710 research outputs found

    Programming with process groups: Group and multicast semantics

    Get PDF
    Process groups are a natural tool for distributed programming and are increasingly important in distributed computing environments. Discussed here is a new architecture that arose from an effort to simplify Isis process group semantics. The findings include a refined notion of how the clients of a group should be treated, what the properties of a multicast primitive should be when systems contain large numbers of overlapping groups, and a new construct called the causality domain. A system based on this architecture is now being implemented in collaboration with the Chorus and Mach projects

    Timed-pNets: a communication behavioural semantic model for distributed systems

    Get PDF
    International audienceThis paper presents an approach to build a communicationbehavioural semantic model for heterogeneousdistributed systems that include synchronous and asynchronouscommunications. Since each node of such systemhas its own physical clock, it brings the challenges of correctlyspecifying the system time constraints. Based on thelogical clocks proposed by Lamport, and CCSL proposed byAoste team in INRIA, as well as pNets from Oasis teamin INRIA, we develop timed-pNets to model communicationbehaviours for distributed systems. Timed-pNets are treestyle hierarchical structures. Each node is associated with atimed specification which consists of a set of logical clocksand some relations on clocks. The leaves are representedby timed-pLTSs. Non-leaf nodes (called timed-pNets nodes)are synchronisation devices that synchronize the behavioursof subnets (these subnets can be leaves or non-leaf nodes).Both timed-pLTSs and timed-pNets nodes can be translatedto timed specifications. All these notions and methods are illustratedon a simple use-case of car insertion from the areaof intelligent transportation systems (ITS). In the end theTimeSquare tool is used to simulate and check the validityof our model

    The synchronous languages 12 years later

    Full text link

    Compositional design of isochronous systems

    Get PDF
    International audienceThe synchronous modeling paradigm provides strong correctness guarantees for embedded system design while requiring minimal environmental assumptions. In most related frameworks, global execution correctness is achieved by ensuring the insensitivity of (logical) time in the program from (real) time in the environment. This property, called endochrony or patience, can be statically checked, making it fast to ensure design correctness. Unfortunately, it is not preserved by composition, which makes it difficult to exploit with component-based design concepts in mind. Compositionality can be achieved by weakening this objective, but at the cost of an exhaustive state-space exploration. This raises a trade-off between performance and precision. Our aim is to balance it by proposing a formal design methodology that adheres to a weakened global design objective: the non-blocking composition of weakly endochronous processes, while preserving local design objectives for synchronous modules. This yields an effective and cost-efficient approach to compositional synchronous modeling

    A timeband framework for modelling real-time systems

    Get PDF
    Complex real-time systems must integrate physical processes with digital control, human operation and organisational structures. New scientific foundations are required for specifying, designing and implementing these systems. One key challenge is to cope with the wide range of time scales and dynamics inherent in such systems. To exploit the unique properties of time, with the aim of producing more dependable computer-based systems, it is desirable to explicitly identify distinct time bands in which the system is situated. Such a framework enables the temporal properties and associated dynamic behaviour of existing systems to be described and the requirements for new or modified systems to be specified. A system model based on a finite set of distinct time bands is motivated and developed in this paper

    AutoMoDe – A Transformation Based Approach for the Model-based Design of Embedded Automotive Software

    Get PDF
    International audienceThe AutoMoDe approach manages the complexity of embedded automotive systems by employing a stream-based development paradigm which is specifically tailored to embedded automotive real-time systems. In this paper the tailoring process is explained by transforming a traction control system from a stream-based model to an embedded real-time software model and afterwards integrating the software model on an embedded automotive rapid development hardware

    Language Design for Reactive Systems: On Modal Models, Time, and Object Orientation in Lingua Franca and SCCharts

    Get PDF
    Reactive systems play a crucial role in the embedded domain. They continuously interact with their environment, handle concurrent operations, and are commonly expected to provide deterministic behavior to enable application in safety-critical systems. In this context, language design is a key aspect, since carefully tailored language constructs can aid in addressing the challenges faced in this domain, as illustrated by the various concurrency models that prevent the known pitfalls of regular threads. Today, many languages exist in this domain and often provide unique characteristics that make them specifically fit for certain use cases. This thesis evolves around two distinctive languages: the actor-oriented polyglot coordination language Lingua Franca and the synchronous statecharts dialect SCCharts. While they take different approaches in providing reactive modeling capabilities, they share clear similarities in their semantics and complement each other in design principles. This thesis analyzes and compares key design aspects in the context of these two languages. For three particularly relevant concepts, it provides and evaluates lean and seamless language extensions that are carefully aligned with the fundamental principles of the underlying language. Specifically, Lingua Franca is extended toward coordinating modal behavior, while SCCharts receives a timed automaton notation with an efficient execution model using dynamic ticks and an extension toward the object-oriented modeling paradigm

    Polychronous mode automata

    Get PDF
    International audienceAmong related synchronous programming principles, the model of computation of the Polychrony workbench stands out by its capability to give high-level description of systems where each component owns a local activation clock (such as, typically,distributed real-time systems or systems on a chip). In order to bring the modeling capability of Polychrony to the context of a model-driven engineering toolset for embedded system design, we define a diagramic notation composed of mode automata and data-flow equations on top of the multi-clocked synchronous model of computation supported by the Polychrony workbench. We demonstrate the agility of this paradigm by considering the example of an integrated modular avionics application. Our presentation features the formalization and use of model transformation techniques of the GME environment to embed the extension of Polychrony's meta-model with mode automata

    Asynchronous techniques for system-on-chip design

    Get PDF
    SoC design will require asynchronous techniques as the large parameter variations across the chip will make it impossible to control delays in clock networks and other global signals efficiently. Initially, SoCs will be globally asynchronous and locally synchronous (GALS). But the complexity of the numerous asynchronous/synchronous interfaces required in a GALS will eventually lead to entirely asynchronous solutions. This paper introduces the main design principles, methods, and building blocks for asynchronous VLSI systems, with an emphasis on communication and synchronization. Asynchronous circuits with the only delay assumption of isochronic forks are called quasi-delay-insensitive (QDI). QDI is used in the paper as the basis for asynchronous logic. The paper discusses asynchronous handshake protocols for communication and the notion of validity/neutrality tests, and completion tree. Basic building blocks for sequencing, storage, function evaluation, and buses are described, and two alternative methods for the implementation of an arbitrary computation are explained. Issues of arbitration, and synchronization play an important role in complex distributed systems and especially in GALS. The two main asynchronous/synchronous interfaces needed in GALS-one based on synchronizer, the other on stoppable clock-are described and analyzed

    Denotational Fixed-Point Semantics for Constructive Scheduling of Synchronous Concurrency

    Get PDF
    The synchronous model of concurrent computation (SMoCC) is well established for programming languages in the domain of safety-critical reactive and embedded systems. Translated into mainstream C/Java programming, the SMoCC corresponds to a cyclic execution model in which concurrent threads are synchronised on a logical clock that cuts system computation into a sequence of macro-steps. A causality analysis verifies the existence of a schedule on memory accesses to ensure each macro-step is deadlock-free and determinate. We introduce an abstract semantic domain I(D, P) and an associated denotational fixed point semantics for reasoning about concurrent and sequential variable accesses within a synchronous cycle-based model of computation. We use this domain for a new and extended behavioural definition of Berry’s causality analysis in terms of approximation intervals. The domain I(D, P) extends the domain I(D) from our previous work and fixes a mistake in the treatment of initialisations. Based on this fixed point semantics the notion of Input Berry-constructiveness (IBC) for synchronous programs is proposed. This new IBC class lies properly between strong (SBC) and normal Berry-constructiveness (BC) defined in previous work. SBC and BC are two ways to interpret the standard constructive semantics of synchronous programming, as exemplified by imperative SMoCC languages such as Esterel or Quartz. SBC is often too restrictive as it requires all variables to be initialised by the program. BC can be too permissive because it initialises all variables to a fixed value, by default. Where the initialisation happens through the memory, e.g., when carrying values from one synchronous tick to the next, then IBC is more appropriate. IBC links two levels of execution, the macro-step level and the micro-step level. We prove that the denotational fixed point analysis for IBC, and hence Berry’s causality analysis, is sound with respect to operational micro-level scheduling. The denotational model can thus be viewed as a compositional presentation of a synchronous scheduling strategy that ensures reactiveness and determinacy for imperative concurrent programming
    • …
    corecore