65 research outputs found

    Examining the Boundaries of the Spacing Effect in Inductive Learning

    Get PDF
    The current study aimed to investigate the role prior knowledge plays in the spacing effect by attempting to replicate the results of two previous studies. Eighty-five participants were divided into two different conditions and practiced diagnosing 36 case studies of six psychological disorders. The only difference between the conditions was whether the participant recieved the real labels of the disorders (i.e., depression, anxiety, bipolar) or novel labels of the disorders (i.e., wos, baj, pliq). Individual differences in learning strategies were also assessed to examine if there was any relationship between achievement goals, intelligence theories and confidence and the spacing effect. Based on the previous studies, it was hypothesized that there would be an interaction between the spacing effect and label type such that novel labels would produce a stronger spacing effect than known labels. There were no significant differences found for the spacing effect in either the real label or novel label condition leaving the role of prior knowledge plays in the spacing effect unconfirmed. The results of the current study necessitate a discussion about the boundaries to the spacing effect and how the most effective use of spaced study can be applied to the classroom

    Interactions between perception and rule-construction in human and machine concept learning

    Get PDF
    Weitnauer E. Interactions between perception and rule-construction in human and machine concept learning. Bielefeld: Universität Bielefeld; 2016.Concepts are central to human cognition and one important type of concepts can be represented naturally with symbolic rules. The learning of such rule-based concepts from examples relies both on a process of perception, which extracts information from the presented examples, and a process of concept construction, which leads to a rule that matches the given examples and can be applied to categorize new ones. This thesis introduces PATHS, a novel cognitive process model that learns structured, rule-based concepts and takes the active and explorative nature of perception into account. In contrast to existing models, the PATHS model tightly integrates perception and rule construction. The model is applied to a challenging problem domain, the physical Bongard problems, and its performance under different learning conditions is analyzed and compared to that of human solvers

    Hardware Approach To Mitigate The Effects Of Module Mismatch In A Grid-Connected Photovoltaic System: A Review

    Get PDF
    This study reviews the hardware approach to mitigate the effects of module mismatch in a grid-connected photovoltaic (PV) system. Unlike software solutions, i.e. the maximum power tracking algorithm, hardware techniques are well suited to enhance energy yield because of their inherent ability to extract energy from the mismatched module. Despite the extra cost of the additional circuitry, hardware techniques have recently gained popularity because of their long-term financial benefits. Notwithstanding the growing interest in this topic, review papers that provide updates on the technological developments of the three main hardware solutions, namely micro inverter,DC power optimizer, and energy recovery circuits, are lacking. This is in contrast to software solutions, which have had a considerable number of reputable reviews. Thus, a comprehensive review paper is appropriate at this juncture to provide up-to-date information on the latest topologies, highlight their merits/drawbacks, and evaluate their comparative performance

    Attention Restraint, Working Memory Capacity, and Mind Wandering: Do Emotional Valence or Intentionality Matter?

    Get PDF
    Attention restraint appears to mediate the relationship between working memory capacity (WMC) and mind wandering (Kane et al., 2016). Prior work has identifed two dimensions of mind wandering—emotional valence and intentionality. However, less is known about how WMC and attention restraint correlate with these dimensions. Te current study examined the relationship between WMC, attention restraint, and mind wandering by emotional valence and intentionality. A confrmatory factor analysis demonstrated that WMC and attention restraint were strongly correlated, but only attention restraint was related to overall mind wandering, consistent with prior fndings. However, when examining the emotional valence of mind wandering, attention restraint and WMC were related to negatively and positively valenced, but not neutral, mind wandering. Attention restraint was also related to intentional but not unintentional mind wandering. Tese results suggest that WMC and attention restraint predict some, but not all, types of mind wandering

    Optimized Operation of Interleaved Motor Drive Inverter by means of Model Predictive Control

    Get PDF
    This thesis studies the challenges and benefits of interleaving in the context of drive inverter systems for induction machines. For this purpose, interleaved inverter topologies are introduced and analyzed. A detailed modeling of the favored interleaved inverter system in combination with the anticipated load is conducted. An optimal control strategy in form of finite control set model predictive control is developed and evaluated in simulation. Several optimization goals for the drive systems, such as control quality, efficiency in terms of losses and hardware effort, and reduction of undesirable side-effects owing to inverter-feeding are considered. The acquirable performance is compared to conventional two-level inverter realizations. A real-time controller implementation and hardware-based proof of concept is carried out. Deviations between simulation results and hardware measurements are discussed. Guidelines for optimized controller and hardware designs, as well as for future research topics are provided

    Computational modelling of interventions for developmental disorders

    Get PDF
    We evaluate the potential of connectionist models of developmental disorders to offer insights into the efficacy of interventions. Based on a range of computational simulation results, we assess factors that influence the effectiveness of interventions for reading, language, and other cognitive developmental disorders. The analysis provides a level of mechanistic detail that is generally lacking in behavioural approaches to intervention. We review an extended programme of modelling work in four sections. In the first, we consider long-term outcomes and the possibility of compensated outcomes and resolution of early delays. In the second section, we address methods to remediate atypical development in a single network. In the third section, we address interventions to encourage compensation via alternative pathways. In the final section, we consider the key issue of individual differences in response to intervention. Together with advances in understanding the neural basis of developmental disorders and neural responses to training, formal computational approaches can spur theoretical progress to narrow the gap between the theory and practice of intervention
    corecore