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ABSTRACT 

Understanding the behavioral and neurocognitive relation between mind wandering and learning 

Judy Xu 

 

In the last decade, tremendous advances have been made in the effort to understand mind 

wandering, yet many questions remain unanswered. Chief among them is how mind wandering 

relates to learning. Insofar as mind wandering has been linked to poor learning, finding ways to 

reduce the propensity to mind wander could potentially improve learning. Two experiments were 

conducted to examine this. The first experiment evaluated how difficulty of the to-be-learned 

materials affected one’s tendency to mind wander and revealed that people mind wandered when 

there was a mismatch between their level of expertise and the difficulty of materials studied. The 

second experiment compared whether participants were more likely to mind wander in blocked 

or interleaved conditions and showed that participants were more likely to mind wander when 

materials were presented in a blocked fashion. Together, these results indicate that techniques 

such as studying materials specific to one’s own level of mastery or changing the way in which 

one studies might reduce mind wandering and improve learning. 

Of equal importance is the question of what happens on in the brain when a person mind 

wanders. While the effect of mind wandering on early sensory processing is known, the impact it 

has on learning-related processing is not. In two event-related potential (ERP) experiments, 

participants were asked to report whether they were mind wandering or not while studying 

materials they were later tested on. Analyses revealed that elaborative semantic processing – 

indexed by a late, sustained slow wave that was maximal at posterior parietal electrode sites – 

was attenuated when participants mind wandered. Crucially, the pattern when people were on 



 

 
 

task rather than mind wandering was similar to the subsequent memory effect previously 

reported by other memory researchers, suggesting that mind wandering disrupts the deep level of 

processing required for learning. 
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Note 

Parts of the research presented here are excerpted from my own previously published 

work, i.e. journal articles. 
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Introduction 

Mind wandering refers to the mental phenomena where one’s thoughts become 

disconnected from the task at hand and instead become focused on internal milieu (Smallwood & 

Schooler, 2006, 2015). From mindless reading to imagining a night out, mind wandering is 

characterized by the decoupling of thought from the present task onto internal mental events 

(Smallwood, 2013; Smallwood & Schooler, 2006). Imaging studies linking mind wandering to 

default mode network activity (e.g., Christoff, Gordon, Smallwood, Smith, & Schooler, 2009; 

Fox, Spreng, Ellamil, Andrew-Hanna, & Christoff, 2015; Mason, Norton, Van Horn, Wegner, 

Grafton, & Macrae, 2007; Stawarczyk, Majerus, Maquet, & D’Argembeau, 2011), support the 

idea that mind wandering is associated to disengagement from the external environment 

(Schooler, Smallwood, Christoff, Handy Reichle, & Sayette, 2011). Unfortunately, people are 

not always aware when their thoughts drift off, as the propensity to do so is spontaneous and 

often occurs without awareness (Christoff, 2012; Christoff, Gordon, Smallwood, Smith, & 

Schooler, 2009). Worse yet, in daily life, one’s mind could be engaged in off-task thinking up to 

50% of the time (Killingsworth & Gilbert, 2010), and it is thought to be very difficult to prevent 

it from happening. 

Often, in mind wandering experiments, participants are asked to perform some task, such 

as the go no-go (e.g., Carriere, Cheyne, Solman, & Smilek, 2010; Jackson & Balota, 2012; Kam 

et al., 2011; McVay, Meier, Touron, & Kane, 2013; Smallwood et al., 2004; Smallwood, Beach, 

Schooler, & Handy, 2008; Zavagnin, Borella, & De Beni, 2014) or read a piece of text (e.g., 

Feng, D’Mello, & Graesser, 2013; Franklin, Smallwood, & Schooler, 2011; Reichle, Reineberg, 

& Schooler, 2010; Smallwood, 2011), and are intermittently ‘probed’ or interrupted and asked to 

report whether they were mind wandering or not. While there are some suggestions that mind 
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wandering may be beneficial for creativity (Baird et al., 2012; Singer, 1975) or memory for 

future events (Mason, Bar, & Macrae, 2007; Mason & Reinholtz, 2015), there is a much larger 

literature associating mind wandering with poorer outcomes on a variety of metrics including 

executive functions (Kam & Handy, 2014), online motor control (Kam et al., 2012), driving 

(Galéra et al., 2012; He, Becic, Lee, & McCarley, 2011), and reading comprehension (Feng et 

al., 2013; Foulsham, Farley, & Kingstone, 2013; Reichle et al., 2010; Smallwood, 2011; 

Unsworth & McMillan, 2013). Most importantly, though, I argue, is the relation that mind 

wandering has on learning and memory. Insofar as one’s attention is not focused on studying, 

learning is also expected to suffer. 

Indeed, this relation of mind wandering and poorer learning has been found in the 

literature (e.g., Farley, Risko, & Kingstone, 2013; Lindquist & McLean, 2011; Metcalfe & Xu, 

2016; Risko, Buchanan, Medimorec, & Kingstone, 2013; Smallwood, Fishman, & Schooler, 

2007; Xu & Metcalfe, 2016). Mind wandering has been linked to impaired reading 

comprehension (Broadway, Franklin, & Schooler, 2015; Feng et al., 2013; Franklin et al., 2011; 

Reichle et al., 2010; Smallwood, 2011), worse knowledge retention (Farley et al., 2013; 

Thomson et al., 2014), poorer memory for online lectures (Spzunar, Khan, & Schacter, 2013), 

lower exam and SAT scores (Lindquist & McLean, 2011; Unsworth, McMillan, Brewer, & 

Spillers, 2012), and diminished recall (Metcalfe & Xu, 2016; Smallwood, McSpadden, & 

Schooler, 2007; Xu & Metcalfe, 2016). When we disengage from tasks requiring high levels of 

processing – e.g., reading or word encoding – our ability to process and perform the task worsens 

(Feng et al., 2013; Foulsham et al., 2013; Smallwood et al., 2003). Furthermore, performance 

decrements were specific to the periods of offline thinking: participants who reported mind 

wandering when reading specific passages also recalled less when asked about those passages 
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(Smallwood, McSpadden, & Schooler, 2008). This selectivity, such that only learning of the to-

be-learned materials to which a person reports mind wandering to is hindered, also exists when 

studying English-Spanish word or image-word pairs (Metcalfe & Xu, 2016; Xu & Metcalfe, 

2016). Simply put, mind wandering appears to pose a serious threat to learning, making it crucial 

to understand what might drive one’s mind to go offline, and how this might be prevented. 

While there are indications that interventions such as intermittent testing (Jing, Szpunar, 

& Schacter, 2016; Szpunar, 2017; Szpunar, Khan, & Schacter, 2013; Szpunar, Moulton, & 

Schacter, 2013) or mindfulness training (Mrazek, Franklin, Phillips, Baird, & Schooler, 2013; 

Schooler et al., 2014; Xu, Purdon, Seli, & Smilek, 2017) might reduce the predisposition to mind 

wander, there is still much to be explored within the context of mind wandering and learning. 

Given these problems, my dissertation attempts to address two questions. First, are there ways in 

which we can minimize one’s proclivity to mind wander in an attempt to boost learning? And 

second, while mind wandering is linked to default network activation more generally, what are 

the neurocognitive consequences when mind wandering, specific to learning? 

How can we reduce mind wandering? 

Considerable research suggests that factors such as boredom and fatigue (Smallwood & 

Schooler, 2006) as well as negative affect (Killingsworth & Gilbert, 2010) are correlated with 

increased propensity to mind wander in daily life. Data from Risko, Anderson, Sarwal, 

Engelhardt, and Kingstone (2012) showed that students mind wandered more and recalled less 

during the second half of an online lecture, as opposed to the first half. As people spend more 

time on a task, fatigue and boredom increase, making it more likely for one’s mind to drift off 

(McVay & Kane, 2009; Metcalfe & Xu, 2016; Smallwood et al., 2003; Smallwood, Riby, Heim, 

& Davies, 2006; Xu & Metcalfe; 2016). Work on individual differences also suggests that 
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motivation and interest alter one’s tendency to mind wander (Antrobus, Singer, & Greenberg, 

1966; Grodsky & Giambra, 1990-91; Jackson & Balota, 2012; Krawietz, Tamplin, Radvansky, 

2012; Seli, Cheyne, Xu, Purdon, & Smilek, 2015; Unsworth et al., 2012; Unsworth & McMillan, 

2013). For example, Unsworth and McMillan (2013) proposed a model in which interest 

predicted motivation, and in turn predicted mind wandering. Thus, fatigue and boredom appear 

to increase the proclivity to mind wander, whereas increased interest may keep a person on-task.  

Importantly, the finding that people who report being more interested tend not to mind 

wander (e.g., Unsworth & McMillan, 2013) suggests that if it were possible to experimentally 

manipulate interest, it might affect one’s proclivity to mind wander. The Region of Proximal 

Learning (RPL) model, which will be discussed in a moment, proposes that if the difficulty of 

the task is calibrated to the knowledge state of the learners, their interest can be elicited. 

Therefore, individually calibrated level of task difficulty might be one such way to investigate 

whether studying in one’s own RPL might reduce mind wandering. 

The Region of Proximal Learning Model. According to the RPL framework, people 

learn best and are most engaged when performing tasks in which difficulty is titrated to their own 

ability and expertise level (Metcalfe, 2009, 2011; Metcalfe & Kornell, 2005). People become 

bored from the lack of challenge in very easy tasks. At the other extreme, exceedingly difficult 

tasks can be frustrating and tedious. Thus, people should spend more time and effort on tasks in 

their own RPL. The idea of tasks “just right” is similar to previous theories of human instruction 

and learning (e.g., Atkinson, 1972; Berlyne, 1978; Piaget, 1952; Vygotsky, 1987), which have 

proposed that people focus on materials most amenable to being mastered. An individual’s RPL 

consists of items just beyond the learner’s mastery, i.e. the easiest as yet unmastered materials. 

On the other hand, both already mastered and more difficult items are outside RPL. 
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The RPL framework is compatible with the work of Berlyne (1978), who investigated the 

relation between curiosity and stimulus complexity. Arousal, as measured by pupil dilation and 

skin conductance, was increased when people looked at slightly asymmetric patterns (Berlyne, 

1978). In addition, people were more curious and spent a longer time staring at those slightly 

asymmetric images than at either very simple, predictable, symmetric images (i.e., too easy) or 

complex and unpredictable images (i.e., too difficult). Materials in one’s own RPL are analogous 

to Berlyne’s slightly asymmetric patterns as they would be slightly beyond an individual’s 

current grasp and should, therefore, elicit curiosity when studied. 

Experimental data on study choice and time allocation have shown that people tend to 

select and focus on studying items inside their own RPL (e.g., Metcalfe, 2002; Son & Metcalfe, 

2000). For instance, participants often select the easiest as yet unlearned items to study (Kornell 

& Flanagan, 2014; Kornell & Metcalfe, 2006; Metcalfe, 2002, 2009; Metcalfe & Kornell, 2003, 

2005; Thiede & Dunlosky, 1999). Kornell and Metcalfe (2006) found that participants learned 

more when they were forced to study RPL materials, as opposed to non-RPL materials. Despite 

having the same amount of study time, participants recalled fewer non-RPL items when assigned 

to study them. These findings in support of RPL highlight the importance of focusing on 

individual-appropriate tasks and materials. 

As learning progresses, the particular items occupying an individual’s RPL change. 

Metcalfe (2002) showed that college students initially focused on items of medium difficulty, 

turning to more difficult items only when study time was increased. Another study by Price and 

Murray (2012) had naïve Chinese speakers select Chinese characters of varying difficulty for 

study. Initially, participants chose to study the easiest Chinese characters, but over time they 

began selecting characters of medium difficulty, suggesting that they had learned the easier 
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alternatives (Price & Murray, 2012). This transition towards more difficult materials arguably 

occurs after an individual has mastered the easier materials. Thus, RPL is constantly adjusted to 

fit the individual’s current level of learning and differs among individuals. 

Insofar as individuals differ in their knowledge and expertise, each person’s optimum 

study choice of material difficulty, which is based on that person’s RPL, is expected to differ. An 

expert has the correct schemas and knowledge to master more difficult tasks and materials than 

does a novice. Tasks and materials inside the expert’s RPL are, hence, more difficult than those 

within the RPL of a novice. Metcalfe (2002) showed that items occupying the RPL of fluent 

Spanish speakers were more difficult than the items in the RPL of novice Spanish speakers. 

Similarly, concepts and information occupying the RPL of top-performing students would be 

expected to be more difficult than those in the RPL of students who have yet to grasp the basics. 

If people are interested and motivated to study items in their own RPL, which may shift 

over the course of learning, it would be reasonable to expect that (1) people would mind wander 

when materials are outside their own RPL, (2) as one’s own RPL shifts, so too would the 

materials which elicit mind wandering, and (3) the materials one person to mind wanders on will 

differ from the materials which another person mind wanders on. Chapter 1 uses the RPL model 

to test these hypotheses and provide a possible explanation for people’s tendency to mind wander 

during learning. 

 

Of course, it is always possible that despite one’s interest in the material, mind wandering 

still occurs. Why might this be the case? As mentioned previously, fatigue and boredom are 

factors associated with the tendency to drift off-task. Aside from material difficulty, as measured 



 

7 

by RPL, another factor that may contribute to the tendency to drift off-task when learning may 

be the way in which people study. 

Blocked vs. interleaved practice. Considerable research suggests that people often 

believe and feel they learn better when they rehearse the same and/or similar materials over and 

over again, e.g., blocking (or massing), compared to if materials are mixed or interleaved across 

different categories (Kornell & Bjork, 2008; Kornell, Castel, Eich, & Bjork, 2010; Yan, Bjork, & 

Bjork, 2016; Zulkiply & Burt, 2013). However, this is belied by findings indicating that 

interleaving may actually result in better learning than blocking (Kornell & Bjork, 2008; Kornell, 

Castel, Eich & Bjork, 2010; Metcalfe & Xu, 2016; Verkoeijen, & Bouwmeester, 2014; Vlach, 

Sandhofer, & Kornell, 2008; Wahlheim, Dunlosky, & Jacoby, 2011). One explanation this so-

called interleaving effect in item recall or recognition paradigms posits that that interleaving 

recruits more attention (and hence encoding strength) than blocking (Greeno, 1970, Hintzman, 

1974; Pavlik & Anderson, 2005). Given this, might these purported attentional differences 

between the blocked and interleaved conditions be manifested in differences in mind wandering? 

The idea that was tested is that when many exemplars of a particular category – for 

example, works of art by a particular artist – are grouped together, as in a blocked situation, 

people’s attention may tend to lapse, resulting in mind wandering. On the other hand, when the 

exemplars are interleaved with the exemplars of other artists, attention may be sustained. It is 

possible, of course, that when people have to flit from artist to artist, their attention may wander: 

it is not empirically known whether mind wandering occurs more in the interleaved or the 

blocked condition. The attentional explanation of the interleaving effect can be evaluated by 

assessing mind wandering, and would suggest that there would be more mind wandering, and 

that mind wandering would be linked to worse learning, in the blocked condition. 
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The predictions – that learning should be better when one is not mind wandering, and that 

one may mind wander more under blocked than interleaved conditions – are addressed in 

Chapter 2. 

Neurocognitive effects of mind wandering during learning 

While many of the behavioral consequences of mind wandering are understood, the 

neurocognitive mechanism which underlies the failure to learn is still not well understood. As 

argued in Craik and Lockhart’s (1972) seminal ‘levels of processing’ paper, memory 

performance is enhanced by deep (i.e., semantically) processing of the to-be-remembered 

information. If a person mind wanders while attempting to learn, a reasonable expectation might 

be that they would fail to engage in the deep semantic processing necessary to encode materials 

into memory. In support of this view, Thomson, Smilek, and Besner (2014) found a negative 

association between mind wandering and recognition of items in a deep semantic encoding 

condition, in which participants judged whether presented words represented items larger or 

smaller than the computer monitor. They found no deficit in memory as a function of mind 

wandering in the shallow-encoding condition, in which the participants judged whether words 

were in upper or lower case (Thomson et al., 2014). This result might have occurred either 

because the neural networks involved in deep semantic processing were disengaged, or because 

they were engaged but not directed at the task at hand. 

Research with functional magnetic resonance imaging (fMRI) has shown that a subset of 

brain regions known as the default mode network is active during mind wandering (Christoff et 

al., 2009; Fox et al., 2015; Mason et al., 2007; Stawarczyk et al., 2011). Insofar as default mode 

network activity has been associated with autobiographical memory and other higher-order 

cognitive functions (see Buckner, Andrews-Hanna, & Schacter, 2008 for review), this activation 
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would suggest that a person may be engaged in deep, memory-related, thought during mind 

wandering. However, whether this activation indicates that the learner is deeply processing task-

relevant (e.g., the current to-be-learned material), or irrelevant (e.g., something other than the 

task) information during mind wandering is difficult to determine given the poor temporal 

resolution of fMRI. Instead, temporally precise tools such as electroencephalography (EEG) or 

magnetoencephalography (MEG) would be required to reconcile the finding of purportedly deep 

memory-related processing evidenced by the fMRI findings, with the concurrent deficit in 

memory exhibited by the behavioral data. 

Research conducted with event-related potentials (ERP) has suggested that when an 

individual is in a mind-wandering state, they exhibit diminished processing of the external world, 

resulting in deficits in early attentional processing (e.g., Braboszcz & Delorme, 2011; Broadway 

et al., 2015; Kam, Dao, Farley, Fitzpatrick, Smallwood, Schooler, & Handy, 2011; Kam, Dao, 

Stanciulescu, Tildesley, & Handy, 2013; O’Connell, Docktree, Robertson, Bellgrove, Foxe, & 

Kelly, 2009). This has been exemplified by work showing decrements in visual processing, 

indexed by the P1 ERP component at parieto-occipital electrodes such as PO3, PO4, and Oz, 

which overlie the occipital cortex (e.g., Kam et al., 2011). Researchers have also found that mind 

wandering attenuates the P3 component, an ERP index of higher-order cognitive functions such 

as decision making (Barron, Riby, Greer, & Smallwood, 2011; Kam, Xu, & Handy, 2014; Riby, 

Smallwood, & Gunn, 2008; Smallwood et al., 2008). Attenuation of this component might be 

expected to be related to learning. However, these studies have employed tasks that do not 

involve learning, such as the oddball task (Barron et al., 2011), the sustained attention to 

response task, a variant of a go no-go task (Smallwood et al., 2008), and emotional image 
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categorization (Kam et al., 2014). As such, they did not assess the question of learning and 

memory.  

Only one experiment (Riby et al., 2008) has examined mind wandering and episodic 

recollection using ERPs. Participants were presented with words and pictures within a colored 

frame and instructed to remember the stimuli by generating mental images of the colored frame 

and word (or picture). At test, participants were shown old and new frame-word pairings and 

were asked to identify whether a particular colored frame had been paired with a particular word. 

The authors divided their participants into those who had a high tendency to mind wander and 

those who had a low tendency to mind wander according to scores on the Dundee Stress State 

Questionnaire (Riby et al., 2008). Although there was no difference in memory, there were 

differences in ERPs. The results also indicated a larger central-negativity from 500-900 ms and 

smaller left parietal effects, e.g., a smaller difference between correct recognition of previously 

seen materials and new materials, from 900-1500 ms for high mind wandering participants 

during recall. The authors argued that because high mind-wandering participants lacked highly 

detailed episodic memories, as compared to those of the low mind-wandering group, they needed 

to recruit a non-“pure” recollection strategy (smaller left parietal effect) and utilized strategic 

monitoring processes (central-negativity) during recall (Riby et al., 2008). The purportedly 

different recall strategies were attributed to participants’ attention being decoupled from the task 

during encoding. While these results might suggest that mind wandering impacts deep task 

related processing, there are several problems with this straightforward interpretation. First, the 

study examined ERPs at test, rather than at encoding. Processing differences between the two 

groups at retrieval were taken as evidence for differences in recollection strategy, which were 

then used to infer behavior during encoding. Second, the effect of mind wandering was assessed 
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using a between-participant comparison of high and low mind wanderers. Participants were 

never asked to report their attentional state during the task, making it difficult to draw inferences 

as to what transpired within an individual’s brain during a mind wandering episode. The 

determination of the high and low mind wandering group was also not matched to task-specific 

rates of mind wandering. It would be better to evaluate stimulus-related ERPs during (and time-

locked to) the encoding of individual to-be-remembered items. Furthermore, it would be better to 

evaluate mind wandering as compared to on-task states while the individual is doing the task, 

rather than asking for a retrospective global report later.  

So what might the impact of mind wandering during learning look like with ERPs? One 

line of evidence comes from work on the subsequent memory or difference in memory (Dm) 

effect, which has shown that the neural signature of deep processing during encoding is different 

for items that are subsequently remembered or not remembered (Fabiani, Karis, & Donchin, 

1990; Friedman, 1990; Friedman & Johnson, 2000; Friedman & Trott, 2000; Johnson, 1995; 

Paller, McCarthy, & Wood, 1988; Paller, Kutas, & Mayes, 1987, Sanquist, Rohrbaugh, 

Syndulko, & Lindsley, 1980). Paller, Kutas, and Mayes (1987) found that when ERPs at study 

were categorized on the basis of subsequent test performance, items that were subsequently 

remembered elicited larger ERPs from 400-800 ms than those that were forgotten. Interestingly, 

an ERP experiment showed that the late positivity ERP difference between recalled and 

unrecalled materials was larger than the difference between recognized and unrecognized 

materials (Paller et al., 1988). Because recall is more strategic than recognition requiring greater 

recollection-based processing, these differences suggest that the encoding-related ERPs might 

indicate the degree of deep or elaborative processing engaged in during encoding. The ERP 

differences associated with subsequent recall have generally occurred. as noted earlier, relatively 
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late, from 400-800 ms (e.g., Paller et al., 1987), with little difference in earlier sensory 

processing, as indexed by components such as the P1. Thus, if mind wandering reduces task-

relevant encoding, regardless of what else happens during mind wandering, the amplitude of the 

sustained late ERP component should be diminished during off-task thought. Chapters 3 and 4 

attempt to elucidate the impact of mind wandering on learning-related processing using ERPs, 

test the prediction that mind wandering during learning is associated with reduced deep-level 

processing. 

Together, Chapters 1 and 2 aim to uncover the causes of mind wandering in two different 

learning situations, and provide suggestions on how one might go about reducing their proclivity 

to drift off-task. On the other hand, the focus of Chapter 3 is on understanding the neurocognitive 

consequences of mind wandering on learning-related processes. Finally, Chapter 4 ties together 

the results from earlier chapters, simultaneously considering behavioral and electrophysiological 

data to provide a more holistic view of the effects of mind wandering on learning. 
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Chapter 1: 

Mind wandering, Expertise, and Material Difficulty 
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This first chapter investigates how material difficulty and individual differences are 

related to mind wandering. More specifically, will studying materials at an appropriate level of 

difficulty with respect to an individual’s capabilities, i.e., materials in one’s own RPL, reduce 

mind wandering and lead to better learning? 

As discussed previously, one’s predisposition to mind wander is affected by a multitude 

of factors, such as motivation and interest (Antrobus et al., 1966; Grodsky & Giambra, 1990-91; 

Jackson & Balota, 2012; Krawietz et al., 2012; Seli et al., 2015; Unsworth et al., 2012; Unsworth 

& McMillan, 2013), and boredom and fatigue (Smallwood & Schooler, 2006). Specifically, 

people mind wander less when they find something motivating and interesting, and more when 

they are bored or fatigued. In learning contexts, the ideal candidates for study should therefore be 

materials which one is most interested in learning. How should one go about identifying these 

target materials? 

One possibility arises from the Region of Proximal Learning or RPL framework suggests 

that people should focus on items just beyond their current level of expertise (e.g., Metcalfe, 

2009). Notably, this model is compatible with work on curiosity, showing that people were more 

aroused by images that were not only more complex than simple, symmetric images, but also 

easier than unpredictable and chaotic images (Berlyne, 1978). Similar to Berlyne’s slightly 

asymmetric patterns, as RPL items are neither too easy or too difficult, they should elicit higher 

levels of curiosity and interest when studied. It follows, then, that people should mind wander 

less when studying materials in their own RPL compared to materials which are too easy or too 

difficult. 

In Experiments 1 and 2, participants were given a pretest in an attempt to determine 

which items were in RPL. Participants were then asked to study word pairs, blocked by whether 
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they were: (a) very easy, (b) in RPL, or (c) too difficult, while being intermittently asked to 

report their attentional state as either mind wandering or on task. Participants were expected to 

mind wander less when studying materials in their own RPL, as opposed to when studying very 

easy or very difficult materials. 

Experiment 1 

In this experiment, participants took a pretest and provided judgments of learning (JOLs) 

on a series of English-Spanish word pairs. This pretest was done to enable the word pairs to be 

classified into those that were too easy, too difficult, or in RPL. Participants then studied the 

word pairs, blocked by whether they were easy, RPL, or difficult, and were probed, while doing 

so, to see if they were mind wandering. Participants then completed a final test. The prediction 

was that participants would learn a higher proportion of RPL word pairs than either the too 

difficult or too easy pairs. In addition, participants should also report less mind wandering when 

studying materials in RPL compared to when studying materials that were either too easy or too 

difficult. Finally, items ‘studied’ while people were mind wandering should be learned worse 

than those studied when they were on-task. 

Method 

Participants. 25 Columbia University undergraduates participated for partial course 

credit, but one was excluded for not understanding the task and two were excluded for not 

completing the experiment, resulting in 22 usable participants (13 females and 9 males; M = 

20.14 years old, SD = 1.93). One participant reported being a native Spanish speaker and was 

included because RPL was computed to their expertise. Excluding this participant did not change 

the patterns in the data, however. The number of participants needed for this experiment was 
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approximated from numbers in previous RPL experiments (e.g., Kornell & Metcalfe, 2006). All 

participants gave written consent and were treated in accordance with the ethical principles of the 

Psychonomics Society and Columbia University’s Internal Review Board. 

Materials. The materials used were 155 English-Spanish word pairs, 144 of which were 

taken from previous research (Metcalfe, 2002; Metcalfe & Kornell, 2003, 2005). The additional 

11 Spanish-English pairs that were added were perfect conjugates, so participants without any 

Spanish background would be able to guess the translations and/or provide high JOLs. Word 

pairs varied in difficulty from perfect conjugates (e.g. “TAXI” and “TAXI”) to medium items 

(e.g., “MUSIC HALL” and “VODEVIL”) to very difficult pairs (e.g. “STAIN” and 

“CHAFARRINADA”). 

Design. A within-participant design was used. Difficulty– easy, RPL (medium), or 

difficult, which was determined by the pretest for each participant individually – was treated as if 

it were an independent variable. The duration of each study block was also manipulated. There 

were 4 duration levels (15, 30, 60, and 90s), one in each of the three difficulty levels. The 

duration was varied so that participants would not be able to anticipate the onset of the 

attentional probe during study, and collapsed across duration for the analysis. The dependent 

variables of interest were frequency of reported mind wandering, measured in the study phase, 

and learning, measured by proportion correct in the final test. There were a total of 12 blocks, 4 

per difficulty level. Blocks were permuted such that each of the 3 Difficulties – easy, RPL 

(medium), and difficult – showed up in a randomized fashion every 3 blocks, but associated with 

different Durations. Each word pair was presented an average of 7.70 times over the course of 

the entire study period (SDeasy = 2.87; SDRPL = 2.75; SDdifficult = 2.80).  
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Procedure. This experiment had 3 parts: 1) pretest, 2) study phase, and 3) final test. The 

pretest enabled categorization of word pairs into easy, RPL (medium), and difficult categories 

for study. In the study phase, participants were asked to study the word pairs, blocked by 

Difficulty, while from time to time reporting whether they were on task or mind wandering. 

Finally, at the end of the experiment, participants were tested on their learning. 

Pretest. Participants were instructed to provide Spanish translations for the 155 English 

words presented one at a time onscreen. They were then shown the correct translation. Whenever 

they provided either an incorrect or no translation, they were asked to make a JOL following the 

corrective feedback. Item presentation was randomized and participants had up to 25s to provide 

the translation for each item. Feedback in the form of the correct Spanish translation was given 

in either green when they were correct, or red when incorrect. JOLs were made on a slider scale 

ranging from “not at all learned” to “completely learned”. Strict scoring was used on the spelling 

of each response 

Materials were sorted into 3 levels of Difficulty based on each participant's individual 

pretest response accuracy and JOLs: easy (close to accurate or accurate), RPL (inaccurate but 

high JOLs), and difficult (inaccurate and lowest JOLs). Thirty-five items were sorted into each 

level of Difficulty. 25 items at each difficulty level were presented for study, and the remaining 

10 were used as unstudied control items on the final test. When participants did not have 35 

items to which they had given the correct translation, pairs to which they had given wrong 

answers but with the highest JOLs were added to the easy condition. In total, 20.3 out of 35 word 

pairs had been correct on the pretest in the easy condition which meant that, unfortunately, quite 

a few of the easy items were not fully mastered, a priori. 
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Study phase. Participants were asked to study the English-Spanish word pairs, one at a 

time, with the English word on the top and the to-be-learned Spanish word on the bottom. 

Individual word pairs were presented sequentially on screen for 900ms, with a 100ms 

interstimulus interval (ISI). Participants were also instructed that they would be asked to report 

their attentional state as either on-task or mind wandering from time to time, when a probe 

appeared. Mind wandering was operationalized as “when [one is] not paying attention to the task 

(i.e. learning the word pairs) or [when one was] thinking of something other than the task.” As 

noted above, pairs were blocked at time of presentation such that items solely within one 

difficulty level appeared together in sequence, followed by an attentional probe which could 

occur after 15, 30, 60, and 90 s of study at a particular difficulty level. 

 Probes were designed to imitate word pair presentation, but with the terms “MIND 

WANDERING” and “ON TASK” displayed instead of a word pair. Probes were shown for 

900ms with a 100ms ISI repeatedly, while randomly alternating whether “MIND 

WANDERING” was at the top or bottom, until the participant provided his or her attentional 

report. 

Final test. Participants were provided with each English term and asked to recall the 

Spanish translation. No feedback was given. A total of 105 cue words were presented, with 35 

cues per difficulty level (25 studied and 10 unstudied). Presentation order was randomized and 

participants had up to 25s to provide a translation. Recall performance was strictly scored for 

accuracy. All experimental procedures were conducted using MATLAB 2013a and 

PSYCHTOOLBOX (Brainard, 1997; Kleiner, Brainard, & Pelli, 2007) on Macintosh computers. 
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Results 

For all experiments, the criterion for significance was set at p < .05. Partial eta squared 

(ηp
2) was used as the measure of effect size for analysis of variance (ANOVA) data. Post hoc t 

tests were computed for follow-up comparisons on significant effects and the associated p values 

and 95% confidence intervals are directly reported. Cohen’s d was used as a measure of effect 

size for the t-tests. 

Final test performance. To ensure participants were performing the task, i.e., actually 

studying, final test performance between studied pairs and the unstudied controls was compared. 

There was an overall effect of studying, such that participants' test performance was significantly 

better on pairs they studied, M = 0.47, SD = 0.13, than on the unstudied control pairs, M = 0.35, 

SD = 0.14; t(21) = 6.81, p < .001; 95%CI [0.02, 0.08], d = 1.46. Note, though, ‘unstudied’ is 

something of a misnomer. Even items that were designated as ‘unstudied’ were given corrective 

feedback immediately following pretest response, so some learning could have been attributed to 

that single study opportunity.  

There was a significant difference in final test performance among the studied items in 

the three difficulty levels, F(2,42) = 226.29, p < .001, ηp
2 = 0.92. Participants performed best on 

the easy pairs, then the RPL(medium) pairs, and worst on the difficult pairs, as in shown in Table 

1. As noted previously, 58.3% of the easy pairs had been correct on the pretest, whereas none of 

either the RPL or the difficult pairs had been correct. If proportion correct on the final test minus 

proportion correct on the pretest is taken as the measure of learning, learning would then 

correspond to final test performance for the RPL and difficult word pairs. For easy items, though, 

the difference between final test and pretest performance is not the same as final test 

performance. With this difference as a measure of learning, a significant effect of Difficulty was 
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found, F(2,42) = 21.65, p < .001, ηp
2 = 0.51. As is shown in Table 1.1, participants learned more 

RPL items (M = .50; SD = .25) than either easy items (M = .27; SD = .25), t(21) = 2.49, p = .021; 

95%CI [0.04, 0.41], d = 0.91, or difficult items (M = .05; SD = .07), t(21) = 9.24, p < .001; 

95%CI [0.35, 0.55], d = 2.46. They also learned significantly more easy word pairs than difficult 

word pairs, t(21) = 3.87, p = .001; 95%CI [0.10, 0.34], d = 1.22. 

 

 
Table 1.1. Pretest and final test performance for Experiments 1 and 2 

Pretest and final test performance means for categorized word pairs in Experiments 1 and 

2. The standard deviation are in parentheses. Learning was calculated from taking the difference 

between final test and pretest performance on studied items. Learning was not calculated for the 

easy word pairs in Experiment 2, because items were sorted based on being accurate at pretest. In 

Experiment 2, there was 1 participant who only had 5 word pairs in their easy condition, but was 

included. 

 

Mind wandering. Participants mind wandered an average of 0.36 of the time (SD = 

0.15). There was a significant effect of Difficulty on mind wandering, F(2,42) = 4.33, p = .02, 
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ηp
2 = 0.17, as is shown in the left panel of Figure 1.1. Participants reported significantly more 

mind wandering when they were studying difficult items as compared to the RPL (medium) 

items, t(21) = 2.66, p = .015; 95%CI [0.05, 0.38], d = 0.57. There was no difference in rate of 

mind wandering when studying easy versus RPL items, t(21) = 0.70, p = .49; 95%CI [-0.18, 

0.09], d = 0.15. There was a trend to mind wander less when studying easy items than when 

studying difficult items, t(21) = 2.02, p = .06; 95%CI [-0.01, 0.35], d = 0.43. 

 

  
Figure 1.1. Mind wandering in Experiments 1, 2, and 3 

Proportion (P) of mind wandering by Difficulty in Experiments 1, 2, and 3 with standard 

error bars. 

 

Mind wandering and learning across participants. There was no correlation between 

participants’ proportion of mind wandering in the experiment and their average test performance, 

r = .17, tr(20) = 0.75, p = .46, 95%CI [-0.27, 0.55]. In this experiment, then, people who mind 

wandered a lot did not perform worse than those who rarely mind wandered.  
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Mind wandering and learning within participants. The data were divided into items 

that were presented just before people reported being on task or just before they reported that 

they were mind wandering. Although how far back in time the state reported at the time of the 

probe extends is not known precisely, previous studies have used time windows of 

approximately 9-12s when binning data based on attentional state (e.g., Braboszcz & Delorme, 

2011; Kam et al., 2013; Kam et al., 2014). Using these guidelines, word pairs presented within 

the 10s preceding each attentional report were selected and used for analyses. Because many of 

the easy items were already learned, only RPL and difficult word pairs, which were unlearned at 

pretest, were included. As there were only four attentional reports per Difficulty condition, and 

they would sometimes all be in one state or the other, items in the RPL and difficult bins were 

collapsed. Because particular items were repeated (on average 7.7 times) in the experiment, some 

pairs ended up being included in both the mind wandering and the on-task condition in this 

analysis. Items were not weighted based on distance to probe. Performance on all items included 

in the 10s pre-probe interval were identified and the proportion correct at test was computed. If a 

particular item happened to occur twice or three times within a given interval, the item was still 

counted. In other cases, an item might be included in both the mind wandering and on task bins, 

and contributed to both the proportion correct for items presented before a mind wandering 

response, as well as the proportion correct for items presented before an on task response. 

Learning was significantly better for items that had been studied when participants reported that 

they had been on-task, M = 0.34, SD = 0.17, as compared to when they reported that they had 

been mind wandering, M = 0.22, SD = 0.24, t(21) = 2.22, p = .038; d = 0.47, 95% CI[0.01, 0.23]. 
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Discussion 

These results indicate that participants mind wandered less when studying items in their 

region of proximal learning as compared to when they were studying pairs of words that were 

very difficult. Participants’ learning of materials ‘studied’ when mind wandering was also worse.  

The findings of poorer performance within participants when mind wandering, and no 

correlation between mind wandering and performance do not necessary contradict. The cross-

participant correlation analysis suffers from several problems, which was why a metric 

investigating at the effect of mind wandering on learning within each participant was computed. 

First, there is an insufficient number of participants, and therefore a lack of power (c.f., Cohen, 

1992) to detect between-participants correlations. Second, attention fluctuates, such that a 

participant might have been focused at the beginning of each study block, but might have ended 

up mind wandering right before the probe appeared. This would have led to a weaker association 

between proportion mind wandering and overall performance. 

In this experiment, there was no difference in reported mind wandering when studying 

RPL (medium) compared to easy items. However, because of the manner in which items were 

allocated to the easy condition, it is likely that a number of the nominally easy pairs might have 

been RPL items. The Region of Proximal Learning is thought to consist of materials that are 

close to being, but not quite mastered, whereas the ‘too easy’ items that are not in the RPL, are 

those that have already been fully mastered. Insofar as a number of easy items in Experiment 1 

were not correct in the pretest, the lack of difference in mind wandering between the easy and the 

RPL items might have resulted because the easy items were not easy enough, that is, they were 

not completely mastered. Experiment 2 was conducted to replicate the previous findings and to 

address this issue. 
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Experiment 2 

There were two main changes in Experiment 2. First, the criterion for an item to be 

considered to be “easy” was changed – only pairs of items that the participant got correct on the 

pretest were considered easy. Second, to obtain enough ‘easy’ items that people would answer 

correctly, the number of conjugates was increased.  

Method 

The method used was identical to Experiment 1, except for the details below. 

Participants. A total of 26 Columbia University undergraduates (10 males and 16 

females; M = 22.23 years old, SD = 6.88) participated for partial course credit. Two participants 

reported being native Spanish speakers, but because RPL was computed based on participants’ 

own prior learning, they were not eliminated from the data. Additional analyses computed 

without these individuals did not change the results.  

Materials. An additional 35 perfect Spanish-English conjugates were added to previous 

set, for a total of 179 word pairs. This allowed participants to provide a larger number of 

accurate translations during pretest, yielding enough materials for an ‘easy’ category without 

having to include items on which people had been incorrect on the pretest. 

Design. A within-participant design investigating the effect of item difficulty (easy, RPL, 

or difficult, as determined by the pretest) was used. The outcome measures of interest were (a) 

the proportion of mind wandering reported during the study phase and (b) the proportion correct 

on the final test. Duration of study block was, again, manipulated to have 4 different levels (15, 

30, 60, 90s). 

Procedure. Three changes were made to the procedure. First, participants only had 10s 

on the pretest and final test to provide a response. This was done so the experiment could be 
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completed within an hour. Second, only pairs that participants got correct in the pretest were 

categorized as easy. Both RPL and difficult categories were comprised of 35 items each, 25 

which were presented during the study phase and 10 of which were not included in the study 

phase. Participants had 25 easy word pairs to study (except for one participant who only 

provided five correct translations). An average of 8.52 (SD = 2.83) pairs were used as the 

control, non-studied easy condition, because not all participants provided up to 35 correct 

translations. Third, blocks in the study phase were counterbalanced using a Latin Square rather 

than randomly. In the whole experiment, word pairs were presented an average of 7.79 times 

each (SD = 3.18 times). 

Results 

Because of a programming error, final test data were lost for one participant. However, 

that person’s data were included in the mind wandering results and the results did not change 

after analyzing the data without that participant’s data. 

Final Test Performance. Participants performed significantly better on pairs they had 

studied, M = 0.51, SD = 0.07, as compared to those they had not studied, M = 0.39, SD = 0.11; 

t(24) = 5.64, p < .001; 95%CI [0.07, 0.16], d = 1.13. As presented in Table 1.1, there was a main 

effect of Difficulty, such that proportion correct on the final test was highest on easy items (M = 

.91, SD = .06), followed by the RPL items (M = .51, SD = .18), and then the difficult items (M = 

.05, SD = .08), F(2,48) = 309.36, p < .001, ηp
2 = 0.93. Interestingly, people did not have perfect 

performance on the final test on the easy items, even though they had been correct on all those 

items at pretest. When they had no opportunity to study the easy items further their performance 

was .88; it was .92 when they had the opportunity to study.  
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 Final test performance on studied word pairs was taken as an index of learning for the 

RPL and difficult word pairs, because all items in those categories had been incorrect on the 

pretest. Participants’ learned significantly more RPL pairs (M = .56, SD = .19) than difficult pairs 

(M = .06, SD = .09), t(24) = 11.74, p < .001; 95%CI [0.41, 0.59], d = 2.35. A measure of learning 

could not be taken for easy items because they were correct on pretest. 

Insofar as all of the items in the easy category had been correct on the pretest, the fact 

that performance was less than 1.0 on the final test provides a strong indication that some of 

those items had been correct, initially, because of guessing. It is impossible to determine how 

many were guesses, because final performance data for easy items are a mix of items that were 

learned a priori, items that were learned during the experiment, and items that were never 

learned but were correct guesses on the final test.  

Mind wandering. The overall reported rate of mind wandering was 0.38 (SD = 0.24). 

Four participants did not report any mind wandering. There was an effect of Difficulty on the 

probability of mind wandering, F(2,50) = 9.23, p < .001, ηp
2 = 0.27 (see Figure 1.1, panel 2), 

such that participants mind wandered less when they were studying items in the RPL category as 

compared to when they were studying items the difficult category, t(25) = 3.70, p = .001; 95%CI 

[0.13, 0.40], d = 0.73. There was also a trend for people to mind wander less when they were 

studying RPL items than when they were studying the easy items, t(25) = 1.78, p = .08; 95%CI [-

0.01, 0.17], d = 0.35. It is likely that this effect was not stronger because although an attempt was 

made to ensure that the easy pairs were fully learned a priori, it is impossible to ensure that 

people had fully mastered them. Participants mind wandered more when studying difficult pairs 

than easy pairs, t(25) = 2.48, p = .02; 95%CI [0.02, 0.35], d = 0.49.  
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Mind wandering and learning across participants. A correlation between overall mind 

wandering and average test performance was computed. there was a significant negative 

correlation, r = -.46, tr(23) = -2.47, p = .022, 95%CI [-0.72, -0.08], such that participants who 

mind wandered more performed worse on the test. 

Mind wandering and learning within participants. The proportion correct on final test 

was evaluated when people had mind wandered and when they had been on task, for the RPL 

and difficult items combined. As had been the case in Experiment 1, learning was better for 

items presented before ‘on-task’ reports, M = 0.38, SD = 0.18, than before ‘mind wandering’ 

reports, M = 0.20, SD = 0.17, t(18) = 3.34, p = .004; d = 0.77, 95% CI[0.07, 0.29].  

Discussion 

Consistent with Experiment 1, participants mind wandered more when studying difficult 

items as compared to those in their RPL. Caution should be used when interpreting the negative 

correlation found in Experiment 2 and lack of one in Experiment 1, due to both analyses being 

underpowered. However, along with the within-participant analyses, overall, this suggests that 

learning was adversely affected by mind wandering. Additionally, the data in this experiment 

suggest that studying items that are very easy might result in more mind wandering than studying 

items that are in one’s own RPL. 

Experiment 3 

Previous research has shown that the materials that are in an individual’s RPL differ 

based on the expertise of the learner (Metcalfe, 2002). For example, when people who spoke 

Spanish fluently chose items to study, they avoided the easiest items (since they already knew 

those items) and chose the difficult items. Novices, however, tended to choose the easier items 
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over the more difficult ones. These choices suggested that the materials in the RPL of the more 

expert learners are normatively more difficult than the materials in the RPLs of the novices. 

Consequently, people with greater mastery of the materials in the present experiment – those 

people who exhibited higher performance levels – should show a similar result in terms of 

attentional state: they should mind wander more on easier items, and focus attention instead on 

more difficult items. In contrast, people with less knowledge of the materials might be more on-

task on easier materials and tend to mind wander on the more difficult items. 

To investigate this hypothesized difference, participants were presented with and asked to 

study word pairs that were blocked by difficulty. Two tests were included in this experiment – 

one in the middle and one at the end – to investigate changes in mastery over time. Low 

performers, as determined by proportion correct on these two tests, were expected to mind 

wander most when studying difficult items, because those materials would be furthest away from 

their RPL. In contrast, high performers should mind wander most when studying easy items and 

be more on task on materials of higher difficulty – those that posed just the right amount of 

challenge for them. Participants were also expected to mind wander more over time as they 

became fatigued. 

Method 

Participants. 89 Columbia University undergraduates participated for partial course 

credit or for $15 in cash, but 3 could not complete the task due to the computer error, resulting in 

86 participants (31 males; M = 21.08 years old, SD = 4.27). To examine the relation between 

mind wandering and learning, and because this was an investigation of individual differences, 

the 85 participant criterion set by Cohen (1992) to look at medium-sized correlational effects was 

used to determine the sample size. One participant did not fill out the detailed demographic 
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questionnaire, and six reported being native Spanish speakers. The native Spanish speakers were 

kept in the data. Analyses were also computed with these participants removed and did not 

change. 

Materials. A list of 45 word pairs of widely varying difficulty based on the performance 

of participants in Experiments 1 and 2 was constructed. 15 of the pairs were very easy, 15 of 

medium difficulty, and 15 very difficult. No perfect Spanish-English conjugates were included in 

the present experiment. Because there might still be personal idiosyncrasies in prior knowledge, 

however, these pairs were sorted into the three difficulties – easy, medium, and difficult – based 

on participants’ ease of learning judgments (EOLs). During a pretest, participants were given the 

45 English words (without the Spanish translation) one at a time. They were asked to say via a 

slider scale ranging from ‘extremely easy’ to ‘extremely difficult’ (which was scored from 0-1, 

with 0 being difficult and 1 being easy, which the computer scored to two decimal places) how 

easy it would be to learn the Spanish translation. The 15 items with the highest EOLs were 

assigned to the 'easy' condition; the 15 items with the middle judgments were assigned to the 

medium condition; the 15 items with the lowest EOLs were assigned to be in the difficult 

condition. There was no difference in EOL judgments among people at different levels of 

mastery, F(1,84) = 1.52, p = .221, ηp
2 = 0.02, perhaps because people took the judgment task to 

be a 'relative' ease of learning judgment in which they contrasted the items within the set with 

one another (rather than taking it as an absolute judgment task concerning whether they, 

personally, could or could not learn the items in question). There was also no difference as a 

function of mastery in the gamma correlations between their EOLs and their final test 

performance, r = -.05, tr(84) = -0.49, p = .626, 95%CI[-0.26, 0.16]. 
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Design. A 3 (Difficulty level – easy, medium, and difficult) x 2 (Experiment Half – first 

and second half) x 4 (Study Block Duration – 15, 30, 60, 120s), within participant design was 

used, where Difficulty level was treated as if it were an independent variable. As in the previous 

experiments, analyses were computed collapsing over the Duration variable. The primary 

dependent variables of interest were proportion of mind wandering reported in during study 

(Experiment Half 1 and 2) and proportion correct on the tests.  

To examine the impact of mastery on mind wandering during study, performance across 

tests 1 and 2 was averaged and Z-scores were computed for each participant. These scores were 

used as the covariate for the ANCOVA analysis. Analyses computed using test 1 and test 2 

performance and Z-scores as a metric of mastery were also performed and showed the same 

pattern of results. 

Procedure. The experiment was split into 2 halves. In each half, participants were 

presented with word pairs to study, and then later tested on their learning. In each Experiment 

Half, word pairs in each of the easy, medium or difficult blocks, were presented one at a time for 

1400ms with a 100ms ISI. Participants were instructed to study them so that later, when they 

were presented with the English word they could produce the correct Spanish translation. They 

were queried with a probe, at the end of each block, asking about their attentional state. The 

attentional probe at the end of each block presented the words “MIND WANDERING” and “ON 

TASK”, as in the previous experiments. The same word pairs were presented in both the first and 

second Experiment Half, with each pair being presented an average of 19.82 times (SDeasy = 

3.95; SDmedium = 3.82; SDdifficult = 3.97) for each participant. 

Tests. Participants were asked to provide Spanish translations for the English words 

presented as cues. All word pairs were tested, with randomized presentation in each test, such 
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that participants were tested twice on each word pair. There was no feedback and participants 

had up to 10s to respond. Strict scoring was used to determine accuracy. 

Results 

Test performance. An ANCOVA showed that there was an effect of Difficulty, with 

proportion correct on the final test being highest for the easy items, then medium difficulty 

items, and lowest for the difficult items, F(2,168) = 889.59, p < .001, ηp
2 = 0.91. There was a 

main effect of Experiment Half such that participants performed better on Test 2 than Test 1, 

F(1,84) = 232.51, p < .001, ηp
2 = 0.74. There was also a significant Difficulty x Experiment Half 

interaction, F(2,168) = 19.60, p < .001, ηp
2 = 0.19, such that participants improved more on the 

medium and difficult items from Test 1 to Test 2 than they did on easy items (see Table 1.2). 

This interaction presumably happened because most of the easy pairs were already well learned 

by the first test, resulting in a ceiling effect which prevented further improvement for those 

items. To further examine this interaction, analyses investigating the difference in performance 

between Test 1 and Test 2 for each level of difficulty was conducted. Participants showed 

significantly greater improvement for medium-difficulty items, M = .14, SD = .11, than for easy 

item, M = .05, SD = .11, t(85) = 5.37, p <.001; 95%CI [0.06, 0.13], d = 0.58, and they also 

showed more improvement for medium-difficulty items than for difficult items, M = .08, SD = 

.09, t(85) = 4.55, p <.001; 95%CI [0.04, 0.09], d = 0.49. The amount of improvement did not 

differ between easy and difficult items, t(85) = 1.65, p = .103; 95%CI [-0.01, 0.06], d = 0.18. 
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Table 1.2. Ease of learning judgments and performance in Experiment 3 

Ease of learning judgments (EOLs) and test performance (proportion correct) for each 

level of Difficulty in Experiment 3 as proportions with the standard deviations in parentheses. 

 

Most importantly, there was both a Difficulty x Mastery interaction, F(2,168) = 21.00, p 

< .001, ηp
2 = 0.20, and a 3-way Difficulty x Experiment Half x Mastery interaction, F(2,168) = 

11.87, p < .001, ηp
2 = 0.12. To further examine the 3-way interaction among Difficulty, 

Experiment, and Mastery, difference scores were computed for each participant by subtracting 

Test 2 from Test 1 performance, at each difficulty level, and a proportion was then computed by 

dividing each participant’s difference score for each difficulty, by the total change in 

performance across all 3 levels of Difficulty. Post-hoc correlations between Mastery and the 

proportion of change in test performance in each condition were then computed (see Figure 1.2). 

There was a significant negative correlation between Mastery and change in test performance on 

easy items, r = -.35, tr(84) = 3.74, p < .001, 95% CI[-0.53, -0.15], such that lower performers 

showed more improvement from Test 1 to Test 2 on easy items compared to medium or difficult 

items. Conversely, there was a significant positive correlation between Mastery and proportion 

of change in performance for difficult items, r = .31, tr(84) = 2.95, p = .004, 95% CI[0.10, 0.49], 

such that higher performers improved more on difficult items compared to items of easy or 

medium difficulty. The correlation between Mastery and proportion change in test performance 
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for items of medium difficulty did not reach significance, although there was a trend in the 

direction of higher mastery relating to more change in performance, r = .19, tr(84) = 1.78, p = 

.079, 95% CI[-0.02, 0.39]. Analyses completed using the raw difference scores of Test 1 and 

Test 2 performance, showed the same pattern of results, except that the correlation between 

Mastery and the difference score for medium difficulty was then significantly positively 

correlated. This pattern of results suggests that the interaction(s) might have resulted, in part, 

from a ceiling effect on performance for easy materials.  

 

 
Figure 1.2. Change in performance across mastery in Experiment 3 

Change in test performance from Test 1 to Test 2 for each of the 3 levels of Difficulty. 

All participants are represented in each panel. The line represents the regression line of best fit 

and the grey shaded area reflects the 95% confidence interval of the regression line. A negative 

Mastery value reflects that a particular participant did worse on Test 2 than Test 1 for that 

particular condition. For example, a change of -1 (see bottom left corner of the difficult panel), 
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reflects a case where a particular participants’ test performance worsened on those difficult 

items. 

 

There was no interaction between Experiment Half and Mastery, F(1,84) = 0.70, p = 

.405, ηp
2 = 0.01. The ‘effect’ of Mastery could not be computed, as Mastery was derived from 

test performance.  

Mind wandering. Overall, the proportion of reported mind wandering was 0.27 (SD = 

0.18). Two participants did not report any mind wandering. To examine the impact of mastery, 

difficulty was treated as if it were an independent variable and computed a 3 (Difficulty level) x 

2 (Experiment Half) x Mastery ANCOVA on mind wandering. Mastery was computed from 

averaged and standardized test performance across both test 1 and 2, although the reported 

statistics hold regardless whether Test 1, Test 2, or averaged Z-scores were used. 

There was a main effect of Difficulty on mind wandering, F(2,168) = 4.53, p = .012, ηp
2 

= 0.05. This main effect is illustrated in the far right panel of Figure 1.1. There was an overall U-

shaped pattern in which participants mind wandered less when studying medium difficulty items 

in comparison with either easy or difficult items. As can be seen from Figure 1.1, this pattern 

was similar to that shown in Experiments 1 and 2. Post-hoc tests showed that participants mind 

wandered significantly less when studying medium difficulty items as compared to easy items, 

t(85) = 2.63, p = .010; 95%CI [0.02, 0.13], d = 0.28, and as compared to difficult items, t(85) = 

3.07, p = .003; 95%CI [0.03, 0.13], d = 0.33. There was no difference in the rate of mind 

wandering between easy and difficult items, t(85) = 0.23, p = .817; 95%CI [-0.07, 0.08], d = 

0.03. There was also an expected main effect of Experiment Half, such that participants reported 

more mind wandering during Experiment Half 2 (M = 0.35, SD = 0.24), as compared to 
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Experiment Half 1 (M = 0.24, SD = 0.18), F(1,84) = 26.07, p < .001, ηp
2 = 0.24. Note that the 

effect of Experiment Half might be associated with item repetition, as the same items were 

repeated over time. However, it is not possible to distinguish these 2 possibilities given the 

present data. 

The most interesting results of this experiment, however, concern the effects of Mastery. 

There was a trend toward an effect of Mastery, F(1,84) = 3.82, p = .054, ηp
2 = 0.04. , More 

importantly, for the present purposes, there was a significant Difficulty x Mastery interaction, 

F(2,168) = 8.41, p < .001, ηp
2 = 0.09, as is shown by the ANCOVA results. Participants with 

higher test scores mind wandered the most on easier items, whereas participants who had lower 

test scores mind wandered the most on items that were the most difficult. The figure illustrating 

this interaction is presented in Figure 1.3. There was also a significant 3-way interaction among 

Difficulty, Experiment Half, and Mastery, F(2,168) = 4.03, p = .02, ηp
2 = 0.05.  

 

 

Figure 1.3. Mind wandering across mastery in Experiment 3 
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Proportion of mind wandering across different Mastery levels separated by Difficulty in 

Experiment 3. The line represents the regression line of best fit and the grey shaded area 

represents the 95% confidence interval. Because there were only 8 probes per Difficulty per 

participant, the proportion is in a factor of 0.125. 

 

There were no interactions between Difficulty and Experiment Half, F(2,168) = 0.49, p = 

.613, ηp
2 = 0.01, or between Experiment Half and Mastery, F(1,84) = 0.22, p = .641, ηp

2 = 0.003. 

To more clearly illustrate the 3-way interaction of Difficulty, Experiment Half, and 

Mastery, participants were separated into 3 groups based on standardized test performance and 

computed the proportion mind wandering for each group across Difficulty and by Experiment 

Half. Low performers had test scores below Z = -0.43; high performers had them above Z = 0.43; 

and middle performers were had scores between -0.43 < Z < 0.43. As is shown in Figure 1.4, 

there was a clear shift in the tendency to mind wander, as a function of mastery, as the items 

became more difficult. High scoring participants mind wandered on the easy items whereas low 

scoring participants mind wandered on the difficult items. Interestingly, the pattern shown in the 

overall data – with mind wandering being highest on both easy and difficult items and lowest 

when studying the medium-difficulty items was shown only by the middle third of participants: 

neither the high nor the low performers showed this pattern. The statistics for the breakdown of 

the data illustrated in Figure 1.4 and as described below.  
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Figure 1.4. Mind wandering across mastery and experiment half in Experiment 3 

For illustrative purposes, participants were split into 3 groups based on standardized 

average test performance. Data from the lowest performers (n = 27, Z < -0.43, test performance 

from 0.20 – 0.43) are shown in the left panel; the middle panel (n = 27) depicts participants 

whose average performance was between 0.46 – 0.53; the data from the highest performers (n = 

32, Z > 0.43, test performance from 0.54 – 0.77) are shown in the right panel. Error bars reflect 

standard errors. 

 

The statistics for the breakdown of the data illustrated in Figure 1.4 are derived from a 3 

(Difficulty) x 2 (Experiment Half) x 3 (Mastery) ANOVA, in which mastery was treated as if it 

were an independent variable. The 3 mastery levels – low, middle, and high – were grouped 

according to Z-scores, such that approximately one-third of participants fell into each group. 

Low performers had Z-scores below -0.43 (n = 27), high performers had Z-scores above 0.43 (n 

= 32), and middle performers had Z-scores between -0.43 and 0.43 (n = 27). Similar to results 

from the ANCOVA, there was a main effect of Difficulty, F(2,166) = 4.41, p = .019, ηp
2 = 0.05, 
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and a main effect of Experiment Half, F(1,83) = 25.15, p < .001, ηp
2 = 0.23, on mind wandering. 

There was no effect of Mastery, F(2,83) = 1.21, p = .303, ηp
2 = 0.03, suggesting that low (M = 

0.34, SD = 0.17), middle (M = 0.29, SD = 0.20), and high performers (M = 0.27, SD = 0.17) did 

not differ in their overall rate of mind wandering. Figure 1.4 shows mind wandering as a function 

of Difficulty, Experiment Half, and Mastery. There was only a trend toward a three way 

interaction in this analysis, however, F(4,166) = 2.04, p = .092, ηp
2 = 0.05. The difference 

between the ANOVA and ANCOVA concerning the significance of this interaction may have 

been due to a decrease in power when the continuous factor of Mastery was transformed into a 

nominal variable with 3 levels. 

Nevertheless, even with the ANOVA, there was a significant Difficulty x Mastery 

interaction, F(4,166) = 5.31, p = .001, ηp
2 = 0.11. Consequently, post-hoc tests examining the 

effect of Difficulty were computed at each level of Mastery. The low performers showed a 

significant effect of Difficulty, F(2,52) = 5.52, p = .007, ηp
2 = 0.18, such that they mind 

wandered more on difficult items than easy items, t(26) = 2.94, p = .007; 95%CI [0.04, 0.25], d = 

0.57, or medium-difficulty items, t(26) = 2.44, p = .022; 95%CI [0.02, 0.19], d = 0.47. They 

showed no difference in mind wandering between easy and medium-difficulty items, t(26) = 

1.04, p = .306; 95%CI [-0.14, 0.04], d = 0.20. There was no effect of Difficulty on mind 

wandering for middle performers, F(2,52) = 1.62, p = .208, ηp
2 = 0.06. The high performers 

showed an effect of Difficulty, F(2,62) = 9.15, p = .001, ηp
2 = 0.23, such that they mind 

wandered more when studying the easy items than when studying the medium-difficulty items, 

t(31) = 4.74, p < .001; 95%CI [0.11, 0.30], d = 0.84, or when studying the difficult items, t(31) = 

2.55, p = .016; 95%CI [0.03, 0.27], d = 0.45. They showed no difference in mind wandering 
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when studying medium compared to difficult items, t(31) = 1.07, p = .295; 95%CI [-0.13, 0.04], 

d = 0.19. 

There were no interactions between Experiment Half and Mastery, F(2,83) = 0.20, p = 

.821, ηp
2 = 0.01, or Difficulty and Experiment Half, F(2,166) = 0.39, p = .677, ηp

2 = 0.01. 

Mind wandering and learning across participants. Collapsing data across participants, 

correlations were computed between mind wandering in each of Experiment Half 1 and 2 and the 

corresponding test (i.e., mind wandering in Experiment Half 1 with performance on Test 1). 

There was a negative correlation between mind wandering in Experiment Half 1 and 

performance in Test 1, r = -.25, tr(84) = -2.33, p = .022, 95% CI[-0.44, -0.04]. There was no 

correlation between mind wandering in Experiment Half 2 and performance on Test 2, r = -.16, 

tr(84) = -1.52, p = .133, 95% CI[-0.36, 0.05]. This might have been because learning occurred in 

first half of the experiment, such that participants would study materials they had not learned and 

mind wander on already learned items (which would be correct on Test 2). However, overall 

mind wandering and final test (i.e., Test 2) performance were negatively correlated, r = -.22, 

tr(84) = -2.02, p = .047, 95% CI[-0.41, -0.001]. Participants who mind wandered more, learned 

less and performed worse. 

Mind wandering and learning within participants. The within-participant effect of 

mind wandering on learning was not computed, in this experiment, because there had been no 

pretest so it was not possible to be sure which items were known a priori, and which ones were 

learned during the experiment. Furthermore, because each word pair was presented almost 20 

times during this experiment, almost all word pairs would necessarily be binned into both the on 

task and the mind wandering category, obscuring any differences. 
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Combined Analyses of Mind Wandering across Experiments 

A comparison across the three experiments was conducted in order to investigate the 

generality and replicability of these effects of difficulty level on mind wandering. The focus of 

this analysis was to investigate mind wandering as a function of the three levels of difficulty 

while ignoring the procedural differences among experiments. The data from all three 

experiments was used to conduct a 3 (Experiment – between) x 3 (Difficulty – within) mixed 

model analysis1. There was no significant difference in the overall rate of mind wandering across 

the 3 experiments, F(2,131) = 2.09, p = .128, ηp
2 = .03. There was a significant effect of 

Difficulty on mind wandering, F(2,262) = 18.20, p < .001, ηp
2 = .12. Post-hoc tests showed that 

participants mind wandered more on easy items (M = .32, SD = .25) than on medium difficulty 

items (M = .25, SD = .22), t(133) = 3.11, p = .002; d = .27, 95%CI [0.03, 0.11], and also more on 

the difficult items (M = .39, SD = .31) than on the items of medium difficulty, t(133) = 5.39, p < 

.001; d = .47, 95%CI [0.09, 0.19]. They also mind wandered more on difficult items than on easy 

items, t(133) = 2.20, p = .029; d = .19, 95%CI [0.01, 0.13]. The main effect of Difficulty was 

qualified by a significant Experiment x Difficulty interaction, F(4,262) = 3.16, p = .021, ηp
2 = 

.05. Post hoc tests show that there was no effect of Experiment on mind wandering for easy 

                                                

1 Because the variances for difficult items differed among the 3 Experiments, the 

homogeneity of variance assumption was violated with Levene’s F-test, F(2,131) = 8.45, p < 

.001. Therefore, Welch’s ANOVA was computed and Games-Howell was used as the post-hoc 

procedure to ensure effects were robust. Consequently, some degrees of freedom are estimates 

with decimal places. For simplicity in describing effects, the label of “medium difficulty” refers 

RPL items in Experiments 1 and 2, and medium items in Experiment 3. 
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items, F(2,46.58) = 0.05, p = .955, ηp
2 = .001, or for medium-difficulty items, F(2,41.78) = 0.11, 

p =.894, ηp
2 = .02. There was, however, there was a significant effect of Experiment on the 

difficult items, F(2,38.99) = 4.66, p = .015, ηp
2 = .08. Participants mind wandered marginally 

less on difficult items in Experiment 3 (M = .33, SD = .26) than in Experiment 1(M = .49, SD = 

.31), t(29.02) = 2.21, p = .087; d = 0.55; 95%CI [-0.02, 0.34], and in Experiment 2(M = .53, SD 

= .40), t(31.95) = 2.43, p = .054; d = 0.60; 95%CI [-0.003, 0.40]. There was no difference in 

mind wandering on difficult items between Experiments 1 and 2, t(45.82) = 0.39, p = .696; d = 

0.11; 95%CI [-0.29, 0.21]. However, caution should be taken when interpreting these results, as 

there were several striking methodological differences amongst these experiments, including: (1) 

RPL was not computed, only assumed in Experiment 3, (2) mind wandering rates were not 

standardized, and it would be difficult to do so due to these constraints, between experiments, (3) 

timings for the appearance of the attentional probe differed between experiments and among 

participants, and (4) the timing and number of word pairs shown differed between Experiments. 

Overall, though, the results of the three experiments – taken as replications with sometimes 

rather extreme variations of one another – were strikingly similar. 

Discussion 

Experiments 1 and 2 showed that studying materials in RPL was associated with reduced 

levels of mind wandering, while Experiment 3 demonstrated that what qualifies as RPL depends 

on an individual’s mastery of the material. It was also found in Experiment 3, that mind 

wandering increased over Experiment Half. These data provide evidence that the simple effect of 

mind wandering based on the difficulty of the materials – the U-shaped pattern of less mind 

wandering for ‘medium’ items and more for much easier and too difficult items – can and should 
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be unpacked. The simple effect of Difficulty, in the third experiment – showing the participants 

mind wandered the least for medium difficulty items – masked the fact that individuals at 

different levels of knowledge or skill have different RPLs, and show distinctively different 

patterns of mind wandering. Aggregating the data across all participants made it seem that 

participants focus on items of moderate difficulty, but this was an illusion. Instead, the pattern 

was dependent on the extent to which a given participant had already mastered the materials. 

One size does not fit all, as these data illustrate. 

Task Difficulty and Mind Wandering 

There are many conflicting findings in the existing literature, some of which suggest that 

mind wandering increases with task difficulty (Dixon & Bortolussi, 2013; Feng et al., 2013) 

while others suggest the opposite (Antrobus et al., 1966; Antrobus, Coleman, & Singer, 1967; 

Filler & Giambra, 1973; Grodsky & Giambra, 1990-91; McKiernan, D’Angelo, Kaufman, & 

Binder, 2006; McVay & Kane, 2012; Smallwood, Obonsawin, & Reid, 2003; Teasdale et al., 

1995, Thomson, Besner, & Smilek, 2013). For example, Feng et al. (2013) and Dixon and 

Bortolussi (2013) found that mind wandering increases when the individual is reading difficult 

texts. In contrast, data from Antrobus et al., 1966, Filler and Giambra, 1973, McKiernan et al., 

2006, Smallwood et al., 2003, Teasdale et al., 1995, and Thomson et al., 2013 all suggest that 

mind wandering decreases as task difficulty and demand increases. These data provide a 

potential reconciliation for these seemingly contradictory findings.  

In the case where mind wandering increased with task difficulty, the RPL account 

suggests that participants may have had low or no mastery of the tasks. Consequently, the easiest 

readings (in those experiments) would have been in RPL. As task difficulty increased, the task 

would have become further removed from the learner's ‘sweet spot,’ resulting in increased mind 
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wandering. On the other hand, studies showing that mind wandering decreased with task 

difficulty were most likely on the other end of the spectrum. Those tasks may have been too easy 

and therefore outside of people's RPL. Increasing the difficulty of those tasks would have 

brought them into range of RPL and resulted in less mind wandering. Furthermore, the difficulty 

level of the task that corresponds to RPL depends upon the individual. If a well-read philosopher 

were to read a children’s book, they would most likely mind wander. If they were presented with 

a more abstruse text, they might well remain focused and on task. In contrast, a layperson might 

stay engaged when reading a summary of a philosophy essay rather than the abstruse essay itself, 

but mind wander when presented the exact same material that engages a philosopher’s undivided 

attention. These findings suggest that there is a delicate balance between difficulty and mind 

wandering, a balance that is reliant both on the difficulty of the task itself, and on the 

individual’s current level of mastery and knowledge. Of course, other factors, such as working 

memory capacity, the importance of the task, the preferred reward for learning, one’s state of 

fatigue or stress, etc., can also play a role in how often one’s mind goes offline. But, even so, 

using RPL to examine mind wandering affords an opportunity not only to maximize learning 

gains, but also to simultaneously keep one’s mind focused on the task at hand.  

These results also suggest that students may sometimes mind wander not because of an 

inherent lack of motivation, or because of an inability to learn, but rather because the difficulty 

of the to-be-learned materials is inappropriate. Individuals might want to remain focused when 

attempting to learn materials more difficult than their RPL, but be unable to remain engaged. 

Conversely, there is no challenge in studying already mastered information, and the boredom 

that ensues may lead even highly skilled learners to mind wander. In all, these findings imply 
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that studying materials appropriately titrated to an individual’s current expertise, i.e. those in 

RPL, can reduce mind wandering, and consequently, enhance learning. 
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Chapter 2: 

Mind wandering and Interleaved Practice 
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Chapter 2 examines the relation of mind wandering and learning across blocked and 

interleaved conditions. As discussed in the introduction, one reason why interleaving might be 

beneficial for learning is because learners are thought to pay more attention in the interleaved 

than blocked condition (e.g., Greeno, 1970, Hintzman, 1974; Pavlik & Anderson, 2005). If this is 

indeed the case, then one method to assess these differences might be through mind wandering. 

Specifically, do people mind wander less when studying materials which are interleaved than 

those which are blocked? 

In recent years, a growing body of work on interleaving and blocking has been focused 

on the effects on inductive learning (e.g., Birnbaum, Kornell, Bjork, & Bjork, 2013; Carvalho & 

Goldstone, 2014, 2015; Kornell & Bjork, 2008; Kornell, Castel, Eich & Bjork, 2010; Metcalfe & 

Xu, 2016; Verkoeijen, & Bouwmeester, 2014; Vlach, Sandhofer, & Kornell, 2008; Wahlheim, 

Dunlosky, & Jacoby, 2011; Yan et al., 2016; Zulkiply & Burt, 2013). In these experiments, 

participants were presented with categories of materials in blocked and interleaved conditions, 

and then tested on their ability to identify new, never-studied exemplars. In line with this 

growing literature, and as induction has yet to be investigated within the context of mind 

wandering, the focus of this experiment was to examine the efficacy of interleaved and blocked 

practice on preventing mind wandering, with inductive learning as the learning outcome.  

The paradigm used was adapted from previous work on interleaved and blocked practice 

(e.g., Kornell et al., 2008; Kornell et al., 2010). Participants were shown a series of images of 

paintings, drawings or prints of various artists, in either a blocked or interleaved block. In the 

blocked condition, learners were presented with pairs of artists and paintings belonging to the 

same artist, whereas in the interleaved condition one were presented with artist-painting pairs 

scrambled across artists. From time to time, the participants were interrupted by being presented 
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with a mind-wandering probe. When the probe appeared they had to respond by saying whether 

they were mind wandering or on task. Later, participants were given a test in which they were 

shown new exemplars of the studied artists’ work, and they had to type in the name of the artist. 

The primary hypothesis, counterarguments notwithstanding, was that people would mind wander 

more when they were studying in the blocked condition, where all of a single artists’ works were 

presented together, than when they were studying in the interleaved condition, where individual 

works of different artists were interspersed. Consistent with Chapter 1 Experiment 3, mind 

wandering should also increase as time on task increased. 

Method 

Participants. The participants were 66 introductory psychology students at Columbia 

University and Barnard College who participated for course credit. The mean age was 22.70 (SD 

= 6.93). There were 35 females and 31 males. All procedures were reviewed and approved by the 

Columbia Internal Review Board for the protection of Human Subjects, and conformed to the 

strictures of the American Psychological Association. 

Materials. The corpus of each of the 24 artists used consisted of 22 prints, drawings, or 

paintings accessed on the internet, and displayed via a MATLAB program, on the computer 

screen. All images were scaled to fit within a 700 x 500 pixel rectangle slightly above the middle 

of the screen on a black background, with the artist’s first and last name printed in capital letters 

in white below the image. Both names were presented because some artists are known by both 

names, while others tend not to be. For example, Jasper Johns tends to be known by both names 

whereas Rauschenberg’s first name is, perhaps, not consistently used. Although both the first and 

last name were presented at study, only the last name was asked for at test. 
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The artists used were: Frida Kahlo, Eva Hesse, Tom Wesselman, Alice Neel, Terry 

Winters, Sonia Delaunay, Wayne Thiebaud, Richard Serra, Lee Krasner, Sam Francis, Louise 

Nevelson, Joan Mitchell, Helen Frankenthaler, James Rosenquist, Jasper Johns, Robert 

Motherwell, Cy Twombly, Robert Rauschenberg, Donald Sultan, Ellsworth Kelly, Francis 

Bacon, Isabel Bishop, Lucien Freud and Frank Stella. 

Design and procedure. The design was a 2 (Condition: blocked or interleaved, within 

participant) X 2 (Order of condition: blocked first or second, between participants) X 4 (Quartile: 

first, second, third or fourth, within participant) X 3 (Number of Exemplars, either 12, 15 or 18, 

within participant).  

 The works of 12 artists, randomly determined over participants, were assigned to be in 

the blocked condition and the other 12 artists were assigned to be in the interleaved condition. 

Either 12, 15 or 18 exemplars were presented for each artist, a within-participants factor that was 

varied randomly within each quartile. The reason for including Number of Exemplars as a factor, 

rather than making the number of exemplars presented constant, was to prevent participants from 

being able to reliably anticipate the mind-wandering probe. Each exemplar was presented for 3 s, 

with a 1s ISI interval. The mind-wandering probe – which was a screen that asked the participant 

whether they were mind wandering or on task – appeared after the presentation of the all of the 

12, 15 or 18 assigned exemplars of one artist, in the blocked condition (see footnote 2 for the 

yoked interleaved condition). Thus, in the blocked condition people would see, say, 18 images of 

Sam Francis’ paintings and then a mind-wandering probe. Then they would get, say, 12 images 

of Frank Stella’s paintings then a probe, and then, 15 images of, say, Joan Mitchell's works and 

then a probe. This would comprise the first quartile of the first half of the experiment. The three 

levels of the Number of Exemplars was randomly determined within each quartile. After 
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completing study of the first quartile exemplars, participants went straight on to the second 

quartile, still in the blocked practice condition but with different artists. Then they completed the 

third and fourth quartiles, until all 12 artists had been studied.2 

                                                

2 Participants were yoked such that the yoked person would get exactly the same 

exemplars as his or her mate, that is, the same 12 artists that his or her partner had in the first half 

of the experiment –e.g., Sam Francis, Frank Stella, and Joan Mitchell, as well as all of the other 9 

artists in the first half, with the exact same exemplars for each. The difference was that in the 

blocked condition all of the works of a single artist were presented together, whereas for the 

yoked participant the (12, 15 or 18) works of the 12 artists would be interleaved. The entire deck 

of 180 works of art studied in the first half of the experiment was the same for the yoked 

partners, except that in the blocked case the works were organized by artist whereas in the 

interleaved case they were randomized. The yoked participant got the mind-wandering probes at 

exactly the same time in the sequence as his or her yoked mate had done. So, if the mind-

wandering probes for the blocked partner came after 18 paintings by Sam Francis, 12 by Frank 

Stella, and 15 by Joan Mitchell, the yoked interleaved partner's mind-wandering probes would 

come after 18 images, 12 images and 15 images. The yoked partner would also see (the same) 18 

Sam Francis works, 12 Frank Stella works, and 15 Joan Mitchell works, but in an interleaved 

order throughout all 4 Quartiles. During the second half of the experiment, participants enacted 

the opposite condition, that is, if they had studied in a blocked fashion during the first half of the 

experiment they studied in a interleaved fashion during the second half of the experiment, but 

they remained yoked. Different artists were presented in the first and second half of the 

experiment. For half of the yoked participants, interleaving and blocking were swapped with the 
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After study and the 12 mind-wandering probes, participants did a short distractor task in 

which they counted down by 3’s from 3078 and then they were tested. The test consisted of the 

random presentation of 48 new images – 4 per studied artist, in which they were asked to type in 

the artist’s last name. They then went on to the second half of the experiment, which was like the 

first, but with the alternate interleaved condition and different artists. 

At the end of the experiment, participants reported on a 7-point Likert scale: (a) how 

familiar they were with the artists and paintings, (b) how much they liked the paintings, and (c) 

how important art was in their daily lives. They also made judgments concerning whether they 

thought that interleaved or blocked practice was better for learning and on which condition they 

thought they had mind wandered more. 

Results 

Learning performance 

Answers were computer scored for exact match but each response was also checked by a 

research assistant to count spelling mistakes as correct. The data reported are those for the human 

                                                                                                                                                       

 

above constraints (resulting in 2 pairs of yoked participants), whereas for the other half, the 

artists that had been presented in the first and second half of the experiment were swapped 

(resulting in another 2 pairs of yoked participants). The yoking and counterbalanced meant that 

we completed the full design every 8 participants, resulting in 8 replications over 64 participants. 

We scheduled several extra participants to ensure against no-shows, and ended up with 66 

participants. The ‘extra’ participants were included in the analyses. 
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(lenient) scoring, though all of the results reported here also hold for the computer scoring. A 2 

(Condition: blocked or interleaved) x 3 (Number of Exemplars) x 2 (Order) ANOVA was 

computed. The criterion of p < .05 was once more used as a threshold for significance. 

 As shown in Figure 2.1, people performed better in the interleaved condition than in the 

blocked condition, F(1,64) = 78.34, p < .001, ηp
2 = .55, replicating findings by Kornell and Bjork 

(2008). Ours was a replication with variation in procedural details, and using works of art that 

were by outstanding known artists and which were highly engaging, while Kornell and Bjork's 

painting were mostly by unknown artists and were less aesthetically compelling.  

 

 
Figure 2.1. Inductive performance across conditions 

Leniently scored test performance with standard error bars. Participants who got blocked 

first (the white bars on the left) are the same people who got the interleaved condition second 

(the grey bars on the right) and people who got interleaved first got blocked second. 

 

The number of exemplars had a significant (and expected) effect on performance, 

F(2,128) = 4.97, p = .008, ηp
2 = .07, such that mean performance was .34 (SE = .024) when they 

had studied 12 exemplars, .41 (SE = .027) when they had studied 15 exemplars, and .41 (SE = 
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.026) when they had studied 18 exemplars. Studying 12 exemplars led to worse performance 

than studying 15, t(65) = 2.64, p = .01; 95% CI[0.02, 0.11], d = 0.32, or 18 exemplars, t(65) = 

2.62, p = .011; 95% CI[0.01, 0.11], d = 0.32. There was no difference in performance between 

15 and 18 exemplars, and the number of exemplars did not interact with Condition or with Order.  

There was an effect of Order such that participants who studied blocked in the first half 

of the experiment performed better than those who studied blocked in the second half of the 

experiment, F(1,64) = 5.19, p = .026, ηp
2 =.08. The interaction between Condition and Order was 

significant, F(1,64) = 22.28, p < .001, ηp
2 =.26. As can be seen from Figure 1, performance 

increased for participants who went from blocked practice in the first half to interleaved practice 

in the second; it decreased slightly for participants who went from interleaved practice in the first 

half of the experiment to blocked practice in the second half of the experiment.  

Mind wandering 

Participants reported mind wandering to .31 (SE = .023) of the probes. Crucially, mind 

wandering occurred more frequently in the blocked condition (M = .36, SE = .028) than in the 

interleaved condition (M = .26, SE = .026), F(1,64) = 13.75, p < .001, ηp
2 = .18. 

There was an expected effect of ‘time’, such that mind wandering increased with 

Quartile, F(3,192) = 24.79, p < .001, ηp
2 = .28. There was an interaction between Condition and 

Quartile, F(3,192) = 5.28, p = .002, ηp
2 = .08. As is shown in Figure 2.2, there was no difference 

in mind wandering between the blocked and interleaved conditions during quartiles 1, 2, or 3 

(respectively, t(65) = 0.96, p = .34; 95% CI[-0.04, 0.11], d = 0.11; t(65) = 1.75, p = .084; 95% 

CI[-0.01, 0.17], d = 0.22; t(65) = 1.18, p = .24; 95% CI[-0.04, 0.15], d = 0.15), whereas in 

quartile 4 there was considerably more mind wandering in the blocked than in the interleaved 

condition, t(65) = 4.79, p < .001; 95% CI[0.14, 0.34], d = 0.60.  
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Figure 2.2. Mind wandering over time 

Proportion of mind wandering by Quartile. Error bars indicate standard errors of the 

mean. 

 

Neither the effect of Order, nor the Order by Condition interaction was significant. 

However, there was a trend toward a three-way interaction among Condition, Quartile and Order, 

F(3, 192) = 2.45, p = .065, ηp
2 = .04. Because it is of some theoretical and practical interest, this 

nearly significant interaction is shown in Figure 2.3. There are several interesting patterns shown 

by these data. First, and importantly, the first quartile of the second half of the experiment 

always revealed a reversion to a low level of mind wandering, as compared to the higher mind-

wandering level seen in the fourth quartile of the first half of study. This consistent decrease in 

mind wandering from the end of the first half of the experiment to the beginning of the second 

half of the experiment is consistent with Szpunar, Khan and Schacter’s (2014) results showing 

that interposing a test during the course of study results in a decrease in mind wandering. Here, 

too, there was release from mind wandering in the middle of the experiment-- probably 

attributable to the test (but perhaps to the switch in the method of stimulus presentation). These 
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data also suggest that when interleaved practice occurred in the first half of the experiment, 

followed by blocked practice, the increase in mind wandering in the blocked list over quartiles 

was especially steep. Indeed, by the end of the blocked condition, when it occurred in the second 

half of the experiment, the rate of mind wandering was over 60%. When, by contrast, blocked 

practice was first and interleaved practice occurred in the second half of the experiment, the 

increase in mind wandering over quartiles in that second half of the experiment was not so great.  

 

 
Figure 2.3. Mind wandering over quartile and within each condition 

Proportion mind wandering in the blocked and interleaved conditions when blocked 

practice occurred in the first half or second half of the experiment and when interleaved practice 

occurred in the first or second half of the experiment. Increasingly dark bars give the proportions 

of mind wandering, in the first, second, third and fourth quartiles (each consisting of 3 mind 

wandering probes). Note that individual participants contributed to the Blocked when 1st and 

Interleaved when 2nd data OR to the Interleaved when 1st and Blocked when 2nd data.  
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A criticism of this experiment could be that the mind-wandering probes in the blocked 

condition always came after the last-presented exemplar for one artist, whereas this was not the 

rule in the interleaved condition. In it, mind-wandering probes sometimes came after the final 

exemplars of the works of none of the artists, though, towards the end of the list, they could also 

occur after the presentation of all exemplars of the works of many artists. To investigate whether 

this difference in the frequency of last presented category member in the interval monitored by 

the mind wandering probe affected the results, the presentation position of the last-of-the-

category exemplars in the interleaved condition was determined, and these observations were 

then binned according to the timing of the 12 mind-wandering probes. This enabled computation 

of the relative frequency (out of 12) for the last-presented exemplars in each of the 12 probe 

positions. These participant-specific last-of-the-category exemplars frequencies were then used 

to weight the mind wandering reports that each participant gave at each probe position in both 

conditions, resulting in two weighted mind wandering scores for each participant. Even so, when 

adjusted, there was still less mind wandering in the interleaved (Minterleaved = .32, SE = .05) than 

the blocked (Mblocked = .52, SE = .05) condition, t(65) = 3.51, p = .0008, d = .43, 95% CI [0.09, 

0.31]. Indeed, if anything, the blocked-interleaved difference in mind wandering was larger when 

the results were adjusted to take the relative frequency of the presence of last exemplars in the 

interval in the interleaved condition into account. 

Mind wandering and performance 

 Between-participant correlations between mind wandering and performance. There 

was a negative correlation between participants' overall level of mind wandering and their later 

inductive generalization performance, r = -.35, tr(64) = 3.02, p = .004, 95% CI[-.55, -.12]: 

participants who mind wandered more learned less. Correlations between the condition-specific 
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performance in the blocked and interleaved conditions with the corresponding proportion of 

mind wandering in that condition were also computed. There was a negative correlation between 

proportion of mind and performance on artists studied in the interleaved condition, r(64) = -.50, 

tr(64) = 4.64, p <.001, 95%CI [-0.66, -0.30]; but the between-participants correlation between 

mind wandering and performance in the blocked condition, taken on its own, did not reach 

significance, r(64) = -.09, tr(64) = 0.76, p = .45, 95%CI [-0.33, 0.15].  

Conditional probabilities of performance as a function of mind wandering. In the 

blocked condition, it was possible to examine the effect of mind wandering on inductive 

generalization about particular artists, because each attentional probe was linked to a particular 

artist. The conditional probability of correct induction of the artist to the new paintings at time of 

test given that the person was mind wandering when studying those artist’s exemplars was .21 

(SE = .028); it was .30 (SE = .026) when they had not been mind wandering. These two were 

significantly different, t(59) = 3.84, p < .001, 95% CI [0.04, 0.13], d = 0.50, indicating a 

detrimental effect of mind wandering. Note, some participants reported no mind wandering, as is 

reflected in the degrees of freedom.  

Metacognitive judgements and performance 

The majority of participants had fairly accurate metacognitions concerning their 

performance. When asked in which condition they mind wandered more, 43 participants said the 

blocked condition, 12 said the interleaved condition, and 11 said there was no difference. When 

asked in which condition they had learned the artists’ names best, 42 said the interleaved 

condition, 18 said the blocked condition and 6 said no difference. This latter result contrasts with 

those of Zulkiply and Burt (2013).  
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Finally, there was a positive correlation between reported art liking and performance, 

r(64) = .30, tr(64) = 2.49, p = .016, 95%CI [0.06, 0.50] as might be expected. There was also a 

correlation between participants’ high ratings of the importance of art in their daily life and their 

performance on the induction task, r(64) = .27, tr(64) = 2.27, p = .027, 95%CI [0.03, 0.48]. 

Participants self-reported knowing 1.48 artists on average (SD = 1.79). Self-reported artist 

familiarity was not correlated with performance, nor were any of the self-report measures 

correlated with mind wandering.  

Discussion 

It has long been known that stimulus repetition results in habituation, with the attendant 

loss of attention to the repeated stimulus. Conversely, an orienting response is elicited to novel 

stimuli, with the attendant increase in attention (see Kahneman, 1973). These attentional 

principles would seem to have been at work in the present experiment − a plausible explanation 

of these results, but one that is vague. In response to the call of Smallwood (2013) urging more 

consideration of possible mechanisms underlying the shift to mind-wandering, it is possible that 

the mechanism that has been proposed concerning when and why people stop studying one item 

and switch attention to another might bear on when people will stop studying and switch to mind 

wandering. 

Several of the models of study time allocation proposed in the learning literature include 

stop rules concerning when the person will cease to study the item at hand. The two most 

prominent rules are (1) the ‘learned to criterion’ rule of the Discrepancy Reduction model 

(Dunlosky & Thiede, 1998), and (2) the ‘not learning fast enough’ rule in the Region of Proximal 

Learning model (Metcalfe & Kornell, 2005). The former says that people stop studying when 
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they have reached an internal criterion indicating that the item is sufficiently learned. The latter 

says that people stop when the derivative of the perceived information uptake function 

approaches a small subjectively-determined value, that is, when people perceive that they are no 

longer taking in new information. This can happen because they have learned the material or 

because it is too difficult to afford learning. But regardless of which rule one champions, both 

apply on a moment by moment basis, and both would result in more stopping in the blocked than 

the interleaved condition. Given that the immediately preceding items, in the blocked condition, 

are highly informationally redundant with the current item, that redundant information 

contributes to nearness to the learning criterion and to the feeling of not currently uptaking much 

new information. Both models, then, predict that the stop rule conditions will be more satisfied in 

the blocked than interleaved condition. One possibility is that when the conditions of the stop 

rule are met, in the current situation, rather than switching to a different external stimulus, people 

might switch to internal thought, i.e., they might start mind wandering. But once they switch to 

mind wandering they are no longer engaging in any processing of the to-be-learned items. With 

no processing, learning of the externally presented materials presumably ceases. Mind wandering 

itself, then, results in reduced learning, as many researchers (e.g., Risko, Anderson, Sarwal, 

Endelhardt, & Kingstone, 2012; Smallwood, Fishman, & Schooler, 2007) have shown. This 

would result in a negative feedback loop: lack of perceived learning of the to-be-remembered 

items results in stopping studying, which results in mind wandering, which results in lack of 

learning of the additional to-be-remembered items. Because the stop rule is more likely to be 

satisfied in the blocked condition, this feedback loop occurs more in that condition.  

This experiment replicated the finding that interleaved practice results in better inductive 

learning than blocked practice. It also showed that people mind wandered more in the blocked 



 

59 

than in the interleaved practice condition. These findings point to a complex attentional 

contribution to the difference in inductive learning that is observed as a result of blocked versus 

interleaved practice, whereby the perceived lack of learning in the blocked condition may itself 

be a trigger to mind wander, but once engaged in mind wandering further learning of the task at 

hand is likely to be precluded. 
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Chapter 3: 

Neurocognitive Effects of Mind Wandering 
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Although Chapters 1 and 2 identified conditions under which one is less likely to mind 

wander, and showed the negative impact mind wandering has on learning, what are the 

neurocognitive mechanism resulting in this learning decline? Understanding the neural 

differences when a person is in a mind wandering state supposedly ‘learning’ is an important 

question, and one that this chapter attempts to address using event-related potentials or ERPs. 

It is known from previous ERP work that early sensory and attentional processing is 

diminished when mind wandering (e.g., Braboszcz & Delorme, 2011; Broadway et al., 2015; 

Kam, Dao, Farley, Fitzpatrick, Smallwood, Schooler, & Handy, 2011; Kam, Dao, Stanciulescu, 

Tildesley, & Handy, 2013; O’Connell, Docktree, Robertson, Bellgrove, Foxe, & Kelly, 2009). 

While these findings might be a part of the puzzle in explaining the learning decrements 

occuring during mind wandering, the impact of mind wandering on learning-related processing 

has not yet been thoroughly examined. 

Electrophysiological work on deep processing during learning has demonstrated that the 

neural signature at time of encoding is different for items that are subsequently remembered or 

not remembered. Paller, Kutas, and Mayes (1987) found that when ERPs at study were 

categorized on the basis of subsequent test performance, items that were subsequently 

remembered elicited larger ERPs from 400-800 ms than those that were forgotten. Jacoby’s 

(1991) process dissociation model posits that retrieval from memory – which presumably 

depends on initially deep conscious processing – is required to recollect materials, as is thought 

to be important for recall. Mere fluency or familiarity with the materials – presumably only 

requiring shallower processing – may be sufficient for recognition (e.g., Jacoby, 1991; Jacoby, 

Toth, & Yonelinas, 1993). Indeed, an ERP experiment showed that the late positivity ERP 

difference between recalled and unrecalled materials was larger than the difference between 
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recognized and unrecognized materials (Paller et al., 1988). Because recall is more strategic than 

recognition requiring greater recollection-based processing, these differences suggest that the 

encoding-related ERPs might indicate the degree of deep or elaborative processing engaged in 

during encoding. The ERP differences associated with subsequent recall have generally 

occurred, as noted in the introduction, relatively late, from 400-800 ms (Paller et al., 1987), with 

little difference in earlier sensory processing, as indexed by components such as the P1. Thus, if 

mind wandering reduces task-relevant encoding, it follows then, regardless of what else happens 

during mind wandering, that the amplitude of this sustained late ERP component, might be 

diminished during off-task thought. 

In the experiment reported here, participants studied English-Spanish word pairs while 

intermittently being probed for whether they were ‘on task’ or ‘mind wandering.’ At the end of 

stimulus presentation, they completed a cued-recall memory test designed to assess their 

learning. ERPs during study were compared depending on whether participants had reported 

being on task or mind wandering during presentation. If participants failed to process the task-

relevant information deeply when mind wandering, then the magnitude of the late positivity to 

stimuli presented while the person was mind wandering should be attenuated relative to those 

observed when participants reported that they had been on task. 

Method 

Participants. A total of 31 participants were recruited from the Columbia University 

community and were compensated at a rate of $15/h for their time. All participants were native 

English speakers with no self-reported history of any psychiatric disorder. Two participants were 

excluded – one for sneezing continually and therefore engendering too much noise in their EEG 
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recording, and one for improperly performing the task (i.e., for rotely retyping the English cue 

word in both the pretest and final test) – resulting in 29 usable participants (15 males and 14 

females; M = 24.03 years old, SD = 4.46). All participants gave written, informed consent and 

were treated in accordance with the ethical principles of the APA, and the Internal Review 

Boards of Columbia University and the New York State Psychiatric Institute. 

One participant, whose data were included in the ERP tracings below, did not complete 

the final test. All analyses were, however, also computed with this participant removed and there 

were no differences in the pattern of results. 

Materials. The materials were 179 English-Spanish word pairs taken from Chapter 1, 

with 35 pairs sorted into each of the easy, medium difficulty and difficult conditions. 

Word pairs were presented for study using a 3 (Difficulty of word pairs: easy, medium 

and difficult) x 4 (Time during which pairs at the same level of difficulty were presented, 15, 30, 

60 or 90 s prior to the presentation of an attentional probe) x 2 (study presentation Half) within-

participants design. Successive pairs at a single level of difficulty were presented for study at a 

rate of 1.5 s per pair, until the designated amount of time (15, 30, 60, or 90s) had passed, in what 

will be called a block. At the end of each so-constructed block, a mind-wandering probe was 

presented. 12 blocks in the 3 X 4 design, were presented in each study presentation Half. The 

order of presentation of the 12 blocks in each of the two halves, was randomized with the 

following constraints: (1) Difficulty was randomized and permuted a total of 4 times, (2) all three 

difficulty levels were presented at each of the 4 time conditions, in a randomly assigned order, 

and (3) the position in the sequence of blocks of each difficulty level was equated across 

participants.  
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Word pairs were presented in blocks at the 3 levels of difficulty, because past research 

indicated that experts tend to mind wander on easy materials whereas novices tend to mind 

wander on more difficult materials (Xu & Metcalfe, 2016). Blocking ensured that participants 

would get streams of items together at roughly the same level of difficulty. The blocked 

presentation of materials across particular levels of difficulty was done to ensure that all 

participants – whether experts or novices – would mind wander on at least some of the materials. 

The number of seconds for which materials at a particular difficulty level were presented was 

varied to prevent participants from anticipating the appearance of each mind wandering probe. 

Additionally, of course, people tend to mind wander more the longer it has been since the last 

mind wandering probe. Finally, a short break in the middle of the study phase – segmenting the 

study stream into first and second halves – was added to enable the checking of, and correcting 

when necessary, of electrode impedances. 

There were 25 pairs in each of the three difficulty level conditions. Each pair was 

presented repeatedly over the course of study, within its own difficulty level blocks, but repeated 

randomly in all of the Time conditions. Each word pair ended up being presented an average of 

10.17 times (SD = 3.03) during study.  

The dependent variables were cued recall, which was assessed at the end of the 

experiment, mind wandering, which was assessed at the end of each block, and ERP voltage, 

which was assessed throughout the study phase, time locked to the onset of each to-be-learned 

pair. 

Procedure. The experiment consisted of 3 sections: pretest, study, and final test. ERPs 

were recorded during the study phase. During the pretest, participants viewed the English words 

and were given up to 10s to provide the correct Spanish translation. In the event that they did not 
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know the answer, participants were instructed to try and provide an educated guess of what they 

thought the translation might be. After each response, participants were asked to provide a 

judgment of learning (JOL) on a slider scale for word pairs they had answered incorrectly. This 

allowed pairs to be sorted into three difficulty levels based on strictly-scored pretest accuracy 

and JOLs – easy items were correctly recalled on the pretest; medium items were inaccurate on 

the pretest but were accompanied by high JOLs; difficult items were inaccurate on the pretest and 

accompanied by low JOLs. Thirty-five items were sorted into each condition: 25 of which were 

presented for study, and 10 of which were reserved to be unstudied control items which were 

given on the final memory test.3 

After completing the pretest, participants were presented with the English-Spanish word 

pairs and asked to study them for an upcoming test. Participants were also told that, 

intermittently, they would be asked to report whether their attentional state was either ‘on task’ 

or ‘mind wandering,’ by pressing one of two keys. All participants received and were asked to 

repeat the definitions of ‘on task’ or ‘mind wandering’ prior to the study phase to ensure they 

understood what the terms meant. Participants went through the 24 study blocks, with each of the 

word pairs presented on screen for 1000 ms followed by a blank screen for 500 ms with mind 

wandering probes interspersed during presentation at the end of each block, as indicated above. 

The English word was 100 pixels above the midpoint of the screen and the Spanish word was 

100 pixels below the midpoint.  

                                                

3 One participant provided only 25 correct responses. For this participant, all of the 25 

‘easy’ word pairs were presented for study, and the participant did not have any unstudied easy 

control items. 
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After completing the study phase, participants were given a cued-recall test. Each English 

word was presented onscreen and participants were asked to type in the correct Spanish 

translation. All word pairs presented for study were tested, as were the additional unstudied 10 

word-pair controls. Presentation order was randomized and no feedback was provided. 

Participants’ responses were leniently scored offline by a research assistant for accuracy. 

EEG recording. Brain electrical activity was recorded during the study phase from 62 

scalp sites (sintered Ag/AgCl) mounted in an Electrocap (Neuromedical Supplies) and digitized 

at 500 Hz (DC; high-frequency cut-off of 100-Hz; right-forehead ground). Electrodes were 

placed on the outer canthus of each eye to record horizontal eye movements, and directly above 

and below the left eye for vertical movements. Activity was originally referenced to the nose and 

re-referenced offline to the average of the left and right mastoids. Impedances were maintained 

below 10kΩ throughout the experiment. 

Data Analyses. ERPs were time-locked to word pair presentation and computed with a 

200 ms baseline. Since the question of interest was the impact of mind wandering on learning, 

only the 7 items presented during the 12 s immediately preceding each attentional probe were 

used in the ERP mind-wandering or on-task averages. This follows the procedure used by 

previous researchers (e.g., Smallwood et al. 2008; Kam et al., 2011; Kam et al., 2014). ERPs for 

the 7 items preceding each probe were collapsed and were also averaged across Difficulty, and 

Time conditions for each of the two Halves of the experiment. They were categorized based on 

participants’ reported attentional state for each block (i.e., on task or mind wandering). ERPs 

were computed using EEGLAB (Delorme & Makeig, 2004) and ERPLAB (Lopez-Calderon & 

Luck, 2014).  
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Prior to analyses, all recordings were filtered using a 0.1-10Hz IIR-Butterworth bandpass 

filter to remove DC drift and muscle movements. Offline artifact rejection and independent 

component analysis (Makeig, Debener, Onton, & Delorme, 2004; Makeig & Onton, 2011; 

ADJUST toolbox: Mognon, Jovicich, Bruzzone, & Buiatti, 2011) were used to remove eye 

blinks, eye movements, and other muscle activity. For two participants, 1 electrode had to be 

interpolated due to an abnormal EEG pattern (P1 and CZ, respectively). 

Results 

The criterion for significance was set at p < .05 for all analyses. Partial eta squared (ηp
2) 

was used as the measure of effect size for ANOVA. F-tests with Greenhouse-Geisser adjusted 

degrees of freedom were used when the assumption of homogeneity of variance was violated. 

When applicable, post hoc Tukey tests were computed for follow-up comparisons and are 

directly reported. 

Behavioral Data 

Final Test Performance. Test performance was computed based on the proportion of 

leniently-scored items participants answered correctly, and are reported in Table 3.1. Average 

performance on the final cued-recall test was .58 (SD = .09). There was an expected main effect 

of Difficulty on test performance, F(1.45, 39.08) = 368.40, p < .0001, ηp
2 = 0.93, such that 

participants performed best on easy, next best on the medium, and worst on difficult pairs. Final 

test performance on easy pairs was significantly better than on medium or difficult pairs, t(54) = 

8.56, p < .0001, and, t(54) = 26.58, p < .0001, respectively. Performance on medium pairs was 

higher than on difficult pairs, t(54) = 18.03, p < .0001. Learning scores computed from the 

difference between studied and unstudied pairs that had been wrong on the pretest (i.e., the 



 

68 

medium and difficult pairs) indicated that participants learned more medium (Mdifference = .25, SD 

= .16) than difficult pairs (Mdifference = .15, SD = .12), t(27) = 2.23, p = .034, d = .66. 

Analyses by the Time condition could not be performed as the to-be-learned pairs were 

repeated randomly many times over all of the Time conditions.  

 

 
Table 3.1. Behavioral results (mind wandering and test performance) in Chapter 3. 

Proportion of mind wandering and leniently-scored test performance across Difficulty 

with standard deviations presented in parentheses. 1One participant did not have any unstudied 

easy items given their pretest performance. 2Overall performance is a weighted mean of the 25 

word pairs which were studied and the 10 which were unstudied. 

 
 

Mind wandering. Participants reported mind wandering an average of .36 (SD = .20) of 

the time. Collapsing over the Time condition. A 3 (Difficulty) x 2 (Study Half) ANOVA 

revealed that the rates of mind wandering were fairly consistent across easy, medium, and 

difficult pairs, F(1.96, 54.87) = 0.88, p = .418, ηp
2 = 0.03 (see Table 3.1 for means). There was 

an expected effect of Study half, such that participants mind wandered more in the second half 
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(M = .41, SD = .25) than in the first half (M = .30, SD = .20), F(1, 28) = 8.18, p = .008, ηp
2 = 

0.23. There was no interaction between Difficulty and Study Half, F(1.90, 53.17) = 2.32, p = 

.111, ηp
2 = 0.08. 

A 4 (Time) x 2 (Study Half) analysis, collapsing over Difficulty, was also computed. As 

anticipated, the same reliable effect of Study Half, showed up in this analysis as in the previous 

one. There was also a main effect of Time such that, as expected, participants mind wandered 

more on longer relative to shorter blocks, F(2.75, 76.88) = 4.18, p = .010, ηp
2 = 0.13. There was 

more mind wandering reported for the 90s as compared to 15s block, t(84) = 3.09, p = .014. 

Participants also trended to mind wander more on the 60s as compared to the 15s block, t(84) = 

2.52, p = .064. There was no difference in the rate of the mind wandering between blocks lasting 

15 and 30s [t(84) = 0.80, p = .853], 30 and 60s [t(84) = 1.71, p = .321], 30 and 90s [t(84) = 2.29, 

p = .109], or 60 and 90s [t(84) = 0.57, p = .940]. There was no interaction between Time and 

Study Half, F(2.57, 71.89) = 0.52, p = .640, ηp
2 = 0.64. 

Mind wandering and Performance. The between-participant correlation between mind 

wandering and final test performance was not reliable, r = -.30, t(26) = 1.60, p = .121. 

ERP Data 

Omnibus ANOVAs were conducted using Electrode (as described below) as an 

independent variable and treating Attentional State (on task vs. mind wandering) as if it were an 

independent variable. Average amplitude was computed over the measurement time windows of 

interest as described below. 

ERP waveforms, presented in Figure 3.1, were time locked to the presentation of a word 

pair during study and categorized according to self-reported attentional state (mind wandering/on 

task). Only ERPs to word pairs presented 12s, or 7 word pairs, before each probe were included, 
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following Kam et al., 2012, Kam et al., 2014, and Smallwood et al., 2008. Across participants, 

63.47% of trials were on-task trials (SD = 19.75%) and 36.53% were mind wandering trials (SD 

= 18.66%). 

Although the primary hypothesis was in the late positivity, three standard ERP 

components were investigated. First, analyses were performed on the early P1 component from 

70-120 ms, peaking at around 95 ms post-stimulus. This component has been investigated in 

previous mind-wandering experiments and is usually thought to reflect basic visual-sensory 

processing. Second, was a P2 component around 170 ms to 250 ms, peaking around 225 ms post-

stimulus. This component has not been investigated before in the context of mind wandering, and 

is sometimes thought to indicate attention-modulated perceptual processing (e.g., Luck & 

Hillyard, 1994, Crowley & Colrain, 2004), and possibly related to early or short-term encoding 

(e.g., Dunn, Dunn, Languis, & Andrews, 1998; Chapman, McCrary, & Chapman, 1978). Third, 

and most importantly, analyses were computed on a late, sustained positive slow wave beginning 

at around 250 ms and lasting until 800 ms. This component has not previously been investigated 

in the context of mind wandering. 

In line with previous research, analyses of the P1 component focused on the PO3, PO4, 

and Oz electrodes, as these electrodes overlie occipital cortex (see Kam et al., 2011). A subset of 

parietal electrodes – PZ, P1, P2, P3, P4, P5, and P6– were chosen based on scalp topography for 

analyses of both the P2 component and sustained positive slow wave. ERPs were collapsed 

across attentional state to compute the grand average topography (data not shown), and the 

electrode sites used for analyses were selected were the subset of electrodes maximally active 

during 170-250 ms and 250-800. Figure 3.1 illustrates the on-task and mind-wandering ERPs 

(and difference waves) at electrodes PZ, P1, and P2. 
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Figure 3.1. Event-related potentials during mind wandering 

ERPs to Word Pairs presented during study for electrodes PZ, P1, and P2. Top Panel. 

On-task trials are represented by the solid black line and mind-wandering trials are dotted. 

Components and time windows analyzed are shaded and labeled in the leftmost panel for the P1 

electrode. Bottom Panel. Difference waveforms with the mind wandering ERPs subtracted from 

the on-task ERPs. 

Note that the P1 component was analyzed at electrodes PO3, PO4, and OZ (not shown). 

 

The difference between on-task and mind-wandering conditions on the P1 component 

showed only a marginal effect, F(1,27) = 3.20, p = .085, ηp
2 = 0.11, which was in the expected 

direction of higher amplitude for on-task than for mind-wandering pairs. Although this effect 

was not quite significant by a two-tailed test, the direction was consistent with past research 

which has shown effects of mind wandering on sensory processing as reflected by the P1 

component (e.g., Kam et al., 2011; Broadway et al., 2016).  
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There was also a significant difference between on-task and mind-wandering from 170-

250 ms – the P2 component. The ERP amplitude was attenuated when participants were mind-

wandering relative to when they were on-task, F(1,27) = 4.19, p = .050, ηp
2 = 0.13. From past 

research, it might be reasonable to assume there might be an attenuation in perceptual processing 

when mind wandering (which has not been previously investigated). Indeed, this difference was 

found in these data, as indexed by this P2 attenuation during mind wandering. 

Finally, and most importantly, there was an effect of mind wandering from 250-800 ms, 

F(1,27) = 5.48, p = .027, ηp
2 = 0.17, such that mind wandering significantly attenuated 

processing relative to the on-task state during this time window. This pattern of late attenuation 

during mind wandering has not been investigated before, and suggests that higher-order, deep 

semantic processing of to-be-learned materials was dampened. 

 

 
Figure 3.2. Differences in scalp topography 

Scalp Topography of the Difference waveforms (mind-wandering ERPs subtracted from 

on-task ERPs) for the P1, P2, and Slow wave components. 
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Discussion 

This experiment examined the question of whether mind wandering attenuates deep 

processing as reflected in a late, sustained positive-going process. The prediction was that this 

processing would be reduced when participants were mind wandering relative to when they were 

on-task. And, indeed, a significantly attenuated brain response was associated with mind 

wandering. The data presented here indicate that processing of materials is attenuated by mind 

wandering at all levels of processing – at the sensory level (the P1), at the perceptual level (P2) 

and at the deep semantic processing level associated with durable encoding. Given these 

findings, several key questions and issues arise. 

 As noted in the introduction, there is considerable research on the Dm effect indicating 

that ERPs during study of items that are later remembered are larger and more positive – 

particularly after about 400 ms – than are those of items that are subsequently forgotten at test 

(e.g., Paller et al., 1988; Paller et al., 1987). Although there were some suggestions that that the 

Dm effect might be localized to frontal and posterior scalp areas, thought to reflect two distinct 

memorial processes (e.g., Johnson, 1995), investigations have shown that the Dm effect can vary 

according to a number of factors. For example, semantic processing has been shown to modulate 

the onset latency (Neville, Kutas, Chesney, & Schmidt, 1986) and magnitude of the Dm effect 

(Neville et al., 1986; Van Petten & Senkfor, 1996). Specifically, the Dm effect for semantically-

unrelated stimuli was smaller and the onset was later than the Dm effect for semantically-related 

stimuli (the latter assessed by asking participants whether the final word in the sentence ‘fit’ the 

preceding context in Neville et al., 1986; and when participants made positive rather than 

negative semantic judgments in Van Petten & Senkfor, 1996). 
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 To examine whether or not the effect of mind wandering on late processing was similar 

to the Dm effect, the ERP data in the present experiment was reanalyzed based on whether the 

pairs were subsequently remembered or forgotten at test. The Dm effect at the PZ electrode in 

these data is plotted adjacent to the on-task/mind-wandering ERPs in Appendix 1. Unlike the 

mind wandering versus on-task contrast, there was no Dm effect at the early P1 and P2 

component time windows, F(1,27) = 1.25, p = .274, ηp
2 = 0.04, and F(1,27) = 1.76, p = .196, ηp

2 

= 0.06, respectively. However, as was found in the mind-wandering versus on-task contrast, 

processing was greatly attenuated from 250 ms to 800 ms for items subsequently forgotten 

relative to those that were subsequently remembered, F(1,27) = 14.04, p < .001, ηp
2 = 0.34. A 

visual comparison between the left (on task and mind wandering ERPs) and right (Dm effect) 

panels suggests that, as well as dampening sensory and attentional processing, mind wandering 

may result in an attenuation of just the type of deep processing required to encode information 

into memory. These results suggest that the enhancement in late processing, presumably 

reflected by the larger positive-going activity during on-task performance is qualitatively similar 

to the Dm effect. 

What about the relation of mind wandering and learning? While the between-subject 

correlation of mind wandering and learning correlation was negative, it was nonsignificant. 

Importantly, though, there were insufficient participants to appropriately compute a reliable 

estimate. At least 28 subjects are required for a strong correlation and 85 would be needed for a 

moderate correlation (Cohen, 1992). The more appropriate analysis would be a within-subject 

comparison. Unfortunately, because the word pairs repeated many times over the course of the 

study phase, it is impossible to directly evaluate the impact of mind wandering on learning of 

particular word pairs. Insofar as each word pair was seen more than 10 times during study, there 



 

75 

were instances in which a participant would have reported mind wandering, being on-task, and 

also cases in which their attentional state was unknown (e.g., at the beginning of a block, rather 

than one of the 7 pairs which were designated as on-task or mind-wandering) during the 

presentation of each pair. This feature of the design makes it difficult to clearly segment items 

into those that had been presented while the participant was mind wandering and those that had 

been presented when he or she was on task. As such, while learning might be hindered when one 

is mind wandering, the design of this experiment precludes proper analysis to test this relation.  

To the extent that the Dm effect and the late mind-wandering effect reflect similar 

mechanisms, these results suggest that the late processing observed may be qualitatively similar 

to the subsequent memory effect, and may be disrupted during mind wandering. Future 

experiments should assess whether this is, indeed, the case. To conclude: the findings of this 

experiment indicate that when a person is mind wandering, deep processing, which is associated 

with higher-order cognitive functions such as semantic encoding, is impaired. 
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Chapter 4: 

Mind wandering, ERPs, and Interleaved Practice 
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The aims of the experiment to be presented were twofold. The first goal was to 

thoroughly examine the role of attention in interleaved and blocked practice. While the benefit of 

interleaving on improving learning and decreasing mind wandering in Chapter 2 supports an 

attentional explanation (e.g., Greeno, 1970), and suggests that there was increased encoding 

strength in the interleaved condition, no direct comparisons of encoding strength at study were 

made. One way to assess this difference might be the extent to which the learner is engaged and 

processing the information. The late positivity found in Chapter 3, which was attenuated during 

episodes of mind wandering and thought to be associated with encoding-related processing, 

could be one such marker of encoding strength during study. Therefore, if interleaving recruits 

more encoding strength, ERP amplitudes should be greater in the interleaved relative to blocked 

condition. 

The second goal of this experiment was to extend the findings from Chapter 3. While the 

difference in late processing between on-task and mind wandering found in the previous chapter 

was qualitatively similar to the Dm effect, the design of the experiment made it difficult to 

examine the effect of mind wandering on learning. As such, an additional investigation into the 

relation of mind wandering and deep processing in a learning context was warranted. 

The procedure was adapted from Chapter 2. Participants were first asked to study 

painting-artist pairs in either the blocked or interleaved condition, and then tested on their 

learning. Participants were then asked to study the remaining paining-artist pairs in the other 

condition, and were tested on their learning once more. Participants were intermittently 

interrupted during study and asked to report whether they were mind wandering or on-task. ERPs 

were recorded during the study phase in order to identify processing differences at study that 

might result in these previously observed learning differences between blocked versus 
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interleaved conditions. The tests comprised of an old/new item recognition test, followed by a 

category recognition test, wherein participants were shown an exemplar and asked to identify 

whether it was old or new. An artist name was then shown below the exemplar, and participants 

were asked to identify whether the artist name displayed was the correct name or not.  

The prediction was, again, that participants would mind wander more in the blocked 

condition, and inductive performance would be better for interleaved categories. In addition, as 

mind wandering is thought to reduce deep semantic encoding, but not shallow encoding 

(Thomson et al., 2014), participants’ old/new item recognition performance should not differ 

between on task and mind wandering states. Instead, participants’ ability to recognize the artists 

which they mind wandered on when studying should be diminished. Finally, if the deep 

processing found in Chapter 3 when a person reports being ‘on task’ is associated with encoding, 

this should also be the type of processing that is heightened in the interleaved condition. 

Method 

The overall method, namely the procedure, counterbalancing, ordering, and design of the 

study halves, was identical to Chapter 2. Screening of participants, ethics compliance, and EEG-

related procedures were identical to Chapter 3. Any and all changes are described below. 

Participants. A total of 41 individuals completed the experiment and were compensated 

$30 of their time. One participant was excluded because they reported feeling unwell since they 

had not eaten breakfast, and it was unclear how it might have affected their behavior or brain 

waves. This left 40 usable participants (22 females, M = 23.53 years, SD = 4.11). 

Materials. A total of 22 paintings each, for 24 different artists was obtained online. 

Many of these were from Chapter 2, but several artists were replaced (e.g., Frida Kahlo), since a 
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large proportion of participants had previously reported knowing them. The artists used were: 

Alive Neel, Cy Twombley, David Milne, Donald Sultan, Ellsworth Kelly, Emily Carr, Frank 

Stella, Helen Frankenthaler, Isabel Bishop, James Rosenquist, Jasper Johns, Jean Dubuffet, Jean-

Michel Basquiat, Joan Mitchell, Kazimir Malevich, Lee Krasner, Richard Serra, Robert 

Motherwell, Robert Rauschenberg, Sam Francis, Sonia Delaunay, Terry Winters, Tom 

Wesselman, and Wayne Thiebaud. About half the participants (N = 22) reported having known 

some of the artists and/or paintings previously. An average of 1.43 artists (SD = 2.19) were 

reported as having been known previously, and there were two participants reported having 

known more than 7 of the artists. 

Design. The design of the study phase – 2 (Order – blocked or interleaved first) x 2 

(Condition – blocked or interleaved) x 4 (Quartile) x 3 (Number of Exemplars – 12, 15, 18) – 

was identical to Chapter 2.  

The tests were counterbalanced and designed as follows: 2 (Order – blocked or 

interleaved first, based on which condition participants studied first) x 2 (Condition – blocked or 

interleaved) x 2 (Exemplar shown – old or new) x 2 (Artist name displayed – right or wrong). 

The dependent variables of interest were: 1) proportion mind wandering at study, 2) old/new 

recognition, and 3) artist or category recognition. The measure of inductive learning, here, would 

be when participants correctly identified the artist for new, unstudied paintings. 

Artists and the order of conditions were yoked and counterbalanced across participants in 

the same fashion as in Chapter 2. 

Procedure. Participants first studied pairs of artists and paintings in either the blocked or 

interleaved condition, were tested on their learning, and then studied the remaining artists and 

paintings in the other condition before one final test. Again, the study phases were identical to 
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Chapter 2. Participants were presented with pairs of artists and paintings at a rate of 3000 ms 

with a 1000 ms ISI while being randomly probed for their attentional state. 

Test Phase. During the test sessions, participants were shown paintings, one at a time, 

and asked to evaluate whether they were previously studied or not, as well as categorize the artist 

whom they believed painted the painting. A painting was presented on screen and participants 

were asked whether it was “old” (e.g., studied) or “new” (e.g., unstudied, never presented). After 

their response was made, an artist name was displayed below the painting and participants were 

asked to judge whether the artist whose name was displayed was “correct” or “incorrect.” 

Participants were tested with 4 paintings from each artist, 2 of which were old and 2 of which 

were new. Among the 4 paintings, 2 of them were then paired with the correct artist name and 2 

were paired with an incorrect artist name. This resulted in 4 different pairings: 1 old painting 

with the right artist, 1 new painting with the right artist, 1 old painting with the wrong artist, and 

1 new painting with the wrong artist, for a total of 96 images tested, 48 per condition. These 

pairings of paintings and artist names were randomized throughout the test session. Participants 

could take as much time as they wanted to on the test, and no feedback was provided. 

Results 

One participant was removed from the ERP analyses (because their EEG data had too 

many unusable channels), but behavioral analyses computed with them removed did not differ. 

All analyses were first computed with Order, however, because no main effects or interactions 

involving Order reached significance, all analyses are reported collapsing over Order. For 

brevity, only significant results are reported, unless they directly tested the hypotheses. 

The statistical procedures were identical to those in Chapter 2 and 3, where appropriate. 
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Behavioral Results 

Old/New Test. Comparisons between interleaved and blocked conditions were 

performed on three different measures of performance were used to assess performance on the 

old/new test: (a) proportion of “old” responses, (b) old/new recognition accuracy, e.g., 

proportion of old images correctly identified as old and new images correctly identify as new, 

and (c) d’. d’ was computed from the rate of hit rates and false alarms as a measure of sensitivity 

of whether participants were more likely to respond “old” when an image was actually “old” as 

opposed to “new”. 

A 2 (Condition) x 2 (exemplar – old or new) revealed that participants responded “old” 

more frequently when the image was, indeed, old, F(1, 39) = 164.98, p < .0001, ηp
2 = 0.81 (see 

Figure 4.1). There was no effect of Condition, nor was the interaction between Condition and 

exemplar significant. A 2 (Condition) x 2 (exemplar) analysis on old/new recognition accuracy 

revealed that participants were marginally better at recognizing previously studied paintings 

compared to unstudied paintings, F(1,39) = 3.66, p = .063, ηp
2 = 0.09. There was no effect of 

Condition nor was there an interaction between Condition and exemplar tested. Finally, an 

analysis of sensitivity, as measured by d’, revealed no difference between Conditions, t(39) = 

0.71, p = .48, 95%CI[-0.08, 0.17]. 
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Figure 4.1. P(responded old) and d’ on the old/new test 

Proportion responded old (left panel) and d’ (right panel) between blocked and 

interleaved conditions. Error bars represent standard errors of the mean. 

 

Category Recognition. As shown in Figure 4.2, there was an effect of Condition, 

F(1,39) = 70.48, p < .0001, ηp
2 = 0.64, such that participants were more accurate at identifying 

the artist for paintings they had studied in the interleaved than blocked condition. There was no 

effect of whether the item had been previously studied (old) or not (new), nor did it interact with 

Condition. 

 

 
Figure 4.2. Category recognition by condition 

0.0

0.2

0.4

0.6

0.8

Old New
Whether the exemplar was old or new

P(
re

sp
on

de
d 

ol
d)

Condition
Blocked

Interleaved

0.0

0.2

0.4

0.6

Blocked Interleaved
Condition

d'
pr
im
e

0.00

0.25

0.50

0.75

Old New
Whether the exemplar was old or new

%
 C

or
re

ct
ly 

Id
en

tif
ie

d

Condition
Blocked

Interleaved



 

83 

Category recognition based on Condition and whether the painting tested was studied 

(old) or unstudied (new) previously. Error bars represent standard error of the mean. Inductive 

learning is represented by the right-hand set of bars for the new, unstudied images. 

 

It was impossible to determine whether participants had actually learned the category on 

trials in which they correctly rejected the incorrectly-paired artist name. Participants could have 

correctly rejected the trial because they knew the incorrectly-paired artist whose name was 

presented, but not the identity of the correct artist. Thus, an additional analysis was conducted on 

trials in which only the correct artist name was presented (see Figure 4.3). There was an effect of 

Condition, such that participants were better able to recognize the artist when the exemplar 

paintings of those artists had been studied in the interleaved rather than in the blocked condition, 

F(1,39) = 38.16, p < .0001, ηp
2 = 0.49. There was also a main effect of whether the exemplar was 

previously studied or not, F(1,39) = 12.29, p = .001, ηp
2 = 0.24. Participants were better at 

recognizing the artists of paintings they had studied previously compared to new never-studied 

exemplars. The interaction of Condition and Exemplar was not significant. 

 

 
Figure 4.3. Category recognition when the correct category label was tested 
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Category recognition based on Condition and whether the painting tested was studied 

(old) or unstudied (new) previously. Only exemplars which were paired with the correct 

category label (e.g., artist name) are included. Error bars represent standard error of the mean. 

Inductive learning is represented by the right-hand set of bars for the new image presented. 

 

Mind Wandering. Participants mind wandered .35 (SD = .20) of the time. As was found 

in Chapter 2, participants mind wandered significantly more in the blocked (M = .39, SD = .22) 

than interleaved condition (M = .30, SD = .24), F(1,39) = 6.02, p = .019, ηp
2 =.13 (see Figure 

4.4). There was also an effect of Quartile, F(2.74, 106.77) = 22.00, p < .0001, ηp
2 =.36, such that 

participants mind wandered more over time. A separate 2 (Condition) x 3 (number of exemplars) 

analysis was computed; however, the number of exemplars did not have an effect. None of the 

interactions between Condition, number of exemplars, and/or quartile were significant. 

 

 
Figure 4.4. Mind wandering by condition over time 

Proportion of mind wandering between blocked and interleaved practice over time, as 

represented by Quartile. Error bars represent standard errors of the mean. There were 3 

attentional probes presented within each Quartile. 
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Mind Wandering and Learning. Between-participant correlations were computed 

between mind wandering, old/new recognition, and artist (category) recognition, for blocked and 

interleaved conditions separately. Condition-specific mind wandering scores were computed for 

each participant and correlated against participants’ performance in that particular condition. In 

the blocked condition, participants who mind wandered more performed more poorly on the 

old/new test, r = -.35, t(38) = -2.27, p = .029, however there was no effect on artist recognition, r 

= -.13, t(38) = -0.79, p = .434. On the other hand, mind wandering was negatively correlated 

with both old/new recognition, r = -.50, t(38) = -3.53, p = .001, and artist recognition, r = -.58 , 

t(38) = -4.35, p < .0001, in the interleaved condition. That is to say, participants who mind 

wandered more in the interleaved condition were worse at recognizing whether an item was old 

or new and also worse at recognizing the correct category. 

Collapsing across Condition, across the board, participants who mind wandered more 

performed worse on both the old/new recognition test, r = -.49, t(38) = -3.47, p = .001, as well as 

the artist recognition test, r = -.42, t(38) = -2.84, p = .007. 

Mind wandering and Learning in the Blocked condition. As each attentional state report 

is tightly linked to a particular artist in the blocked condition, between-participant correlations 

were not the most appropriate approach for looking at the effect of mind wandering on learning 

in the blocked condition; a within-participant analysis is required. Therefore, separate 2 (Order) 

x 2 (Attentional State: on task or mind wandering) x 2 (exemplar: whether the tested exemplar 

was old or new) mixed ANOVAs on the different outcome measures were computed. Attentional 

state was treated as if it were an independent variable in this analysis. To accommodate the 

possibility of unbalanced data and the one participant who did not mind wander at all in the 
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blocked condition, additional hierarchical logistic regressions were computed. For brevity, as the 

pattern of results, unless otherwise noted, were identical, only the statistics for the ANOVA are 

reported. 

As shown in Figure 4.5, participants were more likely to respond “old” for categories in 

which they reported being on-task in the blocked condition, F(1,37) = 7.25, p = .011, ηp
2 = 0.16. 

There was also an effect of whether the tested item was an old or new exemplar, F(1,37) = 

103.31, p < .0001, ηp
2 = 0.74. Specifically, participants said that old exemplars were “old” more 

often than they said new exemplars were old. No other effects were significant. 

 

 
Figure 4.5. P(responded old) by attentional state 

Proportion of the time participants responded an exemplar was old (e.g., presented for 

study previously) given attentional state and whether the exemplar was actually old or new. 

 

A within-participant comparison of old/new recognition accuracy by Attentional State 

within the blocked condition revealed a main effect of exemplar, F(1,37) = 9.23, p = .004, ηp
2 = 

0.20, such that participants were better at recognizing previously studied exemplars. While the 

effect of Attentional State was nonsignificant, F(1,37) = 0.75, p = .39, ηp
2 = 0.02, there was a 
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interaction between Attentional State and exemplar, F(1,37) = 7.25, p = .011, ηp
2 = 0.16. This 

interaction was expected given the bias participants had for responding “old” when they reported 

being on-task. Follow-up Bonferroni-corrected tests revealed that participants were significantly 

worse at recognizing previously studied items when they were mind wandering, t(69.87) = 2.65, 

p < .001, but there was no effect of Attentional State on new exemplars, t(69.87) = 1.59, p < 

.116. For those artists participant’s reported being on-task, participants were also better at 

recognizing whether the item was old or new when the item was, indeed, old, t(69.10) = 4.05, p 

= .0001. There was no effect of whether the exemplar was previously studied or not on artists 

which the participants mind wandered on, t(69.10) = 0.79, p < .434.4 

Finally, analyses conducted on category recognition revealed a main effect of Attentional 

State in the blocked condition, F(1,37) = 4.64, p = .038, ηp
 2 = 0.11. Specifically, participants 

                                                

4 The logistic regression revealed an additional interaction between Order and whether an 

old or new exemplar was presented, β = 0.84, χ2(1) = 5.34, p = .021. Post-hoc tests revealed that 

participants who studied blocked items second were significantly worse at recognizing new 

images compared to old images, z = -3.37, p = .0007; in other words, participants mistakenly 

responded ‘old’ to never seen before paintings. There was no difference in recognition when 

participants were exposed to the blocked condition first, z = -0.30, p = .768. A plausible 

explanation for this interaction would be that participants who studied interleaved and then 

blocked items were exposed to twice as many paintings by the time of test, which might have 

contaminated their learning and decreased their ability to distinguish between those which were 

previously presented and those which were not. All other effects in the multilevel regression 

model were identical to the ANOVA. 
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were selectively impaired in their ability to recognize the works of artists that they mind 

wandered on. There was no effect of exemplar, nor was there an interaction between exemplar 

and Attentional State. 

Metacognitive Judgments and Self-Report Measures. Consistent with Chapter 2, most 

participants had fairly accurate metacognitions about their performance. When asked in which 

condition they mind wandered more, 28 participants said the blocked condition, 9 said the 

interleaved condition, and 3 said there was no difference, χ2(2) = 25.55, p < .0001. Similarly, 

when asked in which condition they learned best, most participants said the interleaved condition 

(N = 24), compared to blocked condition (N = 13), χ2(2) = 16.55, p < .001. Three reported that 

interleaved and blocked practice were similarly effective. 

Between-participant correlations assessing mind wandering and self-reported ratings on 

the importance, familiarity, and liking of art are reported in Table 4.2. There was a significant 

negative correlation between self-reported liking of art and mind wandering, rs = -.42, p = .008, 

such that participants who reported liking art more, mind wandered less. No other correlations 

were significant. Importantly, while participants self-reported knowing an average1.42 artists 

(SD = 2.19), the number of artists that they claimed to know was not correlated with either their 

rate of mind wandering or with any test performance measure. 
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Table 4.2. Self-reports, mind wandering, and performance correlations 

Correlation matrix of self-reported measures, mind wandering, and test-performance. 

Spearman rank-order correlations, rs, were computed because self-reports were measured on a 1-

7 Likert scale, with 1 being low importance, liking, and familiarity, and 7 being high importance, 

liking, familiarity. P-values are reported in parentheses. 

 

Event-related potentials 

The two questions addressed with ERPs were: (1) whether mind wandering would be 

associated with attenuations in the late slow wave as seen in Chapter 3, and (2) whether there 

were processing differences in blocked and interleaved practice during encoding. Analyses 

focused on 2 different windows: (1) an early sensory P1 from 60-120ms at occipital sites O1, Oz, 

and O2, (2) an ongoing slow wave from 400-1500 ms thought to reflect deep encoding-related 

processing at parietal electrodes PZ, P1, P2, P3, P4, P5, and P6 as was done in Chapter 3 (or Xu, 

Friedman, & Metcalfe, 2018). 

Mind Wandering. 2 (Condition: Blocked or Interleaved) x 2 (Attentional state: On-task 

or Mind wandering) ANOVAs were computed on the two time windows of interest. Degree of 

freedom may differ as some participants did not report mind wandering in certain conditions. 
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There was a marginal difference between on task and mind wandering states on primary 

sensory processing, as indexed by the P1 component, F(1,30) = 3.40, p = .075, ηp
2 = 0.10. There 

was no effect of Condition, F(1,30) = 0.51, p = .481, ηp
2 = 0.02, nor was the interaction 

significant, F(1,30) = 0, p = .997, ηp
2 = 0. Analyses computed on the 400-1500 ms window 

revealed a significant effect of Attentional State, F(1,38) = 4.27, p = .048, ηp
2 = 0.12, such that 

processing was attenuated when participants were mind wandering relative to when they were 

on-task. There was no effect of Condition, F(1,38) = 0.12, p = .734, ηp
2 = 0.004, nor was there an 

interaction between Condition and Attentional State, F(1,30) = 0.24, p = .629, ηp
2 = 0.01. 

 

 
 

Figure 4.6. On-task and mind wandering ERPs  

On task and mind wandering Event-related potentials at the P1, PZ, and P2 electrodes. 

are shown in the bottom panel. ERPs depicted only included trials in which an attentional report 

was obtained. Only participants who had on-task and mind wandering reports in both Blocked 

and Interleaved conditions were included (n = 31). 

 

While the interaction between Condition and Attentional State was not significant, to 

determine whether the interleaving effect might be related to differences in late processing, 

comparisons of interleaved and blocked practice were performed within on-task and mind 

wandering states at the 400-1500 ms window. There was no effect of Condition on ERP 
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amplitudes when participants were on-task, t(59.8) = 0.59, p = .557, or mind wandering, t(59.8) 

= 0.69, p = .905.  

Single-trial analysis. To account for the lack of mind wandering some participants 

exhibited, a secondary analysis using single trial ERP data was performed. Single-trial ERPs 

were extracted and the effects of Condition and Attentional State were examined using a linear 

mixed-effects model in the R environment (R Core Team, 2013) with the lme4 package (Bates, 

Maechler, Bolker, & Walker, 2015). Condition and Attentional State were dummy coded and 

treated as fixed effects within participant. Electrode and participants were treated as random 

factors. Type II Wald χ2 tests are reported for main effects and interactions. 

There was an effect of Attentional State such that early sensory processing was 

attenuated when mind wandering relative to when participants were on task, β = 0.72, SE = 0.32, 

χ2(1) = 6.24, p = .012. There was no effect of Condition, β = -0.16, SE = 0.28, χ2(1) = 0.51, p = 

.476, or interaction with Condition, β = -0.18, SE = 0.49, χ2(1) = 0.14, p = .713. Single-trial 

analyses of the late slow wave from 400-1500 ms also revealed an effect of Attentional State 

such that mind wandering was associated with diminished processing, β = -1.56, SE = 0.68, χ2(1) 

= 5.57, p = .018. There was no effect of Condition, β = 0.02, SE = 0.374, χ2(1) = 0.003, p = .956, 

nor was there an interaction of Attentional State and Condition, β = -0.57, SE = 0.85, χ2(1) = 

0.45, p =.504. Again, for purposes of the hypotheses, comparisons of Condition within both on-

task and mind wandering states were performed. Pairwise Tukey tests revealed no differences 

between interleaved and blocked conditions when participants were on-task, t(29.07) = 0.47, p = 

.642, or when they mind wandered, t(25.75) = 0.53, p = .598. 

Blocked vs. Interleaved. Because only a subset of the data, namely trials at the end of each 

each block, was used in the previous analyses, additional analyses were conducted with all trials 
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to examine the whether there were differences between conditions (see 

 

Figure 4.7). There was no difference between conditions at the P1 component, F(1,38) = 

0.63, p = .433, ηp
2 = 0.02. There was, however, a marginal effect of Condition from 400-1500 

ms, F(1,38) = 3.43, p = .072, ηp
2 = 0.08, such that ERP amplitudes were greater in the 

interleaved than blocked condition. 

 

 

 

 

Figure 4.7. Blocked and interleaved ERPs 

Event-related potentials for Blocked and Interleaved Conditions at the P1, PZ, and P2 

electrodes. The blocked condition is represented by the solid lines and the interleaved condition 

is represented by the dotted lines. ERPs reflect trials taken across the entire study session from 

all participants (n = 39). 

 

Mind wandering, ERPs, and Learning 

To examine the direct relation between the ERP difference found during mind wandering 

and on task states on learning, a mediation analyses was performed using the bmlm package 

(Vuorre, 2017; Vuorre & Bolger, 2017). Attentional state was used as the independent variable, 

single-trial ERP (averaged across electrodes) was the mediator, and binary category recognition 
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performance was the dependent variable. The model is presented in Figure 4.8. ERP amplitude 

did not mediate the relationship between attentional state and category recognition (indirect 

effect = -0.001, 95%CI [-0.01, 0.01]; proportion mediated effect = 0.01, 95%CI [-0.12, 0.12]). 

The effect of attention state on category recognition remained after ERP amplitudes into account 

(c’ = -0.07, 95%CI [-0.12, -0.03]). 

 

 

Figure 4.8. Mediation analysis 

Path diagram of the multilevel mediation model. Attentional State is coded as 0 (on task) 

or 1 (mind wandering) based upon participant’s self-reports. c = total effect (direct + indirect 

effect of X on Y), me = mediated effect, c’ = direct effect, pme = proportion of effect that is 

mediated, cov(a,b) = covariance of subject-level a and b parameters. Parameters are reported 

with 95% credible intervals in square brackets.  

Discussion 

This experiment showed that mind wandering attenuates deep processing and is 

associated with deficits in learning. The effect of interleaving on reducing mind wandering 

relative to the blocked condition, found in Chapter 2, was also replicated. Furthermore, these 
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data demonstrated that the memorial benefit of interleaving was specific to category recognition 

(and induction); there was no difference in old/new recognition between interleaved and blocked 

practice conditions. (An additional examination into the relation of old/new and category 

recognition is reported in Appendix 2.) Together, these findings provide converging evidence to 

suggest that mind wandering results diminished deep, cognitive processing, thereby inhibiting 

one’s ability to learn.  

Although the marginal effect of Condition from 400-1500 ms when all trials were 

included (and differences in processing between attentional states were disregarded) is 

suggestive of increased processing in the interleaved condition, caution should be taken when 

interpreting this result. Recall that participants mind wandered significantly more in the blocked 

than interleaved condition and that mind wandering was linked to poorer recognition and 

diminished processing. In addition, there were no differences between conditions when ERPs 

were compared within each attention state or when attentional state was included in the analysis. 

Insofar as late positivity is an index of encoding-related deep processing, the difference in the 

rate of mind wandering between conditions could suggest that the observed ERP difference 

between interleaving and blocking was not due to processing differences between conditions, but 

rather, differences in the frequency of mind wandering. In other words, participants were less 

likely to mind wander in the interleaved condition and therefore processed the information to a 

greater extent. This, then, led to better learning of the materials. In contrast, since learners were 

more likely to mind wander in the blocked condition, they then processed less of the material 

deeply and therefore learned worse. To summarize, these data provide an alternate explanation 

for the benefits of interleaving: the interleaving effect is not due to a difference in condition-
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specific processing of the materials, but rather a difference in one’s ability to remain engaged 

with the task. Several additional concerns are discussed below. 

One limitation of this experiment is the inability to directly model the relation between 

mind wandering, ERPs, and learning. While an attempt was made with a multilevel mediation, 

the experimental design precluded proper interpretation of the model. Because items presented 

for test were sometimes new and sometimes old, it was impossible to directly map a particular 

artist-painting presented at study (and its associated ERP amplitude) to test performance. 

Moreover, there were more studied than tested exemplars, making it impossible to evaluate 

whether and how encoding for the studied but untested exemplars affected test performance. In 

previous work which utilized a similar analytic approach to examine the relationship between 

study conditions, ERP amplitude, and recall (e.g., Bloom, Friedman, Xu, Vuorre, & Metcalfe, in 

press), there was a one-to-one relation between study item, ERP amplitude, and item recall. This 

relation, however, is not present in this experiment. While an analysis focusing on only the 

previously studied and tested exemplars might seem like a solution, it is not a viable analytic 

approach due to the low number of items. To evaluate the effect of mind wandering, only a 

subset of the presented exemplars – those presented within 12 s of an attentional probe – could 

be used in the mediation analysis. Furthermore, participants were presumably processing and 

learning the items which were presented prior to 12 s window. Consequently, although mediation 

is an encouraging method, for the aforementioned reasons, it is uninformative here. In order to 

appropriately model the relation of mind wandering, ERPs, and learning, potential experiments 

would have to present a long sequence of non-repeating items at study, which are all tested later, 

and have participants randomly report their attentional state throughout. Doing so would 
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overcome the study and test item correspondence problem and allow collection of sufficient data 

to compute a multilevel mediation. 

While the presentation of materials in either a blocked or an interleaved fashion might 

seem comparable on the surface, there were subtle differences between the two conditions. An 

attempt was made through counterbalancing and randomizing materials across and within 

participants and conditions to control for these differences, but they may still have affected ERPs 

and behavior. These differences include presentation of the category (or artist) name, the visual 

similarities amongst paintings within each block, and participants’ expectations of the 

subsequent artist-painting exemplar. For example, as the same artist is presented over and over 

again within the blocked condition after several artist-painting pairs, participants would no 

longer need to read and process the artist name; they would still need to read the artist name in 

the interleaved condition though. In particular, item repetition has been shown to have an effect 

on ERPs. While items in the blocked condition were not identical to one another, they were 

highly similar. Previous work has demonstrated that presenting the same item again results in 

suppressed ERP amplitudes related to the initial presentation or non-repeated items (e.g., Grill-

Spector, Henson, & Martin, 2006; Gruber, & Müller, 2005). While exemplars in the blocked 

condition were not identical, they were categorically similar and also repeatedly presented. 

Therefore, one might predict that ERP amplitudes in the 200-400 ms window, a window affected 

in repetition suppression effects, would be diminished in the blocked relative to interleaved 

condition. To examine this, an additional analyses in the 200-400 ms time window was 

performed. Indeed, there was a main effect of Condition, F(1,38) = 18.70, p < .001, ηp
2 = 0.33. 

Contrary to the expected pattern, ERP amplitudes were larger in the blocked than the interleaved 

condition. It is worth nothing that the repetition suppression effect is characterized by a 
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heightened ERP response to first item of a given category relative to the ERP response to second, 

or repeated, appearance of the item. Using all the trials in the analysis blurs the distinction 

between the initial presentation, which should not be suppressed, and repeated presentations, 

which should be suppressed. While it is possible that repetition suppression might occur in the 

blocked condition, computation of reliable ERP estimates is difficult as there were only 12 artists 

per participant per condition. Alternatively, it is possible that no repetition suppression effect 

exists in the blocked condition. Although items in the blocked condition were visually similar, 

they were not identical copies of the first (or previous) items. Future studies should be conducted 

to examine whether such an effect exists when items are blocked versus interleaved. Crucially, 

this difference illustrates an important consideration when examining the efficacy of 

interleaving. While interleaving might seem like a better alternative to blocking, the underlying 

mechanics of how and why interleaving works is still not well understood. One possibility for 

might be through the mind wandering explanation tested here, however, future experiments 

should also consider alternative possibilities. 

In all, these data provide further evidence that the interleaving effect may be due to 

differences in attention or, more specifically, decreases in the rate of mind wandering. The level 

of deep processing exhibited during blocked and interleaved practice conditions was similar, 

however the frequency with which participants’ mind wandered within each of these two 

conditions differed. When people are on-task, blocked and interleaved practice may recruit 

similar amounts of deep processing. However, because people are unable to remain focused and 

mind wander at a greater degree during blocked practice, they fail to process the materials deeply 

and are therefore unable to recognize the items at test. 
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Chapter 5: 

Concluding Remarks 
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The experiments presented here tackled two broad issues pertaining to mind wandering 

and learning. The first two chapters of this work were dedicated to understanding causes of mind 

wandering in hopes of finding ways to reduce the tendency of doing so, and the last two chapters 

utilized ERPs to examine changes in processing which occurred when one mind wandered 

during learning. Chapters 1 and 2 identified conditions under which one is more likely to mind 

wander during learning (i.e., studying materials outside one’s own RPL or engaging in blocked 

practice). By avoiding such conditions, e.g., switching from blocked to interleaved practice, one 

might then be able to reduce their mind wandering and improve their learning. For example, if a 

learner were to study materials which tracked their RPL, e.g., items became more difficult as 

easier materials are mastered, learning efficacy should increase as the tendency to zone out 

diminishes. Although the reasons why a person might mind wander are manifold and varied, 

these data demonstrate that altering one’s study practices reduces mind wandering and improves 

learning. Chapter 3 focused on neurocognitive consequences of drifting off task and isolated 

decreased deep processing as a potential mechanism which may underlie the lack of encoding 

which goes on during mind wandering. Finally, Chapter 4 replicated the attenuated deep 

processing result found in the previous chapter while demonstrating the detrimental effect of 

mind wandering had on learning.  

There are several key takeaways from this work. First and foremost, this research 

underscores the message that there are methods to reduce one’s likelihood of mind wandering. 

Two approaches – studying appropriately difficult materials and interleaving (or spacing) 

materials – were found to decrease mind wandering and were also associated with better 

learning. While some approaches (e.g., mindfulness training: Mrazek et al., 2013; Schooler et al., 

2014; Xu et al., 2017; testing: Szpunar et al., 2013) have also been shown to be effective in 
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reducing mind wandering, more work should be conducted to discover other methods to 

overcome mind wandering. As people are known to mind wander up to half of their waking 

moments, changing the rate at which they do so even by five or ten percent could result in 

tremendous learning gains as well as benefits across other facets of life. Although external 

influences beyond our control might continue to cause us to zone out, this work demonstrates 

that it is possible, to an extent, to reduce one’s tendency to drift off task. 

Second, this research is the first to demonstrate the impact of mind wandering on late 

ongoing processing (in particular, encoding-related processing). While other studies have 

demonstrated that mind wandering attenuates early sensory and attentional processing, the 

effects on learning were yet unknown. The ERP findings presented here were the first to examine 

and show that mind wandering leads to reductions in late processing, which has previously been 

associated with encoding or encoding-related processing. While behavioral findings did suggest 

that encoding was diminished during mind wandering, these experiments were the first to 

demonstrate this. Not only have Chapters 3 and 4 identified a potential mechanism by which 

mind wandering impairs learning, but this marker of mind wandering could be used to facilitate 

the development of neurofeedback tools or paradigms which use brain data to identify when a 

person is mind wandering (e.g., when the late going slow wave is attenuated) and prompts them 

to remain on task. There is one important caveat, however. While EEG and ERPs are temporally 

precise, they are unable to provide accurate spatial localization of where changes in the brain 

occur during mind wandering and learning. There may be changes in networked regions, (e.g., 

Golchert et al., 2017; Mason et al., 2007), or other subcortical areas involved. Additional 

research should be conducted to investigate whether and how being in a mind wandering state 

affects processing in networked and subcortical regions associated with learning and memory.  
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Third, this work highlights the role that mind wandering may have on a variety of 

cognitive and psychological phenomena. For example, these experiments demonstrated that the 

effect of interleaving on mind wandering might be responsible for the downstream benefits in 

learning. Because participants were more likely to mind wander in the blocked condition, they 

were unable to engage with the materials deeply and therefore failed to successfully encode the 

materials. While interleaving is commonly touted as an excellent study practice for improving 

learning, the implication that its efficacy is dependent on reducing one’s propensity to mind 

wander is an important one. Merely spacing the materials is insufficient; it must reduce mind 

wandering in order to boost learning. The role mind wandering plays is not selective to 

interleaving either. For example, intermittent testing was shown to reduce the incidence of mind 

wandering (Jing et al., 2016; Szpunar et al., 2016; Szpunar et al., 2016; Szpunar, 2017). These 

effects – interleaving (or spacing) and testing – might only be the tip of the iceberg; mind 

wandering could potentially play a vital role in other psychological phenomena. It would 

behoove the field to more deeply consider the role mind wandering might have on other domains 

of psychology and related fields. Indeed, if mind wandering is implicated, finding strategies to 

circumvent or reduce the likelihood of zoning out would be crucial. 

Finally, the importance of considering individuals when investigating mind wandering 

cannot be stressed enough. While Chapter 1 reconciled an important conflict in the literature on 

task difficulty and mind wandering, it was only possible because individual differences were 

considered. If expertise was not taken into consideration, the U-shaped pattern of results could 

have been misinterpreted as people being more attentive to medium-difficulty items. Adding 

individual-level expertise enabled the separation of non-monotonic effect of task difficulty into 

two effects: increasing mind wandering as difficulty increased for participants with low mastery 
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and decreasing mind wandering for participants with high mastery. Some have investigated 

individual differences such as working memory capacity on mind wandering (e.g., McVay & 

Kane, 2012; Unsworth & McMillan, 2013; Unsworth et al., 2012). However, a more thorough 

and systematic investigation of individual-level factors is necessary. Not only does it have the 

potential to reconcile contradictory findings, such as that of task difficulty on mind wandering, 

but it would further our understanding of these different effects. Future research on mind 

wandering, and in psychology more generally, should consider factoring in individual 

participant-level differences where appropriate. Doing so would facilitate a more holistic 

understanding of the phenomenon in question.  

Mind wandering and attention 

At first glance, one might consider the construct of mind wandering as the opposite of 

attention; in other words, a lack of attention. However, this is not necessarily the case. One 

theory of mind wandering suggests that there are two parallel streams of consciousness that 

occur simultaneously, one for the external world and one for internal milieu, and that mind 

wandering happens when one shifts from the external onto the internal stream (e.g., Smallwood 

& Schooler, 2015; Schooler et al., 2011). In other words, attention becomes decoupled from the 

external world. Under this framework, attention relates to happenings in the external stream 

whereas mind wandering deals with the internal stream. When a person mind wanders, they are 

attending to the internal stream of consciousness instead of the external task at hand.  

Even then, skeptics might argue that mind wandering is a particular case of divided 

attention (e.g., Craik, Govoni, Naveh-Benjamin, & Anderson, 1996; Kahneman, 1973). 

However, there are clear differences between the two. In divided attention paradigms, attention 

to the external world is divided to different domains, e.g., visual and auditory, or separate tasks. 
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The ongoing internal stream of consciousness which is presumably the target of mind wandering 

still continues to exist. Consequently, an individual would have 3 possible targets to attend to: 

(1) visual information, (2) auditory information, and (3) their internal thoughts. Divided attention 

paradigms focus on the first 2 targets whereas during mind wandering participants would be 

attuned, instead, to their own internal thoughts. This would presumably result in reductions in 

one’s ability to process both visual and auditory information. The impact on the visual and 

auditory streams of information might also vary depending on the extent that one’s mind is 

focused on their internal thoughts. 

The most crucial evidence distinguishing attention and mind wandering comes from 

neuroimaging studies. If mind wandering is simply a case of inattention, it should be associated 

with diminished activation of task-related areas and networks. Instead, studies have shown that 

the contents of and neural processes exhibited during mind wandering are anticorrelated with the 

external world and instead linked to the default network (e.g., Mason et al., 2007; see Schooler et 

al., 2011 for review). Moreover, differences in the mode of mind wandering, e.g., intentional vs. 

unintentional, have been linked to distinct brain regions (Golchert et al., 2017), suggesting that 

mind wandering is a unique construct with its own neurocognitive marker(s). 

 

Important advances have been made in the last few years to map the relation of mind 

wandering and learning. Nonetheless, the question of what can be done to prevent or limit mind 

wandering during learning is still far from resolved. While much research suggests that mind 

wandering impairs learning (e.g., Metcalfe & Xu, 2016; Smallwood et al., 2007; Thomson et al., 

2014; Xu & Metcalfe, 2016), some findings also suggest that specific types of mind wandering 

may have a positive effect on learning and memory (e.g., Jing et al., 2016; Mason & Reinholtz, 
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2015). This suggests that the relation between learning and mind wandering is not as simple as a 

‘mind wandering = worse learning’ axiom but requires continued research in order to fully 

elucidate the relation between these two regularly exercised mental activities. Moreover, many 

questions, such as whether the presence of other learners affects mind wandering or what role 

mind wandering might have on memory consolidation, remain unanswered. The findings 

presented here have addressed some of these gaps in understanding and, most importantly, will 

hopefully serve as a platform for future research on mind wandering and learning.  
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Appendix 1 

Comparison of the mind wandering attenuation and the Difference in memory (Dm) 

effect for the PZ electrode in Chapter 3. The left hand side has ERPs and difference waves for 

On Task and Mind Wandering states, whereas the right hand side illustrates the Dm effect. Dm 

effect ERPs (and difference waves) were computed from all study trials, whereas the on-

task/mind wandering ERPs only include trials which occurred within 12 seconds preceding each 

respective attentional probe. Top Row. On Task trials are represented by the black line and mind 

wandering trials are presented in the dashed red line. Correctly remembered items are shown in 

blue and not remembered items are shown in dashed purple. Bottom Row. Difference 

waveforms with the mind wandering ERPs subtracted from the on task ERPs are in the left panel 

and items not remembered subtracted from remembered items are on the right. 
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Appendix 2 

To investigate the relation between old/new item recognition and category recognition, a 

hierarchical mixed logistic regression was computed with category recognition accuracy, coded 

as a 0 or 1, as the dependent measure. Condition (blocked or interleaved), Exemplar (whether the 

item was previously studied, old, or not, new), Response (the participant’s response on the 

Old/New Test as either old or new), and Artist Shown (whether the correct or incorrect artist 

name was displayed), were used as factorial fixed effects nested within-participants. Pr is used to 

denote the predicted probability of the respective parameter estimate. The model reported is a 

non-saturated model with a 3-way interaction among Artist Shown, Exemplar, and Response, 

and the associated 2-way interactions between the aforementioned factors. The reference in the 

model was set to previously studied, e.g., ‘old’, blocked exemplars, which participants responded 

were ‘old’ and were presented with the correct artist/category name. 

Fixed effects from the model are shown in Appendix 3A. The intercept reflects 

performance in the blocked condition, averaged across all other variables, suggested that 

performance was 0.75 with a 95% Confidence Interval (CI) of 0.72 to 0.78. There was a main 

effect of Condition, β = 0.84, SE = 0.11, z = 7.94, p < .001, such that people identified more 

categories in the interleaved (Pr = 0.82, 95%CI [0.78, 0.85]) than blocked condition (Pr = 0.66, 

95%CI [0.63, 0.70]). There was also an effect of Response, such that participants identified more 

categories which they previously said were ‘old’ (Pr = 0.79, 95%CI [0.75, 0.82]), as compared to 

items they said were ‘new’ (Pr = 0.70, 95%CI [0.67, 0.74]), β = 0.45, SE = 0.10, z = 4.40, p < 

.001. However, as shown in Appendix 3B, the effect of Response was qualified by a significant 

interaction with Artist Shown, β = 1.70, SE = 0.31, z = 5.55, p < .001. Follow-up investigations 

revealed that when the correct category name was given, participants were significantly better at 
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identifying those which they responded were “old” previously, z = 6.48, p < .0001. There was no 

difference when the incorrect category name was provided, z = 2.38, p = .017. 

Analyses were also computed with Old/New accuracy in place of Response, but there 

was no difference. Critically, because response and accuracy were different coding systems for 

performance, the interaction term of Exemplar and Response, β = 0.32, SE = 0.18, z = 1.74, p = 

.083, reflects the effect of Old/New . Modeled category recognition on items in which 

participants were accurate at identifying as old when old and new when new was 0.76, 

95%CI[0.73, 0.80]. It was 0.73, 95%CI [0.69, 0.77] on items in which participants responded 

incorrectly on the Old/New test. 

This pattern of results is in line with the Höffding step (Höffding, 1887, pp. 195-202), 

which proposed that to remember an association the activation of a memory trace of item A was 

a necessary step in recalling the associated item B. Here, item A would correspond to the 

painting and item B would be the category name. Consequently, responding ‘old’ suggested that 

participants had activated a memory trace in the same mental space as the correct category name, 

which then enabled participants to better identify the category later. In contrast, it is difficult to 

interpret the difference in performance when participants responded ‘old’ and shown the 

incorrect category. Participants may have been in the correct mental space, but misled by the 

presentation of the incorrect category name into thinking it was the correct name. On the other 

hand, responding ‘new’ would suggest that a participant was not in the correct mental space of 

the painting-artist pair, possibly biasing them to say the artist is incorrect. Crucially, memory of 

who painted the painting isn’t required to identify the category; instead, participants may have 

accurate memory of what the artist lure (or incorrectly presented category). As such, they may 

have used their knowledge of that label to make a judgement of the mismatch between exemplar 
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and category, while not still being unaware what the correct category was. For example, if a 

participant was presented with an ‘Alice Neel’ painting and the name ‘Terry Winters,’ they could 

provide a correct response if they knew that the painting was not ‘Terry Winters.’ Knowledge of 

the correct painter – Alice Neel in this case – would not be necessary.  

Appendix 2A: Hierarchical logistic regression results 

Fixed Effect Parameter Estimates from the Multilevel Model of Category Recognition in 

Chapter 4. As mentioned previously, all predictors were effect-coded and centered around 0. All 

factors, except Order, were were nested within participant. 

 Estimate (β) S.E. z-value p 
Intercept 0.67 0.78 8.65 <.001 

Order 0.07 0.15 0.51 .614 

Condition 0.84 0.11 7.94 <.001 

Artist Shown 0.13 0.19 0.68 .498 

Exemplar -0.10 0.09 -1.13 .258 

Response 0.45 0.10 4.40 <.001 

Artist Shown * Exemplar 0.07 0.18 0.38 0.706 

Artist Shown * Response 1.70 0.31 5.55 <.001 

Exemplar * Response1 0.32 0.18 1.74 .083 

Artist Shown * Exemplar * Response 0.29 0.41 0.71 .476 

1The effect Old/New recognition accuracy cannot be directly shown and is represented by 

the interaction term of Exemplar and Response. For example, saying a previously studied 

exemplar was “old” or an unstudied exemplar was “new” would be correct/accurate. 
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Appendix 2B: Modeled category recognition 

 
Model-predicted category recognition performance as a function of whether the correct 

artist name/category was presented and participant’s response on the old/new test. Error bars 

reflect 95% confidence intervals. 
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