
HAL Id: hal-00768341
https://hal.archives-ouvertes.fr/hal-00768341

Submitted on 21 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Compositional design of isochronous systems
Jean-Pierre Talpin, Julien Ouy, Thierry Gautier, Loïc Besnard, Paul Le

Guernic

To cite this version:
Jean-Pierre Talpin, Julien Ouy, Thierry Gautier, Loïc Besnard, Paul Le Guernic. Compositional
design of isochronous systems. Science of Computer Programming, Elsevier, 2012, 77 (2), pp.113-128.
�10.1016/j.scico.2010.06.006�. �hal-00768341�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/49834544?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00768341
https://hal.archives-ouvertes.fr

Compositional design of isochronous systems

Jean-Pierre Talpina, Julien Ouya, Thierry Gautiera, Löıc Besnarda, Paul Le Guernica

aINRIA, Unité de Recherche Rennes-Bretagne-Atlantique and CNRS, UMR 6074
IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France

Abstract

The synchronous modeling paradigm provides strong correctness guarantees for embed-
ded system design while requiring minimal environmental assumptions. In most related
frameworks, global execution correctness is achieved by ensuring the insensitivity of
(logical) time in the program from (real) time in the environment. This property, called
endochrony or patience, can be statically checked, making it fast to ensure design correct-
ness. Unfortunately, it is not preserved by composition, which makes it difficult to exploit
with component-based design concepts in mind. Compositionality can be achieved by
weakening this objective, but at the cost of an exhaustive state-space exploration. This
raises a tradeoff between performance and precision. Our aim is to balance it by propos-
ing a formal design methodology that adheres to a weakened global design objective:
the non-blocking composition of weakly endochronous processes, while preserving local
design objectives for synchronous modules. This yields an effective and cost-efficient
approach to compositional synchronous modeling.

1. Introduction

The synchronous paradigm [5] provides strong guarantees about the correct execution
of embedded software while requiring minimal assumptions on their execution environ-
ment. In most synchronous formalisms, this is achieved by locally verifying that com-
putation (in the system, in the program) is insensitive to communication delays (from
the environment, from the network), i.e., that a process or synchronous module is “pa-
tient” (in latency-insensitive design [7]) or “endochronous” (literally, “time is defined
from inside” [13]) or a Kahn process (the output flow is a monotonic function of the
input stream, the output clock a sample of the input clock, as in Lustre [8]).

Example. For instance, consider a filtering process that emits an event along the output
signal x every time the value of its input signal y changes. Each event is denoted by a
time tag t1..4 and a value 0, 1. We notice that all output tags t2,4 are related to the input
tags t1..4. This means that process filter is not only deterministic: its output value is a
function of its input value at all times; but it also maintains an invariant timing relation

Email addresses: Jean-Pierre.Talpin@inria.fr (Jean-Pierre Talpin), Julien.Ouy@inria.fr
(Julien Ouy), Thierry.Gautier@inria.fr (Thierry Gautier), Loic.Besnard@irisa.fr (Löıc Besnard),
Paul.LeGuernic@inria.fr (Paul Le Guernic)

Preprint submitted to Elsevier October 22, 2009

between its input and its output: each output tag is a function of the input tags and
values at all times.

filter- -y x(t1, 1) (t2, 0) (t3, 0) (t4, 1) · · · (t2, 1) · · · (t4, 1) · · ·

Hence, we can say that process filter is patient (its local timing behavior is independent
of external timing constraints) or endochronous (it makes an internal sense of time) or a
Kahn process (the output time and value are a function of the input time and value)

In data-flow synchronous formalisms [8, 13], design is usually driven by this very same
safety objective. Each individual process must guarantee that its internal synchroniza-
tion of computations and communications is independent of possible external latency.
However, endochrony or patience is not a compositional property: it is not preserved by
synchronous composition.

Example. Suppose we wish to build a system using this objective of endochrony in mind.
We start by considering elementary blocks, readers (left) and writers (middle). We
assume that they are individually endochronous: each output signal y is a function of an
input signal x timed by an input clock t. Next, suppose we wish to compose a reader and
a writer. The program we obtain is no longer endochronous: the output of the system
(yr or yw) is no longer timely related to an individual clock (tr or tw) unless one adds
a multiplexer block (right) to define (and synchronize) the reader and writer clocks tr,w
by a function of the master clock t.

reader writer multiplex

??

?

? ?

? ? ?

?
tr xr

yr

tw xw

yw tr tw

t

An implementation challenge. Now, consider a more realistic implementation scenario
in which we need to build the simulator for an embedded architecture consisting of
thousands of individually endochronous reader and writer processes communicating via
a loosely time-triggered bus. This is typically the case in modern embedded avionics or
automotive architectures.

readerm writern

bus

??

?

6 6

6 ?

tm xm tn xn

t
.

We see that endochrony is not a reasonable objective to design such as system: we
cannot afford to manually build a global controller to synchronize all individual com-
ponents in the system. Design would take a lot of time to manage all local timing
constraints (if at all doable), the implementation would perform slowly (all blocks would
have to synchronize on a global tick), and the design would have to be updated for every
new block added to or changed in the system. The main concern for such a large system
is compositionality.

2

In [20], it is shown that compositionality can be achieved by weakening the objective
of endochrony: a weakly endochronous system is simply a deterministic system that can
perform independent computations and communications (here, possibly, each individual
block) in any order as long as, of course, this does not alter its global state. Such a system
satisfies the so called diamond property of concurrency theory. In [20], it is further shown
that the non-blocking composition of weakly endochronous processes is isochronous. This
means that the synchronous and asynchronous compositions of weakly endochronous
processes accept the same behaviors. As a result, weak endochrony appears to be a
much more suitable criterion for our design problem: it is compositional and imposes
less design constraints on individual modules.

Example. As an example weakly endochronous interaction, consider the interleaved be-
havior of two deterministic processes, a reader and a writer, depicted using the automaton
on the right. From any reachable state s, choosing to perform trxr and yr first (resp.
twxwyw) should not alter the possibility to perform twxw and yw from s1 (resp. trxryr)
or to perform both actions simultaneously (i.e. during the same transition).

reader writer

??

?

? ?

?

tr xr

yr

tw xw

yw

s1

twxwyw

 A
AA

AA
AA

s

trxryr

??�������

twxwyw ��?
??

??
??
trxryrtwxwyw // s′

s2

trxryr

>>~~~~~~~

We observe that checking that a system is weakly endochronous requires an exhaus-
tive exploration of its state-space to guarantee that its behavior is independent from the
order of inbound communications. This raises an analytic tradeoff between performance
(incurred by state-space exploration) and flexibility (gained from compositionality). We
balance this trade-off by proposing a formal design methodology that weakens the global
design objective (non-blocking composition) and preserves design objectives secured lo-
cally (by accepting patient components). This yields a less general (more abstract) yet
cost-efficient approach to compositional modeling that is able to encompass most of the
practical engineering situations. It is particularly aimed at efficiently reusing most of
the existing program analysis and compilation algorithms of Signal. To implement the
present design methodology, we have designed a simple scheduler synthesis and code
generation scheme, presented in [19].

Plan. The article starts in Section 2 with an introduction to Signal and its polychronous
model of computation. Section 3 defines the necessary analysis framework and Section 4
present our contributed formal properties and methodology. We review related works in
Section 6 and conclude.

2. An introduction to polychrony

In Signal, a process (written P or Q) consists of the synchronous composition (noted
P ||Q) of equations on signals (written x = y f z). A signal x represents an infinite flow
of values. It is sampled according to the discrete pace of its clock, noted x̂. The lexical
scope of a signal x is restricted to a process P by P/x. An equation x = y f z defines

3

the output signal x by the relation of its input signals y and z through the operator f .
A process defines the simultaneous solution of the equations it is composed of.

P,Q ::= x = y f z | P ||Q | P/x (process)

As a result, an equation partially relates signals in an abstract timing model, represented
by clock relations, and a process defines the simultaneous solution of the equations in
that timing model. Signal defines the following kinds of primitive equations:

• A sampling x = y when z defines x by y when z is true and both y and z are present.
In a sampling equation, the output signal x is present iff both input signals y and
z are present and z holds the value true.

• A merge x = y default z defines x by y when y is present and by z otherwise. In a
merge equation, the output signal is present iff either of the input signals y or z is
present.

• A delay equation x = y pre v initially defines the signal x by the value v and then
by the value of the signal y from the previous execution of the equation. In a
delay equation, the signals x and y are assumed to be synchronous, i.e. either
simultaneously present or simultaneously absent at all times.

• A functional equation x = y f z defines x by the successive values of its synchronized
operands y and z through the arithmetic or boolean operation f .

In the remainder, we write V(P) for the set of free signal names x of P (they occur
in an equation of P and their scope is not restricted). A free signal is an output iff it
occurs on the left hand-side of an equation. Otherwise, it is an input signal.

Example. We define the process filter depicted in Section 1. It receives a boolean input
signal y and produces an output signal x every time the value of the input changes. The
local signal s stores the previous value of the input y at all times. When y first arrives,
s is initialized to true. If y and z differ, z is true and then the value of the output x is
true, otherwise it is absent.

x=filter(y)
def
= (x= true when z || z=(y 6=s) || s=y pre true) /sz

2.1. Model of computation
The formal semantics of Signal in defined in the polychronous model of computa-

tion [13]. The polychronous MoC is a refinement of Lee’s tagged signal model [17]. In
this model, symbolic tags t or u denote periods in time during which execution takes
place. Time is defined by a partial order relation ≤ on tags (t ≤ u means that t occurs
before u). A chain is a totally ordered set of tags and defines the clock of a signal: it
samples its values over a series of totally related tags. Events, signals, behaviors and
processes are defined as follows:

- an event is the pair of a tag t ∈ T and a value v ∈ V

- a signal is a function from a chain of tags to values
- a behavior b is a function from names to signals
- a process p is a set of behaviors of same domain
- a reaction r is a behavior with one time tag t

4

Example. The meaning of process filter is denoted by a set of behaviors on the signals x
and y. In line one, below, we choose a behavior for the input signal y of the equation.
In line two defines the meaning of the local signal s by the previous value of y. Notice
that it is synchronous to y (it has the same set of tags). In line three, the local signal z
is true at the time tags ti at which y and s hold different values. It is false otherwise. In
line four, the output signal x is defined at the time tags ti at which the signal z is true,
as expected in the previous example.

y 7→ (t1, 1) (t2, 0) (t3, 0) (t4, 1) (t5, 1) (t6, 0)
s 7→ (t1, 1) (t2, 1) (t3, 0) (t4, 0) (t5, 1) (t6, 1)
z 7→ (t1, 0) (t2, 1) (t3, 0) (t4, 1) (t5, 0) (t6, 1)
x 7→ (t2, 1) (t4, 1) (t6, 1)

Notations. We introduce the notations that are necessary to the formal exposition of the
polychronous model of computation. We write T (s) for the chain of tags of a signal s
and min s and max s for its minimal and maximal tag. We write V(b) for the domain of a
behavior b (a set of signal names). The restriction of a behavior b to X is noted b|X (i.e.
V(b|X) = X). Its complementary b/X satisfies b = b|X ⊎ b/X (i.e. V(b/X) = V(b) \X).
We overload the use of T and V to talk about the tags of a behavior b and the set of
signal names of a process p.

Synchronous structure. The synchronous structure in polychrony is defined by a partial
order that relates behaviors holding the same synchronization relations. Informally, two
behaviors b and c are said clock-equivalent, written b ∼ c, iff they are equal up to an
isomorphism on tags. For instance,

(

y 7→(t1, 1)(t2, 0)(t3, 0)
x7→ (t2, 1)

)

∼

(

y 7→(u1, 1)(u3, 0)(u5, 0)
x7→ (u3, 1)

)

The synchronization of a behavior b with a behavior c is noted b ≤ c. It can be defined
as the effect of “stretching” its timing structure. A behavior c is stretches a behavior b,
written b ≤ c, iff V(b) = V(c) and there exists a bijection f on tags s.t.
∀t, u, t ≤ f(t) ∧ (t < u⇔ f(t) < f(u))
∀x ∈ V(b), T (c(x)) = f(T (b(x))) ∧ ∀t ∈ T (b(x)), b(x)(t) = c(x)(f(t))
Two behaviors b and c are said clock-equivalent, written b ∼ c, iff there exists a

behavior d s.t. d ≤ b and d ≤ c. The synchronous composition p || q of two processes p and
q is defined by combining behaviors b ∈ p and c ∈ q that are identical on I = V(p)∩V(q),
the interface between p and q.

p || q = {b ∪ c | (b, c) ∈ p× q ∧ b|I = c|I ∧ I = V(p) ∩ V(q)}

Asynchronous structure. Whereas “stretching” informally depicts the timing relations
maintained in a synchronous structure, the effect of “relaxing” best described the timing
structure of desynchrnized behaviors. For instance, consider two behaviors b and c which
carry events at unrelated time tages t1..3 and u1..3. Since their signals x and y carry the
same values in the same order, they are said flow-equivalent.

b =

(

y 7→(t1, 1)(t2, 0)(t3, 0)
x7→ (t2, 1)

)

≈

(

y 7→(u1, 1)(u2, 0)(u3, 0)
x7→(u1, 1)

)

= c

5

Formally, a behavior c relaxes b, written b ⊑ c, iff V(b) = V(c) and, for all x ∈ V(b),
b|x ≤ c|x. Two behaviors b and c are flow-equivalent, written b ≈ c, iff there exists a
behavior d s.t. b ⊒ d ⊑ c.

Alternatively, a relaxed behavior c ⊒ b may be seen as the result of passing all
events of the behavior b through a first-in-first-out buffer of either infinite length or of
possibly infinite transport time, exactly as if it was communicated through asynchronous
composition between two processes p and q.

Hence, the asynchronous composition p ‖ q of two processes p and q is defined by
the set of behaviors d that are flow-equivalent to behaviors b ∈ p and c ∈ q along the
interface I = V(p) ∩ V(q).

p ‖ q =
{

d | (b, c) ∈ p× q ∧ b/I ∪ c/I ≤ d/I ∧ b|I ⊑ d|I ⊒ c|I ∧ I = V(p) ∩ V(q)
}

Scheduling structure. To render the causality of events occurring at the same time tag
t, we refine the domain of polychrony with a scheduling relation defined on an abstract
domain of dates D. A date d consists of a time t and a location x. The relation tx → uy

means that the event along the signal named y at u may not happen before x at t.
When no ambiguity is possible on the identity of b in a scheduling constraint, we write it
tx → ty. We constrain scheduling → to contain causality so that t < t′ implies tx →

b t′x
and tx →

b t′x implies ¬(t′ < t).
The definitions for the partial order structure of synchrony and asynchrony in the

polychronous model of computation extend point-wise to account for scheduling relations.
We say that a behavior c is a stretching of b, written b ≤ c, iff V(b) = V(c) and there
exists a bijection f on T which satisfies

∀t, t′ ∈ T (b), t ≤ f(t) ∧ (t < t′ ⇔ f(t) < f(t′))
∀x, y ∈ V(b),∀t ∈ T (b(x)),∀t′ ∈ T (b(y)), tx →

b t′y ⇔ f(t)x →
c f(t′)y

∀x ∈ V(b), T (c(x)) = f(T (b(x))) ∧ ∀t ∈ T (b(x)), b(x)(t) = c(x)(f(t))

Concatenation of reactions. The formulation of the denotational semantics, presented
next, and of its formal properties, make extensive use of the notion of reaction and
concatenation. A reaction r is a behavior with (at most) one time tag t. We write T (r)
for the tag of a non empty reaction r. An empty reaction of the signals X is noted Ø|X .
The empty signal is noted ∅. A reaction r is concatenable to a behavior b iff V(b) = V(r),
and, for all x ∈ V(b), r(x) = ∅ or max(T b(x)) < min(T r(x)). If so, concatenating r to b
is defined by

∀x ∈ V(b),∀u ∈ T (b) ∪ T (r), (b · r)(x)(u) = if u ∈ T (r(x)) then r(x)(u) else b(x)(u)

Example. Two reactions of signal-wise related time tags can be concatenated, written r·s,
to form a behavior. For instance, if t1 < t2 and t2 < t3 we can construct the following
behavior of the signals x, y at the instants t1,2,3 using two successive concatenations.
Notice that the extension of concatenation to behaviors is associative.

(

y 7→(t1, 1)
x7→

)

·

(

y 7→(t2, 0)
x7→(t2, 1)

)

·

(

y 7→
x7→(t3, 1)

)

=

(

y 7→(t1, 1)(t2, 0)
x7→ (t2, 1)(t3, 1)

)

6

2.2. Semantics of Signal

The semantics [[P]] of a Signal process P is defined by a set of behaviors that are
inductively constructed by the concatenation of reactions. We assume that the empty
behavior on V(P), noted Ø|V(p), belongs to [[P]], for all P .

The semantics of deterministic merge x = y default z defines x by y when y is present
and by z otherwise.

[[x = y default z]] =

{

b · r

∣

∣

∣

∣

b ∈ [[x = y default z]], r(x) =

∣

∣

∣

∣

r(y), if r(y) 6= ∅
r(z), if r(y) = ∅

}

The semantics of sampling x = y when z defines x by y when z is true.

[[x = y when z]] =

b · r

∣

∣

∣

∣

∣

∣

b ∈ [[x = y when z]],
u = max(T (b(y))),
t = T (r),

r(x) =

∣

∣

∣

∣

∣

∣

r(y), if r(z)(t) = true

∅, if r(z)(t) = false

∅, if r(z) = ∅

The semantics of a delay x = y pre v initially defines x by the value v (for an initially
empty behavior b) and then by the previous value of y (i.e. b(y)(u) where u is the maximal
tag of b).

[[x = y pre v]] =

b · r

∣

∣

∣

∣

∣

∣

b ∈ [[x = y when z]],
u = max(T (b(y))),
t = T (r),

r(x) =

∣

∣

∣

∣

∣

∣

t 7→ b(y)(u), if r(y) 6= ∅ ∧ b 6= Øxy

t 7→ v, if r(y) 6= ∅ ∧ b = Øxy

∅, if r(y) = ∅ ∧ b = Øxy

The meaning of the synchronous composition P ||Q is defined by [[P ||Q]] = [[P]] || [[Q]] =
{p || q | (p, q) ∈ [[P]] × [[Q]]}. The meaning of restriction is defined by [[P/x]] = {c | b ∈
[[P]] ∧ c ≤ (b/x)}.

Example. The meaning of the equation x = true when (y 6= (y pre true)) consists of a
set of behaviors with two signals x and y. On line one, below, we choose a behavior for
the input signal y of the equation. On line two, we define the signal for the expression
y pre true by application of the function [[]]. Notice that y and y pre true are synchronous
(they have the same set of tags). On line three, the output signal x is defined at the time
tags ti when y and y pre true hold different values, as expected in the previous example.

y 7→ (t1, true) (t2, false) (t3, false) (t4, true) (t5, true) (t6, false)
y pre true 7→ (t1, true) (t2, true) (t3, false) (t4, false) (t5, true) (t6, true)

x 7→ (t2, true) (t4, true) (t6, true)

2.3. Formal properties

The formal properties considered in the remainder pertain to the insensitivity of
timing relations in a process p (its local clock relations) to external communication
delays. The property of endochrony, Definition 1, guarantees that the synchronization
performed by a process p is independent from latency in the network. Formally, let I
be a set of input signals of p, whenever the process p admits two input behaviors b|I
and c|I that are assumed to be flow equivalent (timing relations have been altered by
the network) then p always reconstructs the same timing relations in b and c (up to
clock-equivalence).

Definition 1. A process p is endochronous iff there exists I ⊂ V(p) s.t., for all b, c ∈ p,
b|I≈c|I implies b ∼ c.

7

Example. To prove that the filter is endochronous, consider two of its possible traces b
and c with flow-equivalent input signals

b(y) = (t1, 1)(t2, 0)(t3, 0)(t4, 1) and c(y) = (u1, 1)(u2, 0)(u3, 0)(u4, 1)

They share no tags, but carry the same flow of values. The filter necessarily constructs
the output signals

b(x) = (t2, 1)(t4, 1) and c(x) = (u2, 1)(u4, 1)

One notices that b and c are equivalent by a bijection (ti 7→ ui)0<i<5 on tags: they are
clock-equivalent. Hence, the filter is endochronous.

The weaker definition of endochrony, presented next, requires a definition of the union,
written r⊔s, of two reactions r and s. We say that two reaction r and s are independent
iff they have disjoint domains. Two independent reactions of same time tag t can be
merged, as r ⊔ s.

∀x ∈ V(r) ∪ V(s), (r ⊔ s)(x) = if x ∈ V(r) then r(x) else s(x)

For instance, (y 7→ (t2, 0)) ⊔ (x 7→ (t2, 1)) = (y 7→ (t2, 0)x 7→ (t2, 1)).
Definition 2, below, defines the compositional property of weak endochrony in the

polychronous model of computation. It is a transposition of Definition 1 in [20]. In-
formally, a process p is weakly endochronous iff it is deterministic and can perform
independent reactions r and s in any order. Note that, by Definition 1, endochrony
implies weak-endochrony (e.g. filter is weakly endochronous).

Definition 2. A process p is weakly-endochronous iff
1. p is deterministic: ∃I⊂V(p),∀b,c∈p, b|I =c|I ⇒ b=c
2. for all independent reactions r and s, p satisfies:

(a) if b · r · s ∈ p then b · s ∈ p
(b) if b · r ∈ p and b · s ∈ p then b · (r ⊔ s) ∈ p
(c) if b · (r ⊔ s), b · (r ⊔ t) ∈ p then b · r · s, b · r · t ∈ p

Example. Recall the example of the introduction. The diamond shape
of the behavior that results of the synchronous composition of the
reader and writer processes is that of a weakly endochronous process.
Each atomic behavior (e.g. r, the reader) can be scheduled in any or-
der. Furthermore, it will not alter the possibility to perform the other
behavior (e.g. s) at any time.

s1

s

!!C
CC

CC

s0

r

=={{{{{

s !!C
CC

CC
rs // s4

s2

r

=={{{{{

Definition 3. p and q are isochronous iff p || q ≈ p ‖ q

A process p is non-blocking iff it has a path to a stuttering state (characterized by a
reaction r) from any reachable state (characterized by a behavior b).

Definition 4. p is non-blocking iff ∀b ∈ p,∃r, b · r ∈ p

In [20], it is proved that weakly endochronous processes p and q are isochronous if they
are non-blocking (a locally synchronous reaction of p or q yields a globally asynchronous
execution p ‖ q).

8

3. Formal analysis

For the purpose of program analysis and program transformation, the control-flow
tree and the data-flow graph of multi-clocked Signal specifications are constructed. These
data structures manipulate clocks and signal names.

3.1. Clock relations

A clock c denotes a series of instants (a chain of time tags). The clock x̂ of a signal x
denotes the instants at which the signal x is present. The clock [x] (resp. [¬x]) denotes
the instants at which x is present and holds the value true (resp. false).

c ::= x̂ | [x] | [¬x] (clock)

A clock expression e is either the empty clock, noted 0, a signal clock c, or the conjunction
e1 ∧ e2, the disjunction e1 ∨ e2, the symmetric difference e1 \ e2 of e1 and e2.

e ::= 0 | c | e1 ∧ e2 | e1 ∨ e2 | e1 \ e2 (clock expression)

The meaning [[e]]b of a clock e is defined with respect to a given behavior b and consists
of the set of tags satisfied by the proposition e in the behavior b. The meaning of the
clock x = v (resp. x = y) in b is the set of tags t ∈ T (b(x)) (resp. t ∈ T (b(x))∩T (b(y)))
such that b(x)(t) = v (resp. b(x)(t) = b(y)(t)). In particular, [[x̂]]b = T (b(x)) and
[[[x]]]b = [[x = true]]b. The meaning of a conjunction e ∧ f (resp. disjunction e ∨ f and
difference e \ f) is the intersection (resp. union and difference) of the meaning of e and
f . Clock 0 has no tags.

[[1]]b=T (b) [[0]]b = ∅
[[x = v]]b={t ∈ T (b(x)) | b(x)(t) = v}
[[x = y]]b={t ∈ T (b(x)) ∩ T (b(y)) | b(x)(t) = b(y)(t)}

[[e ∧ f]]b=[[e]]b ∩ [[f]]b
[[e ∨ f]]b=[[e]]b ∪ [[f]]b
[[e \ f]]b=b[[e]]b \ [[f]]b

3.2. Scheduling relations

Signals and clocks are related by synchronization and scheduling relations, denoted
R. A scheduling relation a →c b specifies that the calculation of the node b, a signal or
a clock, cannot be scheduled before that of the node a when the clock c is present.

a, b ::= x | x̂ (node)

A clock relation c = e specifies that the signal clock c is present iff the clock expression
e is true. Just as ordinary processes P , relations R are subject to composition R ||S and
to restriction R/x.

R,S ::= c=e | a→c b | (R ||S) |R/x (timing relation)

A scheduling specification y → x at clock e denotes the behaviors b on V(e) ∪ {x, y}
which, for all tags t ∈ [[e]]b, requires x to preceed y: if t is in b(x) then it is necessarily in
b(y) and satisfies ty →

b tx.

[[y →c x]] = {b | V(b) = V(c) ∪ {x, y} ∧ ∀t ∈ [[c]]b, t ∈ T (b(x))⇒ t ∈ T (b(y)) ∧ ty →
b tx}

9

3.3. Clock inference system

The inference system P : R associates a process P with its implicit timing relations
R. Deduction starts from the assignment of clock relations to primitive equations and is
defined by induction on the structure of P : the deduction for composition P ||Q and for
P/x are induced by the deductions P : R and Q : S for P and Q.

P : R ∧Q : S ⇒ P ||Q : R ||S P : R⇒ P/x : R/x

In a delay equation x = y pre v, the input and output signals are synchronous, written
x̂ = ŷ, and do not have any scheduling relation.

x = y pre v : (x̂ = ŷ)

In a sampling equation x = y when z, the clock of the output signal x is defined by that
of ŷ and sampled by [z]. The input y is scheduled before the output when both ŷ and
[z] are present, written y →x̂ x.

x = y when z : (x̂ = ŷ ∧ [z] || y →x̂ x)

In a merge equation x = y default z, the output signal x is present if either of the input
signals y or z are present. The first input signal y is scheduled before x when it is present,
written y →ŷ x. Otherwise z is scheduled before x, written z →ẑ\ŷ x.

x = y default z : (x̂ = ŷ ∨ ẑ || y →ŷ x || z →ẑ\ŷ x)

A functional equation x = y f z synchronizes and serializes its input and output signals.

x = y f z : (x̂ = ŷ = ẑ || y →x̂ x || z →x̂ x)

We write R |= S to mean that R satisfies S in the Boolean algebra in which timing
relations are expressed: composition R ||S stands for conjunction and restriction R/x for
existential quantification (some examples are given below). For all boolean signals x in
V(R), we assume that R |= x̂ = [x] ∨ [¬x] and R |= [x] ∧ [¬x] = 0.

Example. To outline the use of clock and scheduling relation analysis in Signal, we
consider the specification and analysis of a one-place buffer. Process buffer implements
two functionalities: flip and current.

x=buffer(y)
def
= (x=current(y) || flip(x, y))

The process flip synchronizes the signals x and y to the true and false values of an
alternating boolean signal t.

flip(x, y)
def
= (s= t pre true || t= not s || x̂=[t] || ŷ=[¬t]) /st

The process current stores the value of an input signal y and loads it into the output
signal x upon request.

x=current(y)
def
= (r=y default (r pre false) ||x=r when x̂ || r̂= x̂ ∨ ŷ) /r

10

The inference system P : R infers the clock relations that denote the synchronization
constraints implied by process buffer. There are four of them:

r̂ = ŝ t̂ = x̂ ∨ ŷ x̂ = [t] ŷ = [¬t]

From these equations, we observe that process buffer has three clock equivalence classes.
The clocks ŝ, t̂, r̂ are synchronous and define the master clock equivalence class of buffer.
The two other classes, x̂ = [t] and ŷ = [¬t], are samples of the signal t.

r̂ = ŝ = t̂ x̂ = [t] ŷ = [¬t]

Together with scheduling analysis, the inference system yields the timing relation Rbuffer

of the process under analysis.

Rbuffer

def
=

(

x̂ = [t] || ŷ = [¬t] || r̂ = x̂ ∨ ŷ || s→ŝ t || y →ŷ r || r →x̂ x
)

/rst

From Rbuffer, we deduce r̂ = t̂. Since t is a boolean signal, t̂ = [t]∨ [¬t] (a signal is always
true or false when present). By definition of Rbuffer, x̂ = [t] and ŷ = [¬t] (x and y are
sampled from t). Hence, we have r̂ = x̂ ∨ ŷ and can deduce that Rbuffer |= (r̂ = t̂).

3.4. Clock hierarchy

The internal data-structures manipulated by the Signal compiler for program anal-
ysis and code generation consists of a clock hierarchy and of a scheduling graph. The
clock hierarchy represents the control-flow of a process by a partial order relation. The
scheduling graph defines a fine-grained scheduling of otherwise synchronous signals. The
structure of a clock hierarchy is denoted by a partial order relation � defined as follows.

Definition 5. The hierarchy � of a process P : R is the transitive closure of the maximal
relation defined by the following axioms and rules:

1. for all boolean signals x, x̂ � [x] and x̂ � [¬x]
2. if R |= b = c then b � c and c � b, written b ∼ c
3. if R |= b1 = c1 f c2, f ∈ {∧,∨, \}, b2 � c1, b2 � c2 then b2 � b1.

We refer to c∼ as the clock equivalence class of c in the hierarchy �

1. For all boolean signals x of R, define x̂ � [x] and x̂ � [¬x]. This means that, if we
know that x is present, then we can determine whether x is true or false.

2. If b = c is deductible from R then define b � c and c � b, written b ∼ c. This
means that if b and c are synchronous, and if either of the clocks b or c is known
to be present, then the presence of the other can be determined.

3. If R |= b1 = c1 f c2, f ∈ {∧,∨, \}, b2 � c1, b2 � c2 then b2 � b1. This means that
if b1 is defined by c1 f c2 in g and if both clocks c1 and c2 can be determined once
their common upper bound b2 is known, then b1 can also be determined when b2

is known.

A well-formed hierarchy has no relation b � c that contradicts Definition 5. For
instance, the hierarchy of the process x = y and z || z = y when y is ill-formed, since ŷ ∼ [y].
A process with an ill-formed hierarchy may block.

Definition 6. A hierarchy � is ill-formed iff either x̂ � [x] or x̂ � [¬x], for any x, or
b1 � b2 for any b1 = c1 f c2 such that c1 � b2 � c2 and b2 � b1

11

Example. The hierarchy of the buffer is constructed by application of the first and second
rules of Definition 5. Rule 2 defines three clock equivalence classes {r̂, ŝ, t̂}, {x̂, [t]} and
{ŷ, [¬t]}.

r̂ ∼ ŝ ∼ t̂
[t] ∼ x̂ [¬t] ∼ ŷ

Rule 1 places the first class above the two others and yields the following structure

r̂ ∼ ŝ ∼ t̂

ppp
ppp OOOOOO

[t] ∼ x̂ [¬t] ∼ ŷ

Next, one has to define a proper scheduling of all computations to be performed
within each clock equivalence class (e.g. to schedule s before t) and across them (e.g. to
schedule x or y before r). This task is devoted to scheduling analysis, presented shortly
Section 3.6.

3.5. Disjunctive form

Before to perform scheduling analysis, Signal attempts to eliminate all clocks that are
expressed using symmetric difference from the graph g of a process. This transformation
consists in rewriting clock expressions of the form e1 \ e2 present in the synchronization
and scheduling relations of g in a way that does no longer denote the absence of an event
e2, but that is instead computable from the presence or the value of signals.

Example. In the case of process current, for instance, consider the alternative input
r pre false in the first equation:

r = y default (r pre false)

Its clock is r̂ \ ŷ, meaning that the previous value of r is assigned to r only if y is absent.
To determine that y is absent, one needs to relate this absence to the presence or the
value of another signal.

In the present case, there is an explicit clock relation in the alternate process: ŷ = [¬t].
It says that y is absent iff t is present and true. Therefore, one can test the value of t
instead of the presence or absence of y in order to deterministically assign either y or
r pre false to r

y →[¬t] r [t] ← r pre false

In [3], it is shown that the symmetric difference c \ d between two clocks c and d has
a disjunctive form only if c and d have a common minimum b in the hierarchy � of the
process, i.e.,

c � b � d

We say that the timing relation R is in disjunctive form iff it has no clock expression
defined by symmetric difference. The implicit reference to absence incurred by symmetric
difference can be defined as c \ d=defc∧ d and can be isolated using the following logical
decomposition rules.

12

• conjunction c ∧ d
def
= c ∨ d and disjunction c ∨ d

def
= c ∧ d.

• positive [x]
def
= x̂ ∨ [¬x] and negative [¬x]

def
= x̂ ∨ [x] signal occurrences.

The reference to the absence of a signal x, noted x̂, is eliminated if (and only if) one
of the possible elimination rules applies:

• The “zero” rule: x̂∧ x̂
def
= 0, because a signal is either present or absent, exclusively.

• The “one” rule: c ∧ (x̂ ∨ x̂)
def
= c, because the presence or the absence of a signal is

subsumed by any clock c.

• The synchrony rule: if d ∼ x̂ then x̂
def
= d, to mean that if x̂ cannot be eliminated

but x̂ is synchronous to the clock d, then d can possibly be eliminated.

Example. In the case of process current in the example of the buffer one infers that x̂ � t̂
from x̂ ∼ [t] and t̂ � ŷ from ŷ ∼ [¬t].

ŷ ∼ [¬t] x̂ ∼ [t] r̂ ∼ t̂

Hence x̂ � t̂ � ŷ. Since, in addition, r̂ ∼ t̂, the symmetric difference r̂ \ ŷ can be
interpreted as [t].

Timing relations are in disjunctive form iff they have no clock defined by a symmetric
difference relation. For instance, suppose that d ∼ [x] and that c � b � d. Then, the
symmetric difference c \ d can be eliminated because it can be expressed with c ∧ [¬x].

Definition 7. A process P of timing R and hierarchy � is well-clocked iff � is well-
formed and R is disjunctive.

3.6. Scheduling graph

Given the control-flow backbone produced using the hierarchization algorithm and
clock equations in disjunctive form, the compilation of a Signal specification reduces
to finding a proper way to schedule computations within and across clock equivalence
classes. The inference system of the previous section defines the precise scheduling be-
tween the input and output signals of process buffer. Notice that t is needed to compute
the clocks x̂ and ŷ.

s→ŝ t y →ŷ r r →x̂ x

As seen in the previous section, however, the calculation of clocks in disjunctive form
induces additional scheduling constraints, and, therefore, one has to take them into
account at this stage. This is done by refining the R with a reinforced one, S, satisfying
S |= R, and by ordered application of the following rules:

1. S |= x̂ →x̂ x for all x ∈ V(P). This means that the calculation of x cannot take
place before its clock x̂ is known.

2. if R |= x̂ = [y] or R |= x̂ = [¬y] then S |= y →ŷ x̂. This means that, if the clock of
x is defined by a sample of y, then it cannot be computed before the value of y is
known.

13

3. if R |= x̂ = ŷ f ẑ with f ∈ {∨,∧} then S |= ŷ →ŷ x̂ || ẑ →ẑ x̂. This means that, if
the clock of x is defined by an operation on two clocks y and z, then it cannot be
computed before these two clocks are known.

Reinforcing the scheduling graph of the buffer yields a refinement of its inferred graph
with a structure implied by the calculation of clocks (we just ommitted clocks on arrows
to simplify the depiction). Notice that t is now scheduled before the clocks x̂ and ŷ.

t̂ // t //

��;
;;

; x̂ // x roo r̂oo

ŝ // s

OO

ŷ // y

AA�����

Code can be generated starting from this refined structure only if the graph is acyclic.
To check whether it is or not, we compute its transitive closure:

1. if R |= a →c b then R |= a ։
c b. This just says that the construction of the

transitive closure relation ։ starts from the scheduling graph → of the process.

2. if R |= a ։
c b and R |= a ։

d b then R |= a ։
c∨d b. This means that, if b is

scheduled after a at both clocks c and d then it is scheduled after a at clock c ∨ d

3. if R |= a ։
c b and R |= b ։

d z then R |= a ։
c∧d z. This says that, if b is

scheduled after a at clock c and z after b at clock d then z is necessarily scheduled
after a at clock c ∧ d

The complete graph R of a process P is acyclic iff R |= a ։
e a implies R |= e = 0 for all

nodes a of R. The graph of our example is.

Definition 8. A process P of timing relations R is acyclic iff the transitive closure ։ of
its scheduling relations R satisfy, for all nodes a, if a ։

e a then R |= e = 0.

3.7. Sequential code generation

Together with the control-flow graph implied by the timing relations of a process,
the scheduling graph is used by Signal to generate sequential or distributed code. To
sequentially schedule this graph, Polychrony further refines it in order to remove internal
concurrency without affecting its composability with the environment. This is done by
observing the following rule.

Definition 9. The scheduling graph of S reinforces R iff, for any graph T such that R ||T
is acyclic, then R ||S ||T is acyclic.

Starting from a sequential schedule and a hierarchy of process buffer, Polychrony
generates simulation code split in several files. The main C file consists of opening the
input-output streams of the program, of initializing the value of delayed signals and
iteratively executing a transition function until no values are present along the input
streams (return code 0). Simulation is finalized by closing the IO streams.

int main() {

bool code;

buffer_OpenIO();

code = buffer_initialize();

while (code) code = buffer_iterate();

buffer_CloseIO();

}
14

The most interesting part is the transition function. It translates the structure of
the hierarchy and of the serialized scheduling graph in C code. It also makes a few
optimizations along the way. For instance, r has disappeared from the generated code.
Since the value stored in y from one iteration to another is the same as that of r, it is
used in place of it for that purpose.

In the C code, the three clock equivalence classes of the hierarchy correspond to three
blocks: line 2 (class ŝ ∼ t̂), lines 3 − 5 (class [t] ∼ ŷ) and lines 6 − 9 (class [¬t] ∼ x̂).
The sequence of instructions between these blocks follows the sequence t → y → x of
the scheduling graph. Line 10 is the finalization of the transition function. It stores the
value that s will hold next time.

01. bool buffer_iterate () {

02. t = !s;

03. if t {

04. if !r_buffer_y (&y) return FALSE;

05. }

06. if !t {

07. x = y;

08. w_buffer_x (x);

09. }

10. s = t;

11. return TRUE;

12. }

Also notice that the return code is true, line 11, when the transition function finalizes,
but false if it fails to get the signal y from its input stream, line 4. This is fine for
simulation code, as we expect the simulation to end when the input stream sample
reaches the end. Embedded code does, of course, operate differently. It either waits for
y or suspends execution of the transition function until it arrives.

3.8. Endochrony revisited

The above code generation scheme yields a way to analyze, transform and execute
endochronous specifications. The buffer process, for instance satisfies this property. Lit-
erally, it means that the buffer is locally timed. In the transition function of the buffer,
this is easy to notice by observing that, at all times, the function synchronizes on either
receiving y from its environment or sending x to its environment.

Hence, the activity of the transition function is locally paced by the instants at which
the signals x and y are present. However, remember that the structure of control in the
transition function is constructed using the hierarchy of process buffer. In the case of an
internally timed process, this structure has the particular shape of a tree.

if t {

if !r_buffer_y (&y) return FALSE;

} else {

x = y; w_buffer_x (x);

}

At any time, one can always start reading the state s of the buffer, and calculate t.
Then, if t is true, one emits x and, otherwise, one receives y. The presence of any signal

15

in process buffer is determined from the value of a signal higher in the hierarchy or, at
last, from its root.

r̂ ∼ ŝ ∼ t̂

ppp
ppp OOOOOO

[t] ∼ x̂ [¬t] ∼ ŷ

Formally, regardless of the exact time samples t1 and t2 at which it receives an input
signal y, or the time samples u1 and u2 at which it sends an output signal x, the buffer
always behaves according to the same timing relations: ti occurs strictly before ui and
s is always used at ti and ui. The timing relations between the signals x and y of the
buffer are independent from latency incurred by communicating with the environment:
the buffer is endochronous.

.
y t1 t2 t′1 t′2
s t1 u1 t2 u2 ∼ t′1 u′

1 t′2 u′
2

x u1 u2 u′
1 u′

2

4. Compositional design criterion

We shall revisit the above schema in light of the compositional design methodology to
be presented. To this end, we formulate a decision procedure that uses the clock hierarchy
and the scheduling graph of a Signal process to compositionally check the property of
isochrony. We start by considering the class of Signal processes P that are reactive and
deterministic.

Definition 10. A process P is compilable iff it is well-clocked and acyclic.

Property 1. A compilable process P is reactive and deterministic.

Proof. An immediate consequence of Property 5, in [23], where a well-clocked and acyclic
process is proved to be deterministic.

Next, we consider the structure of a compilable Signal specification. It is possibly
paced by several, independent, input signals. It necessarily corresponds to a hierarchy �
that has several roots. To represent them, we refer to �◦ as the minimal clock equivalence
classes of �, and to �c as the tree of root c in the hierarchy �.

�◦= {c∼ | c ∈ min �} �c= {(c, d)}∪ �d | c � d

When the hierarchy of a process has a unique root, it is endochronous: the presence of
any clock is determined by the presence and values of clocks above it in the hierarchy.

Definition 11. A process P is hierarchical iff its hierarchy has a unique root.

Property 2. A compilable and hierarchical process P is endochronous.

Proof. A detailed proof appears in [23].

16

Example. The hierarchies of process filter (Section 1), left, and of the buffer, right, are
both hierarchical: they are endochronous. Let e = ([y] ∧ [¬z]) ∨ ([¬y] ∧ [z]) and f =
([¬y] ∧ [¬z]) ∨ ([y] ∧ [z]), we have the following hierarchy:

ŷ ∼ ẑ

ttttt
EE

EE
E

x̂ ∼ e f

r̂ ∼ ŝ ∼ t̂

rr
rr

rr
MMM

MMM

x̂[t] ŷ[¬t]

By contrast, a process with several roots necessarily defines concurrent threads of
execution. Indeed, and by definition of a hierarchy, its roots cannot be expressed or
calculated (or, a fortiori, synchronized or sampled) one with the others. Hence, they
naturally define the source of concurrency for the verification of weak endochrony.

4.1. Model checking weak endochrony
Checking that a compilable process p is weakly endochronous reduces to proving that

the roots of a process hierarchy satisfy property (2a) of Definition 2 (weak ordering) by
using bounded model checking.

Property (2a) can be formulated as an invariant in Signal and submitted to its
model checker Sigali [18]. The invariant StateIndependent (x, y) is defined for all pairs
of root clock equivalence classes (an abbreviation of the form [c] = x̂ stands for c =
true when event x default false). It says that, if x is present and y absent at time t (i.e.
cxt ∧¬cyt) and if y is present and x absent at time t+1 (i.e. ¬cxt+1 ∧ cyt+1) then x and
y can both be present at time t (i.e. cxt ∧ cyt), written (¬cxt ∨ cyt)∨ (cxt+1 ∨¬cyt+1)∨
(cxt ∧ cyt).

(1) i = StateIndependent (x, y)
def
=

[cxt+1] = x̂ || cxt = cxt+1 pre false

|| [cyt+1] = ŷ || cyt = cyt+1 pre false

|| i = (not cxt or cyt) or (cxt+1 or not cyt+1) or (cxt and cyt)

/

cxt, cxt+1

cyt, cyt+1

Properties (2b-2c) can similarly be checked with the properties OrderIndependent and
FlowIndependent . Property OrderIndependent is defined by (cxt∧¬cyt)∧ (cyt∧¬cxt)⇒
(cxt ∧ cyt). It means that x and y are independently available at all times.

(2) i = OrderIndependent (x, y)
def
=

(

[cxt] = x̂ || [cyt] = ŷ || i = (not cxt or cyt) or (cxt or not cyt) or (cxt and cyt)
)

/cxt, cyt

Property FlowIndependent is defined for any signal z ∈ V(p) by czt ∧ ((cxt ∧ ¬cyt) ∧
(cyt ∧ ¬cxt))⇒ czt ∧ ((cxt+1 ∧ ¬cyt+1) ∨ (cyt+1 ∧ ¬cxt+1)).

(3) i = FlowIndependent (x, y, z)
def
=

[cxt+1] = x̂
|| [cyt+1] = ŷ
|| [czt+1] = ẑ

|| cxt = cxt+1 pre false

|| cyt = cyt+1 pre false

|| czt = czt+1 pre false

|| i = (not czt or ((not cxt or cyt) or (cxt+1 or not cyt+1)))
or (czt and ((cxt+1 and not cyt+1) or (not cxt+1 and cyt+1)))

/cxt, cxt+1

cyt, cyt+1

czt, czt+1

When the clock hierarchy of a compilable process P consists of multiple roots, we can
use the above properties to verify that it is weakly endochronous.

Property 3. A compilable process P whose roots satisfy criteria (1-3) is weakly en-
dochronous.

17

Proof. We observe that the formulation of properties (1−3) directly translate Definition 2
in terms of timed Boolean equations. Since they are expressed in Signal, one can model-
check them against the specification of the process P under consideration to verify that
it is weakly endochronous.

4.2. Static checking isochrony

While the model-checking proposed in Section 4.1 effectively translates Definition 2 to
determine the largest possible class of weakly-endochronous processes, it may be sensed
to expensive for integration in a design process whose main purpose is automated code
generation. In the aim of efficiently generating sequential or concurrent code starting
from weakly endochronous specifications, we would like to define a simple and cost-
efficient criterion to allow for a large and easily identifiable class of weakly endochronous
programs to be statically checked and compiled. To this end, we define the following
formal design methodology.

Definition 12. If P is compilable and hierarchical then it is weakly hierachic. If P and Q
are weakly hierarchical, P ||Q is well-clocked and acyclic then P ||Q is weakly hierarchical.

By induction on its structure, a process P is weakly hierarchical iff it is compilable
and its hierarchy has roots r1..n such that, for all 1 ≤ i < n, Xi = V(�ri), Pi = P |Xi

is

weakly hierarchical and the pair (
∏i

j=1 Pj , Pi+1) is well-clocked and acyclic.

Theorem 1.

1. A weakly hierarchical process P is weakly endochronous.
2. If P,Q are weakly hierarchical and P ||Q is well-clocked and acyclic then P and Q are
isochronous.

Proof.

1. By definition, a weakly hierarchical process P consists of the composition of a
series of processes Pi that are individually compilable and hierarchical, hence
endochronous. Since endochrony implies weak endochrony, and since weak en-
dochrony is preserved by composition, the composition P of the Pis is weakly
endochronous.

2. Consider the hierarchy of any pair of endochronous processes Pi and Pj in P ||Q
that share a common signal x of clock x̂. The processes Pi and Pj have roots
ri and rj and synchronize on x̂ at a sub-clock ci, computed using ri (since Pi is
hierarchical) and at a clock cj , computed using rj (since Pj is hierarchical).

ri

��
��

�
KK

KK
KK

rj

ss
ss

ss

::
::

:

{ci, x̂, cj}

Since Pi ||Pj is well-clocked, the clocks ci, cj and hence x̂ have a disjunctive form.
Hence, it cannot be the case that x̂ is defined by the symmetric difference of a
clock under ri and another (e.g. under rj). Therefore, any reaction initiated in Pi

to produce x̂ can locally and deterministically decide to wait for a rendez-vous with
a reaction of Pj consuming x̂. Since Pi and Pj are well-formed, then it cannot be

18

the case that x̂ = 0, which would mean that the rendez-vous would never happen.
Finally, since Pi ||Pj is acyclic, the rendez-vous of ci and cj cannot deadlock. This
holds for any pair of endochronous processes Pi and Pj in P ||Q, hence P ||Q is
non–blocking.

3. These conditions precisely correspond to the weak isochrony criterion of [20], namely,
that non-blocking composition (2) of weakly endochronous processes (1) is isochro-
nous. Consequently, the composition of P and Q is isochronous.

5. A compositional design methodology

Our method based on model-checking considers the finite-state abstraction of a pro-
cess where control is expressed by a process on boolean signals and where computation
is expressed by a process on infinite value domains (e.g. integers). Hence, it is not exact,
and determining that a process is weakly endochronous is indeed not decidable in general
for infinite-state systems. The main drawback of this method is that its computational
complexity makes it unaffordable for purposes such as program transformation or code
generation.

By contrast, our method based on the static abstraction and analysis of clock and
scheduling relations reuses the services that our tool implements to perform the succes-
sive specification refinement of program transformations from an initial specification to
generated code. Its use is of very little complexity overhead but it is less precise, and will
potentially reject some programs that may be proved weakly-endochronous using model
checking.

Our static criterion for checking the composition of endochronous processes isochro-
nous defines an effective and cost-efficient method for the integration of synchronous
modules in the aim of architecture exploration or simulation. Interestingly, this for-
mal methodology meets most of the engineering practice and industrial usage of Signal:
the real-time simulation of embedded architectures (e.g. integrated modular avionics)
starting from heterogeneous functional blocks (endochronous data-flow functions) and
architecture service models (e.g. [14]).

Example of a loosely time-triggered architecture. We consider a simple yet realistic case
study built upon the examples we previously presented. We wish to design a simulation
model for a loosely time-triggered architecture (LTTA) [4]. The LTTA is composed of
three devices, a writer, a bus, and a reader. Each device is paced by its own clock.

writer reader

? ?

? ?
· (yb, bb) - ·bus

xw

tw

(yw, bw)

xr

tr

(yr, br)

tb

writer

bus

reader

6 6

6 6 6

xw xw

xr xr

bw

xw

At the nth clock tick (time tw(n)), the writer generates the value xw(n) and an
alternating flag bw(n). At any time tw(n), the writer’s output buffer (yw, bw) contains

19

the last value that was written into it. At tb(n), the bus fetches (yw, bw) to store in
the input buffer of the reader, denoted by (yb, bb). At tr(n), the reader loads the input
buffer (yb, bb) into the variables yr(n) and br(n). Then, in a similar manner as for an
alternating bit protocol, the reader extracts yr(n) iff br(n) has changed.

A simulation model of the LTTA. To model an LTT architecture in Signal, we consider
two data-processing functions that communicate by writing and reading values on an
LTT bus. In Signal, we model an interface of these functions that exposes their (limited)
control. The writer accepts an input xw and defines the boolean flag bw that is carried
along with it over the bus.

(yw, bw) = writer(xw, cw)
def
=

(

x̂w = b̂w = [cw] || yw = xw || bw = not (bw pre true)
)

The reader loads its inputs yr and br from the bus and filters xr upon a switch of br.

xr = reader(yr, br, cr)
def
= (xr = yr when filter(br) || ŷr = [cr])

The bus buffers and forwards the inputs yw and bw to the reader. The clock cb is not
used since the buffers have local clocks.

(yr, br) = bus(yw, bw, cb)
def
= ((yr, br) = buffer (buffer(yw, bw)))

The process ltta is defined by its three components reader, bus and writer.

xr = ltta(xw, cw, cb, cr)
def
= (xr = reader (bus (writer (xw, cw) , cb) , cr))

We observe that the hierarchy of the LTTA is composed of four trees. Each tree corre-
sponds to an endochronous and separately compiled process, connected to the other at
four rendez-vous points (depicted by equivalence relations ∼). The LTTA itself is not
endochronous, but it is isochronous because its four components are endochronous and
their composition is well-clocked and acyclic.

ĉw r̂wŝw t̂w

lllllll
RRRRRRR

r̂r ŝr t̂r

mmmmmmm
QQQQQQQ

ĉr

b̂wx̂w[cw] ∼ x̂b
w[tw] [¬tw]ŷb

w ∼ [tr]x̂
b
r [¬tr]ŷ

b
r ∼ ŷr b̂r[cr]

[fr]x̂r

Static checking vs. model checking. As demonstrated by the example of the LTTA, our
static-checking criterion is very-well suited to check isochrony of large systems made by
composing endochronous modules. However, some of these modules may not strictly
be endochronous, as required by Property 2, but still be weakly-endochronous, in the
sense of Definition 2, and, unfortunately, admit no decomposition into endochronous
sub-modules. An example of such a process is the crossbar switch presented in [20].
Its specification consists of an automaton that switches the routes of two input signals
(y1, y2) along two output signals (x1, x2) depending on the values of two control signals

20

(b1, b2). Signal x1 (resp. x2) is output iff b1 is present and true (resp. b2). Its value is y1

in state s and y2 in state ¬s (resp. y2 or y1).

s

!x1?y1?b1

��
!x1?y1?b1!x2?y2?b2 ::

!x2?y2?b2

ZZ

?¬b1?¬b2

""
¬s

!x1?y2?b1

��
!x1?y2?b1!x2?y1?b2ee

!x2?y1?b2

DD

?¬b1?¬b2

bb

The specification of the switch in Signal consists of data-flow equations (for x1, x2),
state transitions (equations for the state s and its previous value t) and synchronization
constraints (for x̂1, x̂2, ŷ1, ŷ2). The automaton synchronizes the presence of xi with bi

true, hence x̂i = [bi]. It performs state transitions when b1, b2 are false, hence s = ¬t
when ¬b1 and when ¬b2 (and s = t otherwise). Finally, each input signal yi is present
iff either bi and s are true or bj 6=i is true and s is false.

(x1, x2) = switch (y1, b1, y2, b2)
def
=

x1 = y1 when s default y2 when not s || x̂1 = [b1] || ŷ1 = ([b1] ∧ [s]) ∨ ([b2] ∧ [¬s])
|| x2 = y2 when s default y1 when not s || x̂2 = [b2] || ŷ2 = ([b2] ∧ [s]) ∨ ([b1] ∧ [¬s])
|| s = (not t when (not b1 when not b2)) default (t when (b1 default b2))
|| t = s pre true

/st

If we build the hierarchy of the switch, we first observe that it is not endochronous
(because its hierarchy is not a tree). Indeed, none of the equations with which clocks

ŝ, t̂, ŷ1, ŷ2 are defined have a common root: they are all defined from b̂1 and b̂2, which are
not related. We further observe that none of the trees it is composed corresponds to a
subset of equation in the specification. Therefore, it cannot be proved weakly hierarchic
in the sense of Definition 12 because it does not have a decomposition into endochronous
sub-modules. Fortunately, Property 3 can be model-checked to prove that the switch is
indeed weakly-endochronous.

b̂1

xx
x DD

D b̂2

xx
x DD

D

[b1]x̂1 [¬b1] [b2]x̂2 [¬b2] ŝt̂ ŷ1 ŷ2

A methodological guideline that can be drawn from the examples of the LTTA and of
the switch is that,

1. in most cases, synchronous modules are, just like the reader, writer and bus models
of the LTTA, simple data-flow functions that are designed and compiled separately, for
which endochrony can easily be checked using Property 2;

2. in some cases, synchronous modules specify complex and control-dominated behav-
ior which, if at all deterministic, can separately be checked weakly endochronous using
Property 3;

3. and, finally, the composition of synchronous modules from each of the above cate-
gories can compositionally be checked isochronous using Theorem 2.

In a more recent article [21], we propose an alternative to Property 3 for checking
modules such as the switch weakly endochronous. It consists of a static analysis of the

21

Signal specification that determines its minimal set of atomic synchronization patterns
(i.e. from which all its possible reaction are constructed). By using this method, it is
possible to check that the static abstraction of the switch (that which abstracts the delay
equation t = s pre true by ŝ = t̂) is indeed weakly endochronous.

6. Related Work

In synchronous design formalisms, the design of an embedded architecture is achieved
by constructing an endochronous model of the architecture and then by automatically
synthesizing ad-hoc synchronization protocols between the elements of this model that
will be physically distributed. This technique is called desynchronization and a thorough
survey on it is presented in [15]. In the case of Signal, automated distribution is proposed
by Aubry [2]. It consists of partitioning endochronous specifications and synthesizing
inter-partition protocols to ensure preservation of endochrony.

In [16], Girault et al. propose a different approach for the synchronous languages
Lustre and Esterel. It consists in replicating the generated code of an endochronous
specification and in replacing duplicated instructions by inter-partition communications.
As it uses notions of bi-simulation to safely eliminate blocks, it leads to the construction
of a distributed program that consists of endochronously connected programs. But again,
distributed code generation is also driven by the global preservation of endochrony.

In [20], the so-called property of weak endochrony is proposed. Weak endochrony
supports the compositional construction of globally asynchronous system by adhering to
a global objective of weak-isochrony. In [22], we propose an analysis of Signal programs
to check this property. However, we observe that it is far more costly than necessary, at
least for code generation purposes, as it requires an exhaustive state-space exploration.
In [11], Dasgupta et al. also propose a technique to synthesize delay-insensitive protocols
for synchronous circuits described with Pétri Nets.

In the model of latency-insensitive protocols [7], components are denoted by the
notion of pearl (“intellectual property under a shell”). A pearl is required to satisfy an
invariant of patience (which, in turn, implies endochrony [23]) and a latency-insensitive
protocol wraps the pearl with a generic client-side controller: a so-called relay station.

The relay station ensures the functional correctness of the pearl by guaranteeing the
preservation of signal flows (i.e. isochrony). It implements this function by suspending
the pearl’s incoming traffic as soon as it is reported to exceed its consumption capability.
A technique proposed by Casu et al. in [10] refines this protocol to prevent unnecessary
traffic suspension by controlling traffic through pre-determined periodic schedules.

The latency-insensitive protocol is a compositional approach, and can be seen as a
”black-box” approach, in that no knowledge on the pearl (but its capability to be patient)
is required. Just as desynchronization, Casu’s variant [10] is a “grey-box” approach,
where knowledge of the pearl is needed to synthesize an an-hoc controller and, at the
same time, ensure functional correctness.

Our method defines a class of process that can equally be embedded in a synchronous
MoC or in an asynchronous MoC. Therefore, it definitely relates to a larger spectrum
of MoCs, such as the SDF and FSMs found in Ptolemy [6], such as Kahn Process Net-
works [1], and programming paradigms, such as Shim [12]. By contrast with these, our
method attempts to take benefits from both the synchronous world, by locally ensur-

22

ing the highest degree of safety for individual modules, and the asynchronous world, by
providing a similar degree of flexibility gained from global compositionality properties.

Our results based on the static method we initially proposed in [24], to which the
present article adds a formal proof for Theorem 1. The abstraction defined by the static-
checking criterion of Definition 12 defines a simple and effective method to allow for large
systems (consisting of many endochronous modules) to be checked weakly endochronous.

However, this abstraction or approximation comes at the cost of rejecting modules
which cannot be decomposed into endochronous sub-modules. Some of these modules
may however be weakly endochronous, like the crossbar of Section 5. Fortunately, the
model-checking criterion of Property 3can instead be used to allow for integrating such
modules. As a result, a method to cover the largest possible class of weakly endochronous
systems would consist of:

1. checking elementary modules endochronous (using Property 2);
2. checking non-endochronous modules weakly endochronous (using Property 3); and
3. checking the composition of such modules isochronous (using Theorem 2).

7. Conclusions

The clock analysis at the core of our approach shares similarities with desynchro-
nization and latency insensitivity. It avoids the need for any explicit suspension mecha-
nism thanks to the determination of precise timing relations. This yields a cost-effective
methodology for the compositional design of globally asynchronous architectures starting
from synchronous modules.

This methodology balances a trade-off between cost (of verification) and composi-
tionality (of design). It maintains a compositional global design objective of isochrony
while preserving properties secured locally (endochrony) by checking that composition
is non-blocking. This yields an efficient approach to compositional modeling embedded
architectures which, in addition, meets actual industrial usage.

The commercial implementation of Signal, Sildex, commercialized by TNI, is widely
used for the real-time simulation of embedded architectures starting from heterogeneous,
possibly foreign, functional blocks (merely endochronous, data-flow functions) and ar-
chitecture service models (e.g. the ARINC 653 real-time operating system [14]). As an
example, TNI has developed a real-time, hardware in-the-loop, simulator of onboard
electronic equipments for a car manufacturer.

Our technique efficiently reuses most of existing compilation tool-suites available for
Signal in order to implement our proposal, which justifies presenting it in sufficient details
in the present article. We are currently upgrading the Polychrony toolset, that supports
the Signal specification formalism, with a simple controller-synthesis and code generation
scheme supporting the present methodology.

References

[1] Samson Abramsky. A generalized Kahn principle for abstract asynchronous networks. In Interna-
tional Conference on Mathematical Foundations of Programming Semantics. Lectures Notes in Com-
puter Science v. 442. Springer, 1989.

[2] Pascal Aubry. Mises en oeuvre distribuées de programmes synchrones. Thèse de l’Université de
Rennes, 1997.

23

[3] Löıc Besnard. Compilation de Signal: horloges, dépendances, environnements. Thèse de l’Université
de Rennes, 1992.

[4] Albert Benveniste, Paul Caspi, Paul Le Guernic, Hervé Marchand, Stravos Tripakis, Jean-Pierre
Talpin. A protocol for loosely time-triggered architectures. Embedded Software Conference. Lectures
Notes in Computer Science. Springer Verlag, October 2002.

[5] Albert Benveniste, Paul Caspi, Stephen Edwards, Nicolas Halbwachs, Paul Le Guernic, and Robert
de Simone. The Synchronous Languages Twelve Years Later. Proceedings of the IEEE, 2003.

[6] Joseph Buck, Soonhoi Ha, Edward Lee, David Messerschmitt. Ptolemy: a framework for simulating
and prototyping heterogeneous systems. The Morgan-Kaufmann Syetems on Silicon series. Kluwer,
2001.

[7] Luca Carloni, Ken McMillan, and Alberto Sangiovanni-Vincentelli. The theory of latency-insensitive
design. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, v. 20(9).
IEEE, 2001.

[8] Paul Caspi, Daniel Pilaud, Nicolas Halbwachs and John Plaice. Lustre: a declarative language for
programming synchronous systems. Principles of Programming Languages. ACM, 1987.

[9] Paul Caspi, Alain Girault, and Daniel Pilaud. Distributing Reactive Systems. International Confer-
ence on Parallel and Distributed Computing Systems. ISCA, 1994.

[10] Mario Casu, Luca Macchiarulo. A new approach to latency insensitive design. Design Automation
Conference. ACM, 2004.

[11] Sohini Dasgupta, Dumitru Potop-Butucaru, Benôıt Caillaud, Alex Yakovlev. Moving from Weakly
Endochronous Systems to Delay-Insensitive Circuits. In Formal Methods for GALS Design, Elec-
tronic Notes in Theoretical Computer Science. Elsevier, 2006.

[12] Stephen Edwards, Olivier Tardieu. Shim: a deterministic model for heterogeneous systems. Inter-
national Conference on Embedded Software. ACM, 2005.

[13] Paul Le Guernic, Jean-Pierre Talpin, and Jean-Christophe Le Lann. Polychrony for system design.
Journal of Circuits, Systems and Computers. World Scientific, 2003.

[14] Abdoulaye Gamatié, Thierry Gautier. Synchronous Modeling of Avionics Applications using the
SIGNAL Language. Real-Time and Embedded Technology and Applications Symposium. IEEE,
2003.

[15] Alain Girault. A survey of automatic distribution methods for synchronous programs. In Inter-
national Workshop on Synchronous Languages, Applications and Programs. Electronic Notes in
Theoretical Computer Science. Elsevier, 2005.

[16] Alain Girault, Xavier Nicollin, and Marc Pouzet. Automatic rate desynchronization of embedded
reactive programs. ACM Transactions on Embedded Computing Systems, 5(3). ACM, 2006.

[17] Edward Lee, and Alberto Sangiovanni-Vincentelli. “A framework for comparing models of compu-
tation”. In IEEE transactions on computer-aided design, v. 17, n. 12. IEEE, 1998.

[18] Hervé Marchand, Eric Rutten, Michel Le Borgne and M. Samaan. Formal Verification of programs
specified with Signal : application to a power transformer station controller. Science of Computer
Programming, v. 41(1). Elsevier, 2001.

[19] Julien Ouy, Jean-Pierre Talpin, Löıc Besnard, and Paul Le Guernic. Separate compilation of poly-
chronous specifications. Formal Methods for Globally Asynchronous Locally Synchronous Design.
Electronic Notes in Theoretical Computer Science, Elsevier, 2007.

[20] Dimitru Potop-Butucaru, Benoit Caillaud, and Albert Benveniste. Concurrency in synchronous
systems. In Formal Methods in System Design. Kluwer, 2006.

[21] Dimitru Potop-Butucaru, Robert de Simone, Yves Sorel, Jean-Pierre Talpin. From Concurrent Mul-
ticlock Programs to Deterministic Asynchronous Implementations. In Application of Concurrency
to System Design. IEEE Press, 2009.

[22] Jean-Pierre Talpin, Dimitru Potop-Butucaru, Julien Ouy, and Benoit Caillaud. From multi-clocked
synchronous specifications to latency-insensitive systems. In Embedded Software Conference. ACM,
2005.

[23] Jean-Pierre Talpin and Paul Le Guernic. An algebraic theory for behavioral modeling and protocol
synthesis in system design. Formal Methods in System Design. Special Issue on formal methods for
GALS design. Springer, 2006.

[24] Jean-Pierre Talpin, Julien Ouy, Löıc Besnard, Paul Le Guernic. Compositional design of isochronous
systems. In Design Analysis and Test in Europe (DATE’08). IEEE, 2008.

24

	Introduction
	An introduction to polychrony
	Model of computation
	Semantics of Signal
	Formal properties

	Formal analysis
	Clock relations
	Scheduling relations
	Clock inference system
	Clock hierarchy
	Disjunctive form
	Scheduling graph
	Sequential code generation
	Endochrony revisited

	Compositional design criterion
	Model checking weak endochrony
	Static checking isochrony

	A compositional design methodology
	Related Work
	Conclusions

