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Abstract: The AutoMoDe approach manages the 
complexity of embedded automotive systems by 
employing a stream-based development paradigm 
which is specifically tailored to embedded 
automotive real-time systems. In this paper the 
tailoring process is explained by transforming a 
traction control system from a stream-based model 
to an embedded real-time software model and 
afterwards integrating the software model on an 
embedded automotive rapid development hardware.  

Keywords: AutoFOCUS, ASCET, INTECRIO, 
Refinement, Embedded Software. 

1. Introduction 

The amount of automotive electronics has grown 
considerably in the last forty years. However, the 
resulting complexity has reached a level which can 
hardly be handled by current modeling means. The 
impact of the complexity to automotive software 
design has been foreseen more than a decade ago. 
Several projects have been started since then trying 
to define methods and tools to manage the 
complexity of embedded automotive control software 
by using high-level software structures. For example, 
ten years ago DaimlerChrysler started to tailor 
ROOM concepts for body electronic systems in the 
TITUS project [12]. In 1998, the French automotive 
industry started the AEE1 project [13] which was 
finished in 2001. Both projects resulted in a common 
European research effort called EAST/EEA[11]. This 
project finished in summer 2004 and provided as 
one of the results an automotive architecture 
description language (ADL)[1]. Last but not least, the 
AUTOSAR development partnership [14] provides 
with the software component description a 
framework for high-level software description. The 
described approaches for high-level design, along 
with commercially available tools for detailed 
(control) software design, provide a wealth of proven 
abstraction mechanisms for all layers of the 
embedded software design chain. Unfortunately, 
each modeling approach is currently restricted to 
particular aspects of embedded automotive software 

design like networks, control-algorithms, or software 
architecture. An accepted and mature modeling 
framework integrating the different aspects of 
embedded software development is still missing. 
Hence, there still remains a lot of manual integration 
work to be done when designing an ECU-network. 
The manual integration work is centered around the 
questions how to integrate new functionality in 
existing E/E-architectures or how to optimize an E/E-
architecture for a given number of functions. As a 
rule, designing an E/E-architecture appears as a 
mixture of both. 

AutoMoDe is a joint research project consisting of 
members of the Software & Systems Engineering 
group at the Technische Universität München, 
Validas AG, ETAS GmbH, Robert Bosch GmbH, and 
BMW AG. The overall goal of the project is to tackle 
the integration challenge in model-based automotive 
development, and develop an integrated 
methodology for automotive control software based 
on custom, problem-specific design notations with an 
explicit formal foundation. 

2. AutoFOCUS Concepts 

The concepts developed in the AutoMoDe project 
are integrated and reflected in the modeling & 
development framework AutoFOCUS. In this section 
we briefly detail its semantics and the employed 
description techniques. 

2.1 Semantics  

Generally, the AutoFocus tool provides an 
embedded systems specific realization of the 
FOCUS framework[17]. Since its conception in 1996, 
it has been successfully used for modeling a large 
number of case studies, including, e.g., an 
automotive body-electronics system described in [7]. 
AutoFOCUS uses a so-called stream-based approach 
where a system is considered as components 
exchanging messages explicitly over streams. 
Basically, a stream is an ordered set of typed 
messages. Messages in turn are time stamped with                                                            
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respect to a global, discrete time base, as indicated 
in the lower part of Figure 1. 

 
Figure 1: AutoFocus Execution Scheme 

Because the discrete time base of AutoFocus 
abstracts from implementation details such as 
concrete timing or communication mechanisms, the 
use of additional, explicit timing information below 
the chosen granularity of observable discrete clock 
ticks is avoided. Examples of for such additional 
detailed assumptions include, for instance, the exact 
ordering of message arrivals within a time slot, or the 
precise duration and delays of transfer. Real-time 
intervals of the implementation are therefore 
abstracted by the logical-time intervals. In our 
opinion, this discrete-time and stream-based 
programming model, with dedicated timing and 
typing assumptions, suits the needs of automotive 
embedded software modeling better than modeling 
and programming approaches based on sequential 
languages, like C/C++. However, in order to support 
the dominating implementation platforms in the 
automotive field, stream-based models have to be 
transformed during the design process to OSEK-
based real-time systems, with threads programmed 
in a sequential language.  

Furthermore, AutoFOCUS implements the main 
properties of an architecture description language 
(ADL). These are components, connectors, typed 
interfaces, and hierarchies.  

 
1. In AutoFOCUS, components are called in 

AutoFOCUS System Structure Diagrams (SSD). 
Each SSD has directed ports for the sending 
and receiving of signals. Signals, i.e. messages, 
are typed and communication between SSD 
components deliberately composed with an 
implicit delay. Additionally, an SSD may contain 
local variables. An SSD can be refined by either 
other SSDs or by using an STD. 

2. Behavior is expressed in AutoFocus by State 
Transition Diagrams (STD) and Dataflow 
Diagrams (DFD). 

 

STDs represent extended finite state machines. As 
such, they perform a transition if either the 

appropriate signal arrives and a given pre-condition 
is true, or, in case no signal is specified, the pre-
condition alone is true. During the transition, internal 
variables of the assigned SSD can be manipulated 
as well as signals being sent via the associated 
ports. 

Data Flow Diagrams (DFD), see Figure 3, Figure 4, 
and Figure 14 - Figure 16, define an algorithmic 
computation of a component. Graphically, DFDs are 
similar to SSDs. DFDs are built from individual 
blocks with ports connected by channels. Typing of 
ports is dynamic, using type inference properties of 
operators. A block may be recursively defined by 
another DFD. The behaviour of atomic DFD blocks is 
given either through a STD, or directly through a 
textual expression (function) in AutoFocus’ base 
language. An example of such a function is shown in 
Figure 5. It is possible to define adequate block 
libraries for discrete-time computations with this 
mechanism. 

In contrast to the delayed composition primitives in 
SSDs, the semantics of DFD composition is 
“instantaneous”, in the spirit of synchronous 
languages[16]. In the AutoFOCUS tool, instantaneous 
communication primitives are accompanied by a 
causality check for detecting instantaneous (or 
causal) loops. Note that computations “happening at 
the same time” on the level of logical time are 
perfectly valid abstractions of sequential, time-
consuming computations on the level of real-time 
implementation if the abstract model’s computations 
are observed with a delay, that is such as the delays 
which are automatically introduced by SSD 
composition. The duration of the delay then defines 
the deadline for the sequential computation. 

The message-based time-synchronous commu-
nication model does cater to both periodic and 
sporadic communication as required for a mixed 
modeling of time-triggered and event-triggered 
behavior. As shown in Figure 1, each channel in the 
abstract model either holds a message represented 
by an explicit value or the “√” (“tick”) value indicating 
the absence of a message in that time instant. Thus 
modeling of event-triggered behavior is naturally 
covered by the AutoFOCUS notation by reacting 
explicitly depending on the presence (or absence) of 
a message. The extended AutoFOCUS notation is 
described in more detail in [5].  

The frequency of signals as well as event patterns 
are represented in the AutoFOCUS notation as 
clocks: That is, each message flow in AutoFOCUS is 
associated with such a clock. For a given flow, the 
flow’s clock indicates either the frequency of 
message exchange (periodic case), or a condition 
describing the event pattern (aperiodic case). 
Syntactically, a clock is simply a Boolean expression 
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evaluating to logical “true” whenever a message is 
present on the clock’s flow. For comfortable 
modeling, clocks are supported by an inference 
system, similar to type inference in programming 
languages. Communication between differently 
clocked partitions of the model is supported by 
appropriate sampling operators. 

3. Example for AutoFocus modeling  

3.1  A Simple Traction Control System 

The AutoMoDe Methodology will be demonstrated 
by means of a Traction Control (TC) System. As a 
rule, a traction control system compares the wheel 
speeds of the driven wheels with the actual vehicle 
velocity. If the wheel speed is above the actual 
vehicle velocity, then there is slip which is introduced 
by the engine torque. In this case, two typical actions 
are taken. 

1. If just one of the driven wheels currently 
experiences slip, the brake caliper might be 
actuated actively.  

2. If both wheels are currently under slip, the 
engine torque will be reduced. In a gasoline 
engine, this might be achieved by manipulating 
the ignition or the throttle valve. 

In this example, we consider the second case only 
and have chosen the throttle manipulation algorithm. 
Wheel- and vehicle speed signals are also used in 
Antilock-Braking-Systems (ABS) which also provides 
caliper interaction. Therefore, TC systems often 
come along with an ABS system, doing engine 
management interaction by means of a CAN-Bus. 

3.2 The Traction Control Model 

Figure 14 shows the traction control algorithm as 
AutoFOCUS model in its functional environment, 
namely the ABS system components as well as the 
throttle controller. The ABS-components shown are 
reference-velocity (Referenzgeschwindigkeit) 
determination, wheel-slip and acceleration-control 
(Bremsschlupf and Beschleunigungsregelung) as 
well as a coordination of both control strategies. The 
result of the coordination is a pressure request 
(Druckanforderung) to the hydraulic valves which 
manage the fluid supply to the calipers. 

From the wheel-speed signals a reference velocity 
will be calculated against which the actual wheel 
speeds is compared. The resulting slip is normalized 
w.r.t. the vehicle velocity and then classified. In this 
example this means that two different slip values are 
reached. The slip-determination is shown in Figure 2 
while the slip-classification is shown in Figure 3. The 
rightmost block of Figure 15 influences the current 

throttle position by a certain amount if the wheel slip 
of both wheels is outside the limits.  

 

Figure 2: Inner View of the Slip Determination DFD 

 

Figure 3: Inner View of the Slip Classification DFD 

The amount of throttle actuation is calculated in the 
throttle control block as shown in top-leftmost block 
of Figure 16. This amount is compared with the 
actual throttle position and the driver wish (target-
position). The result of this comparison drives the 
throttle-valve. The throttle-valve is itself a dynamic 
system which has to be controlled. This is done by a 
PID-control algorithm which limits the throttle-angle. 

The actual control value for the throttle drives a 
motor via PWM-signals. PWM-signal generation is 
part of the hardware abstraction and is delivered in 
this example as a graphical representation of a 
rapid-development system’s I/O-boards. The same is 
done for the wheelspeed-sensors and the throttle-
valve sensor. According to the vehicle dynamics, the 
traction control system is sampled with different 
rates. For example, the wheel- and vehicle speed 
determination might run in 6 ms, while the traction 
control might run in 12 ms. Throttle-control is done 
every ms. In the stream-based model, the rates are 
described as different clocks while in the embedded 
software-model, the differently clocked model 
partitions will be assigned to disjoint preemptive 
tasks, each task triggered at a rate corresponding to 
the clock in the model. 

4. Refinement to ASCET/INTECRIO 

Using the stream-based design approach of 
AutoFOCUS and applying model based checks to the 
control algorithm is just one crucial part of embedded 
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automotive software development. The properties 
shown on model level should be retained in the real-
time execution scheme too. This execution scheme 
consists of Interrupt-Service Routines (ISR), Tasks 
which run so-called processes in a sequential 
manner, so-called messages as inter process 
communication (IPC) mechanisms, clusters, 
modules, and sequence calls. Furthermore, there 
are I/O devices realizing the interface with the 
pysical world. 

To transform the TC-system from the stream-based 
world to the real-time world an AutoMoDe refinement 
chain is introduced which incorporate the ETAS tools 
ASCET [8], RTA-OSEK [10], and INTECRIO [9]. This 
refinement chain is shown in Figure 4. On the left 
side, there is the stream-based TC model defined in 
AutoFOCUS. Its components are transformed to real-
time modules, processes, messages and clusters in 
ASCET, shown in the top-middle. The ASCET code-
generator will transform the clusters to C-code which 
are then integrated on a Rapid-Development target  
(as shown in the lower right part). Target integration 
comprises the implementation of an OS-schedule. 
The OS-schedule will be derived from the AutoFocus 
clock-scheme but taking into account furthermore 
the interrupts as generated by the I/O-boards. The 
schedule is checked with the analysis feature of the 
RTA-OSEK configuration tool. The target integration 
step is shown in the center of Figure 4. 

 
Figure 4: AutoMoDe Refinement Toolchain 

In the remainder of this section, the applied 
transformation steps are described in detail: 

•  Module-Identification 
•  Sequence-Call-Generation 
•  Cluster-Definition 
•  Software-System Construction 
•  Target-Integration 
•  OS-Configuration. 

ASCET modules group processes and messages. 
Processes perform the algorithmic work by executing 
sequence calls which are to some extend 

equivalents to assignments in sequential 
programming languages, i.e. there are operations 
and variables. To exchange information with other 
processes (either of the same or an other module) 
they read and write to messages. After code-
generation messages are realized as consistent IPC 
variables. Processes are linked to operating systems 
tasks therefore performing the actual work.  

4.1 Module-Identification & Sequence-Call-
Generation 

The currently used AutoMoDe refinement algorithm 
transforms the hierarchically lowest level of 
AutoFocus DFDs to ASCET modules. The notation 
used for showing the bottom-level DFD clusters in 
AutoFocus is called Cluster Communication Diagram 
(CCD), and is detailed in [5]. Within each DFD, the 
elementary AutoFocus blocks which are described 
as terms in a textual language, will be transformed to 
ASCET sequence calls. An example for this 
transformation is the function which tests whether 
the actual slip is above the limit lambda2 as shown 
in the upper right block of Figure 3. The function of 
this block is shown in the lowest line of the block 
properties of Figure 5. The corresponding sequence 
call in ASCET is shown in Figure 6. The slip-
classification component of Figure 3 is shown as 
ASCET block diagram in Figure 7. ASCET needs 
just three sequence calls instead of five because the 
parameter constructing blocks shown in the left part 
of Figure 3 are represented by specific blocks in 
ASCET. 

 
Figure 5: Properties of the Above-Lambda2 

Elementary DFD Block 

 
Figure 6: ASCET Sequence Call for Above-Lambda2 

Function 

As a rule, the number of the module internal 
variables is determined automatically. Each port of a 
DFD is translated to an ASCET-message. Per 
module, there is one process. More sophisticated 
clustering algorithms based e.g. on the port’s clock 
information are currently under developement. 
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Figure 7: ASCET representation of the Slip 

Classification Component 
Figure 8: Reference Speed Calculation Cluster in 

ASCET These clustering algorithms as well as other model 
transformations are defined in AutoFOCUS with the 
help of the Operation Definition Language (ODL) 
[15]. The ODL is a first-order logic language which 
allows the definition of tests and transformations. 
Within an ODL expression user interaction is 
possible. For example a particular clustering 
algorithm may ask the user to provide a clock and 
some components using this clock. Afterwards the 
algorithm transforms the AutoFocus model by 
inserting appropriate clusters including the 
necessary rerouting of the communication. These 
clusters are the base for the next step. 

4.3 Software System Construction 

After all ASCET modules have been clustered to 
ASCET projects, the ASCET-code generator using 
the INTECRIO target is applied to all clusters. The 
result is the C-code per cluster as well as a code 
description using the SCOOP-IX format. Both 
description establish an INTECRIO module, not to 
be mistaken for an ASCET module. For software 
system construction in INTECRIO, all clusters are 
imported as INTECRIO modules to INTECRIO and 
might be further clustered by INTECRIO functions. 
The result of all clustering steps is shown in Figure 9 
. Sensor- and actuator modules are shown in the 
left- and right side of the software system directly 
connected to ports. E.g., the wheel speed calculation 
is done by edge detection. These ports will interface 
the modules representing the I/O-boards of an ES-
1000 rapid prototyping system. Such a system is 
shown in Figure 10. 

4.2 Cluster-Definition 

The next refinement step is the clustering of ASCET 
modules to ASCET projects. ASCET project 
clustering is a step that is performed semi-
automatically and requires user-interaction. For 
example, the reference speed calculation being 
mandatory for the anti-lock-bracking system as well 
as for the traction control is composed of five 
clusters in AutoFocus and hence are represented by 
five modules in ASCET. As can be seen in Figure 8, 
each connector is represented by messages which 
are shown conceptually in ASCET. Since after 
appropriate grouping to clusters, all the DFD blocks 
defining a given cluster are on the same clock, and 
because the vehicle velocity is used by other 
functions as well, it is sensible to cluster these 
components together which means they have to run 
on the same µC in an ECU and its processes are 
scheduled in the same OS-task. 

 
Figure 9: The Traction-Control System in INTECRIO 

ERTS 2006 – 25-27 January 2006 – Toulouse Page 5/8 



  
Figure 10: ES 1000 Rapid Prototyping System with 

I/O-Boards 

4.4 Target Integration 

The ETAS rapid prototyping system ES 1000 is 
VME-bus based. For this traction control example it 
consists of a microprocessor board (ES 1135), an 
A/D-converter board (ES 1303), a PWM board (ES 
1330), and, for the edge detection of the inductive 
wheelspeed-sensors, a sophisiticated digital I/O-
board (ES 1325). The software interface represen-
tation of the A/D-converter board and the digital I/O-
board as INTECRIO modules is shown in Figure 11 
on the left side whereas the PWM modules for the 
hydraulic-valve interaction and the throttle-motor are 
shown on the right. 

 
Figure 11: The Traction Control System in 
INTECRIO refined to run on a RP-System 

4.5 OS-Configuration 
 

The AutoMoDe traction control model employs 
streams running on different clocks. From the 
AutoMoDe model based point of view, the throttle 
control algorithm runs 6 times as fast as the anti-
lock-bracking algorithms and 12 times as fast the 
traction control algorithm. 

This clock scheme will be translated to a real-time 
system where the throttle-controller cycle time is set 
to 1 ms. In combination with the clock-schemes, 
there will be a 1ms, a 6ms and a 12ms task. The 
processes of the INTECRIO modules will be 
allocated to the appropriate tasks. This is shown in 

Figure 12. Scheduling algorithms typcially need the 
worst case execution time (WCET) as input for their 
calculations. Though there are some promising 
results for the WCET estimation, the AutoMoDe 
project still uses heuristic approaches based on the 
process allocation to obtain very first coarse grain 
WCET estimates of the tasks. In [3], a correct-by-
construction method for implementation of time-
synchronous AutoFocus programs based on rate-
monotonic scheduling is described. The approach 
uses a double buffering technique for communication 
from low-frequency to high-frequency tasks. For 
analyzing this default configuration in the context of 
the TC example system, we use the planner feature 
of the tool RTA-OSEK [10] which implements 
algorithms described in [2]. The result of this 
analysis using rough estimates of the WCET is 
shown in Figure 13. In the case that the simple top-
down, rate-monotonic approach of [3] is not sufficient 
for a particular situation, the algorithms described in 
[4] can ensure in a bottom-up fashion that the 
multiple clock scheme is appropriatly implemented 
by some given real-time OS schedule. The basic 
idea of this algorithm is to check whether all signals 
are read in the appropriate cycle and that a writer is 
not overtaken by the reader. Nevertheless, it is 
common automotive design practise to support this 
analysis by measurements on the real executing 
system[6] using dedicated measurement and tracing 
tools such as RTA-TRACE 

 
Figure 12: The resulting OS-Schedule in INTECRIO 
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Figure 13: OS-Schedule Analysis 

 

5. Conclusion 

This paper shows how embedded automotive control 
systems can be modeled in a crisp manner by using 
a stream-based approach. Systematic application of 
refinement steps incorporate model transformations 
that result in executable embedded software.  
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Figure 14: AutoFOCUS DFD showing the Traction Control System with its Functional Environment 

 
Figure 15: Inner View of the Traction Control System DFD 

 
Figure 16: Inner View of the Throttle Controller DFD 
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