49 research outputs found

    Semantic networks

    Get PDF
    AbstractA semantic network is a graph of the structure of meaning. This article introduces semantic network systems and their importance in Artificial Intelligence, followed by I. the early background; II. a summary of the basic ideas and issues including link types, frame systems, case relations, link valence, abstraction, inheritance hierarchies and logic extensions; and III. a survey of ‘world-structuring’ systems including ontologies, causal link models, continuous models, relevance, formal dictionaries, semantic primitives and intersecting inference hierarchies. Speed and practical implementation are briefly discussed. The conclusion argues for a synthesis of relational graph theory, graph-grammar theory and order theory based on semantic primitives and multiple intersecting inference hierarchies

    Efficient Source Selection For SPARQL Endpoint Query Federation

    Get PDF
    The Web of Data has grown enormously over the last years. Currently, it comprises a large compendium of linked and distributed datasets from multiple domains. Due to the decentralised architecture of the Web of Data, several of these datasets contain complementary data. Running complex queries on this compendium thus often requires accessing data from different data sources within one query. The abundance of datasets and the need for running complex query has thus motivated a considerable body of work on SPARQL query federation systems, the dedicated means to access data distributed over the Web of Data. This thesis addresses two key areas of federated SPARQL query processing: (1) efficient source selection, and (2) comprehensive SPARQL benchmarks to test and ranked federated SPARQL engines as well as triple stores. Efficient Source Selection: Efficient source selection is one of the most important optimization steps in federated SPARQL query processing. An overestimation of query relevant data sources increases the network traffic, result in irrelevant intermediate results, and can significantly affect the overall query processing time. Previous works have focused on generating optimized query execution plans for fast result retrieval. However, devising source selection approaches beyond triple pattern-wise source selection has not received much attention. Similarly, only little attention has been paid to the effect of duplicated data on federated querying. This thesis presents HiBISCuS and TBSS, novel hypergraph-based source selection approaches, and DAW, a duplicate-aware source selection approach to federated querying over the Web of Data. Each of these approaches can be combined directly with existing SPARQL query federation engines to achieve the same recall while querying fewer data sources. We combined the three (HiBISCuS, DAW, and TBSS) source selections approaches with query rewriting to form a complete SPARQL query federation engine named Quetsal. Furthermore, we present TopFed, a Cancer Genome Atlas (TCGA) tailored federated query processing engine that exploits the data distribution to perform intelligent source selection while querying over large TCGA SPARQL endpoints. Finally, we address the issue of rights managements and privacy while accessing sensitive resources. To this end, we present SAFE: a global source selection approach that enables decentralised, policy-aware access to sensitive clinical information represented as distributed RDF Data Cubes. Comprehensive SPARQL Benchmarks: Benchmarking is indispensable when aiming to assess technologies with respect to their suitability for given tasks. While several benchmarks and benchmark generation frameworks have been developed to evaluate federated SPARQL engines and triple stores, they mostly provide a one-fits-all solution to the benchmarking problem. This approach to benchmarking is however unsuitable to evaluate the performance of a triple store for a given application with particular requirements. The fitness of current SPARQL query federation approaches for real applications is difficult to evaluate with current benchmarks as current benchmarks are either synthetic or too small in size and complexity. Furthermore, state-of-the-art federated SPARQL benchmarks mostly focused on a single performance criterion, i.e., the overall query runtime. Thus, they cannot provide a fine-grained evaluation of the systems. We address these drawbacks by presenting FEASIBLE, an automatic approach for the generation of benchmarks out of the query history of applications, i.e., query logs and LargeRDFBench, a billion-triple benchmark for SPARQL query federation which encompasses real data as well as real queries pertaining to real bio-medical use cases. Our evaluation results show that HiBISCuS, TBSS, TopFed, DAW, and SAFE all can significantly reduce the total number of sources selected and thus improve the overall query performance. In particular, TBSS is the first source selection approach to remain under 5% overall relevant sources overestimation. Quetsal has reduced the number of sources selected (without losing recall), the source selection time as well as the overall query runtime as compared to state-of-the-art federation engines. The LargeRDFBench evaluation results suggests that the performance of current SPARQL query federation systems on simple queries does not reflect the systems\\\'' performance on more complex queries. Moreover, current federation systems seem unable to deal with many of the challenges that await them in the age of Big Data. Finally, the FEASIBLE\\\''s evaluation results shows that it generates better sample queries than the state-of-the-art. In addition, the better query selection and the larger set of query types used lead to triple store rankings which partly differ from the rankings generated by previous works

    User-centric Music Information Retrieval

    Get PDF
    The rapid growth of the Internet and the advancements of the Web technologies have made it possible for users to have access to large amounts of on-line music data, including music acoustic signals, lyrics, style/mood labels, and user-assigned tags. The progress has made music listening more fun, but has raised an issue of how to organize this data, and more generally, how computer programs can assist users in their music experience. An important subject in computer-aided music listening is music retrieval, i.e., the issue of efficiently helping users in locating the music they are looking for. Traditionally, songs were organized in a hierarchical structure such as genre-\u3eartist-\u3ealbum-\u3etrack, to facilitate the users’ navigation. However, the intentions of the users are often hard to be captured in such a simply organized structure. The users may want to listen to music of a particular mood, style or topic; and/or any songs similar to some given music samples. This motivated us to work on user-centric music retrieval system to improve users’ satisfaction with the system. The traditional music information retrieval research was mainly concerned with classification, clustering, identification, and similarity search of acoustic data of music by way of feature extraction algorithms and machine learning techniques. More recently the music information retrieval research has focused on utilizing other types of data, such as lyrics, user access patterns, and user-defined tags, and on targeting non-genre categories for classification, such as mood labels and styles. This dissertation focused on investigating and developing effective data mining techniques for (1) organizing and annotating music data with styles, moods and user-assigned tags; (2) performing effective analysis of music data with features from diverse information sources; and (3) recommending music songs to the users utilizing both content features and user access patterns

    Teams as Complex Adaptive Systems: Reviewing 17 Years of Research

    Get PDF
    At the turn of the century Arrow, McGrath, and Berdahl (2000) portrayed teams as complex adaptive systems (CAS). And yet, despite broad agreement that this approach facilitates a better understanding of teams, it has only now been timidly incorporated into team research. To help fully incorporate the logic of teams as CAS in the science of teams, we review extant research on teams' approached from a nonlinear dynamical system theory. Using a systematic review approach, we selected 92 articles published over the last 17 years, in order to integrate what we know about teams as CAS. Our review reveals the evidence supporting teams as CAS, and the set of analytical techniques to analyze team data from this perspective. Our work contributes to teams' theory and practice by offering ways to identify both research methods and managing techniques that scholars and practitioners may apply to study and manage teams as CAS

    Module extraction for inexpressive description logics

    Get PDF
    Module extraction is an important reasoning task, aiding in the design, reuse and maintenance of ontologies. Reasoning services such as subsumption testing and MinA extraction have been shown to bene t from module extraction methods. Though various syntactic traversal-based module extraction algorithms exist for extracting modules, many only consider the subsumee of a subsumption statement as a selection criterion for reducing the axioms in the module. In this dissertation we extend the bottom-up reachability-based module extraction heuristic for the inexpressive Description Logic EL, by introducing a top-down version of the heuristic which utilises the subsumer of a subsumption statement as a selection criterion to minimize the number of axioms in a module. Then a combined bidirectional heuristic is introduced which uses both operands of a subsumption statement in order to extract very small modules. We then investigate the relationship between MinA extraction and bidirectional reachabilitybased module extraction. We provide empirical evidence that bidirectional reachability-based module extraction for subsumption entailments in EL provides a signi cant reduction in the size of modules for almost no additional costs in the running time of the original algorithms.Computer ScienceM. Sc. (Computer Science

    Teams as Complex Adaptive Systems: Reviewing 17 Years of Research

    Get PDF
    At the turn of the century, Arrow, McGrath, and Berdahl portrayed teams as complex adaptive systems (CAS). And yet, despite broad agreement that this approach facilitates a better understanding of teams, it has only now been timidly incorporated into team research. To help fully incorporate the logic of teams as CAS in the science of teams, we review extant research on teams approached from a nonlinear dynamical system theory. Using a systematic review approach, we selected 92 articles published over the last 17 years to integrate what we know about teams as CAS. Our review reveals the evidence supporting teams as CAS, and the set of analytical techniques to analyze team data from this perspective. This review contributes to teams’ theory and practice by offering ways to identify both research methods and managing techniques that scholars and practitioners may apply to study and manage teams as CAS

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF
    corecore