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Abstract. The diagnosis of UltraSound (US) medi-
cal images is affected due to the presence of speckle
noise. This noise degrades the diagnostic quality
of US images by reducing small details and edges
present in the image. This paper presents a novel
method based on shearlet coefficients modeling of log-
transformed US images. Noise-free log-transformed co-
efficients are modeled as Nakagami distribution and
speckle noise coefficients are modeled as Gaussian dis-
tribution. Method of Log Cumulants (MoLC) and
Method of Moments (MoM) are used for parameter es-
timation of Nakagami distribution and noise free shear-
let coefficients respectively. Then noise free shearlet
coefficients are obtained using Maximum a Posteriori
(MaP) estimation of noisy coefficients. The experi-
mental results were presented by performing various ex-
periments on synthetic and real US images. Subjective
and objective quality assessment of the proposed method
is presented and is compared with six other existing
methods. The effectiveness of the proposed method over
other methods can be seen from the obtained results.
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1. Introduction

UltraSound (US) images are used for clinical diagno-
sis of patients suffering from diseases related to inter-
nal organs of the human body. The real-time opera-
tion, non-ionization and non-invasiveness properties of

this imaging modality make it popular among other
imaging modalities, such as X-ray, CT-scan and MRI.
US images are generated by the recording of received
echo signal from internal body parts when US waves
are transmitted inside the human body. In its gen-
eration process, US images are corrupted by a noise,
which arises due to interference between transmitted
and received signal. This noise is of multiplicative na-
ture and appears in granular pattern in the formed
US image popularly known as "speckle noise". This
noise degrades the visible quality of US images and
hence makes diagnosis difficult. Fine details and edges
of US images are lost due to the presence of speckle
[1]. Hence, speckle noise reduction is an important as-
pect and may also be the preprocessing step of various
image processing algorithms. Speckle denoising tech-
niques are divided into two broad categories:

• compounding techniques,

• post-processing techniques.

Compounding techniques are quite old and are used
during US image acquisition process whereas post-
processing techniques are applied after generation of
US images. Post-processing methods are broadly clas-
sified as:

• spatial domain methods,

• transform domain methods.

In spatial domain techniques, arithmetic and logical
operations are performed on the image pixels directly
while in transform domain methods operations are per-
formed on transformed coefficients obtained after op-
eration of an appropriate transform on the image [2].
A variety of spatial domain techniques is available in
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the literature for speckle noise reduction in US images
[3], [4], [5], [6], [7], [8], [9], [10], [11], [12] and [13].
Earlier methods include various spatial domain filters,
such as mean [3], median [4], adaptive weighted median
[5] and Wiener filter [6]. Although, these filters show
good denoising performance, but failed to preserve use-
ful information and are also unable to differentiate the
boundaries between gray levels where the difference be-
tween gray levels is not sufficient. Some popular spa-
tial domain techniques, based on computation of local
statistics of noisy image are Lee [7], Frost [8], Kuan
filter [9], PMAD [10], Speckle Reducing Anisotropic
Diffusion (SRAD) [11], Detail Preserving Anisotropic
Diffusion (DPAD) [12] filters. The major issue associ-
ated with these filters is that the performance of these
filters is dependent upon window size and number of
iterations. Currently, hybrid spatial domain filters are
also used for speckle noise reduction because of the
availability of fast processors. A hybrid spatial do-
main filter is presented in [13], wherein a combination
of SRAD, DPAD and Bilateral filter is used for speckle
noise reduction in US images. Transform domain tech-
niques are yet powerful for speckle denoising. These
techniques are broadly classified as thresholding tech-
niques and Bayesian estimation shrinkage techniques.
In thresholding techniques, a proper threshold is cho-
sen for retaining noise free coefficients from noisy co-
efficients. The challenges associated with thresholding
based techniques are:

• proper selection of thresholding function,

• matching of distribution of signal and noise at var-
ious scales.

In Bayesian Shrinkage (BS) techniques, a prior dis-
tribution of transformed coefficients is to be assumed
and original noise-free signal is estimated from noisy
signal in Bayesian environment. Also, an accurate es-
timation of signal and noise characteristics is required
to be achieved for both speckle suppression and edge
preservation. Thus, the performance of these filters is
mainly dependent on the correct selection of prior for
modelling of transformed coefficients. A large number
of BS techniques based on wavelets and its extensions
are available in literature.

A Minimum Mean Square Error (MMSE) estima-
tor based on symmetric alpha-stable as a prior for
modelling of log-transformed US image is presented
in [14]. Heavy-tailed behavior has been shown when
wavelet coefficients are statistically modelled [15]. This
is because of the non-Gaussian statistics exhibited by
wavelet coefficients in different subbands. A Max-
imum Likelihood Estimation (MLE) approach based
on modelling of wavelet coefficients of speckle noise as
Rayleigh distribution is presented in [16]. A similar ap-
proach but with log-transformed image was presented

by Gupta et al. [17] wherein wavelet coefficients cor-
responding to log-transformed speckle noise are mod-
elled as Rayleigh distribution. This method utilizes
Maximum a Posteriori (MAP) criterion for estimat-
ing wavelet coefficients corresponding to signal from
noisy data. Bhuiyan et al. proposed a MAP estimator
[18] using Normal Inverse Gaussian (NIG) as a prior
for modelling of wavelet coefficients corresponding to
signal. This method presents a simple and fast ap-
proach for estimating the parameters of prior distribu-
tion by local statistics applied to the neighbourhood of
wavelet coefficients. A method used to capture heavy-
tailed marginal distribution of wavelet coefficients and
their interscale dependencies based on modelling of 2D-
GARCH Generalised Gaussian (2D-GARCH GG) is
presented in [19]. The approach is more flexible and
uses MAP criterion for the estimation of noise-free co-
efficients. A Levy Shrink algorithm based on Dual-Tree
Complex Wavelet Transform (DTCWT) is presented
in [20] for speckle noise reduction in US images. In
this technique, heavy-tailed Levy distribution is used
as a prior model for modelling of wavelet coefficients
corresponding to signal and noise. Parameters of levy
distribution are estimated using fractional moments
and noise-free signal is obtained using MAP estima-
tion. A combination of MAP estimation and Laplace
mixture prior is developed by Lu et al. [21]. Other
methods based on Cauchy prior model and bivariate
Cauchy-Rayleigh mixture prior model are presented in
[22] and [23].

Although, wavelet transform based techniques are
very popular from last two decades for speckle noise
reduction. However, the wavelets are useful for han-
dling only point discontinuity. US images consist of
lines and curves, so other popular transforms, such
as Ridglet, Curvelet, Contourlet, Ripplet and Shear-
let Transform were used for speckle noise reduction.
All these transforms are extensions of Wavelets. Mod-
elling of contourlet coefficients as a NIG prior and log-
transformed contourlet coefficient as a Cauchy prior
is presented in [24] and [25], respectively. A method
based on MMSE and MAP estimators in the nonsub-
sampled contourlet domain is presented in [26]. Also,
a technique for speckle noise reduction based on the
combination of diffusion filtering and MAP estimation
of noiseless coefficients in Curvelet domain is presented
in [27].

In this paper, a new transform domain method for
speckle noise reduction in US images is presented. Dis-
crete Shearlet Transform (DST) is used for the purpose
of signal decomposition. Noise-free log-transformed
shearlet coefficients are modelled as Nakagami dis-
tribution and speckle noise coefficients are modelled
as Gaussian distribution. The major contribution of
the presented work lies in the estimation of param-
eters of Nakagami distribution using Method of Log
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Cumulants (MoLC) from noisy observations. There-
after, a method based on Bayesian framework popu-
larly known as MAP estimation is employed to obtain
speckle-free coefficients.

Section 2. , presents the speckle noise model in
medical US images. Section 3. , presents the brief
description of DST which is used to obtain the trans-
formed coefficients. In Sec. 4. , parameters of
Nakagami distribution are estimated using MoLC and
noise-free shearlet coefficients using absolute central
moments. MAP estimation used for estimating noise-
free shearlet coefficients is presented in Sec. 5.
In Sec. 6. , results are obtained for the proposed
method and are compared with other state of the art
methods. Finally, conclusion of the proposed work is
presented in Sec. 7.

2. Speckle Noise Model

Speckle noise in US images can be represented as
Eq. (1) given below [1].

y = x · n, (1)

where, x is original US image which is corrupted by
speckle noise component n to yield noisy US image y.
The additive noise can be obtained from multiplicative
speckle noise by taking log transformation of noisy im-
age. Suppose, f ′, g′ and n′ are log values of x, y and n,
respectively. It can be represented as given in Eq. (2).

g′ = f ′ + n′. (2)

Then N-level Discrete Shearlet Transform (DST) is
applied on the log-transformed noisy image to obtain
the low pass and high pass subbands. For any arbitrary
subband, the DST of the log-transformed image can be
represented as given in Eq. (3).

Sy = Sx + Sn. (3)

Sx, Sy and Sn are the DST of the log-transformed
version of noiseless, noisy and noise component, re-
spectively. All detail subbands are despeckled while
approximation band remain untouched. The log-
transformed speckle noise can be modelled as zero-
mean Gaussian distribution.

3. Discrete Shearlet Transform

Wavelet transform does not possess the directionality
property due to the association of only scaling and
translation parameters. The idea behind Shearlets is
to provide directional information along with retain-
ing useful information related to wavelets. Shearlets

show an efficient representation of the images contain-
ing edges as compared to wavelets which are only ef-
ficient in dealing with point discontinuity. Discrete
Shearlet Transform (DST) can be realized by combin-
ing Laplacian Pyramid (LP) and Shear Filter (SF) or
Directional Filter (DF) [28]. Figure 1 shows the two-
level decomposition of DST.

f[n1,n2] fd1

(4,4)
fn1

fn2

fd2

(4,4)

Fig. 1: Two-Level Decomposition of Discrete Shearlet Trans-
form.

Figure 2(a) and Fig. 2(b) show the tiling of the spa-
tial frequency plane induced by shearlets and frequency
support of shearlets [29].

ξ1

ξ2

(a) The tiling of the spatial-
frequency plane induced by

the shearlets.

-2j

-22j

(b) The frequency support of
shearlets.

Fig. 2: Spatial-frequency plane and frequency support of shear-
lets.

Equation (4) presents the multidimensional repre-
sentation of Shearlets. A parabolic scaling matrix
Aα,2j is used to change the resolution of generating
functions. The Sk given in Eq. (5) is the shearing ma-
trix used to change the orientation of parabolic scaling
matrix. The value of α ∈ (0, 2).

Aα,2j =

[
2j 0

0 2α
j
2

]
, (4)

and
Sk =

[
1 k
0 1

]
. (5)
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The Discrete Shearlet Transform (DST) can be ex-
pressed as given in Eq. (6).

DSTj,k,m(fj) = ( ¯Ψd
j,k · fj)(2

JA−1
dj Mcjm), (6)

for, j = 0, 1..., J − 1 where

Ψd
j,k = Sd

k/2j/2(pj ·Wj). (7)

Ψd
j,k, is a support function, pj is Fourier coefficient

of 2-D filter and Mc is the sampling matrix, chosen
according to [29].

4. Modelling of Noise-Free
Shearlet Coefficients

Noise-free shearlet coefficients of US image can be mod-
elled as Nakagami distribution due to its flexibility to
describe the amplitude distribution of noise. The prob-
ability density function of Nakagami distribution [30]
is given in Eq. (8).

fL,λ(x) =
2

Γ(L)
(λL)L(x)2L−1exp

[
−λLx2

]
. (8)

In Eq. (8), L is the shape parameter (L > 0), λ
is the scale parameter (λ > 0) and Γ(.) is gamma
function. Nakagami distribution is used for modelling
right-skewed, positive datasets (x ≥ 0). From statisti-
cal properties of Nakagami distribution, MoLC based
speckle reduction method can be appropriately derived
on MAP estimation framework. The parameters of
Nakagami distribution are estimated using MoLC and
that of noise-free shearlet coefficients are estimated us-
ing absolute central moments. Then shearlet trans-
formed coefficients corresponding to clean image are
estimated using Bayesian MAP estimation.

4.1. Parameter Estimation of
Nakagami Distribution

MoLC method is used for parameter estimation of Nak-
agami distribution from the observed noisy data. This
method is widely used for parameter estimation be-
cause of its low variance and high computational effi-
ciency. Absolute values of shearlet coefficients are used
for parameter estimation as MoLC method works only
with a random variable having positive values (<+).
MoLC method is based on Mellin transform defined as
given in Eq. (9) below.

φx(s) = M [fx(x); s] =

∫ ∞
0

(x)s−1fx(x)dx, (9)

where φx(s) is the first characteristic function of sec-
ond kind and fx(x) is the density function of Nakagami

distribution. The First characteristic function of sec-
ond kind for Nakagami distribution is obtained using
Eq. (9) and is given in Eq. (10) below.

φN (s)=
2

Γ(L)
(λL)L

∞∫
0

(x)s−1(x)2L−1exp
[
−λLx2

]
dx. (10)

Equation (10) can be solved using Mellin transform
pair given in Eq. (12).

M [xuexp(−ax2); s]⇔ 1

2
(a)−( s+u

2 )Γ

(
s+ u

2

)
. (11)

The solution of Eq. (10) using Eq. (12) is given be-
low.

φN (s) = (λL)−( s−1
2 ) Γ

(
L+ s−1

2

)
Γ (L)

. (12)

The second characteristic function of second kind is
obtained by taking the natural logarithm of the first
characteristic function of second kind given in Eq. (11).

ΨN (s) = lnφN (s). (13)

The nth order cumulants or log cumulants can be eas-
ily derived by taking the nth order derivative of Eq. (13)
and can be represented as given in Eq. (14).

k̃n(s) =
dΨn

N (s)
dsn

∣∣∣
s=1

. (14)

The first two log cumulants can be obtained by
putting n = 1 and n = 2 in Eq. (14), respectively,
and are given by Eq. (15) and Eq. (16) respectively.

2k̃1 =
1

2
Ψ(0, L)− lnL− lnλ, (15)

4k̃2 = Ψ(1, L). (16)

Here, Ψ(n,L) is the Polygamma function. These
first two log cumulants can also be estimated empir-
ically from observed noisy data Sy = Sy,i|i ∈ (0, N1)
and are given in Eq. (17) and Eq. (18), respectively.
Here, N1 denotes the number of wavelet coefficients in
ith subband.

k̃1 =
1

N1

i=1∑
N1

ln(Sy,i), (17)

k̃2 =
1

N1

i=1∑
N1

[
ln(Sy,i − k̃1)

]2
. (18)

Parameters L and λ corresponding to noisy shearlet
coefficients can be estimated by putting log cumulants
values in Eq. (15) and Eq. (16).
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4.2. Parameter Estimation for
Noise-Free Shearlet Coefficients

For parameter estimation of noise-free shearlet coef-
ficients, it is assumed that the distribution model of
noisy shearlet coefficients is also Nakagami distribu-
tion. Speckle noise is modelled as zero-mean Gaussian
noise. Moments of Nakagami distribution are obtained
by putting s = n+ 1; in first characteristic function of
second kind (Eq. (11)), i.e.

mn = φN (s)|s=n+1, (19)

resulting in (Eq. (20)):

mn = (λL)−
n
2

Γ(L+ n
2 )

Γ(L)
. (20)

Then 2nd and 4th order moments corresponding
to noisy shearlet coefficients are obtained by putting
n = 2 and n = 4 in Eq. (20), yield Eq. (21) and
Eq. (22).

m
Sy

2 =
1

λL

Γ(L+ 1)

Γ(L)
, (21)

and
m
Sy

4 =
1

(λL)2

Γ(L+ 2)

Γ(L)
. (22)

As noise is zero-mean Gaussian so absolute central
moments for the noise-free shearlet coefficients can be
calculated from noisy shearlet coefficients using the ex-
pressions given in Eq. (23) and Eq. (24):

mSx
2 = m

Sy

2 − σ2
n, (23)

and
mSx

4 = m
Sy

4 − 6mSx
2 σ2

n − 3σ4
n, (24)

where σN is the noise standard deviation which can
be estimated from the shearlet coefficients in different
detail bands using robust Median Absolute Deviation
(MAD) [31] as given in Eq. (25) below:

σn =
MAD(Sy,i)

0.6745
. (25)

2nd and 4th order moments of noise-free shearlet co-
efficients can be estimated from Eq. (23), Eq. (24) and
Eq. (25). As the distribution of noise-free shearlet co-
efficients is Nakagami distribution, so the ratio of their
moments can also be computed employing Eq. (21) and
Eq. (22) using Sx = Sy, yields

(mSx
2 )2

mSx
4

=
Γ2(L+ 1)

Γ(L)Γ(L+ 2)
. (26)

Solving Eq. (26), parameter L of noise-free shearlet
coefficients can be estimated. Then, parameter λ can
be estimated in Eq. (27) using Eq. (21), i.e.

λ =
1

LmSx
2

Γ(L+ 1)

Γ(L)
. (27)

4.3. Goodness of Fit for Nakagami
Distribution with Shearlet
Coefficients

Figure 3 shows the histogram and estimated pdfs of
tenth detailed band shearlet coefficients for synthetic
kidney US image. It should be noted that three levels
of 2-D DST are used for the purpose of image decom-
position resulting in 32 detail bands and 1 approxima-
tion band. It can be seen that the data correspond-
ing to shearlet decomposed detail band has been found
to fit well with Nakagami distribution as compared to
Gamma, Inverse Gaussian and Rayleigh Distributions.

D1 data
Nakagami
Gamma
Inverse Gaussian
Rayleigh

Data

D
en

si
ty

0 0,05 0,1 0,20,15 0,30,25 0,40,350

5

10

15

20

25

Fig. 3: Histogram and estimated Pdfs of tenth detailed band
Shearlet coefficients.

Also, for objective evaluation of data fitting with var-
ious distributions Kolmogorov-Smirnov (KS) statistic
[32] is used. The KS distance obtained for Nakagami,
Gamma, Inverse Gaussian and Rayleigh Distributions
are presented in Tab. 1 at various decomposition levels.
Table 1 also proves that the best-fitted distribution is
Nakagami distribution as it gives the lowest value of
KS distance at all decomposition levels as compared to
the KS distances obtained from other distributions.

Tab. 1: Values of the KS statistics for various distributions for
synthetic kidney US image at various shearlet trans-
form decomposition levels.

Shearlet
Decom

-position
Level

Nakagami Gamma Inv.
Gauss. Raylei.

5 0.0245 0.0299 0.3751 0.1910
10 0.0012 0.0412 0.4345 0.1643
15 0.0123 0.0402 0.3994 0.1682
20 0.0298 0.0954 0.3837 0.2858
25 0.0159 0.0359 0.4259 0.1779
30 0.0017 0.0408 0.3938 0.1665
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S̃x = argSx
max

[
− (Sy − Sx)2

2σ2
n

+ ln
(

2

Γ(L)
(λL)L

)
+ (2L− 1)ln(Sx)− (λLS2

x)

]
. (28)

S̃x = sign(Sy)max

0, |Sy| − Tσ2
N

∣∣∣∣∣∣
2λL|Sy|sign(Sy)

− (2L− 1)

Sy

∣∣∣∣∣∣
 . (29)

5. Proposed Method

The flow chart of the proposed method is presented in
Fig. 4 Log-transformed noisy image is used as input im-
age. 2-D DST is applied on the input image to obtain
detail bands and approximation band. Then modelling
of all detail band shearlet coefficients is done assuming
the distribution of shearlet coefficients as a Nakagami
prior. Parameters of Nakagami distribution are esti-
mated using MoLC method and then for noiseless coef-
ficients using absolute central moment method. MAP
estimation is then applied on the noisy shearlet co-
efficients to obtain the noise-free shearlet coefficients.
Then 2-D inverse DST followed by exponential opera-
tion is applied on denoised shearlet coefficients to ob-
tain the final denoised image.

Exp. Operator

Inverse Discrete Shearlet Transform

MAP Estimation

Parameter Estimation Using MoLC and Absolute
Central Moment

Modelling of Detail Band Coefficients Using
Nakagami Distribution

Log. Operator

Noisy Image

Discrete Shearlet Transform

Denoised Image

Fig. 4: Flow Chart of Proposed Method.

A Bayesian MAP estimator is designed to estimate
the noise-free shearlet coefficients S̃x.

S̃x = argSx
max[f(Sx|Sy)]. (30)

Also,

fSn
(Sn) =

1√
2πσn

exp
(
− n2

2σ2
n

)
. (31)

Applying Bayes theorem on Eq. (30), we have

S̃x = argSx
max[f(Sy|Sx)f(Sx)], (32)

S̃x = argSx
max[fSn

(Sy − Sx)fSx
(Sx)], (33)

S̃x = argSx
max[ln(fSn

(Sy −Sx)) + ln(fSx
(Sx))]. (34)

Using Eq. (31) in Eq. (34), we get:

S̃x = argSx
max

[
− (Sy − Sx)2

2σ2
n

+ ln(fSx
(Sx))

]
, (35)

where, fSx
(Sx) is the priori distribution of noise-free

coefficients, assumed here Nakagami distribution and
fSn

(.) is the probability density function of noise which
is assumed to be Gaussian. Now substituting the value
of fSx(Sx) (after taking logarithm) in Eq. (35) to yield
Eq. (28)

S̃x = argSx
max [F (Sx)] . (36)

To maximize function F (Sx) given in Eq. (36),
derivative is the simplest way

dF (Sx)

dSx
− (Sy − Sx)

σ2
N

+
2L− 1

Sx
−2λL|Sx|sign(Sx). (37)

But Eq. (37) is not linear for Sx. Therefore, another
equation proposed by Hyvarinen [33] is taken.

S̃x = sign(Sy)max
(

0, |Sy| − σ2
N

∣∣∣∣dF (Sy)

dSy

∣∣∣∣) . (38)

Substituting the value of derivative given in Eq. (37)
into Eq. (38) where Sx = Sy, resulting Eq. (29).

Thus, estimated clean shearlet coefficients can be ob-
tained using Eq. (29). ’T ’ is a tuning parameter used
in the MAP expression as the noise variance of high-
frequency subbands is variable.

6. Experimentation and Result
Analysis

Experiments were performed on synthetic and real US
images. Objective and subjective performance anal-
ysis of our proposed method is carried out against
six existing methods viz. Wiener [6], Speckle Reduc-
ing Anisotropic Diffusion (SRAD) [11], Wavelet [34],
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Tab. 2: Comparison of various image quality metric for synthetic US image of kidney for noise variance σ2
n = 0.1, 0.2, 0.3.

Methods Noise variance (σ2
n)

Image Performance Parameters

PSNR (dB) SNR (dB) SSIM FOM CC

Noisy Image
0.1 20.6811 10.0717 0.3545 0.5853 0.8662
0.2 17.8353 7.2259 0.2330 0.4483 0.7721
0.3 16.2502 5.6408 0.1788 0.3732 0.7047

Wiener [6]
0.1 24.7836 14.1742 0.7611 0.7117 0.9390
0.2 22.1533 11.5439 0.6993 0.6435 0.8912
0.3 20.7343 10.1249 0.5543 0.5352 0.8535

SRAD [11]
0.1 24.3556 14.7462 0.7707 0.7837 0.9006
0.2 22.6964 11.7870 0.6998 0.6513 0.8918
0.3 20.9537 10.2202 0.5566 0.5885 0.8544

Wavelet [34]
0.1 24.7836 14.1742 0.7611 0.7617 0.9390
0.2 23.1129 12.5035 0.6423 0.5469 0.9083
0.3 21.1831 10.7737 0.6016 0.5947 0.8479

Bayes Shrink [35]
0.1 24.5694 13.9600 0.6740 0.6732 0.9368
0.2 22.1739 11.5645 0.5825 0.5756 0.8901
0.3 20.0081 10.3987 0.5405 0.5673 0.8280

Soft Thresh. [36]
0.1 25.0425 14.8331 0.7297 0.6900 0.9719
0.2 24.8292 14.2198 0.6325 0.4999 0.9523
0.3 23.1015 13.4921 0.5645 0.4620 0.9231

SWT-Cauchy [37]
0.1 25.6175 15.0081 0.7428 0.7029 0.9839
0.2 24.9339 14.5845 0.6349 0.5544 0.9627
0.3 23.5926 13.9832 0.5948 0.4597 0.9242

PROPOSED

T

0.2

0.1

24.7013 14.0919 0.5468 0.7272 0.9361
0.4 26.9023 16.2929 0.6712 0.7993 0.9605
0.6 28.9834 17.9540 0.7960 0.7421 0.9952
0.8 26.4871 15.8777 0.7413 0.6926 0.9635
1.0 26.8302 16.2208 0.7586 0.6648 0.9623

T

0.2

0.2

21.5831 10.7737 0.4120 0.5486 0.8784
0.4 23.7192 13.1098 0.5504 0.7434 0.9297
0.6 25.0747 14.2653 0.6139 0.7337 0.9420
0.8 25.3071 14.4978 0.6601 0.6951 0.9462
1.0 26.0966 15.9872 0.6968 0.6118 0.9688

T

0.2

0.3

20.0906 9.4813 0.3258 0.4716 0.8264
0.4 23.8143 13.2049 0.5364 0.7272 0.9210
0.6 25.6266 15.0172 0.7028 0.7245 0.9457
0.8 25.7983 15.1889 0.7435 0.7015 0.9474
1.0 25.8007 14.1914 0.6122 0.5152 0.9476

BayesShrink [35], Soft thresholding [36] and SWT-
Cauchy [37]. For objective assessment of synthetic im-
ages, parameters Peak Signal to Noise Ratio (PSNR)
[34], Signal to Noise Ratio (SNR) [34], Structure Sim-
ilarity Index Measures (SSIM) [38], Figure of Merit
(FOM) [39] and Correlation Coefficient (CC) [40] were
used. Due to the non-availability of noise-free real US
image as reference image, a commonly used parameter
Mean to Variance Ratio (MVR) [41] is used for objec-
tive quality assessment of real US images. Subjective
quality assessment of both synthetic and real US im-
ages was carried out using visual quality inspection.

6.1. Experiment on Synthetic US
Image

The synthetic image of a kidney (469×522) was created
using ’simulator Field II’ software [42]. Then speckle
noise of variance σ2

n = 0.1, 0.2 and 0.3 is introduced in
synthetic US image using MATLAB.

Table 2 shows the different parameter values ob-
tained at noise variance (σ2

n) = 0.1, 0.2 and 0.3. Re-
sults for Wiener filter are taken from the model avail-
able in Matlab for a window size of 5×5. The cho-
sen parameters for SRAD filter for experiment are 100
iterations each for σ2

n = 0.1, 0.2 for time step size
(∆t) = 0.7, 1 and 1.2 respectively. For Wavelet fil-
ter, two levels (J = 2) of db4 wavelet decomposition
is used and the reconstructed image is obtained after
removal of all detail bands. In BayesShrink method de-
noising is performed using db4 wavelet with three level
(J = 3) of decomposition. Soft thresholding method
uses three levels (J = 3) of db1 wavelet decomposition
for its operation. For the proposed method, results are
taken on different values of tuning parameter T vary-
ing from T = 0.2 to T = 1 in a step size of 0.2 for
all noise variances. The above-chosen filter parameter
values are found to be optimal after performing several
experiments on synthetic US images. The experiments
were conducted for all the above-mentioned filters. It
is also evident from Tab. 2 that the proposed method
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outperforms other methods in terms of parameter val-
ues obtained for a range of noise variance.

(a) Noisy image (σ = 0.2). (b) Wiener.

(c) SRAD. (d) Wavelet.

(e) BayesShrink. (f) Soft Thresholding.

(g) SWT-Cauchy. (h) Proposed.

Fig. 5: Synthetic kidney US reconstructed images obtained for
various denoising methods.

Figure 5(a), Fig. 5(b), Fig. 5(c), Fig. 5(d), Fig. 5(e),
Fig. 5(f), Fig. 5(g) and Fig. 5(h) present synthetic kid-
ney US images for subjective quality evaluation for ex-
isting methods and the proposed method. It can be
seen that the visual quality of the image obtained us-
ing the proposed method is the best among all other
denoised images obtained from other existing methods.
It can be seen clearly that the noise is eliminated and

the edges are also retained in the obtained denoised
image using the proposed method. From subjective
analysis of denoised images, it is evident that the qual-
ity of image obtained using Wiener filter is the worst.
Almost, similar quality of images are obtained using
SRAD and Wavelet filters but are better than the one
obtained from Wiener filter. Also, similar performance
is shown by both BayesShrink and soft thresholding
methods and also the obtained denoised images are
better than the one obtained from Wiener, SRAD and
Wavelet filters in terms of fine detail preservation. The
quality of image obtained using SWT-Cauchy method
is the best among all existing methods but it is less
pleasing as compared to the image obtained from the
proposed method.

6.2. Experiments on Real US Images

A set of real US images was collected from an online
US image database [43]. Experiments were performed
on these images and subjective quality assessment was
carried out. For objective quality assessment, a param-
eter known as MVR is used. MVR is the ratio of mean
to variance of a selected region in an image. A different
value of MVR is obtained for a differently selected re-
gion in each image. A higher value of MVR parameter
is desired in case of a better-denoised image.

Figure 6(a), Fig. 6(b), Fig. 6(c), Fig. 6(d), Fig. 6(e),
Fig. 6(f), Fig. 6(g) and Fig. 6(h) illustrates the real
head US image. It can be seen that the denoised image
obtained using the proposed method is the best for
diagnosis purpose.

Figure 7 presents a real US image of the Abdomen.
Rectangular boxes of four colours viz. blue, red, green
and yellow show the various regions denoted as Re-
gion 1 to Region 4. These regions are selected for
calculation of MVR values which are represented as
MVR1, MVR2, MVR 3 and MVR4. Figure 8 presents
the MVR plot obtained for Abdomen image. For all
the methods presented in Fig. 7, MVR values are cal-
culated in all highlighted regions. It is evident from
Fig. 8 that a higher value of MVR is obtained for the
proposed method as compared to other methods in all
four regions.

Similarly, a total number of 120 different regions
were chosen from a set of 50 real US images for MVR
calculation. Table 3 shows the average MVR values
along with their standard deviations for 120 measure-
ments. MVR values are calculated in all these regions
for all the denoising methods under consideration.

It can be seen from the Tab. 3 that highest average
MVR value along with the lowest standard deviation
value is obtained for the proposed method. This shows
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(a) Noisy image. (b) Wiener.

(c) SRAD. (d) Wavelet.

(e) BayesShrink. (f) Soft Thresholding.

(g) SWT-Cauchy. (h) Proposed.

Fig. 6: Real head US reconstructed images obtained for various
denoising methods.

Fig. 7: MVR calculation in three regions of Abdomen real US
image.
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Fig. 8: MVR plot for Abdomen real US image.

the effectiveness of the proposed method over other
existing methods for speckle noise reduction.

Tab. 3: Comparison of MVR values for different methods.

METHOD Average MVR Values
with Std. Deviation

Noisy Image 11.57± 5.89
Wiener [6] 14.21± 4.92
SRAD [11] 14.98± 4.15
Wavelet [34] 15.18± 4.27

BayesShrink [35] 15.01± 4.62
Soft Thresholding [36] 15.59± 4.04
SWT-Cauchy [37] 16.11± 3.92

Proposed 17.13± 3.71

7. Conclusion

In this paper, a new speckle reduction method based
on shearlet coefficient modelling of US image is pre-
sented. Detailed band shearlet coefficients are mod-
elled as a Nakagami prior. The denoised shearlet co-
efficients are obtained using MAP estimation in each
detail subband. Subjective and objective evaluation is
done for synthetic and real US images. From objec-
tive evaluation of the proposed method, it is evident
that the higher values of all assessment parameters are
obtained for both synthetic and real US images. The
effectiveness of the proposed method can also be seen
from the subjective evaluation of all denoised images
obtained from various methods. Hence, the proposed
method outperforms other existing methods and is bet-
ter in view of US image denoising and fine detail preser-
vation.
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