518 research outputs found

    Smoothing of ultrasound images using a new selective average filter

    Get PDF
    Ultrasound images are strongly affected by speckle noise making visual and computational analysis of the structures more difficult. Usually, the interference caused by this kind of noise reduces the efficiency of extraction and interpretation of the structural features of interest. In order to overcome this problem, a new method of selective smoothing based on average filtering and the radiation intensity of the image pixels is proposed. The main idea of this new method is to identify the pixels belonging to the borders of the structures of interest in the image, and then apply a reduced smoothing to these pixels, whilst applying more intense smoothing to the remaining pixels. Experimental tests were conducted using synthetic ultrasound images with speckle noisy added and real ultrasound images from the female pelvic cavity. The new smoothing method is able to perform selective smoothing in the input images, enhancing the transitions between the different structures presented. The results achieved are promising, as the evaluation analysis performed shows that the developed method is more efficient in removing speckle noise from the ultrasound images compared to other current methods. This improvement is because it is able to adapt the filtering process according to the image contents, thus avoiding the loss of any relevant structural features in the input images

    BEMD Based Cross Bilateral Filtering Technique for Speckle Reduction in Ultrasound Images

    Get PDF
    In this paper, Bidimensional Empirical Mode Decomposition (BEMD) based Cross Bilateral Filter (CBF) technique for speckle reduction in ultra- sound images has been proposed. The reference image is obtained by denoising the noisy image using pixel- wise Wiener filtering. Then, both the noisy image and the reference image are decomposed into a set of In- trinsic Mode Functions (IMFs) and the residue im- age using BEMD technique. CBF is applied between noisy image IMFs and the corresponding reference im- age IMFs. The image is reconstructed back with these modified IMFs and the residue. The proposed method exploits the edge information in the reference image for improving the quality of the denoised image. The per- formance of the proposed method has been tested for real ultrasound images and simulated images having noise of different variance. The experimental results show that the proposed algorithm performs better than other state-of-art methods in terms of Edge Keeping Index (EKI), Correlation Coefficient (CC), Figure of Merit (FOM), Structural Similarity (SSIM), Peak Sig- nal to Noise Ratio (PSNR) and Signal to Noise Ratio (SNR) for synthetic images. The algorithm gives bet- ter performance for real ultrasound images in terms of Mean to Variance Ratio (MVR) and Equivalent Num- ber of Looks (ENL)

    A Tutorial on Speckle Reduction in Synthetic Aperture Radar Images

    Get PDF
    Speckle is a granular disturbance, usually modeled as a multiplicative noise, that affects synthetic aperture radar (SAR) images, as well as all coherent images. Over the last three decades, several methods have been proposed for the reduction of speckle, or despeckling, in SAR images. Goal of this paper is making a comprehensive review of despeckling methods since their birth, over thirty years ago, highlighting trends and changing approaches over years. The concept of fully developed speckle is explained. Drawbacks of homomorphic filtering are pointed out. Assets of multiresolution despeckling, as opposite to spatial-domain despeckling, are highlighted. Also advantages of undecimated, or stationary, wavelet transforms over decimated ones are discussed. Bayesian estimators and probability density function (pdf) models in both spatial and multiresolution domains are reviewed. Scale-space varying pdf models, as opposite to scale varying models, are promoted. Promising methods following non-Bayesian approaches, like nonlocal (NL) filtering and total variation (TV) regularization, are reviewed and compared to spatial- and wavelet-domain Bayesian filters. Both established and new trends for assessment of despeckling are presented. A few experiments on simulated data and real COSMO-SkyMed SAR images highlight, on one side the costperformance tradeoff of the different methods, on the other side the effectiveness of solutions purposely designed for SAR heterogeneity and not fully developed speckle. Eventually, upcoming methods based on new concepts of signal processing, like compressive sensing, are foreseen as a new generation of despeckling, after spatial-domain and multiresolution-domain method

    Real-time Ultrasound Signals Processing: Denoising and Super-resolution

    Get PDF
    Ultrasound acquisition is widespread in the biomedical field, due to its properties of low cost, portability, and non-invasiveness for the patient. The processing and analysis of US signals, such as images, 2D videos, and volumetric images, allows the physician to monitor the evolution of the patient's disease, and support diagnosis, and treatments (e.g., surgery). US images are affected by speckle noise, generated by the overlap of US waves. Furthermore, low-resolution images are acquired when a high acquisition frequency is applied to accurately characterise the behaviour of anatomical features that quickly change over time. Denoising and super-resolution of US signals are relevant to improve the visual evaluation of the physician and the performance and accuracy of processing methods, such as segmentation and classification. The main requirements for the processing and analysis of US signals are real-time execution, preservation of anatomical features, and reduction of artefacts. In this context, we present a novel framework for the real-time denoising of US 2D images based on deep learning and high-performance computing, which reduces noise while preserving anatomical features in real-time execution. We extend our framework to the denoise of arbitrary US signals, such as 2D videos and 3D images, and we apply denoising algorithms that account for spatio-temporal signal properties into an image-to-image deep learning model. As a building block of this framework, we propose a novel denoising method belonging to the class of low-rank approximations, which learns and predicts the optimal thresholds of the Singular Value Decomposition. While previous denoise work compromises the computational cost and effectiveness of the method, the proposed framework achieves the results of the best denoising algorithms in terms of noise removal, anatomical feature preservation, and geometric and texture properties conservation, in a real-time execution that respects industrial constraints. The framework reduces the artefacts (e.g., blurring) and preserves the spatio-temporal consistency among frames/slices; also, it is general to the denoising algorithm, anatomical district, and noise intensity. Then, we introduce a novel framework for the real-time reconstruction of the non-acquired scan lines through an interpolating method; a deep learning model improves the results of the interpolation to match the target image (i.e., the high-resolution image). We improve the accuracy of the prediction of the reconstructed lines through the design of the network architecture and the loss function. %The design of the deep learning architecture and the loss function allow the network to improve the accuracy of the prediction of the reconstructed lines. In the context of signal approximation, we introduce our kernel-based sampling method for the reconstruction of 2D and 3D signals defined on regular and irregular grids, with an application to US 2D and 3D images. Our method improves previous work in terms of sampling quality, approximation accuracy, and geometry reconstruction with a slightly higher computational cost. For both denoising and super-resolution, we evaluate the compliance with the real-time requirement of US applications in the medical domain and provide a quantitative evaluation of denoising and super-resolution methods on US and synthetic images. Finally, we discuss the role of denoising and super-resolution as pre-processing steps for segmentation and predictive analysis of breast pathologies

    Downsampling methods for medical datasets

    Get PDF
    Volume visualization software usually has to deal with datasets that are larger than the GPUs may hold. This is especially true in one of the most popular application scenarios: medical visualization. Typically, medical datasets are available for different personnel, but only radiologists have high-end systems that are able to cope with large data. For the rest of physicians, usually low-end systems are only available. As a result, most volume rendering packages downsample the data prior to uploading to the GPU. The most common approach consists in performing iterative subsampling along the longest axis, until the model fits inside the GPU memory. This causes important information loss that affects the final rendering. Some cleverer techniques may be developed to preserve the volumetric information. In this paper we explore the quality of different downsampling methods and present a new approach that produces smooth lower-resolution representations, yet still preserves small features that are prone to disappear with other approaches.Peer ReviewedPostprint (published version

    Speckle Noise Reduction in Medical Ultrasound Images Using Modelling of Shearlet Coefficients as a Nakagami Prior

    Get PDF
    The diagnosis of UltraSound (US) medical images is affected due to the presence of speckle noise. This noise degrades the diagnostic quality of US images by reducing small details and edges present in the image. This paper presents a novel method based on shearlet coefficients modeling of log-transformed US images. Noise-free log-transformed coefficients are modeled as Nakagami distribution and speckle noise coefficients are modeled as Gaussian distribution. Method of Log Cumulants (MoLC) and Method of Moments (MoM) are used for parameter estimation of Nakagami distribution and noise free shearlet coefficients respectively. Then noise free shearlet coefficients are obtained using Maximum a Posteriori (MaP) estimation of noisy coefficients. The experimental results were presented by performing various experiments on synthetic and real US images. Subjective and objective quality assessment of the proposed method is presented and is compared with six other existing methods. The effectiveness of the proposed method over other methods can be seen from the obtained results

    Corner point detection for the map of kariah Kg. Bukit Kapar / Siti Sarah Raseli, Afina Amirhussain and Norpah Mahat

    Get PDF
    Corner point detection are the important technique for many image processing applications including image enhancement, object detection and pattern recognition. The purpose of this study is to detect the corner points of a map of Kariah Kampung Bukit Kapar image by using Harris Corner Detector. Corner points in an image represents a lot of important information of the image. Detection of corner points accurately is significant to image processing, which can reduce much of the calculations. In this study, the initial technique is smoothing the image and extract the boundary of the image. Then, Harris Corner Detector is used to detect the corner points by considering the amount of corner point detection and run time processing. This study proposed the Harris Corner Detector which can detect 154 points with 12.9552 second

    An overview of the fundamental approaches that yield several image denoising techniques

    Get PDF
    Digital image is considered as a powerful tool to carry and transmit information between people. Thus, it attracts the attention of large number of researchers, among them those interested in preserving the image features from any factors that may reduce the image quality. One of these factors is the noise which affects the visual aspect of the image and makes others image processing more difficult. Thus far, solving this noise problem remains a challenge for the researchers in this field. A lot of image denoising techniques have been introduced in order to remove the noise by taking care of the image features; in other words, getting the best similarity to the original image from the noisy one. However, the findings are still inconclusive. Beside the enormous amount of researches and studies which adopt several mathematical concepts (statistics, probabilities, modeling, PDEs, wavelet, fuzzy logic, etc.), there is also the scarcity of review papers which carry an important role in the development and progress of research. Thus, this review paper intorduce an overview of the different fundamental approaches that yield the several image-denoising techniques, presented with a new classification. Furthermore, the paper presents the different evaluation tools needed on the comparison between these techniques in order to facilitate the processing of this noise problem, among a great diversity of techniques and concepts

    Echocardiography

    Get PDF
    The book "Echocardiography - New Techniques" brings worldwide contributions from highly acclaimed clinical and imaging science investigators, and representatives from academic medical centers. Each chapter is designed and written to be accessible to those with a basic knowledge of echocardiography. Additionally, the chapters are meant to be stimulating and educational to the experts and investigators in the field of echocardiography. This book is aimed primarily at cardiology fellows on their basic echocardiography rotation, fellows in general internal medicine, radiology and emergency medicine, and experts in the arena of echocardiography. Over the last few decades, the rate of technological advancements has developed dramatically, resulting in new techniques and improved echocardiographic imaging. The authors of this book focused on presenting the most advanced techniques useful in today's research and in daily clinical practice. These advanced techniques are utilized in the detection of different cardiac pathologies in patients, in contributing to their clinical decision, as well as follow-up and outcome predictions. In addition to the advanced techniques covered, this book expounds upon several special pathologies with respect to the functions of echocardiography

    Advancements and Breakthroughs in Ultrasound Imaging

    Get PDF
    Ultrasonic imaging is a powerful diagnostic tool available to medical practitioners, engineers and researchers today. Due to the relative safety, and the non-invasive nature, ultrasonic imaging has become one of the most rapidly advancing technologies. These rapid advances are directly related to the parallel advancements in electronics, computing, and transducer technology together with sophisticated signal processing techniques. This book focuses on state of the art developments in ultrasonic imaging applications and underlying technologies presented by leading practitioners and researchers from many parts of the world
    corecore