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A B S T R A C T

Concepts are central to human cognition and one important type of con-
cepts can be represented naturally with symbolic rules. The learning of such
rule-based concepts from examples relies both on a process of perception,
which extracts information from the presented examples, and a process of
concept construction, which leads to a rule that matches the given examples
and can be applied to categorize new ones. This thesis introduces PATHS,
a novel cognitive process model that learns structured, rule-based concepts
and takes the active and explorative nature of perception into account. In
contrast to existing models, the PATHS model tightly integrates perception
and rule construction. The model is applied to a challenging problem do-
main, the physical Bongard problems, and its performance under different
learning conditions is analyzed and compared to that of human solvers.
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topic would center on a computer program solving physical Bongard prob-
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A turning point for my dissertation was a three month stay in Bloom-
ington, Indiana, at the lab of Robert Goldstone. I ended up extending my
stay to over two years, for which Rob and David Landy are responsible.
Rob, together with Paulo Carvalho, a fellow graduate student, helped me
to situate my work in existing research, discover applications in cognitive
science, and contributed to studies I ran with human participants solving
PBPs. I finally started scientific collaborations and conversations about my
dissertation work.

I have come a long way since the beginning of this journey and have
learned, though certainly not by following a straight path, much about what
it means to be a researcher and to do research. Here are some of the people
I want to thank for accompanying me on my journey.
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1
I N T R O D U C T I O N

1.1 motivation

Concepts are central to cognition. They are the mental representations of
the kinds of objects, situations and relationships we encounter in a dynamic
and uncertain world. Concepts group these entities into distinct categories,
they act as building blocks that can be combined in endless ways to form
new thoughts and concepts, and when shared between individuals, con-
cepts form the basis for language and efficient communication. The ubiquity
of concepts in cognition makes the study of how they are represented, used,
and learned a compelling choice for advancing scientific knowledge of the
human mind.

A frequent and important type of concept, and category1, in human cog-
nition is structured or relational (Gentner and Kurtz [2005]). For these cate-
gories, the membership of instances cannot easily be defined through a list
of their properties but instead relies on relationships and the inner struc-
ture of the instances. For example, concepts like bridge or enemy are charac-
terized by relationships between external entities, positive and negative feed-
back systems are defined by the relations between their components and, to
give another example, the concept of offside position in soccer relies on spa-
tial relationships within game situations. A natural way to represent such
categories is to use symbolic, verbal rules, like “a position behind the last
defense player”. Humans are able to learn such verbal rules from exam-
ples and counterexamples, and often from very few of them. This ability is
based both on a process of perception, which extracts information from the
presented examples, and a process of concept construction, which leads to
a rule that matches the given examples and can be applied to categorize
new ones. My goal in this thesis is to explore how perception and concept
construction unfold and interact during concept learning.

While there are several successful cognitive models of rule-based concept
learning, none of them adequately captures the iterative, interactive nature
of perception and rule construction. This is important to capture for sev-
eral reasons. First, it addresses an inherent property of human perception
– its iterative, incremental and explorative nature – as well as a real chal-
lenge that human learners face: the necessity to choose in which order to
perceptually explore any given scene. This is especially relevant when learn-
ing from scenes with an inner structure, where the number of perceptual

1 The term concept is typically used to refer to a mental notion while the term category refers
to the set of instances in the world that is grouped by the concept. The distinction between the
two is subtle and of little relevance here, and I will use both terms interchangeably.

1



2 introduction

descriptors that could be read off the scene, like relationships between el-
ements, increases rapidly with the number of elements. Perceiving any of
these features comes at a cognitive cost but most existing algorithms treat
it as free. Second, an iterative perception process that works concurrently
with a rule construction process makes it possible to constrain what rules
are constructed next based on the features perceived so far and to constrain
what should be perceived next based on the rules constructed so far. What
one sees influences what hypotheses about underlying concepts one builds
and those hypotheses in turn influence what further aspects of the instances
one pays attention to (Goldstone [2003]). This mutual restriction of percep-
tual and conceptual search spaces has the potential to significantly increase
the efficiency of the learning process. Third, the positive feedback between
the two processes might offer a natural explanation for a range of effects
in human learning like order effects, where the order in which examples
are presented influence learning performance, as well as “garden-path” or
functional fixedness effects, where a learner is led down a wrong direction
by an initially coherent but ultimately superficial pattern in the examples.

This thesis explores the consequences of treating perception as an iterative
and active process that is tightly integrated with the process of concept
learning. It thereby connects perception, structured concepts, and learning
from examples – three elements that have been central both in research
on natural and artificial systems throughout recent decades. My approach
to this topic is building a computational cognitive model of the process of
perceiving and learning verbal rules from small sets of structured examples.

In the next section, I introduce a novel category learning domain, the phys-
ical Bongard problems (PBPs), that requires the learner to discover a rule
that correctly sorts a set of structured physical scenes into two categories. In
the remaining two sections, I review literature related to rule-based learn-
ing algorithms and models across the fields of artificial intelligence, ma-
chine learning, psychology and cognitive science. In the main part of the
thesis, I develop the computational cognitive model PATHS (“Perceiving
and Testing Hypotheses on Structured data”), which gives a process-level
account of the cognitive processes involved in learning structured, dynamic
concepts, specifically the physical Bongard problems. The PATHS model
takes inspiration from the work of Douglas Hofstadter and Harry Foundalis
on perception-oriented computational models of analogy-making and espe-
cially shares their focus on the iterative aspect of perception and its inter-
action with higher-level cognitive processes (Hofstadter [1996], Foundalis
[2006]). Instead of casting PBPs as an analogy and structure-mapping prob-
lem, the PATHS model uses a hypothesis testing account, treating PBPs as
a categorization problem. Another key property is that the PATHs model
makes use of ideas from rational models (e.g., Goodman et al. [2008a]), us-
ing a Bayesian estimation of hypothesis probability to drive rational decision
making by the model. This marrying of process-level modeling with mean-
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ingful probabilistic underpinnings for the local decisions the PATH model
makes is one of the model’s particular strengths.

Ideally, this computational modeling approach can benefit both psychol-
ogy and artificial intelligence research. On the side of psychology, it may
lead to a deeper understanding of the cognitive mechanisms involved in
learning rule-based concepts. On the side of artificial intelligence, the com-
putational model may help to realize natural interactions between human
and artificial cognitive systems by endowing the latter with an understand-
ing of, and means to simulate, human learning mechanisms.

Chapter 2 discusses how the PATHS model perceives various aspects of
physical scenes, using the initial outlines and positions of the objects as in-
put data. Chapter 3 describes the process of creating and testing hypotheses
in the model and its integration with perception. Chapter 4 reports on a
series of studies with human subjects solving PBPs and Chapter 5 compares
their performance to that of the model. The last chapter summarizes the
results and describes potential applications of the PATHS model.

1.2 physical bongard problems (pbps)

In 1970, the English translation of a book on pattern recognition by Mikhail
Moiseevitch Bongard was published in the U.S., and caught the attention
of Douglas Hofstadter who was working on a book himself. Hofstadter was
impressed mainly by the 100 visual categorization problems in the appendix
of the book and decided to feature them in “Gödel, Escher, Bach: an Eter-
nal Golden Braid”, 1979, using the term Bongard Problems (BPs). In this way,
Bongard problems were introduced to a larger audience. The same prob-
lems were picked up again in the late 90s by Harry Foundalis, a graduate
student at Hofstadter’s group, who eventually in 2006 graduated with a the-
sis titled: “Phaeaco: A Cognitive Architecture inspired by Bongard’s Prob-
lems”. He had developed a cognitive architecture that could work on BPs
and actually solved a small subset of them. Impressively, his architecture
resembles a vertical slice through a cognitive system, containing low-level
perceptual processes working at the pixel-level and high-level symbolic ana-
logical reasoning processes. Foundalis’ work motivated and influenced the
development of the PATHS model presented here.

So what are Bongard problems? They are a set of visual pattern recogni-
tion and categorization tasks where each problem is a set of twelve scenes.
Six of the scenes are positioned on the left and are members of one category;
the other six scenes are on the right and belong to a second category. The
task is to find the underlying rule that discriminates between instances of
the two categories. Figure 1 shows two examples of Bongard problems.

Many of the existing Bongard problems require some creative thinking to
solve them and while some of them are quick to solve, others are quite hard.
One aspect that makes them tricky to solve is that there are usually many
ways to encode and interpret each scene and only particular interpretations
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Figure 1: Two of the classical Bongard problems. On the left is BP06 “triangle vs.
quadrangle”, on the right is BP30 “seft-crossing line vs. no self-crossing
line”.

will be consistent across scenes and lead to a solution. For example, even a
scene as seemingly simple as the first scene on the left side in BP06 has many
ways in which it can be interpreted: as a white triangle, as three black lines
of the same length, or as a multi-segment line with particular slopes and
position. Any one of these interpretations might be “right”, depending on
the context set by other scenes. This means that in a Bongard problem, one
has to solve two problems at the same time: finding the right way to look
at and encode the individual scenes and finding the rule based on those
perceptions that discriminates between scenes on the left and scenes on the
right.

There is no formal definition of what counts or does not count as a BP
other than having two sets of example scenes that are sufficient for humans
to identify the two underlying concepts. In this sense, the Physical Bongard
Problems I am about to introduce, can be considered an extension to the
Bongard problem domain. In any case, they inherit most of the properties
that make BPs a promising domain for exploring questions of cognitive
psychology.

bongard problems + physics . Physical Bongard Problems (PBPs)
pose the same task as the classical Bongard problems: to find the rule that
discriminates the examples on the left from the examples on the right. What
changes is that constraints on the content of the scenes are introduced in
order to shift the focus from low-level visual processing towards dynamics
and interaction: PBPs are BPs with physics at their heart. Instead of arbitrary
static patterns, the images contain snapshots of 2D physical scenes depicted
from a side perspective. The scenes may contain arbitrary non-overlapping
rigid objects which could stand stably on the ground, be positioned in mid-
air or be placed at the side of a steep hill. The objects are understood to not
be moving at the time of the snapshot and no hidden joints or self-propelled
objects are allowed.

There is no formal definition of what constitutes a PBP beyond those con-
straints and in principle the concept described by a PBP could be arbitrarily
complex logical rules. This would, however, not be in the spirit of PBPs. I
am mainly interested in natural physical situations, i.e., PBPs with solutions
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that are immediately convincing to humans once discovered, although the
discovery itself might be difficult. The author of this thesis has sketched out
36 physical Bongard problems, which explore different feature and relation
types as well as different solution structures. They are based on static or
dynamic object properties like “shape” or “stability”, on spatial and physi-
cal relationships between objects like “left of”, “close to” or “supports”, as
well as properties of groups of objects or whole scenes like numerosity or
predictability. Some problems focus on events that happen at a particular
time during the imagined unfolding of events like collisions between ob-
jects, while others are based on the reaction of objects to a simple kind of
imagined interaction, like pushing or lifting an object. Figures 2, 3 and 4

show examples of PBPs. In the appendix is a complete list of PBPs and their
solutions. There are likely many more features beyond the ones explored in
the listed PBPs on which new PBPs could be based. Additionally, features
can be combined to create new PBPs.

Figure 2: PBP 08. Unstable versus stable object configurations.

Figure 3: PBP 22. The two objects collide or don’t collide.

Relative to the classical Bongard problems, the content of PBPs is more
restricted – scenes can only contain physical objects. Interestingly, this re-
striction opens up a large space of new puzzles that rely on the intuitive
instantiation of physical rules and turn static visual patterns into imagined
dynamic situations and imagined interactions with them.



6 introduction

Figure 4: PBP 33. The small object destroys the construction or not.

The interpretation of each one of the physical scenes is like constructing
a story of what is going on there. There are many possible stories the same
scene could tell, though, and thus an important task is to come up with
one that is consistent with the context provided by the other scenes. What
constitutes a useful representation of what happens inside a scene depends
on the solution to PBP, and the solution depends on the representations.

PBPs for Cognitive Research

In the process of figuring out the concepts presented in PBPs, a learner faces
several deep challenges. These challenges are not specific to the domain of
PBPs but are challenges that natural and artificial cognitive systems face in a
dynamic, physical world. This makes PBPs both intricate to solve and, more
importantly, an interesting domain for research on human cognition.

In the following list of challenges aspects of PBPs, the first set of three
aspects is unique to PBPs, while the further ones are shared by PBPs and
classical BPs.

physics , time & interaction. Although PBPs are sets of static im-
ages, they require the learner to perceive and predict the dynamics in the
depicted physical scenes. This predictive aspect of perception is essential
for embodied agents that interact with a dynamic world in general, and
is present in human cognition (Clark [2013], Hubbard [2005]). The need to
invoke implicit physical knowledge of how the depicted object configura-
tion will evolve (or respond to imagined physical interventions) for solving
a problem is the main distinguishing characteristic of a PBP. This involves
natural assumptions, such as the association of some mass with each object
and the presence of a downward directed gravity force. Using these assump-
tions, we can make physical judgments about the stability of a configuration
or predict likely states of motion, such as a ball accelerating on a ramp.

To see a scene as physical allows us to see it as a snapshot of a dynamical
process. This connection generates a rich set of additional features strongly
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related to time and arising from forward predictions of the changes expected
in the depicted scene. A mental simulation of unfolding actions can aug-
ment the scene with events that themselves are not depicted, like the colli-
sion of objects. The timing of such events itself could also be an ingredient
to the solution.

Physical understanding includes judgments about how objects might re-
spond to imaginary interventions. This is important in many situations in
life, such as to judge whether some location can support my body, or how
objects can be moved in a scene without causing unwanted interference with
other objects.

selective perception. Learning situations in the real world are often
messy – typically the relevant information is embedded into irrelevant and
possibly distracting information. A central skill in learning from a given sit-
uation is to figure out what parts in it are relevant for a given task. This
includes perception: in physical scenes with many objects, it is inefficient to
perceive all possible relationships between all possible object pairs. Instead,
both in the perception and interpretation of a scene, typically a few impor-
tant objects and features have to be picked out. An efficient solution to this
challenge requires an iterative perception process on a feature level, which
current rule-based concept learning systems are not capable of.

structured instances & open feature space . Beside the features
of individual objects, many PBPs are based on the spatial and physical rela-
tionships between objects. Furthermore, several objects of one scene might
have to be interpreted as a group based on common features or roles to find
a solution.

When attempting to solve a PBP, it is neither a priori clear which features
are relevant for the solution, nor is a complete list of potential features given.
Instead, when solving a PBP one uses basic feature types associated with
physical situations to construct a large set of concepts tailored to the specific
problem at hand. Relationship features can be applied to any of the object
pairs in the scene, and objects can be grouped in various ways which allows
perceiving properties on the formed groups. Another way to go beyond a
fixed list of features that describe a scene is to combine several features. The
“direction in which the small circle moves” is an example for a concept that
is composed of lower-level features like size, shape, and movement. These
concepts can be applied to subsequent scenes and act as high-level features.

structural alignment. One challenge in working with structured
instances like PBP scenes is that any meaningful comparison or abstraction
of two scenes requires an alignment of the scenes that clarifies which el-
ements and relationships in one scene correspond to which elements and
relationships in the other scene (Gentner and Markman [1994]). The de-
pendency between mappings and abstractions is, however, more symmet-
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ric than this characterization might suggests; mappings and abstractions
mutually inform and supplement each other. The knowledge of consistent
mappings between elements of two scenes supports the construction of a
shared representation, but also does knowledge of a shared representation
of two scenes support the construction of consistent mappings.

context. A suitable representation of a physical scene cannot be given
a priori, but depends on the context that is set by the other scenes. A single
scene could be used in several PBPs and have a different interpretation in
each of them, such as a different choice of what is the main object and what
is the “background”. Similarly, the very same object configuration could be
described as stable or as unstable, depending on the reference frame set by
the other scenes.

These challenging aspect, taken together, make PBPs a novel and promis-
ing domain for research in concept learning. However, the original 8-scene
version of the PBPs that I designed first was not well suited for some im-
portant experimental setups. One important aspect to look at in concept
learning experiments is the learner’s ability to generalize, that is to trans-
fer the learned concepts to new examples. The initial version of the PBPs
contained only four scenes per side, which made it difficult to split them
into a training and a test set. Another important aspect in concept learning
are effects that the order in which the examples are presented has on the
learning outcomes. Different ordering of examples does not only influence
what is presented first and what is presented later, but also which of the ex-
amples are presented close to each other. When humans work on PBPs, they
actively explore different possible rules by comparing one scene to neigh-
boring scenes. When two scenes are next to each other, humans are more
likely to compare them perceptually. Thus, an important question to ask is
whether this spatial juxtaposition matters for human problem solvers, and
whether a model can capture this consequence of active perception.

To better support these kinds of experiments, I created a second version of
many of the original problems by extending them in two ways. First, I added
more scenes to the problems, so that each of them contains 20 scenes in to-
tal. Second, I designed the twenty scenes to form five similarity groups, such
that scenes within a group are more similar to each other than scenes across
groups. Figure 5 shows the second version of PBP24. This setup allows re-
searchers to manipulate the similarity of scenes that are presented spatially
close to each other by reordering the scenes within the PBP. Alternatively,
researchers can manipulate the similarity of scenes that are presented tem-
porally close to each other when showing only a few of the scenes at a time.
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(a) similar within pairs (b) dissimilar within pairs

Figure 5: In the extended version of PBPs, the scenes are organized in five similarity
groups. This figure shows two different arrangement of the scenes of PBP
24 that place similar scenes close to each other (left) or far from each other
(right). In the left arrangement, the scenes in each row belong to the same
similarity group.

1.3 how concepts are learned

Machine Learners

After looking at properties of the PBP domain, the following two sections
take a step back and review the literature related to category learning. I will
focus on learning abstractions from structured examples and on an itera-
tive, active exploration (perception) of examples. I start with the artificial
intelligence and machine learning field and look at psychology and cogni-
tive science next, with the focus on cognitive models of rule-based category
learning.

Learning from examples has been a cornerstone of artificial intelligence
since its beginnings in the 1960s. Among the popular approaches were sys-
tems working with rich and often handcrafted knowledge structures. These
“expert systems” were developed to utilize rich domain knowledge for mak-
ing intelligent inferences and decisions. Some of those systems had the ca-
pability to learn from observations themselves, helping to address the bot-
tleneck of time-intensive handcrafting of the systems’ internal knowledge
structures. Early structural learning systems include Evans’ geometry anal-
ogy finder (Evans [1964]), Winston’s concept learner learning the concept
of an arch from carefully crafted positive and negative examples (Winston
[1970]), and Fikes’ robot action planning algorithms (Fikes et al. [1972]).
Michalski summarized and compared influential systems of the time, in-
cluding his own INDUCE, Hayes-Roth’s SPROUTER, Vere’s THOOTH and
Buchanan’s MetaDENDRAL (Dietterich and Michalski [1981]). By the mid-
80s, the two major approaches in the structured learning field were induc-
tive learning (Dietterich and Michalski [1985]), which was using inductive
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learning techniques to come up with rule-based hypotheses based on a set
of positive and negative examples, and explanation-based learning (Mitchell
et al. [1986]), which used deductive reasoning techniques to explain one
or very few examples based on given background knowledge. These early
learning systems advanced our knowledge of how humans and machines
can learn from structured data. In the case of MetaDENDRAL, the algo-
rithms were even applied as a tool for making new scientific discoveries in
the field of chemistry (Buchanan and Feigenbaum [1978]). Yet, many of the
early structural learning systems used idiosyncratic representations and al-
gorithms that made it hard to utilize them in settings different from the one
the system was initially designed for. Additionally, perception and encoding
of examples were typically assumed to happen outside of the algorithms,
and none of the reviewed models tries to capture the incremental nature of
example perception.

Inductive learning requires a leap from the given data to a possible gen-
eralization, and Tom Mitchell formalized generalization as a search in the,
typically very large or infinite, space of generalizations (Mitchell [1982]). To
choose one over another hypothesis given they both match the training data
equally well requires biases in the learner (Mitchell [1980]). These biases
can take the form of language biases influencing the space of generalization
that is searched, or differences in the search heuristic influencing the order
in which the space of generalizations is searched.

Among the inductive learning algorithms, two high-level heuristics for
how to search the hypothesis space crystallized: separate-and-conquer and
divide-and-conquer techniques. Divide-and-conquer algorithms recursively
split the dataset into disjunctive sets, which are then tackled independently.
Work on learning structured concepts (Hunt et al. [1966]), discrimination
nets (Simon and Feigenbaum [1964]) and decision trees like ID3 (Quinlan
[1986]) use the divide-and-conquer approach. A more conservative tech-
nique of covering different parts of the data by logical rules are the separate-
and-conquer techniques. Fürnkranz [1999] gives an excellent overview of
30+ years of algorithms using this technique. All separate-and-conquer algo-
rithms use a similar top-level loop that searches for a rule that explains some
of the positive examples, then separate these and recursively continue the
search on the remaining examples. Fürnkranz compares these algorithms
along the three different biases they introduce: language bias, search bias,
and overfitting avoidance bias.

In these theoretical and algorithmic approaches to inductive learning, the
process of iterative feature perception and its interaction with hypotheses
construction is hardly considered. Even at the level of examples, many of the
original inductive learning algorithms like INDUCE and ID3 were operating
in a batch fashion, running a single time on all available data. Since then
there has been active research on extending them to on-line, incremental
algorithms on the example level (see Maloof and Michalski [2004] for an
overview of this line of research). Another pocket of related work is the
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constructive induction approach with algorithms capable of inventing new
dimensions in the representation space (Wnek and Michalski [1994]). Yet
here, too, the values of newly created features are typically immediately
available to the algorithm for all learning instances.

In the 80s, the field of machine learning was established as a reaction
to A.I. and cognitive science being mostly concerned with the use of knowl-
edge, such as in expert systems, and paying less attention to how this knowl-
edge could be learned (Langley [2011]). Quickly, the new field diverged from
building and working with rich, structured knowledge representations and
focused almost exclusively on learning from data represented as points in
a high-dimensional space, typically RN. This simpler representation form
allowed for a deeper theoretical treatment and led to impressive practical
results with algorithms working on probabilistic, noisy or incomplete data,
utilizing growing computational power and larger datasets. Important ma-
chine learning algorithms in the area of supervised classification include
support vector machines, artificial neural networks and radial basis func-
tions (Kotsiantis [2007]).

Despite the great success of these methods, their reliance on vector-based
input representation makes the application to domains with dependencies
between data instances or, as is the case with PBPs, data with inner structure
highly non-trivial. It excludes the decision of which features in a scene are
attended to and how to align related features across examples from the
core learning mechanism and moves it into a preprocessing step. This is
unsuited for our goal of modeling the selection and perception of features
as an integral and tightly connected part of the learning process.

Within machine learning, the approach that is related closest to the in-
teraction of perception and concept learning is active learning (see Settles
[2010] for an overview). The general assumption underlying active learn-
ing approaches is that unlabeled training data is acquired much easier than
the corresponding category labels and that algorithms should request labels
only for those training instances where the label information provides the
highest estimated utility. This corresponds to making choices about perceiv-
ing category labels and does not fit the PBP scenario in which all labels are
given a priori.

While most active learning research focuses on decisions on the instance
level, some of the algorithms make perceptual choices at the feature level.
Under the term active feature-value acquisition, those approaches address sit-
uations in which only a subset of feature values of the available training
instances is initially known. They employ heuristics to make good decisions
about which of the instances should be perceived entirely (Melville et al.
[2004]) or, making finer-grained decisions, which particular missing feature
values of which instance should be perceived next (Saar-Tsechansky et al.
[2009]). Viewing PBPs through this lens means treating the perception of
features in PBP scenes as a costly operation and requires a PBP learning
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model that minimizes these costs by attending only to such features that are
most likely to be part of a correct categorization rule.

While this aspect is very well aligned with the requirements for a cogni-
tive model that can solve PBPs, the existing active feature-value acquisition
approaches are not. Precisely estimating the utility of a feature perception
is a difficult task, as it requires computing the effect of perceiving any of
the potential values that any of the missing features in any of the instances
could take on the classifier that is induced. Due to the large number of nec-
essary computations, a classifier that is fast to train and a strategy to sample
only a small subset of the missing features and instances is typically used.
This approach is most helpful when computation is cheap while the costs
to acquiring feature values are high, as they might, for example, require
running an experiment or a medical test. In the context of a psychologically
plausible model of perception and concept learning, however, the costs of a
detailed consideration of the potential effects of perceiving any of the poten-
tial features in a PBP scenes will be far bigger that the costs of the perception
itself. For our scenario, a much simpler heuristic to decide what to perceive
next will be needed, especially considering that the number of relational
features in PBP scenes is large2.

Though the field of machine learning grew very popular in A.I., a new
community formed in the early 90s that kept working with structured repre-
sentations using an approach called inductive logic programming. ILP com-
bined the inductive and deductive approaches of earlier structured knowl-
edge approaches and used horn clauses, a subset of 1st order logic, as a
unified representation to replace the large number of idiosyncratic repre-
sentations used before. A logical reasoning engine, such as PROLOG, was
utilized to flexibly integrate background knowledge with training examples
and utilize logical inferences as part of the learning process (Muggleton
[1992], Muggleton and De Raedt [1994]). In the 2000’s, researchers started
to combine techniques and representations from the statistical learning field
and ILP leading to the active new research areas of SRL (statistical rela-
tional learning) and probabilistic ILP (Getoor and Taskar [2007], Dietterich
et al. [2008], Van Laer and De Raedt [2001]).

IPL algorithms can work with rich, structured representations and show
impressive learning capabilities. Yet it is exactly the powerful symbol ma-
nipulation capabilities of the logic engines these systems rely on that make
them a bad candidate for cognitive modeling. Additionally, the logic engines
do not seem to lend themselves to a deep integration with an incremental
perceptual process.

How can the discussed approaches and algorithms inform the design of a
model that works on PBPs? Many of the reviewed systems would be able to

2 Assuming No object features and Nr types of relationships between objects, the number of
potential relationship features is Fr =No ∗Nkr , where k is the number of object features that
may be combined to describe the reference object of the relationship. An example relationship
feature is “an object is left of a small circle”. Assuming No = 20,Nr = 20,k = 2, we get
Fr = 8000 and for k = 3, the number of potential relationship features is Fr = 16,000.
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find solutions to PBPs in principle, yet the perception and perceptual deci-
sion about which of the object and relationship features in a scene to look at
would have to be made in a separate pre-processing step. In the reviewed lit-
erature, almost no attention was spent on the interaction of perception and
concept learning I want to model in this thesis. Constructive induction algo-
rithms allow re-encoding of instances but do not capture any incremental or
costly perception of newly created features. Active feature-value acquisition
algorithms make perceptual decisions on the feature level, but rely on vector
representations and seem unsuited as the basis for a cognitive model.

I found many of the reviewed algorithms to be implausible choices for
modeling human concept learning since they were not developed to take
constraints of human memory and attention into account. Among the better
candidates are iterative versions of decision tree algorithms and algorithms
like INDUCE that generate and test hypotheses based on the observed data.
In the next section, I will look at literature from cognitive science and models
of human concept learning, including the INDUCE algorithm.

Human Learners and Cognitive Models

Concepts and categorization are central to human cognition. When people
perceive something, they naturally perceive it as something; we interpret
everything we see. This organization of perceptions into categories has var-
ious advantages. It allows to make predictions on properties of other cate-
gory members, it allows for efficient communication with other individuals
that have a shared understanding of the categories and existing concepts
can act as building blocks for constructing new concepts. In fact, many cog-
nitive acts can be seen as acts of categorization and naturally, much of psy-
chology is concerned with concepts, categorization, and related issues (see
Goldstone et al. [2012] for a great overview of the field). Physical Bongard
Problems are instances of complex cognitive acts that come in the form of
categorization tasks.

In psychology literature, the term concept is typically used to refer to the
mental notion of a class or individual, while the term category refers to a
set of external entities that are grouped together. Concepts exist in the mind,
whereas categories – or at least their members – exist in the real world.

Much research has been done on models of how concepts are represented
and used in the mind by studying a variety of categories and categorization
tasks. Several different types of mental representations have been proposed
and how well each of them is supported by experimental data is typically
dependent on what kind of categorization tasks one looks at.

The idea that humans represent categories through simple logical rules
was dominant in cognitive psychology in the 1950s and 1960s. In very in-
fluential work and in part as a response to behaviorist approaches, Bruner,
Goodnow, and George [1956] proposed a hypothesis testing account of cat-
egory learning, theorizing that concept learning involves active formation
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of hypotheses and testing them on observed instances. A hypothesis would
consist of a simple logical rule that defines the membership of instances. For
instance, participants were asked to learn category memberships of geomet-
rical figures that differed in some pre-defined binary attributes like shape,
color or border type. In the following decade, this account was intensely
explored, typically using artificially created Boolean categories with a small
number of feature dimensions (Bourne [1970], Bower and Trabasso [1964],
Feldman [2003]).

The 1970s saw a major shift of attention in the study of category learning
away from rule-based accounts, due to researchers like Rosch and Mervis
[1975], argued very convincingly that almost any natural category seems im-
possible to describe in terms of necessary and sufficient rules and is better
described in terms of family resemblance using similarity measures. An-
other perceived shortcoming of the rule-based account was that they could
not account for the graded responses to the degree of membership or typical-
ity that people give. The two main types of similarity-based categorization
theories that gained a lot of traction were prototype-based representations,
which are structured around an average or typical instance of the category
members (Rosch [1975]), and instance-based representations, which retain
all seen instances (Medin and Schaffer [1978], Nosofsky [1986], Kruschke
[1992], Logan [1988]). Both approaches rely on a similarity metric to com-
pare new percepts to the prototype or to previously encountered instances
and both are especially well suited for learning natural kinds or basic-level
categories. It is possible to combine aspects of both approaches like in the
SUSTAIN model of Love et al. [2004], which learns concepts by building
several intermediate clusters – similar to having several prototypes.

Yet another fruitful approach to concept learning are connectionist models
like artificial neural networks (ANNs). ANNs are very powerful in picking
up pattern from presented data and are well suited for modeling perceptual
learning processes (Bishop [1995], Goldstone [2003], Goldstone et al. [2009]).
Yet, it is much harder to use ANNs for work at the symbolic level, which is
the level at which the verbal rules are that humans come up with when solv-
ing PBPs. The benefits of this symbolic representation include the relative
ease with which rules can express relationships between abstract elements,
with which they can be recombined to form more complex rules and with
which they are communicated between learners.

One important way in which categorization tasks differ is how strongly
the to-be-learned category is driven by surface similarities. Natural kinds
like bird species and man-made artifacts like tools typically share many
surface similarities. Rosch coined the notion of “basic-level categories” for
such categories that are at the most commonly used abstraction level and
are characterized by a high within-category similarity (Rosch et al. [1976]).
Other types of categories include ad-hoc categories, such as “things to take
out of the house in case of fire”, abstract schemas and metaphors. These
category types are less dependent on surface similarities and they often
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combine things into a common category that may appear very different
from each other outside of a specific context. Consider, for example, “things
one can stand on” or “positive feedback systems”.

The categories in physical Bongard problems are instances of these latter
category types. PBP categories are constructed around rules and often com-
bine scenes into the same category that differ in many other aspects, making
the scenes appear quite dissimilar on the surface. PBPs are well-defined in
that a simple rule that correctly categorizes all scenes always exists, and the
task of a solver is to find and vocalize such a rule.

Despite the success of similarity-based models in explaining human be-
havior data in many categorization tasks, the rule-based approach clearly
captured existing aspects of human concept learning, too. In the 90s, the in-
terest in rule-based concept representations was rekindled and there is now
a broad acceptance that the two approaches are by no means mutually ex-
clusive. In cognitive neuroscience, there is convincing evidence that humans
have multiple category learning systems which function in rule-like and
similarity-like manners (Ashby and Maddox [2011]). These systems might
be constantly working in parallel and competing with each other as in the
COVIS model (Ashby et al. [1998]). Which system is dominating in a partic-
ular task will depend on the structure of the to-be-learned categories, and
even for a single category, subjects might follow a rule learning approach
at first and then gradually move towards an instance and similarity-based
approach for identifying new instances – as their growing repertoire of per-
ceived examples permits (Logan [1988], Ashby and Maddox [2005]). PBPs
were designed so that they directly require the construction and vocalization
of categorization rules, which is the aspect my work focuses on.

I will next describe three influential cognitive models of rule-based cate-
gory learning in some more detail.

Models of Rule-based Category Learning

induce An early and influential rule-based learning system from the
field of AI is the rule-induction algorithm INDUCE by Michalski (Dietterich
and Michalski [1981]). The INDUCE algorithm belongs to the family of
separate-and-conquer algorithms: It starts with a positive example of the
category and constructs a so-called star-rule – a conjunction of feature de-
scriptors that includes the positive, but none of the negative examples. It
then removes all positive examples covered by that rule and repeats the
process with the remaining positive examples.

Medin, Wattenmaker, and Michalski [1987] explored INDUCE as a process-
level cognitive model for human category learning. In their paper, they com-
pared the learning results of the INDUCE algorithm with the performance
of human learners using pictures of trains with varying numbers of cars,
types of loads and colorings, as well as driving directions as categorization
task.
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The authors found that INDUCE does a reasonable job as a process model
although it lacks the ability to combine an overgeneralizing rule with de-
scriptions of counter-examples. In terms of human strategies, they found
that people did not merely prefer the simplest description but had a strong
bias towards concept validity over cue validity. That is, they preferred fea-
tures that are consistent within the category to features that are discrimi-
nating best between categories, even in the context of a discrimination task.
Furthermore, people preferred conjunctive rules to disjunctive ones.

While my work shares the general approach of using a hypothesis-testing
algorithm as a process model for human rule-based category learning, there
are at least two important differences. First, the PBPs scenes contain inter-
nal relationships, while such relationships were not part of the problem
domain and were not considered by the model. Second, I will focus on iter-
ative perception and its interconnection with rule generation. To allow this
focus within the scope of my work, each PBP was designed around a single
conjunctive rule. According to the findings of the INDUCE experiment, con-
junctive rules that cover a concept are a natural starting point for humans
in inductive categorization tasks.

rulex The RULEX model from Nosofski and Palmeri (Nosofsky et al.
[1994]) is an influential model of rule-based category learning that is based
on the assumption that simple rule-based categories are represented using
a logical rule and a set of exceptions from that rule. The process-level ver-
sion of RULEX is restricted to binary features and assumes a small number
of predefined feature dimensions. The training instances are presented one
by one to the model in combination with their category labels. The model
learns in two stages. In the first stage, it identifies a simple rule based either
on a single feature dimension or, if no sufficiently accurate single feature
rule can be found, a conjunctive rule involving two features. To identify a
rule, the model stochastically chooses one or two feature dimensions based
on their predefined saliencies. Then, a rule that reflects the values of the
selected feature dimensions in the current training instance is constructed
and checked against subsequent training instances. The rule is eventually ac-
cepted or rejected based on the ratio of compatible instances, which is com-
pared against a set of thresholds that are parameters of the model. When a
rule is accepted, the model proceeds to the second stage, in which it stores
all instances that the rule categorizes incorrectly.

In the context of PBPs we are interested in the first stage of this learn-
ing process since PBPs are based on well-defined concepts that don’t re-
quire exceptions. One aspect of the RULEX model that seems well suited
for a concept-learning model for PBPs is the use of predefined saliencies
to influence the feature dimensions that the model attends to. The aspect
of not storing all seen instances in memory and re-analyzing when a new
candidate rule is considered is another psychologically appropriate choice,
although it is likely the case that at least some information from those in-



1.3 how concepts are learned 17

stances is retained by a learner so it can influence the choice for the next
rule candidate.

Several aspects of the RULEX model are inappropriate for the structural
learning situation of PBPs, though. First, the number of possible rules in the
experiments RULEX was applied to is small, while for PBP it is typically
very large. Second, the number of potentially relevant feature dimensions
is small for RULEX, while it is again quite large for PBPs. These two differ-
ences allow the RULEX model to work despite a very simple rule candidate
selection process that does not consider information gained in previous per-
ceptions. A model that handles PBPs will need to intelligently constrain and
prioritize the rule search space in order to find the correct solution among
vastly more candidates in a reasonable time.

covis Ashby et al. [1998] developed a neuro-cognitive model of concept
learning, which contains two separate systems that compete with each other
during learning and predicting of category membership. One system, the
information-integration system, works in a similarity-based fashion while
the other system represents categories through simple rules that can be eas-
ily verbalized. The rule-based system initially selects a rule from a small set
of predefined rules as the active rule. Each rule has an associated saliency
that is increased for the active rule when a consistent example, and de-
creased when an inconsistent example is encountered. Whenever an exam-
ple inconsistent with the active rule is presented to COVIS, the rule-based
system will select the rule with the highest saliency – which might be either
the same or a different rule. The selection process has an added stochastic el-
ement favoring rule-switching and an adjustable static bias towards keeping
the current rule.

The main contribution of the COVIS model is the integration of two dis-
tinct concept learning systems into a single architecture which is closely
aligned with human brain structures. This allows modeling race-effects be-
tween these two systems, exploration of the situations in which each of the
systems excels and modeling of the effects brain anomalies have on concept
learning. Yet, similarly to the RULEX model, COVIS assumes extremely sim-
ple rule structures in its treatment of rule-based categories. The number of
possible rules for describing a PBP scene is larger than the number of rules
COVIS works with by several degrees of magnitude. Solving PBPs will re-
quire more powerful techniques for focusing on promising subsets of the
rule space than the update of a single rule saliency per example that is used
in COVIS.

Relational Categories

The rekindling of interest in rule-based learning and the development of
models like the ones discussed above seems to capture existing aspects of
human concept learning and establishes continuity with the early theoriz-
ing on hypothesis testing. Yet, the more recent models of rule-based learn-
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ing continue to focus on very simple rule-based categories, whose instances
can be represented as short and predefined attribute-value lists. Many real
world categories, however, define membership through structure within or
between instances. Gentner and Kurtz [2005] characterize such categories,
like “bridge”, “enemy” or “barrier” as “relational categories” and argue
that despite often being overlooked in the categorization research, they are
both frequently used and important in cognition. The instances of the cat-
egorization task of PBPs, the physical scenes, have a rich inner structure
and in many of the underlying categories capture a structural aspect of the
scenes, such as “a circle left of a square”.

Rational Models

The models of categorization that we have discussed so far are mechanistic
models that try to model processes in the human mind. An alternative, com-
plementary class of models is rational models. Instead of trying to predict
categorization behavior based on the structure of the mind, rational models
predict categorization behavior based on the structure of the environment,
assuming that the behavior is perfectly adapted to it. In the rational ap-
proach, one first determines what information is available to an individual
in a world with uncertainty and what the individual’s goals are. The next
step is to mathematically derive or estimate the optimal decision an indi-
vidual should make in given circumstances. Both a good fit or systematic
derivations of the observed behavior from the rationally optimal behavior
can provide insights into what information is actually taken into account by
the individual and how powerful the actual cognitive mechanisms are.

The rational approach can be applied to analyze the learning of concepts
based on feature similarity and Anderson [1991] gives a rational analysis of
learning attribute-value represented categories. Many categories are struc-
tured or relational, though, and the rational analysis has been extended to
these, too. One line of research uses a rational, Bayesian model to demon-
strate and analyze how structured background information is incorporated
into concept learning tasks (Kemp and Tenenbaum [2009], Griffiths and
Tenenbaum [2009]). Another line of research applies Bayesian analysis to
learning of structured, rule-based concepts by using a generative grammar
to construct all possible rules – a language of thought. The priors are defined
over the parts of the grammar and posterior probabilities can be computed
for each generated rule. A powerful aspect of these grammars is that they
are easy to extend to cover relations to other objects and naturally allow for
compositionality of concepts (Goodman et al. [2008a,b]).

Rational models can provide important insights into how it is theoretically
possible that people learn new concepts from only a few examples and can
predict optimal categorization behavior. Unfortunately, they provide little
information on processes that allow the mind to achieve the behavior. The
design of the PATHS model borrows techniques from rational analysis but
integrates them into a process-level model of concept learning. This allows
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the model, at least in principle, to account for order effects and to take
known cognitive limitations into account.

Analogy-Making

With the exception of the rational models discussed above, concept learn-
ing researchers have almost exclusively focused on unstructured attribute-
value represented concepts. An active research area that puts the focus on
structured knowledge and how it is retrieved aligned and reasoned upon is
analogy-making research. In the past decades, there has been considerable
success in modeling these processes; Gentner and Forbus [2011] provide
a review of the computational models in the field. The process of making
an analogy can be decomposed into several subprocesses. During retrieval,
potential analogs to a target situation are retrieved from memory, during
mapping, a structural alignment between a source and a target situation is
constructed and could be used to infer additional information about the
target based on what is known about the source. An abstraction might be
constructed from the results of a comparison and reasoners might rerepre-
sent the analogs after a partial match to improve the match. Additionally,
the encoding of the two analogs plays an important role in the process.

A very influential approach in the analogy-making field is structure map-
ping theory, SMT, and its implementation in the structure mapping engine,
SME (Gentner [1983], Falkenhainer et al. [1989], Forbus et al. [1994]). Both
focus on the subprocess of mapping the elements of a source representation
onto the elements of a target representation. SMT is domain-general and
based on three constraints. First, structural consistency of the mapping, specif-
ically 1:1 mappings between elements and parallel connectivity of child ele-
ments. Second, systematicity meaning that mapping of higher-order relations
is preferred to the mapping of lower-order relations or attributes. Third,
tiered identicality meaning that mapped elements have to be identical or tax-
onomically close to get mapped unless the mapping is supported by a larger
mapping structure. SMT has been used in various other models that extend
the focus from the mapping subprocess to, among others, retrieval (MAC/-
FAC, Forbus et al. [1995]) and abstraction (SEQL, Kuehne et al. [2000]). The
aspect of encoding the analogs that are to be structurally aligned is typically
not a part of the SME-based models and they start from an existing symbolic
representation instead.

Not all models of analogy-making take a purely symbolic approach like
SME and there are connectionist models like LISA (Hummel and Holyoak
[1997]), as well as hybrid models like AMBR and DUAL (Kokinov and
Petrov [2001]).

In analogy-making models, typically little attention is paid to the percep-
tion and encoding of the instances that are to be mapped. One important
exception are the systems based on the fluid analogies (FA) framework of
Hofstadter [1996]. The FA framework describes analogy-making in terms of
a number of dynamically interacting components. The first component is a
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central blackboard (the workspace), where representations of the instances
are created, modified and destroyed by small actions (codelets). The second
component is the coderack, which holds the set of actions that can be se-
lected for execution. Actions are stochastically selected for execution based
on fixed utilities associated with each action. The third component described
in the FA framework is the slipnet, a graph of features, concepts, and their
interconnections. The slipnet regulates feature activations, which influence
which actions are added to the coderack. Additionally, the dynamic dis-
tances of nodes in the slipnet are used to decide whether to allow mapping
of non-identical concepts onto each other.

The FA framework is algorithmically instantiated in several domain-specific
systems that build analogies on letter strings (CopyCat, Mitchell [1993]), ar-
rangements on dinner tables (TableTop, French and Hofstadter [1992]), musi-
cal tunes (Musicat, Nichols [2012]), and others. These specific computational
models generally take some liberty in how to implement the FA approach
and use, for example, several workspaces or do not use a slipnet at all. The
implementation of the FA approach that is closest related to our work and
did, in fact, inspire the topic of this thesis, is Harry Foundalis’ Phaeaco
(Foundalis [2006]). Phaeaco is an FA system that searches for solutions to
classical Bongard problems. In contrast to existing systems that work on
similar problem domains, Phaeaco does not require an a priori symbolic
description of the scenes and instead uses computer vision algorithms to
perceive scene images. It resembles a vertical slice through a cognitive sys-
tem, from low-level perception up to creating symbolic analogies.

The FA framework in general and Phaeaco specifically are closely related
both to the PBP problem domain and to my goal of modeling PBP solving
with a focus on the interactions of perception and rule-construction. While
this goal is framed in terms of concept learning, the question arises whether
Phaeaco, or an adjusted version of it, can be used to reach it. An alternative
approach would be to design and implement a new model, based on the FA
framework. Unfortunately, neither of these options is viable.

Phaeaco itself has, despite its impressive ability solve BPs starting from a
pixel-level representation, a number of significant limitations. For example,
it cannot ignore parts of a scene as irrelevant, it is not able to interpret
relational situations like an object being left of another object and it cannot
apply an interpretation that it discovered for one scene to another scene
directly. These are key capabilities that I want to capture in a model of
structured concept learning. Modifying Phaeaco to add these capabilities is
impractical both because the required changes are significant and because I
could not obtain the source code.

The alternative of constructing a new model based on the FA framework
would be a surprisingly complex undertaking for a number of reasons. One
reason is that the FA framework is mostly a philosophical or conceptual
framework and is quite unspecific about how to practically implement it.
Additionally, it advocates domain specific implementations that require a
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nearly complete reimplementation for each problem domain. Finally, there
are no guidelines for making the numerous structure and parameter choices
required in the implementation of the codelets and the slipnet. These choices
are both important and hard to get right, since they influence the resulting
recurrent dynamics in the FA system in complicated ways.

While these points illustrate that the implementation of an FA system are
more complex and less constrained than one might wish, the more impor-
tant theoretical question concerns the relative merits of casting PBPs as an
analogy-making or a concept learning situation. The common challenge is
that a meaningful comparison or abstraction of structured examples like
PBP scenes requires an alignment of the elements in the examples (Gentner
and Markman [1994]). The difference between the two perspectives is that
in analogy-making, the search for a consistent structural alignment typically
precedes an optional construction of an abstraction while in rule-based con-
cept learning, the structural alignments are typically implicit results of the
constructed abstractions. If a learner extracted the rule “a square supports
another objects” from looking at a PBP, the progress of checking the rule
on two scenes implicitly aligns the elements in them that are relevant in the
abstraction.

I decided on the concept learning perspective in this thesis. The main rea-
son was that a meaningful one-to-one mapping of between the elements of
different scenes only exists for very few of the PBPs. Mappings rather exist
on the level of a successful abstraction, or gist, of these situations (Hofs-
tadter [1995]). For PBPs, which additionally do not have a deep hierarchical
structure of relationships that has to be mapped, a direct approach to con-
structing abstractions seemed more fruitful.

Summary

A central challenge in modeling rule-based concept learning is to capture
the unfolding of low-level perceptual processes and of high-level symbolic
rule-construction, as well as their interactions. While the models and al-
gorithms in the discussed literature provide partial answers to this chal-
lenge, none of them sufficiently captures the integration of, and interaction
between these processes, which is essential for effective concept learning
from structured examples in a cognitively plausible way. In my modeling
approach, I follow a hypothesis generation and testing account of learning,
as it provides – when properly combined with perceptual capabilities – a
good basis for integration of rule-construction and perceptual choices, and
can be constructed in a way that is compatible with human memory and
processing limitations.
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P E R C E I V I N G P H Y S I C A L S C E N E S

To extract relevant information from the static images of physical scenes
that make up a PBP, the perception component of the PATHS model has to
solve a number of problems. First, while the depicted scenes are static, they
describe dynamic, physical setups and the PATHS model has to be able
to interpret them as such. It has to be able to predict both the unfolding
of events in a scene and the results of imagined interactions with a scene.
This need for predictive perception is shared by embodied agents, natural
and artificial, that interact with a dynamic world. For such agents, a cen-
tral goal of perception is to provide relevant information for acting in the
world. Since performing an action takes time, it is often useful to see the
world as it will be, instead of as it is now – a thought captured in the con-
ceptual momentum research (Hubbard [2005]). Another important benefit
of the ability to mentally explore a potential future is that it is a much safer
way to figure out questions like “will this branch support my weight?” or
“could this rock topple over and crush my foot?”. Beyond the importance of
predictions for perceiving and acting successfully in physical situations, it
can provide a powerful learning signal in general, through the comparison
of predictions and perceptions (O’Reilly et al. [2014]). In fact, the case has
been made that the entire human mind can be interpreted as a “hierarchical
prediction machine” (Clark [2013]).

A second challenge the PATHS model has to solve is to bridge the gap
between “raw” perceptual input and the symbolic representations of the
concept. In the case of PBP scenes, many features are metric in nature such
as distances between objects, while in the formulation of a contrastive cate-
gorization rule a binary membership to a feature concept, such as whether
or not two objects are close to each other, is preferable. The PATHS model
solves this by using fuzzy feature concepts as intermediate representation.
The perception of a feature is modeled as a mapping of actual measures in a
scene (e.g., 0.36 units distance between two objects) to a degree of member-
ship to a feature concept (e.g., 60% close). During rule-construction, a sec-
ond mapping transforms the membership degrees to binary memberships
(e.g., close). The thresholds of the second mapping are adjustable and can be
adapted to the particular context set through previous perceptions of other
scenes. While “60% close” might be mapped to “close” in the context of one
PBP, it might be mapped to “not close” in the context of another where it
helps distinguishing scenes on the left from scenes on the right.

A third challenge results from the fact that PBPs are structured and dy-
namic and, therefore, have a large, open space of features that can be con-
structed to describe a scene. Possible features include relationships between
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arbitrary pairs of objects, attributes of arbitrary groups of objects, as well
as events and attributes of objects that are constructed through imagining
the unfolding of a scene over time. The challenge is that the perception of
features takes cognitive effort and the number of possible features is large
and increases dramatically with the number of objects in a scene. It is not an
efficient strategy to perceive everything that could be perceived, so a choice
about what to perceive and when must be made. This fundamental neces-
sity of selective perception is central for human cognition and is evident
in powerful selective attention mechanisms. In the PATHS model, feature
saliencies provide a bottom-up way to guide the perception process, while
insights from the rule-construction process can influence what is perceived
next in a top-down manner.

I will address the first two points in this chapter and come back to the last
point in the next chapter where I discuss the rule-construction process and
its interaction with the perception process.

2.1 feature space

To a skilled observer, each scene of a PBP tells a small physical story, or –
more accurately – it tells one of many possible stories depending on how it
is interpreted. One necessary prerequisite for understanding these physical
stories is conceptual knowledge about the aspects that make up the scene.
This includes knowledge about rigid objects, their physical behavior, their
features, as well as relationships between objects. Just like a human observer,
a computational model needs to work with a set of basic a priori known con-
cepts. While perceiving the scenes and searching for a fitting interpretation,
more complex features and concepts can be constructed based on this basic
set of concepts. When the PATHS model works on a PBP, it starts off with-
out any knowledge about the scenes or the objects in them. Only by actively
selecting a feature and a target and perceiving the feature on the target does
the model build an internal representations of the scenes. The basic features
that are available to the model are listed below. Each of them is associated
with a procedure to perceive it using the object outlines that are visible in
the PBP scene pictures.

geometric properties Understanding a scene involves identifying the
objects in it, and often their sizes and their shapes. Objects might be
grouped together based on shared properties. PATHS can perceive the
features small, big, triangle, square, circle, rectangle and the count of ob-
jects in a group.

spatial properties The position of an object in a scene and especially
spatial relationships between objects are important to make sense of
physical scenes and are used in PBPs. Different from the geometric
properties, the spatial properties can change over time in a scene as
the physics unfold. PATHS can perceive the object attributes left, right,
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bottom, top, on-ground and single (not close to any other object), as well
as the object relationships left-of, right-of, beside, above, below, on-top-of,
close, far, and touches. It can also perceive whether the objects in a
group are all close or far to each other or are all touching each other.

temporal properties Temporal aspects of a scene include the state of
objects at different times during the imagined unfolding of physics,
as well as changes over time. Some events like collisions happen at a
particular point in time, other events, like a ball rolling down a ramp,
happen over a time interval. The PATHS model looks at the scene at
two particular times. Time tstart is the initial situation depicted in the
scenes of a PBP and tend is the time at which, after the unfolding
of physics, all objects in a scene come to a halt. All features can be
perceived by the model at those two times, and most of the features
can have different values at them.

dynamic or physical properties The combination of spatial and tem-
poral dynamics gives rise to many physical properties, such as object
movements and collisions, the stability of an object under disturbances,
the support relationship between objects or how the movements of a
particular object are restrained. The PATHS model can perceive the
object features moves, stable, unstable, and moveable-up, as well as the
relationships supports, hits, gets-hit and collide.

These concepts cover a large portion of the frequently used vocabulary
with which humans described PBP scenes in their solution attempts. There
are additional concepts used by humans that are not part of our computa-
tional model, though. These include metaphors like “the object is trapped
/ hidden / protected” to describe an object that cannot be picked up be-
cause another object is blocking the way or descriptions like “the remnants
of an ancient culture” that a participant used to distinguish an horizontally
arrangement of objects from a vertical one. Another type of scene interpreta-
tion that is beyond the capabilities of the PATHS model are episodic descrip-
tions of the fate of an “actor”throughout time. Such accounts are especially
important when entities with agency are involved, which is not the case in
the PBP domain.

Practical knowledge about the features listed above involves the ability
to perceive or predict them in a given situation. Additionally, many of the
features can be satisfied to different degrees and how binary labels are at-
tached to them can depend on the context of the PBP. For example, a stack of
blocks that is interpreted as stable in one PBP, might have to be interpreted
as unstable in the context of another PBP in order to find a solution. PBP 8

and 30 are such a set of problems.
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2.2 physical features

A particularly powerful way of predicting the unfolding events and object
affordances in a scene is to mentally perform physical simulations. While
a major approach to model thinking about physical situations has been to
represent them symbolically and use logical inferences to reason about them
(Forbus [1984]), other researchers have explored the idea of physical reason-
ing as running mental simulations. The mental simulations do not require
abstract knowledge of physical laws and instead rely on a practical under-
standing of how one situation turns into the next. They are cognitively plau-
sible (Barsalou [1999]) and fit human data better than several rule-based
models, for example when making predictions about the stability and fall
patterns of Jenga towers (Battaglia et al. [2013]).

In the PATHS model, I use a 2D physics engine for performing mental
physics simulations. A physics engine is a computer program that numeri-
cally simulates physical scenes and can be used to predict a scene’s short-
term future and to simulate interactions with the scene. I regard the physics
engine as a black box that endows the model with the capability of imagin-
ing the unfolding of physical events. While this approach has some cognitive
plausibility at an abstract level, it should not be misinterpreted as an attempt
to provide a process-level account of mental physics simulation. In fact, the
mechanisms within typical physics engines are largely incompatible with
what might happen in a person’s mind. For example, classical physics en-
gines are carefully handcrafted based on an implementation of Newton’s
laws and don’t afford being learned in an iterative process. Assuming that
the mechanisms to perform physical simulations are already in place, there
are still a number of aspects of human behavior that are not well captured
by them. First, there are no direct means to handle incomplete or inaccurate
input data, something that humans have to deal with all the time (although
see Battaglia et al. [2013] for a technical way to deal with uncertainty). Sec-
ond, PE’s don’t allow predicting qualitative results without simulating all
detailed quantitative data. For example, when dumping a sack full of peb-
bles onto the ground, we should be able to estimate the rough shape of the
pile after the pebbles come to a rest, without undertaking the hopeless en-
deavor of predicting each single pebbles’ position in the pile. It might well
be that in the human cognition several systems are working together to al-
low predictions at different levels of detail in physical scenes. In the context
of PBPs, the limitations of existing physics engines play only a minor role,
so they are well suited to provide the PATHS model with physics simulation
capabilities.

Output of a Physics Engine

When a typical physics engine is provided with the positions and outlines
of all objects in a scene, it can simulate the unfolding of events to provide
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the following object properties for each object at a given time in the future:
position and velocity, distance to other objects, and collisions with other
objects that have occurred. These properties are used in the implementation
of the model’s perceptual routines.

In some cases, this requires significant post-processing of the physics out-
put. Taking collisions as an example, there are much more collisions in a
physics simulation than one would expect. An object that is resting on the
ground will, in each time step, sink slightly into the ground due to gravity,
only to collide with the ground and be pushed up again, resulting in a large
number of “micro-collisions”. In cases where two objects move towards each
other and then collide, it might take the physics engine more than a single
time step to separate them, resulting in a series of collisions. Both effects are
due to the internals of the physics engine and are not part of the concept
of a collision that a scene interpreter should have. To filter out all uninter-
esting collision events, the model first calculates the velocity with which the
objects collide. It then only retains collisions that have a velocity above a
threshold, which could be thought of as the collisions that would make a
perceivable sound in the real world. The model also merges collisions that
are temporally close, so that a maximum of four collisions events can be
discriminated per second for any given object pair.

All features that are derived from the simulation data are represented as
percepts with a degree of membership, or satisfaction, to a concept. The
range of the degree is from zero to one, where zero means no membership
and one means full membership. This is done to model the gradual nature
of most concepts. The distance between objects is captured by the concepts
“touch”, “close” and “far”. The remaining physical concepts, “moves”, “sta-
bility”, “supports” and “movability” require simulation beyond the calcula-
tion of an object’s state at a particular time.

To perceive the “moves” attribute, the model captures whether an object
moves or is about to move at a particular point in time. In order to find out
whether an object is about to move, the model triggers a short simulation of
the situation and checks whether the object in question moves 0.2 seconds
in the future. This identifies objects that hang in mid-air in a PBP scene as
moving objects, although they are, according to the rules of PBPS, not yet
moving in the moment that is depicted.

Perceiving the other three physical concepts is based on counter-factual
reasoning or “Probehandeln” and is described next.

Stability

People have a quick sense of how stably a few objects are configured, just by
looking at them. This allows us to foresee potentially dangerous situations
such as spilling coffee by placing a mug too close to the edge of a table, or
falling down from a badly positioned ladder.
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Figure 6: Different stability situations. Each column above has several scenes with objects that vary in
stability. The most stable situations are at the top. Different columns show different reasons for
stability variations.

In the context of dynamic rigid objects, a natural definition of object sta-
bility is an object’s ability to withstand external forces without moving. If
an object can tolerate stronger perturbations relative to its mass without top-
pling over or rolling away, we will consider it more stable than an object that
can tolerate weaker perturbations before moving.

For a single object resting on the ground, its stability is mostly influenced
by the amount of surface area in contact with the ground and the position
of its center of mass. When several objects are involved, an object might be
stable due to other objects pinning it down. Similarly, a curved or angled
ground will affect object stability. Figure 6 shows different types of stabil-
ity situations, each with several instantiations that vary in their degree of
stability.

Capturing all these situations with logical rules would be a complex un-
dertaking. However, there is reason to believe that in order to make judg-
ments about the dynamics and outcomes of physical situations people in-
stead perform mental simulations. Battaglia et al. [2013] compared how
well different models of physical reasoning matched the predictions of par-
ticipants towards which direction an unstable Jenga-tower will fall. They
found that a series of physics simulations that additionally accounted for a
person’s uncertainty about the exact position of Jenga blocks in the scene
provided the best fit. This is opposed to accounts stating that humans rely
on simple measures like height and asymmetry to reason about potential
results.

The PATHS model uses a physics engine to perform mental simulations of
a physical scene that allow it to predict the future and to engage in counter-
factual reasoning. To assess stability, the physics engine is first used to pre-
dict the near future of the scene without any external perturbations. If the
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Figure 7: Different types of support situations.

target object significantly moves, it is considered unstable. Otherwise, the
algorithm resets the scene and conducts a series of three short simulations,
with an increasingly strong horizontal impulse applied to the target object’s
center of mass at the start of the simulation. This impulse is comparable to
hitting a small object with a flick of a finger to observe how it reacts. If the
target object topples over, falls down, or rolls away – all significant changes
in position and orientation – the object is considered unstable. The perceived
stability has a membership value between 0 and 1 that reflects how strong
an impulse was needed to push the object out of balance.

This implementation of perceiving stability has the advantage that it both
takes the object’s shape and the environment into account while being very
general, as it covers all situations the physics engine can simulate.

Support

The concept of support is closely related to stability in that it describes
whether the presence of an object helps to stabilize another object. Building
stable structures that have a proper inner support is obviously an important
topic in architecture and structural engineering, both using sophisticated
methods for analyzing complex structures. In the context of PBPs, we are
interested in a more intuitive understanding of support and generally do
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Figure 8: Four scenes taken from PBP 31. They vary in whether the small object can
be lifted up or not.

not take into account that an object might break or might be fixed to another
object.

Support situations with separate, rigid, non-breakable objects can be orga-
nized according to several aspects. The first aspect reflects whether the two
objects touch. I will call the support relation direct if they do and indirect if
they do not. In Figure 7a, object C directly supports B and indirectly sup-
ports A. The second aspect reflects the redundancy of the support an object
provides. An object might be the only supporter of another object, like C is
for B in Figure 7c, or it might be part of a group of supporters, like C is for
B in Figure 7b. Similarly, a third aspect of support is whether the supported
object would actually fall or topple over without the supporter or remain
stationary but become less stable (see object A supporting object B in Fig-
ures 7g and 7h, respectively). I refer to the latter as a stabilizing relationship.

Support relationships can get complicated quickly and I chose to limit
the model’s perception of support to a relationship between object pairs. In
order to find out whether an object supports another object, the model uses
the same counter-factual reasoning as it does when perceiving stability. The
model “imagines” what would happen when the supporter is removed by
running the respective physical simulation. If the potentially supported ob-
ject starts to move or becomes unstable after the removal of the potential
supporter and remains stable if the supporter is not removed, there is a sup-
porting relationship between the objects. The model perceives four different
types of support: direct, indirect, stabilizing and no support, and currently
maps them to gradual memberships to a single “supports” concept.

Movability

In physical scenes, we encounter both objects that we can pick up or move
around, and objects that are limited in the way they can be moved. In the
context of PBPs, the main reason for potential constraints in how an object
can move is that the path of the object might be blocked by other objects or
the ground.

The PATHS model uses the notion of an object’s movability to reflect
whether it can be moved by a moderate force. To perceive movability, the
model performs a physics simulation in which it continuously pulls on a
string that it attaches to the center of the object in question. The change – or
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lack of change – in position when pulling with a moderate force is used to
judge the movability. Figure 8 shows four scenes that differ in whether the
small object can be lifted up.

2.3 spatial relations

How the objects in a scene are positioned relative to each other captures
much about what is going to happen, what might have happened before,
and what the objects in the scene might be used for. It is often essential for
understanding what a scene is about and a model of physical understanding
or a PBP solver will need to perceive and work with spatial information.

Spatial information in a scene includes the object’s positions relative to the
scene and relative to each other. The relative position of a target object in re-
lation to a reference object can be described in terms of distance and direction
and will depend on the objects’ shapes, especially if they are close to each
other. All directional spatial relations additionally require a reference frame
in order to determine what is left, right, and so on. In the case of 2D scenes
like in the PBPs, the direction of gravity provides us with the y-axis and the
first direction of the reference frame. Placing the x-axis perpendicular to it
we arrive at the classical Euclidean 2D space.

Related Work

Space and time are fundamental concepts in our lives and various scien-
tific areas have made contributions to the questions of how spatial and
temporal information can be perceived, represented, and reasoned upon.
There has been active research on representing and reasoning on qualita-
tive spatial and temporal data in the field of A.I. spanning from at least
the 80s with the temporal intervals of Allen [1983] up to the present. The
focus has been on formulating representations and ontologies that express
temporal-spatial knowledge as well as calculi that allow automatic reason-
ing on a qualitative level. The work has been practically applied to handle
queries in geographic information systems. However, building an ontology
of space and time that is compact, complete, consistent, and computationally
well-behaved turned out to be a very challenging task. Cohn and Hazarika
[2001] and Vieu [1997] give a good overview of the field and its develop-
ment. There are several dimensions along which we organize space and
time concepts: topology (space: contains, touches; time: during, ends-with),
distance (space: close, far; time: long ago, shortly after), orientation, direc-
tion, or order (space: left of, above; time: before, after), position (space: left,
right; tomorrow, early), size (space: small, big; time: short, long), as well as
the concept of shape (space: round, square; time: –). Due to the richness of
spatial concepts, most work in qualitative spatial reasoning focuses on just
one of the aspects listed above. Also, each approach has to make the choice
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whether the basic elements are treated as points, as by Freksa [1992], or as
regions, as in the region connection calculus of Randell et al. [1992]. Many
spatial calculi are computationally intractable (NP-hard) in their full form,
so an important task has been to identify tractable subsets (Renz and Nebel
[2007]). There are approaches that combine spatial and temporal reasoning
like the spatial-temporal constraint calculus, which combines Allen’s inter-
val calculus with RCC-8 (Gerevini and Nebel [2002]). Other calculi allow
reasoning about moving objects (Van de Weghe et al. [2006]).

For our purpose of modeling solving PBPs, we are interested in qual-
itative spatial representations, not the automatic logical inference-making
on the representations. Additionally, we need spatial representations that
address all of the dimensions of spatial concepts mentioned above and a
representation that can capture the vagueness that is inherent in many spa-
tial concepts. For example, the PATHS model should be able to perceive
differences in the degree of closeness of two objects, like very close and
close. This makes it possible to either use the degree of closeness in a cate-
gorization rule directly or to adjust a threshold value used to make a binary
decision about closeness depending on the context that is set by the PBP
scenes.

Of the spatial representation research that I reviewed, Isabelle Bloch’s
work on fuzzy spatial relations fits these requirements best (Bloch [1999],
Hudelot et al. [2008]). Bloch and colleagues developed a powerful frame-
work that allows to model the inherent vagueness of spatial relations like
“to the left of X” and the duality of spatial relations like “left” and “right”. It
has a robust way of combining spatial concepts such as “close above”, and
modifying them, such as in “very far”. Concepts don’t have to be exhaus-
tive or mutually exclusive (the notions of above and left clearly overlap for
some objects). It has only a few parameters that must be tuned. Finally, the
approach takes the shapes of both reference and target objects into account.

Fuzzy Spatial Relations

Isabelle Bloch’s model of spatial relations is based on fuzzy set theory and
has strong ties to morphological operations. Hudelot et al. [2008] introduce
an ontology of spatial relations covering several aspects including distance,
orientation and topology. The ontology and image processing algorithms
were developed within a computer vision context and applied to medical
images in which a priori qualitative spatial knowledge from an expert sys-
tem had to be incorporated for the segmentation and interpretation of brain
scans. All fuzzy operations work directly on the image space, therefore all
objects and relative positions are sampled at a specific resolution. The com-
puted spatial concepts can be used to answer two different questions.

1. To what degree does a given spatial relation hold for two specific re-
lated objects, for example, is A left of R?
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2. At which locations is a given spatial relation fulfilled for a specific
reference object, for example, which places in space are left of R?

The answer to the second question is provided by calculating a fuzzy
set, referred to as fuzzy landscape, around the reference object in the same
image space that the object is in. The fuzzy set is a function µ : S→ [0, 1], that
maps each point in the image plane S onto a membership value between 0

and 1. This membership value corresponds to the satisfaction of the spatial
relation in question. Figure 9 shows the fuzzy landscapes of the six basic
spatial relations using a square as the reference object.

(a) left (b) right (c) above

(d) below (e) close (f) far

Figure 9: The fuzzy landscapes of six basic spatial relations for a square. The bright-
ness reflects the degree to which a position in the image space satisfies the
respective relationship to the square.

To answer the first question, the fuzzy landscape around R is compared
to the object A. The degree of relationship membership between A and R is
measured by the relationship satisfaction values at the positions in the land-
scape that are covered by A. Isabelle Bloch uses three values to represent
the fuzzy relationship between A and R: the minimum satisfaction value

∏
,

the mean satisfaction value M and the maximum satisfaction value N over
all points of A in R for the relative position along the direction α.

R∏
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In the fuzzy set framework, the minimum and maximum satisfaction mea-
sure can be interpreted as the necessity and possibility of A and R being in
relative direction α, respectively. The definitions shown here are for the case
of crisp objects, where each point in the image plane does or does not be-
longs to an object. This is sufficient for the PATHS model. The notions above
generalize naturally to fuzzy objects, which is how Isabelle Bloch introduces
them.

Two advantages of this approach are its solid mathematical grounding
in fuzzy sets theory and fuzzy morphological operators, and its flexibility.
The relative position of two objects with regard to a chosen angle can be
calculated quite efficiently in 2D and 3D to measure concepts such as “left”
and “above”, while morphological structuring elements can be designed for
other relations such as the distances “close” and “far”. Finally, by using
the fuzzy t-norm and t-conorm, conjunctions and disjunctions of spatial
maps can be easily calculated in order to construct combinations of spatial
concepts such as “far above” and “beside”.

I will first describe the algorithm used to calculate the fuzzy landscapes
as it was proposed by Bloch [1999] and then describe my improvements to
that algorithm. The algorithm is applied to three pairs of relative positions
“left of, right of”, “above, below”, and the distance relations “close, far”.
These are the basic relations the PATHS model uses for perceiving spatial
information. Additional spatial relations such as “beside” or “on-top-of” are
modeled as combinations of these basic relations. I follow the bipolar fuzzy
sets approach of Isabelle Bloch, in which the fuzzy landscape of each basic
spatial relation is complemented by the landscape of its opposing relation.
Two concepts are combined by taking the fuzzy union of the positive infor-
mation and the fuzzy intersection of the negative information. The intersec-
tion of two concepts is computed by intersecting the positive information
and taking the union of the negative information.

Fuzzy Landscape Algorithm

Isabelle Bloch presents a slow exact and a fast approximate algorithm for
calculating fuzzy landscapes for relative positions. The fast algorithm iter-
ates over each pixel of the image space with the reference object at its center
twice, first in a forward direction (left to right, top to bottom), then in a
backward direction (right to left, bottom to top). The algorithm works in
two stages. The goal of the first stage is to find the point in the reference
object that is best aligned with the target direction seen from each point
in the image space. This is accomplished during the two iterations over all
pixels by setting each pixel to the best reference point of its 8 neighboring
pixels (or its own reference point, in case it is already the best). Points for
which no reference point is set yet are ignored when choosing the best point.
Figure 10 shows the best matching reference point for a given point in the
image space and the spatial relation “right-to”.
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R

P
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βmin

Figure 10: Q is the best reference point for the image point P, since it is the point in
the reference object R that is closest to the spatial direction “right”.

The different spatial relations are realized by using different functions
β : R2 → R that maps the relative position of a reference point Q ∈ R and a
point in S onto a real value expressing how far the relative position of both
points matches the spatial relation tested for. I use the following function
for the relations “left of”, “right of”, “above” and “below”.

βα(P,Q) = arccos
−→
QP · ~uα∥∥∥−→QP∥∥∥ ,

where ~uα is the unit vector in the respective direction. For the relations
“close” and “far”, I use the Euclidean distance between the points

βdist(P,Q) =
∥∥∥−→QP∥∥∥ .

After iterating over the image two times, each point in S has an (approx-
imately) optimal reference point Q ∈ R attached and the respective value
of β. In the second stage of the algorithm, this value is mapped onto an
acceptability value between 0 and 1 by using the following mapping for the
relative directions and distances, respectively.

fα(x) = max

(
0,
(
1−

2‖x‖
π

)3)
(1)

fclose(x) = 1−
1

1+ ea∗(b−x)
(2)

ffar(x) =
1

1+ ea∗(c−x)
(3)

During the interpretation of a PBP, an algorithm has to look at up to 16

scenes, each of which might contain several objects with potentially impor-
tant spatial relations between any object pair. An important property of the
algorithm is that the most promising features are looked at first and an ex-
haustive perception of all possible relationships between objects is avoided.
Still, the number of promising object pairs can easily be on the order of
100, so the calculation of the six basic spatial relations requires the PATHS
model to calculate up to several hundred fuzzy spatial relations including
the fuzzy landscapes they are based on. The performance bottleneck in cal-
culating a fuzzy spatial relationship between object A and reference object R
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Figure 11: Illustrates the modified algorithm for fast computation of the spatial land-
scapes. Each of the four passes starts at one corner of the reference object’s
bounding box and proceeds to the opposite corner of the image space.
The right figure shows which neighbor pixels are taken into account in
the first pass.

is the calculation of the fuzzy landscape. Its time complexity is O(‖S‖), the
number of pixels in the image space. Choosing the resolution is a trade-off
between accuracy and speed of computation. The image space must be large
enough so that for a reference object R the object A is still contained inside
it, no matter where A was placed in the scene. Therefore, I scale the objects
by such a factor that the width and height of the actual scene fit twice inside
the image space and place the reference object at its center. I decided to use
a resolution of 100 x 100 points.

In the original version of the fuzzy landscape algorithm, it iterates twice
over the whole image space and takes into account the complete 8-neigh-
borhood for each pixel. The first pass iterates from the upper left corner to
the lower right; the second pass iterates in reverse. I modified the original
algorithm based on the observation of how the information “flows” through
the image during the iterations. Instead of two complete passes, I use four
partial passes: one from the upper left to the lower right, one from the upper
right to the lower left, one from the lower right to the upper left, and the last
one from the lower right to the upper left. Instead of starting in the corners
of the image space, the passes start at the respective corners of the reference
object’s bounding box. This simple modification reduces the number of pix-
els that have to be looked at by a factor of up to 2, depending on the size
of the reference object. Additionally, in each pass only those three neighbor-
ing pixels in the 8-neighborhood of the current pixel are used, which are
in the direction opposite to the direction of the current pass, reflecting the
direction of information flow. This reduces the number of pixel checks by
another factor of about 3. See Figure 11 for an illustration of the algorithm.
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(a) original method (b) accurate method (c) improved method

Figure 12: Side by side comparison of the original, the improved algorithm, and the
accurate algorithm. The improved version is about five times faster and
shows fewer artifacts than the original version.

The advantages of my adaptation of Isabelle Bloch’s algorithms are twofold.
First, we get a performance gain close to a factor of 6 when the reference
object is small in relation to the total image space, which is typically the
case. The second advantage is an increased accuracy of the fuzzy landscape,
resulting from using four instead of two passes. Figure 12 demonstrates re-
duced artifacts for an example situation. While I made no attempt to prove
that the modified algorithm is always at least as accurate as Isabelle Bloch’s
original method, across all test cases I looked at the results of the modified
algorithm were equally close or closer to the results of the accurate method.

The fuzzy landscape for a specific relation has to be calculated only once
for each reference object, as long as its rotational orientation in the scenes re-
mains constant. After calculating the fuzzy landscapes for all basic relations,
additional concepts can be defined by combining them.

Bipolar Fuzzy Landscapes

Bloch [2010] describes how to extend the fuzzy spatial framework to in-
clude bipolar information. The notion of having a fuzzy set µ : S → [0, 1]
is extended to a bipolar fuzzy set, which is a pair of membership functions
(µ,ν) where µ captures the positive information of where a spatial relation
is known to be satisfied and ν captures the negative information of where
a spatial relation known to be unsatisfied. There are two common applica-
tions for doing so. First, in many spatial search problems, constraints on
possible positions are known and these can be captured by the second part
of the bipolar fuzzy set. Second, and more relevant in the context of PBPs, is
the case of opposite relations like left and right, above and below, as well as
near and far. The opposition in these pairs does imply a form of symmetry,
but the parts are neither mutually exclusive nor jointly exhaustive. There
are, for example, image regions that are neither left nor right of a reference
object while other regions might be both left and right of different parts of
a concave object.
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R
A

(a) (b) left (c) right (d) right − left

R

A

(e) (f) left (g) right (h) right − left

Figure 13: Two example situations of an object A placed relative to an object R. If I
only considered the fuzzy landscape of the relation right of, objectAwould
be described as right of R in both cases, which is counter-intuitive since it
is too permissive. In a bipolar interpretation of the relation right of, I also
take the opposing relation left of into account as negative information.
This yields a more intuitive representation.

The conceptual part of the cognitive model will not work directly on the
fuzzy landscapes, but on the qualitative spatial relationships between ob-
jects, represented as a single membership value between 0 and 1. To come
up with the acceptability or satisfaction value for a concrete relation be-
tween two objects, the negative and positive information of the respective
bipolar fuzzy landscape have to be combined. This is done by subtracting
the negative landscape from the positive landscape at each corresponding
point in the fuzzy set and clipping all values below zero. The related object
is then placed in this combined landscape at the same relative position and
rotation as in the real scene and its mean membership is used as acceptabil-
ity. See Figure 13 for two examples. Notice that without taking the negative
information into account, both examples would lead to a high acceptability
of both “A left of B” and “A right of B”, which would be counter-intuitive.

This bipolar nature of many spatial relations is captured well by the bipo-
lar fuzzy set theory. All fuzzy and morphological operations generalize
nicely to the new setting. What is of interest to us is the fusing of two bipolar
fuzzy sets. Taking the conjunctive fusion of two bipolar fuzzy sets (µ1,ν1)
and (µ2,ν2) is done by taking the conjunction of the positive parts µ1,mu2
and the disjunction of the negative parts ν1,ν2 as negative evidence. The
disjunctive fusion of two bipolar fuzzy sets is defined as the disjunction of
the positive information and the conjunction of the negative information.
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(µand,νand) = (µ1 ∩ µ2,ν1 ∪ ν2)

(µor,νor) = (µ1 ∪ µ2,ν1 ∩ ν2)

The conjunction µ∩ and disjunction µ∪ of two fuzzy sets µ1 and µ2 are
defined as

µ∩(i, j) = >(µ1(i, j),µ2(i, j))

µ∪(i, j) = ⊥(µ1(i, j),µ2(i, j)),

where > is the fuzzy t-norm and ⊥ is the fuzzy t-conorm. In the literature
on fuzzy mathematics, there are several well-established fuzzy logic systems
with their respective t-norms and t-conorms. Three of the most common
ones are the Łukasiewicz logic (Łukasiewicz t-norm and bounded sum t-
conorm), the Gödel logic (minumum t-norm and maximum t-conorm) and
the product logic (product t-norm and probabilistic sum). Following Isabelle
Bloch’s example, I will use the minimum t-norm and maximum t-conorm
in the PATHS model.

>min(a,b) = min(a,b)

⊥max(a,b) = max(a,b)

At the time of calculating an object’s membership to a spatial relation
with a reference object, I combine the respective positive and negative infor-
mation of the bipolar fuzzy landscape using the function

sub(a,b) = max(0,a− b).

This is the only step that falls slightly outside the mathematical system of
fuzzy logics, as “subtraction” in fuzzy terms is normally defined as a −

b := >(a,¬b). The negation is defined as ¬a = 1− a for the Łukasiewicz
logic and as ¬a = 1 if a is 0, otherwise 0. Therefore, the above formula for
subtraction is compatible to the Łukasiewicz logic and not for the Gödel
logic, where the compatible subtraction is a− b = a if b = 0, else 0. In my
experience, the above definition works very well and is less drastic than the
Gödel subtraction. Using a different subtraction method is unproblematic
since the subtraction is only done as a last computation step after all fuzzy
operations have been applied.

Combining Spatial Concepts

left and close Using the formulas above, I can easily define the spa-
tial concept left and close as a bipolar fusion of the concepts left and close.

(µlc,νlc) = (µl ∩ µc,νl ∪ νc),

were the indices lc, l, and c stand for left and close, left, and close, respectively.
The negative information for left, νl, and for close, νc, are identical to the
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(a) µl (b) νl (c) µc (d) νc

(e) µlc = µl ∩µc (f) νlc = νl ∪νc (g) µlc−νlc

Figure 14: Combination of the spatial relations left and close for a U-shaped reference
object. The first four plots show the positive and negative information of
left and close. The landscapes (e) and (f) are the results of the bipolar
conjunctive fusion. The final representation (g) is the difference of both
and is used to calculate the degree of membership for a given object to
the spatial relation close and left of the U-shaped object.

right and far relations, respectively. Figure 14 depicts the fuzzy spatial land-
scapes used in the construction of the relation close and left. In the last plot of
this figure, the positive and negative information of the bipolar representa-
tion are combined in the same way they are combined when calculating the
membership of an object to the relation and the given reference object. This
representation captures the intuitive meaning of close and left much better
than just using the positive information.

beside The concept beside is introduced as a disjunctive fusion of the
right and left concept.

(µbes.,νbes.) = (µl ∪ µr,νl ∩ νr)

See Figure 15 for the results. Again, incorporating the negative information
of both right and left leads to a more plausible result than just using positive
information.

on-top-of I model the meaning of the concept A on-top-of B as A being
on top of B and touching B. Since touches is not defined as a fuzzy landscape
but is fulfilled to a certain degree for two specific objects, on-top-of shares
that property. I define on-top-of as the minimum of the acceptabilities of A
above B and A touches B.
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(a) µl = νr (b) µr = νl

(c) µbes. = µl ∪µr (d) νbes. = νl ∩νr (e) µbes. −νbes.

Figure 15: New spatial relation beside defined as bipolar disjunctive fusion of left and
right. The first two plots show the positive and negative information of
left and right. The landscapes (c) and (d) are the results of the bipolar
disjunctive fusion. The final representation (e) is the difference of both
and is used to calculate the degree of membership for a given object to
the spatial relation beside the rectangular object.

2.4 group attributes

The PATHS model is capable of treating several objects in a scene as a group
and can perceive attributes of that group. Objects can be grouped through
common attributes, for example “all squares in the scene”, through common
relationships, for example “all objects left of a circle”, or through combina-
tions of attributes and relationships. The attributes count, touching, close and
far can be perceived on a group.

The model’s perceptual routine for determining the number of objects
simply returns the correct integer as the attribute value. To decide whether
the objects in a group are all close to each other, the model builds the min-
imal spanning tree (MST) on a fully connected graph that has the objects
as nodes and their pair-wise distances as weights of the edges. An MST is
defined as a subgraph that is structured as a tree, connects all nodes, and
minimizes the sum of edge weights. The degree of membership of a group
to the concept close is determined by mapping the value of the largest edge
in the MST onto the interval [0, 1], using the same mapping function as in
the close relationship (see page 35).

The algorithm for perceiving the touches group attribute works in the same
way with the only difference being that it uses the mapping of the touches
relationship to translate the biggest distance in the MST into a membership
degree.

Finally, the membership of a group to the concept far is computed by
using the minimum of all pair-wise object distances in the group and the
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mapping of the far relationship (see page 35). While the strategy for close
and touches membership calculation is similar to the single-linkage criterion
in hierarchical clustering and allows for long chains for objects, the strat-
egy for far membership calculation resembles an inverse complete-linkage
criterion and requires that there are no two objects that are close to each
other.

2.5 conclusion

In this chapter, I described how the PATHS model can perceive geometri-
cal, spatial, dynamic and physical features in a scene. The features include
attributes of objects and group of objects, as well as relationships of pairs
of objects. The perceptual system of the PATHS model solves a number of
challenges inherent in the task of extracting relevant information from PBPs.
While its ability to simulate the unfolding of a scene and of imagined actions
captures the predictive aspects of perception, its translation of perceptions
into fuzzy concept memberships provides an important intermediate step
towards building symbolic categorization rules without sacrificing the op-
tion of context-dependent reinterpretations. In the next chapter, I describe
the rule-construction component of the PATHS model and how it can guide
the perception of PBP scenes towards the most relevant features.



3
L E A R N I N G P H Y S I C A L C O N C E P T S

This chapter describes how the perceptual capabilities of the PATHS model
laid out in the previous chapter are integrated with a hypothesis generation
and testing mechanism. The PATHS model perceives features on objects,
object pairs, and groups of objects in PBPs and uses these perceptions to
construct structured rule-based representations of the scenes. The percep-
tion process and the process of hypothesizing about the correct categoriza-
tion rule interact with and constrain each other, as the model focuses on
the most promising hypotheses. PBP solutions take, as discussed in the first
chapter, the form of rule-based concepts that contain all scenes on the left
side while not containing any scene on the right side – or vice versa.

In order to focus on the particular aspect of interleaved perception and
concept-formation, I make a number of simplifying assumptions in regard
to other aspects of the problem domain. The model treats all given train-
ing examples as noise-free and deterministic in the sense that the category
labels are correct and the positions and shapes of all objects are precisely
known. There is no missing data in the common sense of the term, however,
practically, the algorithm will have to deal with incomplete and (yet) miss-
ing data, as the instances are iteratively perceived. Finally, the PBP domain
was constructed using concepts that can be described with a conjunctive
rule that covers all positive examples. In this work, I am not interested in
rules with complex logical structures and also won’t deal with learning ex-
ceptions to a logical rule. Therefore, the rule language of the PATHS model
wasn’t designed to express rules beyond conjunctions of attributes and rela-
tionships.

The PATHS model is meant to provide insights at a process-level. It works
iteratively on the scenes and is, just like humans, influenced by the order
in which the examples are presented. The model is given the outlines and
positions of all objects and the ground in the scenes as input; all features that
are used in pattern descriptions or rule hypotheses have to be constructed
by running perceptual processes on the input data.

3.1 guiding principles of model design

In the design of the PATHS model, I took inspiration from several models
and theories in cognitive science. PATHS is close in spirit to the fluid analogy
systems from Douglas Hofstadter’s group, including Phaeaco by Foundalis
[2006]. It, too, aims to capture the active, iterative nature of perception and
its interaction with higher-level cognitive processes. Unlike the focus on
structural mapping in the fluid analogy systems, the PATHS model uses a

43
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hypothesis testing approach and treats PBPs as a concept learning problem.
Existing rational models of concept learning, such as Goodman et al. [2008a],
inspired the use of Bayesian estimation of hypothesis probabilities to drive
the decisions made by the model. The following list describes the main
principles and ideas that guided the implementation of the PATHS model.

hypothesis testing . The PATHS model learns rules that sort struc-
tured instances into categories through an active process of constructing
and testing hypotheses. The model’s rule space is restricted to conjunctions
of object attributes, group attributes and object relationships; the rules can
be all-, exists- and unique-quantified. While humans can work with more
complicated logical rules, conjunctions are a natural subset and allow us
to focus on challenges other than the construction of complicated logical
structures.

iterative and active perception. The processes of perceiving PBP
scenes and constructing rule-based interpretations of them happen at the
same time and influence each other. The model starts working on PBPs
without knowledge of any object attributes or spatial relationships. Instead,
using the visual outlines and positions of the objects, the model perceives
features step by step in order to build scene descriptions and rule hypothe-
ses.

This perception of attributes and relationships, which often involves men-
tal simulations of physics, requires time and effort. Structured scenes with
multiple objects contain many potentially features to look at. In order to
learn efficiently, PATHS uses feature and object saliencies, as well as infor-
mation from hypotheses-scene matches in its decisions of what to perceive.

rational decisions . The PATHS model uses the information from
previous hypothesis-scene matches to estimate how probable it is for a hy-
pothesis or for a feature or object in the current scene to be part of a solution.
Based on those estimates, it makes a stochastic decision on what to perceive
or check next. This is at its core a rational approach – the model makes de-
cisions that are estimated to be optimal in a given situation. Unlike classic
rational approaches, the estimation of probabilities is relatively rough and
the model takes memory constraints into account by only using the infor-
mation that was actively perceived so far.

local actions . The PATHS model is only allowed to perceive features
and check hypotheses on currently visible scenes. This is motivated by hu-
man memory constraints and, in particular, the difficulty of reinterpreting
an image in memory (Finks et al. [1989]). As a result, the estimation of hy-
pothesis probabilities has to take into account that often different hypothe-
ses have been checked on a different number of scenes. Although the al-
gorithm keeps track of all hypotheses that are created, typically just a few
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Figure 16: Control flow in the PATHS model. At each step, the model stochastically
selects one of four action types with the indicated probabilities. The “re-
combine hypotheses” block in the diagram contains two similar action
types that are selected with the probabilities 0.1 and 0.05. Some actions
trigger the creation of a new hypothesis, which in turn triggers a check
hypothesis action on the created hypothesis.

hypotheses are actively explored. Only when a promising hypothesis turns
out to be wrong, attention is shifted to others.

gradual concepts and adaptive borders . The membership of an
instance to a concept is often gradual. For example, when perceiving how
‘close‘ two objects are to each other, they can be very close, close or not so
close. At the time the model formulates a rule based on feature membership
values, these values are discretized into an all or nothing membership (close
or not close). However, the value thresholds that distinguish between these
membership states can be adjusted depending on the context. The same
object might be called “small” in one context and “big” in another.

3.2 implementation

The basic architecture of the PATHS model resembles a loop that is repeated
until a solution is found. In each iteration through that loop, the model per-
forms three steps. First, it stochastically selects the type of action to perform
next from a set of four types. Second, it performs the action, which might
involve the stochastic selection of action parameters. Third, it stochastically
decides whether to shift attention to a new set of scenes. Some actions can
trigger a follow-up action when they are run and in these cases, the model
performs the follow-up action before continuing to step three. Figure 16

gives an overview of this architecture. The following text describes the vari-
ous components of the PATHS model, important aspects of their implemen-
tation, and how they work together.



46 learning physical concepts

Scenes

The scenes hold physical representations of their objects. Initially, the model
only knows about the outlines of the objects and the ground in a scene. Over
time, more information is collected and stored through perceiving of object
features. A physics engine is used to both predict how the scene unfolds
over time and to perceive physical features on objects. Stability, for example,
is perceived by observing how much an object moves after poking it.

The model also keeps track of the minimum and maximum feature val-
ues for perceived features. This information can later be used to adjust the
thresholds of category membership for features.

Switching Between Active Scenes

One way of comparing the performance of the PBP cognitive model to hu-
man performance is to look at the influence of the order in which the scenes
are perceived. To that end, I present just two scenes of a PBP at a time. The
sequence of scene pairs is fixed during a particular trial while the decision
of when to uncover the next scene pair is up to the human or cognitive
model.

In the case of the cognitive model, this decision is based on how promising
the current hypotheses are. If there is a promising solution candidate that
was already checked on the current scenes, the model is more likely to move
on to the next scenes earlier so the solution candidate can be further verified.
If none of the hypotheses are particularly promising, or if a promising one
yet has to be checked on the current scenes, the model is likely to continue
looking at the current scenes.

Objects and Groups

Objects keep track of all perceptions that were made on them. Groups are
constructed by selectors that select a subset of objects in a scene, such as
“square objects” or “any object”. Each group of objects can be a target for
perceiving group features like “object count” and will keep track of all se-
lectors that are known to select that subset of objects in the group.

Features and Percepts

The model currently has 34 built in feature detectors, including detectors
for static object properties, such as “size” and “shape”, physical proper-
ties, such as “stable” and “moves”, spatial relationships, such as “left-of”
or “close” and group attributes, such as “object count”. Each feature detec-
tor can perceive its respective feature on any object (or group, whichever is
appropriate) and the resulting percept contains the perceived value of the
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feature as a membership degree between 0 and 1 (e.g., [A left-of B] = 0.4).
The algorithm uses a default threshold of 0.5 to decide whether a feature is
considered active or not (e.g, A is “left-of” B or not). This threshold can be
adjusted in each selector.

Selectors

Selectors abstract from observations on a specific object or group and rep-
resent a structured pattern. They correspond to a possible interpretation of
a scene by describing what to look for. The abstraction is both from spe-
cific objects to descriptions of those objects’ features, and from gradual to
discrete feature values. The percept of a feature like “small” is represented
with a membership value in [0, 1]. When turning that percept into a feature
matcher, the value is discretized into a binary value “true” or “false”, so
that the resulting selector can either match objects that are “small” or “not
small”. The default threshold for the binarization is a membership value of
0.5. This threshold can be adjusted per selector and feature type to account
for the observed distributions of feature values in the left and right PBP
scenes.

When a selector is applied to a scene, it selects a subset of the scene’s
objects. Selectors are conjunctions of three kinds of feature matchers: object
attribute matchers, object relationship matchers, and group attribute match-
ers. Each feature matcher maps a source set of objects to a target set of
objects that contains all those objects from the source set that have the same
feature-value combination as the matcher. For example, a selector that con-
tains a single object attribute matcher “small=true” will select all objects in
a scene for which the feature “small” has a membership value above the
threshold of 0.5 or an adjusted threshold.1

An object relationship matcher contains, in addition to the relationship
type and value, a selector for the reference object of the relation. For exam-
ple, “hits (small)” would select all objects in the scene that hit a small object.
Reference selectors are not allowed to contain relationship matchers, which
prevents complicated nested structures “a circle that is left to a square that
is left to a triangle”, but allows for “a circle that is left to a square and is left
to a triangle”.

When applying a group attribute matcher to a set of objects, it returns
the original set if the group of objects in the set has the same feature-value
combination as the matcher. Otherwise, it returns an empty set. For example,
the matcher “count=3” will return all objects when applied to a scene with
three objects or no objects if the scene has a different number of objects in
it.

Since all matcher types map object arrays to object arrays, they can be
easily combined. For example, a selector consisting of the two matchers

1 I will omit to write “=true” for active features when there is no danger of confusion.
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“close-to(square) ∧ count=3” will check whether the number of objects in a
scene that are close to a square is three. If so, it selects those three objects,
otherwise, it selects none.

If during the application of a selector the values for the selector’s features
are not yet known for some objects, the model will perceive them first.

Hypotheses

A hypothesis represents a potential solution or partial solution to the current
PBP. It consists of a selector, the side of the PBP the selector is describing
(left, right or both) and the quantifier that is used with the selector (exists,
all or unique). For example, the “small” selector could be applied as “in
the left scenes, all objects are small”, or as “in the right scenes, there is a
small object”, or as “in all scenes, there is exactly one small object”. Each
hypothesis keeps track of whether or not the scenes it has been tested on
matched and whether all, some, or exactly one of the objects in each scene
matched. This information is used to pick the best fitting side and quantifier
for describing the scenes seen so far.

In the model, every hypothesis is associated with exactly one selector,
and every selector is associated with exactly one hypothesis. I will use both
terms interchangeably when there is no danger of confusion.

Attention Mechanisms

In the PATHS model, the guiding of perception towards regions and aspects
of the scenes that are most relevant to the learning process works on sev-
eral levels. Attention can be shifted to certain objects in a scene, to certain
features, or to the aspects necessary for checking a solution hypothesis. Dur-
ing the initial exploration of the PBP scenes, objects differ in their saliency
based on their features. Objects that are about to move or are unstable, ob-
jects that are spatially separated, or objects that are “oddballs” in another
way have a higher probability of being attended to. After perceiving a cou-
ple of the scenes, the model will have noticed some reoccurring patterns and
will have created some hypotheses. The hypotheses influence the choice of
what to perceive next in several ways. First, during the exploration of the
scenes, the model is more likely to attend to the objects that play a role in
promising solution hypotheses. Second, the model directly checks existing
hypotheses on new scenes and during this process only perceives what is
necessary to confirm or refute the hypothesis. Third, existing hypotheses
can be combined, and the resulting hypotheses influence perception as de-
scribed in the previous two points.

In summary, what aspects of a PBP scene the model focuses on depends
on the a priori salience of features and objects in the scene, as well as in-
formation about common patterns gathered from other scenes in the form
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of hypotheses. The goal of attending to certain aspects of a scene and ig-
noring others is to maximize the expected usefulness of new information
towards the goal of finding the rule that discriminates between the two cat-
egories shown in the PBP. Ideally, the PATHS model will find a solution to
a PBP without having to perceive all, or even the majority, of the potentially
available features.

Actions

All work done by the model while solving a PBP is organized into small,
separate chunks, called actions. A practical way of measuring the model’s
performance that abstracts from specific computer hardware and implemen-
tation details is to count the number of actions that the model performed to
solve a PBP. There are four action types that the model can perform, which
are: 1) to perceive, 2) to create a hypothesis from a perception, 3) to check
a hypothesis against the current scenes, and 4) to combine two existing hy-
pothesis to form a new one. Three of the four action types are triggered
top-down by sampling from a fixed multinomial distribution. The percep-
tion action is chosen with p = 0.6, a hypothesis is checked with p = 0.25 and
two hypotheses are combined with p = 0.15. See Figure 16 for a diagram
of the model’s control flow. Actions can also be triggered by other actions.
A typical example is the perception action triggering a create hypothesis ac-
tion, which in turn triggers a check hypothesis action to turn a perception
into a selector and hypothesis that is then applied to the currently active
scenes. Following is a description of each of the action types.

Perception Action

The perception action uses one of two strategies with equal probability. Either
the action first selects a target from one of the current scenes and then selects
which new feature it should perceive on it, or it first selects a feature and
then selects a new target for perceiving the feature. The former strategy
corresponds to a human looking at an interesting target in a scene and
perceiving new properties of it, while the latter corresponds to a human
that is looking for targets that have a particularly interesting feature.

In both cases, the target can be an object or a group of objects while the
feature can be a group attribute, object attribute, or a relationship between
two objects. Both target and feature are stochastically chosen based on their
estimated probability of being part of a solution to the PBP. If an object rela-
tionship is to be perceived, a reference object for the relationship is chosen
in addition to the target object. For features that can change over time, such
as an object’s position in the scene, the perception action stochastically picks
whether the feature is perceived in the initial or final situation, based on a
fixed multinomial distribution (p = .67 and p = .33, respectively).
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When perceiving a feature on a target, the model only selects feature-
target combinations that were not actively noticed before. This biases the
model towards the gathering of new information during perception over
the revisiting of old information. I consider noticing a feature of a target
as passive if it happened as part of checking a hypothesis on a scene or
while assessing basic feature values in order to perceive a complex feature.
For example, checking whether a A is “touching” B in order to find out
whether A is “on-top-of” B counts as active noticing of “A on-top-of B”,
but only as passive noticing of “A touching B”. This distinction between
active and passive perception reflects whether the focus during checking
the feature was on the feature itself or on something else. In other words, it
reflects whether someone is implicitly aware or becomes explicitly aware of
an aspect in a situation.

If something new is perceived during the perception action, a hypothesis-
creation action is triggered and turns the percept into a corresponding hy-
pothesis in the next step. See Algorithm 3.1 for a pseudo-code implementa-
tion of the perception action.

Algorithm 3.1 Perceive Action

procedure run_perceive_action(scene)
strategy← pickAtRandom(“feature-1st”, “target-1st”)
if strategy is “feature-1st” then
feature← chooseFeature()
target← chooseNewTarget(scene, feature)

else if strategy is “target-1st” then
target← chooseTarget(scene)
feature← chooseNewFeature(target)

end if
return if (no feature) or (no target)
time← chooseTime()
if feature is a relationship then
reference_obj← chooseNewReference(feature, target)
percept← feature.perceive(target, reference_obj, time)

else
percept← feature.perceive(target, time)

end if
new CreateHypothesisAction(percept)

end procedure

The chooseFeature and chooseTarget methods make a stochastic choice among all fea-
tures and targets in the current scene, respectively, based on the estimated prob-
ability of a feature or target being part of the solution. The chooseNewTarget, choose-
NewFeature and chooseNewReference methods make the same kind of stochastic choice,
but only among those objects, groups, or features that will lead to new observations.
The chooseTime method picks “start” with p = .67 and “end” with p = .33.
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Create-Hypothesis Action

The create-hypothesis action turns a percept into a pattern description that
can be applied to new scenes. I refer to the pattern descriptions as selectors
and each selector is associated with one hypothesis – a potential solution to
the PBP that keeps track of all matching results. The create-hypothesis action
is triggered through a perception action which passes the new percept of a
group’s or object’s feature to it. It creates a new hypothesis and selector that
matches objects with the same feature–value combination as in the percept.

In cases of perceived object attributes, this process is straightforward,
while in cases of object relationships and group attributes additional work
is necessary. An object relationship is always perceived between two spe-
cific objects, so in order to turn a relationship perception into a selector that
can be applied to new scenes, the reference object needs to be represented
via a selector, itself. Either the “any object” selector or some more specific
selector among the existing compatible hypotheses in the workspace might
be picked. The reference selector is embedded into the main selector, which
describes the relationship feature and value.

If the percept contained a group attribute perceived on a specific group in
the scene, a selector that matches this group is picked and combined with
the main selector, which describes the perceived group attribute’s type and
value.

After the new selector and its associated hypothesis are created, they are
added to the workspace unless an identical selector already exists. In either
case, a check-hypotheses action is triggered for the hypothesis.

Check-Hypothesis Action

The check-hypothesis action applies an existing hypothesis to the scenes
in the current scene pair and keeps track of the results. Compatible match
results will contribute positively to the estimated potential of the hypothesis
while incompatible match results will have the opposite effect. In addition
to whether the hypothesis matched the scenes or not, the model keeps track
of whether exactly one, or a few, or all of the objects in the scenes match
the hypothesis’ selector. This information is used to decide on the best logic
quantifier (“unique”, “exists” or “all”) to use in the hypothesis.

Depending on the match results from all scenes a hypothesis was tested
on so far, the hypothesis might or might not be a potential solution by itself.
Logically, a hypothesis can only be a solution if it so far matched all tested
scenes from one side and none of the tested scenes from the other side. If
that is not the case, the hypothesis might still be useful since it captures
a recurring pattern in the scenes and can contribute to a solution when
combined with other hypotheses.

Each time after checking a hypothesis on a new pair of scenes, the action
will pick the side and quantifier for the hypothesis that best fit all previous
matching results. For example, “in the left scenes, there is a small object”
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Algorithm 3.2 Create-Hypothesis Action

procedure run_create_hypothesis_action(percept)
if percept contains an object attribute then
selector← createAttrSelector(percept.feature)

else if percept contains a group attribute then
group_sel← chooseSelector(percept.target)
selector← createAttrSelector(percept.feature)
selector← combine(selector,group_sel)

else if percept contains an object relationship then
reference_sel← chooseSelector(percept.reference)
selector← createRelSelector(percept.feature, reference_sel)

end if
hypothesis← createHypothesis(selector)
addToWorkspaceIfNew(hypothesis)
new CheckHypothesisAction(hypothesis)

end procedure

CreateAttrSelector creates a selector that selects object or groups with the specified
attribute, e.g. “is-small” or “has-count=2”. CreateRelSelector creates a selector that
selects objects with the specified relationship relative to any of the objects matched
by the specified reference selector. ChooseSelector stochastically picks a selector that
matches the specified group or object.

could be changed to “in the right scenes, all objects are small”. The goal
of these adjustments is to find a hypothesis that only matches scenes from
one side and is therefore a potential solution. If that is not the case anymore
after checking a scene pair, the check-hypothesis action attempts to “repair”
the hypothesis by readjusting the concept-membership thresholds of the
selector’s feature matchers. For example, the selector might be adjusted to
accept a larger range of object sizes as being “small”. This adjustment of
thresholds models the flexibility of a human solver in how he or she applies
labels to object properties.

The check-hypothesis action can be triggered through an action that cre-
ated a new hypothesis which now should be tested on the current scenes.
Alternatively, it can be triggered by the model directly without a specific
hypothesis to be checked in which case the action makes a stochastic choice
among all hypotheses that were not yet checked on the currently active
scenes.

Combine-Hypothesis Action

There are two sub-types of actions that both combine existing hypotheses to
create new ones. The first one, described here, is the combine-hypothesis
action and is two times more likely to be selected than the recombine-
hypothesis action described in the next section.
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Algorithm 3.3 Check-Hypothesis Action

procedure run_check_hypothesis_action(hypothesis, scene_pair)
if no hypothesis was passed then
hypothesis← chooseUncheckedHypothesis(scene_pair)

end if
hypothesis.checkScenes(scene_pair)
hypothesis.adjustQuantifierAndSide()
if hypothesis matches scenes from both sides then
hypothesis.tryToAdjustThresholds()

end if
if hypothesis is a solution then

announceSolutionAndStopSearch(hypothesis)
end if

end procedure

ChooseUncheckedHypothesis() stochastically selects an existing hypothesis that was
not yet checked on the specified scene pair. Hypotheses with higher estimated
utilities are more likely to be selected. Hypothesis.checkScenes() applies a hypoth-
esis to the specified scenes and saves the matching results in the hypothesis.
Hypothesis.adjustQuantifierAndSide selects the main side (left or right) and quan-
tifier (exists, all, unique) that fits the observed matching results best. Hypothe-
sis.tryToAdjustThresholds() checks whether modifying the thresholds of the feature
matchers used in the hypothesis can make the hypothesis match scenes only from
one side of the PBP and, if so, performs the adjustments.

The combine-hypothesis action is triggered directly by the model in a
top-down fashion. The action stochastically selects an object from one of
the active scenes and picks two hypotheses that match the selected object
and were not combined before. Only hypotheses that match scenes from
both sides are considered, since combining hypotheses always results in a
more specific hypothesis, and hypotheses that have so far matched scenes
from only one side are still sufficiently specific. A check-hypothesis action
is triggered for the hypothesis created by the conjunction of the two.

The reason to select two hypotheses through a common object they select
is to ensure that they aren’t incompatible with each other: their conjunction
will select at least one object in one of the scenes. This roughly corresponds
to a human noticing that the same object is both small and stable, so in
addition to the solutions “there is a small object” and “there is a stable
object”, he or she might now consider the solution “there is a small and
stable object”.

Recombine-Hypothesis Action

Just like the combine-hypothesis action, the recombine-hypothesis action
gets triggered by the model directly and creates new hypotheses by combin-
ing parts of existing ones. Instead of combining two complete hypotheses,
though, it swaps the reference object selector of a relationship feature in one
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Algorithm 3.4 Combine-Hypothesis Action

procedure run_combine_hypothesis_action(scenes)
object← chooseObject(scenes)
hyp_A← chooseHypothesis(object)
hyp_B← chooseOtherHypothesis(object, hyp_A)
hyp_AB← combineHypotheses(hyp_A, hyp_B)
new CheckHypothesisAction(hyp_AB)

end procedure

ChooseObject() stochastically selects an object from the specified scenes. ChooseHy-
pothesis() stochastically selects a hypothesis that matches scenes from both sides and
whose selector matches the specified object. ChooseOtherHypothesis() does the same,
but restricts the hypotheses to those that are compatible with the specified one. Com-
bineHypothes() returns the conjunction of the two specified hypotheses.

hypothesis with a different selector. For example, based on the hypothesis
“there is a square on top of an object”, a new hypothesis “there is a square
on top of a big object” can be created if there is an existing “big objects”
selector.

Specifically, the recombine-hypothesis action first stochastically selects a
hypothesis that has a relationship feature and one of the objects in the cur-
rent scene that matches the relationship’s reference object selector. Then, the
action searches for a different selector selecting this reference object and, if
successful, creates a new hypothesis that is a copy of the original one with
the relationship reference selector replaced by the new selector. Finally, a
check-hypothesis action is triggered for the newly created hypothesis.

This action can be essential to finding a solution in cases where the model
has perceived the correct relationship feature for the solution of the prob-
lem but initially picked a reference selector that is incompatible with the
solution.

Algorithm 3.5 Recombine-Hypothesis Action

procedure run_recombine_hypothesis_action(scenes)
hyp← chooseHypothesisWithRel()
rel_idx← Random.int(hyp.rels.length)
rel← hyp.rels[rel_idx]
object← chooseObject(scenes, rel.reference_selector)
sel← chooseSelector(object)
hyp_new← clone(hyp)
hyp_new.rels[rel_idx]← sel

new CheckHypothesisAction(hyp_new)
end procedure

ChooseHypothesisWithRel() stochastically selects a hypothesis that is based on a rela-
tionship feature. ChooseObject() stochastically selects an object in the given scene that
matches the given selector. ChooseSelector() stochastically picks a selector among all
existing selectors that match the specified object.
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3.3 utility estimation

Whenever the model is selecting a hypothesis to check or combine, or an
object and feature to perceive, the choice is made stochastically based on
previous hypothesis-scene matches. If, for example, a “circle objects” hy-
pothesis captures that the model has so far only seen circles in the scenes
on one side, this gives some credibility to the idea that circles might play a
role in a solution to the problem. The PATHS model’s choices are based on
the estimated probabilities that any of the current features, objects, groups
or hypotheses is part of, or represents, a solution to the PBP. I will refer to
these probabilities of being useful as utilities. Since information about the
scenes is gathered iteratively, the estimation of utilities needs to take into
account that only partial knowledge is available at any point in time.

In the following, all hypothesis-scene matching results are summarized in
a match matrix M. The columns correspond to hypotheses, the rows to the
scenes of the PBP and each element mi,j is set to 1 if hypothesis hj matched
scene si, to 0 if it didn’t match, and is blank if it was not yet tested on the
scene. A hypothesis is known to be a solution if it matches all scenes from
one side and none from the other, which corresponds to the column vector
(0, . . . , 0, 1, . . . , 1) or (1, . . . , 1, 0, . . . , 0).

Hypotheses

The model estimates the utility of a hypothesis using the following approach.
If a hypothesis hi can be a solution given a particular state of M, which is
the case if all tested scenes that matched were from one side and all that
didn’t match were from the other, the probability P(hi|M) of the hypothesis
being a solution is the joint probability that each of the yet untested scenes is
compatible with it. The PATHS model makes the assumption that the prob-
ability of a scene matching hi is 0.5. This estimation is very rough and does
not take the complexity of the hypothesis or the number of previous suc-
cessful matches of that hypothesis into account. Instead, the complexity of
the scene is incorporated into the utility estimation as a prior. The resulting
formula is

P(hi|M) = 0.5blankP0(hi),

where blank is the number of scenes that hi was not yet tested on and
P0(hi) is set so it declines exponentially with the number of features that are
used in hi. Practically, this ensures both that the more scenes a hypothesis is
successfully checked on, the higher its estimated utility gets and that simple
hypotheses have a higher chance of being checked and merged.

If a hypothesis mismatches scenes from both sides, it can’t be a solution
or a part of a solution, since the conjunctive combination with another hy-
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potheses always leads to an equally or more specific hypothesis. Therefore,
the probability of such a hypothesis is set to 0.

There is a third case, in which hi is known to match scenes from both
sides and matches all tested scenes from at least one of the sides. In this
case, hi cannot be a solution by itself but can contribute to a combined,
conjunctive solution. The model estimates its utility as

P(hi|M) = 0.5blank+S/2+incompP0(hi),

where S/2 is a fixed penalty, set to half the total scene count, and incomp is
the number of scene matches that are incompatible with hi being a solution
by itself. In the special case of a hypothesis matching all scenes on both
sides and containing basis-level features only (shape and size in the case
of PBPs), the model sets incomp = 0. In practice, this makes hypotheses
that are close to being a solution more probable than ones that are farther
off, while accounting for the special situation in which the “same” object is
showing up in each scene.

Objects and Groups

The probability that any particular object or group plays a role in a solution
is estimated based on the sum of the utilities of all current hypotheses that
select that object or group:

P(o|M) = P0(o)Z
∑
h∈Ho

1

No(h)
P(h|M),

where o is an object or group, Ho is the subset of hypotheses that are known
to select o, P(h|M) is the estimated utility of hypothesis h, and No(h) is the
number of targets that h selects in the scene to which o belongs. P0(o) is
the prior probability of the object or group and Z is a normalization factor
that ensures the probabilities of all objects or groups in a scene add up to
1. The relative priors for objects and groups depend on the attributes that
were perceived on them so far. They give higher probability to objects that
are initially moving, unstable, or top-most in a scene and to groups that
contain objects that are all close to or touching each other.

The estimation of the probability of an object or group is based on an
equal distribution of the probabilities of all hypotheses to the objects or
groups they are known to select. The model always considers an “any object”
hypothesis, which ensures that each object in the scene is selected by at least
one hypothesis. Groups are created as a result of applying a selector, so each
group is guaranteed to have at least one associated selector.

Features

In earlier iterations of the model, the choice of a feature for perception was
made based on the estimated probability that this feature is used in a so-
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lution. The probability was estimated analogously to the object and group
formula in the previous paragraph, with a small fixed term being added
to the estimations to allow perceiving features that were not present in any
of the current hypotheses. The relative priors for features are all set to the
same base value, except for the shape and size attributes that are three times
as likely to be perceived, and the movement and stability that are two times
as likely to be perceived as the other features. This is meant to reflect that
humans are more readily perceiving and encoding some features than oth-
ers, as well as the expectation that PBP solutions will more often depend on
these features.

A direct comparison of solution rates and the number of actions towards
a solution revealed that simply using the feature priors as utility led to
better performance and less variation in the performance. One plausible ex-
planation is that although it is often helpful to focus on the features that led
to promising hypotheses, this is already accomplished through the mech-
anisms of checking promising hypotheses on new scenes and combining
them with each other. An additional bias towards perceiving those features
seems to push the model too far from an exploration of the whole feature-
space towards the exploitation of a potentially wrong initial clue.

The current PATHS model directly uses the feature priors in its stochastic
selection of what to perceive next. While this turned out to be the algorith-
mically better choice for the existing PBPs, it is possible that a version of the
model that gets more strongly fixated on current hypotheses would match
the human data better.

3.4 a problem solution walkthrough

When the model starts working on a PBP, the first step is to load all the
scenes which are provided as SVG images into memory. The objects and
the ground in each scene are represented as polygons that describe their
outline. This is the sole input that is given. The outlines act as the basis for
a physics engine that is used both to simulate how the scenes will unfold
and to perceive physical object features like stability.

Throughout the whole solving process, only two of the scenes will be vis-
ible at the same time. The algorithm can only work on the currently visible
scene pair and proceeds through a predefined sequence of scene pairs. Ini-
tially, the model knows nothing about the objects beside their existence, and
starts gathering information about the objects in the first visible scene pair.
It selects features, such as “large” or “stable”, and objects on which to per-
ceive the features. After a new perception is made, a corresponding selector,
such as “large=true”, is created. This selector is then applied to both scenes
in the currently visible scene pair, potentially resulting in a number of ob-
jects in both scenes that match. The match results and the selector are both
captured in a hypothesis, which represents a potential solution or potential
part of a solution.



58 learning physical concepts

After some perception steps, the model switches to the next scene pair. It
can now continue to perceive features on the new objects or check existing
hypotheses on the new scenes to gather additional evidence about their like-
lihood. The third available type of action is to combine existing hypotheses
to build more complex ones. For example, “large objects” and “small objects
on top of any object” can be combined into “small objects on top of large
objects”.

The model stops as soon as a hypothesis was checked on all scenes and
is determined to be a solution, which means it matches all scenes from one
side and none of the scenes from the other side. The search is typically also
aborted after a predefined number of actions if no solution was found up to
that point.

During a run of the model, it determines the type of the next action by
randomly drawing from a fixed multinomial distribution. The elements the
chosen action is acting on are determined stochastically based on the in-
formation from all hypothesis–scene matches done so far. More promising
hypotheses will be checked first; objects and features that play a role in
promising hypotheses will be picked with a higher probability for perceiv-
ing further features.

I will now describe one particular recorded run of the model solving
PBP02. The solution to PBP02 is that the number of objects is one in the
scenes on the left and two in the scenes on the right, making it one of the
most basic PBPs. Although this particular run is representative of the mod-
els usual behavior on PBP02, it is important to understand that any two runs
of the model can look quite different to each other due to the stochastic na-
ture of the solution process. The model was configured to to only create
selectors for active features, so that it could construct the hypotheses “there
is a small object” and “there is a large object” but not the hypothesis “there
is an object that is not small”.

scene pair 1 The algorithm started in the situation depicted in Fig-
ure 17a, with the first scene pair visible. In the scene pair sequence I chose
for this run, the scene pairs always contain scenes from different sides of
the PBP. The first few actions the model took were to perceive how “large”
the object in scene 1-1 was – it turned out to not be very large at all so no
hypothesis was constructed. The model then perceived how “close” the two
objects in scene 2-3 were (pretty close) and subsequently created a respec-
tive pattern description (“close to any object”). This was turned into a first
hypothesis H1 that was tested on both visible scenes and stored as “only in
the right scenes does there exist an object that is close to another object”. In-
fluenced by the fact that this is a potential solution, the model then switched
to the next scene pair.

scene pair 2 The model then continued to work on the second scene
pair as shown in Figure 17b. It decided to check hypothesis H1 on the new
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scenes and found that it matched. The model then noticed that Object 2 (the
small circle) in scene 2-4 “moves” and created and checked the hypothesis
H2 “only in the right scenes does there exist a moving object”.

scene pair 3 After switching to the next scene pair, as shown in Fig-
ure 17c, the algorithm checked H1 on the new scenes and found a mismatch.
Since H1 did match neither the left nor the right scene, it was excluded from
the hypothesis list. Then, the model perceived that Object 0 (the right rectan-
gle) from scene 3-3 is rectangular, which lead to a corresponding hypothesis
H3 “only in the right scenes does there exist a rectangular object”.

scene pair 4-8 The algorithm proceeded to look at the scene pairs
four to eight, perceiving features, creating and checking hypotheses, and
on some occasions unsuccessfully trying to combine existing hypotheses.
During this time, it perceived the features “stable”, “triangle”, “rect”, and
“unstable” on various objects, leading to a new hypothesis H4 about unsta-
ble objects on the right side. Notably, it also perceived the number of objects
in a scene in scene pair 7, leading to the hypothesis H5 “only in the right
scenes, the number of objects is 2”. This is a correct solution, although the
algorithm had no way to know this at that time. Hypothesis H3 and H4

were checked on the new scenes and found to match on some, but failed to
match on later scene pairs.

scene pair 1-6 During the last part of the run, the model iterated
through scene pairs one to six for a second time. It perceived features like
“circle”, “triangle”, “gets-hit”, “count=1”, “pos-top”, “touching”, “collides”,
“far”, and “beside” which led to a number of new hypotheses. An example
of a more elaborate one is based on the selector “objects that are beside a
circle object at the end”. Most importantly though, the algorithm continued
to check hypothesis H5, “only in the right scenes, the number of objects is
2”, on each of the scene pairs so that after checking it on scene pair six, it
had been verified on all the scenes of the PBP. At this point, the algorithm
stopped the search and reported the solution. Figure 18 shows all hypothe-
ses that were created during the run.

3.5 conclusion

This chapter described the PATHS model by looking at how it solves actual
PBPs, its software architecture and the principles that guided its implemen-
tation. Key properties of the model are the tight integration of perception
into the concept learning process, which appreciates the active and explo-
rative nature of perception, as well as the combination of rational decisions
with process-level modeling. Similar to humans, the model is restricted in its
memory in that it can only actively work on currently visible scenes. Finally,
the model is able to flexibly change its interpretations of gradual feature val-
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(a) 1st scene pair (b) 2nd scene pair (c) 3rd scene pair

Figure 17: The first three scene pairs the PATHS model looked at during a run
on PBP02. The model stochastically decides at which times it switches
through the fixed sequence of scene pairs.

Figure 18: All hypothesis that the PATH model generated during a particular run on
PBP02. The left-most column states whether a hypothesis matched scenes
on the left, on the right, or on both sides of the PBP. The next column states
that all hypotheses were “exists” quantified. The last to columns show the
number of scenes each hypothesis watch checked on and estimated utility
of each hypothesis. The first hypothesis was checked on all 16 scenes and
is known to be the solution, so its utility is 1.

ues to fit the context of a particular PBP. Chapter 5 will compare the model’s
performance on PBPs to the performance of humans. The studies in which
human performance data was collected are described in the next chapter.
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H U M A N P E R F O R M A N C E O N P B P S

This chapter explores how humans solve PBPs. The common task of all
experiments in this chapter is to find and write down a verbal rule that dis-
tinguishes between all scenes on the left and all scenes on the right for each
presented PBP. What varies between experiments is whether the scenes are
presented in a sequence of pairs or all at once, and which kind of scenes are
presented close to each other. This influences the type of comparisons that
participants make between scenes and has, due to the iterative and active
perception and rule-construction processes, a significant influence on their
learning performance. The next section discusses the role of comparisons
and similarity in concept learning. Section 4.2 describes an eye tracking ex-
periment and Section 4.3 presents a series of four experiments in which the
order and arrangement of scenes was manipulated. Besides providing data
against which I compare the PATH model’s performance, the experiments
in this chapter advance our understanding of human concept learning and
can inform the design of more efficient presentation schemes for real-world
learning material. Physical Bongard problems are an exciting problem do-
main in this regard, since their open feature-space, dynamic concepts, and
inner structure make them comparable in complexity to many real-world
concepts that students have to learn.

4.1 the role of similarity in concept learning

In inductive learning, one abstracts from trained examples to derive a more
general characterization that can lead to both seeing the familiar in new
and the new in familiar situations. One particularly powerful technique
for inductive learning of difficult, relational concepts is the comparison of
multiple cases (Kurtz et al. [2013], Loewenstein and Gentner [2005], Gick
and Holyoak [1983]). The benefit of comparison goes beyond establishing
similarities between the inputs, it frequently promotes noticing the com-
monalities and differences between the compared instances, which helps to
construct useful generalizations and can change one’s representation and
understanding of what is compared (Hofstadter [1996], Medin et al. [1993],
Mitchell [1993]). In the following, I look into how the type and order of
comparisons influence category learning.

In a category learning setting in which category labels are provided, two
important types of comparisons are possible: comparisons between instances
from the same concept and comparisons of instances from different con-
cepts. The existing research literature does not only suggest different roles
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for those two types of comparisons but also makes different predictions as
to the factors that influence their effectiveness.

Since comparing instances of the same concept can serve to highlight com-
monalities between them, it may be beneficial to compare instances that
share as few features that are irrelevant for the characterization of the con-
cept as possible. A closely connected notion called “conservative generaliza-
tion” by Medin and Ross [1989], is that people will generalize as minimally
as possible, preserving shared details unless there is a compelling reason
to discard them. As within-category objects become more similar, their su-
perficial similarities might be mistaken as defining ones and might lead to
a category representation that is too narrow, for example when learning to
discriminate pairs of similar-sounding words (Rost and McMurray [2009]),
or when learning about which methods to use in exploratory data analysis
(Chang et al. [2003]). By varying the irrelevant features possessed by exam-
ples with a single category, the relatively stable, deep commonalities stand
out and can make hard learning tasks feasible, such as learning relational
syntax rules from examples (Gómez [2002]). Another example of the benefit
of low within-category similarity when learning from examples are the re-
sults of Halpern et al. [1990], who asked students to read scientific passages
that included either “near” (superficially similar) or “far” (superficially dis-
similar) analogies. The passages that included far analogies led to superior
retention, inference, and transfer compared to those featuring superficially
similar comparisons, which showed no benefit at all.

All of the studies mentioned above find advantages of low similarity for
learning a concept using within-category comparisons. Kotovsky and Gen-
tner [1996] add a potential constraint to this. They argue that a meaningful
comparison of structured instances requires first successfully aligning them
and this can be too difficult a task for instances that are very different on the
surface. Using the notion of “progressive alignment,” they demonstrate that
especially at the beginning of a learning process, comparing high-similarity
instances of the same category can be essential (Gentner [2010]).

For the case of comparing instances between categories, the predictions
of the influence of similarity on the learning progress are more univocal.
In order to learn how to tell two categories apart, it is best to compare the
most similar instances of the two categories with each other, or, more pre-
cisely, the instances that have the smallest number of non-discriminative
differences. This has the advantage of decreasing the likelihood of spuri-
ous differences being chosen as the basis for discriminating the categories,
as Winston [1970] described with the notion of “near misses.” There is an
additional advantage of high similarity for between-category comparisons.
When learning to distinguish between several similar concepts, one major
difficulty lies in identifying the subtle differences between them and inter-
leaving similar categories can result in increased between-category contrast
and discriminability, which in turn enhances learning (Carvalho and Gold-
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stone [2013], Birnbaum et al. [2012], Kornell and Bjork [2008], Kang and
Pashler [2012]).

In summary, the two lines of arguments described above predict that
between-category comparisons should best be made using similar instances,
while within-category comparisons should be made using dissimilar in-
stances, as long as the instances are still similar enough to allow for mean-
ingful alignment. Both types of comparisons are potentially important for
learning concepts and the best weighting between them will be different
across learning situations, depending on the specific task, context, experi-
ence of the learner, and structure of concepts (Goldstone [1996]).

4.2 eye tracking study

One powerful way to gain insights into people’s cognitive strategies is to
record where they are looking at. The trajectory of participants’ fixations
points during their work on a PBP can tell us, for example, in which order
they gather information and whether they spend more time looking for sim-
ilarities within one side of a PBP or for differences between the sides. To
answer questions like these, I conducted an explorative eye tracking study
with ten participants solving PBPs. They were shown 33 PBPs on a computer
screen and had the task of solving as many of them as possible in about 45

minutes. I used the early version of PBPs that had four scenes per side. The
participants were not allowed to return to a problem that they did not solve.
Before switching to the next problem, they received feedback on their solu-
tion and were told the official solution to the problem they just completed.
This was done so all participants would understand the solution concepts
of previous problems on arrival at a specific, new problem.

I recorded gaze positions, the time it took participants to solve each prob-
lem, and whether they found a correct solution or not. Each participant
completed a one-page questionnaire after the experiment containing two
questions: 1) How did you solve the problems, what was your strategy? 2)
What was difficult and what was easy for you?

A head-mounted eye tracking system was used to record the gaze posi-
tions with a temporal resolution of 2 ms. Before recording the eye tracking
data, a calibration of the system was done. Right before each individual
problem, a short recalibration with a single fixation point at the center of
the screen was performed. While attaching the eye tracker cameras to the
participant’s head has the advantage of potentially very accurate measure-
ments, the downside is that any small slippage of the helmet relative to
the participant’s head introduces a large systematic error in the estimated
gaze positions on the screen. I found that in the one or two minutes the
subject works at a single PBP, that is, between two recalibrations, often a
substantial slippage occurs. A way to avoid this is to completely restrain
head movements and strap the helmet very tightly onto the participant’s
head. Since both of these are quite uncomfortable for participants, I decided
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on the alternative of post-processing the gaze data to remove systematic
slippage-induced errors. In cooperation with Samuel John, I developed and
applied a post-recording data correction algorithm that strongly increased
the gaze data quality in a task-agnostic way by maximizing the entropy of
the 2D distribution of the gaze points (John et al. [2012]).
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Figure 19: The proportion of same-side and across-side saccades. The data is
grouped by whether a problem was correctly solved. The bars represent
standard error.
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Figure 20: The proportion of within-scene saccades, same-side, and across-side sac-
cades for easy and hard problems. A problem was considered easy if its
solution rate was above the median solution rate across problems. The
bars represent standard error.

Results

Important aspects of participants’ solution strategies are reflected in the or-
der in which they look at the PBP scenes. I analyze this by looking at sac-
cades – a movement of the eye that shifts the gaze from one screen position
to another. I grouped saccades into three types: (S1) saccades within one
scene, (S2) saccades between scenes from the same side of the PBP and (S3)
saccades between scenes from different sides of the PBP.

Figure 19 shows the proportion of same-side saccades (S2) and across-
sides saccades (S3) both for solved and unsolved problems. Figure 20 shows
the proportions of all three saccade types both for easy and hard problems.
A problem was considered easy if its solution rate was above the median
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Figure 21: The proportion of same-side and across-side saccades in the first and sec-
ond half of a trial. In average, participants make significantly more across-
side saccades in the second half of a trial. The bars represent standard
error.

solution rate across problems. Finally, Figure 21 shows the proportion of
same-side saccades (S2) and across-sides saccades (S3) during the first and
second half of each trial. I defined the first and second half of a trial based
on the total time a participant worked on the PBP in that trial.

I performed a within-subject t-test to test the difference in the proportion
of same-side saccades between the first and the second half of a trial. I only
analyzed one type of saccade in this test, since the proportions of same-side
and across-sides saccades add up to one, so that one is fully determined
by the other. The t-test revealed a significant difference in the mean values:
t(753) = −8.6, p < 2e− 16. The mean proportion of “across scene” saccades
was 0.2 in the first half and 0.27 in the second half. The 95% confidence
interval for the difference in the means is [0.053, 0.085]. A similar t-tests
showed no significant influence of whether a problem was solved on the
ratio of saccade types.

Here is a summary of the answers given in the questionnaire. When asked
about their strategies, people stated that they “... first search for similarities (on
one side), then compare to the other side,” as well as “... imagine the movement.”
One person described the following solution strategy: “After getting used to
the problems, look for a list of features (for example, the ones that worked before). If
something catches the attention, adapt ordering of features.” Two more responses
were: “first check if the solution is immediately apparent, then check different fea-
tures, analyze,” and “select one or two images and compare with the other side to
generate a hypothesis, then check it and if needed repeat.”

When asked about difficulty, participants pointed out that: “if there is move-
ment that is irrelevant, this makes it harder,” and “graduate solutions (a bit vs a lot)
were difficult,” as well as that finding solution that involves “potential move-
ment or interaction is difficult”. Another remark was that “very simple problems
can be most difficult because people overthink them.”
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Discussion

There were surprisingly little individual differences across subject in their
average rates of same-side and across-sides saccades. Additionally, the rates
did not significantly depend on the solving success or the difficulty of the
problem (Figures 19 and 20), although there was a tendency of participants
doing more within-scene saccades for harder problems. A plausible explana-
tion is that harder problems contain more objects per scene, which requires
more fixations within a scene during perceiving a scene.

On average, participants moved their eyes to look at a different scene on
the same side of a PBP about four times as often as they did to look at
a scene on the other side of a PBP. This suggests that participants spent
more time on building representations and making comparisons within a
category than on contrasting instances from different categories.

The rate of across-sides saccades was significantly higher in the second
half of the time spent working on an individual PBP, compared to the first
half. A possible explanation is that during the first half, participants first
looked at all instances on the left and then at all instances on the right side,
whereas in the second half, they were doing more contrastive comparisons
between sides to validate solution hypotheses they had come up with. This
is consistent with the strategy description quoted earlier (“first search for
similarities (on one side), then compare to the other side,” and with an inspec-
tion of the gaze data from individual trials. In the first couple of seconds,
participants typically scan all scenes from one side and then move on to
scan all scenes from the other side before they start to show problem- and
person-specific gaze patterns.

4.3 scene ordering experiments

acknowledgment I designed and carried out the experiments described
in this section in collaboration with Paulo Carvalho and Professor Robert
Goldstone from the Percepts & Concepts research group at Indiana Uni-
versity in Bloomington, IN, USA. Paulo Carvalho and Professor Goldstone
directly contributed to the following aspects of the work presented in this
chapter: the compilation of the literature review, the planning of the ex-
perimental designs, and the selection of methods for data analysis. I will
therefore use the pronoun “we” throughout this chapter. I have described
some of the experiments in earlier publications, namely in Weitnauer et al.
[2013, 2014, 2015]. I have adjusted, revised and extended the original analy-
ses, descriptions, and plots for this thesis.

The scene ordering experiments deal with the question of how the mode
of presentation influences the learning performance. This is a highly rele-
vant question in the context of teaching and learning, for example in schools
and universities. To this end, we designed and conducted four successive ex-
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exp 1 exp 2 exp 3 exp 4

PBP version 1 2 2.1 2.1

training scenes 8 12 16 16

presentation in pairs in pairs in pairs all at once

test scenes 0 6 4+2 4+2

allow cycling yes no yes yes

time per pair 4 sec. manual manual manual

factors schedule schedule,
similarity,
side-swap

schedule,
within sim.,
between sim.

schedule,
within sim.,
between sim.

participants 81 38 98 91

main effects - similarity schedule,
between sim.

schedule,
within sim.

Table 1: Overview of experiments.

periments, where each experiment’s design was informed by the results of
the previous experiment.

The general idea behind the first three experiments is to present the scenes
of a PBP as a succession of scene pairs, instead of showing them all at once.
This way the order in which the participants attend to the scenes can be
manipulated. In the first experiment, we manipulated the scene ordering
along one dimension, the scheduling dimension. The scenes inside each pair
were either from the same side of the PBP, which we call blocked condition,
or are from different sides, which we call interleaved condition. In the sec-
ond experiment, we used the redesigned version of PBPs, in which more
scenes were added and scene similarity varies in a predefined way, which
allowed us to manipulate the similarity of temporally close scenes in addi-
tion to the scheduling condition. In the third experiment, we split the sim-
ilarity condition into two dimensions, the within-category similarity and the
between-category similarity. Finally, in the fourth experiment, we presented
all scenes simultaneously and manipulated the similarity structure through
varying the spatial instead of the temporal scene arrangement. Table 1 gives
an overview of the experiments. We now describe the experimental setups
and the results in detail for each experiment.

Amazon Mechanical Turk as Research Platform

Amazon Mechanical Turk (MTurk) is a crowdsourcing Internet marketplace
that is operated by Amazon.com. On this marketplace, requesters can post
jobs, known as HITs (human intelligence tasks), and humans, known as
workers or turkers, can pick among the jobs and complete them for money.
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Typical tasks on MTurk include labeling and rating of images or other media.
Recently, MTurk has been increasingly used as a platform for conducting
psychology studies. If a study only requires a computer and can be designed
to run within a browser, MTurk has the advantage of a huge pool of workers
that are available 24 hours a day. It is possible to collect data from 100

participants in a few hours instead of a few weeks. Researchers have found
that the quality of the data collected on MTurk is comparable to the data
from student pools at universities and MTurk is now broadly accepted in
the psychology community (Mason and Suri [2012]).

The following experiments were performed on MTurk. Joshua de Loeew
provided us with valuable technical support on implementing the experi-
ments using his library jsPsych (de Leeuw [2013]).

1st Experiment

The first experiment was designed to test whether the positive effect of in-
terleaving instances from different categories during learning which was
demonstrated by Birnbaum et al. [2012], Kornell and Bjork [2008] and Kang
and Pashler [2012] would also apply to category learning in the domain of
PBPs. As laid out earlier, the theory behind this effect is that the comparison
of scenes from different categories enhances the perception of differences,
which is essential for learning, especially in domains with high similarity
between the instances. Consequently, our hypothesis was that interleaving
the scenes of the PBPs during learning should lead to more correct classifi-
cations and category descriptions than blocking the scenes by showing all
scenes from one side before showing all scenes from the other side.

After collecting data from a first round of participants, we did not find a
significant effect of presentation schedule on the number of correct solutions.
The data seemed to support another hypothesis, though, which we decided
to test by adding more participants using the same experimental design. It
appeared that for hard problems, interleaving of the scenes was better, while
for easy problems, blocking was better. The rationale behind this is that for
easy problems the difference of the scenes of one side to the scenes of the
other side might catch one’s eye at the moment of switching from the one
presentation block to the other. Imagine seeing a sequence of photos de-
picting a variety of red flowers all belonging to the same category. Even if
the color is not considered consciously as the defining feature, the blocked
presentation of all examples of one category supports the construction of
an internal category representation that will most likely include the color
feature. If now the first photos of a second category of flowers only contain
yellow flowers, this difference will stand out immediately. Interleaved pre-
sentation, on the other hand, would be most efficient for difficult problems
where small, intricate details in which the two sides differ have to be found.
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Participants

We recorded and analyzed the data of 102 participants in total, 62 in a first
and another 40 in a second recruiting round. We excluded those participants
from the analysis that either didn’t finish the experiment or did not get the
solution of a single problem right. There remained 81 participants, 49 from
the first and 32 from the second round. On average, participants solved 11.6
out of the 23 problems presented.

Material

We selected 23 of the 34 early version PBPs, where each problem has four
scenes on the left side and four scenes on the right side. See Figure 22

for an example. The selection was guided by the goal of having a diverse
subset of problems that are moderately difficult. Our main measure of how
well subjects solved the problems is based on the proportion of subjects
that found a correct solution. In order to maximize the information gain,
we attempted to adjust the difficulty such that each problem is solved by
approximately half of the subjects. We especially wanted to avoid problems
that were so easy everybody could solve them or problems that were so
hard nobody could solve them, no matter in which condition they were
presented.

A1 A2

A3 A4

B1 B2

B3 B4

Figure 22: Experiment 1, example PBP. All eight scenes are shown in pairs during
training.

We expected strong priming effects depending on what problems a sub-
ject saw before working on the current one. We therefore decided to fix the
order in which the problems are presented in a way that does not put prob-
lems with similar solutions next to each other. Additionally, we decided to
show the correct solution after each problem. This way, each subject will
have been exposed to the same problems and concepts at any specific point
in the experiment. The scene selection and ordering are shown in Table 2.

Design

We manipulated the factor schedule condition∈ {blocked, interleaved} in a within-
subject manner. Every participant saw half of the problems blocked and half
of them interleaved.
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pbp left side right side

12 small object falls off small object stays on top

04 squares circles

32 objects rotate a lot obj.s rotate little or not at all

22 objects collide with each other objects don’t collide with each other

08 unstable situation stable situation

31 circle can be picked up directly circle can’t be picked up directly

27 (potential) chain reaction no chain reaction

17 objects touch objects don’t touch

23 collision no collision

26 circle moves right circle moves left

13 objects form a tower objects form an arc

30 less stable situation stable situation

16 the circle is left of the square the square is left of the circle

24 several possible outcomes one possible outcome

02 one object two objects

20 square supports other obj’s eventually square doesn’t support other objects

18 object touch eventually obj.s don’t touch eventually

21 strong collision weak or no collision

09 objects move in opposite directions objects move in same direction

33 construction gets destroyed construction stays intact

19 at least one object flies through the air all object always touch something

05 objects move objects don’t move

28 rolls well does not roll well

Table 2: The 23 PBPs (version 1) in the order they were shown in the first scene
ordering experiment.
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Procedure

For each of the 23 problems, the scenes were presented as a sequence of
scene pairs so that at any time only two of the eight scenes were visible.
The frames of all scenes were always visible, but their content was cov-
ered. During the experiment, always two of the scenes which we’ll call a
scene pair, were uncovered for four seconds and then automatically cov-
ered again, uncovering the next scene pair. In order to test our hypothesis
that interleaved presentation should lead to better concept learning than
blocked presentation we manipulated the scheduling condition, which could
be blocked or interleaved. During blocked presentation, the scenes in each pair
were taken from the same side and all scenes of one side were shown before
the scenes of the other side. The first and second scene pair were composed
of scenes from the left side (A-side), and the third and fourth scene pairs
are composed of the scenes from the right side (B-side), leading to the pat-
tern (“AA AA BB BB”). During interleaved presentation, scenes from both
sides were alternated (“AB AB AB AB”). Figure 23 depicts the positions at
which the scenes were shown. For each problem and participant, we shuf-
fled the scenes inside each side of the problem. This way, every participant
saw scenes uncovered at the same screen position at the same time, while
the scenes were in random order within the sides.

Figure 23: Scheduling for Experiment 1. The positions at which the scenes are shown
for blocked (top) and interleaved (bottom) presentation. Each of the four
states is shown for four seconds. In each state, two scenes (in white) are
shown while the other scenes (in gray) are hidden. Which of the four left
and the four right scenes are actually shown at the highlighted positions
in the four states is randomized.

After the participants saw all scenes, they were asked whether they wanted
another presentation of all scenes or proceed to enter the solution. After pro-
ceeding, they were required to state whether they found a solution, to rate
the difficulty of the problem on a scale from 1 to 100 and to type in the so-
lution as free text into two text fields, one for the left side, one for the right
side. Finally, they were shown the PBP with all scenes at once together with
the official solution.

Results

The written solutions of all participants were manually checked for cor-
rectness by trained coders blind to the experimental hypothesis. Solutions
which were different from the official solution but valid for the problem
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were accepted as correct. Some of the participants had difficulties remem-
bering which concept had been presented on the left and which on the
right and provided a correct solution but with sides swapped (e.g., writing
“left: all objects are squares” and “right: all the objects are circles” when, in
fact, the left-side objects were all circles and the right-side objects were all
squares). These cases were counted as correct solutions. We had an agree-
ment of α > 0.9 between the coders and had a third trained coder who was
blind to the experimental hypothesis resolve each conflicting decision.

We did not find a significant influence of the presentation schedule on
the number of correct solutions. The tendency of interleaving helping with
difficult and blocking helping with easy problems did not reach a significant
level with the added participants from the second round. The correlation
between the subjects’ difficulty rating of problems, their success at solving
them and the number of repetitions they used was strong in the expected
direction. See Figure 24 for the plots.
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Figure 24: Results of Experiment 1. Contrary to our expectations, there is no signif-
icant influence of scheduling condition on the proportion of correct an-
swers (a). There is a tendency of blocking helping easy and interleaving
helping difficult problems, but the effects are not significant (b). The num-
ber of repetitions (c) and the difficulty rating by the subjects (d) is higher
for problems they did not solve compared to problems they solved.

Discussion

Contrary to our expectations based on the reviewed literature, no general ad-
vantage of interleaved presentation was present. Both Goldstone [1996] and
Carvalho and Goldstone [2012] reason that the effectiveness of within and
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between category comparisons for concept learning depends on the struc-
ture of the to-be-learned categories, especially on how similar the instances
of one category are to other instances of the same category and to instances
of other categories. To shed further light onto the influence of similarity on
solving PBPs, we decided to control the similarity of the PBP scenes.

2nd Experiment

In this experiment we compare the effect similarity has on learning per-
formance in blocked and interleaved presentation schedules. Carvalho and
Goldstone [2012] recently conducted an experiment with a similar purpose.
They manipulated the category structures in a perceptual categorization
task towards more or less similarity, both within and between categories,
and found this modulates the advantage of blocking and interleaving. The
blocked presentation of instances of one category led to better learning per-
formance for the concepts with low similarity while the interleaved presen-
tation was better for very similar concepts.

Our approach is closely related but differs in three aspects. First, we
manipulate similarity by grouping concept instances into either similar or
dissimilar comparisons, instead of switching between separate sets of cate-
gories. Second, we designed the blocked and interleaved schedules in a way
that enhances within- and between-category comparison, respectively, while
still allowing for both types of comparisons. In this situation, the reviewed
research literature makes opposite predictions on whether high similarity of
instances shown closely together should help or hurt the induction, so we
can directly compare the effect strengths. Third, we use an inductive learn-
ing task, physical Bongard problems, with a much larger feature-space than
the problem domain used by Carvalho and Goldstone [2012].

We expected to find that grouping by similarity should improve learn-
ing performance for the interleaved condition and grouping by dissimilarity
should improve performance for the blocked condition. A third hypothesis
we wanted to test was whether the difficulty of a problem changes when
swapping the left and the right side. This might be the case since subjects
always see the scenes of the left side first and some solutions are easier for-
mulated based on one specific side. For example, solutions of the type “left:
X; right: ¬X” as in “left: the object falls down; right: the object does not fall
down” are easier to formulate based on the left side1. For solutions of the
type “left: X vs. right Y” as in “left: circles; right: squares”, we don’t expect
a difference in solving performance for the side-swapped version.

1 One could argue that a solution could as well be formulated the other way around as “left:
the object does not remain on top; right: the object remains on top”. We found, however, that
the great majority of answers provided by subjects was based on movement and action as in
“falls” opposed to the description “remains”. In deciding which side is easier to describe, we
therefore use an action-centered formulation of the solution.
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(a) PBP 24 similar (b) PBP 24 dissimilar

Figure 25: Experiment 2. The two plots show PBP 24 in its similar version where
similar scenes are inside the same row (left) and in its dissimilar version
where similar scenes are spread across the rows (right). Only the arrange-
ment of the twelve scenes in the upper three rows of each problem is
affected, as they are used as training scenes. Six of the eight scenes in the
lower two rows, which are not shown here, are randomly selected and
used as test scenes.

Material

In order to control for the similarity of scenes, we redesigned the whole
set of initial PBPs (version 1). The new problems (version 2) have the same
solutions but consist of 20 instead of 8 scenes each, which are aligned in
a grid with five rows and four columns (see Figure 26). The scenes are
organized in five similarity groups, each with two scenes from the left and
two scenes from the right. The scenes inside each group are very similar to
each other and only differ in few features. The scenes between two groups
are less similar to each other and differ in more features. We also swapped
the left and the right side of several problems so that for each problem it
was easier or equally difficult to formulate the solution based on the left
side compared to formulating it based on the right side. For example, all
problems with a solution of the type “X; ¬X” have the “¬X” side on the
right side. The selection and ordering of the problems were slightly changed
in regard to the previous experiment. PBP 17 was replaced by PBP 11b
to introduce the concept of distance instead of having two problems about
touching. PBP 05 was removed because it was too easy. Additionally, the
problems order was slightly rearranged in order to positions problems with
similar solution themes further from each other to minimize context effects
between consecutive problems. See Table 3.

For each of the problems, twelve scenes were used as training scenes. We
prepared two versions of each problem by placing the scenes at different
positions in the upper three rows. In the grouped by similarity version, the
scenes were arranged in such a way that the scenes inside each row are sim-
ilar to each other. In the grouped by dissimilarity version, similar scenes were
distributed over all three rows. Figure 25 shows an example of the dissim-
ilar and similar version of PBP 24, respectively. We additionally controlled
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Figure 26: The new version of PBP 24. All PBPs in the new version have 20 scenes
that are grouped into five similarity groups. In the arrangement above,
scenes from within a row are more similar to each other than scenes across
rows.

whether the left scenes would be shown on the left side and the right scenes
on the right (normal condition) or whether the sides would be swapped (side
swapped condition).

Procedure

Per problem, twelve of the scenes were used as training scenes and eight
as test scenes. During the presentation, two scenes are always displayed
simultaneously so that for each problem a sequence of six training scene
pairs is shown to the participant. We vary the presentation order of scenes
along three independent dimensions with two values each, resulting in eight
conditions. The first dimension, similarity grouping, controls whether similar
scenes are shown temporally close to each other or temporally far from each
other. We will refer to the former as the similar condition and to the latter as
dissimilar condition.

The second dimension, presentation schedule, controls whether the scenes
that are shown simultaneously are from the same or from different cate-
gories (“AA BB AA BB AA BB” and “AB AB AB AB AB AB”, see Figure 27).
We refer to the former as blocked and to the latter as interleaved condition. In
the blocked condition while within-category comparisons are facilitated by
presenting scenes from the same category simultaneously, between-category
comparisons can still be made between successive scene pairs, although they
involve higher memory demands. Analogously, the interleaved condition
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pbp left side right side

02 one object two objects

12 small object falls off small object stays on top

04 squares circles

32 objects rotate a lot obj.s rotate little or not at all

22 objects collide with each other objects don’t collide with each other

08 unstable situation stable situation

31 circle can be picked up directly circle can’t be picked up directly

27 (potential) chain reaction no chain reaction

18 object touch eventually obj.s don’t touch eventually

23 collision no collision

26 circle moves right circle moves left

13 objects form a tower objects form an arc

30 less stable situation stable situation

16 the circle is left of the square the square is left of the circle

24 several possible outcomes one possible outcome

20 square supports other obj’s eventually square doesn’t support other objects

21 strong collision weak or no collision

09 objects move in opposite directions objects move in same direction

33 construction gets destroyed construction stays intact

19 at least one object flies through the air all object always touch something

28 rolls well does not roll well

11b objects close to each other objects far from each other

Table 3: The 22 PBPs (version 2) in the order they were shown in the second and
third scene ordering experiment.
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Figure 27: The scene presentation schedule for blocked (top) and interleaved (bot-
tom) presentation. The participant manually proceeds through the six
states. In each state, two scenes (in white) are shown while the other
scenes (in gray) are hidden.

enhances between-category comparisons but still allows for within-category
comparison across successive scene pairs. We are here using the term blocked
to refer to a slightly different presentation schedule than we did in the pre-
vious experiment. Instead of showing all instances of one category before
switching to the next, we only block two instances of one category inside
the scene pairs and interleave these blocked pairs.

The participants were first given a brief introduction to PBPs including an
example problem with a solution. During the experiment, they could pro-
ceed through the scene pairs of each problem at their own pace by pressing
a key. Each scene was shown exactly once and afterward the subjects were
asked whether they thought they had found a solution. Then the subjects
needed to classify six test scenes drawn randomly from the eight available
test scenes as either belonging to the left side or the right side of the PBP. The
test scenes were shown one by one. Finally, they had to type in a description
of their solution or their best guess. Before moving on to the next problem,
they were shown the problem with all training scenes at once together with
the official solution. There was no time limit to the task. At the end of the ex-
periment, participants were debriefed on the study objectives and variables.
The original experiment is available online at http://goo.gl/ndv64h.

Subjects

We conducted the experiment on Amazon Mechanical Turk. Sixty-seven par-
ticipants, all US-citizens, took part in the experiment in return for monetary
compensation. Of these, we excluded 27 who did not finish all problems
(most of them dropped out after seeing only a few) and another two that
did not get at least one solution correct across the entire task. There was no
need to use catch trials because the subjects were required to write down
the solutions as free text. Any cheating or automated answers would have
become immediately apparent during our hand-coding of the solutions. The
data from the remaining 38 participants was used in the following analysis.
On average, participants solved 8.6 out of the 22 problems presented.

http://goo.gl/ndv64h
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Design

We used a 2 × 2 × 2 factorial design. The study condition presentation
schedule∈ {blocked, interleaved} × similarity grouping∈ {similar, dissimilar} ×
side swapping∈ {normal, swapped} was randomly chosen for each problem in
a within-subject manner and balanced for each subject.

Results

We used two separate measures to evaluate learning success. First, we hand-
coded the accuracy of each textual solution given by the participants using
the same procedure as in the previous experiment. Like before, alternative
solutions and solutions in which the subjects accidentally swapped the de-
scription of the left and the right side were accepted as correct. The second
measure is based on the proportion of test scenes that were classified cor-
rectly. Using this directly would be misleading for cases in which partici-
pants mixed up the sides. We therefore developed a consistency measure
instead. This consistency measure is defined as max(c, 6− c) − 3, where c
is the number of correctly classified scenes being minimally zero and max-
imally six. The consistency can take values between zero and three, where
the latter corresponds to cases where either all test scenes were classified
correctly or were all (consistently) classified incorrectly. Figures 28a and Fig-
ure 28b show the average of these two measures for all four conditions.

We applied two separate 2 x 2 repeated measures analyses of variance
(ANOVA) with schedule condition and similarity condition as factors to the
proportion of correct responses and the consistency measure. These analyses
revealed a significant effect of similarity condition, F(1, 37) = 5.32, p = .03
for the proportion of correct answers measure and F(1, 37) = 15.7, p = .0003
for the consistency measure. There was no effect of schedule of presentation,
or interaction between the two factors for any of the measures (all p > .05).
We separately analyzed the influence of side swapped condition with another
ANOVA using just this one factor and found no significant effect.

Discussion

The data analysis revealed a positive effect of grouping scenes by similar-
ity, independent of whether they were presented in a blocked or an inter-
leaved schedule. We argue that this is explained by a strong positive effect
of similarity on interleaving which more than compensates for any possible
negative effect that similarity had on blocking.

The advantage of similarity for interleaving is in line with our expecta-
tions. Goldstone [1996] and the discriminative contrast hypothesis of Birn-
baum et al. [2012] predict that direct comparison of instances from differ-
ent categories highlights their differences (see also Carvalho and Goldstone
[2012]). Identifying differences between highly similar scenes is especially ef-
fective, as there are fewer superficial differences to compete with the defin-
ing one. This insight is already present in the desirable “near misses” in
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Figure 28: Results of Experiment 2. There is a significant effect of similarity condition
but no significant effect of schedule condition on the proportion of correct
answers (a). There is a highly significant effect of similarity condition and
no effect of schedule condition on the consistency, which measures how
well the subjects could classify the test scenes (b). Swapping of sides has
no significant influence on either proportion of correct answers or consis-
tency (c,d).

Winston [1970] work, where instances from different concepts that differ by
just one feature are ideal for his algorithmic learner. Near misses provide
clear evidence about what features are critical, concept-defining ones. An-
other possible contributing effect is that it is easier to structurally align two
similar scenes than two very different scenes and this alignment process
promotes noticing differences (Markman and Gentner [1993]).

What might seem surprising at first is that similarity also improves learn-
ing performance in the blocked condition, given that theories like “conser-
vative generalization” by Medin and Ross [1989] predict that similarity for
blocked scenes will lead to many superficial similarities and, therefore, in-
ferior performance compared to dissimilar scenes. However, the results can
be explained in a way compatible with these theories. We designed both
scheduling conditions in a way that allows for within- and between-category
comparisons. Given this, negative effects of similarity on the former and
positive effect of similarity on the latter will compete with each other. In the
blocking condition, within-category comparisons were facilitated by show-
ing scenes of the same category simultaneously, while scenes of different
categories had to be compared sequentially.

Still, a strong positive effect of similarity on between-category compar-
ison could mask a small negative effect of similarity on within-category
comparison and lead to the overall benefit of similarity that we found. This
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means, however, that even during blocked presentation, participants exploit
between-pair differences to find the solution despite the fact that exploring
within-pair similarities has much lower memory demands.

We believe that one important reason for this might be found in the type
of categorization task that was used. Due to its open-ended feature space,
participants had to identify or construct relevant feature dimensions as a ma-
jor part of the challenge. Comparing similar scenes from different concepts
provides the additional advantage of highlighting such feature dimensions,
an advantage that blocking of dissimilar scenes does not provide.

We found no confirmation for our hypothesis that which of the two cate-
gories is shown left and which is shown right has an influence on the solving
performance. However, the expected effect would have been strongest for a
true blocking condition (“AA AA AA AA BB BB BB BB”) opposed to the
blocking condition (“AA BB AA BB AA BB AA BB”) we used. Additionally,
for some problems the difference between the complexity of the description
of both concepts is smaller than for others. If there is, in fact, an effect of
which concept is shown first and which second, these two factors might
have prohibited us from observing it.

3rd Experiment

In Experiment 2, we pitted the predicted influence of similarity in within-
category versus between-category comparisons against each other by group-
ing all instances by similarity or by dissimilarity which influenced both the
within- and the between-category similarity at the same time. In the remain-
ing two experiments, we disentangle these two types of similarity and ma-
nipulate them independently from each other as two separate factors to
allow us to draw stronger conclusions.

Experiment 3 is a replication of Experiment 2 using two instead of one
similarity factor, resulting in four instead of two different similarity condi-
tions. We expect that for between-category comparisons, a high similarity
of the respective scenes should lead to better solving performance while,
for within-category comparisons, the compared scenes should optimally
be dissimilar. Our interpretation of the previous experiment included that
between-category comparisons are more critical to the learning performance
than within-category comparisons. This might lead to interleaving being bet-
ter than blocking because it enhances the more important between-category
comparisons. We would expect that this is mainly the case for high between-
category similarity, but not for low between-category similarity, which should
show as an interaction between scheduling type and between-category sim-
ilarity.
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Participants

We conducted the experiment on Amazon Mechanical Turk. One hundred
and eighty-eight participants, all US-citizens, took part in the experiment in
return for monetary compensation. Of these, we excluded 90 who did not
finish all problems or did not get at least one solution correct across the
entire task. Most of them finished less than 4 problems. The data from the
remaining 98 participants was used in the following analysis.

On average, participants solved 8.4 of the 22 problems presented.

Material

We used the same PBPs as in Experiment 2, but now have four instead of
two similarity conditions, each a combination of high or low within-category
similarity and high or low between-category similarity. To allow for layouts
that make the four similarity conditions clearly distinct from each other, we
use 16 scenes from four of the five similarity groups of each PBP during
training, which is four scenes more than in Experiment 2.

The scenes are arranged such that in the high within-category similarity
condition, scenes of the same category that are presented temporally close to
each other are similar to each other. This means during blocked presentation,
where within-category comparison is possible within the scene pairs, the
scenes inside each pair will be chosen to be similar to each other, while
during an interleaved presentation, where within-category comparisons are
only possible between successive scene pairs, the scenes will be arranged so
that the scenes of successive scene pairs are similar to each other.

Analogously, for the high between-category similarity condition, scenes
of different categories that are presented temporally close to each other are
chosen to be similar to each other. Since in blocked presentation between-
category comparison is only possible between successive scene pairs, scenes
will be arranged for high similarity between successive scene pairs. In inter-
leaved presentation, between-category comparisons are possible within the
scene pairs, so the scenes in each pair will be chosen to be similar to each
other. Figure 29 depicts the arrangement of the scenes for each of the four
conditions using PBP 24 as an example. Table 4 lists how many similar and
dissimilar comparisons are possible in each condition.

Design

We used a 2 × 2 × 2 factorial design. The study condition presentation
schedule∈ {blocked, interleaved} × within-category similarity∈ {similar, dissimi-
lar} × between-category similarity∈ {similar, dissimilar} was randomly chosen
for each problem in a within-subject manner and balanced for each subject.
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(a) interleaved-sim-sim (b) blocked-sim-sim

(c) interleaved-sim-dis (d) blocked-sim-dis

(e) interleaved-dis-sim (f) blocked-dis-sim

(g) interleaved-dis-dis (h) blocked-dis-dis

Figure 29: Experiment 3. Arrangement of scenes for the eight conditions interleaved
vs. blocked × low vs. high within-concept similarity × low vs. high
between-concept similarity. Only the arrangement of the scenes in the
upper four rows of each problem is affected, as they are used as training
scenes. The scenes in the last row, which are not shown here, are used as
test scenes together with two randomly selected training scenes.
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Figure 30: Scheduling for Experiment 3. The positions at which the scenes are shown
for blocked (top) and interleaved (bottom) presentation. The subjects pro-
ceed manually through the eight states as often as they want.

Procedure

Just as in Experiment 2, the participants were first shown a short introduc-
tion to the domain of PBPs, their task and a solved example problem. They
then had to solve a series of 22 PBPs presented in an order which was de-
signed to minimize context effects between consecutive problems. For each
problem, the participants were presented a sequence of scene pairs through
which they could cycle at their own pace. When the participants had seen
all scenes at least once, a button appeared on the screen that gave them the
option to finish the training for the current problem whenever they liked.
The button took them to a page where they had to classify six test scenes,
one at a time, as belonging to the left or the right category. The participants
were then prompted to type in a free text description of what defined both
concepts. After submitting their solution and before continuing with the
next problem, they were shown the current problem with all scenes at once
and its correct solution.

The material and experimental setup was identical to Experiment 2 with
three exceptions. First, the participants were now allowed to cycle through
the training scene pairs more than once. This allows participants to revisit
scenes and to check new hypotheses on them. After having seen each scene
at least once, they could press a button to proceed to the next step whenever
they wanted to. Second, the ordering was adjusted to take the more fine-
grained similarity conditions into account (Figure 29 and 30). Third, we
were showing 16 instead of 12 of the total of 20 scenes per PBP during
training. During the classification task, we used the remaining four scenes
together with two randomly chosen training scenes as test scenes.

The original experiment is available online at http://goo.gl/0TrVtB.

Results

The written solutions of all participants were categorized as correct or in-
correct by two trained coders blind to the experimental hypothesis. Cases
in which the description of the left and right side was swapped as well as
cases with a valid solution different from the official one were counted as
correct. The coder agreement was α = 0.87. All cases of disagreement were
resolved by a third trained coder, also blind to the experimental hypothesis.

http://goo.gl/0TrVtB
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condition prominent comparisons

within between

sim . dis . sim . dis .

int-sim-sim - (8) - (8) 8 (8) - (8)

int-dis-sim - (-) - (16) 8 (-) - (16)

int-sim-dis - (8) - (8) - (4) 8 (12)

int-dis-dis - (-) - (16) - (-) 8 (16)

blo-sim-sim 8 (-) - (-) - (16) - (16)

blo-dis-sim - (-) 8 (-) - (12) - (20)

blo-sim-dis 8 (-) - (-) - (-) - (32)

blo-dis-dis - (-) 8 (-) - (4) - (28)

Table 4: The table depicts how many opportunities each condition provides for mak-
ing specific types of comparisons side-by-side in a scene pair (left number
in each cell) and temporary juxtaposed between two successive scene pairs
(right number in brackets). The side-by-side comparison is likely to be much
easier to do and therefore to have a bigger influence. The numbers in black
are the kinds of comparisons that should be promoted by a condition, while
the gray numbers are the kinds of comparisons that should be limited. Com-
pare with the example of an actual scene layout given in Figure 29.

We applied two 2 × 2 × 2 repeated measures ANOVA with schedule con-
dition, within-category similarity condition and between-category similarity condi-
tion as factors and a) the accuracy and b) the consistency as defined in Exper-
iment 2 as the dependent variable. For accuracy, this revealed a significant
effect of presentation schedule, F(1, 97) = 16.8, p < .001, and of between-
category similarity, F(1, 97) = 11.0, p = .001, as well as an interaction be-
tween the two factors, F(1, 97) = 19.7, p < .001. For consistency, it revealed a
significant effect of presentation schedule, F(1, 97) = 11.1, p = 0.001, as well
as a two-way interaction between schedule and between-category similar-
ity, F(1, 97) = 6.6, p = 0.01, and a three-way interaction between all factors,
F(1, 97) = 4.7, p = 0.03. There were no other significant effects (p > .05). See
Figure 31 for a plot of the results.

Additionally to these measures of learning success, we analyzed the time
it took participants to solve problems using the measures number of scene
pairs seen and the logarithm-transformed time. Since the subjects had to
look at each of the 16 training scenes at least once, everybody saw at least
eight scene pairs per problem while there was no upper bound on how
often participants could cycle through the scenes. We used the logarithmic
transformation to reduce the influence of cases in which a participant might
have taken a short break during solving a problem and to account for the
difference of variance between problems of varying difficulty.
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Figure 31: Results for Experiment 3. The left plot shows average accuracy (solution
rate) for each of the conditions. The right plot shows average consistency,
a measure of how well participants were able to classify test scenes. Both
accuracy and consistency were significantly higher in conditions with in-
terleaved presentation and high between-category similarity (scene pairs
containing similar scenes from both sides). Error bars represent standard
errors.

In this analysis, we only look at the subset of trials that were solved. This
results in a number of subjects that do not have at least one problem solved
for each of the eight conditions, a situation for which the repeated measures
ANOVA is not well-suited. Instead, we apply a generalized mixed effects
modeling analysis using the “ezMixed” method of the R package “ez”.2

We applied the mixed effects analysis to the number of scene pairs cycled
through and to the logarithmic time to solution, which revealed the signifi-
cant effects (with evidence of three or more bits) listed in the following table.
Figure 32 shows a plot of the results.

dep. variable evidence

log time b/w-cat. sim.: 35 bits,

b/w-cat. sim. – pres. schedule interaction: 3 bits

scene pairs seen b/w-cat. sim.: 25 bits, pres. schedule: 3 bits,

b/w-cat. sim. – pres. schedule interaction: 5 bits

The new possibility to view scenes more than once was used 69% of the
time. The median number of scene pair views over all problems and partic-
ipants was 16 which means that typically, each scene was viewed twice.

2 The method computes the likelihood ratio between an unrestricted (with the effect in question)
and a restricted model (with the effect in question fixed to zero) and accounts for the additional
complexity in the unrestricted model. The likelihood ratio is reported in log-base-2 scale, which
means it can be interpreted as “bits of evidence”. Three bits of evidence are roughly equivalent
to a p-value of 5%. For further details see Lawrence [2013].
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Figure 32: Results for Experiment 3. The left plot shows the average number of scene
pairs participants chose to look at in each of the conditions. The min-
imum allowed number was eight. The right plot shows the logarithm-
transformed time participants spent on solving. High between-category
similarity reduced time and number of scene pairs cycled through. For
both plots, only solved trial were taken into account. Error bars represent
standard errors.

Discussion

The results above and an inspection of Figure 31 shows that it is the combi-
nation of the interleaved schedule and the high between-category similarity
that is correlated with a higher rate of correct answers. This is in line with
our predictions: The comparison of similar scenes from different categories,
which is by far easiest to do during interleaved presentation of high between-
category similarity pairs, leads to significantly better learning results.

Despite the expected benefits of low within-category similarity for gener-
alization, we did not find an effect of low within-category similarity, even
for the blocked schedule. One possible explanation is that the necessary
alignment of the scenes in each pair was too difficult to do for dissimilar
scenes. A second possible explanation is that although the blocked presen-
tation introduced a strong bias towards within-category comparisons, the
participant might still have tried to build an interrelated characterization of
the categories and, therefore, focused on discriminating between the cate-
gories by looking for differences between successive scene pairs. The sig-
nificant benefit of high between-category similarity and the lack of effect
of the within-category similarity on the number of scene views for solved
problems in the blocked condition supports this hypothesis.

4th Experiment

All experiments so far were done to shed light on the effect of different
types of comparisons on category learning by showing a sequence of scene
pairs to the learner. In this last experiment, we use a less restricted and
more natural way of presentation, in which all scenes of the PBP are shown
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simultaneously. The learner is free to choose which scenes he attends to
and which scenes he compares to others. We still manipulate the similarity
structure of comparisons – in a slightly more indirect way – by arranging
the scenes differently across conditions.

In contrast to Experiment 3, we do not specifically promote within- or
between-concept comparisons, so the participants are more free to choose
the kind of comparison they want to make. For the same reasons as before,
we still expect high-between-category and low within-category similarity to
positively effect learning performance. To allow a direct comparison of the
sequential and simultaneous presentation schedule, we included the best
condition from Experiment 3 as an additional condition in this experiment.
We had mixed expectations of whether seeing all scenes at once should
help or hurt performance. On the one hand, providing all scenes at once
allows for more and faster comparisons because the memory constraints
don’t play as big a role as with the sequential pairs. On the other hand, the
simultaneous presentation adds the task of making good decisions on what
to look at and what to compare.

Participants

We conducted the experiment on Amazon Mechanical Turk. One hundred
forty-three participants, all US-citizens, took part in the experiment in re-
turn for monetary compensation. Of these, we excluded 52 who did not
finish all problems or did not get at least one solution correct across the
entire task. The data from the remaining 91 participants was used in the fol-
lowing analysis. On average, participants solved 11.5 out of the 22 problems
presented.

Material

We used the same PBPs as in Experiment 2 and 3 and showed them in the
same order (see Table 3). We used 16 training scenes as in Experiment 3 but
showed all the scenes simultaneously in four different spatial arrangements.
The scenes were aligned so that for the high within-category similarity con-
dition, similar scenes of the same category were placed spatially close to
each other while for the low within-category similarity condition, they were
placed far from each other. Analogously, adjacent scenes of different cate-
gories were similar for the high between-category similarity condition and
dissimilar for the low between-category similarity condition. The different
spatial alignments are shown exemplarily for PBP 24 in Figure 34. Table 5

lists how many similar and dissimilar comparisons are possible between
scenes spatially close to each other in each condition.

The underlying assumption that the different positioning of scenes af-
fects the order in which scenes are most likely attended by the subjects is
based on research on visual scan paths. In most situations, people prefer
horizontal visual scanning over vertical scanning, where the direction of the
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scanning depends on the main reading direction in their cultural context.
We can expect western persons to have a strong bias in their visual scanning
path towards left-to-right movements and to prefer horizontal over verti-
cal movements (Abed [1991]). Additionally, everything else being equal, it
seems likely that a person will prefer comparing two elements close to each
other than two element far from each other since it takes less effort in terms
of eye movements.

To allow a direct comparison of the sequential presentation schedules of
the previous experiments with the simultaneous presentation schedule of
the current experiment, we have a fifth condition in Experiment 4 that repli-
cated exactly the best condition of Experiment 3, “interleaved-sim-sim”. See
Figure 33 for the timing of training scene display in both the simultaneous
and the sequential presentation schedule. The test scenes were selected and
presented as in Experiment 3.

condition prominent comparisons

within between

sim . dis . sim . dis .

simult-sim-sim 4 (-) - (6) 4 (-) - (-)

simult-dis-sim - (-) 4 (6) 4 (-) 4 (-)

simult-sim-dis 4 (-) - (6) - (-) 4 (-)

simult-dis-dis - (-) 4 (6) - (-) 4 (-)

Table 5: The table depicts how many opportunities each condition provides for mak-
ing specific types of comparisons between scenes that are adjacent horizon-
tally (first number) or vertically (second number in brackets). There is, most
likely, a bias to compare scenes that are adjacent, especially horizontally. The
numbers in black are the types of comparisons that should be promoted by a
condition, while the gray numbers are the kinds of comparisons that should
be limited. Compare with the example of an actual scene layout given in
Figure 34.

Design

We used a 2 × 2 factorial design with the factors within-category similarity∈
{similar, dissimilar} × between-category similarity∈ {similar, dissimilar}. Addi-
tionally to those four conditions in which all scenes were presented simulta-
neously, there was a fifth sequential condition that replicated the best condi-
tion from the previous experiment (interleaved, within-dissimilar, between-
similar). One of these five conditions was chosen for each problem presented
to a subject in a balanced and within-subject manner.
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Figure 33: Scheduling for Experiment 4. The figure depicts the timing for training
scene presentation in the simultaneous (top) and in the sequential inter-
leaved condition (bottom). The scenes that are shown at a specific stage
are marked in white. In the simultaneous condition, all scenes are shown
at once. The interleaved condition is identical to the one used in Experi-
ment 3.

Procedure

The course of the experiment was identical to that of Experiment 3, except
that for the simultaneous presentation schedule, participants could not cycle
through scenes pairs but were rather shown all scenes at once and could di-
rectly proceed to the next stage. The original experiment is available online
at http://goo.gl/066U59.

Results

The written solutions of all participants were categorized as correct or in-
correct by two trained coders blind to the experimental hypothesis, same
as in Experiment 3. Cronbach’s α was 0.79. All cases of disagreement were
resolved by a third trained coder, also blind to the experimental hypothesis.

We applied two separate 2 × 2 repeated measures analyses of variance on
all problem instances presented with the simultaneous presentation sched-
ule to analyze the effect of the factors within-category similarity condition and
between-category similarity condition with first the proportion of correct an-
swers (accuracy) and second the consistency measure defined in the pre-
vious experiment (consistency) as dependent variables. For accuracy, we
found a significant effect of within-category similarity F(1, 90) = 8.07, p < .01,
while between-category similarity had no significant effect and there was no
significant interaction. For consistency, we found a marginally significant
effect of within-category similarity F(1, 90) = 3.78, p = 0.55 and no effect or
interaction with between-category similarity. See Figure 35.

To analyze the effort that the solution of a correctly solved problem re-
quired, we used the logarithm-transformed time spent on solving as we did
in Experiment 3. The number of iterations through a problem’s scene pairs
can’t be used for the simultaneous condition. We used the same type of
mixed effects analysis as before and applied it to all solved trials in the si-
multaneous conditions. It revealed an effect of between-category similarity
with 9.6 bits of evidence. All other effects had negative evidence. Figure 36

shows a plot of the data.

http://goo.gl/066U59
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(a) simultaneous-sim-sim,
interleaved-sim-sim

(b) simultaneous-dis-sim

(c) simultaneous-sim-dis (d) simultaneous-dis-dis

Figure 34: Experiment 4. Arrangement of scenes for the four simultaneous condi-
tions and the one interleaved condition for the example of PBP 24. The
interleaved condition has just presented in with high within- and high
between-category similarity, while for the simultaneous condition, both
similarity types were varied between low and high.

We used four planned t-tests to compare the accuracy in the interleaved
condition with the performances in each of the four simultaneous condi-
tions. For the condition “simultaneous-sim-dis”, which is the most difficult
of the simultaneous conditions, we got a significant difference t(90) = 3.1,
p = 0.01, where p was corrected using the Bonferroni method to account
for multiple comparisons. There was no significant difference in reaction
times between the interleaved and the simultaneous presentation schedules
(p > .05).

Discussion

This experiment resulted in two important findings. First, for the simultane-
ous presentation, low within-category similarity was correlated with better
classification performance, which is in line with the body of research that
shows low similarity (higher variance) to be beneficial for category learning.
We did find the expected positive effect of high between-category similarity
on solution time, although not on accuracy. This is different but complemen-
tary to the results of Experiment 3 and I will provide an interpretation of
the joint results in the general discussion below.
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Figure 35: Results for Experiment 4. For the simultaneous condition, the accuracy
was significantly higher in conditions with low within-category similarity
(similar scenes on each side were placed far from each other). The same
effect, though only marginally significant, was found on the consistency
of test answers. The interleaved condition replicated the best condition
of Experiment 3 and lead to significantly higher accuracy than the worst
simultaneous condition, despite the fact that participants only saw two
scenes at a time. Error bars represent standard errors.

Second, the interleaved presentation of PBP scenes in the high within-,
high between-category similarity condition was significantly better suited
for learning than the simultaneous presentation with high within- and low
between-category similarity. Although we are comparing the best of the se-
quential conditions with the worst of the simultaneous conditions, this is
still a noteworthy result: If not for generating solution hypotheses, then at
least for validating them the simultaneous condition should provide an ad-
vantage over the sequential one, in which one never gets to see how all the
pieces fit together. Nevertheless, there is a simultaneous condition that is
better than a sequential one, which strongly suggests that the process of se-
lecting which scenes should be attended to is a substantial and non-trivial
part of the learning task. Presenting just two scenes at a time, which are cho-
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Figure 36: Results for Experiment 4. The plot shows the logarithm-transformed time
participants spent on correctly solved trials. Participants were significantly
faster in conditions where similar scenes from different categories were
placed close to each other. Error bars represent standard errors.
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sen to be beneficial to the learning when compared, can promote efficient
perception and reasoning strategies which lead to better learning results.

4.4 general discussion

One general observation from all four experiments is that solving PBPs is
not an easy task for people. On average, each person solved around half of
the 22 problems correctly, while typically spending between two and three
minutes per problem. This base degree of difficulty is well suited for the
experiments, as it avoids ceiling effects.

Over the course of the four experiments, we manipulated whether the
scenes in each problem were shown in pairs or all at once, whether similar
scenes were presented close or distant from each other and whether within
or between category comparisons could be made directly.

There are three major effects we found across the experiments. First, com-
paring similar cases across the two categories is beneficial to learning (Exper-
iments 2, 3 and 4). Second, comparing dissimilar cases within one category
is beneficial to learning (Experiment 4). Third, seeing all category members
at once is worse for learning than seeing them in pairs if the paired presen-
tation juxtaposes similar scenes from different sides while the simultaneous
presentation does not (Experiment 4).

The first result follows naturally from the prediction based on the notion
of discriminative contrast, as discussed in Carvalho and Goldstone [2013]
and Kang and Pashler [2012], which states that direct comparison of in-
stances from different categories highlights their differences, together with
the insight that comparing similar instances is especially effective since there
are fewer superficial differences and the alignment of instances is easier (see
Winston [1970] on “near misses” as well as Markman and Gentner [1993]).

The second result is predicted by theories like “conservative generaliza-
tion” by Medin and Ross [1989] that attribute the advantage of low simi-
larity within-concept comparisons to having less superficial similarities that
can be mistaken for the defining similarities.

The question remains of why we did not find both effects in both experi-
ments. My answer is based on the insight that there are different approaches
people use when learning concepts. Both Goldstone [1996] and Jones and
Ross [2011] argue that learners might either focus primarily on what a cat-
egory is like (using “inference learning” to build a “positive” or “isolated
characterization”) or focus on how a category is different from other cate-
gories (using “classification learning” to build an “interrelated characteriza-
tion”). What kind of comparisons are most informative strongly depends
on which of these approaches is pursued by the learner. While for building
a positive characterization within-category comparisons are of central im-
portance, for building an interrelated characterization the between-category
comparisons are more useful.
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An interpretation of the results consistent with the different findings
across the experiments is that in Experiment 3, participants were focusing on
between-category comparisons because they were trying to build an interre-
lated characterization of the concepts. Naturally, participants would make
few within-category comparisons, explaining why the within-similarity con-
dition did not play a significant role. In Experiment 4, subjects might have
tried to build a positive characterization instead, and consequently did not
pay as much attention to between-category comparisons, explaining the
effect of within-category similarity and the lack of an effect of between-
category similarity.

There are a couple of reasons why it is plausible to assume that partic-
ipants chose to look for differences in the sequential presentation and for
commonalities in the simultaneous presentation. In the simultaneous pre-
sentation, all instances of one category were grouped together on one side
of the scene, a layout that allows for quickly scanning all instances to effi-
ciently check for reoccurring patterns and shared features. This assumption
is supported by the results of the eye-tracking study discussed earlier. When
presented with just two scenes at a time, however, looking for differences
might appear as the more efficient strategy: due to the open-ended feature
space of the PBP domain, participants had to identify or construct relevant
feature dimensions as a major part of the task. Comparing similar scenes
from different concepts highlights such feature dimensions, an advantage
that comparing dissimilar scenes within one concept does not provide (Car-
valho and Goldstone [2013]).

In the experiments described in this chapter, we replicated known effects
in human category learning on the new PBP domain. We went beyond exist-
ing research with the detailed analysis of the joint effects of within-category
similarity and between-category similarity on concept learning performance
for blocked, interleaved and simultaneous presentation of examples. In the
next chapter, I look into whether these factors effect the PATHS model in
the same way as they effect humans.
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M O D E L P E R F O R M A N C E O N P B P S

The PATHS model was designed as a cognitive model and targets a partic-
ular slice of human cognition, rule-based concept learning, at a particular
level of abstraction, a symbolic hypothesis testing account combined with
the perception of scene features. After laying out the architecture of the
model in Chapter 3 and collecting human learning data on PBPs in Chap-
ter 4, I now compare the performance of the model to that of humans to see,
whether the model successfully captures aspects of human concept learning.
This chapter compares human and model performance along several dimen-
sions: the ratio of correct solutions, the time it takes to get to a solution, and
the influence of different presentation conditions. The performance data of
the model is generated by running it on a replication of the experimental
setup of Experiment 3 from the previous chapter. I used Experiment 3, since
it implements a powerful manipulation of the kinds of comparisons that are
possible, it was the experiment with the largest effect sizes and it presents
the scenes in a predefined order, that can be replicated precisely for the
model.

This chapter is divided into three sections. In the first section, I describe
how the PATHS model was set up to run on the same experimental condi-
tions as participants worked with in Experiment 3. In the second section, I
analyze and visualize the data collected from the model runs, and in third
section, I interpret and discuss the data.

5.1 experimental setup

In order to compare the performance of the PATH model with that of hu-
man participants, I replicated the setup of Experiment 3 for the model. As
in Experiment 3, each of the PBP were presented to the model as a sequence
of scene pairs. All eight level combinations of the factors “presentation
schedule”, “within-category similarity” and “between-category similarity”
were used as conditions, which determined the order in which scenes were
shown. Additionally, the order of the PBP rows was randomized in each
trial, which does not influence the similarity structure. Just like the human
participants, the model decides when to proceed to the next scene pair and
can submit a solution at any time once it has seen all scenes.

There are, however, a number of things that differed from the human
experiment. First, the model never submits an incorrect solution, unlike the
human participants. Second, the model will give up on a trial if it did not
find a solution after a fixed number of actions, which was set to 2500. The
participants, on the other hand, were able to give up at any time as long
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as they had looked at each scene at least once. Third, the order in which
the problems were shown to the model was arbitrary, since the model had
no built in mechanism for carrying over activity or experience from one
trial to another – it started each trial in the same initial state. Finally, the
model was only applied to a subset of the problems that humans worked
with. Those problems were the ones that the model was in principle capable
of solving, which was problem 2, 4, 8, 11b, 12, 13, 16, 18, 20, 22, 26, 30,
and 31. Additionally, the model worked on new problems 35 and 36, which
were created to test its ability to work on previously unseen problems. The
remaining problems from Experiment 3 and 4 (problems 9, 19, 21, 23, 24,
27, 28, 32 and 33) could not solved by the model because it lacked relevant
perceptual capabilites.1

Table 6 lists the parameter settings I used for the model. The parameters
were not fit to the data, instead they were all set to fixed values before run-
ning the experiment. The model could perceive the following features. Ob-
ject attributes: circle, square, triangle, rectangle, small, large, moves, unsta-
ble, stable, single, top-most, on-ground, bottom, top, left, right and movable-
up. Group attributes: count, touching, close and far. Object relationships:
touch, close, for, on-top, right-of, left-of, above, below, beside, supports, hits,
gets-hit and collide. Using these settings and perception capabilities, the
model was run 100 times on each problem in each condition, resulting in a
total of 100 ∗ 8 ∗ 15 = 12, 000 trials.

parameter value

action priors perceive: 0.6, check-hyp: 0.25, combine-hyp: 0.1,

recombine-hyp: 0.05

time priors start: 0.67, end: 0.33

obj. attr. priors moves: 2, unstable: 1.5, top-most: 1.5, other: 1

group attr. priors touching: 1.5, close: 1.25, other: 1

feature priors circle, square, triangle, rectangle, small, large: 3;

moves, unstable, stable: 2; other: 1

Table 6: Model parameter values used in the experiment.

Additionally, the model was run on another 12,000 trials using a more
elaborate way of calculating the probabilities of selecting a specific feature
for perception. Instead of just using the prior probability, the prior was up-
dated analogously to the way the probability of selecting a specific object for
perception is calculated. This resulted in the model selecting those features
that are used in prominent solution hypotheses with a higher probability.

1 The decision of which capabilities I endowed the model with was done before analyzing and
comparing the model performance to human performance. I discuss how the model could be
extended to solve the remaining problems in Section 5.3.
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5.2 results

Figure 37 shows the model’s rate of discovering a solution – its accuracy –
in sub-figure (37a) and how many actions it used on average until it found
a solution or gave up in sub-figure (37b). I choose a constant action cap at
2500 actions and the model stopped the search if no solution was found
after that number of actions. With this action cap, the model reliably found
a solution for most of the problems. Because of these ceiling effects, I will
not use the model’s accuracy directly in subsequent analysis.
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Figure 37: (a) The model’s rate of finding a solution with a fixed cut-off at 2500 ac-
tions. (b) The average number of actions the model took to find a solution
(blue) or until it either found a solution or aborted the search at 2500

actions (gray). Error bars represent standard errors. The x-axes show the
problem numbers.

Reaction Time Distribution

To gain an overview of the effort it took participants and the model to solve
PBPs, I use the time to a solution as the measure of effort for human partic-
ipants, and the number of actions to a solution for the model. The benefit
of the number of actions is that it abstracts from the specific hardware, pro-
gramming language and differences in the runtime of specific perception ac-
tions. I will refer to both the solution time and action count as reaction times
or RTs. Figure 38 and 39 show histograms of the RT distributions across par-
ticipants and model runs, taking only successfully solved trials into account.
For the human data, I used the combined data from Experiment 3 and 4. I
discuss the data in the next section.
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(a) PBP 2
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(c) PBP 8
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(d) PBP 11b
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(e) PBP 12
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(f) PBP 13
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(g) PBP 16
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(h) PBP 18
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Figure 38: Solution time histograms for PBP 2 to PBP 20. The upper plot in each pair shows the human
solution times in seconds, while the lower plot shows the number of actions the model used. Both
for humans and the model, only successfully solved trials were considered for the histogram
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(a) PBP 22
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(b) PBP 26
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(c) PBP 30
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(d) PBP 31
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Figure 39: Solution time histograms for PBP 22 to PBP 36. The upper plot in each pair shows the human
solution times in seconds, while the lower plot shows the number of actions the model used.
PBP 35 and 36 were not used in the human study and therefore the corresponding plots don’t
show human solving times. Both for humans and the model, only successfully solved trials were
considered for the histogram.

Performance Correlation per Problem

I now compare the average reaction times of human participants and the
model on each problem. While further analysis of reaction times is useful
for model comparison and for illuminating effects of the presentation con-
dition, the RTs have several problematic aspects. First, the RT data gathered
from human participants contains outliers. Second, the RTs in unsuccessful
trials are difficult to interpret and result from very different mechanisms
in the model and the human participants. The model always searches for a
solution until a fixed maximum number of actions, while humans may give
up at any time or might submit a wrong answer.

I applied the following techniques to address these problems. First, I ex-
cluded all trials in which the reaction time was longer than ten minutes.
There are no fast RT outliers since the correct answer could not be guessed.
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Second, I took a look at the RTs of successfully solved trials and introduced
a difficulty measure that takes both accuracy and reaction time into account.

Figure 40 shows a scatter plot of human versus model reaction times in
solved trials. The Pearson product-moment correlation coefficient for the
per-problem RTs between humans and the model is 0.77, with t = 3.96,df =
11,p− value = 0.002. The 95% confidence interval for a two-sided alterna-
tive hypothesis is 0.37 to 0.93.
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Figure 40: Plot of the average human and model RTs for averaged per problem using
only successfully solved trials. The gray line shows a linear fit of the data.

In order to have a measure that takes both the reaction times and the so-
lution rate into account while treating failed trials in the human and model
data similarily, I used the difficulty score defined below. The difficulty score
combines accuracy and RT information by setting the RT of all unsolved tri-
als to ten minutes for the human data. Any trials that took longer than ten
minutes are also set to ten minutes. The model data already has all unsolved
trials set to a value of 2500 actions and remains unchanged.

difficulty =

min(10,RT), if solved

10, if unsolved

Figure 41 shows a scatter plot of human versus model difficulty scores.
The Pearson product-moment correlation coefficient for the per-problem
difficulty scores between humans and the model is r = 0.31, with t =

1.0856,df = 11,p − value = 0.3. There is a single problem, PBP 31, for
which the difficulty for humans and for the model was very different. I look
into potential reasons for the mismatch on this particular problem at the end
of this chapter. If we remove problem 31 from the data, we get a correlation
of r = 0.74, with t = 3.4,df = 10,p− value = 0.006 and a 95% confidence
interval for a two-sided alternative hypothesis of 0.28 to 0.92.
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Figure 41: Plot of the difficulty score for humans and the model averaged per prob-
lem using all trials. The difficulty score is the average RT with RTs of
unsolved trials set to ten minutes or 2500 actions, respectively. The gray
line shows a linear fit to the data without problem 31.

Influence of Presentation Condition

In order to analyze the influence of the presentation condition on reaction
times, I averaged RTs across problems. It is a well-known effect that with
tasks of varying difficulty such as PBPs, the mean and variance between the
RT distributions will vary between problems. In order to account for this het-
erogeneity of variance, I log transform both the RTs of successful trials and
the difficulty scores. I use the same conservative removal of outliers from
the human data as above, disregarding those trials that took longer than 10

minutes to answer. The log RTs were calculated on the RTs in milliseconds.
I applied a 2 × 2 × 2 repeated measures ANOVA to trials with those prob-

lems that could be solved by both human participants and the model; PBP
35 and PBP 36 which were not shown to humans are excluded. The eight
presentation conditions are decomposed into the three 2-level factors pre-
sentation schedule (blocked vs interleaved), the between-category similarity
(similar vs dissimilar), and within-category similarity (similar vs dissimilar).
The ANOVA with log RT of the successful trials of the model as dependent
variable showed a main effect of presentation schedule, F(1, 99) = 121.4,
p < 0.001 and of within-category similarity, F(1, 99) = 14.4, p < 0.001. There
was an interaction between presentation schedule and within-category sim-
ilarity F(1, 99) = 6.7, p = 0.01, as well as between presentation schedule and
between-category similarity F(1, 99) = 10.4, p = 0.002. There were no other
significant effects (p > .05). See Figure 42 for a diagram of the data.

Using the model difficulty score as a dependent variable, the respective
ANOVA showed the same significant main effects and interactions as above.
The respective values were F(1, 99) = 127.4, p < 0.001 (main: presenta-
tion schedule), F(1, 99) = 16.5, p < 0.001 (main: within-category similar-
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Figure 42: The model’s logarithm-transformed number of actions the model took in
average on successful trials for the eight conditions. Error bars represent
standard errors.

ity), F(1, 99) = 8.7, p = 0.004 (presentation schedule – within-category sim-
ilarity interaction), and F(1, 99) = 21.0, p < 0.001 (presentation schedule
– between-category similarity interaction). There were no other significant
effects (p > .05). See Figure 43 for a diagram of the data.
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Figure 43: The models logarithm-transformed difficulty score for the model by con-
dition, averaged across all trials. Error bars represent standard errors.

To re-analyze the human data, we cannot use a repeated measures ANOVA,
since we are looking at only a subset of the problems the participants worked
on. This results in a number of participants that do not have at least one
problem solved for each of the eight conditions. I also applied the same
generalized mixed effects modeling analysis using the “ezMixed” method
of the R package “ez” as in the previous chapter (Lawrence [2013]).

Table 7 lists the bits of evidence found for main effects and interactions
with three or more bits of evidence which is roughly equivalent with an
p-value of 0.05. This was done for the human data of Experiment 3, which
was presented in a sequence of pairs, and for Experiment 4, in which the
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scenes were presented simultaneously. Figure 44 and 45 show a bar plot of
the data for the logarithmic RT and the logarithmic difficulty, respectively.

exp dep. variable evidence

3 log RT for solved b/w-cat. sim.: 16 bits

3 log difficulty b/w-cat. sim.: 25 bits, pres. schedule: 15 bits,

interaction of the above: 10 bits

4 log RT for solved b/w-cat. sim.: 19 bits

4 log difficulty b/w-cat. sim.: 11 bits, w/i-cat. sim.: 10 bits

Table 7: This table lists the evidence found in a mixed effects modeling analysis on
the logarithmic reaction time for solved trials and on the logarithmic dif-
ficulty score for all trials. The analysis was done on the human data from
Experiments 3 and 4 using the subset of problems the model worked on.
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Figure 44: Human participants average logarithm-transformed reaction times on suc-
cessful trials for the eight conditions. Combined data from Experiment 3

and 4. Error bars represent standard errors.

Efficiency

I have argued that the perception of features in a scene takes cognitive ef-
fort and should not be treated as being “free” in models of concept learning.
When we instead assume a cognitive cost to extracting feature values, an iter-
ative process of perception that is tightly connected to the rule-construction
process can allow a model to learn concepts more efficiently without having
to perceive all features in a scene. I analyze this aspect of the PATHS model’s
performance from two perspective. First, I compare the number of features
in a PBP that the model could potentially perceive, given its perceptual ca-
pabilities, to the number of features it actually perceives. Second, I analyze
how the number of feature types that the model is capable of perceiving
influences how long it takes the model to solve a PBP.
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Figure 45: Human participants average logarithm-transformed difficulty scores
across all trials for the eight conditions. Combined data from Experi-
ment 3 and 4. Error bars represent standard errors.

In the following analysis of the number of perceivable and perceived fea-
tures, the number of perceived features reflects the how many feature val-
ues the model extracted from a scene. Once a feature is perceived by the
model, it’s value is cached internally. If the feature value needs to be ac-
cessed again, for example when a hypothesis is checked on the scene, the
value is retrieved from the cache. This retrieval does not count towards the
number of perceived features in the subsequent analysis.

The number of perceivable features in a PBP is the sum of the number
of perceivable object attributes, the number of perceivable group attributes
and the number of perceivable object–object relationships in all scenes. The
model can perceive Fo = 30 types of object attributes, Fg = 7 types of
group attributes and Fr = 23 types of relationships. In these figures, features
that potentially vary over time, like relative position, were counted twice
since the model can perceive them at the start and the end of the simulated
unfolding of physical events. With No denoting the number of objects in
a scene, the number of non-symmetric relationships is Nr = No · (No − 1),
and the number of possible groupings of objects in a scene is Ng = 2No − 1.
We can now compute the number of possible perceptions P for a PBP as

P(PBP) =
∑

s∈scenes

(
FoNo(s) + FrNr(s) + FgNg(s)

)
(4)

Figure 46 shows the average number of perceived features in relation to
the number of perceivable features for each PBP the model solved. Trials
in which the search was stopped without success after 2500 actions are in-
cluded in the plotted averages, too.

A second perspective on the efficiency of the model is to look at how the
number of feature types that the model is capable of solving influences how
fast it solves a problem. For this analysis, I ran different instantiations of
the PATHS model on PBP 26. Each instantiation had a different number of
feature types that it was capable of perceiving in the scenes. The simplest
model instantiation was only able to perceive the three feature types “circle”,
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Figure 46: The gray bars represent the number of perceivable features in the PBPs.
The blue bars show the average number of features that were perceived
by the model across all trials.

“right of” and “left of”, which are sufficient to solve PBP 26. Each additional
instantiation can perceive one more feature type than the previous one, up
until the last instantiation which is identical with the unmodified PATHS
model. I chose PBP 26 (“circle moves to the left vs. right”) for this analysis
for several reasons. First, it is the problem with the most objects and, conse-
quently, a large number of features could be perceived on the scene. Second,
the solution of the problem requires the combination of at least two feature
types, so that the model had to combine hypotheses to solve the problem.
Both aspects lead to a large feature- and rule-space.

Figure 47 shows the accuracy and the difficulty score for the model work-
ing on PBP 26 with different numbers of feature types that it is capable of
using. Of the feature types available to the model instantiations, the first
three features, as well as feature 29 and 30 (“left” and “right”) could be
used to construct a solution for PBP 26. Features 13, 21 and 31 (“moves”,
“top-most” and “unstable”) were potentially useful in that they increased
the saliency of the circle object when they were perceived on it.

Increasing the number of available feature types does not only increase
the number of perceivable features in the PBP scenes, but also the number
of hypotheses that can be constructed. The number of hypotheses that the
PATHS model can in principle construct is

H = (Fo + FrF
n
o + Fg)

m, (5)

where Fo, Fr and Fg are the number of object attribute types, object re-
lationship types and group attribute types that are available to the model.
The parameter n restricts the number of object attributes that can be used
in the reference object selector of a relationship matcher. The parameter m
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restricts the number of feature matchers that can be used in a hypothesis.
For the original PATH model, the number of constructible hypothesis is
H = 6.4 ∗ 107 for n = 2,m = 2 and is H = 4.1 ∗ 1015 for n = 3,m = 3.
The PATHS model does not have a predefined cutoff for the complexity of
constructed hypotheses. Instead, more complex hypotheses are less likely to
be selected in the model’s actions.
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Figure 47: The plot shows the performance of different instantiation of the PATHS
model working on PBP 26. The x-axis in both plots shows the number of
feature types that a particular instantiation was capable of extracting from
a scene. In the top plot, error bars represent standard errors while in the
bottom plot, they represent standard deviation.

5.3 discussion

One directly apparent outcome is that the model can solve all of the 13

problems for which I chose to implement the necessary perceptual capabil-
ities. The model was also able to solve two additional problems 35 and 36

that were created after the human studies and model implementation were
finished in order to test the model’s capability to work on novel problems.
Most of the original 13 problems are very reliably solved within 2500 ac-
tions; two of them were solved in less than half of the trials (see Figure 37a).
In general, the solution rate of the model was much higher than the solution
rate of human subjects. The model was not able to solve nine of the 22 prob-
lems that were presented to human subjects, because of the limited number
of perceptual capabilities I endowed the model with. Adding capabilities to
allow the model to solve those remaining problems would be straightfor-
ward for some, but would require adjustments to the core system for others.
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Table 8 gives an overview of what would have to be added to the system to
enable it to solve each of the remaining problems. I expect that adding those
capabilities to the model would not have significant effects on the results.

pbp required additional capabilities

The following would require no modification of the core system.

21 collisions with ground; measure collision strength

23 collisions with ground

27 stability of a whole group of objects

28 rotational stability

32 object rotation

The following would require minor modifications of the core system.

9 movement direction; same/different attribute

19 type of motion; event occurrence at arbitrary time

33 spatially defined groups, group integrity over time

The following would require major modifications of the core system.

19 type of motion and reasoning over event sequences

24 “noisy physics”: perform several simulations with slightly

different initial conditions and do statistics over the results

27 causality and reasoning over event sequences

Table 8: This is an overview of the capabilities that would have to be added to the
model to enable it to solve all 22 problems solved by human participants
in Experiments 3 and 4. PBP 19 and 27 appear twice, as differently general
solutions would require differently complex adjustments to the model.

In the histograms of per-problem reaction times, the distributions for par-
ticipants and the model are both skewed to the right (Figure 38 and 39).
While for most problems, the distributions of participants and model look
qualitatively similar, clear differences are visible for the problems 13, 20 and
26, which all are problems that the algorithm could not reliably solve within
2500 actions. One difference in the underlying process generating the RTs
is that while the distribution for the model directly reflects the number of
actions required to get to a solution, the time distribution for the human
participants is a superposition of two distributions, the time to assumed so-
lution and the time before giving up. While it is difficult to draw any strong
conclusion from the histogram data, it seems plausible that the lack of an
adaptive stochastic decision on when to give up in the model is at least in
part responsible for visible discrepancies.

A third observation is that the model is efficient in its solution process in
the sense that it perceives only a fraction of the features that are present in
a scene (see Figure 46). Additionally, the model scales well in the number
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of feature types that it can perceive. Increasing the number of feature types
that the model is capable of perceiving increases the number of perceivable
features in the scenes linearly for object attributes, quadratically for relation-
ships, and exponentially for group attributes (see Equation 4 on page 104).
The number of hypotheses rules that the model can form increases with
O(n4) in the number of object attributes, and quadratically in the number of
relationships and group attributes when the hypotheses are restricted to at
most two feature matchers per hypothesis and per reference object selector
(see Equation 5 on page 105). Despite the quick growth of both the num-
ber of perceivable feature and constructible rules with a growing number of
available feature types, the number of actions the PATHS algorithm takes to
solve PBP 26 increases only linearly with the number of feature types (see
Figure 47). This demonstrates the ability of the PATHS model to quickly
converge towards the right parts of a large rule and feature search-space.

Agreements with Human Results

I compared the difficulty of problems for humans and the model using two
measures: the log reaction time (or log action count) on solved trials and
a difficulty measure which combines the accuracy and reaction times. In
both cases, I found a significant correlation of Pearson r > 0.7 between
the average human and average model performance. In the analysis of the
difficulty measure, I excluded problem 31, which was the only problem
for which the difficulty for humans and the model greatly varied. In fact,
problem 31 is the easiest of all problems for humans and the hardest of
all problems for the model. I will look into the reasons for this peculiar
mismatch at the end of this chapter.

The model provided a good fit to the human data in another way. The ef-
fects of manipulating order and type of presented scenes were very similar
for both model and human subjects. In Experiment 3 with human subjects,
I found a significant advantage of high between-category similarity for con-
ditions in which scenes from both categories were paired (interleaved con-
ditions) in terms of accuracy and log reaction times. In Experiment 4, where
all scenes were presented to the participants simultaneously, I found a sig-
nificant advantage of low within-category similarity. These effects were sig-
nificant both for the whole set of PBPs shown during the experiments and
for the subset that was used with the model. The analysis of the model’s per-
formance revealed the same effects: an advantage of high between-category
in interleaved conditions and an advantage of within-category similarity in
blocked conditions. Figure 48 summarizes these results. For the sequential
presentation schedules, it splits by the similarity condition that was pro-
moted by the schedule type (within similarity for blocked and between sim-
ilarity for interleaved) and combines the similarity condition that was not
promoted by the schedule type.
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(b) humans on simultaneous scenes (Experiment 4)
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(c) PATH model on sequential pairs

Figure 48: Comparison of the effects of presentation schedule and scene similarity
on humans and the PATHS model. In Experiment 3 (top plot) which used
sequential presentation of scene pairs, pairing similar scenes taken from
both categories reduced difficulty. In Experiment 4 (middle plot) which
showed all scenes simultaneously, putting dissimilar scenes next to each
other within the categories and putting similar scenes next to each other
between the categories reduced difficulty. The PATHS model (bottom plot)
replicated both effects: pairing of dissimilar scenes within category and
similar scenes between categories reduced difficulty. Bars represent stan-
dard errors.
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Disagreements with Human Results

I conclude this chapter with a discussion of the points were the model does
not fit the human results well and the insights we can gain from these.

First, why was there no advantage of low within-category similarity in the
blocked condition of Experiment 3? The effect did show in Experiment 4, in
which we know from eye tracking data that subjects tend to make more
within- than between-category comparisons. One would expect the same to
be true in the blocked condition of Experiment 3 since each scene pair con-
sists of two scenes from the same category. One possible explanation is that
the pair-wise presentation of the scenes biases people to contrast the two
scenes instead of searching for commonalities. The longer reaction times for
dissimilar versus similar between-category similarity in the blocked condi-
tion are consistent with this interpretation.

Second, although the same effects to similarity conditions were present for
the human participants and model, the effect sizes for the model are smaller.
The effect size of within-category similarity on the difficulty measure was
Cohen’s d = 0.08 for the model and d = 0.18 for the human participants. The
effect size of between-category similarity on the difficulty measure was d =

0.06 for the model and d = 0.43 for the human participants. One potential
reason for the difference in the effect sizes is that memory restrictions in
human cognition were not sufficiently reproduced in the model. On one
extreme, a perfect memory could completely remove any effect of order
in learning. With decreasing number of hypotheses and perceptions that
can be kept reliably in memory, the differences in performance between the
conditions will get bigger.

Third, humans sometimes utilize rich background knowledge when solv-
ing the PBPs which can help – or hinder, if it is not aligned with the actual
solution of the PBP – focusing on the right objects and features in a scene.
This is quite apparent in problem 31 (see Figure 49), which human partic-
ipants typically solved with ease, but which the model found particularly
difficult. All solutions found by the model resolve around the “can-move-
up” attribute, with the two most common being “there are can-move-up
circles in all left scenes” and “there are small and can-move-up objects in
all left scenes”. Human participants came up with a wide variety of solu-
tions, using verbs that evoke rich situations. They described the circle as
being trapped, enclosed, covered, stuck, protected, imprisoned, contained,
boxed in, hidden, surrounded, confined, secured, shielded, having an es-
cape, “can be picked up”, “can get out” and as free to move. While there is
little to guide the attention of the model towards the right concepts, humans
quickly home in on a familiar narrative that is captured in the scenes.
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Figure 49: First three rows of PBP 31. All solutions found by the model include the
“can-move-up” object attribute.





6
C O N C L U S I O N

In this thesis, I developed a new cognitive model of rule-based concept learn-
ing, applied it to a challenging problem domain, and compared its perfor-
mance to that of humans. The model addresses an important and somewhat
neglected topic in the concept learning literature: the role of iterative and ac-
tive perception and its interaction with rule-construction in human concept
learning. Efficient learning from complex examples relies on good choices
about the order in which features and rules are explored. Modeling the itera-
tive and concurrent nature of perception and rule-construction allows these
processes to mutually guide these choices.

The PATHS model is a process-level cognitive model of human category
learning for rule-based categories and can currently solve thirteen of the
twenty-two physical Bongard problems that human participants solved. The
PBPs were designed as a challenging problem domain with structured, dy-
namic physical scenes as the instances that are categorized according to
logical rules. The model tightly integrates perception with hypothesis gener-
ation and testing: perception drives rule formation and hypothesized rules
guide further perception. The previous chapter demonstrated the correla-
tion between the model’s and human per-problem performance. Further-
more, the model is influenced by similarity and order of presented scene
pairs in the same qualitative ways as humans. In this sense, the model
achieves both its goal of perceiving and learning structured concepts and
of capturing important characteristics of human learning performance.

While the PATHS model was developed from scratch, it combines ideas
from several existing approaches. It is essentially a hypothesis generation
and testing approach that shares a focus on perception such as described in
Douglas Hofstadter’s fluid analogy framework. The model picks its actions
based on estimations of the probabilities of entertained hypotheses. This
combination of process-level modeling with mathematically well-founded
Bayesian techniques is a particular strength of the model.

Though the development of the cognitive model was the main goal of
this thesis, several related but distinct insights and artifacts were created on
the journey. The physical Bongard problems are a novel problem domain
that can be used by other researchers. PBPs are attractive due to their open
feature-space, their dynamic and structured content and the fact that they al-
low for easy manipulation of the similarity of scenes presented next to each
other. While the studies with human participants were in part done to serve
as a comparison for the model, they also directly advanced our understand-
ing of how the mode of presentation and similarity of instances influences
human concept learning. Specifically, I demonstrated the benefit of cross-
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category comparison of similar versus dissimilar PBP scenes and the ben-
efit of within-category comparison of dissimilar versus similar PBP scenes,
mediated by presentation type. Finally, the parts of the PATHS model that
perceive dynamic physical attributes of scenes like stability, support, and
movability by using a physics engine to perform counterfactual reasoning,
can easily be reused in other work.

One possible concern about the PATHS model is that it currently can solve
PBPs and nothing else. Even if PBPs are representative for an important class
of concept learning situations in people’s lives, the question of properties
and insights from the PATHS model that can be generalized or “exported”
into other domains and contexts remains. I will discuss such properties and
insights next, starting with two aspects that deserve more attention in the
concept learning field.

The first aspect is integrating perceptual processes tightly with higher-
level cognitive processes. Across different fields like active learning, opti-
mal experiment design, analogy-making or memory retrieval this aspect has
been integrated into models and algorithms in different flavors, yet in mod-
eling category learning it is still the rule to treat perception as separate and
completed before engaging in the “actual concept learning”. What I propose
and the PATHS model demonstrates is taking a closer look at the dynam-
ics that result from the more realistic approach of tightly interconnected
perception and conception.

A second, high-level design choice in the PATHS model that is exportable
is the mixture of rational and process-level accounts. This powerful mod-
eling approach that combines the strength of both accounts might benefit
other models as well.

Beside these overarching modeling decisions, there are various ways in
which the PATHS model as-is can be applied in new contexts to gain in-
sights. I will briefly sketch three such potential future applications.

One straightforward extension would be to implement several variations
of the internal probability estimations within PATHS and to test which of the
variations fits human data best. Since the probability estimations are central
to the model, they influence, among other aspects, the number of hypotheses
that the model explores simultaneously, the influence of old versus new
information and the balance between explorative and exploitative search
behavior.

Another way of applying the PATHS model in a new context would be to
model scaffolding or priming effects that arise from letting learners engage
with problems in a particular order, for example, in increasing difficulty.
In terms of PBPs, an easy problem could scaffold a similar but more diffi-
cult problem that follows it. Solving the first problem influences the mental
state of the solver in ways that can make solving subsequent similar prob-
lems easier and different problems harder. These influences include a raised
awareness to the type of solution, the complexity of the solution and the
features that played a role in the solution of the first problem. People might
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also be more likely to notice structural patterns in the second problem that
were present in the first. The PATHS model can account for all of these men-
tioned effects, yet currently does so between the scenes of a single PBP only.
It would be straightforward to extend the model to carry over hypotheses
and feature activations from one problem to the next. This would, for ex-
ample, allow modeling what kind of strategies and biases people carry over
between problems.

A third opportunity for application is to model the phenomenon of func-
tional fixedness. Functional fixedness describes a cognitive bias that limits
a person to use an object in another than its traditional way. In the famous
candle problem, Duncker and Lees [1945] gave participants a box of tacks,
matches, and a candle and asked them to attach the candle to the wall. Only
very few participants came up with the solution to tack the box to the wall
and use it as a candle holder. Most participants seemed to be fixated on the
box’s initial function as a tack container, which prohibited them from re-
conceptualizing its potential use. Given a situation with an initially empty
box, they were much more likely to solve the problem. In terms of PBPs
and the PATHS model, functional fixedness could be described as, some-
times overly, committing to a particular interpretation of a situation. There
is an obvious trade-off here since a strong functional bias is both a power-
ful way to reduce the search space in typical problem situations but may
also block one from finding a solution in atypical situations. The PATHS
model at times shows the same phenomenon of getting stuck in a particu-
lar type of interpretation. This happens when a hypothesis looks promising
initially and turns out to be wrong later, at which time the positive feed-
back loop between perception and hypothesizing has led the model into a
local minimum in the space of interpretations that is difficult to escape. In
such situations, resetting the model and having it start over on the prob-
lem – restoring an open mind in a way – can be faster than continuing the
search. Although this involves discarding information that the model had
already gathered, it can help avoid becoming stuck on a particular “garden
path” that can result when unfortunate coincidences are discovered early
that only serve to distract from the correct categories. The PATHS model
might allow to shine new light on mechanisms of functional fixedness and
how they can be limiting or beneficial to problem-solving.

Finally, the PATHS model could contribute towards a central goal of
robotics research, the construction of intelligent stystem that humans can
naturally interact with. The cognitive ability modeled in PATHS – the con-
struction of verbal concepts from images of physical scenes – is likely one of
the prerequisites for future cognitive interaction technology that shares our
living spaces, naturally communicates, and fluidly interacts with us.

In summary, this work promotes a new focus on interactions between
perception and rule-construction in concept learning and provides a new
tool, the PATHS model. The new focus brings important questions to our
attention, and the tool has already begun to advance answers to them.
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(1) PBP 01 (2) PBP 02

(3) PBP 03 (4) PBP 04

(5) PBP 05 (6) PBP 06

(7) PBP 07 (8) PBP 08

Figure 50: The early / first version of the physical Bongard problems that was used in the eye-tracking
study and in Experiment 1. There are 34 problems, each with 8 scenes. Above are the problem
numbers one to eight. The solutions to the problems are listed in the next table.
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(1) PBP 09 (2) PBP 10

(3) PBP 11 (4) PBP 12

(5) PBP 13 (6) PBP 14

(7) PBP 15 (8) PBP 16

(9) PBP 17 (10) PBP 18

Figure 51: Early / first version of the PBPs, problem 9 to 18. The solutions to the problems are listed in the
next table.
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(1) PBP 19 (2) PBP 20

(3) PBP 21 (4) PBP 22

(5) PBP 23 (6) PBP 24

(7) PBP 25 (8) PBP 26

(9) PBP 27 (10) PBP 28

Figure 52: Early / first version of the PBPs, problem 19 to 28. The solutions to the problems are listed in
the next table.
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(1) PBP 29 (2) PBP 30

(3) PBP 31 (4) PBP 32

(5) PBP 33 (6) PBP 34

Figure 53: Early / first version of the PBPs, problem 29 to 34. The solutions to the problems are listed in
the next table.
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pbp left side right side

01 objects exist no objects
02 one object two objects
03 big objects small objects
04 squares circles
05 objects move objects don’t move
06 objects move to the left objects move to the right
07 fast movement slow movement
08 unstable situation stable situation
09 objects move in opposite directions objects move in same direction
10 rotation no rotation
11 the objects will eventually be close to each

other
the objects are far from each other

12 small object falls off small object stays on top
13 objects form a tower objects form an arc
14 vertical construction horizontal construction
15 circle does not hit right between the other

objects
circle hits right between the other objects

16 the circle is left of the square the square is left of the circle
17 objects touch objects don’t touch
18 object touch eventually obj.s don’t touch eventually
19 at least one object flies through the air all object always touch something
20 square supports other obj’s eventually square doesn’t support other objects
21 strong collision weak or no collision
22 objects collide with each other objects don’t collide with each other
23 collision no collision
24 several possible outcomes one possible outcome
25 objects do not topple over the object topples over
26 circle moves right circle moves left
27 (potential) chain reaction no chain reaction
28 rolls well does not roll well
29 circle could move to one side circle could move to both sides
30 less stable situation stable situation
31 circle can be picked up directly circle can’t be picked up directly
32 objects rotate a lot obj.s rotate little or not at all
33 construction gets destroyed construction stays intact
34 object falls to the left object falls to the right

Table 9: Solutions to all 34 early / first version PBPs.
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Figure 54: The second version of the physical Bongard problems that was used in Experiments 2 to 4.
Twenty-two of the original problems were selected and extended. The version two PBPs contain
twenty scenes each and the scenes are grouped into five similarity groups. The similarity groups
are arranged by rows above, such scenes within a row are more similar than scenes across rows.
The solutions to the problems are listed in the next table.
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Figure 55: Version two of the PBPs. The solutions to the problems are listed in the next table.
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Figure 56: Version two of the PBPs. The solutions to the problems are listed in the next table.
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Figure 57: Version two of the PBPs. The solutions to the problems are listed in the next table.
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Figure 58: Version two of the PBPs. The solutions to the problems are listed in the next table.



list of physical bongard problems 127

Figure 59: Version two of the PBPs. The solutions to the problems are listed in the next table.
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Figure 60: Version two of the PBPs. The solutions to the problems are listed in the next table.
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pbp left side right side

02 one object two objects
04 squares circles
08 unstable situation stable situation
09 objects move in opposite directions objects move in same direction
11b objects close to each other objects far from each other
12 small object falls off small object stays on top
13 objects form a tower objects form an arc
16 the circle is left of the square the square is left of the circle
18 object touch eventually obj.s don’t touch eventually
19 at least one object flies through the air all object always touch something
20 square supports other obj’s eventually square doesn’t support other objects
21 strong collision weak or no collision
22 objects collide with each other objects don’t collide with each other
23 collision no collision
24 several possible outcomes one possible outcome
26 circle moves right circle moves left
27 (potential) chain reaction no chain reaction
28 rolls well does not roll well
30 less stable situation stable situation
31 circle can be picked up directly circle can’t be picked up directly
32 objects rotate a lot obj.s rotate little or not at all
33 construction gets destroyed construction stays intact
34 objects fall to the left objects fall to the right
35 there is a moving triangle no moving triangle
36 a small objects hits a large object no small objects hits a large object

Table 10: Solutions to all version 2 PBPs. The first 22 of them were solved by human
participants. Problem 34 was used as example problem in the experimental
instructions. Problems 35 and 36 were not used with human participants
and instead used to test how the PATHS model performs on novel prob-
lems.
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