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Abstract. In this paper, Bidimensional Empirical
Mode Decomposition (BEMD) based Cross Bilateral
Filter (CBF) technique for speckle reduction in ultra-
sound images has been proposed. The reference image
is obtained by denoising the noisy image using pixel-
wise Wiener filtering. Then, both the noisy image and
the reference image are decomposed into a set of In-
trinsic Mode Functions (IMFs) and the residue im-
age using BEMD technique. CBF is applied between
noisy image IMFs and the corresponding reference im-
age IMFs. The image is reconstructed back with these
modified IMFs and the residue. The proposed method
exploits the edge information in the reference image for
improving the quality of the denoised image. The per-
formance of the proposed method has been tested for
real ultrasound images and simulated images having
noise of different variance. The experimental results
show that the proposed algorithm performs better than
other state-of-art methods in terms of Edge Keeping
Index (EKI), Correlation Coefficient (CC), Figure of
Merit (FOM), Structural Similarity (SSIM), Peak Sig-
nal to Noise Ratio (PSNR) and Signal to Noise Ratio
(SNR) for synthetic images. The algorithm gives bet-
ter performance for real ultrasound images in terms of
Mean to Variance Ratio (MVR) and Equivalent Num-
ber of Looks (ENL).
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1. Introduction

With the advancement of various image acquiring hard-
ware in applications like medical diagnosis, synthetic
aperture radars, or aviation, large number of images
are being acquired and utilized. These digital images
available in large magnitude are affected by noise due
to various external as well as internal factors. One such
widely used application for diagnostic purposes is ul-
trasound image, whose perceived quality is degraded
by the existence of speckle noise which is imminent
owing to the presence of physical phenomenon such as
scattering at the time of image acquisition [1]. Due
to the high frequency characteristic of speckle noise,
denoising algorithms utilized to improve the quality of
these images face the challenge of preserving the edge
information. Speckle reduction in ultrasound images is
an essential step and targets improvement in the qual-
ity of the image in terms of PSNR, CC, SNR, FOM,
SSIM, EKI, MVR and ENL [2], [3] and [4].

The state-of-the-art speckle reduction algorithms
work in spatial domain. The spatial domain tech-
niques mainly use local statistics or information redun-
dancy between similar patches and replace the pixel
value by processing the nearby pixel values. Most suc-
cessful amongst this category are diffusion-based filters
like Speckle Reducing Anisotropic Diffusion (SRAD),
Detail preserving anisotropic diffusion (DPAD),
Perona-Malik’s Anisotropic Diffusion (PMAD) [5], [6],
[7] and [8], Bilateral filters [9] and [10], and patch-
based methods like Non Local Mean Filter (NLM) [11],
[12], [13] and [14] and Optimized Bayesian Nonlocal
Mean filter (OBNLM) [15] and [16]. The patch selec-
tion in patch-based methods is tricky so that the noise
removal does not lose the edge information while de-
noising. Therefore, recent works [17], [18] and [19] use
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modified NLM and Block Matching and 3D filtering
(BM3D) algorithms to reduce speckle while trying to
preserve the edge information.

Amongst these various methods, the bilateral filter
proposed by Tomasi and Manduchi in 1998 [9] aims
to denoise the image while preserving edge details by
weight averaging the neighboring pixels based on their
spatial distance and similarity. It has been applied to
various fields like image denoising [9] and [20], photo-
graph enhancement [21], or range compression [22], as
it is non-iterative, simple and delivers a stable perfor-
mance comparable to many other filters. The disad-
vantage of long running time of this method has been
worked upon by various methods [22], [23] and [24].
Bilateral filtering has also been applied in wavelet do-
main for denoising in [20], which represents interesting
results but does not perform well for real image denois-
ing. In severe noise cases, the performance of non-local
methods is better but that is at the cost of computa-
tion complexity and limitation of over smoothening the
image. High quality denoised image by local processing
can be obtained by joint bilateral filter [21] and [25],
which calculates weights using another reference image.
Getting high quality pre-estimated reference image is
a crucial step in this method as the result depends on
the chosen reference image.

Empirical Mode Decomposition (EMD) introduced
in 1998 [26] is a very powerful algorithm decomposing
the signal in its IMFs [27]. This decomposition is done
based on their oscillation in the spatial domain. The
basis functions calculated in this method are signal-
dependent and a series of IMFs are estimated via an it-
erative procedure known as sifting [28]. The EMD was
introduced in images in 2003 in [29] and the BEMD for
images was introduced in 2005 in [30]. The BEMD is
also a signal-dependent adaptive technique, decompos-
ing the image into a series of IMFs and a residue. The
low-order IMFs are the high-frequency components and
the high order IMFs are the low-frequency components.
The speckle noise has high frequency characteristic,
therefore the low order IMFs are having more noise
components as compared to the high order IMFs. Ac-
cordingly, some BEMD based denoising algorithms uti-
lizes this fact to discard the noise existing in the low
order IMFs [31], [32] and [33]. But this may not always
be true and a significant noise component may also be
present in further IMFs as well.

The CBF was introduced in 2004 to denoise low-light
image [21] and to enhance the ambient image that rely
on flash photograph information [25]. These methods
are based on Bilateral filter equation and exploits the
fact that the Signal to-Noise Ratio (SNR) of the flash
image is higher than that of the no-flash image. Denois-
ing algorithms can exploit this technique for images,
where reference image is the one with higher SNR. As
in most of the cases, the original noiseless image is not

available so choosing the correct reference image is a
challenge. Laplacian pyramid has been utilized for de-
noising image using CBF in [34], where the reference
image has been taken as the Wiener filtered version
of the noisy image. Some other CBF based image de-
noising algorithms combine Non-local Means [35] and
multi-sized 2D hard thresholding [36] for significant re-
sults. Most of the high-frequency components of the
image contain detail information such as edges. Most
of the noise is also in high frequency, therefore, these
algorithms though giving good denoising performance,
loose important edge details. These details are of im-
portance for diagnostic purposes when dealing with ul-
trasound images.

This paper introduces a hybrid technique wherein
the high SNR reference image is calculated using
Wiener filtering the noisy image. The IMF’s are com-
puted for both noisy image and reference image. The
edge information in the reference image IMFs is a cru-
cial information that is important from the point of
view of diagnosis. The proposed technique utilizes this
edge information in reference image for obtaining a bet-
ter quality denoised image in terms of edge details. To
achieve this, a CBF is applied between the noisy image
IMFs and the corresponding reference image IMFs to
get despeckled image. This helps in preserving the edge
information while denoising the ultrasound image.

The remainder of the paper is organized as follows.
Section 2. , provides a brief overview of BEMD al-
gorithm along with CBF algorithm. In Sec. 3. , the
proposed denoising method is described. The perfor-
mance evaluation of the proposed method is illustrated
in Sec. 4. , and Sec. 5. presents the conclusions.

2. Background

2.1. Bidimensional Empirical Mode
Decomposition

BEMD is an adaptive technique which can be applied
to images to decompose them into a set of various IMFs
and a residue. The steps for calculation of the IMFs
and the residue are as illustrated here.

Let the observed image be denoted by o(x, y). This
being an iterative process, let the residue of the mth
IMF be represented by rm(x, y), which is taken as the
input for the calculation of the next IMF. Let the input
image taken for the generation of mth number IMF,
m = 1, . . . ,M at the kth iteration of the sifting process,
k = 0, . . . ,K − 1 in two spatial dimensions (x, y), be
denoted by im,k(x, y).

1. Initializing the sifting process for the calculation
of the first IMF with m = 1 and k = 0, im,k(x, y)
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is taken to be the observed image. i.e i1,0(x, y) =
o(x, y).

2. Local maxima and minima of im,k(x, y) are ex-
tracted.

3. Using the application specific spline interpolation
for all local maxima, calculate the upper envelope
ue(x, y). Also, using the interpolation of all local
minima, calculate the lower envelope le(x, y).

4. The mean envelope envm,k(x, y) is calculated from
the upper and lower envelopes obtained in step 3.

envm,k(x, y) =
ue(x, y) + lu(x, y)

2
. (1)

5. The mean envelope envm,k(x, y) is subtracted
from the input signal for calculating the updated
signal for the next iteration.

im,k(x, y) = im,k−1 − (x, y)envm,k(x, y),

k → k + 1.
(2)

6. Calculate the standard deviation ε, from the result
obtained in step 5.

ε =

M−1∑
x=0

N−1∑
y=0

|im,k(x, y)− im,k−1(x, y)|2

i2m,k−1(x, y)
. (3)

7. If the standard deviation ε calculated in step 6
is less than a predefined value (usually 0.2–0.3),
then the result of step 5 is the required mth IMF
om(x, y), else repeat steps 2–6.

om(x, y) = im,k(x, y). (4)

8. The residue of the mth IMF is defined as:

rm(x, y) = im,0(x, y)− om(x, y). (5)

9. For the calculation of the next IMF this residue
calculated in step 8 is taken as the input signal
and going back to step 2 again.

im+1,0(x, y) = rm(x, y). (6)

Steps 2–9 are repeated until residue calculated has
no more extrema points. Thus, for total of ‘M’ IMFs
and the last residue rM , the original signal can be rep-
resented as:

o(x, y) =

M∑
m=1

= im(x, y) + rM (x, y). (7)

The high order IMFs are corresponding to the low
frequency while low order IMFs, are corresponding to
the high frequency.

2.2. Cross Bilateral Filter

CBF algorithm is explained here in brevity for the sake
of illustration. Let In and Ir denote the noisy image
and the reference image, respectively. The function gd
attenuates the filter kernel weights in spatial domain on
the basis of the distance between the pixels. Also, the
edge stopping function ge sets weights on the basis of
intensity difference between the pixels. Then the value
of the pixel at location q using CBF can be calculated
as:

ICBF
q =

1

n(q)

∑
q′∈Ω

gd (∥q − q′∥) qe (Irq − Irq′) Inq′ ,

(8)
where n(q) is the normalization factor given by:

nq =
∑
q′∈Ω

gd (∥q − q′∥) qe (Irq − Irq′) , (9)

and Ω is the window size. The distance scaling func-
tion gd is Gaussian function as given in Eq. (10), where
standard deviation σd controls its width and the vari-
able x in equation is Euclidean distance between q and
q′ ∈ Ω.

g(x) = exp

(
− x2

2σ2
d

)
. (10)

The edge stopping function ge is also Gaussian func-
tion as given in Eq. (11) below where standard devia-
tion σe is controlling its width.

ge(Irq − Irq′) = exp

(
−1

2

(
Ir(q)− Ir(q

′)

σe

)2
)
.

(11)

The standard deviation σd is obtained as in conven-
tional Bilateral filtering. Also, as the reference image
has less noise, σe is not set very large. Even when the
value of σe is taken small and fixed value of σe is taken
for all images, the edge stopping function ge ensures
that proper weights are chosen without over-blurring
or under-blurring the images.

3. BEMD Based
Cross-Bilateral Filtering

This section introduces the proposed BEMD based
cross bilateral filter for speckle reduction in Ultrasound
images. The original image has speckle noise as well as
the vital edge information in the high frequency compo-
nents and this is reflected in the low order IMFs of the
image. Reference image is obtained after processing
the original image with Wiener filter. This reference
image is being decomposed using BEMD algorithm to
get a set of IMFs. Obtained low order IMFs retain
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ResidueIMF1 IMF2 IMF M ResidueIMF1 IMF2 IMF M

ResidueIMF1 IMF2 IMF M

Original Image Reference Image

Bidimensional Empirical Mode Decomposi�on

Cross Bilateral Filtering

Wiener Filtering

Denoised Image

Fig. 1: Block Diagram of the proposed scheme.

dominant edge information as noise component has
been reduced priorly. Also, the high order IMFs will
have the smooth region information after the reduction
of noise.

Hence, the proposed technique utilizes the dominant
edge information in the low order IMFs of filtered image
and the noise free non-edge information in the high or-
der IMFs of this reference image. The algorithm applies
the CBF between the same level IMFs of the original
image and the filtered image referred to as reference
image. This helps in preserving the edge details while
removing the speckle noise from the ultrasound im-
age as well as reduces the blurring in the smooth re-
gions. The block diagram of the proposed algorithm is
as shown in Fig. 1.

The steps in the proposed algorithm are as follows:

1. Calculate the BEMD of the original ultrasound
image o(x, y) which has speckle noise.

2. Denoise the original noisy image with pixel-wise
Wiener filter [37] to calculate the reference im-
age. The noise component has to be addi-
tive while applying this filter, so the multiplica-
tive speckle noise is converted to additive noise

η(n1, n2) applying log transformation. Assuming
that η(n1, n2) is having zero mean and variance σ2

η,
Wiener filter estimates the local mean and vari-
ance around each pixel of the chosen IMF.

µe =
1

NK

∑
x,yϵw

o(x, y), (12)

σ2
e =

1

NK

∑
x,yϵw

o2(x, y)− µ2
e, (13)

where w is the window corresponding to the
N × K neighborhood of each pixel in the IMF.
This filter then creates a pixel-wise estimate given
as:

oe(x, y) = µe +
σ2
e − σ2

η

σ2
e

(o(x, y)− µe) . (14)

3. Calculate the BEMD of the reference image calcu-
lated in step 2.

4. Apply CBF on all the IMFs of the original image
taking the corresponding filtered image IMFs as
the reference component.

5. Reconstruct the image from the output IMFs ob-
tained in step 4 to get the final denoised image.
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(a)

IMF 1 IMF 2 IMF 3 IMF 4
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Fig. 2: (a) Noisy fetus image and its BEMD IMFs and (b) Filtered fetus image and its BEMD IMFs.

IMF 1 IMF 2 IMF 3 IMF 4

IMF 5 IMF 6 IMF 7 IMF 8

IMF 9 Noisy Image

(a)

IMF 1 IMF 2 IMF 3 IMF 4

IMF 5 IMF 6 IMF 7 IMF 8

IMF 9 Filtered Image

(b)

Fig. 3: (a) Noisy kidney image and its BEMD IMFs and (b) Filtered kidney image and its BEMD IMFs.

The pseudo code of the algorithm is as shown below:

• Read the noisy image In and resize it to a standard
size as per the dataset: Hsize = 256;

• Calculate the IMFs of noisy image In:
[imf, Res] = emd(In);

• Wiener Filter the noisy image to obtain filtered
image If :
If = wiener2(In);

• Calculate the IMFs of filtered image:
[imf2, Res2] = emd(If);

• Modify IMFs using CBF taking distance sigma
(sigmad), edge stopping sigma (sigmae), kernel
size (ksize):
For iteration i = 1 : size (imf,2);

– Compute x(i) = imf (:,i);
For iteration i = 1 : size (imf2,2);

– Compute y(i) = imf2 (:,i);
For iteration i = 1 : size (x,2);

– Calculate cbf_out1(i) = cross_bilateral_filt
(x(i), y(i), sigmad, sigmae, ksize);
and detail1(i) = x(i) - cbf_out1(i);

• Reconstruct the image:
Recover = 0;
Recover1 = 0;
For iteration i = 1 : size (cbf_out1,2);

– Calculate Recover1 = Recover1 +
cbf_out1(:,i) + detail1(:,i);
Recover = Recover1 + Res;

4. Experimental Results

The kidney and fetus synthetic images obtained us-
ing Field II simulation program [38] have been used
in our experiments that were performed on MATLAB.
The speckle noise has been added to the image with
σ2 = 0.1, 0.2, and 0.3.

BEMD algorithm is applied on the noisy synthetic
fetus image to obtain the IMFs and the residue.
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Original Image Noisy Image

Filtered Image

(a) Original Image

Original Image Noisy Image

Filtered Image

(b) Noisy image

Original Image Noisy Image

Filtered Image

(c) Filtered Image

Denoised Image

(d) Denoised Image

Fig. 4: Synthetic fetus image for σ2 = 0.1.

Figure 2(a) shows the BEMD IMFs for noisy syn-
thetic fetus image, that are obtained for noise variance
σ2 = 0.1. The spline interpolation that is used in our
case is a cubic spline. The low order IMFs can be
seen to have high frequency components correspond-
ing to noise and edges of the image. As the Wiener
filter gives optimal performance for additive noise, the
multiplicative speckle was converted to additive noise
using log-transformation before adding to the synthetic
image.

Pixel-wise Wiener filtering utilizing 8-neighborhood
for local region calculation was applied to the noisy
image. The BEMD algorithm was then applied on
this filtered image to get the IMFs which are shown
in Fig. 2(b) along with residual image. It can be noted
that the low order IMFs of the filtered image are now
representing the dominant edge details.

As the Wiener filter has denoised the image, so IMFs
of this filtered image are taken as the reference. CBF
on all the IMFs of the noisy image and the correspond-
ing IMFs of the filtered image has been applied to get
the modified IMFs. Based on extensive experiments
performed on different images, the value of distance
sigma σd, edge stopping sigma σe and kernel size are
undertaken as 1.8, 2.5, and 5, respectively for best re-
sults. These modified IMFs along with the residue of
the input image are utilized to reconstruct the denoised
image in which the edge information has been retained.

Original Image Noisy Image

Filtered Image

(a) Original Image

Original Image Noisy Image

Filtered Image

(b) Noisy image

Original Image Noisy Image

Filtered Image

(c) Filtered Image

Original Image Noisy Image

Denoised Image

(d) Denoised Image

Fig. 5: Synthetic kidney image for σ2 = 0.1.

Figure 4 shows the synthetic fetus image, its noisy ver-
sion for σ2 = 0.1, filtered reference image and the fi-
nal reconstructed denoised image. As can be seen, the
denoised image is perceptually of the same quality as
that of the original image. Following the similar proce-
dure results for the synthetic kidney image are obtained
which are shown in Fig. 3 and Fig. 5, respectively. It is
worth noting that the results provided by the proposed
technique are perceptually very pleasing.

Table 2, Tab. 3,Tab. 4, Tab. 5, Tab. 6 and Tab. 7
shows the comparison of various parameters obtained
for varying values of σ for the two Field II synthetic
images, fetus and kidney. As can be noticed, the pro-
posed algorithm performs better than the existing tech-
niques in terms of EKI and PSNR, for noise variance
σ2 = 0.1, 0.2 and 0.3. The values obtained for EKI pa-
rameter gives better results even at higher noise vari-
ances, clearly showing better edge keeping capability
of the proposed algorithm.

Also, as seen in the result tables, proposed technique
gives comparable results with the existing techniques
in terms of SNR, CC, SSIM and FOM for σ2 = 0.1.
At the same time, as can be analyzed from the values
obtained by experimentation that the scheme is giving
comparable results in terms of these parameters for
higher values of σ2 = 0.2 and σ2 = 0.3 also. Thus, we
can summarize that the technique performs acceptably
well even at higher noise levels.
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Original Image Noisy Image Proposed EMD BEMD BEMD Thresholding

CBF Thresholding Enhanced BEMD Laplacian CBF NLM CBF Conventional EMD

Bilateral SRAD NLM OBNLM PMAD

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Fig. 6: Synthetic kidney: (a) Original image, (b) Noisy image for σ2 = 0.1, Denoised images using the methods, (c) Proposed
EMD technique, (d) BEMD [31], (e) BEMD Thresholding [32], (f) CBF Thresholding [36], (g) Enhanced BEMD [33],
(h) Laplacian CBF [34], (i) NLM CBF [35], (j) Conventional EMD [30], (k) Bilateral [9], (l) SRAD [5], (m) NLM [11],
(n) OBNLM [16] and (o) PMAD [7].

Tab. 1: Structural Similarity (SSIM) for various techniques.

Technique MVR ENL
Proposed technique 18.81± 2.63 5.41± 2.37
BEMD [31] 18.51± 3.76 5.25± 2.79
BEMD thresholding [32] 18.13± 4.02 5.18± 2.82
CBF thresholding [36] 17.89± 4.54 5.23± 2.33
Enhanced BEMD [33] 18.02± 4.93 5.14± 2.64
Laplacian CBF [34] 17.95± 4.82 5.11± 2.18
NLM CBF [35] 17.63± 4.22 5.01± 2.13
Conventional EMD [30] 17.91± 5.32 5.01± 2.54
Bilateral [9] 15.42± 5.16 3.96± 2.32
SRAD [5] 17.66± 4.52 4.87± 2.35
NLM [11] 17.01± 4.14 4.91± 2.15
OBNLM [16] 17.81± 4.71 4.95± 2.61
PMAD [7] 16.39± 6.21 4.33± 2.79

Figure 6 shows the visual results obtained by various
denoising algorithms applied on the kidney image cor-
rupted by a speckle of variance 0.1. It is clearly visible
that the proposed technique is able to control the over
smoothness shortcoming of some algorithms and also
has better perceptual quality in terms of the edges in
the image.

For the sake of completeness, the efficacy of proposed
technique is also evaluated by performing experiments
on the real ultrasound image database taken from [39].
The real images have three sets of data namely kid-
ney, liver, and gall bladder images, each having around
85 images. Three regions were selected randomly for
all three sets and the MVR and ENL have been calcu-

lated. The Fig. 7(a) shows the real liver ultrasound im-
age, where three randomly selected regions are marked
which are used for the calculation of MVR and ENL
values. The Fig. 7(b) and Fig. 7(c) depicts the MVR
and ENL plots obtained for selected regions in the real
liver image database for comparing the performance of
our proposed method with that of existing one. It is
worth noting that our proposed method works fairly
well compared to the others.

Table 1 shows the MVR and ENL mean values along
with the standard deviation for the real liver ultra-
sound image database. Two different regions were se-
lected in each US image for MVR and ENL calcula-
tion. These regions were randomly selected mainly in
homogeneous and edge regions of a particular US im-
age. Reconstructed US images were obtained for all
the filters and MVR and ENL values were calculated
in these regions. It is to be noted that the best MVR
and ENL values are obtained for the proposed filter.
Based on the results, the next candidate in terms of
the performance was Laplacian CBF compared to the
existing methods in terms of MVR and ENL values.

Similar experiments were performed on kidney and
gall bladder real ultrasound image data sets also, how-
ever, due to paucity of space we have shown MVR and
ENL plots for liver database only. The results obtained
for the other sets are also in conjunction with the re-
sults shown here.
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Fig. 7: (a) Real liver image with selected regions, (b) MVR plot and (c) ENL plot.

Tab. 2: Correlation Coefficient (CC) for various techniques.

Technique

CC
Noise variance σ2

Synthetic fetus image Synthetic kidney image
0.1 0.2 0.3 0.1 0.2 0.3

Proposed technique 0.95342 0.93070 0.92330 0.93840 0.92590 0.88210
BEMD [31] 0.95834 0.93007 0.92193 0.94284 0.90968 0.87969
BEMD thresholding [32] 0.95038 0.92852 0.91310 0.92435 0.88928 0.82736
CBF thresholding [36] 0.94911 0.90321 0.88398 0.91329 0.82987 0.77120
Enhanced BEMD [33] 0.95201 0.92654 0.87511 0.92643 0.88321 0.82101
Laplacian CBF [34] 0.93750 0.90440 0.89230 0.90760 0.85880 0.77830
NLM CBF [35] 0.94880 0.89530 0.87020 0.91020 0.83980 0.76430
Conventional EMD [30] 0.95102 0.92555 0.87480 0.92645 0.87332 0.81060
Bilateral [9] 0.91368 0.84291 0.78464 0.84947 0.74776 0.67000
SRAD [5] 0.94191 0.87916 0.81739 0.91540 0.82920 0.75551
NLM [11] 0.93126 0.87093 0.82044 0.87618 0.78484 0.71328
OBNLM [16] 0.95155 0.90697 0.86630 0.90923 0.83734 0.77571
PMAD [7] 0.94638 0.88481 0.82668 0.90595 0.80801 0.72333

© 2022 ADVANCES IN ELECTRICAL AND ELECTRONIC ENGINEERING 102



DIGITAL IMAGE PROCESSING AND COMPUTER GRAPHICS VOLUME: 20 | NUMBER: 1 | 2022 | MARCH

Tab. 3: Signal to Noise Ratio (SNR) for various techniques.

Technique

SNR
Noise variance σ2

Synthetic fetus image Synthetic kidney image
0.1 0.2 0.3 0.1 0.2 0.3

Proposed technique 14.0920 12.8840 11.4910 15.5620 13.9340 12.4030
BEMD [31] 14.0620 12.6740 11.4590 15.6020 13.6940 12.4430
BEMD thresholding [32] 13.7653 12.1382 11.2891 15.1528 12.9726 12.0628
CBF thresholding [36] 12.7261 9.9268 8.2108 12.6753 11.4367 8.9624
Enhanced BEMD [33] 13.9211 11.2167 10.3427 14.4563 12.2731 10.3821
Laplacian CBF [34] 13.7400 12.9200 11.3230 14.5660 13.8250 12.3670
NLM CBF [35] 12.6540 9.8660 8.0320 12.4530 11.3450 8.0630
Conventional EMD [30] 13.9140 11.0110 10.2900 14.2440 12.0820 10.2030
Bilateral [9] 10.7200 7.9790 6.4897 10.7320 8.0182 6.5425
SRAD [5] 12.6000 9.2820 7.3429 13.7580 10.2860 8.4398
NLM [11] 11.7240 8.8585 7.3089 11.7650 8.9261 7.3852
OBNLM [16] 13.3050 10.3730 8.6871 13.3320 10.4920 8.8753
PMAD [7] 12.9410 9.4890 7.5779 13.2020 9.6131 7.6633

Tab. 4: Figure of Merit (FOM) for various techniques.

Technique

FOM
Noise variance σ2

Synthetic fetus image Synthetic kidney image
0.1 0.2 0.3 0.1 0.2 0.3

Proposed technique 0.88195 0.85261 0.81317 0.88341 0.85238 0.83860
BEMD [31] 0.82919 0.85146 0.81217 0.86334 0.86088 0.82560
BEMD thresholding [32] 0.81092 0.84838 0.80283 0.85392 0.84294 0.82934
CBF thresholding [36] 0.88392 0.82019 0.78291 0.85281 0.83827 0.77385
Enhanced BEMD [33] 0.83182 0.82791 0.79201 0.86389 0.83982 0.82739
Laplacian CBF [34] 0.88102 0.81890 0.77839 0.85930 0.83029 0.76321
NLM CBF [35] 0.88021 0.81820 0.77352 0.84920 0.82940 0.76429
Conventional EMD [30] 0.82761 0.84320 0.78133 0.86112 0.83281 0.81143
Bilateral [9] 0.81285 0.74764 0.70383 0.77549 0.72620 0.69278
SRAD [5] 0.86349 0.78487 0.73090 0.83815 0.75237 0.73401
NLM [11] 0.87531 0.79219 0.75194 0.83151 0.78397 0.74317
OBNLM [16] 0.89364 0.84390 0.80875 0.88295 0.78922 0.76806
PMAD [7] 0.86438 0.79341 0.73724 0.85802 0.76742 0.71880

Tab. 5: Peak Signal to Noise Ratio (PSNR) for various techniques.

Technique

PSNR
Noise variance σ2

Synthetic fetus image Synthetic kidney image
0.1 0.2 0.3 0.1 0.2 0.3

Proposed Technique 24.983 23.117 22.748 24.821 22.281 21.842
BEMD [31] 24.946 23.077 22.383 24.322 22.188 21.158
BEMD thresholding [32] 24.126 22.764 21.853 23.019 21.934 21.021
CBF thresholding [36] 24.421 21.839 22.210 23.583 21.021 21.012
Enhanced BEMD [33] 22.593 21.294 21.256 22.593 21.245 20.183
Laplacian CBF [34] 23.453 20.987 20.837 24.839 20.548 20.634
NLM CBF [35] 24.332 21.712 22.590 23.383 20.628 21.522
Conventional EMD [30] 22.398 20.671 20.330 22.317 20.672 19.821
Bilateral [9] 21.056 18.009 16.260 19.025 15.992 14.254
SRAD [5] 23.058 19.463 17.260 22.192 18.459 16.398
NLM [11] 22.336 19.310 17.594 20.288 17.239 15.518
OBNLM [16] 24.002 21.030 19.306 21.971 19.054 17.350
PMAD [7] 23.539 19.837 17.690 21.730 17.878 15.686
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Tab. 6: Edge Keeping Index (EKI) for various techniques.

Technique

EKI
Noise variance σ2

Synthetic fetus image Synthetic kidney image
0.1 0.2 0.3 0.1 0.2 0.3

Proposed technique 0.64911 0.60185 0.54098 0.55280 0.50382 0.49382
BEMD [31] 0.64603 0.59358 0.53587 0.54885 0.50024 0.49063
BEMD thresholding [32] 0.63914 0.57292 0.52177 0.53922 0.48392 0.48392
CBF thresholding [36] 0.62797 0.56821 0.53676 0.53182 0.49910 0.47829
Enhanced BEMD [33] 0.62381 0.53725 0.51829 0.52003 0.49201 0.45729
Laplacian CBF [34] 0.63920 0.57492 0.52780 0.53720 0.50220 0.47399
NLM CBF [35] 0.62670 0.55930 0.52180 0.52180 0.50000 0.47290
Conventional EMD [30] 0.61720 0.52081 0.50012 0.51320 0.48230 0.45321
Bilateral [9] 0.59360 0.54006 0.52306 0.53703 0.49294 0.47574
SRAD [5] 0.55134 0.49815 0.49498 0.49201 0.45619 0.43757
NLM [11] 0.59768 0.54228 0.51775 0.53614 0.49024 0.47184
OBNLM [16] 0.62562 0.54757 0.52198 0.55135 0.49023 0.46734
PMAD [7] 0.55606 0.50568 0.49567 0.49833 0.46407 0.44813

Tab. 7: Structural Similarity (SSIM) for various techniques.

Technique

SSIM
Noise variance σ2

Synthetic fetus image Synthetic kidney image
0.1 0.2 0.3 0.1 0.2 0.3

Proposed technique 0.78918 0.68291 0.63330 0.62688 0.53321 0.49197
BEMD [31] 0.70575 0.66684 0.62823 0.61088 0.53961 0.49347
BEMD thresholding [32] 0.68381 0.65382 0.61933 0.60012 0.48932 0.48293
CBF thresholding [36] 0.76290 0.65378 0.60832 0.61092 0.44103 0.38173
Enhanced BEMD [33] 0.73829 0.66362 0.62190 0.62811 0.50021 0.46738
Laplacian CBF [34] 0.74920 0.64920 0.53920 0.60372 0.49240 0.31733
NLM CBF [35] 0.75920 0.64938 0.59380 0.61930 0.43582 0.37290
Conventional EMD [30] 0.72345 0.65482 0.61291 0.61098 0.49308 0.45320
Bilateral [9] 0.71808 0.61478 0.55520 0.53328 0.39544 0.32945
SRAD [5] 0.76831 0.67000 0.59414 0.65411 0.50453 0.41941
NLM [11] 0.74678 0.64120 0.58082 0.56396 0.42391 0.35323
OBNLM [16] 0.78688 0.68623 0.62356 0.62079 0.47589 0.39955
PMAD [7] 0.78014 0.68009 0.60847 0.63845 0.47608 0.38675

5. Conclusion

In this paper, a BEMD based cross bilateral filtering
technique for US image denoising was presented. The
proposed method solves the problem of losing the edge
information in the conventional BEMD based denois-
ing techniques. As the conventional BEMD based al-
gorithm worked on the removal of low order IMFs, it
was losing important edge information which has been
preserved with the help of the proposed method. The
performance of the method has been verified quantita-
tively in terms of PSNR, EKI, SSIM, FOM, SNR, and
CC for synthetic ultrasound images. The quantitative
analysis is also done on the real ultrasound images in
terms of MVR and ENL. It has been found that the
proposed algorithm performs better than many other
existing states of art techniques and can preserve the
edge information.
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