car navigation, tourist or cultural 
information search, etc. E-learning can also be a suitable field for applying this kind of 
technology since only short answers are frequently required for learning purposes (ñames or 
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dates in history, ñames in medicine, definitions or formulae in technical studies, etc.). A lot of 
this information is not structured and is not available in a datábase, but it is provided as row 
texts. In Europe, an important project is QALL-ME (http://qallme.itc.it/), which is focused on 
developing QA systems in mobile applications for information search and multimodal output 
(text, images, and videos). In Spain, the main domestic project dealing with these technologies 
is BUCEADOR (Moreno, 2010). 

6.5 Multimodal applications 
Speech recognition can be used in applications where speech is only one of the forms of 
communicating with the system. For example, speech input can be combined with touchscreen 
input or with handwritten strokes. The combination of speech with the other modalities can 
improve the performance of the whole system, since the other sources restrict the possible 
hypotheses that can be recognized by the system. 

One recent example is the combination of handwritten text recognition with speech 
recognition, which benefits firom the fact that both tasks use similar models (HMM and n-
grams) and processes (Viterbi decoding) to obtain the results. In this case, previous recognition 
of text or speech can be used to restrict the decoding process in the other modality, which in 
general will result in a gain of performance of the whole system (Toselli, 2010). 

6.6 Applications for people with special needs 
A very interesting field of applications of speech technologies are those oriented to help people 
with special needs: voice impaired, handicapped, elderly, blind, or hearing impaired. In this 
field, it is worthy citing the VIVOCA project (http://www.shef.ac.uk/cast/projects/vivoca). This 
projects aims at developing a portable (eventually body-worn) speech-in/speech-out 
communication aid for people with disordered or unintelligible speech, initially concentrating 
on people with modérate to severe dysarthria (people who have difficulty in controlling and co-
ordinating the muscles used in speech). 

A large number of people have speech and language impairments beyond the 
phonological level, reaching the lexical level. Two different approaches are usually followed for 
detecting voice or speech abnormalities, the first one is based on acoustic features (Gómez, 
2005) and the second one on statistical methods (Godino-Llorente, 2004; Arias-Londoño, 2010, 
2011). Phonological disorders can be compensated using the traditional systems of speaker 
adaptation or adapting the characteristics of the vocal tract. However, when the distinctive 
features of the phonemes are modified, it is necessary to detect these disorders in order to define 
alternative pronunciations or lexical models. So, new types of modelling which overeóme the 
limitations of acoustic model adaptation can be developed using distinctive phonetic features 
(sonorant, nasal, etc.). Data-driven lexical adaptation techniques have been proposed (Saz, 
2009a) showing very interesting results for adapting the special lexical variability that these 
users present; with the interaction between acoustic and lexical adaptation frameworks as a very 
interesting outeome of this proposed approach (Saz, 2009b). Nevertheless, further work is 
necessary in order to obtain results that could allow the development of real-work application in 
this field. 

In the field of computer-assisted tools, the use of Speech Technology can be very helpful 
to confirm an initial diagnosis providing an objective determination of the impairment in a non-
invasive way. On the other hand, Computer-Aided Speech and Language Therapy (CASLT) 
tools (Saz, 2009c) are oriented to the improvement of speech quality in speakers with speech 
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impairments helping practitioners and complementing traditional speech therapy tools. Public 
institutions have been very interested in the development of this kind of tools, as can be seen in 
several 5th Framework Program projects of the European Union like OLP (Oester, 2002), 
SPECO (Vicsi, 1999) or ISAEUS (García-Gómez, 1999). Vocaliza, Preligua (Saz, 2009d) or 
WPCVox (Godino-Llorente, 2006) are just a few examples of these important therapy and 
diagnostic aid tools. 

A major issue when developing new techniques or application for people with disordered 
speech is the availability of appropriate databases. Important efforts have been made to collect 
disordered speech corpora in Spanish. Among the most important databases we must mention 
the HACRO (Navarro-Mesa, 2005) and the Alborada (Saz, 2008) corpora. 

Other set of applications is the audio description systems that could open the audiovisual 
world to blind people and to allow them to use speech recognition and synthesis technologies as 
a natural interface with the world. Finally, it's worth noting that audio subtitling and sign 
language translation (San-Segundo, 2008) are essential for hearing impaired people. 

7 Conclusions 

This paper has introduced the Spanish Network of Speech Technologies as the research network 
that includes almost all the researchers working in this área, signalling some figures, objectives 
and main activities developed in the last years. This paper has also described a review of the 
main áreas of speech technology addressed by research groups in Spain, their main 
contributions in the recent years and the main focuses of interest these days. This review has 
been organized in four main áreas: audio processing including speech, speaker characterization, 
speech and language processing and spoken language application. Each área includes several 
aspects or applications of speech technologies. 
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