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Abstract	

We	evaluate	the	potential	of	connectionist	models	of	developmental	disorders	to	

offer	insights	into	the	efficacy	of	interventions.	Based	on	a	range	of	

computational	simulation	results,	we	assess	factors	that	influence	the	

effectiveness	of	interventions	for	reading,	language,	and	other	cognitive	

developmental	disorders.	The	analysis	provides	a	level	of	mechanistic	detail	that	

is	generally	lacking	in	behavioural	approaches	to	intervention.	We	review	an	

extended	programme	of	modelling	work	in	four	sections.	In	the	first,	we	consider	

long-term	outcomes	and	the	possibility	of	compensated	outcomes	and	resolution	

of	early	delays.	In	the	second	section,	we	address	methods	to	remediate	atypical	

development	in	a	single	network.	In	the	third	section,	we	address	interventions	

to	encourage	compensation	via	alternative	pathways.	In	the	final	section,	we	

consider	the	key	issue	of	individual	differences	in	response	to	intervention.	

Together	with	advances	in	understanding	the	neural	basis	of	developmental	

disorders	and	neural	responses	to	training,	formal	computational	approaches	

can	spur	theoretical	progress	to	narrow	the	gap	between	the	theory	and	practice	

of	intervention.	(167	words)	
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Author	note	

Among	the	modelling	data	reported	here,	some	findings	have	previously	been	

published	in	Best	et	al.	(2015,	Figures	6	and	7)	and	Thomas	&	Knowland	(2014),	

in	a	conference	proceedings	(Alireza,	Fedor	&	Thomas,	2017),	a	technical	report	

(Fedor	et	al.,	2013),	and	an	unpublished	PhD	thesis	(Davis,	2017).	Unpublished	

data	are	also	presented	from	three	published	models,	Thomas	(2005),	Thomas,	

Knowland	&	Karmiloff-Smith	(2011),	and	Thomas	(2016a).	
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In	this	article,	we	consider	the	application	of	connectionist	networks	to	

modelling	interventions	to	remediate	developmental	deficits,	focusing	on	

disorders	of	speech,	language,	communication	and	literacy.	Recent	connectionist	

models	have	made	progress	in	simulating	patterns	of	acquired	deficits	by	

incorporating	neuroanatomical	constraints	into	their	architectures.	For	example,	

in	Ueno	et	al.’s	(2011)	model	of	the	reading	system,	a	dual	pathway	model	of	

reading	was	constrained	to	include	the	ventral	and	dorsal	anatomical	routes	

linking	primary	auditory	cortex	to	motor	cortex,	and	was	able	to	simulate	

patterns	of	acquired	deficits	in	word	repetition,	word	comprehension,	and	word	

naming.	Chen,	Lambon	Ralph	and	Rogers’	(2017)	model	of	the	semantic	system	

employed	a	spoke	and	hub	architecture,	constrained	by	the	heteromodal	

integrative	function	of	anterior	temporal	lobe,	the	hub	linking	representations	of	

concepts	in	different	sensory	and	motor	systems,	and	was	able	to	capture	

patterns	of	deficits	in	semantic	dementia	and	visual	agnosia	in	picture	naming	

(see	also	Hoffman,	McClelland	&	Lambon	Ralph,	2018).	These	models	simulated	

deficits	by	removing	connections	from	certain	regions	or	pathways	in	their	

architectures	guided	by	cognitive	neuroscience	data,	and	were	then	able	to	

simulate	patterns	of	recovery	by	relearning	in	the	impaired	model.	In	some	cases,	

the	effects	of	interventions	were	considered	by	altering	patterns	of	subsequent	

retraining	(e.g.,	Plaut,	1996,	1999).	Modelling	of	developmental	disorders,	

however,	is	less	advanced,	to	date	mainly	focusing	on	single	network	models	of	

individual	abilities.	Nevertheless,	because	such	models	focus	on	mechanisms	of	

change	as	a	cause	of	disorders,	they	offer	a	good	foundation	to	consider	

interventions.	
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Developmental	disorders	differ	from	acquired	disorders,	in	that	the	cause	

of	the	deficit	is	not	removal	of	structures	supporting	established	functionality	

but	a	developmental	process	that	occurs	under	atypical	constraints.	The	

developmental	process	is	characterised	by	complex	and	interacting	cascades,	by	

effects	of	timing,	and	by	plasticity	that	affords	opportunities	for	compensation	

(Karmiloff-Smith,	1998;	Thomas	&	Karmiloff-Smith,	2002;	Woollams,	2014).	

Over	30	years,	a	range	of	developmental	connectionist	models	has	advanced	

explanations	for	behavioural	deficits	in	disorders	such	as	dyslexia,	

developmental	language	disorder,	autism,	and	attention	deficit	hyperactivity	

disorder	(see	Thomas,	Baughman,	Karaminis	&	Addyman,	2012;	Thomas	&	

Mareschal,	2007;	Thomas	&	Karmiloff-Smith,	2003a,	for	reviews).	Having	

established	this	foundation,	some	authors	foresaw	an	influential	role	for	

connectionism	in	intervention	research.	Daniloff	(2002,	p.viii)	argued	that	

connectionism	‘will	…	form	the	backbone	of	much	of	language	therapy	in	the	

near	future’,	while	Poll	(2011,	p.583)	argued	that	‘insights	from	connectionist	

research	on	the	acquisition	of	early	morphology	and	syntax	can	provide	

theoretical	guidance	for	language	intervention’.	Despite	the	enthusiasm,	this	

potential	has	yet	to	be	realised,	with	very	few	models	of	developmental	deficits	

being	extended	to	address	behavioural	interventions	(see,	Best	et	al.,	2015;	

Harm,	McCandliss	&	Seidenberg,	2003,	for	exceptions).	

One	should	not	see	this	as	a	failure	of	connectionist	approaches	per	se.	

The	gap	between	theories	of	deficit	and	theories	of	intervention	is	a	more	

general	phenomenon.		To	take	one	example,	developmental	disorders	of	

language,	it	has	been	argued	that	despite	extensive	theories	about	the	causes	of	

behavioural	deficits,	such	theories	have	played	a	relatively	small	role	in	the	
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intervention	practices	of	speech	and	language	therapists;	and	indeed,	theories	of	

treatment	have	often	developed	relatively	independently	of	theories	of	deficit	

(Law	et	al.,	2008).	There	are	multiple	reasons	for	the	gap.	These	include	(1)	the	

complexity	of	the	intervention	situation,	which	involves	treatment	of	the	whole	

child	via	a	social	interaction	with	the	therapist,	and	where	the	techniques	

employed	are	often	dependent	on	the	characteristics	of	the	individual	child,	their	

response	to	intervention,	and	the	therapist’s	experience	and	intuitions;	(2)	the	

diverse	real-world	constraints	on	interventions,	including	resources	like	time	

and	cost;	(3)	the	primary	focus	of	intervention	on	behavioural	outcomes,	which	

do	not	in	themselves	necessitate	an	understanding	of	cause;	(4)	frequent	lack	of	

an	evidence-based	consensus	on	the	most	effective	treatment	for	a	given	deficit;	

(5)	the	fact	that	children	often	do	not	have	a	single	‘deficit’	either	behaviourally	

or	in	terms	of	underlying	mechanisms;	and	(6)	even	when	a	theory	of	deficit	

exists,	the	difficulty	of	moving	straightforwardly	from	that	theory	to	a	prediction	

of	best	treatment.	As	Byng	(1994)	argued,	while	theories	of	deficit	are	a	

necessary	precursor	to	developing	interventions,	‘simply	having	a	detailed	

analysis	of	the	deficit	does	not	by	itself	suggest	the	formulation	of	specific	

therapeutic	procedures	to	effect	change’	(p.270).	What	is	needed	is	a	theory	of	

intervention.	

In	what	follows,	we	review	contributions	from	existing	connectionist	

models	and	our	own	work	to	assess	whether	any	general	principles	of	

intervention	can	be	identified	from	this	approach.	The	following	broad	principles	

will	emerge:	the	exact	nature	of	the	computational	deficit	matters	for	the	success	

of	intervention,	as	does	its	location	in	more	complex	architectures;	the	timing	of	

the	intervention	matters,	and	its	content	with	respect	to	the	target	behaviour;	
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computational	methods	have	not	revealed	ways	to	trigger	new	engagement	of	

compensatory	mechanisms;	as	yet	relatively	unexplored	are	the	implications	of	

dosage,	duration,	intensity	and	regimes	of	behavioural	interventions,	and	how	to	

ensure	both	generalisation	beyond	training	items	and	persistence	of	

intervention	effects.	In	the	following	sections,	we	characterise	the	nature	of	the	

intervention	process,	to	establish	the	challenge	of	building	a	computational	

model	of	how	this	process	may	act	on	cognitive	mechanisms;	we	summarise	how	

developmental	disorders	are	captured	within	connectionist	approaches;	and	we	

outline	two	previous	models	of	interventions,	for	dyslexia	and	for	word-finding	

difficulties.	

	

The	intervention	process:	The	example	of	behavioural	interventions	for	

developmental	disorders	of	language	

Intervention	is	a	broad	term	that	encompasses	a	wide	range	of	activities.	One	

definition,	in	the	context	of	improving	the	language	skills	of	children	with	speech,	

language,	and	communication	needs,	describes	an	intervention	as	‘an	action	or	

technique	or	activity	or	procedure	(or	indeed	combinations	of	these)	that	

reflects	a	shared	aim	to	bring	about	an	improvement,	or	prevent	a	negative	

outcome	…	this	can	also	include	the	modification	of	factors	that	are	barriers	or	

facilitators	to	change	and	the	modification	of	an	environment	to	facilitate	

communication	development’	(Roulstone,	Wren,	Bakopoulou	&	Lindsay,	2010,	p.	

327).	Roulstone	et	al.	identify	several	terms	that	are	sometimes	used	

interchangeably,	including	treatment,	therapy,	intervention,	and	remediation.	

One	principal	determining	factor	influencing	choice	of	intervention	

method	is	the	child’s	age.	Implicit	techniques	are	employed	with	younger	
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children,	while	explicit	techniques	are	frequently	employed	with	older	children	

(Stokes,	2014;	Laws	et	al.,	2008).	For	younger	children	(less	than	6	years),	the	

main	aim	is	skill	acquisition.	Techniques	are	informal	and	naturalistic,	with	

implicit	goals	and	methods	embedded	in	child-directed	learning	contexts.	For	

older	children	(more	than	6	years),	intervention	also	targets	meta-cognitive	

abilities	and	the	development	of	compensatory	strategies.	There	is	greater	use	of	

formal	methods,	employing	explicit	goals	and	instruction	in	a	therapist-directed	

learning	context.	While	there	is	a	general	view	that	targeting	causal	processes	

early	in	disordered	development	may	be	more	effective	than	waiting	until	

outcomes	are	established	(Wass,	2015),	systematic	evaluations	of	timing-of-

intervention	effects	are	less	common.	Important	dimensions	of	the	intervention	

method	include	the	precise	nature	of	the	intervention	itself;	who	delivers	the	

respective	components	of	the	therapy	(e.g.,	a	speech	and	language	therapist	

[SLT],	an	SLT	assistant,	a	teaching	assistant,	teacher,	parent,	or	a	computer);	if	

the	therapy	is	delivered	one	to	one,	or	in	a	group;	and	the	dosage	of	the	

intervention,	including	intensity	and	duration	(Ebbels,	2014).	

To	give	a	concrete	example	of	an	intervention	in	a	specific	domain,	Seeff-

Gabriel,	Chiat	and	Pring	(2012)	evaluated	an	intervention	to	improve	

performance	in	producing	regular	English	past	tenses	for	a	5-year-old	child	with	

speech	and	language	difficulties.	The	intervention	was	delivered	one-to-one	by	

an	SLT,	with	carryover	from	the	mother	and	the	school.	Facilitation	methods	

were	used,	including	modelling	and	elicitation,	to	help	the	child	produce	the	

correct	past	tenses,	combined	with	visual	symbols	to	provide	meta-linguistic	

support.	The	intervention	dose	was	30	minutes	a	week	for	10	weeks	with	the	

SLT	for	a	total	of	5	hours,	plus	the	additional	input	from	the	mother	and	school.	
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This	pattern	is	representative	of	a	single	block	of	intervention:	in	a	survey	of	

over	500	SLTs	in	the	UK,	Lindsay	et	al.	(2010)	reported	the	most	common	

frequency	of	delivery	of	a	language	therapy	was	once	a	week	for	6	weeks	or	

more,	with	42%	asking	teachers	and	parents	to	deliver	the	intervention	more	

frequently	between	visits	to	increase	the	dosage.	Blocks	may	be	repeated.	This	

typical	dose	and	duration	can	be	contrasted	with	the	much	larger	dosages	

sometimes	used	with	other	developmental	disorders,	for	instance	to	address	the	

wider	socio-communicative	deficits	in	autism.	In	one	form	of	the	early	intensive	

behavioural	intervention	(EIBI),	intervention	begins	by	2	years	of	age,	with	a	

range	of	20	to	40	hours	per	week	across	one	to	four	years	of	the	child’s	life,	for	a	

range	of	intervention	dose	of	between	1000	and	8000	hours	(Eikeseth,	2009;	

Smith,	2010).	

Children	can	vary	widely	in	their	response	to	interventions.	Apart	from	

the	age	of	the	child,	other	characteristics	are	relevant	to	intervention	outcome,	

including	the	severity	of	the	developmental	deficit	and	the	presence	of	other	co-

morbid	deficits	(Ebbels,	2014).	The	relationship	between	dosage	and	the	effect	

size	of	the	behavioural	improvement	produced	by	the	intervention	also	varies,	

and	depends	on	the	target	ability.	For	example,	Lindsay	et	al.	(2010)	summarised	

meta-analysis	data	to	indicate	that	for	interventions	targeting	phonology,	

intensive	interventions	were	more	effective	than	those	of	long	duration;	for	

those	targeting	syntax,	interventions	of	long	duration	were	more	effective	than	

short	intensive	ones;	for	vocabulary,	long	duration	was	important	but	not	

intensity	–	children	did	better	with	short	bursts	over	an	extended	time.	In	a	well	

controlled	study	of	a	grammar	treatment	for	5-year-olds	with	DLD,	Smith-Lock	

et	al.	(2013)	found	that	the	same	dose	of	8	hours	was	more	effective	delivered	
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weekly	over	8	consecutive	weeks	than	daily	over	8	consecutive	days.	Differences	

in	optimal	regimes	presumably	depend	on	the	functional	plasticity	of	the	

underlying	mechanisms,	including	time	for	consolidation	and	opportunities	for	

practise.	

Practice	varies	as	to	whether	the	primary	aim	of	intervention	is	to	

remediate	the	deficit	or	to	encourage	development	of	potential	compensatory	

strengths.	To	give	an	example,	word-finding	difficulties	(WFD)	represent	a	

developmental	vocabulary	deficit	where	children	struggle	to	produce	words	that	

they	can	nevertheless	comprehend.	WFD	is	viewed	as	a	heterogeneous	disorder,	

with	possible	causes	either	in	phonological	access	or	impoverished	semantic	

representations	(Best,	2005;	Faust,	Dimitrovsky	&	Davidi,	1997).	In	a	survey,	

Best	(2003)	reported	that	SLTs	listed	phonological	awareness	difficulties	as	co-

occurring	with	WFD	46%	of	the	time,	while	semantic	problems	co-occurred	only	

13%	of	the	time.	However,	intervention	approaches	that	targeted	semantics	

were	used	more	frequently	than	those	that	targeted	phonology	(79%	of	the	time	

compared	to	54%).	In	this	case,	therefore,	SLTs	often	sought	to	buttress	areas	of	

strength	within	the	child	to	improve	word-retrieval	skills.	

The	order	of	targeting	skills	within	a	domain	may	also	be	important.	For	

example,	in	the	usage-based	approach	to	remediating	developmental	problems	

in	syntax,	grammatical	structures	are	targeted	in	the	same	order	that	they	

develop	in	typically	developing	children	(e.g.,	Riches,	2013);	and	that	order	of	

acquisition	reflects	the	interaction	between	the	challenges	of	the	particular	

domain	and	the	constraints	of	developmental	mechanisms.	

A	key	question	is	which	intervention	the	therapist	should	choose.	The	

decision	is	influenced	by	multiple	factors.	A	key	factor,	of	course,	should	be	the	
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intervention’s	effectiveness.	However,	Roulstone	et	al.	(2010)	noted	that	

evidence	for	effectiveness	incorporate	clinical	experience	or	local	evaluations,	in	

addition	to	research	evidence.	Roulstone	et	al.	identified	several	other	factors	

influencing	intervention	choice,	including	reference	to	underlying	theoretical	

positions,	and	pragmatic	reasons	related	to	efficiency,	accessibility,	popularity	

and	cost.	Other	researchers	have	taken	a	wider	perspective	on	the	factors	

influencing	the	design	and	success	of	interventions	aiming	to	change	behaviour.	

For	example,	Michie	and	colleagues	(e.g.,	Michie,	van	Stralen	&	West,	2011)	

constructed	a	framework	that	incorporates	not	just	the	internal	cognitive	

mechanisms	able	to	deliver	behavioural	change	(which	they	termed	‘capability’),	

but	also	motivation	and	opportunity	to	change.	The	framework	identifies	

environmental	influences	and	structures,	such	as	resources	and	policy,	which	

operate	as	constraints	on	or	incentives	for	success.	

There	are	two	important	dimensions	in	the	evaluation	of	interventions.	

The	first	is	the	extent	to	which	the	intervention	generalises	to	other	items	or	

skills	beyond	those	targeted	in	the	intervention	itself.	The	second	is	the	

persistence	of	the	benefits	of	intervention	after	the	intervention	has	ceased.	

Using	our	example	study	of	Seeff-Gabriel	et	al.	(2012)	that	targeted	English	past	

tense,	the	5-hour	intervention	was	found	to	generalise	to	untrained	regular	

verbs	but	not	to	other	irregular	verbs,	while	progress	was	maintained	at	follow-

up	8	weeks	later.	Generally,	achieving	generalisation	and	persistence	of	

interventions	has	proved	challenging.	For	example,	in	her	review	of	

interventions	for	grammar	difficulties	in	school-aged	children,	Ebbels	(2014)	

concluded	that	follow-up	generally	shows	that	the	progress	produced	by	the	

intervention	is	maintained,	but	does	not	prompt	acceleration	in	development	



	 13	

after	the	intervention	has	ceased.	The	gains	are	retained	but	no	further	gains	are	

stimulated.	Bailey,	Duncan,	Odgers	and	Yu	(2017)	identified	the	diminishing	

effect	of	an	intervention	after	its	cessation	(so-called	‘fade-out’)	as	a	

characteristic	of	many	interventions	targeting	cognitive	and	socioemotional	

skills	and	behaviours.	

Other	important	factors	include:	(i)	the	child	preferences	(e.g.,	a	child’s	

willingness	to	work	on	target	A	but	not	B);	(ii)	parental	involvement	(what	are	

appropriate	activities	for	home	practice	to	maximise	dose);	(iii)	context	(e.g.,	

selecting	vocabulary	items	to	mirror	those	currently	being	taught	in	the	school	

curriculum);	and	(iv)	outcome	of	intervention	(such	that	the	therapist	may	

modify	targets,	methods,	and	feedback	according	to	the	response	to	

intervention).	

Lastly,	even	if	an	intervention	has	been	shown	to	be	effective,	unless	its	

key	‘active	ingredient’	has	been	understood,	it	is	not	guaranteed	that	the	effect	

will	be	similar	when	applied	to	new	children,	when	delivered	by	less	expert	

practitioners,	or	when	adapted	to	new	contexts.	Identification	of	the	active	

ingredient	in	turn	is	facilitated	by	comparison	to	a	control	group	whose	

treatment	differs	only	in	the	active	ingredient.	And	this	in	turn	requires	a	theory	

about	how	the	intervention	remediates	the	deficit	or	supports	a	compensatory	

strategy.	

In	summary,	this	concrete	example	of	interventions	for	developmental	

disorders	of	language	illustrates	the	complexity	of	the	process	and	the	multiple	

factors	involved.	Interventions	involve	activities	to	improve	developmental	

outcomes	in	children;	their	outcomes	are	variable	depending	on	the	

characteristics	of	the	child	and	therapist;	both	the	design	and	the	dosage	of	the	
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intervention	are	important	for	outcome;	and	outcomes	need	to	be	evaluated	

against	key	criteria	of	(1)	generalisation	to	other	items	or	skills	beyond	those	

targeted	in	the	intervention	itself,	and	(2)	maintenance	of	gains	once	the	

intervention	has	ceased.	

	

Connectionist	models	of	interventions	

How	disorders	are	simulated:	monogenic	versus	polygenic	approaches	

In	theory,	the	recent	neuroanatomically	constrained	connectionist	models	of	the	

language	system	(Chen	et	al.,	2017;	Ueno	et	al.,	2011)	lend	themselves	readily	to	

simulating	developmental	deficits,	via	initial	restrictions	to	the	pathways	or	

mechanisms	taken	to	underlie	a	given	behaviour.	For	example,	Seidenberg	

(2017)	summarised	recent	cognitive	neuroscience	hypotheses	that	

developmental	dyslexia	may	be	the	result	of	four	types	of	deficit:	anomalies	in	

myelinisation	affecting	the	speed	and	reliability	of	signal	transmission	within	

and	between	reading/language	areas	of	the	brain;	neuronal	hyperexcitability	

within	areas;	anomalies	of	neural	migration	impacting	the	functionality	of	neural	

networks;	and	increased	variability	/	noise	in	neural	representations	impacting	

the	functional	connectivity	between	regions	of	the	reading	network	and	the	

ability	of	the	system	to	benefit	from	learning	experiences	(see	also	Hancock,	

Pugh,	&	Hoeft,	2017).	Much	of	the	existing	work	on	developmental	disorders,	

however,	has	focused	on	connectionist	models	of	individual	mechanisms	

acquiring	single	target	behaviours.	In	this	work,	a	distinction	can	be	drawn	

between	monogenic	and	polygenic	models	of	disorders.	

In	a	single	network	model,	changes	in	behaviour	are	the	result	of	

experience-dependent	alterations	to	the	structure	of	the	network,	caused	by	its	



	 15	

interaction	with	a	learning	environment	with	particular	informational	content.	

Artificial	neural	networks	have	intrinsic	constraints	that	affect	what	input-

output	mappings	they	can	learn	and	how	quickly.	These	constraints	include	

properties	such	as	the	number	of	internal	(hidden)	units,	the	pattern	of	

connections	between	units,	the	rate	at	which	connection	strengths	change	in	

response	to	experience,	and	the	way	external	or	environmental	inputs	are	

encoded	for	processing.	Models	of	developmental	deficits	propose	that	these	

constraints	are	atypical	in	some	children,	deflecting	developmental	trajectories	

outside	the	normal	range	of	variation	(Thomas	&	Karmiloff-Smith,	2003a,	b).	For	

instance,	in	an	early	model	of	developmental	dyslexia,	the	deficit	was	simulated	

by	attempting	to	learn	the	mappings	between	orthography	and	phonology	in	a	

model	with	too	few	hidden	units	(Seidenberg	&	McClelland,	1989);	in	a	model	of	

autism,	over-detailed	categories	were	simulated	by	increasing	the	number	of	

hidden	units	in	a	semantic	network	(Cohen,	1994).	

The	Seidenberg	and	McClelland	model	of	dyslexia	(1989;	see	also	Harm	&	

Seidenberg,	1999;	Plaut	et	al.,	1996)	illustrates	what	might	be	called	the	

monogenic	approach.	Connectionist	models	usually	have	several	free	parameters,	

such	as	the	number	of	internal	or	‘hidden’	units,	the	learning	rate,	and	the	

momentum.	Values	for	these	parameters	are	determined	so	that	the	model	

captures	the	trajectory	of	typical	development.	In	the	disordered	case,	just	one	

parameter	is	set	to	a	different	value.	The	disorder,	then,	has	a	single	cause,	against	

a	background	of	very	small	or	zero	variation	in	all	other	computational	

parameters	across	individuals	(Thomas,	2003a).	

More	recent	models	have	adopted	a	polygenic	approach	(e.g.,	Thomas,	

Forrester,	&	Ronald,	2015;	Thomas	&	Knowland,	2014;	Thomas,	2016a).	
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Individual	variation	in	the	development	of	cognitive	abilities	is	viewed	as	arising	

from	the	combined	influence	of	small	variations	in	many	neurocomputational	

parameters,	including	those	involved	in	the	construction,	activation	dynamics,	

adaptation,	and	maintenance	of	network	architectures.		The	approach	involves	

simulating	development	in	large	populations	of	individuals.	The	cumulative	

effect	of	many	small	contributions	produces	a	normal	distribution	of	the	

development	of	behaviour	in	the	population,	against	which	a	‘normal	range’	of	

variation	can	be	defined,	and	cases	of	developmental	delay	identified	(Thomas,	

2016b).	Disorders	are	thus	viewed	as	the	lower	tail	of	a	continuous	distribution	

of	developmental	variation	in	a	population.	

The	monogenic	and	polygenic	approaches	are	not	mutually	exclusive.	For	

example,	Thomas	and	colleagues	demonstrated	how	autism	might	combine	two	

groups,	monogenic	cases	with	a	genetic	mutation	causing	a	given	

neurocomputational	parameter	to	take	up	extreme	values,	and	polygenic	cases	

with	the	same	parameter	falling	in	the	upper	normal	range	but	having	its	effect	

on	behaviour	amplified	by	a	combination	of	risk	factors	that	vary	across	the	

whole	population	(Thomas,	Davis	et	al.,	2015;	Thomas,	Knowland	&	Karmiloff-

Smith,	2011;	see	Leblond	et	al.,	2019,	for	recent	genetic	results).	Furthermore,	

interaction	of	a	monogenic	cause	and	population-wide	polygenic	individual	

differences	can	give	rise	to	apparent	sub-groups	within	the	developmental	

disorder	despite	it	having	a	single	pathological	cause:	individual	differences	that	

produce	small	effects	normally	can	be	exaggerated	by	the	atypical	parameter,	

causing	divergent	manifestations	of	the	disorder	(Thomas,	Davis	et	al.,	2015;	

Thomas,	2016b).	
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How	interventions	are	simulated	

Where	a	developmental	deficit	is	identified	in	a	child,	it	is	presumed	that	

naturalistic	experience	(or	typical	educational	experience)	has	not	been	

sufficient	to	enable	the	emergence	of	age-appropriate	behaviours.	In	a	single	

network	model,	two	types	of	intervention	are	suggested:	the	additional	of	new	

information	to	the	structured	learning	environment	(in	simulation	terms,	new	/	

replacement	patterns	in	the	training	set);	or	manipulations	to	the	computational	

properties	of	the	system	(equivalent,	say,	to	pharmacological	treatments,	

transcranial	magnetic	stimulation,	or	neurofeedback).	In	some	types	of	models,	

changes	in	computational	properties	might	subsequently	serve	to	alter	the	

system’s	sampling	of	its	learning	environment	(such	as	in	reinforcement	learning	

models;	e.g.,	Richardson	&	Thomas,	2006).	In	a	model	that	simulates	a	range	of	

behaviours	in	a	larger	architecture,	such	as	in	a	full	reading	system,	the	

possibility	exists	not	only	of	intervening	to	remediate	atypical	

mechanisms/pathways,	but	also	to	exploit	pathways	without	atypical	processing	

constraints.	As	we	saw	previously,	actual	interventions	vary	as	to	whether	they	

target	remediation	of	deficit	or	support	of	compensatory	strengths,	perhaps	

depending	on	the	severity	of	the	deficit	(Woollams,	2014).	However,	the	exact	

nature	of	the	interaction	between	processing	components	may	be	important	in	

understanding	the	effects	of	either	type	of	intervention.	

How	could	one	select	further	training	items	–	an	intervention	set	–	for	an	

atypically	developing	network,	which	would	be	more	successful	in	driving	

development	than	natural	experience?	The	statistical	learning	perspective	of	

which	connectionism	is	a	part	has	generated	a	growing	understanding	of	

environmental	factors	that	produce	stronger	or	weaker	learning	in	typical	
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development	(Borovsky	&	Elman,	2006;	Gomez,	2005;	Onnis	et	al.,	2005).	This	

includes	the	importance	of	factors	such	as	the	frequency	of	training	items,	their	

variability,	and	the	provision	of	novelty	in	familiar	contexts.	For	example,	one	

heuristic	that	arises	from	this	approach	is	that	in	order	to	improve	acquisition	of	

compositional	domains,	where	concepts	are	made	up	of	different	combinations	of	

the	same	primitives,	the	system	should	be	exposed	to	the	component	primitives,	

either	in	isolation	or	in	many	different	combinations	(see,	e.g.,	Fey	et	al.,	2003).	

This	also	encourages	subsequent	generalisation	to	novel	instances.	Potentially,	

these	kinds	of	lessons	can	provide	guidance	on	how	to	design	intervention	sets	

to	achieve	the	best	behavioural	outcome	for	a	model	with	atypical	computational	

constraints.	However,	this	would	be	to	assume	that	an	understanding	of	the	

experiences	that	improve	or	hinder	learning	in	typically	developing	systems	is	

informative	about	how	to	influence	developmental	outcomes	in	cognitive	

systems	with	atypical	constraints	(an	assumption	that	drives,	for	example,	the	

usage-based	approach	for	grammar	deficits;	Richie,	2013).	If	principles	of	typical	

development	are	a	guide,	connectionist	approaches	to	language	acquisition	

highlight	several	factors	(Poll,	2011):	that	the	structure	and	quantity	of	the	input	

is	important	in	driving	development;	that	language	development	does	not	occur	

through	passive	exposure	but	via	experiences	related	to	the	child’s	own	

expectations;	and	that	language	development	concerns	learning	the	relationship	

between	language	form	and	language	meaning	so	that	contextual	cues	which	

narrow	the	hypotheses	will	aid	learning.	However,	it	remains	to	be	

demonstrated	in	implemented	models	that	the	factors	producing	best	

development	in	typical	models	also	hold	for	those	with	atypical	processing	

properties.	
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Cognitive	computational	models	point	to	an	important	distinction	

between	two	types	of	behaviour	in	evaluating	interventions.	The	first	is	

performance	on	the	training	set,	that	is,	the	range	of	experiences	the	system	

encounters	in	its	structured	learning	environment.	The	second	is	performance	on	

a	generalisation	set,	that	is,	items	which	are	novel	to	the	system	but	which	bear	

similarity	to	those	with	which	it	has	experience.	This	echoes	the	concern	in	

actual	interventions	on	whether	the	intervention	generalises	to	other	items	or	

skills	beyond	those	targeted	in	the	intervention	itself.	Computational	systems	

with	a	so-called	inductive	bias	(Mitchell,	1997)	can	take	advantage	of	their	

existing	knowledge	to	produce	responses	to	novel	inputs.	If	–	externally,	as	

modellers	–	we	stipulate	that	the	structured	learning	environment	in	fact	

contains	some	underlying	regularity	or	function,	we	can	assess	the	

generalisation	performance	of	a	system	depending	on	whether	it	has	extracted	

this	underlying	function	from	its	training	examples,	and	is	then	able	to	apply	it	

appropriately	to	novel	items.	In	models,	the	distinction	between	training	and	

generalisation	is	important	because	developmental	deficits	may	operate	

differentially	across	performance	on	the	training	set	and	the	generalisation	set;	

because	actual	interventions	are	often	assessed	specifically	on	their	ability	to	

produce	generalisation	beyond	the	treated	items;	and	because	interventions	can	

be	chosen	which	differentially	target	training	set	or	generalisation	performance.	

Two	previous	models	have	given	serious	consideration	to	the	use	of	

models	of	atypical	development	(respectively,	in	dyslexia	and	in	word-retrieval	

difficulties)	to	evaluating	potential	interventions.	Harm,	McCandliss	and	

Seidenberg	(2003)	extended	the	triangle	model	of	reading	(Seidenberg	&	

McClelland,	1989;	Plaut	et	al.,	1996;	Harm	&	Seidenberg,	1999)	to	address	an	
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apparent	paradox	that,	while	a	phonological	deficit	is	often	viewed	as	the	

primary	cause	of	developmental	dyslexia,	interventions	that	target	spoken	

language	(phonology)	alone	are	relatively	ineffective	at	remediating	reading	

deficits	once	a	child	has	learnt	to	read.	Instead,	interventions	to	facilitate	reading	

aloud	need	to	combine	work	on	phonology	and	on	decoding,	that	is,	learning	the	

mapping	between	print	and	sound	(Bus	&	Ijzendoorn,	1999).	Harm	et	al.’s	

(2003)	model	of	reading	involved	a	phonological	component,	which	first	learned	

a	lexicon	of	English	words.	An	orthographic	component	then	provided	

representations	of	the	written	forms	of	words,	which	had	to	be	associated	with	

the	existing	phonological	representations.	Dyslexic	versions	of	the	model	were	

produced	by	applying	atypical	constraints	to	the	phonological	component,	which	

impacted	on	its	initial	phase	of	acquisition.	Specifically,	prior	to	training,	50%	of	

the	connection	weights	were	set	to	and	held	at	zero,	and	weight	decay	was	

applied	to	the	remaining	weights,	thereby	limiting	the	maximum	magnitude	that	

they	could	reach	during	training.	Before	reading	acquisition	commenced,	

phonology	was	atypical.	The	outcome	of	reading	acquisition	was	a	system	with	a	

particular	deficit	in	its	nonword	reading,	that	is,	its	generalisation	of	reading	to	

novel	forms.	Such	a	deficit	has	been	termed	‘phonological’	developmental	

dyslexia	(Castles	&	Coltheart,	1993).	

Harm	et	al.	(2003)	then	compared	two	interventions,	each	applied	at	two	

different	points	in	training.	One	intervention	simply	alleviated	the	phonological	

deficit	–	unfroze	the	50%	of	weights	and	removed	weight	decay.	One	could	view	

this	as	an	intervention	that	directly	targeted	neurocomputational	properties.	The	

second	intervention	added	new	items	to	the	training	set,	to	simulate	a	particular	

behavioural	intervention	(the	Word	Building	Intervention;	McCandliss	et	al.,	
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2003).	This	took	the	form	of	extra	‘lessons’	on	an	ordered	sequence	of	words	

each	of	which	differed	by	changing	or	moving	only	one	grapheme	(e.g.,	sat,	sap,	

tap);	where	the	model	made	an	error,	extra	training	was	given	on	the	individual	

component	grapheme-phoneme	mappings	of	a	word	(for	‘sat’,	s=>/s/	in	first	

position,	a=>/a/	in	second	position,	etc.).	Both	interventions	produced	benefits	

to	nonword	reading,	albeit	without	fully	remediating	the	deficit	to	the	levels	

observed	in	the	typically	developing	model.	The	timing	of	intervention	was	also	

important.	Alleviating	the	phonological	deficit	alone	only	showed	benefits	when	

applied	early	in	training,	while	the	simulated	behavioural	intervention	that	

targeted	decoding	showed	benefits	across	training.	The	explanation	for	this	age-

related	effect,	paralleling	the	observed	empirical	data,	was	that	once	the	network	

began	to	learn	mappings	between	orthography	and	impoverished	

representations	of	phonology,	these	were	hard	to	undo	even	if	phonology	was	

remediated	later	on.	An	apparent	sensitive	period	for	remediation	by	training	

phonology	alone,	therefore,	was	explained	by	entrenchment:	the	difficulty	of	

resetting	inappropriately	configured	connection	weights	(Thomas	&	Johnson,	

2006).	Viewing	Harm	et	al.’s	(2003)	model	as	representing	two	components	in	

the	larger	reading	architecture	(Ueno	et	al.,	2011),	these	timing	effects	speak	to	

the	importance	of	understanding	the	developmental	interactions	between	

multiple	components	with	the	architecture.	

In	this	model,	then,	the	initial	developmental	deficit	was	mainly	in	

generalisation	rather	than	performance	on	the	training	set.	The	deficit	was	

remediated	by	showing	the	network	the	component	parts	of	holistic	

representations	(in	line	with	the	heuristic	identified	in	statistical	learning	

approaches)	through	the	particular	sequence	of	presentation	of	items	in	the	
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‘lesson’,	and	the	addition	of	new	information	to	the	training	set	in	the	form	of	

individual	grapheme-phoneme	correspondences.	Lastly,	there	was	a	contrast	

between	an	intervention	that	directly	targeted	computational	properties,	and	

one	a	behavioural	intervention	,	which	added	something	new	to	the	training	set	

and/or	changing	the	frequency	distribution	within	the	training	set.	

The	second	model	by	Best	et	al.	(2015)	explored	interventions	for	

children	with	word-finding	difficulties	(WFD).	Naming	was	implemented	as	the	

activation	of	a	semantic	representation	of	the	word’s	meaning	activating	its	

phonological	form.	Developmental	deficits	in	productive	vocabulary	may	be	

caused	in	at	least	two	ways:	by	impairments	in	the	semantic	representations	

driving	naming,	or	by	impairments	in	accessing	phonological	output	forms.	

Evidence	suggests	remediation	of	both	semantic	and	phonological	knowledge	

can	produce	benefits	for	these	children	(Best	et	al.,	2017).	The	connectionist	

naming	model	had	two	components:	a	semantic	component	and	a	phonological	

component,	each	of	which	underwent	its	own	developmental	process	to	

establish	its	internal	representations;	and	two	pathways	to	learn	the	mappings	

between	these	representations	as	they	developed,	from	semantics	to	phonology	

to	simulate	naming,	and	from	phonology	to	semantics	to	simulate	

comprehension.	Constraints	applied	to	either	of	these	components,	or	to	the	

pathways	between	them,	produced	developmental	naming	deficits.	The	model	

was	used	to	predict	the	outcome	of	interventions	on	two	individual	6-year-old	

children	diagnosed	with	WFD.	Two	atypical	models	were	calibrated	to	resemble	

the	developmental	profiles	of	the	individual	children,	according	to	measures	of	

the	children’s	phonological	knowledge,	semantic	knowledge,	naming,	and	

comprehension	abilities.	The	model	manipulations	involved	removing	
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connections,	reducing	the	number	of	hidden	units,	or	altering	the	activation	

dynamics	of	the	simple	processing	units,	either	in	the	components	or	the	

pathways,	but	always	prior	to	training.	

The	individual	models	were	then	given	either	a	‘semantic’	or	a	

‘phonological’	intervention.	The	semantic	intervention	involved	additional	

training	for	the	semantic	component	to	improve	its	internal	representations,	

while	the	phonological	intervention	involved	additional	training	for	the	

phonological	component.	The	interventions	were	interleaved	with	the	normal	

training	regime	for	vocabulary	development.	The	result	was	a	prediction	for	

which	type	of	intervention	would	work	best	for	each	child.	The	model	

predictions	were	then	tested	in	reality	by	giving	each	child	both	a	semantic	and	a	

phonological	intervention	in	turn	(1	session	of	30	minutes	per	week	for	6	weeks,	

for	a	total	of	3	hours	for	each	intervention	type,	and	a	6-week	wash-out	period	

between	interventions).	It	was	then	determined	which	improved	naming	skills	

more.	For	one	child,	the	model’s	prediction	was	correct	(only	the	phonological	

intervention	benefited	naming	performance);	for	the	other	child	it	was	not	(the	

model	predicted	both	interventions	would	work;	the	child	only	benefited	from	

the	semantic	intervention).	

In	this	model,	a	behavioural	intervention	was	again	simulated	by	

modifying	the	training	set,	here	altering	the	relative	amount	of	training	on	

different	components	of	the	system,	but	without	the	addition	of	new	information.	

Intervention	success	was	measured	against	performance	on	the	training	set,	

although	the	intervention	occurred	only	on	a	subset	of	the	full	training	set.	The	

model	focused	on	differential	effects	of	therapy	type	and	did	not	report	whether	

deficits	were	fully	remediated	in	either	case.	
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Table	1	summarises	some	of	the	key	concepts	identified	in	the	

introduction.	

<Insert	Table	1	here>	

	

Outline	of	modelling	

We	review	an	extended	programme	of	modelling	work	(see	author	note),	in	four	

sections.	In	the	first,	we	consider	long-term	outcomes.	Developmental	disorders	

are	diagnosed	in	childhood,	when	a	child	is	flagged	as	not	meeting	age-

appropriate	performance	expectations.	Computational	models	allow	

consideration	of	the	long-term	outcomes,	if	these	systems	are	left	to	develop	

without	interventions.	We	ask	(a)	in	the	absence	of	intervention,	what	

compensatory	outcomes	can	be	reached?	And	(b)	do	some	early	delays	resolve,	

and	if	so	under	what	conditions?	In	the	second	section,	we	address	methods	to	

remediate	atypical	development	in	a	single	network.	We	consider	(a)	where	the	

disorder	arises	through	insufficient	early	stimulation	of	the	target	system;	(b)	

how	to	choose	better	training	items	to	achieve	learning	in	a	system	with	atypical	

processing	properties;	(c)	how	better	performance	can	be	achieved	from	an	

atypical	network	by	targeting	improvement	of	its	input	and	output	

representations;	and	(d)	how	interventions	might	instead	alter	the	

computational	properties	of	the	learning	system.	In	the	third	section,	we	address	

interventions	to	encourage	compensation	via	alternative	pathways.	In	the	final	

section,	we	consider	the	key	issue	of	individual	differences	in	response	to	

intervention.	

	

Computational	modelling	
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Simulating	the	long-term	outcome	of	atypical	development	without	

intervention	

Compensated	outcomes	

An	implemented	model	of	a	developmental	deficit	provides	the	foundation	to	

investigate	different	possible	interventions	applied	in	childhood.	But	the	

modeller	can	also	refrain	from	intervening,	and	use	the	model	to	predict	the	

ultimate	developmental	outcome.	For	some	computational	limitations,	sufficient	

exposure	to	the	training	set	eventually	permits	performance	to	reach	the	normal	

range	on	this	set.	However,	close	inspection	of	these	networks	indicates	that	the	

underlying	processing	itself	has	not	normalised.	This	can	be	demonstrated	by	

observing	a	persisting	deficit	on	generalisation.	Such	an	effect	was	observed	in	a	

connectionist	model	of	English	past	tense	formation	simulating	children	with	

developmental	language	disorder	(DLD).	

The	model	of	Thomas	(2005)	explored	the	theoretical	proposal	of	Ullman	

and	Pierpont	(2005)	that	children	with	DLD	might	have	a	particular	deficit	in	

morphosyntax	because	of	a	more	general	deficit	in	their	procedural	memory	

systems.	The	so-called	‘procedural	deficit	hypothesis’	addressed	the	observation	

that	children	with	DLD	often	exhibit	greater	impairment	in	grammar	

development	than	vocabulary	development.	According	to	the	hypothesis,	the	

disparity	stems	from	a	differential	reliance	of	the	normal	language	system	on	

two	separate,	more	domain-general	memory	systems:	grammar	development	on	

the	procedural	memory	system,	whose	characteristics	are	slow	acquisition,	fast	

automatic	execution	and	sequence	processing;	and	vocabulary	development	on	

the	declarative	memory	system,	whose	characteristics	are	parallel	processing	

and	slow	recall.	Notably,	the	hypothesis	proposed	a	central	role	for	
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compensation	in	explaining	observed	behavioural	impairments	in	DLD:	the	

profile	of	language	skills	is	a	consequence	of	the	procedural	system’s	sub-

optimal	attempts	to	acquire	the	structural	aspects	of	language	combined	with	the	

attempts	of	the	declarative	memory	system	to	compensate	for	this	shortcoming	

through	lexical	strategies.	

Thomas	(2005)	explored	this	idea	with	a	model	of	English	past	tense	

acquisition	in	which	the	production	of	phonologically	encoded	past	tense	forms	

at	the	output	was	driven	by	integrating	lexical-semantic	and	phonological	

information	about	the	verb	presented	at	the	input	(Joanisse	&	Seidenberg,	1999).	

DLD	was	simulated	as	a	monogenic	disorder,	altering	the	activation	function	in	

the	internal	processing	units	prior	to	training	to	decrease	their	discriminability,	

in	line	with	more	recent	‘neural	noise’	accounts	of	developmental	language	

deficits	(Hancock,	Pugh	&	Hoeft,	2017).	Unit	discriminability	was	reduced	such	

that	units	were	less	able	to	make	large	changes	in	their	output	for	small	changes	

in	their	input,	implemented	by	reducing	the	‘temperature’	parameter	in	the	

sigmoid	activation	function	from	1	to	0.25.	This	impaired	the	network’s	ability	to	

form	sharp	categorical	boundaries	in	its	internal	representations.	Figure	1	

demonstrates	the	match	of	model	data	to	empirical	data	in	a	past	tense	

elicitation	task	for	children	of	10-11	years	of	age,	either	with	or	without	DLD.	As	

well	as	capturing	the	profile	of	reduced	accuracy,	the	model	captured	a	key	

‘compensatory’	feature	identified	by	Ullman	and	Pierpont	in	the	inflection	of	

regular	verbs	in	children	with	DLD:	increased	frequency	effects	(2005;	see	van	

der	Lely	&	Ullman,	2001).	Ullman	and	Pierpont	took	these	frequency	effects	to	be	

a	key	hallmark	of	the	operation	of	declarative	memory	rather	than	procedural	

memory	and	reflect	its	unusual	involvement	in	morphosyntax	in	DLD.	The	



	 27	

connectionist	model	also	captured	compensatory	hallmark.	In	the	model,	it	was	

instantiated	as	a	greater	role	for	lexical	information	in	driving	past	tense	

formation,	rather	than	learning	the	phonological	regularities	relating	base	and	

inflected	verb	forms	that	capture	the	past	tense	rule	in	the	emergentist	account	

of	acquisition.	Removing	lexical-semantic	input	in	the	DLD	model	impaired	

regular	verb	performance,	but	did	not	in	the	typically	developing	model.	

Figure	1	now	shows	what	happened	when	the	atypical	model	was	allowed	

to	run	to	its	‘adult’	state.	Performance	on	the	training	set,	on	both	regular	and	

irregular	verbs,	reached	ceiling.	Notably,	however,	there	was	a	residual	deficit	on	

generalisation,	the	extension	of	the	regular	past	tense	rule	to	novel	forms.	The	

model,	with	its	atypical	processing	properties,	had	not	managed	to	extract	the	

general	function	within	the	training	set;	but	with	enough	exposure	to	the	

training	set,	had	eventually	managed	to	produce	normal-looking	behaviour	on	

that	set.	Even	in	the	adult	state,	the	atypical	network	relied	more	on	lexical	

information	at	input	to	drive	its	inflections.	

Reducing	the	discriminability	of	processing	units	particularly	impacted	

on	generalisation	because	it	affected	the	formation	of	sharp	category	boundaries.	

Categorical	functioning	allows	novel	forms	to	be	treated	in	the	same	way	as	

existing	category	members.	In	unpublished	work,	the	simulations	reported	in	

Thomas	(2005)	were	run	with	other	monogenic	causes	of	the	initial	deficit.	For	

two	other	deficits,	processing	noise	and	a	purely	lexical	strategy	for	producing	

inflections,	a	similar	pattern	was	observed	of	resolving	delay	on	the	training	set	

and	a	residual	generalisation	deficit;	for	restricted	numbers	of	internal	

processing	units,	there	was	a	residual	generalisation	deficit	but	also	no	

resolution	of	the	early	deficit	on	the	training	set;	for	a	very	slow	learning	rate,	
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there	was	no	generalisation	deficit	but	a	residual	deficit	in	irregular	verb	

performance	within	the	training	set.	It	is	evident,	then,	that	the	nature	and	

possibility	of	long-term	compensatory	avenues	within	this	single	mechanism	

model	were	sensitive	to	the	type	of	initial	processing	deficit.	

In	one	sense,	one	might	view	long-term	deficits	in	extracting	regularities	

in	the	problem	domain	as	examples	of	a	well-known	characteristic	of	sub-

optimal	artificial	neural	networks:	over-fitting	the	training	data.	We	wish	to	

emphasise	an	alternative	view,	however:	that	atypical	processing	properties	may	

still	allow	some	parts	of	the	problem	domain	to	be	acquired	with	enough	training.	

Another	aspect	of	language	and	another	type	of	neural	network	architecture	

illustrate	this	point.	Thomas	and	Redington	(2004)	used	a	simple	recurrent	

network	to	investigate	the	impact	of	atypical	processing	constraints	on	syntax	

processing.	Given	sufficient	training,	they	observed	that	simple	recurrent	

networks	with	atypical	sequence	processing	properties	could	eventually	find	

compensatory	solutions	in	classifying	syntactic	constructions,	but	only	for	those	

constructions	that	could	be	comprehended	via	locally	available	lexical	cues,	not	

those	relying	solely	on	sequencing	information	for	decoding.	

In	sum,	a	system	that	exhibits	early	delays	through	atypical	processing	

properties	may	be	‘forced’	through	massive	exposure	to	show	normal-looking	

behaviour	on	the	training	set	–	the	items	that	are	intensely	practised.	However,	

this	does	not	normalise	processing	properties.	Residual	deficits	may	remain,	

such	as	in	generalisation	or	in	more	demanding	aspects	of	the	task.	This	pattern	

of	eventual	good	accuracy	on	practised	items	along	with	subtle	residual	deficits	

is	observed	in	some	developmental	disorders.	For	example,	large	dosages	of	

reading	experience	can	sometimes	remediate	reading	accuracy	deficits	in	
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dyslexia,	but	residual	deficits	can	be	found	in	reading	speed	and	in	spelling,	both	

of	which	suggest	the	internal	representations	have	not	been	normalised	(Hulme	

&	Snowling,	2009).	These	deficits	may	even	be	subtle:	Leong	et	al.	(2011)	found	

that	highly	compensated	adults	with	dyslexia	(undergraduate	students	at	the	

University	of	Cambridge)	showed	significantly	lower	sensitivity	to	syllable	stress	

than	adults	without	dyslexia.	

	

<Insert	Figure	1	about	here>	

	

Resolution	of	early	delays	

Sometimes,	for	a	subset	of	children,	early	observed	developmental	deficits	can	

resolve	apparently	of	their	own	accord.	The	resolution	of	deficits	has	been	

reported	in	several	developmental	disorders,	including	language	(e.g.,	Dale,	Price,	

Bishop,	&	Plomin,	2003),	autism	(e.g.,	Charman,	2014a;	Fein	et	al.,	2013),	and	

attention	deficit	hyperactivity	disorder	(ADHD;	e.g.,	Biederman	et	al.,	2010)	and	

has	generated	theoretical	debate	in	each	case.	What	does	resolution	of	delay	

imply	about	underlying	cause?	

Thomas	and	Knowland	(2014)	used	the	same	connectionist	model	of	past	

tense	acquisition	as	Thomas	(2005)	to	investigate	why	early-identified	delay	

sometimes	resolves.	They	argued	that	limitations	in	the	plasticity	of	

developmental	mechanisms	can	initially	produce	similar	behavioural	patterns	as	

limitations	in	computational	capacity.	Systems	with	limited	plasticity	require	

more	exposure	to	learning	events	to	produce	an	equivalent	improvement	in	

performance.	Mechanisms	exhibiting	early	delays	through	limited	plasticity	

should	therefore	respond	to	interventions	that	simply	enrich	the	level	of	
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naturalistic	experience.	Such	systems	should	remediate	to	the	normal	range	just	

through	greater	‘practice’,	without	requiring	specially	designed	interventions.	

Unlike	the	Thomas	(2005)	model	of	past	tense	formation,	Thomas	and	

Knowland	(2014)	took	a	polygenic	approach	to	language	delay.	Variation	in	rates	

of	development	was	modelled	in	a	large	population	of	simulated	children	

(N=1000).	Variation	was	caused	by	simultaneous	small	differences	in	14	

computational	parameters,	as	well	as	in	the	richness	of	the	language	

environment	in	which	the	child	was	raised.	The	computational	parameters	

influenced	properties	of	the	learning	mechanism	such	as	network	construction	

(e.g.,	number	of	internal	units),	network	activation	(e.g.,	unit	discriminability,	

processing	noise),	network	adaptation	(e.g.,	the	learning	algorithm,	the	learning	

rate),	and	network	maintenance	(e.g.,	the	level	of	pruning	to	eliminate	unused	

connectivity,	weight	decay).1	Across	the	14	parameters,	Thomas	and	Knowland	

identified	four	broad	types	of	processing	role	that	parameters	might	serve.	These	

roles	were	capacity,	plasticity,	signal,	and	regressive	events.	Parameters	

contributing	to	capacity	influence	the	potential	dimensionality	of	learned	

representations,	and	include	the	number	of	units	and	connections;	for	plasticity,	

																																																								
1	The	choice	of	parameters	to	vary	was	based	on	previous	connectionist	models	that	had	used	
individual	parameter	variations	to	explain	individual	differences	or	disorders.	These	models	

were	pursuing	hypotheses	that,	for	instance,	differences	in	cognition	may	arise	from	neural	

plasticity	or	from	the	actions	of	certain	neurotransmitters.	Variations	in	architecture	have	been	

used	to	explain	dyslexia:	Zorzi,	Houghton	and	Butterworth	(1998);	in	hidden	units	to	explain	

intelligence:	Richardson	et	al.	(2006a,	b)	and	autism:	Cohen	(1998);	in	sparseness	of	connectivity	

to	explain	autism:	McClelland	(2000);	in	processing	noise	to	explain	Developmental	Language	

Disorder:	Joanisse	and	Seidenberg	(2003);	in	unit	threshold	function	to	explain	schizophrenia:	

Cohen	&	Servan-Schreiber	(1992)	and	aging:	Li	and	Lindenberger	(1999);	in	connection	pruning	

to	explain	autism:	Thomas,	Knowland	and	Karmiloff-Smith	(2011);	and	in	learning	rate	to	explain	

general	intelligence:	Garlick	(2002).	Here,	individual	differences	were	produced	by	simultaneous	

small	variations	in	all	parameters.	
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contributing	parameters	modulate	the	size	of	the	weight	changes	produced	by	

experience;	for	signal,	it	is	noise	added	to	unit	activations	or	thresholds	for	

driving	behavioural	responses;	for	regressive	events,	it	is	parameters	influencing	

maintenance	of	connectivity,	such	as	pruning	and	weight	decay.	Some	

parameters	contribute	mainly	to	one	role,	such	as	number	of	processing	units	

and	denseness	of	connectivity	contributing	to	capacity.	Other	parameters	

contribute	to	more	than	one	role:	the	nature	of	the	learning	algorithm	

determines	both	what	can	be	learned	and	also	how	quickly;	the	unit	

discriminability	influences	the	quality	of	the	signal	propagating	through	the	

network	but	also	modulates	the	rate	of	connection	changes	and	therefore	

plasticity.	A	system	with	low	capacity	has	a	reduced	ability	to	learn	complex	

information,	one	with	low	plasticity	requires	more	experience	to	learn,	one	with	

poor	signal	struggles	to	acquire	an	accurate	rendition	of	knowledge,	while	one	

with	regressive	events	will	lose	plasticity	and	potentially	knowledge	across	

development.	

Of	the	1000	networks	in	the	simulated	population,	287	were	diagnosed	

with	language	delay	at	an	early	point	in	development,	based	on	falling	1	standard	

deviation	below	the	population	mean.	The	subsequent	developmental	

trajectories	of	these	delayed	networks	were	followed,	and	169	networks	later	

resolved	back	into	the	normal	range.	Persisting	deficits	were	observed	in	the	

remaining	118.	Figure	2	shows	the	mean	trajectories	of	the	typically	developing	

and	delayed	groups.	The	proportions	are	similar	to	those	reported	in	the	

empirical	literature,	where	early	diagnosed	delay	(e.g.,	aged	3-4)	resolves	in	

more	than	half	of	cases	(e.g.,	by	age	6)	(Bishop,	2005;	Dale,	Price,	Bishop,	&	

Plomin,	2003;	see	also	Ukoumunne	et	al.,	2012,	for	resolution	at	younger	ages).		
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<Insert	Figure	2	about	here>	

	

If	the	nature	of	intervention	should	be	differentiated	by	whether	delay	

resolves	or	persists,	it	is	important	to	be	able	to	predict	outcomes	for	children	

with	early-diagnosed	delay	as	soon	as	possible	(Chiat	&	Roy,	2008).	However,	

researchers	have	found	this	challenging.	For	example,	in	a	large	empirical	study,	

Dale	et	al.	(2003)	explored	whether	it	was	possible	to	predict	if	children	would	

fall	in	the	persisting	delay	(n	=	372)	or	resolving	delay	(n	=	250)	group	on	the	

basis	of	their	‘time	1’	profiles	at	2	years	of	age,	compared	against	‘time	2’	

outcome	at	4	years.	Children	whose	delays	would	persist	scored	reliably	lower	

across	a	number	of	parental	rating	measures,	including	vocabulary,	grammar,	

displaced	reference	(use	of	language	to	refer	to	past	and	future	events),	and	

nonverbal	skills,	as	well	as	scoring	reliably	lower	maternal	education	and	

showing	a	greater	incidence	of	ear	infection.	Nevertheless,	the	effect	sizes	were	

small	(.01–.06),	and	logistic	regression	analyses	found	that	children’s	profiles	at	

age	2	offered	only	modest	classification	of	outcome	at	age	4.	The	statistical	

regression	model	including	vocabulary,	displaced	reference,	and	nonverbal	

scores	at	time	1	correctly	predicted	only	45%	of	cases	of	persisting	delay	

(chance	=	50%),	but	81%	of	cases	of	resolving	delay.	Addition	of	gender	and	

maternal	education	level	brought	up	the	prediction	of	persisting	delay	to	52%.	

A	similar	analysis	was	possible	in	the	Thomas	and	Knowland’s	(2014)	

connectionist	model.	Here,	time	1	behavioural	measures	were	broadly	similar	

across	persisting	and	resolving	delay	groups.	There	were	subtle	differences	in	

past	tense	accuracy,	with	the	persisting	delay	group	performing	reliably	worse	
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on	regular	verbs	and	generalisation	of	the	past	tense	rule	to	novel	verbs	(that	is,	

in	extracting	the	underlying	regularities	of	the	domain)	compared	to	the	

resolving	group.	But	while	these	effects	were	highly	reliable,	as	with	the	

empirical	data,	they	were	of	small	effect	size.	A	logistic	regression	model	

entering	just	time	1	behavioural	profiles	was	80%	accurate	in	predicting	

persisting	delay	but	only	54%	accuracy	in	predicting	resolving	delay.	Accuracy	

was	not	increased	by	adding	in	the	richness	of	the	language	environment	to	

which	each	network	was	exposed.	In	the	model,	variations	in	the	richness	of	the	

training	environment	implemented	one	pathway	by	which	differences	in	

maternal	education	have	been	proposed	to	influence	language	development	(see	

Thomas,	Forrester	&	Ronald,	2013).	As	per	Dale	et	al.	(2003),	measures	of	the	

environment	didn’t	help	to	predict	developmental	outcome.	In	one	sense,	this	is	

quite	surprising:	in	the	model,	experience	of	the	language	environment	was	the	

primary	driver	of	development	itself.	Despite	this	central	role,	it	was	a	weak	

predictor	of	individual	differences.	

Computational	implementations	provide	the	opportunity	to	investigate	

the	mechanistic	reasons	why	a	model	captures	a	given	behavioural	profile.	In	the	

current	case,	we	can	identify	which	of	the	computational	parameters	in	fact	

predicted	whether	delay	would	resolve	or	not.	Table	2	indicates	which	

parameters	had	predictive	power	on	developmental	outcome.	Limits	on	capacity	

tended	to	predict	persisting	delay,	while	limits	in	plasticity	predicted	resolving	

delay.	When	the	full	set	of	computational	parameters	was	added	into	the	logistic	

regression,	a	combination	of	time-1	behaviour	and	information	about	processing	

properties	was	able	to	predict	persisting	delay	at	72%	accuracy	and	resolving	

delay	at	84%.	(In	clinical	practice,	80%	sensitivity	and	specificity	is	sometimes	
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viewed	as	the	requirement	of	a	good	screening	test	for	developmental	

disabilities;	it	is	less	than	100%	since	clinical	science	is	accepted	as	often	

imprecise;	Charman	et	al.,	2015,	Glascoe,	1999).	It	is	notable	that	in	the	model,	

sensitivity	and	specificity	levels	did	not	reach	100%.	Failure	to	predict	all	the	

variance	in	outcome	in	a	relatively	simple	and	well-controlled	model	points	to	

the	complex	dynamics	involved	in	development	of	non-linear	learning	systems.2	

More	importantly,	the	model	suggested	that	to	predict	behavioural	outcomes	in	

cases	of	atypicality,	measures	of	behaviour	need	to	be	complemented	with	

measures	of	processing,	as	argued	by	Fernald	and	colleagues	(e.g.,	Fernald	&	

Marchman,	2012).	

Predictions	derived	from	a	computational	model	need	to	be	mapped	to	

cognitive	or	brain	processes	in	the	child.	How	do	the	properties	of	the	model	

map	to	real	children?	Practically,	capacity	can	be	operationalised	as	the	quantity	

of	information	that	can	be	integrated	online,	such	as	in	a	phonological	awareness	

task.	Plasticity,	by	contrast,	can	be	operationalised	as	performance	on	a	learning	

task,	such	as	in	auditory	statistical	learning.	The	computational	level	suggests	

these	properties	are	likely	to	be	related	but	potentially	distinguishable	by	

focusing	on	change	over	time,	either	in	experimental	tasks	or	in	longitudinal	

trajectories.	

In	sum,	resolution	of	an	early-identified	developmental	deficit	can	occur	if	

the	atypicality	in	the	system	is	a	limitation	in	plasticity	rather	than	capacity.	In	

this	case,	natural	experience	may	drive	the	resolution.	The	implication	is	that	

intervention	need	only	increase	the	dosage	of	naturalistic	experience,	for	

																																																								
2	Predictive	power	is	lost	due	to	the	interactions	between	the	computational	parameters	in	such	
mechanisms,	where	many	of	the	effects	are	non-linear	(Thomas,	Forrester	&	Ronald,	2016).		
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example	by	encouraging	more	frequent	language	interactions	in	the	home,	

rather	than	employ	a	specially	designed	intervention.	However,	identifying	early	

on	whether	an	emerging	delay	is	due	to	a	plasticity	rather	than	a	capacity	

limitation	is	challenging	and	requires	attention	to	processing	properties	rather	

than	just	behavioural	profiles	and	environmental	measures.	

	

<Insert	Table	2	about	here>	
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Simulating	methods	to	remediate	atypical	development	in	a	single	network	

From	a	computational	standpoint,	behavioural	interventions	seeking	to	

ameliorate	deficits	can	be	construed	as	changing	the	experiences	the	system	is	

exposed	to,	for	example	through	a	discrete	block	of	intervention.	This	could	

either	amount	to	re-weighting	of	information	available	in	previous	experience,	to	

blocked	practice	of	certain	skills,	to	alterations	in	salience	or	feedback.	Or	it	

could	be	different	experiences	to	those	encountered	before.	The	starting	point	is	

the	assumption	that	naturalistic	experience	(or	the	usual	range	of	educational	

experiences)	has	not	been	sufficient	for	the	system	to	acquire	age-appropriate	

abilities;	and	this	is	because	the	learning	mechanism	has	atypical	processing	

properties.	If	a	system	has	limitations,	why	should	adding	further	or	different	

experiences	improve	the	situation?	Intervention	might	cause	a	beneficial	

restructuring	of	representations,	and	do	so	by	using	feedback	or	concentrated	

practice	to	emphasise	certain	dimensions	or	associations	within	the	task	domain.	

Of	course,	this	is	predicated	on	the	assumption	that	the	mechanism,	and	indeed	

the	child	more	broadly,	has	indeed	been	exposed	to	the	appropriate	range	of	

experiences	prior	to	diagnosis	of	the	disorder.	We	begin	by	considering	the	

possibility	that	this	is	not	the	case.	

	

Disorders	from	insufficient	early	stimulation	

Although	clinicians	usually	attempt	to	rule	out	environmental	causes	in	

diagnosing	developmental	disorders,	language	disorders	are	often	observed	with	

increased	frequency	in	children	from	low	SES	backgrounds	(All	Party	

Parliamentary	Group	on	Speech	and	Language	Difficulties,	2013;	Locke	et	al.,	

2002;	Nelson	et	al.,	2011).	One	factor	associated	with	low	SES	that	impacts	
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language	development	is	the	richness	of	the	language	environment	in	which	

children	are	raised	(Hart	&	Risely,	1995).	A	number	of	longitudinal	studies	have	

shown	that	differences	in	the	richness	of	linguistic	input	result	in	an	increasing	

gap	in	children’s	language	development	(Huttenlocher	et	al.,	2010;	Reilly	et	al.,	

2010;	Rowe,	Raudenbush,	&	Goldin-Meadow,	2012;	Hoff,	2013),	while	brain	

imaging	evidence	has	suggested	that	young	children	regularly	engaged	in	

conversation	by	adults	have	stronger	structural	connectivity	between	two	

language	regions,	Wernicke’s	area	and	Broca’s	area	(Romeo	et	al.,	2018).	

From	the	point	of	view	of	a	single	mechanism	embedded	within	a	wider	

cognitive	system,	the	deficit	in	input	need	not	be	a	property	of	the	external	

environment,	but	could	stem	from	deficits	in	other	parts	of	the	system.	For	

instance,	one	theory	of	why	components	of	the	social	cognitive	system	(such	as	

those	underlying	face	recognition)	do	not	develop	typically	in	autism	is	that	the	

infant	as	a	whole	does	not	pay	attention	to	the	relevant	social	cues	that	are	

nevertheless	present	in	his	or	her	environment	(e.g.,	Elsabbagh	et	al.,	2011;	

though	see	Elsabbagh	&	Johnson,	2016).	Thus	a	face	recognition	system	might	

not	develop	appropriately	because	it	is	not	exposed	to	sufficient	information	

about	faces.	

Behavioural	intervention	should	therefore	involve	enriching	the	learning	

environment	from	the	perspective	of	the	relevant	mechanism,	to	ensure	

sufficient	information	is	present	to	acquire	the	target	ability.	In	the	domain	of	

language,	there	are	initiatives	to	encourage	parents	from	lower	SES	backgrounds	

to	talk	more	to	their	children	(e.g.,	Leffel	&	Suskind,	2013;	Suskind	&	Suskind,	

2015);	and	within	autism,	interventions	are	being	developed	that	specifically	
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train	infants	at	familial	risk	of	autism	to	pay	attention	to	social	cues	(Wass	&	

Porayska-Pomsta,	2014).	

Restoration	of	an	enriched	input	should	bring	atypically	developing	

systems	back	towards	the	typical	range	of	development.	There	is	one	caveat	

concerning	timing.	Certain	domains,	particularly	those	involving	low-level	

perceptual	skills,	may	exhibit	sensitive	periods	in	development,	such	that	later	

acquisition	does	not	reach	the	same	ultimate	levels	of	proficiency	(Huttenlocher,	

2001).	Restoration	of	enriched	input	that	occurs	after	the	plasticity	of	the	system	

has	begun	to	reduce	may	not	be	as	successful;	in	effect,	the	early	disadvantage	

will	be	imprinted	on	the	structure	of	the	system.	One	example	of	such	an	account	

is	the	proposal	that	DLD	is	caused	by	an	early	auditory	deficit	even	though	not	all	

children	with	DLD	show	auditory	deficits.	The	idea	is	that	an	early	auditory	

deficit	may	resolve	in	some	children,	but	due	to	sensitive	periods	in	the	

development	of	the	language	system,	the	now-enriched	auditory	input	cannot	

bring	the	development	of	the	language	system	(and	specifically,	its	phonology)	

back	onto	the	typical	trajectory	(Bishop,	1997).	

Table	3	shows	data	from	a	polygenic	model	of	individual	differences	

(Thomas,	2016a),	again	employing	the	example	domain	of	English	past	tense.	

Here,	development	is	simulated	in	1000	children,	with	individual	differences	

arising	from	two	sources:	variation	in	multiple	computational	parameters	and	

variation	in	the	richness	of	the	information	present	in	the	learning	environment.	

The	population	depicted	in	Table	3	experienced	wide	variation	in	the	richness	of	

individuals’	learning	environments,	while	the	variation	in	computational	

learning	parameters	was	more	restricted,	so	that	environment	was	the	main	

driver	of	individual	differences	(see	Thomas,	2016a,	for	simulation	details;	
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GNEW	population).	Variation	in	the	environment	was	implemented	by	a	one-

time	filter	on	the	training	set	applied	to	each	family,	analogous	to	the	effects	of	

SES	on	language	input	(Thomas,	Forrester	&	Ronald,	2013).	The	top	line	of	each	

section	in	Table	3	shows	how	the	population	mean	and	distribution	of	

performance	changes	across	development	(in	this	case,	a	lifespan	of	1000	epochs	

of	training,	where	1	epoch	was	a	single	exposure	to	the	individual’s	family	

training	set).	

At	epoch	50,	relatively	early	in	development,	every	simulated	child’s	

environment	was	fully	enriched	to	provide	the	maximum	possible	training	set.	

Table	3	shows	the	effect	on	population	means	and	standard	deviations	following	

the	onset	of	intervention.	Regular	verbs	immediately	showed	an	acceleration	in	

response	to	this	whole-population	intervention,	with	variation	reducing	and	the	

lowest	performers	eventually	performing	above	the	50th-centile	of	the	original	

population.	Irregular	verbs	took	more	time	to	exhibit	the	acceleration,	indeed	

initially	showing	a	decline,	but	eventually	exhibited	large	gains.	In	general,	

acquisition	of	irregular	verbs	in	these	associative	models	tends	to	be	more	

sensitive	to	the	computational	properties	of	the	network.	For	irregular	verbs,	

variation	in	computation	properties	continued	to	produce	consistent	individual	

differences	in	performance	despite	the	enriched	environment.	Population	

standard	deviation	did	not	change	in	the	developmental	phases	following	

enrichment	(Table	3,	middle	section,	distributions	after	50	epochs).	In	other	

words,	the	gap	between	simulated	children	did	not	close	following	enrichment.	

Instead,	the	whole	population	increased	its	performance	level.	In	contrast,	gaps	

did	close	for	the	easier	regular	verbs,	where	computational	properties	did	not	

constrain	performance	so	strongly;	poorer	performing	children	caught	up	once	
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the	hindrance	of	a	disadvantaged	environment	was	lifted.	In	short,	the	effects	of	

universal	enrichment	on	narrowing	gaps	between	children	depended	on	the	

extent	to	which	internal	computational	properties	constrained	development.	

	

<Insert	Table	3	about	here>	

	

Functional	plasticity	can	reduce	in	associative	networks	with	‘age’	via	a	

number	of	mechanisms	(Thomas	&	Johnson,	2006).	In	connectionist	models,	age	

may	be	indexed	by	the	amount	of	training	the	system	has	experienced	or	a	

maturational	schedule	acting	on	computational	properties.	Among	the	

mechanisms	that	can	reduce	plasticity	are	the	loss	of	resources,	reductions	in	the	

malleability	of	connections	in	response	to	training	signals,	entrenchment	of	

connectivity	(that	is,	well	established	connections	take	longer	to	reset),	and	

assimilation	(whereby	top	down	processes	reduce	the	detection	of	differences	in	

an	altered	learning	environment,	thereby	mitigating	the	responsiveness	of	the	

system	to	the	new	conditions).	

The	population	under	consideration	here	experienced	aged-related	

reductions	in	plasticity	through	pruning	of	connectivity,	which	reduced	available	

resources	(or	capacity).	Pruning	had	its	onset	at	around	100	epochs.	The	bottom	

section	of	Table	3	shows	the	effect	of	population-wide	enrichment	on	irregular	

verb	performance	at	250	epochs	compared	to,	respectively,	normal	(untreated)	

development	and	early	intervention.	Intervention	had	reduced	effectiveness	

when	it	commenced	after	the	onset	of	pruning.	For	regular	verbs,	by	the	end	of	

training,	the	mean	improvement	in	population	accuracy	following	early	

enrichment	was	22%,	while	that	following	later	enrichment	was	16%.	For	
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irregular	verbs,	the	improvement	following	early	enrichment	was	31%	and	after	

later	enrichment	13.5%	(t-test,	both	p<.001).	Notably,	the	late	intervention	

increased	the	population	standard	deviation	for	irregular	verbs:	intervention	

increased	the	gaps	between	individuals.	

If	early	impoverished	environments	cause	deficits,	the	size	of	the	

treatment	effect	available	through	enrichment	should	be	inversely	proportional	

to	the	quality	of	that	early	environment.	In	other	words,	children	who	are	held	

back	more	by	an	impoverished	early	environment	should	have	greater	scope	for	

improvement	following	enrichment.	In	the	simulation	of	early	enrichment,	this	

correlation	was	observed	both	for	regular	and	irregular	verbs,	with	correlations	

between	environmental	quality	and	treatment	effect	of	-.86	and	-.77,	respectively	

(Figure	3a).	

However,	sensitive	periods	in	development	eventually	translate	the	

consequence	of	being	raised	in	a	poor	environment	into	a	deficit	in	the	structure	

of	the	network,	which	later	enrichment	is	less	able	to	undo.	In	this	scenario,	the	

greater	the	early	impoverishment,	the	greater	the	impact	on	the	development	of	

processing	structures,	and	the	poorer	the	predicted	treatment	effect.	One	might	

thus	expect	the	inverse	correlation	of	early	environmental	quality	and	treatment	

effect	to	weaken	or	even	reverse.	In	line	with	this	expectation,	the	equivalent	

correlations	following	late	enrichment	were	-.76	and	-.25	for	regular	and	

irregular	verbs,	respectively	(Figure	3b).	The	reduction	in	scope	for	treatment	

across	development	for	networks	raised	in	poorer	environments	was	larger	for	

irregular	verbs	than	regular	verbs,	since	they	are	more	sensitive	to	the	

processing	capacity	of	the	network	(in	a	fully	factorial	ANCOVA	of	treatment	
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effects	with	factors	of	verb	type	and	timing,	and	environmental	quality	as	the	

covariate,	all	main	effects	and	interactions	were	highly	significant).	

The	pattern	of	more	sustained	early	deprivation	leading	to	less	easily	

remediated	deficits	can	be	seen	in	data	from	a	recent	follow-up	study	of	

Romanian	orphans	exposed	to	severe	early	deprivation	but	then	adopted	into	

enriched	environments.	Sonuga-Barke	et	al.	(2017)	found	that,	when	followed	up	

into	young	adulthood,	Romanian	adoptees	who	experienced	less	than	6	months	

in	an	institution	had	similarly	low	levels	of	symptoms	as	typically	developing	

controls.	By	contrast,	compared	to	controls,	Romanian	adoptees	exposed	to	more	

than	6	months	in	an	institution	had	persistently	higher	rates	of	symptoms	of	

autism	spectrum	disorder,	disinhibited	social	engagement,	and	inattention	and	

over-activity	through	to	young	adulthood.	

	

<Insert	Figure	3	about	here>	

	

Thus,	enrichment	interventions	to	alleviate	deficits	caused	purely	by	a	

lack	of	appropriate	experience	need	to	pay	attention	to	possible	timing	effects	

impacting	plasticity.	If	plasticity	reduces,	enrichment	alone	will	be	insufficient	as	

an	intervention.	How	should	interventions	alter	if	plasticity	has	reduced?	The	

best	behavioural	intervention	method	in	the	case	of	late	intervention	will	depend	

on	the	particular	mechanism	causing	the	plasticity	loss	for	the	domain	and	

mechanism	in	question	(see,	e.g.,	McClelland	et	al.,	1999;	Thomas	&	Johnson,	

2006).	It	may	involve	more	intense	practice,	more	feedback,	or	perceptually	

exaggerated	stimuli.	The	key	message,	however,	is	perhaps	an	obvious	one.	

Where	a	theoretical	understanding	of	development	in	the	target	domain	suggests	
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reductions	in	plasticity	with	age	in	key	mechanisms,	early	interventions	to	

alleviate	impoverished	experience	become	more	important.	If	environmental	

factors	(such	as	SES)	inversely	predict	response	to	treatment	in	younger	but	not	

older	children,	this	is	the	hallmark	of	the	operation	of	sensitive	periods.	

Lastly,	behavioural	deficits	produced	by	impoverished	learning	

environments	will	not	necessarily	act	independently	of	differences	in	intrinsic	

learning	properties.	Figure	4	shows	the	difference	between	impoverished	and	

enriched	learning	environments	for	the	simulated	population,	stratified	by	their	

unit	discriminability.	The	effect	of	learning	environment	interacted	with	this	

internal	computational	constraint,	such	that	the	less	optimal	computational	

constraint	tended	to	exaggerate	the	impact	of	the	impoverished	environment,	

albeit	this	was	a	marginal	effect	against	the	variation	of	other	computational	

parameters	in	the	population	(main	effect	of	environment:	F(1,996)=89.61,	

p<.001,	ηp2=.083,	main	effect	of	temperature:	F(1,996)=10.73,	p=.001,	ηp2=.011,	

environment	x	temperature:	F(1,996)=3.51,	p=.061,	ηp2=.004).	This	interaction	

occurred	because	both	influences	act	on	the	strengthening	of	network	

connections,	which	in	turn	drives	behaviour.	An	increase	in	the	incidence	of	

developmental	disorders	in	low	SES	families	may,	therefore,	represent	an	

interaction	between	risk	factors,	rather	than	resulting	from	pure	environmental	

effects.	

	

<Insert	Figure	4	about	here>	

	

In	sum,	interventions	to	remediate	deficits	stemming	from	insufficient	

stimulation	of	a	developing	cognitive	system	may	either	target	the	external	
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environment,	or	the	internal	environment	of	the	system	by	seeking	to	alter	those	

aspects	of	the	external	environment	to	which	the	child	attends.	Enrichment	

interventions	will	eliminate	gaps	between	children	unless	the	target	behaviours	

are	sensitive	to	other	(independently	occurring)	individual	differences	in	

computational	properties	of	learning	mechanisms.	In	the	latter	case,	enrichment	

can	improve	the	whole	population	level	of	performance	without	narrowing	gaps	

between	children.	Lastly,	environmental	effects	may	interact	with	and	

exacerbate	underlying	computational	risk	factors.	

	

Choosing	better	training	sets	to	support	atypical	processing	properties	

In	the	first	section,	we	observed	how	a	processing	system	with	atypical	

computational	properties	could	eventually	reach	ceiling	performance	on	the	

training	set	but	show	residual	deficits	in	generalisation.	Supporting	

generalisation	is	an	example	where	specific	additional	experience	can	be	used	to	

restructure	representations.	

Fedor	et	al.	(2013)	explored	how	the	addition	of	specially	designed	input-

output	mappings	could	support	generalisation	in	networks	with	atypical	

processing	properties.	These	authors	also	employed	a	feedforward	connectionist	

model	drawn	from	the	field	of	language	development,	in	this	case	acquisition	of	

the	Arabic	plural	(Forrester	&	Plunkett,	1994).	The	aim	was	to	visualise	the	

formation	and	mediation	of	atypical	representations	of	categories.	The	model	

was	trained	to	learn	categorisations	defined	over	a	2-dimensional	input	space	

using	high-dimensional	internal	representations.	Fedor	et	al.	considered	

different	categorisation	problems,	in	each	case	only	giving	the	network	a	limited	
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sample	of	the	categorisation	problem,	and	testing	its	ability	to	acquire	

(generalise	to)	the	full	function.	

Developmental	disorders	were	then	simulated	by	initial	changes	to	

parameters	such	as	the	denseness	of	connectivity,	numbers	of	internal	

processing	units,	the	learning	rate,	the	unit	discriminability,	and	processing	

noise.	Next,	cases	of	developmental	deficits	were	re-run	and	interventions	

applied	early	in	development.	Interventions	comprised	additional	input-output	

mappings	(no	more	than	10%	of	the	size	of	the	training	set),	which	offered	

different	information	about	the	categories.	For	example,	interventions	might	

mark	out	prototypical	members	of	categories,	or	demarcate	the	edges	of	

category	boundaries	in	the	input	space.	The	results	of	these	exploratory	

simulations	indicated	that	the	best	interventions	either	sampled	the	whole	

problem	space	or	provided	a	representative	‘slice’	across	all	categories.	There	

was	also	some	evidence	that	interventions	were	differentially	effective	

depending	on	the	problem	domain	(mapping	problem)	and	depending	on	the	

type	of	deficit.	

Figure	5	illustrates	one	example	of	a	training	problem	used	by	Fedor	et	al.	

(2013).	It	shows	the	architecture,	the	full	categorisation	problem,	the	training	set	

(which	represents	a	subset	of	the	full	problem),	and	then	an	example	

intervention	set.	Here,	the	network	had	to	learn	a	category	that	spanned	a	zone	

around	a	diagonal	of	the	two-dimensional	input	space,	with	different	categories	

either	side.	The	training	set	only	provided	examples	at	either	end	of	the	diagonal,	

and	the	network	had	to	learn	to	interpolate	the	general	function	linking	the	two	

ends.	Figure	6	demonstrates	an	example	of	a	network	learning	this	general	

function	successfully.	Although	the	internal	representations	of	the	network	had	
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high	dimensionality,	their	structure	could	be	visualised	by	determining	the	

network’s	categorisation	of	all	10,000	possible	locations	in	the	input	space.	

Figure	6	shows	that	in	the	typical	case,	there	was	quick	formation	of	the	diagonal	

category	but	with	fuzzy	boundaries,	which	were	then	progressively	sharpened	

through	further	training.	The	figure	also	shows	the	formation	of	atypical	

representations	in	a	case	of	a	developmental	deficit,	in	this	case,	a	network	with	

only	30%	of	the	normal	level	of	connectivity.	Interpolation	was	unsuccessful,	and	

eventual	performance	retained	accuracy	only	in	the	region	of	the	training	set.	

Finally,	the	figure	demonstrates	the	consequence	of	adding	an	effective	

intervention	(a	slice	across	all	categories)	early	in	training.	These	additional	

input-output	mappings	improved	performance	on	the	training	set,	but	crucially	

were	also	able	to	support	acquisition	of	the	general	function	despite	the	atypical	

processing	properties.	This	is	an	important	demonstration	that	atypical	

processing	properties	may	require	the	design	of	special	intervention	sets	to	

support	generalisation,	even	in	cases	where	high	accuracy	on	the	training	set	can	

eventually	be	reached	through	extended	exposure.	Alleviation	of	the	deficit	

cannot	be	achieved	by	more	naturalistic	experience,	but	requires	bespoke	

additional	training	to	restructure	representations	based	on	a	theoretical	

understanding	of	the	target	domain.	

	

<Insert	Figures	5	&	6	about	here>	

	

Simplifying	the	problem	the	atypical	system	has	to	solve	

Where	a	cognitive	mechanism	is	struggling	to	acquire	a	target	ability,	a	

behavioural	intervention	might	seek	to	reduce	the	complexity	of	the	problem	the	
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system	is	trying	to	solve.	It	might	do	so	by	altering	the	input	and	output	

representations,	or	restricting	training	to	a	subset	of	the	task.	

From	a	computational	perspective,	a	task	domain	is	defined	by	the	set	of	

input-output	mappings.	The	complexity	of	the	problem	is	specified	by	the	way	

the	domain	is	encoded,	with	respect	to	the	input	representations	and	the	output	

representations,	and	the	number	of	mappings	to	be	learnt.	Where	a	learning	

mechanism	has	insufficient	computational	resources	to	solve	the	problem,	

development	occurs	more	slowly,	may	asymptote	at	a	lower	level,	show	

acquisition	of	some	parts	of	the	domain	but	not	others,	or	show	generalisation	

deficits.	We	have	so	far	considered	behavioural	intervention	as	adding	some	

further	information	to	the	structured	environment	or	altering	its	frequency	

distribution.	However,	a	behavioural	intervention	could	serve	to	alter	the	nature	

of	the	input	or	output	representations.	Changing	the	representations	might	

simplify	the	problem	that	the	learning	mechanism	has	to	solve,	and	bring	it	

within	what	can	be	achieved	with	the	existing	computational	constraints.	That	is,	

a	less	powerful	mechanism	may	be	able	to	learn	a	simpler	problem.	

Behavioural	interventions	for	dyslexia	and	word-finding	difficulties	both	

appeal	to	this	idea.	For	reading,	some	interventions	target	the	structure	of	the	

phonological	representations,	the	output	of	the	decoding	system.	For	WFD,	

interventions	additionally	target	improvements	in	semantic	representations,	the	

drivers	of	naming.	Computational	models	of	intervention	have	also	appealed	to	

this	method.	Seidenberg	and	McClelland’s	original	connectionist	model	of	

reading	(1989)	was	later	deemed	to	be	closer	to	the	performance	of	a	dyslexic,	

because	it	had	representations	that	didn’t	show	sufficient	similarity	between	

written	letters	or	between	speech	sounds	to	allow	the	learning	mechanism	to	
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generalise	the	reading	problem	to	novel	words.	The	presentation	of	the	problem	

domain	made	it	too	hard	for	the	learning	mechanism	to	solve.	A	later	

implementation	utilised	more	componential	input	and	output	representations	

and	was	taken	to	be	a	better	model	of	typical	development	(Plaut	et	al.,	1996).	

One	of	the	interventions	considered	to	alleviate	dyslexia	in	the	Harm,	McCandliss	

and	Seidenberg	(2003)	model	was	to	improve	the	output	representations	

developed	by	the	phonological	component.	Best	et	al.’s	(2015)	model	considered	

interventions	to	improve	naming	–	captured	as	the	mapping	between	semantic	

and	phonological	representations	–	by	treatments	that	improved	the	

representations	of	semantics	or	phonology	in	isolation,	rather	than	simply	more	

practice	in	using	the	compromised	pathway	linking	these	representations.	Lastly,	

Harm	et	al.	demonstrated	that	improvements	stemming	from	changes	in	input	or	

output	representations	may	be	subject	to	timing	effects;	previous	learning	may	

cause	entrenched	connections	that	mean	the	mechanism	responds	less	readily	

when	representations	are	changed	later	in	development.	

The	Best	et	al.	(2015)	model	used	fairly	idealised	depictions	of	semantics	

and	phonology.	Figure	7	shows	results	from	a	model	with	more	realistic	

representations	(Alireza,	Fedor	&	Thomas,	2017).	Using	the	same	architecture	as	

the	Best	et	al.	model,	this	implementation	employed	a	training	set	of	400	English	

words	taken	from	the	Masterson,	Stuart,	Dixon	and	Lovejoy	(2010)	corpus	of	

words	found	in	children’s	books.	Phonology	was	encoded	in	a	slot-based	scheme	

using	articulatory	features,	while	semantics	used	a	feature-based	scheme	of	over	

1000	features	drawn	from	Vinson	and	Vigliocco’s	(2008)	adult	ratings	of	word	

meanings.	Figure	7a	depicts	the	typical	model	in	its	development	of	semantic	

knowledge,	phonological	knowledge,	single	word	comprehension,	and	single	
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word	naming;	and	an	atypical	network,	which	had	a	computational	restriction	to	

the	naming	pathway	that	linked	emerging	semantic	and	phonological	

representations.	For	the	atypical	network,	Figures	7b-d	depict	the	effect	on	

naming	of	a	relatively	short	intervention	early	in	training	(between	100	and	200	

epochs,	in	a	lifespan	of	1000	epochs,	depicted	by	the	shaded	area).	Intervention	

was	triggered	at	a	point	when	the	typical	model	had	acquired	a	productive	

vocabulary	size	of	67	words,	while	the	atypical	models	had	a	vocabulary	size	of	

36	words.	Five	different	interventions	were	contrasted,	of	three	types:	(1)	

remediating	the	weakness	–	the	model	was	provided	with	additional	training	on	

the	naming	pathway;	(2)	improve	the	strength	–	the	model	was	provided	with	

additional	training	to	improve	the	(otherwise	typically	developing)	semantic	

representations,	the	phonological	representations,	or	both	at	once;	(3)	both	

types	1	and	2	were	combined	into	an	intervention	that	sought	to	simultaneously	

improve	strength	and	remediate	weakness.		

	

<Insert	Figure	7	about	here>	

	

The	intervention	to	target	the	naming	weakness,	extra	practice	for	the	

semantics-to-phonology	pathway,	improved	performance	initially,	but	served	

only	to	propel	the	system	further	along	its	atypical	trajectory.	The	final	level	of	

performance	was	no	higher;	eventually,	the	untreated	condition	caught	up	with	

the	treated	condition.	Interventions	to	target	strengths,	the	semantic	and	

phonological	representations,	produced	more	gradual	improvements	(little	

during	the	intervention	period	itself),	but	subsequent	improvements	were	long-

term	and	raised	the	final	level	of	performance.	This	is	because	extra	training	on	
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the	input	and	output	representations	for	naming	served	to	make	them	more	

distinguishable,	and	therefore	make	the	task	of	learning	the	arbitrary	mappings	

between	meaning	and	sound	easier	for	the	restricted	pathway.	The	largest	

benefit	occurred	when	both	semantic	input	and	phonological	output	

representations	were	improved	(Fig.	7c).	When	the	input/output	intervention	

was	combined	with	extra	training	on	the	semantics-to-phonology	pathway,	both	

short-term	and	long-term	benefits	were	observed	(Fig.	7d).	

Alireza	et	al.	(2017)	also	considered	the	effects	of	timing,	contrasting	

interventions	at	100,	250,	and	750	epochs.	In	all	models,	unused	network	

connections	were	pruned	away	with	a	small	probability	from	100	epochs	

onwards,	reducing	the	plasticity	of	older	networks.	Later	in	training,	improving	

strengths	became	less	effective	and	remediating	weaknesses	became	more	

effective.	Echoing	the	findings	of	Harm	et	al.	(2003),	the	benefit	of	improving	

input	and	output	representations	was	more	marked	early	in	development,	and	

reduced	once	pathways	had	committed	to	utilising	the	(potentially	poor)	initial	

representations.	At	that	point,	maximising	the	performance	of	the	pathway	

through	intense	practice	became	the	best	recourse.	

In	sum,	behavioural	interventions	that	improve	either	the	input	or	output	

representations	involved	in	acquiring	a	cognitive	domain	may	improve	the	

ultimate	level	of	performance	that	is	attainable	by	the	system	with	atypical	

computational	constraints,	but	such	improvements	may	be	subject	to	timing	

effects.	Remediating	weakness	did	produce	improvements,	but	these	only	

propelled	the	system	more	quickly	along	the	same	atypical	trajectory.	In	this	

model,	long-term	benefits	of	an	early	intervention	arose	from	improving	
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strengths,	not	from	focusing	on	weaknesses.	However,	the	opposite	was	true	of	a	

late	intervention.	

If	input	and	output	representations	cannot	be	altered,	how	can	the	

problem	be	simplified	to	help	an	atypical	mechanism?	If	the	model	is	unable	to	

learn	the	training	set	to	a	given	performance	level	through	limitations	in	

processing	capacity,	adding	further	input-output	mappings	to	the	training	set	is	

unlikely	to	enhance	accuracy	on	the	patterns	in	the	original	training	set.	What	

one	might	call	normalisation	through	behavioural	intervention	is	therefore	

difficult	if	one	conceives	of	developmental	deficits	as	arising	from	limitations	in	

individual	systems.	We	define	normalisation	here	as	the	acquisition	of	the	

abilities	and	knowledge	that	any	typically	developing	system	acquires	through	

exposure	to	the	normal	training	set.	

However,	one	might	take	the	view	that,	for	adequate	functioning	of	a	child	

in	his	or	her	day-to-day	environment,	learning	the	full	repertoire	of	behaviours	

in	the	target	domain	is	not	necessary.	Perhaps	it	is	sufficient	to	learn	just	some	

items	in	the	training	set,	the	most	frequently	required,	the	most	prototypical?	

This	more	modest	objective	might	suggest	interventions	that	focus	only	on	a	

subset	of	the	training	set.	For	example,	in	the	past	tense	domain,	one	might	select	

the	most	frequently	used	verbs,	be	they	regular	or	irregular.	Alternatively,	one	

might	take	the	view	that	what	the	atypical	system	needs	to	learn	is	not	the	

training	set	per	se	(even	though	this	is	what	typical	systems	acquire),	but	a	

general	function	implicit	in	the	items	in	the	training	set.	Acquisition	of	this	

general	function	can	be	assessed	by	performance	on	generalisation	sets	rather	

than	the	training	set.	There	may	then	be	input-output	mappings	that	can	be	

added	to	the	training	set	which	could	improve	the	network’s	ability	to	extract	the	
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general	function,	even	if	performance	on	the	original	training	set	did	not	

improve	(or	even	worsened	for	those	parts	inconsistent	with	the	general	

function).	In	contrast	to	normalisation,	we	could	term	this	approach	

compensation,	since	the	aim	is	to	optimise	a	subset	of	behaviours	present	in	the	

original	training	set.	In	the	past	tense	domain,	such	an	approach	might	seek	to	

improve	acquisition	of	the	regular	past	tense	rule	by	showing	its	use	across	a	

variety	of	verb	forms.	

The	distinction	between	these	two	intervention	aims	–	improving	

performance	on	the	full	training	set	versus	on	a	sub-set	or	a	function	implicit	in	

the	training	set	–	allows	us	to	draw	a	formal	distinction	between	normalisation	

and	compensation,	with	respect	to	our	single-mechanism	perspective.	It	poses	

the	challenge	of	how	one	might	derive	interventions	that	achieve	these	goals.	So	

far,	we	have	conceived	of	a	behavioural	intervention	as	the	addition	of	training	

patterns	to	the	network’s	training	set	for	some	duration.	Which	additional	

patterns	would	support	normalisation,	under	our	definition?	Which	additional	

patterns	would	support	compensation?	

Yang	and	Thomas	(2015)	explored	one	method	to	derive	intervention	

sets	within	a	machine-learning	framework.	The	method	assumes	the	availability	

of	an	artificial	neural	network	that	is	able	to	successfully	acquire	the	target	

domain	through	exposure	to	the	training	set.	A	genetic	algorithm	technique	is	

then	used	to	identify	which	input	units	were	most	important	for	generating	good	

learning	on,	respectively,	the	training	set	or	the	generalisation	set.	Intervention	

items	can	be	produced	which	embody	the	features	that	support	either	training	

set	acquisition	or	generalisation.	An	intervention	set	then	comprises	a	selection	

of	these	items,	for	example	which	span	the	internal	representational	space	of	
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typically	developing	models.	The	internal	representational	space	can	be	

characterised	by	principal	component	analyses	of	hidden	unit	activations	

produced	by	the	training	set.	Davis	(2017)	used	this	method	to	derive	

intervention	sets	to	encourage	either	normalisation	or	compensation,	and	

applied	them	to	a	model	of	autism.	Intervention	sets	contained	around	10%	the	

number	of	patterns	as	the	training	set.	The	results	in	that	case	indicated	that	

compensation	was	more	effective	than	normalisation	for	networks	with	

compromised	connectivity,	since	in	artificial	neural	networks,	regularity	is	less	

demanding	on	representational	resources.	

The	Yang	and	Thomas	method	for	deriving	intervention	sets	is	model	

dependent.	It	requires	the	availability	of	a	fully	specified	training	set,	and	

commitment	to	the	representational	format	in	which	the	problem	is	specified.	

Moreover,	compensation	requires	specification	of	the	implicit	function	in	order	

to	identify	the	key	input	dimensions	that	embody	the	function	–	in	other	words,	a	

theory	of	the	information	that	is	most	important	in	a	domain.	

In	sum,	behavioural	interventions	may	be	successful	in	mechanisms	with	

atypical	computational	constraints	if	the	goal	of	intervention	is	revised	from	

normalisation	(fully	behavioural	competency)	to	a	subset	of	skills,	which	we	

termed	compensation.	Machine-learning	methods	suggest	possible	ways	of	

identifying	items	that	will	support	normalisation	and	compensation.	

	

Altering	the	computational	properties	of	the	system	

If	the	atypical	computational	constraints	limiting	acquisition	of	a	target	cognitive	

domain	cannot	be	remediated	by	altering	or	complementing	training	

experiences,	intervention	may	instead	seek	to	change	the	computational	
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constraints.	Not	all	theoretical	approaches	to	development	view	the	

computational	properties	of	learning	mechanisms	in	the	cognitive	system	as	

fixed.	If	computational	properties	can	be	influenced	by	experience,	this	opens	up	

the	possibility	that	behavioural	intervention	could	alleviate	computational	

limitations	and	enable	successful	remediation.	In	its	development,	the	brain	

undergoes	a	phase	of	elaboration	of	connectivity	followed	by	regressive	events	

that	prune	away	connectivity;	in	addition,	some	existing	connectivity	is	

enhanced	by	myelination	(Huttenlocher,	2001).	It	is	as	yet	unclear	what	direct	

bearing	such	brain-level	changes	have	on	cognitive	development.	Researchers	

have	sometimes	included	both	increases	in	connectivity	and	decreases	in	

connectivity	in	their	developmental	cognitive	models.	For	example,	

constructivist	approaches	employ	networks	that	can	increase	the	number	of	

processing	units	and	connections	in	an	experience-dependent	manner	(see,	e.g.,	

Quartz	&	Sejnowski,	1997;	Mareschal	&	Shultz,	1999;	Westermann	&	Ruh,	2012).	

Other	models	have	included	pruning	of	connectivity,	where	the	connections	

removed	are	those	that	have	not	been	strengthened	by	experience	(e.g.,	Thomas,	

2016a).	Yet	other	models	have	included	the	assumption	that	some	

computational	properties	alter	according	to	a	maturational	schedule.	For	

example,	Munkata	(1999)	captured	age-related	differences	in	a	connectionist	

model	of	the	infant	A-not-B	task	partly	through	a	maturational	increase	in	the	

system’s	ability	to	maintain	active	representations,	implemented	by	a	gradual	

increase	in	the	strength	of	recurrent	connections.	

In	principle,	then,	one	could	conceive	of	a	behavioural	intervention	

modulating	a	mechanism’s	computational	properties	through	altering	the	way	

certain	parameters	change	across	development.	For	example,	this	might	equate	
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to	stimulation	causing	greater	elaboration	of	connectivity	in	the	target	

mechanism,	or	greater	resistance	to	loss	of	connectivity	during	pruning	of	

connectivity.	To	illustrate	how	this	might	work,	consider	a	model	of	autism	

proposed	by	Thomas,	Knowland	and	Karmiloff-Smith	(2011).	This	account	

initially	focused	on	the	regressive	sub-type.	It	proposed	that	autism	is	caused	by	

an	exaggeration	of	the	normal	phase	of	pruning	of	connectivity	occurring	from	

infancy	onwards;	over-pruning	occurs	and	particularly	impacts	long-range	

connectivity.	Thomas,	Davis	et	al.	(2015)	later	showed	how	differences	in	the	

timing	of	onset	of	over-pruning	could	link	early	onset,	late	onset,	and	regressive	

sub-types	of	autism	(Landa	et	al.,	2013).	Davis	(2017)	then	considered	whether	

the	behavioural	deficits	shown	by	the	atypical	connectionist	models	could	be	

remediated	by	interventions	of	different	types	and	applied	at	different	times.	

Behavioural	improvements	were	on	the	whole	relatively	small,	and	individual	

networks	show	variation	in	their	response	to	intervention.	However,	some	

networks	did	show	a	marked	behavioural	benefit	from	a	short,	discrete	

intervention	applied	early	in	development.	

Figure	8	shows	the	mean	performance	of	a	group	of	such	networks	that	

exhibited	a	strong	response	to	early	intervention.	Networks	were	trained	for	

1000	epochs,	with	the	onset	of	pruning	between	25	and	50	epochs;	atypical	

networks	were	exposed	to	an	intervention	at	epoch	30,	lasting	40	epochs;	the	

intervention	was	designed	to	enhance	generalisation	by	including	novel	

examples	of	items	following	the	implicit	rule	present	in	the	training	set,	with	the	

intervention	set	approximately	10%	the	size	of	the	training	set.	Figure	8(a)	

shows	the	behavioural	deficit	of	the	impaired	networks,	compared	to	a	control	

condition	of	the	same	networks	trained	without	the	atypical	setting	of	the	
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pruning	parameter.	The	short	intervention	showed	a	marked	benefit	on	accuracy,	

which	sustained	until	the	end	of	training.	The	size	of	the	intervention	effect	was	

highest	in	mid-training,	and	did	not	increase	at	the	later	measurement	point.	

Figure	8(b)	shows	the	total	number	of	connections	in	the	atypical	networks	in	

the	untreated	and	treated	conditions.	Notably,	during	the	intervention,	

connection	loss	accelerated	as	the	internal	representations	underwent	

reorganisation.	Thereafter,	the	treated	condition	retained	a	greater	proportion	of	

connections	(t-test:	250	epochs	t(8)=3.91,	p=.004,	Cohen’s	d=.43;	1000	epochs,	

t(8)=3.85,	p=.005,	d=.37).	Connection	number	is	associated	with	improved	

computational	power.3	The	behavioural	intervention	for	these	atypical	networks,	

then,	served	to	improve	their	computational	properties	during	subsequent	

development	compared	to	the	untreated	condition.	Here,	the	stimulation	of	the	

intervention	produced	greater	resistance	to	loss	of	connectivity.	

	

<Insert	Figure	8	about	here>	

	

Under	a	maturational	view,	computational	properties	may	alter	with	

development,	but	the	schedule	is	not	influenced	by	behavioural	interventions,	or	

more	broadly,	by	experience.	(Under	such	an	account,	it	is	not	that	the	

experience	plays	no	role	in	development;	it	is	just	that	experience	is	not	the	

limiting	factor	on	rates	of	growth).	In	such	a	scenario,	behavioural	interventions	

could	be	rendered	successful	by	waiting	until	the	computational	properties	have	

																																																								
3	In	an	equivalent	population	of	1000	networks	without	atypical	pruning,	the	number	of	
connections	in	a	network	correlated	.134	with	behaviour	at	epoch	250	and	.163	with	behaviour	

at	epoch	1000	(both	p<.001).	
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improved.	Maturational	accounts	have	been	proposed	in	disorders	such	as	DLD	

(Bishop	&	McArthur,	2004)	and	ADHD	(Batty	et	al.,	2010;	Shaw	et	al.,	2007).	

Evidence	from	neuroscience	has	been	used	to	argue	that	interventions	for	

anxiety	disorders	may	be	more	effective	after	adolescence	due	to	the	

developmental	state	of	the	underlying	mechanisms	(Hartley	&	Casey,	2013).	

Within	the	field	of	education,	the	broader	notion	of	‘school	readiness’	is	

predicated	on	the	assumption	that	development	of	skills	such	as	executive	

function	needs	to	have	reached	a	certain	level	before	the	classroom-based	

behavioural	methods	can	be	properly	effective	(Noble,	Tottenham	&	Casey,	

2005).	

A	further	alternative	would	be	to	directly	manipulate	the	computational	

properties	of	the	processing	mechanism.	We	refer	to	these	as	biological	

interventions,	since	they	need	not	involve	behavioural	methods	directly	relevant	

to	the	target	skill.	Biological	interventions	most	obviously	would	include	

pharmacological	treatments	that	alter	the	levels	of	neurotransmitters	(e.g.,	

dopamine	for	ADHD,	Volkow	et	al.,	2002;	serotonin	for	repetitive	behaviours	in	

pervasive	developmental	disorders,	McDougle,	Kresch	&	Posey,	2000;	oxytocin	

in	autism,	Preckel	et	al.,	2016).	More	speculatively,	biological	methods	might	

target	neural	activity	via	electrical	methods	(e.g.,	direct	cortical	stimulation	for	

dyscalculia;	Iuculano	&	Cohen	Kadosh,	2014)	or	brain	plasticity	via	drug	

treatments	(e.g.,	valproate	acid	for	auditory	learning;	Gervain	et	al.,	2013).	

Biological	methods	might	also	employ	behavioural	practices	that	do	not	directly	

target	cognition	but	influence	brain	function,	such	as	exercise	and	diet	(e.g.,	for	

treating	ADHD:	alterations	of	diet,	Konikowska,	Regulska-Ilow	&	Rózańska,	

2012;	use	of	exercise,	Silva	et	al.,	2015).	Or	they	might	employ	methods	that	
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indirectly	target	cognition,	for	example	through	the	effect	of	sleep	on	memory	

consolidation,	or	mindfulness	training	on	attention,	or	action	video	game	playing	

on	visual	attention	(e.g.,	role	of	sleep	in	developmental	disabilities:	Ashworth,	

Hill,	Karmiloff-Smith	&	Dimitriou,	2017;	Dodge	&	Wilson,	2001;	mindfulness	

treatments	for	autism,	dyslexia,	ADHD:	Sequeira	&	Ahmed,	2012;	Tarrasch,	

Berman	&	Friedmann,	2016;	video	game	playing	for	dyslexia:	Franceschini	et	al.,	

2013).	

It	should	be	possible	to	construe	all	such	biological	effects	in	terms	of	

manipulations	to	parameters	within	computational	models	of	development.	For	

example,	impulsivity	in	ADHD	has	been	modelled	in	terms	of	a	computational	

constraint	on	reward-based	or	reinforcement	learning.	Williams	and	Dayan	

(2004,	2005;	Richardson	&	Thomas,	2006)	used	one	form	of	reinforcement	

learning,	Temporal	Difference	learning,	to	simulate	a	developmental	profile	of	

impulsivity	in	ADHD,	based	on	a	model	of	the	role	of	dopamine	in	operant	

conditioning.	In	this	model,	the	agent	(child)	had	to	learn	to	delay	an	immediate	

action	that	gained	a	small	reward	in	favour	of	a	later	action	that	gained	a	larger	

reward.	Williams	and	Dayan	simulated	ADHD	by	altering	the	‘discounting	rate’	

parameter,	which	determined	the	relative	weighting	of	immediate	versus	long-

term	rewards	in	guiding	action.	The	atypical	setting	of	the	parameter	

corresponded	to	the	lower	levels	of	dopamine	found	in	the	brains	of	children	

with	ADHD.	A	system	that	discounted	long-term	rewards	developed	impulsive	

behavioural	patterns,	by	allowing	small	immediate	rewards	to	guide	action.	

Although	this	model	was	not	extended	to	consider	intervention,	the	common	

pharmacological	treatment	for	ADHD,	methylphenidate	hydrochloride,	is	a	

stimulant	that	operates	by	increasing	levels	of	dopamine	in	children’s	brains	
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(Gottlieb,	2001).	In	the	model,	the	effects	of	the	biological	intervention	could	be	

simulated	by	altering	the	discounting	rate	parameter,	thereby	removing	the	

atypical	constraint	on	subsequent	development	of	impulse	control	in	reward-

based	action	decision-making.	

Harm,	McCandliss	and	Seidenberg’s	(2003)	reading	model	in	effect	

included	a	biological	intervention.	In	one	of	its	conditions,	an	initial	

computational	limitation	in	the	phonological	component	(lower	connectivity	and	

restrictions	on	weight	size)	was	simply	eliminated	by	an	intervention.	Lost	

connections	were	restored	and	weights	were	allowed	to	take	on	larger	sizes.	It	is	

worth	noting	that	in	this	model,	this	biological	intervention	was	subject	to	timing	

effects.	Later	interventions	were	less	effective	because	they	could	not	reverse	

entrenched	weight	values	produced	by	earlier	learning	in	the	network	

connecting	orthographic	inputs	to	atypical	phonological	outputs.	On	the	face	of	it,	

biological	interventions	might	seem	more	powerful,	but	they	too	may	be	subject	

to	limitations.	

	

Interventions	to	encourage	compensatory	responses	through	other	

pathways	and	mechanisms	

We	have	thus	far	construed	intervention	as	targeting	the	mechanism	exhibiting	

the	developmental	deficit.	However,	behavioural	interventions	might	seek	

instead	to	encourage	the	recruitment	of	other	mechanisms	or	pathways	able	to	

deliver	or	support	the	target	behaviour.	Models	of	deficits	frequently	make	

reference	to	pathways	outside	of	the	single	implemented	mechanism	to	explain	

behavioural	patterns.	For	example,	in	Abel,	Huber	and	Dell’s	(2009)	model	of	

acquired	naming	deficits,	the	authors	referred	to	a	range	of	additional	structures	
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not	realised	in	their	implementation	as	possible	sources	of	naming	errors.	These	

included	visual	input,	the	conceptual-semantic	system,	an	editor	component,	and	

a	phonetic	component.	When	Plaut	(1996)’s	model	of	acquired	deep	dyslexia	

was	unable	to	accommodate	a	certain	pattern	of	reading	errors	during	

relearning	after	damage,	Plaut	argued	that	the	pattern	originated	from	the	

operation	of	an	unimplemented	phonological	route.	In	their	model	of	

developmental	dyslexia,	Harm,	McCandliss	and	Seidenberg	(2003)	argued	that	

interventions	acting	on	an	unimplemented	semantic	route	would	improve	word	

reading	rather	than	just	the	nonword	reading	improvements	shown	by	the	

implemented	architecture.	

Some	disorders	may	even	originate	from	atypical	organisation	of	

pathways,	rather	than	limitations	in	particular	mechanisms.	For	example,	

Chang’s	(2002)	connectionist	model	of	sentence	production	demonstrated	how	

inappropriate	sharing	of	information	between	mechanisms	(in	this	case,	those	

responsible	for	processing	sequencing	information	and	message	information)	

caused	a	marked	developmental	impairment	in	generalisation	(Dell	&	Chang,	

2014).	The	model	learned	to	produce	sentences	in	the	training	set,	but	was	poor	

at	generalising	words	to	appear	in	functional	roles	it	had	not	encountered.	In	a	

similar	way	to	Thomas’s	(2005)	model	of	compensated	morphosyntax	in	DLD,	

this	model	had	acquired	an	overly	lexicalised	approach	to	acquiring	syntax.	More	

generally,	lack	of	separation	of	information	can	in	some	cases	make	the	

computational	task	much	harder	for	a	system	to	solve	(see	e.g.,	Norris,	1991;	

Richardson	&	Thomas,	2006).	Disorders	may	also	arise	when	the	balance	

between	different	inputs	driving	a	mechanism	is	disrupted.	Amblyopia	is	a	well	

known	and	much	researched	disorder	of	vision	where	the	input	from	one	eye	is	
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weaker	than	the	other;	one	eye	comes	to	dominate	processing	at	a	cortical	level,	

to	the	disruption	of	binocular	vision	(Thompson	et	al.,	2015;	see	Crewther	&	

Crewther,	2015	for	a	neurocomputational	account).	

Evidence	from	functional	brain	imaging	of	developmental	disorders	has	

encouraged	the	view	that	in	some	cases	of	good	developmental	outcomes,	

usually	following	intensive	interventions,	compensatory	mechanisms	have	been	

engaged	beyond	normal	circuitry,	thereby	exploiting	alternative	pathways.	For	

example,	arguments	have	been	made	in	the	case	of	dyslexia	(compensatory	

activation	in	right	inferior	frontal	gyrus;	Hoeft	et	al.,	2011)	and	autism	

(compensatory	activations	in	several	left-	and	right-lateralised	regions	identified	

in	a	language	comprehension	task;	Eigsti	et	al.,	2015).	Researchers	hope	that	

identification	of	these	alternative	brain	pathways	can	be	translated	into	new	

interventions	that	will	encourage	adoption	of	compensatory	strategies.4	

Similar	claims	for	compensatory	outcomes	have	been	made	on	

behavioural	evidence	alone.	For	example,	De	Haan	(2001)	pointed	out	that	in	

children	with	autism,	despite	evidence	that	individuals	processed	faces	

atypically	(such	as	the	unusual	absence	of	categorical	perception	of	facial	

expressions),	some	nevertheless	performed	in	the	normal	range	on	expression-

recognition	tasks.	These	individuals	tended	to	have	higher	IQs.	De	Haan	argued	

that	there	must	be	“a	degree	of	plasticity	in	the	developing	system	that	allows	for	

																																																								
4	For	example:	https://www.nih.gov/news-events/news-releases/brain-activity-pattern-signals-
ability-compensate-dyslexia,	retrieved	17	August	2016:	“Understanding	the	brain	activity	

associated	with	compensation	may	lead	to	ways	to	help	individuals	with	this	capacity	draw	upon	

their	strengths.	Similarly,	learning	why	other	individuals	have	difficulty	compensating	may	lead	

to	new	treatments	to	help	them	overcome	reading	disability”	(Alan	E.	Guttmacher,	M.D.,	director	

of	the	NIH’s	Eunice	Kennedy	Shriver	National	Institute	of	Child	Health	and	Human	Development,	

commenting	on	Hoeft	et	al.,	2011)	
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development	of	alternative	strategies/mechanisms	in	face	processing”	(2001,	p.	

393).	

The	proposal	that	alternative	combinations	of	mechanisms	can	deliver	

similar	behaviours,	which	underpins	hopes	of	compensatory	outcomes,	requires	

that	a	certain	kind	of	developmental	theory	to	be	true	–	that	there	is	a	suite	of	

cognitive	mechanisms	with	differential	properties,	and	development	partly	

involves	selecting	a	combination	that	will	deliver	behavioural	mastery.	In	this	

way,	Price	and	Friston	(2002)	have	argued	for	degeneracy	in	the	brain’s	

realisation	of	cognition.	This	is	a	biological	concept,	whereby	elements	that	are	

structurally	different	can	perform	the	same	function	or	yield	the	same	output.	

For	example,	objects	can	be	recognised	either	on	the	basis	of	their	global	shape	

or	by	the	presence	of	distinguishing	features.	The	different	cognitive	functions	of	

either	global	form	or	local	feature	processing	can	therefore	deliver	the	same	

output:	accurate	object	recognition.	How	well	a	processing	component	performs	

a	task	then	depends	on	the	fit	of	its	structure	(i.e.,	its	neurocomputational	

properties)	to	the	intended	function;	and	how	much	training	the	component	has	

had	in	performing	the	task.	Even	within	the	normal	range,	individuals	may	follow	

developmental	trajectories	that	harness	different	combinations	of	components	

to	perform	the	same	task.	Degeneracy	may	therefore	explain	both	individual	

variation	in	functional	brain	activations,	and	variation	in	impairments	following	

the	same	localised	brain	damage	(Price	&	Friston,	2002).	

However,	relatively	few	computational	accounts	have	explicitly	

considered	how	development	could	integrate	multiple	mechanisms	to	perform	

complex	tasks,	let	alone	how	variation	in	outcomes	could	arise	between	

individuals.	In	the	mixture-of-experts	approach	(Jacobs,	1997,	1999;	Jacobs	et	al.,	
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1991),	the	initial	architecture	is	comprised	of	components	that	have	different	

computational	properties.	A	specific	mechanism	gates	the	contribution	of	these	

components	to	the	output.	When	the	overall	architecture	is	presented	with	a	task,	

the	gating	mechanism	mediates	a	competition	between	the	set	of	components,	

allowing	the	most	successful	component	for	each	training	pattern	both	to	drive	

output	performance	and	to	update	its	weights	to	become	better	at	that	pattern.	

Across	training,	certain	mechanisms	come	to	specialise	on	sets	of	patterns,	by	

virtue	of	having	an	initial	(perhaps	small)	advantage	in	processing	those	

patterns.	Why	might	such	a	process	of	emergent	specialisation	differ	between	

individuals?	Presumably,	variation	in	outcomes	could	arise	from	differences	in	

the	set	of	‘experts’,	differences	in	the	experts’	respective	computational	

properties,	the	operation	of	the	gating	mechanism,	and	the	composition	of	the	

training	set	(see	Thomas	&	Richardson,	2005).	

As	yet,	no	computational	accounts	have	considered	how	an	intervention	

might	alter	the	organisation	of	a	set	of	mechanisms	to	improve	accuracy	on	a	

given	behaviour,	for	our	purposes,	directing	learning	towards	mechanisms	with	

fewer	restrictions	on	their	plasticity.	We	do	know	that	in	practice,	clinicians	tend	

to	shift	from	implicit	to	explicit	methods	with	older	children,	in	order	to	

encourage	compensatory	strategies,	suggesting	that	meta-cognition	might	be	

efficacious	in	triggering	a	reorganisation	of	mechanisms.	However,	there	is	a	

missing	link	in	the	argument.	While	there	is	evidence	of	individual	variability	in	

the	use	of	mechanisms,	and	evidence	of	compensatory	engagement	of	new	

mechanisms	in	some	disorders	where	individuals	show	good	outcomes,	this	does	

not	guarantee	that	we	can	generate	interventions	to	encourage	the	use	of	

alternative	sets	of	mechanisms.	That	is,	evidence	of	different	outcomes	across	
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individuals	is	not	the	same	as	evidence	that	all	outcomes	are	equally	accessible	

to	a	single	individual.	One	view	is	that	individual	variability	in	the	use	of	different	

mechanisms	for	a	task	indexes	the	scope	for	compensatory	reorganisation	(e.g.,	

in	the	domain	of	reading:	Kherif,	Josse,	Seghier	&	Price,	2009;	Richardson	et	al.,	

2011;	Seghier	et	al.,	2008).	But	evidence	from	the	functional	imaging	of	

compensated	brains	minimally	requires	translation	to	the	cognitive	level	to	

understand	what	the	compensations	represent,	before	a	facilitatory	intervention	

can	be	developed.	

How	might	an	intervention	prompt	use	of	compensatory	mechanisms?	

Perhaps	a	behavioural	method	could	emphasise	different	task-relevant	

information,	or	different	modalities;	or	encourage	differential	reliance	on	motor	

versus	sensory	demands	of	the	task;	or	engagement	of	different	representational	

formats,	such	as	gesture	to	support	language,	or	language	to	support	spatial	

cognition.	Perhaps	atypical	over-connectivity	could	be	discouraged	by	

presenting	materials	that	carried	less	information	and	therefore	engaged	fewer	

mechanisms;	disorders	of	disrupted	competition	could	be	remediated	by	

blocking	the	stronger	pathway	to	allow	the	weaker	to	develop,	as	in	the	case	of	

patching	the	stronger	eye	in	amblyopia.	This	remains	to	be	clarified.	Thus,	while	

intrinsic	computational	limitations	in	a	target	mechanism	might	be	overcome	by	

recruiting	other	mechanisms	able	to	support	task	performance,	or	altering	the	

competition	and	cross-talk	between	mechanisms,	a	computational	analysis	of	

this	strategy	is	not	far	advanced,	nor	an	understanding	of	how	to	encourage	such	

recruitment	via	a	specific	behavioural	intervention.	

	

Individual	differences	in	response	to	intervention	
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One	of	the	most	challenging	aspects	of	intervention	is	the	variation	in	children’s	

response	to	the	same	intervention,	and	the	consequent	requirement	that	

intervention	be	tailored	to	the	individual	child.	How	can	the	therapist	determine	

which	intervention	is	the	best	to	pursue	for	a	given	child?	

Monogenic	models	of	disorders	give	some	basis	to	consider	differential	

responses	to	intervention.	For	example,	in	their	model	of	word	finding	

difficulties,	Best	et	al.	(2015)	were	able	to	use	three	different	atypical	constraints	

(operating	on	hidden	units,	connectivity,	and	unit	activation	function)	to	

simulate	the	language	profiles	of	individual	children.	Figure	9	shows	the	

response	to	two	different	interventions	(semantic	therapy,	phonological	

therapy)	for	the	three	different	‘versions’	of	each	child	with	WFD.	Notably,	the	

different	computational	deficits	to	produce	the	same	atypical	behavioural	profile	

were	associated	with	different	responses	to	intervention.	As	with	Thomas	and	

Knowland’s	(2014)	model	that	sought	markers	to	predict	resolution	or	

persistence	of	delay,	the	implication	here	is	that	measures	of	underlying	

processing	are	necessary	to	complement	behavioural	profiles.	Indeed,	using	the	

enrichment	intervention	(see	Figure	3),	networks	whose	delay	would	resolve	on	

its	own	were	found	to	respond	better	to	intervention	than	those	whose	delay	

would	persist.	In	these	associative	models,	therefore,	untreated	outcomes	are	

linked	to	individual	differences	in	response	to	intervention.5		

																																																								
5	The	enrichment	intervention,	described	in	Figure	3,	was	applied	to	the	Thomas	&	Knowland	
(2014)	model,	and	trajectories	of	response	to	intervention	were	traced	separately	for	those	

whose	early	identified	delay	(if	untreated)	would	resolve	versus	those	where	it	would	persist.	

The	maximally	enriched	training	set	was	applied	to	all	networks	at	epoch	50.	For	the	following	

30	epochs,	resolvers	and	persisters	improved	by	the	same	amount.	Thereafter,	resolvers	

(N=165)	showed	a	faster	rate	of	improvement	than	persisters	(N=64)	(epoch	x	group	interaction,	

F(1,227)=5.06,	p=.025,	ηp2=.022),	so	that	there	was	a	reliable	difference	in	treatment	effect	
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<Insert	Figure	9	about	here>	

	

Polygenic	models	of	disorders	offer	a	more	ready	framework	to	capture	

differential	response.	Using	population-level	models,	atypical	computational	

constraints	can	be	simulated	against	a	background	of	small	population-wide	

variations	in	many	computational	constraints,	such	as	those	involved	in	

specifying	the	network	architecture,	processing	dynamics,	and	plasticity,	as	well	

as	differences	in	environmental	stimulation.	One	might	think	of	this	as	the	

‘general	intelligence’	of	a	network.	Figure	10	shows	distributions	of	treatment	

effects	from	the	simulations	of	Davis	(2017)	for	a	model	of	regressive	autism.	

The	developmental	deficit	was	caused	by	a	single	atypical	parameter	affecting	

connection	pruning,	against	the	background	of	,	considered	separately	for	

training	set	performance	or	generalisation	performance,	and	in	response	to	

normalisation	or	compensation	interventions.	The	treatment	effects	were	

generally	small,	of	the	order	of	a	few	percentage	points	of	accuracy	against	

deficits	of	20-40%;	however,	they	varied	widely	across	individual	networks,	

including	cases	of	large	gains	and	large	losses	in	response	to	intervention.	Davis	

(2017)	was	then	able	to	explore	the	parameter	sets	of	individual	networks	to	

predict	the	size	of	the	treatment	effect,	in	order	to	construct	a	mechanistic	

account	of	the	origin	of	variable	response	to	intervention.	

Table	4	shows	a	set	of	standardised	coefficients	from	linear	regressions	

for	each	intervention	type,	assessed	on	training	set	and	generalisation.	The	

																																																																																																																																																															
between	the	groups	by	80	epochs	post-onset	of	intervention	(5.6%	improvement	in	accuracy	for	

resolvers,	3.4%	improvement	for	persisters,	t(227)=2.56,	p=.011).		
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shaded	rows	represent	parameters	related	to	the	pathological	process	(over-

pruning),	the	rest	to	general	intelligence.	Several	points	are	notable.	First,	the	

main	effects	of	these	parameters	explained	the	minority	of	the	variance	in	

response	to	intervention.	While	there	was	a	stochastic	element	to	the	response,	

replication	indicated	that	the	test-retest	correlation	was	around	0.5,	indicating	

that	a	fair	proportion	of	the	response	to	intervention	depended	on	the	network’s	

developmental	conditions	(its	parameters	and	its	environment).	Mostly	likely	

those	development	conditions	arose	from	higher	order	interactions	between	

computational	parameters,	enabling	some	networks	to	gain	from	intervention,	

others	not	to	gain,	and	some	to	lose.	Second,	some	predictors	of	individual	

response	depended	on	intervention	type	(normalisation	versus	compensation).	

Third,	predictors	could	be	differentially	important	for	intervention	responses	on	

the	training	set	versus	generalisation,	that	is,	dependent	on	the	target	behaviour.	

And	last,	while	some	predictors	were	involved	in	modulating	the	impact	of	the	

atypical	connectivity	pruning	process,	others	represented	parameters	unrelated	

to	the	pathology,	consistent	with	the	idea	that	general	individual	differences	

factors	influence	the	effectiveness	of	behavioural	intervention.	

	

<Insert	Figure	10	about	here>	

<Insert	Table	4	about	here>	

	

The	narrow	focus	on	individual	cognitive	mechanisms	feels	particularly	

restricting	in	the	context	of	individual	differences,	where	the	intervention	

situation	is	influenced	by	many	qualities	of	the	whole	child,	including	their	

attention	skills,	personality,	motivation,	and	engagement	with	the	therapist	in	a	
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productive	social	interaction	(or	depending	on	delivery	mode,	with	a	teaching	

assistant,	teacher,	parent,	group	of	children,	or	computer).	From	the	single-

mechanism	perspective,	we	are	restricted	to	viewing	these	as	factors	potentially	

influencing	the	plasticity	of	the	mechanism,	the	information	experienced	by	the	

child	in	the	therapeutic	situation,	and	the	effective	dose	delivered	by	the	

intervention.	The	child’s	attention	/	motivation	/	engagement	in	the	therapeutic	

situation	is	a	necessary	precondition	for	the	intervention	to	gain	access	to	and	

alter	the	functioning	of	the	target	mechanism.	This	is	somewhat	unsatisfying,	but	

is	a	necessary	simplifying	step	in	trying	to	build	a	mechanistic	account	of	the	

sources	of	individual	variability	in	response	to	intervention.	
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Discussion	

We	set	out	to	investigate	the	potential	of	connectionist	modelling	to	increase	

understanding	of	the	mechanisms	underlying	interventions	in	developmental	

disorders.	We	presented	and	analysed	a	range	of	models	and	results.	To	evaluate	

the	potential,	let	us	set	a	sceptical	‘bar’	that	needs	to	be	cleared.	On	the	one	hand,	

one	could	have	reservations	about	the	use	of	computational	models	to	simulate	

development	and	individual	differences	in	that	the	models	are	too	complex.	

Connectionist	models	have	many	components	and	components	can	vary	along	

multiple	dimensions	(e.g.,	component:	hidden	units;	dimensions:	number	of	

layers,	units	per	layer,	pattern	of	connectivity,	activation	function).	Components	

and	their	dimensions	are	not	independent,	and	behaviour	results	from	complex	

interactions	among	them	(Thomas,	Forrester	&	Ronald,	2016).	These	

interactions	can	be	difficult	to	analyse,	making	it	hard	to	derive	deeper	principles	

or	generalisations.	Perhaps	then,	the	models	are	too	complicated	to	be	useful;	

and	the	challenge	of	mapping	from	the	specific	properties	of	the	model	to	

properties	of	people	too	great.	On	the	other	hand,	one	could	have	reservations	

that	the	computational	models	are	not	complex	enough.	We	focused	mostly	on	

individual	cognitive	mechanisms	or	limited	numbers	of	pathways.	The	actual	

cognitive	system	is	far	more	complicated;	we	did	not	consider	sensori-motor	

components,	emotional	components,	social	components,	executive	function	

components,	meta-cognition,	and	motivation,	let	alone	the	dynamics	of	the	

therapeutic	situation	that	we	outlined	in	the	introduction.	The	computational	

analysis	demonstrates	that	high-level	behaviours,	and	developmental	deficits	in	

these	behaviours,	are	determined	by	complex,	non-obvious	interactions	among	

multiple	factors,	some	of	which	can’t	be	directly	measured.	Moreover,	the	
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modelling	suggested	that	similar	looking	behavioural	deficits	can	arise	from	

different	underlying	causes,	which	in	turn	respond	differently	to	intervention.	

Perhaps	the	sensible	conclusion	would	be	that	to	intervene,	rather	than	

investigating	underlying	mechanisms,	it	would	be	better	to	focus	on	the	

behaviours	in	question	and	improve	them	by	whatever	methods	seem	effective.	

Do	the	findings	clear	this	bar?	

	

Main	findings	

A	cognitive	mechanism	exhibiting	a	developmental	deficit	in	the	behaviour	to	

which	it	contributes	does	so	because	exposure	to	naturalistic	experience	or	to	

typical	educational	experiences	has	not	been	sufficient	to	acquire	age-

appropriate	skills.	Simply	driving	this	mechanism	harder	with	more	experience	

may	not	remediate	the	deficit,	just	serve	to	propel	it	further	along	an	atypical	

trajectory.	This	perhaps	this	chimes	with	the	general	difficulty	of	treating	

developmental	disorders,	particularly	those	with	pervasive	effects	such	as	

autism	(Charman,	2014b).	How	can	an	intervention	succeed	where	naturalistic	

experience	has	not?	

The	simulations	we	described	pursued	four	lines	of	investigation.	First,	

we	considered	long-term	outcomes	in	the	absence	of	intervention,	exploiting	the	

opportunity	of	a	model,	matched	to	an	atypical	profile	early	in	development,	to	

project	forward	to	the	adult	state.	Results	indicated	that	processing	mechanisms	

could	reach	compensated	outcomes	with	expertise	in	skills	less	sensitive	to	the	

atypical	processing	constraints	but	residual	deficits	in	other	areas.	Resolution	in	

early	delays	occurred	where	the	cause	of	the	initial	deficit	was	a	limitation	in	

plasticity,	rather	than	capacity.	Plasticity	could	be	operationalised	in	terms	of	a	
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child	performance	on	learning	tasks,	while	capacity	could	be	operationalised	as	

the	quantity	of	information	that	the	child	can	integrate	on-line.	Resolution	might	

be	accelerated	by	a	greater	dosage	of	otherwise	naturalistic	experience	(i.e.,	

practice).	However,	early	behavioural	profiles	were	poor	predictors	of	these	

differential	outcomes,	and	measures	of	processing	were	needed	to	improve	

predictive	power	(e.g.,	Fernald	&	Marchman,	2012).	

In	the	second	line	of	investigation,	we	considered	methods	to	remediate	

atypical	development	in	a	single	network.	These	models	addressed,	respectively,	

remediating	disorders	arising	from	a	lack	of	early	stimulation,	choosing	a	better	

training	set	to	support	atypical	processing	properties,	improving	input	and	

output	representations,	and	altering	the	computational	properties	of	the	system.	

If	the	deficit	in	fact	arises	through	insufficient	stimulation	of	the	target	

mechanism,	whether	externally	in	richness	of	the	environment	to	which	the	child	

is	exposed	or	internally	in	the	information	provided	to	the	single	mechanism	(for	

instance,	by	attentional	orienting	systems),	then	the	deficit	can	be	treated	by	

alleviating	this	shortfall.	This	might	amount	to	enriching	the	environment	(for	

example,	in	the	domain	of	language,	with	more	child-directed	speech;	e.g.,	

Suskind	&	Suskind,	2015);	or	to	training	attentional	mechanisms	(for	example,	in	

the	case	of	young	children	with	autism,	training	attention	to	social	cues,	e.g.,	

Powell,	Wass,	Erichsen	&	Leekam,	2016;	Wass	&	Porayska-Pomsta,	2014).	

Several	possibilities	arose	for	accommodating	the	atypical	processing	

constraints	of	the	target	mechanism:	of	supporting	generalisation	by	additional	

training	on	experiences	that	highlight	the	structure	of	the	problem	domain;	of	

using	intervention	to	alter	the	quality	of	the	mechanism’s	input	and/or	output	

representations,	thereby	simplifying	the	computational	problem	that	the	target	
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mechanism	is	required	to	solve;	and	of	training	the	target	mechanism	not	on	the	

full	cognitive	domain	but	a	subset	of	the	problem	adequate	for	everyday	

functioning.	Then	there	were	methods	that	might	alter	the	atypical	

computational	constraints	themselves,	perhaps	in	systems	where	stimulation	

can	cause	a	change	in	computational	properties;	or	through	delaying	

intervention	in	systems	where	computational	properties	mature;	or	using	

biological	interventions	to	directly	alter	computational	properties	(e.g.,	through	

pharmacological	treatments,	or	behavioural	techniques	such	as	changes	in	diet,	

exercise,	mindfulness	training,	action	video	game	playing,	and	sleep	regimes).	

In	the	third	line,	we	considered	interventions	to	encourage	compensation	

via	alternative	pathways	or	mechanisms	to	produce	the	same	or	similar	

behaviour.	Here,	computational	analysis	is	less	far	advanced,	mainly	because	

typical	models	of	development	have	not	articulated	how	a	complex	system	with	a	

suite	of	cognitive	mechanisms	can	recruit	and	integrate	the	mechanisms	for	

behavioural	mastery.	It	is	therefore	not	clear	how	an	intervention	could	alter	the	

organisation	of	mechanisms	to	improve	task	performance.	The	fact	that	

clinicians	shift	from	implicit	to	explicit	methods	with	older	children	to	encourage	

compensatory	strategies	suggests	that	meta-cognition	might	be	efficacious	in	

triggering	a	reorganisation	of	mechanisms.	Meta-cognitive	processes	are	rarely	

implemented	in	models	(though	see	Hoffman,	McClelland	&	Lambon-Ralph,	2018,	

for	a	recent	model	of	semantics	that	includes	mechanisms	to	control	retrieval).	

We	take	meta-cognition	to	act	by	altering	internal	feedback	to	the	target	

mechanism,	using	executive	functions	to	activate	or	inhibit	different	pathways	

and	mechanisms,	or	altering	attention	to	dimensions	of	the	stimulus	or	required	
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response.	Future	models	that	capture	such	processes	are	required	for	a	firmer	

foundation	to	explore	interventions	that	prompt	reorganisation.	

In	the	fourth	line	of	modelling,	we	considered	individual	differences	in	

response	to	intervention.	More	recent	polygenic	models	of	developmental	

disorders	were	useful	here,	since	they	simulated	the	atypical	mechanism	against	

a	background	of	typical	variation	in	a	range	of	developmental	factors,	or	indeed	

captured	the	developmental	deficit	as	lying	on	a	continuum	of	population-wide	

variation	(Thomas	et	al.,	2016).	A	model	investigating	the	causes	of	language	

delay	(Thomas	&	Knowland,	2014)	pointed	to	the	limited	power	of	early	

behavioural	markers	in	predicting	whether	delays	would	resolve,	since	early	

profiles	are	largely	conditioned	by	the	structure	of	the	task	domain.	The	model	

suggested	that	predictive	power	could	be	increased	by	measures	of	underlying	

cognitive	processes	(see	Fernald	&	Marchman,	2012).	Notably,	the	

computational	properties	in	the	model	that	led	to	resolution	of	early	delay	also	

increased	responsiveness	to	intervention.	A	model	investigating	individual	

differences	in	response	to	intervention	(Davis,	2017)	demonstrated	that	

responses	could	be	highly	variable,	and	that	both	differences	in	the	severity	of	

atypical	computational	constraints	and	in	other	population-wide	individual	

differences	factors	predicted	the	response.	However,	there	were	stochastic	

factors,	and	the	predictive	factors	themselves	showed	strong	interactions	such	

that	much	variance	in	outcome	remained	unexplained,	despite	replicable	

individual	differences	in	response	to	intervention.	Finally,	a	lower	level	of	

stimulation	from	the	environment	could	also	play	a	role,	exaggerating	the	effect	

of	atypical	computational	constraints	(Figure	4),	or	itself	causing	deficits	in	

combination	with	maturational	changes	in	network	connectivity	(Figure	3).	
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Overall,	this	avenue	of	modelling	is	important	to	support	the	search	for	

stratification	biomarkers	in	research	on	developmental	disorders,	work	which	

seeks	to	isolate	measures	(e.g.,	age,	gender,	intellectual	ability,	comorbidity	of	

deficits)	that	predict	developmental	outcomes	and	response	to	intervention.	

Computational	insights	need	to	be	translated	to	actual	interventions.	How	

might	the	findings	translate	into	clinical	advice?	Generalisation	might	be	

enhanced	by	an	intervention	that	highlights	key	cues,	or	in	compositional	

domains,	component	parts	of	stimuli,	which	would	normally	be	extracted	by	a	

typically	developing	system	but	need	to	be	included	in	the	experience	of	a	

system	with	atypical	properties.	If	a	behaviour	requires	learning	associations	

between	representations	in	different	domains,	improving	these	representations	

may	aid	an	intervention	targeting	the	associations	themselves.	If	there	is	domain	

evidence	supporting	maturation	in	the	target	mechanism,	waiting	to	apply	the	

intervention	may	yield	benefits,	since	computational	limitations	may	reduce	

with	time.	Note,	this	is	at	odds	with	the	general	rubric	of	intervening	earlier	at	a	

time	of	purportedly	highly	plasticity,	but	it	requires	a	specific	evidence	base	of	

the	importance	of	maturation	for	a	given	process	(see,	e.g.,	Karmiloff-Smith	et	al.,	

2014,	for	discussion	of	the	efficacy	of	CBT	to	treat	anxiety	disorders	at	different	

ages,	depending	on	the	maturation	of	fear	extinction	mechanisms).	For	older	

children,	explicit	interventions	may	increase	the	opportunity	to	engage	

alternative	mechanisms	to	drive	the	impaired	behaviour,	to	the	extent	that	meta-

cognition	is	efficacious	in	enlisting	them.	An	analysis	of	the	cognitive	domain	

may	indicate	subsets	of	behaviour	that	could	provide	adaptive	functioning	in	

everyday	life,	and	so	form	a	compensatory	intervention.	Lastly,	where	behaviour	

does	not	improve	through	behavioural	means,	then	opportunities	can	be	
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explored	for	interventions	that	alter	the	computational	properties	by	biological	

or	indirect	behavioural	means.	

	

General	principles	of	intervention	

The	review	of	computational	work	indicates	several	important	factors	in	the	

mechanisms	underlying	intervention	effects.	Firstly,	the	nature	of	the	

computational	deficit	matters.	Similar	behavioural	deficits	can	be	produced	by	

different	underlying	computational	deficits	–	all	characterised	by	slower	

development	–	but	which	then	respond	differently	to	intervention.	Some	

computational	deficits	will	resolve,	with	more	experience	required	to	deliver	the	

same	amount	of	behavioural	change	(such	as	a	reduced	learning	rate).	Some	

computational	deficits	offer	partial	resolution,	altering	the	kinds	of	abilities	that	

can	be	supported	by	the	mechanism	(such	as	a	less	discriminating	activation	

function).	Some	computational	deficits	can	reach	good	solutions	with	adapted	

training	regimes	(reduced	connectivity,	supported	by	a	wider	range	of	training	

examples).	Other	computational	deficits	will	restrict	the	ultimate	level	of	ability	

that	can	be	reached	by	the	mechanism,	leading	to	persisting	deficits	(such	as	

fewer	hidden	units).	

	 Second,	timing	matters.	Age	was	represented	in	two	ways	in	the	models	

we	considered.	It	could	be	indexed	by	an	accumulation	of	previous	experience.	

The	Harm,	McCandless	and	Seidenberg	(2003)	reading	model	demonstrated	a	

negative	effect	of	prior	learning	on	the	potential	for	intervention,	to	explain	why	

oral	language	interventions	would	have	limited	success	in	alleviating	difficulties	

once	the	child	had	started	to	read.	Even	if	the	oral	language	intervention	

alleviates	a	core	problem	in	phonology,	it	cannot	undo	prior	learning	linking	
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orthography	to	atypical	phonology.	These	sub-optimal	mappings	must	be	over-

written	by	a	complementary	intervention	targeting	decoding.	Alireza	et	al.	

(2017)	found	a	similar	effect	in	their	model	of	word-finding	difficulties.	Later	in	

the	model’s	development,	improving	strengths	(the	input	and	output	

representations)	became	less	effective	and	remediating	weaknesses	became	

more	effective.	Once	pathways	had	committed	to	utilising	the	(potentially	poor)	

initial	representations,	maximising	the	performance	of	the	impaired	pathway	

through	intense	practice	became	the	best	recourse.	Age	could	also	index	

maturational	changes	in	the	computational	properties	of	the	learning	mechanism.	

In	the	model	simulating	the	effects	of	insufficient	stimulation,	late	interventions	

were	less	successful	because	maturational	pruning	of	connectivity	had	

consolidated	an	environmental	disadvantage	into	a	structural	deficit.	

Researchers	have	speculated	about	the	cognitive	domains	in	which	maturational	

constraints	may	have	most	impact	on	training	effects	(Jolles	&	Crone,	2012).	

Sensitive	periods	suggest	early	intervention	is	better,	but	these	reducing	profiles	

of	plasticity	tend	to	be	limited	to	lower	level	sensory	and	motor	domains,	rather	

than	high-level	cognitive	abilities	(Huttenlocher,	2002).	In	some	domains,	such	

as	attention,	training	may	indeed	be	more	effective	in	later	childhood	–	at	

younger	ages,	the	target	systems	may	be	computationally	immature	(e.g.,	at	4	

years	instead	of	6	years	for	attention	training;	Rueda	et	al.,	2005).	A	lifespan	

perspective	suggests	that	while	behaviour	is	changeable	at	all	ages,	behavioural	

changes	rely	on	the	brain	systems	that	are	most	plastic	at	the	age	when	training	

takes	place	(Bengtsson	et	al.,	2005).	

Third,	the	content	of	the	intervention	matters.	We	drew	a	distinction	

between	additional	practice	on	items	in	the	child’s	natural	experience	of	the	



	 77	

domain	and	the	introduction	of	new	items	that	highlight	key	information	for	the	

child,	such	as	indicating	compositional	structure.	We	additionally	distinguished	

information	intended	to	support	generalisation	of	implicit	regularities	of	the	

cognitive	domain	to	new	situations.	We	distinguished	tasks	that	directly	target	a	

behaviour	compared	to	those	that	enhance	representations	that	drive	the	

behaviour.	We	emphasised	principles	derived	from	statistical	learning	theory	as	

candidates	to	improve	learning:	the	richness	of	learning	experiences,	their	

variability,	the	provision	of	novelty	in	familiar	contexts,	and	the	construction	of	

more	complex	representations	from	simpler	ones.	These	principles	were	

caveated	by	the	possibility	that	what	works	in	a	system	with	typical	

computational	learning	constraints	may	not	have	the	same	effect	in	systems	with	

atypical	constraints.	Lastly,	implementation	encouraged	a	focus	on	the	dosage,	

duration,	and	regime	of	training.	In	distributed	connectionist	models,	

modification	of	the	training	set	can	cause	interference	with	prior	established	

knowledge	(so-called	catastrophic	interference;	McCloskey	&	Cohen,	1989).	

Interference	can	be	reduced	by	lowering	the	dosage	of	new	information,	

extending	its	duration,	and	interleaving	it	with	training	on	the	old	information.	

Two	important	issues	in	interventions	concern	persistence	of	

interventions	effects,	and	generalisation	beyond	items	in	the	intervention	set.	

With	respect	to	persistence,	in	a	review	of	persistence	and	fadeout	in	the	impacts	

of	child	and	adolescent	interventions,	Bailey	et	al.	(2017)	argued	that	impacts	

are	likely	to	persist	for	interventions	that	build	skills	influencing	future	

development	(especially	that	allow	the	individual	to	‘stay	on	track’	in	home,	

school,	or	community),	and	in	the	case	of	environments	that	sustain	the	gains.	

Skills	most	likely	to	yield	long-term	impact	are	those	that	are	fundamental	for	
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success,	malleable	through	intervention,	and	that	would	not	develop	eventually	

in	the	absence	of	the	intervention.	The	simulations	we	considered	either	

implemented	intervention	as	an	alteration	to	the	training	set	for	a	discrete	

period,	or	as	a	permanent	alteration.	The	latter	could	be	viewed	as	the	provision	

of	a	sustaining	environment	for	the	intervention	(such	as	training	parents	to	

permanently	altering	their	interactions	with	the	child,	perhaps	in	their	level	of	

language	input).	Simulation	results	pointed	to	persisting	benefits	of	the	

intervention	if	the	change	to	the	training	set	was	permanent.	Discrete	

interventions	could	have	persisting	benefits,	but	only	when	plasticity	was	

reduced	during	training	(Davis,	2017),	not	when	it	was	constant	across	training.	

In	the	latter	case,	Yang	and	Thomas	(2015)	found	that	early	interventions	

showed	dissipating	effects	across	development	once	the	intervention	was	

discontinued,	with	the	exact	type	of	intervention	becoming	less	relevant.	In	these	

models,	therefore,	early	discrete	interventions	had	long-term	benefits	if	the	

consequent	gains	were	consolidated	in	the	structure	of	the	target	mechanism.	

This	reveals	the	double-edged	sword	of	plasticity:	if	plasticity	is	consistent	across	

age,	interventions	can	be	applied	at	any	age,	but	the	effects	of	early	discrete	

interventions	will	be	lost;	if	plasticity	reduces	with	age,	interventions	must	be	

early,	but	their	effects	will	persist.	

Since	most	of	the	models	considered	here	focused	on	individual	

mechanisms,	there	was	not	scope	to	consider	the	wider	issue	of	far	transfer	/	

generalisation	of	training	effects	to	different	skills.	Nevertheless,	when	

simulating	interventions,	at	no	time	did	we	consider	improvement	on	the	

intervention	items	themselves	–	in	a	sense,	this	would	be	trivial,	since	in	error-

correction	networks,	performance	on	the	intervention	items	will	almost	always	
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improve.	We	instead	considered	transfer	from	the	intervention	set	to	items	

either	in	the	network’s	usual	experience	(the	training	set)	or	to	previously	

unencountered	items	(the	generalisation	set).	This	might	explain	the	relatively	

small	size	of	the	intervention	effects	in	a	number	of	cases	(e.g.,	see	Figure	10).	

Results	also	pointed	to	the	importance	of	the	composition	of	the	intervention	set	

in	supporting	performance	on	the	training	set	versus	generalisation.	In	networks	

with	atypical	computational	properties,	generalisation	(transfer	to	novel	items)	

needed	additional	support	from	intervention	items	selected	to	highlight	implicit	

regularities	in	the	domain,	regularities	that	typical	networks	could	extract	from	

normal	experience.	Atypical	networks	often	best	generalised	through	

interpolation	rather	than	extrapolation,	since	their	properties	could	not	support	

processing	of	items	very	different	from	those	previously	encountered.6	

The	idea	of	compensation	arose	in	several	contexts,	and	it	is	worth	

distinguishing	the	differences	senses	in	which	it	was	used.	First,	we	saw	one	

principled	way	to	define	compensation,	by	contrasting	it	with	normalisation	

(Yang	&	Thomas,	2015).	In	normalisation,	the	aim	of	intervention	is	to	provide	

the	full	range	of	abilities	and	knowledge	that	any	typically	developing	system	

acquires	through	exposure	to	the	normal	training	set.	In	this	sense	of	

compensation,	the	aim	of	the	intervention	is	to	optimise	a	subset	of	behaviours	

present	in	the	original	training	set.	Other	models	provided	alternative	senses	of	a	

‘compensated’	system.	These	were	forcing	a	system	to	find	a	partial	solution	to	

																																																								
6	Plaut	(1996)	found	that	simulated	recovery	of	reading	following	acquired	damage	was	better	
supported	by	retraining	on	atypical	semantic	category	members	than	prototypical	category	

members.	This	can	be	seen	as	an	example	of	encouraging	training	transfer	by	interpolation.	In	

Plaut’s	implementation,	atypical	category	members	surrounded	prototypical	category	members	

in	semantic	space.	Training	on	the	surrounding	members	transferred	to	those	lying	in	between.	
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the	cognitive	domain	through	over-training,	but	leaving	residual	deficits;	and	

recruiting	other	mechanisms	to	deliver	the	same	or	similar	behaviour.	These	

three	senses	would	translate	to	three	distinct	approaches	to	intervening	upon	an	

atypical	system:	(1)	selecting	an	intervention	that	targets	a	subset	of	the	target	

cognitive	domain;	(2)	providing	greater	practice	to	force	greater	accuracy	from	

an	atypical	system,	or	simply	leaving	the	system	to	improve	through	more	

experience;	(3)	employing	explicit	strategies	to	encourage	the	use	of	alternative	

mechanisms.	

	

Modelling	limitations	

A	key	aspect	of	building	models	is	simplification.	We	should	be	clear,	then,	the	

ways	in	which	the	computational	work	we	have	reviewed	falls	short	with	respect	

to	the	practice	of	interventions	for	developmental	disorders.	

On	a	broader	scale,	a	focus	on	cognitive	mechanism	does	not	capture	the	

complexity	of	the	intervention	situation,	which	can	depend	on	dynamics	of	the	

interaction	between	the	child	and	the	speech	and	language	therapist,	and	where	

intervention	is	sometimes	a	process	of	discovery	of	what	works	for	individual	

children	in	the	context	of	their	family	and	school	environment.	To	some	extent,	

even	fairly	mechanism-focused	interventions	involve	substantial	behavioural	

and	interactional	interchange	between	the	children	and	the	therapist	(and	

parent,	if	also	coached),	which	may	yield	collateral	benefits.	Simulations	do	not	

address	some	of	the	complexities,	such	as	distinguishing	the	effects	of	explicit	

instruction	from	implicit,	the	role	of	the	expertise	of	the	therapist,	the	effects	of	

adaptive	vs.	non-adaptive	instruction,	the	distinction	between	1-to-1	versus	

group	instruction,	the	difference	between	therapist-delivered	and	parent-
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delivered	interventions.	Moreover,	as	Beauchaine	et	al.	argue:	‘opponents	of	

biological	approaches	to	prevention	and	intervention	also	argue	that	by	

emphasising	genetic	and	neurobiological	processes,	we	divert	attention	and	

resources	away	from	important	psychosocial	causes	of	maladjustment,	such	as	

stress,	parenting,	and	family	interactions’	(2008,	p.748).	Work	in	the	

implementation	sciences	has	also	pointed	to	wider	limiting,	enabling	and	

incentivising	factors	for	changing	behaviour	beyond	cognitive	mechanisms,	such	

as	resources	and	policy	(e.g.,	Michie,	van	Stralen	&	West,	2011).	

On	a	narrower	scale,	our	focus	was	on	a	limited	set	of	computational	

architecture:	associative	networks.	It	is	possible	that	other	architectures,	such	as	

self-organising	maps	or	attractor	networks,	might	provide	different	plasticity	

conditions	or	effects	of	intervention	on	generalisation.	These	remain	to	be	

explored.	The	observation	that	interventions	for	different	language	skills	

required	different	levels	of	intensity,	duration,	and	interleaving	(Lindsay	et	al,	

2010)	is	consistent	with	the	view	that	different	types	of	mechanism	are	in	play.	

Speculatively,	it	may	be	that	intensity	is	more	important	than	duration	to	change	

sensory	representations	(self-organising	systems);	that	repeated	short	bursts	

over	an	extended	time	are	necessary	to	alter	access	to	representations	

(associative	systems);	and	that	an	extended	duration	of	practice	is	necessary	to	

extract	regularities	in	complex	sensori-motor	sequences	(recurrent	networks).	

In	addition	to	different	architectures,	it	is	necessary	to	consider	control	systems,	

mechanisms	of	executive	function	and	reward-based	learning,	in	order	to	

address	the	origin	and	malleability	of	deficits	in	behavioural	regulation,	such	as	

the	restricted	repertoire	of	interests	in	autism,	or	attentional	deficits	in	Fragile	X	

syndrome,	or	impulsivity	in	ADHD.		Lastly,	the	model	framework	captures	
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development	in	terms	of	a	plastic	mechanism	exposed	to	a	structured	learning	

environment.	However,	this	does	not	readily	lend	itself	to	considering	the	

possibility	that	the	disorder	may	change	the	structure	of	learning	environment	

via	indirect	pathways.	For	example,	poor	reading	levels	may	reduce	the	child’s	

motivation	to	spend	time	reading,	or	parents	may	respond	differently	to	children	

with	learning	disabilities	than	they	would	typically	developing	children.	

As	with	Plaut’s	(1996)	influential	connectionist	model	examining	

relearning	following	acquired	damage,	we	took	a	simplifying	step	of	first	

adopting	a	single	mechanism	perspective.	However,	behaviour	is	generated	by	

the	interaction	of	multiple	mechanisms.	A	multiple-mechanism	framework	is	

necessary	to	consider,	variously,	interventions	to	encourage	alternative	

strategies,	the	use	of	executive	function	skills	to	compensate	for	weaknesses	in	

domain-specific	systems	(Johnson,	2012),	and	interventions	that	might	address	

deficits	in	functional	connectivity	between	mechanisms	(e.g.,	as	sometimes	

proposed	as	a	deficit	in	autism;	see	Thomas	et	al.,	2016,	for	discussion).	The	Best	

et	al.	(2015)	model	holds	some	promise	in	this	regard,	since	it	captures	separate	

behaviours	stemming	from	the	operation	of	components	(nonword	repetition,	

semantic	categorisation)	and	from	the	interaction	between	components	(naming,	

comprehension),	where	each	behaviour	exhibits	its	own	developmental	

trajectory.	Within	such	a	multiple-mechanism	framework,	it	is	apparent	that	a	

single	mechanism	can	nevertheless	serve	as	a	limiting	factor	on	performance,	

even	if	it	is	not	the	sole	generator	of	behaviour.	

	

Integrating	models	with	data	from	cognitive	neuroscience	
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Neuroanatomically	constrained	models	of	the	reading	system	and	the	semantic	

system	have	indicated	how	paying	attention	to	neuroscience	data	can	progress	

computational	modelling	and	provide	a	paradigm	for	the	modelling	of	intact	and	

impaired	cognitive	abilities	(e.g.,	Chen,	Lambon	Ralph,	&	Rogers,	2017;	Lambon	

Ralph,	Jefferies,	Patterson	&	Rogers,	2017;	Ueno	et	al.,	2011).	This	work	brought	

together	models	of	normal	processing	of	tasks	such	as	word	and	object	naming,	

detailed	behavioural	profiles	from	a	large	cohort	of	patients,	and	facts	about	the	

nature	of	the	underlying	impairment	that	could	be	related	to	properties	the	

computational	models,	which	together	could	explain	a	wide	range	of	facts	about	

deficit	patterns,	bases	of	recovery	of	function,	and	responsiveness	to	

intervention.	Each	component	–	modelling,		behavioural	evidence,	brain	

evidence	–	helped	to	bootstrap	the	other.	The	models	suggested	new	ways	of	

looking	at	brain	and	behaviour,	but	the	brain	evidence	also	constrained	how	the	

impairments	were	simulated,	yielding	new	testable	predictions.	These	models	

incorporate	multiple	components	and	pathways,	and	simulate	several	target	

behaviours	(e.g.,	for	the	reading	model,	repetition,	comprehension,	and	naming).	

They	have	been	applied	to	the	simulation	of	acquired	deficits,	such	as	aphasias,	

semantic	dementia,	and	visual	agnosia,	by	removing	connections	from	certain	

regions	of	the	model,	while	retraining	the	model	after	damage	has	then	allowed	

investigation	of	plasticity	related	recovery.	Models	of	developmental	deficits	and	

interventions	are	less	well	progressed,	but	ideally	would	develop	in	the	same	

direction	(Woollams,	2014).	What	cognitive	neuroscience	data	could	be	used	to	

constrain	such	computational	models?	

There	is	a	fast-growing	literature	identifying	differences	in	brain	

structure	and	function	in	children	with	behaviourally	defined	developmental	
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disorders.	These	include	differences	in	global	brain	structure	(e.g.,	reduced	

global	grey	matter	in	ADHD,	Batty	et	al.,	2010;	increased	brain	size	in	autism,	

Waldie	&	Saunders,	2014);	differences	in	local	brain	structure	(e.g.,	thinner	

cortex	in	the	pars	opercularis	in	ADHD,	a	region	involved	in	inhibitory	control,	

Batty	et	al.,	2010;	smaller	amygdala	in	children	with	Oppositional	Defiant	

Disorder	[ODD]	and	Conduct	Disorder	[CD],	a	region	involved	in	emotion	

processing,	Noordermeer,	Luman	&	Oosterlaan,	2015);	and	structural	

connectivity	(e.g.,	abnormal	anatomy	of	fronto-striatal	white	matter	tracts;	

Langen	et	al.,	2012).	Research	using	functional	MRI	indicates	that	in	disorders,	

activation	can	be	either	reduced	or	increased	in	relevant	areas,	or	increased	in	

other	areas.	For	example,	in	developmental	dyslexia,	within	the	normal	reading	

network,	the	left	temporo-parietal	region	and	ventral	occipito-	temporal	region	

are	often	under-activated,	while	the	left	inferior	frontal	gyrus	is	sometimes	over-

activated	due	to	compensatory	articulatory	effort,	while	some	studies	also	report	

increased	activation	outside	the	reading	network	in	the	right	hemisphere	

(Barquero	et	al.,	2014).	Functional	connectivity	is	sensitive	both	to	individual	

differences	(e.g.,	in	working	memory,	in	the	link	between	the	fronto-parietal	

network	and	visual	areas;	Barnes	et	al.,	2016)	and	to	disorders	(e.g.,	abnormal	

resting	state	cortical	connectivity	between	frontal	and	posterior	regions	in	

autism;	Waldie	&	Saunders,	2014).	

There	are	two	kinds	of	challenge	in	adapting	these	new	architectures	to	

developmental	disorders.	The	first	challenge	is	to	identify	the	relevant	

computational	deficit	to	apply	to	one	or	more	regions	of	the	architecture,	in	this	

case	prior	to	development	rather	than	in	a	trained	model	for	acquired	deficits.	

For	example,	Seidenberg	(2017)	identified	several	candidate	neural	deficits	that	
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might	be	associated	with	developmental	dyslexia,	broadly	falling	under	the	view	

that	signal	propagation	between	and	within	regions	is	noisier	(Hancock,	Pugh	&	

Hoeft,	2017).	These	include	greater	variability	in	neural	responses	to	stimuli,	

consequent	reduced	functional	connectivity	between	regions,	and	slower	

learning	from	experiences.	Implicated	in	noisier	signalling	are	potential	

disruptions	to	myelination,	changes	to	neural	dynamics	(hyperexcitability),	and	

anomalies	in	neural	migration.	This	is	quite	a	wide	set	of	computational	

anomalies,	which	in	implemented	models,	could	have	diverse	effects	on	

development	and	diverse	responses	to	intervention.7	

The	second	challenge	is	to	determine	how	to	intervene	on	larger,	

interactive	architectures.	As	we	have	seen,	in	architectures	with	multiple	

mechanisms	and	pathways,	there	is	the	scope	for	alternate	routes	to	compensate	

for	anomalies	in	a	given	component.	This	indeed	is	what	occurs	during	

relearning	after	focal	removal	of	connections	to	capture	rehabilitation	(Ueno	et	

al.,	2011).	However,	in	a	developmental	deficit,	the	system	is	presumed	to	be	

plastic	throughout,	and	the	question	arises	as	to	why	such	compensation	would	

not	have	taken	place	already.	What	intervention	procedure	could	trigger	

reorganisation	in	a	way	that	natural	experience	could	not?	Perhaps	it	is	as	simple	

as	giving	extra	practice	on	behaviours	most	closely	linked	to	those	brain	regions	

showing	reduced	activation,	such	as	phonological	awareness	training	for	

temporal	regions	processing	phonology	in	the	case	of	dyslexia.	Once	more,	

																																																								
7	Currently,	no	straightforward	behavioural	intervention	stems	from	the	neural	noise	hypothesis	
of	developmental	dyslexia.	Hancock,	Pugh	and	Hoeft	(2017)	argue	the	hypothesis	points	to	

interventions	via	brain-stimulation	techniques,	such	as	transcranial	direct	current	stimulation	

and	transcranial	magnetic	stimulation,	or	pharmacological	agents,	to	address	the	hypothesised	

hyperexcitability	of	neurons.	
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preceding	results	caution	us	that	even	in	this	simple	case,	there	may	be	timing	

effects,	such	that	unless	a	narrow	locus	of	developmental	deficit	is	remediated	

early,	the	rest	of	the	system	may	not	be	able	to	adjust	without	additional	

intervention.	And	of	course,	in	larger	architectures,	deficits	need	not	be	focal,	

they	could	be	widespread,	or	have	spread	across	development	from	an	initially	

more	restricted	locus.	

Cognitive	neuroscience	can	also	provide	data	on	response	to	intervention.	

In	many	cases,	behavioural	intervention	leads	to	increased	activation	in	

previously	under-activated	regions	and	changes	in	functional	connectivity	that	

bring	individuals	closer	to	the	patterns	observed	in	typically	developing	controls,	

so-called	normalisation	(e.g.,	in	dyslexia:	Ylinen	&	Kujala,	2015;	in	autism:	

Calderoni	et	al.,	2016;	Waldie	&	Saunders,	2014).	However,	sometimes	

individuals	respond	to	intervention	with	decreased	activation	or	compensatory	

recruitment	of	different	regions,	and	regions	that	respond	to	intervention	are	

often	not	localised	but	widespread	across	the	brain.	It	is	an	area	of	active	

research	to	uncover	whether	such	neural	markers	can	predict	how	individual	

children	respond	to	intervention	(Barquero	et	al.,	2014).	In	one	study,	Simos	et	al.	

(2007)	found	that	children	who	responded	to	intervention	exhibited	

normalisation	while	non-responders	exhibited	compensation.	

Overall,	research	from	neurodevelopment	exhibits	similar	themes	to	the	

computational	modelling	work	described	here	–	contrasting	normalisation	with	

compensation,	identifying	individual	differences	in	response	to	intervention,	

distinguishing	resolving	from	persisting	delays,	interpreting	the	implications	of	

good	compensatory	outcomes.	However,	the	neuroscience	literature	is	also	very	

mixed	–	in	part	due	to	heterogeneity	in	methods,	in	part	due	to	heterogeneity	in	
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participants.	For	example,	a	difference	in	one	direction	between	disorder	and	

control	group	in	one	study	may	be	contrasted	by	a	difference	in	the	opposite	

direction	in	another	(e.g.,	in	the	size	of	the	amygdala	in	ODD	and	CD,	

Noordermeer,	Luman	&	Oosterlaan,	2015,	for	review;	in	the	activation	of	inferior	

frontal	gyrus	in	dyslexia,	Barquero	et	al.,	2014,	for	review).	Patterns	of	brain	

responses	to	intervention	can	be	complex.	The	logic	of	linking	activation	or	

structure	to	behaviour	is	not	always	clear:	to	remediate	a	behavioural	deficit,	is	

more	activation	or	less	activation	better?	Is	thinner	cortex	or	thicker	cortex	

better?	Is	more	connectivity	or	less	connectivity	better?	Karmiloff-Smith	(2010)	

argued	that	for	brain	imaging	to	advance	our	understanding	of	development,	it	

has	to	focus	on	mechanisms	of	change,	rather	than	static	snapshots	of	structural	

or	functional	properties.	The	computational	models	we	have	considered	are	

orders	of	magnitude	simpler	than	real	neural	systems.	Yet	they	generate	a	

vocabulary	to	consider	how	mechanisms	of	change	may	cause	atypical	

development	and	constraint	response	to	intervention.	As	we	saw	with	attempts	

to	link	Thomas	and	Knowland’s	(2014)	notions	of	capacity	and	plasticity	to	brain	

properties,	the	continuing	challenge	is	to	drive	closer	links	between	cognitive	

models	and	brain	systems.	

	

Conclusion:	The	importance	of	narrowing	the	gap	

Advances	in	mechanistic,	computational	models	of	developmental	disorders	

(and	more	widely,	individual	variability)	set	the	foundation	for	an	investigation	

of	intervention.	Implementation	can	provide	a	driver	for	advances	in	theory,	

although	questions	remain	about	whether	the	simplification	necessary	for	

modelling	omits	key	dimensions	of	the	intervention	situation,	notably	its	usual	



	 88	

basis	in	social	interaction.	It	is	important	to	narrow	the	gap	between	theories	of	

deficit	and	theories	of	intervention,	in	order	to	place	intervention	on	an	

evidence-driven,	mechanistic	basis.	Practice-based	approaches	naturally	

emphasise	behavioural	consequences	of	intervention	and	are	less	focused	on	

understanding	mechanisms:	for	these	approaches,	what	is	important	is	what	

works	behaviourally	and	what	can	enable	success.	This	emphasis	on	proximate	

goal	is	one	of	the	reasons	for	the	gap.	However,	understanding	the	active	agent	

underpinning	a	successful	intervention	is	key	to	understanding	what	will	work	

in	which	contexts	for	what	disorders,	as	well	as	the	flexibility	of	the	application	

of	a	given	technique	(Law	et	al.,	2008).	As	Nathan	and	Alibali	(2010)	argue,	to	

narrow	the	gap,	we	need	a	combination	of	scaling-up	from	the	elemental,	

mechanistic	models	of	cognitive	science	and	scaling-down	from	the	complexity	

of	real-life	intervention	situations.	That	in	turn	requires	clinicians	to	be	

interested	in	mechanism,	despite	it	being	an	understandably	lower	priority	than	

behavioural	outcomes	for	the	children	they	treat.	
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Tables	

	

Table	1.	Key	concepts	

Cause	of	

disorder	

Intervention	

outcomes	

Interventions	in	

developmental	

models	

Types	of	

simulated	

interventions	

Monogenic	(single	

cause)	

Does	the	

intervention	

generalise	beyond	

the	treated	items	

to	other	items	or	

skills?	

Does	intervention	

improve	

performance	on	

the	training	set?	

Behavioural	(add	

new	items	to	/	

change	frequency	

distribution	of	

training	set)	

Polygenic	

(multiple	causes)	

Is	their	

maintenance	of	

gains	after	the	

intervention	

ceases?	

Does	intervention	

improve	

performance	on	

the	generalisation	

set	(novel	items)	

Computational	

(alter	the	

computational	

properties	of	the	

learning	

mechanisms)	

	 	 	 Compensatory	

(encourage	

alternate	

mechanisms	/	

pathways	to	

acquire	target	

behaviours)	
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Table	2.	

Computational	parameter	 Processing	role	 Effect	size	of	

PD	vs.	RD	

comparison	

Number	of	internal	units	 Capacity	 .031**	

Pruning	threshold	 Capacity	/	Regressive	events	 .021*	

Learning	algorithm	 Capacity	/	Plasticity	 .104**	

Lexical-semantic	learning	rate	 Plasticity	 .024**	

Unit	discriminability	 Plasticity	/	Signal	 .025**	

Processing	noise	 Signal	 .026**	

PD	=	persisting	delay;	RD	=	resolving	delay	

Scores	show	ηp2	effect	sizes	from	ANOVA	comparing	PD	and	RD	groups	(see	

Thomas	&	Knowland,	2014,	Table	2,	for	parallel	analyses	using	logistic	

regression	methods)	

*Effect	reliable	at	p	<	.05.	**Effect	reliable	at	p	<	.01	
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Table	3.	A	simulated	intervention	that	produced	different	effects	on	population	

mean	performance	and	standard	deviations,	depending	on	timing	and	target	

behaviour.	A	population	of	1000	networks	learning	English	past	tense	

experienced	an	intervention	either	early	(after	50	epochs)	or	late	(250	epochs)	

in	development.	During	intervention,	differences	in	the	richness	of	the	

environment	between	individuals	were	removed	and	all	networks	given	the	

most	enriched	training	set.	Early	intervention	improved	the	population	mean	for	

regular	verbs	and	reduced	variation	due	to	ceiling	effects.	Early	intervention	

improved	population	mean	for	irregular	verbs	but	did	not	alter	variation	–	gaps	

between	individuals	did	not	narrow.	Late	intervention	improved	population	

mean	for	irregular	verbs	(though	less	so	than	early	intervention)	but	increased	

population	variation	–	gaps	between	individuals	widened	after	intervention.	

(Stdev	=	standard	deviation)	

Early	intervention	(epoch	50)	Mean	population	accuracy	and	variation	

Epoch	 	 25	 50	 55	 60	 75	 100	 250	 1000	 	

Epoch	post	intervention:	 	 +5	 +10	 +25	 +50	 +150	 +950	 	

Regular	verbs	 	 	 	 	 	 	 	 	

Untreated	 Mean	 0.47	 0.60	 0.61	 0.62	 0.65	 0.67	 0.73	 0.75	 	

Stdev	 0.29	 0.27	 0.27	 0.27	 0.26	 0.26	 0.25	 0.23	 	

Treated	 Mean	 	 	 0.67	 0.73	 0.81	 0.86	 0.94	 0.97	 	

Stdev	 	 	 0.22	 0.19	 0.14	 0.11	 0.07	 0.05	 	

	 	 	 	 	 	 	 	 	

Irregular	verbs	 	 	 	 	 	 	 	 	

Untreated	 Mean	 0.07	 0.15	 0.17	 0.19	 0.23	 0.27	 0.41	 0.49	 	
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Stdev	 0.07	 0.13	 0.14	 0.15	 0.17	 0.19	 0.23	 0.26	 	

Treated	 Mean	 	 	 0.13	 0.16	 0.24	 0.36	 0.64	 0.80	 	

Stdev	 	 	 0.13	 0.15	 0.17	 0.20	 0.23	 0.22	 	

	 	 	 	 	 	 	 	 	

Late	intervention	(250	epochs)	mean	population	accuracy	and	variation	 	

Irregular	verbs	 	 	 	 	 	 	 	 	

Epoch	 	 250	 255	 260	 275	 300	 350	 500	 750	 1000	

Post	intervention:	 +5	 +10	 +25	 +50	 +100	 +250	 +500	 +750	

Untreated	 Mean	 0.41	 0.41	 0.41	 0.42	 0.43	 0.44	 0.46	 0.48	 0.49	

	 Stdev	 0.23	 0.23	 0.23	 0.24	 0.24	 0.24	 0.25	 0.26	 0.26	

Treated	

Early	

Mean	 	 0.64	 0.64	 0.66	 0.67	 0.70	 0.75	 0.79	 0.80	

Stdev	 	 0.23	 0.23	 0.23	 0.23	 0.23	 0.23	 0.22	 0.22	

Treated	

Late	

Mean	 	 0.34	 0.34	 0.37	 0.41	 0.46	 0.55	 0.60	 0.63	

Stdev	 	 0.24	 0.25	 0.26	 0.27	 0.28	 0.29	 0.30	 0.31	
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Table	4.	Standardised	beta	values	for	linear	regressions	predicting	individual	

differences	in	treatment	effect	sizes	following	two	different	types	of	intervention,	

normalisation	and	compensation,	in	simulated	networks	with	a	connectivity	

over-pruning	disorder	(Davis,	2017).	N=790	networks	(only	those	from	the	

population	showing	a	behaviourally	assessed	performance	deficit).	Separate	

regressions	were	carried	out	for	performance	on	the	training	set	and	

generalisation	set.	The	shaded	area	shows	parameters	related	to	the	pathological	

process,	elevated	values	of	the	pruning	threshold,	permitting	larger	connections	

to	be	removed	following	the	onset	of	pruning.	

	

	 Intervention	type	

	 Normalisation	 Compensation	

Parameter	 Training	set	

performance	

Generalisation	

performance	

Training	set	

performance	

Generalisation	

performance	

Number	of	hidden	units	 -0.016	 0.012	 0.011	 0.023	

Sigmoid	temperature	 -0.040	 -0.001	 -0.098	 -0.127	

Processing	noise	 0.028	 0.032	 0.007	 -0.012	

Learning	rate	 -0.065	 -0.086	 -0.053	 -0.016	

Momentum	 -0.014	 -0.011	 -0.013	 -0.011	

Initial	weight	variance	 -0.015	 -0.002	 -0.031	 -0.023	

Architecture	 -0.110	 -0.101	 -0.112	 -0.092	

Learning	algorithm	 -0.006	 -0.059	 -0.011	 0.010	

Response	threshold	 -0.055	 -0.063	 0.000	 0.036	

Pruning	onset	 0.022	 -0.007	 0.057	 0.045	
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Pruning	rate	 -0.006	 0.006	 -0.062	 -0.075	

*Pruning	threshold	 0.014	 0.082	 0.039	 -0.047	

Weight	decay	rate	 0.021	 0.007	 0.036	 0.025	

Sparseness	of	

connectivity	

0.027	 0.065	 0.049	 0.052	

Richness	of	environment	 -0.030	 -0.036	 -0.028	 -0.028	

	 	 	 	 	

Bold	shows	significant	at	p<.05	

*	This	parameter	was	set	to	atypical	values	to	produce	the	developmental	

disorder	
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Figure	captions	
	
Figure	1.	Simulation	of	typical	and	atypical	past	tense	acquisition	predicting	

long-term	compensated	outcomes.	(a)	Empirical	data	(per	cent	accuracy)	for	

typically	developing	children	from	Thomas	et	al.	(2001)	for	a	group	of	typically	

developing	children	on	a	past	tense	elicitation	task	for	regular	verbs,	irregular	

verbs,	novel	verbs,	and	over-generalisation	errors;	and	for	a	group	of	children	

with	DLD	from	van	der	Lely	and	Ullman	(2001),	using	the	same	elicitation	task.	

Error	bars	show	standard	error	of	the	mean.	(b)	Simulation	data	from	Thomas	

(2005)	for	a	connectionist	past	tense	model,	either	in	a	typical	condition	or	an	

atypical	condition	where	the	discrimination	of	the	simple	processing	units	was	

reduced	by	lowering	the	‘temperature’	of	the	sigmoid	activation	function	

(1=>0.25).	Model	data	are	shown	at	a	point	that	approximately	matched	the	

performance	of	the	children	(250	epochs	of	training).	(c)	Simulation	data	for	the	

projected	‘adult’	outcome	of	typical	and	atypical	trajectories	(5000	epochs	of	

training).	The	project	adult	model	reached	ceiling	on	the	training	set	but	

retained	atypical	generalisation.	

(Error	bars	show	standard	error	over	10	replications	with	different	initial	

random	seeds.)	

	

Figure	2.	Simulation	of	resolution	of	early	delay.	Group	averaged	developmental	

trajectories	for	1000	simulated	children	in	a	model	of	English	past	tense	

formation,	assuming	a	polygenic	model	for	language	delay	(Thomas	&	Knowland,	

2014).	Delay	was	defined	at	Time	1	as	networks	whose	performance	fell	more	

than	1	standard	deviation	below	the	population	mean.	Networks	were	defined	as	

having	Resolving	delay	if	their	performance	fell	within	this	normal	range	by	Time	
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5;	and	as	having	Persisting	delay	if	their	performance	remained	below	the	normal	

range	by	Time	5	(See	Thomas	&	Knowland,	2014,	for	further	details).	Error	bars	

show	standard	deviations.	

	

Figure	3:	Individual	differences	in	response	to	an	enrichment	intervention.	Plot	

shows	the	relationship	between	treatment	effects	(change	in	proportion	correct	

assessed	at	end	of	training)	and	the	quality	of	the	early	environment	for	each	

simulated	child	(varying	between	0	and	1)	for	(a)	Regular	and	(b)	Irregular	verbs.	

Poorer	family	language	environment	predicted	a	larger	treatment	effect.	This	

effect	reduced	for	interventions	later	in	development,	and	more	so	for	irregular	

verbs.	(Early	enrichment	=	50	epochs,	Late	=	250	epochs,	treatment	effects	

assessed	at	1000	epochs.	Linear	fits	are	shown	for	all	conditions.	Early	

enrichment	for	regular	verbs	was	better	fit	by	a	log	function	(R2=.87),	while	

linear	functions	explained	more	variance	for	the	other	three	conditions.)	

	

Figure	4.	The	interaction	of	processing	deficits	with	richness	of	early	language	

environment.	The	plot	depicts	population	performance	on	regular	verbs	early	in	

development	(50	epochs),	split	by	individuals	in	impoverished	or	enriched	

environments,	and	stratified	by	individuals	with	different	unit	discriminability	

(temperature	values	0.5-1.5).	Interaction	effect	was	at	trend	level	(p=.06).	Error	

bars	show	standard	deviations.	

	

Figure	5.	Network	architecture	and	problem	domain	for	a	model	designed	to	

explore	how	bespoke	intervention	sets	can	support	learning	in	systems	with	

atypical	properties,	in	this	case	reduced	connectivity:	(a)	network	architecture;	
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(b)	example	categorisation	problem,	with	10,000	data	points;	the	network	is	

required	to	learn	the	category	boundaries;	(c)	the	training	set	given	to	the	

network,	sufficient	to	learn	the	problem	under	typical	conditions;	(d)	an	example	

intervention	set	added	to	the	training	set	to	aid	development	under	atypical	

conditions.	Networks	had	50	internal	units	(backpropagation	network;	learning	

rate=.1,	momentum=.3,	temperature=1)	

	

Figure	6.	Developmental	trajectories	and	internal	representations	in	a	typical	

case	(TD),	an	atypical	case	with	low	connectivity	(30%,	C=0.3)	and	the	same	

atypical	case	experiencing	an	intervention.	Top	panel:	Developmental	

trajectories;	intervention	commenced	at	100	epochs.	The	intervention	set	was	

added	to	the	training	set	for	the	duration	of	training.	Vertical	lines	show	epochs	

at	which	snapshots	were	taken.	Lower	panels:	snapshots	of	the	activation	

pattern	of	the	unit	for	output	category	2	in	the	three	cases,	which	should	respond	

only	to	the	central	band	(see	Figure	6).	Hot	colours	represent	more	activity.	

(Fedor	et	al.,	2013).	

	

Figure	7.	A	model	comparing	interventions	to	remediate	weaknesses	or	to	

improve	strengths.	(a)	Developmental	trajectories	for	naming	and	

comprehension	in	a	model	acquiring	the	meanings	(semantics)	and	word	names	

(phonology)	of	400	vocabulary	items	(averaged	over	3	replications).	The	typical	

model	shows	the	usual	comprehension-production	asymmetry.	In	the	Word-

Finding	Difficulty	(WFD)	model,	there	was	a	restriction	in	the	capacity	of	the	

pathway	linking	semantics	to	phonology	(from	175	to	70	hidden	units),	which	

impacted	on	the	development	of	naming,	while	comprehension	trajectories	did	
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not	reliably	differ	from	normal.	(b)	Early	intervention	targeting	the	naming	

pathway	(weakness).	(c)	Early	intervention	targeting	the	development	of	the	

phonological	representations,	the	semantic	representations,	or	both	(strengths).	

(d)	An	intervention	combining	training	on	strengths	and	weakness.	Intervention	

comprised	training	at	5	times	the	frequency	on	acquisition	of	these	

representations	compared	to	naming	and	comprehension,	beginning	at	100	

epochs	and	lasting	for	100	epochs,	shown	by	the	shaded	area.	(Alireza,	Fedor	&	

Thomas,	2017).	

	

Figure	8.	A	behavioural	intervention	to	alter	computational	properties,	in	this	

case,	to	protect	against	over-pruning	of	connectivity.	(a)	Performance	of	a	group	

of	9	networks	with	a	disorder	caused	by	greater-than-usual	loss	of	connectivity	

(red),	compared	to	control	networks	(blue).	Also	shown	are	the	disorder	

networks	following	an	early	behavioural	intervention	(green),	lasting	between	

epochs	30	and	70.	Effects	of	the	intervention	sustain	to	the	end	of	development.	

(b)	The	number	of	network	connections	for	the	disorder	group	in	untreated	and	

intervention	conditions.	The	intervention	caused	initial	acceleration	of	loss	but	

final	preservation	of	a	greater	proportion	of	connections,	associated	with	

improved	computational	power.	Mid-training	=	250	epochs;	End	of	training	=	

1000	epochs.	

	

Figure	9.	Different	computational	deficits	producing	the	same	behavioural	

impairment	respond	differently	to	intervention.	Data	show	treatment	effects	of	

phonological	versus	semantic	interventions	for	the	Best	et	al.	(2015)	model	of	

word-finding	difficulties,	where	equivalent	behavioural	impairments	were	
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caused	by	three	different	underlying	computational	deficits.	The	atypical	

language	profiles	of	two	individual	children	were	simulated	and	then	

interventions	applied	(here	measured	in	how	much	naming	development	was	

advanced).	The	profile	of	each	child	was	simulated	reduced	network	connectivity	

(Deficit	C),	reduced	hidden	units	(Deficit	H),	or	a	shallower	sigmoid	activation	

function	in	the	artificial	neurons	(Deficit	T).	Intervention	responses	differed	

depending	on	how	the	deficit	was	implemented.	Error	bars	show	standard	errors	

of	10	replications	of	each	intervention	(See	Best	et	al.,	2015,	for	further	details).	

	

Figure	10.	Individual	differences	in	response	to	intervention,	following	two	types	

of	intervention.	Developmental	deficits	were	caused	by	an	over-pruning	disorder	

(Davis,	2017).	X-axis	shows	treatment	effect	in	terms	of	change	in	proportion	

correct.	(a)	Distribution	for	performance	on	the	training	set	following	the	

normalisation	or	compensation	treatment;	(b)	distribution	for	performance	on	

the	generalisation	set	following	either	normalisation	or	compensation	treatment.	

[Population	of	1000	networks,	intervention	for	duration	of	40	epochs	applied	

early	in	development,	epoch	30	out	of	a	lifespan	of	1000,	performance	tested	at	

100	epochs]	
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Figure	2	
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Figure	3	
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Figure	4	
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Figure	5	
	

	
	
	
	
	
	
	
	 	

(a)	Network	architecture							(b)	Full	problem																				(c)	Training	set																								(d)	Interven<on	set	
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Figure	6	
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Figure	7	
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(d)	
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Figure	8	
	
(a)	 	 	 	 	 	 (b)	

	

	

	 	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

Mid-training	 End	of	training	

Pr
op

or
%
on

	c
or
re
ct
	

Control	

Disorder	(untreated)	

IntervenCon	

2.0	

2.5	

3.0	

3.5	

4.0	

4.5	

0	 200	 400	 600	 800	 1000	

lo
g(
nu

m
be

r	
co
nn

ec
-
on

s)
	

Epochs	of	training	

disorder	

interven4on	

control	



	 134	

Figure	9	
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Figure	10	
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