
Module Extraction for Inexpressive
Description Logics

by

Riku Nortjé

submitted in accordance with the requirements

for the degree of

Master of Science

in the subject

Computer Science

at the

UNIVERSITY OF SOUTH AFRICA

Supervisor: Dr. Katarina Britz

Co-supervisor: Prof. Thomas Meyer

August 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Unisa Institutional Repository

https://core.ac.uk/display/43167786?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Declaration

I declare that this dissertation is my own work and that all the sources that I have used or

quoted have been indicated and acknowledged by means of complete references.

Riku Nortjé

ii

Abstract

Module extraction is an important reasoning task, aiding in the design, reuse and maintenance

of ontologies. Reasoning services such as subsumption testing and MinA extraction have been

shown to benefit from module extraction methods. Though various syntactic traversal-based

module extraction algorithms exist for extracting modules, many only consider the subsumee

of a subsumption statement as a selection criterion for reducing the axioms in the module.

In this dissertation we extend the bottom-up reachability-based module extraction heuris-

tic for the inexpressive Description Logic EL, by introducing a top-down version of the heuris-

tic which utilises the subsumer of a subsumption statement as a selection criterion to minimize

the number of axioms in a module. Then a combined bidirectional heuristic is introduced

which uses both operands of a subsumption statement in order to extract very small modules.

We then investigate the relationship between MinA extraction and bidirectional reachability-

based module extraction. We provide empirical evidence that bidirectional reachability-based

module extraction for subsumption entailments in EL provides a significant reduction in the

size of modules for almost no additional costs in the running time of the original algorithms.

iii

Acknowledgments

I wish to express my sincere gratitude to the CSIR-Meraka Institute and UNISA for their

financial assistance. Thank you Dr. K. Britz and Prof. T. Meyer for your faith in me,

your support and patience and for all the times you went far beyond the call of duty as

supervisors in order to give me the opportunity to do my research effectively. I wish to thank

Ms. T. Horne for her continued support and assistance, both morally and administratively,

without whom I would not have been able to complete this research work. Thanks to Kody

Moodley for his introduction and sample source code for a Protégé plug-in, which assisted me

to quickly and effortlessly adapt the algorithms presented and integrate them into a plug-in

for the Protégé 4.1 environment. My thanks also go out to the members of the education

office, especially Mr. Maseko, Ms. April and Mr. Hlatswhayo. I would also like to thank

Chad Berry and Gabriel Matsimbe for being patient friends and sounding boards and their

invaluable help with proof reading my work. Lastly I would like to thank all those authors

whose work this dissertation directly or indirectly uses or extends. Without your work this

dissertation would not ever have been possible.

iv

Contents

Declaration ii

Abstract iii

Acknowledgments iv

1 Introduction 1

1.1 From Hieroglyphs to Knowledge-Based Systems 1

1.2 Motivation and Dissertation Outline . 2

2 Background 5

2.1 Description Language . 5

2.2 The Ontology . 8

2.3 Reasoning Services for Description Logics . 12

2.3.1 Standard Reasoning Services . 13

2.3.2 Reasoning Complexity . 14

2.3.3 Viability of Inexpressive DLs . 15

2.3.4 Subsumption Testing in ELH . 19

2.3.5 Intractable Members of the EL-family 23

2.3.6 Supplementary Reasoning Services for the EL-family 25

3 Module Extraction 30

3.1 Modularization Methods . 31

3.2 Reachability-based Module Extraction . 34

3.3 Top-Down Reachability-based Modules for EL+ 37

3.4 Bidirectional Reachability-based Modules . 43

3.5 Conclusion . 47

v

4 MinA Extraction 48

4.1 Introduction to MinA Extraction . 49

4.1.1 Black-box Algorithms . 50

4.1.2 Glass-box Algorithms . 52

4.2 Computing and Extracting all MinAs in HL 52

4.2.1 Relationship Between MinAs and Bidirectional Reachability-based sub-

modules in HL . 53

4.2.2 The Earley Algorithm for Parsing Sentences with CFG’s 56

4.2.3 Converting a general HL ontology in normal form to a CFG 61

4.2.4 Computing the Set of all Sub-modules with the Earley Algorithm . . . 64

4.2.5 Adapting and Improving the Algorithm 67

4.2.6 Extracting MinAs . 75

4.3 Computing and Extracting all MinAs in EL 84

4.3.1 Converting an EL ontology in normal form to a CFG 84

4.3.2 Extracting all EL MinAs . 86

4.4 Conclusion . 90

5 Empirical Results 92

5.1 Test Suite . 92

5.2 Module Extraction . 94

5.3 MinA Extraction . 97

6 Conclusion 100

vi

Chapter 1

Introduction

1.1 From Hieroglyphs to Knowledge-Based Systems

From the beginning of human history mankind understood the need to capture, reproduce

and disseminate domain knowledge. Not only did mankind’s survival depend on accurately

transferring knowledge and skills from generation to generation, but knowledge reuse has

been the crux of technological progress throughout history.

The advent of the Information Age has seen an exponential growth in the quantity of

information produced and stored. The sheer volume of information produced daily has made

computers the preferred tool to store, share and process information while networking and

communication technology further allows users to share these resources and collaborate on

projects from opposite sides of the globe.

However, as volumes of information increase, the mere storing of information has become

insufficient and man thus endeavours to create tools that are more and more ‘intelligent’,

where intelligent, in this context, refers to the computer’s ability to accept core descrip-

tions and relationships about a domain (explicit expert knowledge) and then reason over this

knowledge and produce implicit consequences inherent in it. Such systems are considered

to be ‘Knowledge-Based’ systems (Baader et al. 2007) and lead to what today is known as

KR (Knowledge Representation) systems that aim to capture expert domain knowledge and

allow computers to reason over this knowledge.

Earlier KR systems can be categorized into two main categories: Logic-based systems

and Network-based system. Logic-based systems usually have their basis in first-order logic

and reasoning amounts to verifying and determining logical consequences. Network-based

systems1 such as Semantic Networks (Quillian 1967) and Frames (Minsky 1975), on the
1Semantic networks and frames differ greatly, but can be seen as networks, where nodes represent sets of

individuals and arcs the relationships between them.

1

1.2. Motivation and Dissertation Outline 2

other hand, had a more intuitive approach based on research into human cognitive abilities.

These systems used ad hoc data structures to represent data with similarly ad hoc reasoning

algorithms for reasoning over these structures.

The problem with network-based systems was that they lacked precise semantics, the

result being that every system behaved differently from the others, even with identical re-

lationship names and virtually identical looking components. Researchers therefore began

looking into ways to add precise semantics to network-based systems. Hayes (1979) showed

that both semantic networks and frames could be given semantics by relying on First-Order

Logic (FOL). Though logic could be used as a basis for clearly specifying semantics in these

networks, they do not require the full power of FOL, but rather different fragments of it

(Brachman & Levesque 1985). Thus specialized reasoning techniques could be used for rea-

soning over these representational languages, which are subsets of FOL, without the need

for using full first-order logic theorem provers. The complexity of reasoning would thus be

proportional to the expressivity of the language.

This work lead directly to the introduction of the ancestor of all Description Logics (DL)

systems, KL-One (Brachman & Schmolze 1985), which signalled the transition from semantic

networks to more well-founded terminological (description) logics. The influence of KL-One

was profound and it is considered the root of the entire family of description languages (Woods

& Schmolze 1992).

One of the strengths of DL systems lies in the fact that the reasoning complexity of a

DL is directly proportional to the complexity of the constructors available to it and thus

proportional to the complexity of the knowledge that may be modelled by it. This allows

developers to select appropriate DLs on a per domain basis, thereby not only allowing for the

efficient representation of knowledge, but also for using the most efficient reasoning algorithms

suitable to the complexity of the knowledge being modelled.

1.2 Motivation and Dissertation Outline

For even the most inexpressive DLs, as the size of ontologies increase to hundreds of thousands

or even millions of axioms, serious difficulties arise (Noy & Musen 2004, Stuckenschmidt &

Klein 2004). Amongst others these include:

• the running time of reasoning services increases proportionally to the size of the ontol-

ogy;

1.2. Motivation and Dissertation Outline 3

• reusing and sharing whole ontologies when only small specific subsets are needed at any

one time is inefficient;

• large ontologies introduce a cognitive challenge, necessitating large teams of experts to

compile, maintain and evolve the ontology, and

• finding axioms responsible for inconsistencies in large ontologies and consequently de-

bugging these ontologies becomes extremely difficult and time consuming.

In order to address these issues the notion of modularization has been introduced in the

literature. Intuitively, modules are small self contained sub-ontologies preserving a specific

subtopic or statement of interest. Various formal specifications of modules have been intro-

duced in the literature, each specification dependant upon the exact problem modularization

is to address.

In this dissertation we investigate modularization for the inexpressive EL family of De-

scription Logics. In particular, we investigate modularization as applied to the problem of

optimizing reasoning tasks. We focus on two reasoning services:

• subsumption testing between individual concept names. That is, given an ontology O

and the subsumption statement A v B, where A and B are individual concept names,

we test whether O |= A v B, and

• the debugging of ontologies, specifically the extraction of justifications for inconsistent

entailments. That is, given that there exists an incorrect subsumption entailment O |=

A v B, we find all the minimal sets of statements that causes this entailment to hold.

The reachability-based module extraction method (Suntisrivaraporn 2009) has been crit-

icised by Du et al. (2009) for considering only the sub-concept in a subsumption based

entailment, thereby providing little help in finding justifications for entailments. We aim to

address this shortcoming by introducing a top-down reachability-based module extraction

method that considers only the super-concept in an entailment. We then introduce a novel

bidirectional reachability-based algorithm that considers both the sub- and super-concepts

in a subsumption statement, thus reducing the size of standard reachability-based modules

by removing irrelevant axioms.

Next we investigate the application of minimal bidirectional reachability-based sub-modules

to the problem of finding justifications for entailments. We introduce an indexed bidirectional

1.2. Motivation and Dissertation Outline 4

reachability-based module extraction algorithm derived from the Earley algorithm for parsing

with Context Free Grammars, and show how the resulting modules may be used to extract

all justifications (Minimal Axioms Sets) for entailments.

The dissertation is structured as follows: Chapter 2 introduces the basic background

to Description Logics and the concepts, definitions and terminology used throughout this

dissertation. The chapter also introduces the EL family of Description Logics, with a brief

overview of both tractable as well as intractable extensions to it.

Chapter 3 introduces the notion of module extraction. We discuss some of the com-

mon modularization methods including an overview of reachability-based module extraction.

We then introduce the top-down reachability-based modularization method which extracts

modules based on the super-concept of a subsumption statement. Section 3.4 combines

reachability-based modules with the top-down version to introduce the notion of bidirec-

tional reachability-based modules.

Chapter 4 investigates the debugging of ontologies, more specifically finding justifications

(MinAs) for entailments. We investigate the properties of MinAs for the Horn Logic equiv-

alent DL HL, and derive an indexed based bidirectional module extraction algorithm from

the Earley parser for Context Free Grammars. We show that every minimal bidirectional

reachability-based sub-module for HL corresponds to a MinA and provide an algorithm to

extract all such MinAs. We then investigate the properties of EL MinAs and show that

the algorithms for HL may also be used to extract all MinAs for EL TBoxes consisting of

only primitive concept definitions. Lastly we investigate MinA extraction using bidirectional

reachability-based sub-modules for general EL TBoxes.

Chapter 5 deals with the practical implementation and empirical results of the algorithms

introduced in the previous chapters. We compare bidirectional reachability-based modules

with standard reachability-based modules for SNOMED (Cote et al. 1993), NCI and GO

ontologies2. Lastly we investigate the performance of the MinA extraction algorithms intro-

duced, and summarize our findings.

2We used versions obtained from http://lat.inf.tu-dresden.de/systems/cel/

Chapter 2

Background

In the scope of this dissertation we define a Description Logic system (DL) as a Knowledge

Representation (KR) system based on Description Logics. We define a DL system to consist

of the following components:

• Description Language - Set of all possible concept descriptions formed from:

– Set of logical constructors

– RN - Set of role names

– CN - Set of concept names

– IND - Set of all individual names

• Ontology

– Terminology - A set of axioms constructed by combining concept descriptions with

Ontological or Terminological constructors (TBox)

– Assertions - A set of assertions about individuals (ABox)

• Reasoning Services

A DL system is comprised of all these components combined, whereas the description

logic is composed of only the Description language and the Ontology components. In this

chapter we define the above components of a DL system as used throughout this dissertation.

2.1 Description Language

DL systems represent knowledge as concepts and relationships between concepts. We denote

the set of all concept names in an ontology O by CN(O), the set of all role names (binary

5

2.1. Description Language 6

relationships) by RN(O), the set of all individual names by IND(O), CN(O)> = CN(O) ∪

{>} and CN(O)⊥ = CN(O) ∪ {⊥}. We employ the standard convention and use the capital

symbols A and B to denote atomic concepts, C and D to denote concept descriptions and r,

s and t to denote role names. Each of these may include subscripts when needed.

A Description Language consists of all the legal statements that may be composed of

the sets CN and RN using elements from a set of logical constructors. Each of these legal

statements is referred to as a concept description.

Some common logical constructors, their syntax and respective semantics are listed in

Table 2.1. This list is by no means exhaustive and only includes a subset of constructors

that are of interest in this dissertation. The last column in the table shows the standard

short-hand symbol used later to indicate that this constructor is present within a language.

Name Syntax Semantics S
Concept Names

top > ∆I

bottom ⊥ ∅

Conjunction Operator - u
conjunction C uD CI ∩DI

Disjunction Operator - u
disjunction C tD CI ∪DI U

Negation Operator - ¬
atomic negation ¬A ∆I \AI
full negation
(complements) ¬C ∆I \ CI C

Existential Quantification Operator - ∃
unqualified existential
quantification ∃r.> {x ∈ ∆I | ∃y : (x, y) ∈ rI}
full existential
quantification ∃r.C {x ∈ ∆I | ∃y : (x, y) ∈ rI ∧ y ∈ CI} E

Universal Quantification Operator - ∀
value restriction ∀r.C {x ∈ ∆I | ∀y ∈ ∆I : (x, y) ∈ rI → y ∈ CI}

Number Restriction Operators - ≤ and ≥
at-most restriction (≤ rn), n ∈ N {x ∈ ∆I | #{y | (x, y) ∈ rI} ≤ n} N
at-least restriction (≥ rn), n ∈ N {x ∈ ∆I | #{y | (x, y) ∈ rI} ≥ n} N

Table 2.1: Syntax and semantics of common Description Language constructors

2.1. Description Language 7

In general, all concept names A ∈ CN(O), ⊥ and > are concept descriptions, using the

legal syntax of the relevant logical constructors, more complex concept descriptions are built

up from these as shown in the following example:

Example 1 Let the set {Person, Man} represent concept names, and let {hasChild} be a

set containing a single role name. Using the constructors {u,∃} from Table 2.1, we may

construct a concept description to represent the notion of being a parent as follows:

Person u ∃hasChild .Person

Which can be read as ”a person that has at least one child who is a person”. We may now

use it to define the notion of grandfather as:

Person uMan u ∃hasChild .(Person u ∃hasChild .Person)

Read as ”a male person with at least one child who is both a person and has a child that is a

person”.

Definition 1 (Semantics of concept descriptions) An interpretation I = (∆I ; .I) con-

sists of a non-empty set ∆I called the interpretation domain and an interpretation function

.I , which assigns to each concept name A ∈ CN a subset AI ⊆ ∆I and to each role name

r ∈ RN a binary relation rI ⊆ ∆I ×∆I . The interpretation function is extended to concept

descriptions by the inductive semantic definitions given in Table 2.1.

In general there are two classes of description languages of interest, those languages that

form part of the AL (attributive language) family as well as the sub-Boolean set of languages

such as the EL family. The language AL is defined as:

Definition 2 (The description language AL) Let CN represent the set of all concept

names, RN the set of all role names then AL is inductively defined as all legal concept

descriptions C such that:

C := A | > | ⊥ | ¬A | C u C | ∃r.> | ∀r.C

Any arbitrary description language L may be extended by any subset of the additional

constructors to yield the appropriate member of the L-language family. Using the construc-

tors from Table 2.1, each L-language is named by a string of the form

L[C][E][N][U]

2.2. The Ontology 8

where a letter in the name stands for the presence of the corresponding constructor. For

instance, LEN is the extension of L by both full existential quantification and number re-

strictions.

In terms of the semantics of the constructors, not all of these languages are distinct.

The semantics enforces the logical equivalences between C tD and ¬(¬C u ¬D) as well as

between ∃r.C and ¬∀r.¬C (Baader et al. 2007). Hence, by using full negation we may express

disjunction and full existential quantification in terms of conjunction and value restrictions

respectively, and vice versa. Therefore, disjunction and full existential quantification are

implicitly available in every language that contains full negation, conjunction and universal

quantification. It follows that all L-languages, containing these constructors, can be written

using the letters U , E and N only. We may therefore interchange the letters UE and C without

loss of generality in all these languages.

In Chapter 4 we investigate the DL HL formally defined as:

Definition 3 (The description language HL) Let CN represent the set of all concept

names, RN the set of all role names. HL is inductively defined as all legal concept descrip-

tions C such that:

C := A | > | C u C

Strictly speaking a description language must contain at least one quantifier (Suntisri-

varaporn 2009). Any language that contains no quantifiers is a propositional language and

does not strictly form part of the set of description languages. However, in this paper we

relax this restriction and investigate the Horn Logic language HL, which allows for only the

conjunction operator. Though not strictly speaking a description language, we use the term

loosely in the case of HL. Note that HL abbreviates Horn Logic, and that this deviates from

the convention that H refers to role hierarchies (Table 2.2).

2.2 The Ontology

In this section we investigate the notion of an ontology. In general, given a description

language L, an ontology O in L consists of the following components:

• a set of concept names from L denoted by CN(O),

2.2. The Ontology 9

• a set of binary relation names (role names) from L denoted by RN(O),

• a set of individuals IND(O) from L,

• a set of terminological axioms called a TBox denoted by TO, and

• a set of assertions about individuals called an ABox denoted by AO.

Using the description language of a DL we may create arbitrary concept descriptions.

However, when defining terminologies we require a method to define and reuse concept de-

scriptions or state facts about the domain we are modelling. For instance, in Example 1

we compiled concept descriptions to represent the notions Parent and GrandFather re-

spectively. Reusing these descriptions whenever we intend to imply the respective concepts

can become cumbersome and error prone. A better solution would be to define the concept

Parent as a concept in its own right. We may do this by using the symbol ‘v’ which is read

as is subsumed by meaning is contained in or is included in. Parent can thus be defined as

follows:

Parent v Person u ∃hasChild .Person

Thus we may use the new term Parent when defining the term GrandFather as:

GrandFather v Man u Parent u ∃hasChild .Parent

Besides defining terms, we may also wish to state that certain concepts are disjoint, some

roles represent transitive relations or even define role hierarchies. These new statements or

axioms are formed by utilising a set of ontological/terminological constructors. A set of the

most common ontological constructors together with their respective syntax and semantics

is listed in Table 2.2.

When axioms are constructed using the ontological constructors where the left hand side

of an axiom is an atomic concept we differentiate between primitive concept definitions and

concept definitions:

Definition 4 (Primitive concept definition) Let A be a concept name and C a concept

description. Then, A v C is a primitive concept definition and A is said to be primitively

defined.

Definition 5 (Concept definition) Let A be a concept name and C a concept description.

Then, A ≡ C is a concept definition and A is said to be fully defined.

2.2. The Ontology 10

Name Syntax Semantics
Concept Definition A ≡ C AI = CI

Concept Inclusion C v D CI ⊆ DI
Concept Disjointness C uD v ⊥ CI ∩DI = ∅
Role Hierarchy r v s rI ⊆ sI
Role Inclusion r1 ◦ . . . ◦ rk v r rI1 ◦ . . . ◦ rIk v rI
Transitive Roles transitive(r) ∀x, y, z ∈ ∆I : (x, y), (y, z) ∈ rI → (x, z) ∈ rI
Reflexive Roles reflexive(r) ∀x ∈ ∆I : (x, x) ⊆ rI
Range Restrictions range(r)v C {y ∈ ∆I | ∃x : (x, y) ∈ rI} ⊆ CI
Domain Restrictions domain(r)v C {x ∈ ∆I | ∃y : (x, y) ∈ rI} ⊆ CI
Concept Assertion C(a) aI ∈ CI
Role Assertion r(a, b) (aI , bI) ∈ rI

Table 2.2: Syntax and semantics of ontological constructors

A concept name that is neither fully nor primitively defined is called undefined1. The set

of all axioms in a domain constructed from the set of concept names and role names, using a

specified description language, is referred to as a terminology or a TBox. There are various

forms of TBoxes, these include unfoldable, cyclic and general TBoxes. In order to define the

various forms of TBoxes we need to define the Uniqueness Condition and Cyclicity :

Definition 6 (Uniqueness condition (Baader et al. 2007)) Let S be a finite set of

axioms of the form A v C or A ≡ C. Then S satisfies the uniqueness condition if, and only

if, for each concept name A, there is at most one axiom A v C ∈ S or A ≡ C ∈ S for any

concept description C.

Definition 7 (Cyclicity (Baader et al. 2007)) Let A and B be atomic concepts occurring

in a finite set of axioms S. A directly uses B in S if B appears on the right-hand side of the

definition of A. The term uses refers to the transitive closure of the relation directly uses.

The set S contains a cycle, and is called cyclic, if there exists an atomic concept A in S that

uses itself. If S does not contain a cycle it is called acyclic.

The definition of cyclicity can be extended to axioms as follows: given two axioms α1 :

αL1 v αR1 and α2 : αL2 v αR2, we say that α1 uses α2 if αL2 and αR1 contain at least one

common symbol.

Example 2 Given the set S1 = {α1 : A v B,α2 : B v A} then in axiom α1 A directly

uses B, S1 is cyclic since A uses itself in S1, and α1 uses α2 because of the common symbol
1Some papers refer to both fully and primitively defined concepts as simply defined concepts, and undefined

concepts are referred to as atomic concepts.

2.2. The Ontology 11

B. Given the set S2 = {α3 : A v B,α4 : B v C} A directly uses B, S2 is acyclic since no

concept uses itself. Lastly α3 uses α4 because of the common symbol B.

We now formally define a TBox or terminology as follows:

Definition 8 (TBox) A TBox T is a finite set of (possibly primitive) concept definitions

such that the uniqueness condition holds. When the TBox contains no cycles it is called an

acyclic or an unfoldable TBox.

The terms unfoldable and acyclic are usually used synonymously as reasoning problems

with respect to these TBoxes may be systematically transformed, by a process called unfold-

ing, into equivalent reasoning problems with respect to an empty TBox. Therefore, reasoning

with these TBoxes is equivalent to reasoning with concept descriptions and is often used dur-

ing the development stages of reasoning algorithms for testing purposes (Baader et al. 2007).

Definition 9 (General TBox) Let C and D be concept descriptions. Then C v D is a

(general) concept inclusion (GCI) axiom. A general TBox is a finite set of GCIs.

General TBoxes may contain axioms of the form C ≡ D, where C and D are concept

names or concept descriptions, as shorthand notation for the set of axioms {C v D,D v C}.

A TBox containing no GCIs may be transformed to a general TBox by noting that primitive

concept definitions are special forms of GCIs where the left hand side is a single concept

name instead of a complex concept description.

Definition 10 (ABox) Let IND be a set of individuals disjoint from CN and RN . Then,

expressions of the forms C(a) and r(a; b) are called concept assertions and role assertions,

respectively, where a, b ∈ IND, r ∈ RN , and C is a concept description. An ABox is a finite

set of concept and role assertions.

An ontology is defined as containing both a (general) TBox and an ABox. However, many

terminologies such as SNOMED, GO and NCI used during the course of this dissertation

consist of only a terminological component. Many of the reasoning services dealt with later

on are performed over TBoxes, and all of the work we introduce in later chapters deals with

only the TBox component of an ontology. We therefore use a less formal definition of an

ontology, and use the term Ontology and TBox synonymously throughout this text; where

the inclusion of an ABox is required it will be noted explicitly. Further in this dissertation,

2.3. Reasoning Services for Description Logics 12

whenever we refer to arbitrary axioms within a TBox we use the Greek symbols α, σ, β.

Where we want to refer explicitly to the sub-concept and super-concept in an axiom, we may

also write αL v αR.

Following the definition of semantics for a concept description, we may now use Table 2.2

to extend the interpretation function to cover individual axioms and thus the Ontology O.

Definition 11 (Semantics of an ontology) Let O be an ontology, α an axiom and I an

interpretation I = (∆I , .I) as defined in Definition 1. Then we say that I satisfies α, written

as I |= α, if and only if, the semantic conditions for α from Table 2.2 is fulfilled under I. If

I satisfies all axioms α ∈ O we say that I is a model of O.

During the course of this work, we often refer to certain properties of ontologies. These

include the number of axioms in an ontology O, denoted by | O |, as well as the set of symbol

and role names occurring in an axiom or ontology, defined as:

Definition 12 (Signature of an ontology) Let O be an ontology, let CN(O) represent

the set of all concept names in O and RN(O) the set of all role names in O. We define the

signature of O, denoted as Sig(O), as the union of all concept and role names occurring in

O i.e., Sig(O) = CN(O) ∪ RN(O). Similarly, for any DL statement σ, Sig(σ) is the union

of all concept and role names occurring in σ. Here a statement σ is defined as any concept

definition or GCI.

2.3 Reasoning Services for Description Logics

Reasoning services for DLs may be divided into two main categories:

• Standard Reasoning Services - Common reasoning services most DLs are expected to

provide, and

• Supplementary Reasoning Services - Reasoning Services that aid in the design and

maintenance of DLs.

Since the focus of this dissertation is on modularization, a supplementary reasoning ser-

vice, Section 2.3.1 gives an overview of standard reasoning services for EL. We show how

these may be implemented using implication sets and investigate both those extensions to

EL for which these reasoning services remain tractable as well as those extensions for which

reasoning degrades to exponential complexity.

2.3. Reasoning Services for Description Logics 13

2.3.1 Standard Reasoning Services

In this section we investigate the standard reasoning services all DL systems are expected to

provide. Just as DLs vary in expressivity, so do different DL systems vary in the reasoning

services they provide. There are however reasoning services that are considered standard and

thus mandatory for any DL system. Each of these addresses some logical inference problem

and provides a method for making implicit knowledge, inherent in the ontology, explicit.

These reasoning services include the following (Baader et al. 2007):

• Concept satisfiability: Let O be an ontology and C,D concept descriptions. C is satis-

fiable with respect to O if there exists a model I of O such that CI 6= ∅. Otherwise,

C is unsatisfiable with respect to O. Further, two concepts C and D are said to be

disjoint with respect to O if their conjunction C uD is unsatisfiable with respect to O.

• Concept subsumption: Let O be an ontology and C,D concept descriptions. D sub-

sumes C with respect to O, written as O |= C v D, if CI ⊆ DI for all models I of O.

If O |= C v D but O 6|= D v C, then we say that D strictly subsumes C, written as

O |= C @ D. Here C is usually referred to as the subsumee or sub-concept whilst D is

referred to as the subsumer or super-concept.

• Instance checking: Let O be an ontology, C a concept description, r a role name and

a, b individuals. The individual a is an instance of C w.r.t O, written as O |= C(a), if

and only if aI ∈ CI for all models I of O. In terms of roles, the pair of individuals

(a, b) is an instance of r w.r.t O, written as O |= r(a, b), if and only if (aI , bI) ∈ rI for

all models I of O.

• Consistency checking: Let O be an ontology. O is consistent if and only if it has a

model; otherwise it is inconsistent. The ABox A is consistent with respect to the TBox

T if and only if A and T have a common model I.

Instead of providing algorithms for each of these reasoning services, Baader et al. (2005)

shows that all of these reasoning services are mutually inter-reducible to each other except

for sub-Boolean logics such as the EL family. Since all these reasoning services are therefore

reducible to subsumption testing, and that subsumption testing is the reasoning problem of

choice in this dissertation, we will, for the rest of this chapter, focus on reasoning algorithms

for the subsumption problem only. Strictly speaking, the algorithms presented later compute

not only a single subsumption relation, but subsumption relationships between all pairs of

2.3. Reasoning Services for Description Logics 14

concept names occurring in the ontology. Algorithms of this type are called classification

algorithms.

2.3.2 Reasoning Complexity

When implementing reasoning services it is important to be able to measure the performance

of the algorithms in some universal way. A universal method is required since algorithms may

be implemented in different programming languages, run on different hardware platforms,

even including small mobile devices, and be implemented using totally different runtime

strategies.

In general there are two methods used when evaluating the performance of algorithms.

The first, and most prevalent, is the running time of the algorithm whereas the second

measures the runtime space requirements of the algorithm. All problems considered in this

dissertation are decidable, that is, there exists in principle an algorithm that may be used

to solve it irrespective of its complexity, in contrast to undecidable problems for which no

possible algorithm exists, nor may there ever be one constructed, irrespective of the advances

in technology.

We measure the complexity of an algorithm as the number of elementary or unit opera-

tions required to successfully complete a run of the algorithm. This measurement is expressed

as a function of the size of the input of the algorithm, where the input is restricted to being a

sequence of objects and the size of the input to being the number of objects in this sequence.

Though reasoning problems can be divided into many different classes such as: polyno-

mial (P), non-deterministic polynomial (NP), complement of a non-deterministic polynomial

(co-NP), exponential (EXPTime) and polynomial space (PSpace) problems, for the purposes

of this dissertation we do not provide an in depth discussion on these but refer the inter-

ested reader to Papadimitriou & Steiglitz (1989) for an in-depth discussion on algorithmic

complexity.

Loosely speaking, the class P consists of problems for which algorithms exists whose

runtime complexity can be expressed as a polynomial function in the size of the input. For

example, given that n is the size of the input, then

f(n) = n, f(n) = n2, f(n) = 2× n3 + 3× n

are all polynomial functions. Other algorithms for problems in P with runtime complexity not

strictly polynomial but bounded by a polynomial are considered to be solutions to problems

2.3. Reasoning Services for Description Logics 15

in P. These include functions such as:

f(n) = log n, f(n) = n log n, f(n) = n2.1

Runtime complexity of algorithms for problems in the class EXPTime can be expressed

as an exponential function in the size of the input. Given that n is the size of the input, then

f(n) = 2n, f(n) = nlogn, f(n) = n!

are all exponential functions.

Problems in P are usually referred to as tractable problems whereas those outside of P

are referred to as intractable. Unless P = NP, the runtime complexity of all algorithms for

problems not in P, such as those in NP, coNP and EXPTime, can usually be expressed as an

exponential function in the size of the input (Papadimitriou & Steiglitz 1989).

Definition 13 (Polynomial reduction (Papadimitriou & Steiglitz 1989)) Let P1 and

P2 be two reasoning problems, and let I1 be the input for a successful solution to P1. We say

that P1 polynomially reduces to P2 if and only if I1 can be transformed in polynomial time

to I2, such that I2 is the input for a successful solution to P2.

Let λ be a complexity class, then we say that a reasoning problem R is λ-hard if we can

show that all other problems in λ can be polynomially reduced to R. When we can also show

that R ∈ λ then we say that R is λ-complete.

The class PSpace can be defined as all problems for which algorithms exists that require

runtime space bounded by a polynomial function in the size of the input. Since an algorithm

running in polynomial time cannot require more than polynomial space, we know that prob-

lems in P are also in PSpace. Papadimitriou & Steiglitz (1989) showed that NP is in PSpace,

by showing that only one non-deterministic polynomial solution needs to occupy runtime

space at any given time. In contrast, the class EXPSpace is defined as all problems for which

algorithms exists that require runtime space bounded by an exponential function in the size

of the input. Figure 2.1 illustrates the relationships between the classes P, PSpace, EXPTime

and EXPSpace.

2.3.3 Viability of Inexpressive DLs

When clarifying the status of property arcs in Semantic Networks and slots in Frames, the

decision was taken that they should be represented by universal quantifications (∀) instead of

2.3. Reasoning Services for Description Logics 16

Figure 2.1: Complexity classes

existential quantifications (∃). Most DLs are therefore based on a subset of FOL that includes

universal quantification, the smallest of which is the sub-Boolean DL FL0, which allows only

for the conjunction of concepts (C u D) and value restrictions (∀r.C)2. The complexity of

reasoning in FL0 is thus very important, since the worst case complexity in this simple logic

sets the lower bound for the reasoning complexity of all logics that extend it.

Terminology Complexity
concept descriptions (empty TBox) Polynomial (Brachman & Levesque 1984)
acyclic TBoxes (unfoldable TBox) coNP-complete (Nebel 1990)
cyclic TBoxes PSpace-complete (Baader 1996, Kazakov & Nivelle 2003)
TBoxes with GCI’s (general TBox) EXPTime-complete (Baader et al. 2005)

Table 2.3: Complexity of the subsumption problem in FL0

From Table 2.3, we see that as soon as reasoning is to be performed over terminologies

more complex than simple concept descriptions, the complexity of reasoning becomes hard.

Further, there is a direct correlation between the complexity of axioms allowed in a terminol-

ogy and hardness of reasoning over it. Since reasoning over acyclic TBoxes is hard, all DLs

that extend FL0 also have the same minimum hardness constraints. Researchers therefore

focused on more complex DLs, most including General Concept Inclusions (GCI’s) with as

many constructors as possible, and finding practical reasoning algorithms (easy to implement

and optimize) for them. This research lead to the introduction of highly optimized tableau

algorithms for standard reasoning services (Horrocks 1998, Haarslev & Möller 2001). Though

these algorithms have theoretical exponential or worse, worst case behaviour, they perform

well in practice (Horrocks et al. 2000, Horrocks & Sattler 2004).
2The term value restriction is synonymous with universal quantification.

2.3. Reasoning Services for Description Logics 17

Reasoning with General Concept Inclusions

From the previous section we see that reasoning with terminologies containing General Con-

cept Inclusions (GCI’s) is hard for even the most inexpressive of DLs based on the universal

quantification operator. Recall from Definition 9 that GCI’s are axioms that contain arbitrary

concept descriptions on both sides of the terminological operator ‘v’

Reasoning with general TBoxes is EXPTime-Complete for the DL FL0 and any logic

that extends it. This complexity result would suggest that during the design of an ontology

the use of GCI’s should as far as possible be eliminated. However, from an application point

of view, the utility of GCI’s has long been observed. For example, in the GALEN (Rector

2007) medical ontology GCI’s are used for two main purposes (Brandt 2004a):

• indicating the status of objects: Instead of introducing different concepts for the same

concept in different states, for example: normal insulin secretion, abnormal but harmless

insulin secretion, and pathological insulin secretion, only insulin secretion is defined

while the status, i.e., normal, abnormal but harmless, and pathological is implied by

GCIs of the form . . .v ∃has status.pathological.

• to bridge levels of granularity and add implied meaning to concepts. A classical example

(Horrocks et al. 1996) is to use a GCI like

ulcer u ∃has loc.stomach v ulcer u ∃has loc.(lining u ∃is part of.stomach)

to render the description of ‘ulcer of stomach’ more precisely to ‘ulcer of lining of

stomach’ if it is known that ‘ulcer of stomach’ is specific of the lining of the stomach.

Research on reasoning with respect to general TBoxes has mainly focused on very ex-

pressive DLs, such as ALCNR and SHIQ, in which deciding subsumption of concepts with

respect to general TBoxes is EXPTime-hard. Givan et al. (2002) shows the problem to remain

EXPTime-complete for a DL providing only conjunction, value restriction and existential re-

striction. The same holds for the small DL AL which allows for conjunction, value and

unqualified existential restriction, and primitive negation (Donini 2007). From Table 2.3, we

see that for the simple DL FL0, which only allows for conjunction and value restriction, sub-

sumption with respect to cyclic TBoxes with descriptive semantics is PSpace-hard (Kazakov

& Nivelle 2003), and is EXPTime-complete for general TBoxes (Baader et al. 2005).

2.3. Reasoning Services for Description Logics 18

The DL EL

It was shown that for the DL EL, a small sub-boolean DL allowing only existential restrictions

and concept conjunction, the subsumption problem with respect to cyclic terminologies as

well as general TBoxes can be decided in polynomial time (Baader 2003, Brandt 2004a).

The relatively low complexity of reasoning with EL as well as the fact that it has practical

applications, especially in medical ontologies, serves as a strong motivation for considering

the DL as an alternative where value restrictions are not an explicit requirement.

For example, in the medical field the widely used medical terminology SNOMED (Cote

et al. 1993) corresponds to an EL TBox (Spackman 2001) and the representation language un-

derlying the medical terminology GALEN (Rector 2007) in which GCIs are used extensively,

similarly can be represented by a general EL TBox with added role inclusion axioms.

Terminology Complexity
concept descriptions (empty TBox) polynomial (Baader et al. 1998)
acyclic TBoxes (unfold-able TBox) polynomial (Baader 2003)
cyclic TBoxes polynomial (Baader 2003)
TBoxes with GCI’s (general TBox) polynomial (Brandt 2004a)

Table 2.4: Complexity of the subsumption problem in EL

In Table 2.4 we clearly see that reasoning in EL remains tractable even for the most

general kind of TBoxes. EL is therefore not only tractable but also lends itself to practical

applications. EL is considered an inexpressive language, where inexpressive languages refers

loosely to those languages that lack some of the expressiveness of description logics with

disjunction and full negations, and that aim to sacrifice some expressivity in exchange for

(typically) polynomial worst-case algorithms.

The polynomial complexity of reasoning tasks for EL, taken together with its practical

utility in especially the medical field, where value restrictions are not an explicit requirement,

has renewed interest in this inexpressive sub-boolean language. In the rest of this dissertation

we will mainly focus our attention on the EL-family of DLs, with the base language EL defined

as:

Definition 14 (Syntax of EL) Let CN and RN be two disjoint sets of concept and role

names, respectively. Then, EL concept descriptions or concepts are defined inductively as

follows:

• each concept name A ∈ CN is an EL concept description, and

2.3. Reasoning Services for Description Logics 19

• if C and D are EL concept descriptions and r ∈ RN is a role name, then the top

concept >, concept conjunction C uD, and existential quantification ∃r.C are also EL

concept descriptions.

An EL concept description is atomic if it is the top concept or a concept name from CN .

Otherwise, it is said to be complex.

As with any description language, extending EL with additional constructions yield dif-

ferent languages in the EL family. Some of the members of the EL family may be defined as

follows :

• EL¬ is defined as EL extended with negation of concept descriptions,

• EL(¬) is defined as EL extended with atomic negation,

• ELU is defined as EL extended with the disjunction of concept descriptions (C tD),

• ELN is defined as EL extended with both at-most number restrictions (≤ r n) and

at-least number restrictions(≥ r n).

Here EL¬ represents EL extended with full negation, and may, in conformance with the

above notational convention, be represented by ELC. However, using the semantic equiva-

lences between ¬(CuD) and ¬Ct¬D as well as that between ∃r.¬C and ¬∀r.C, we see that

as soon as full negation is added to EL it becomes a notational variant of the language ALC.

As a result the tractable nature of EL is lost and the resultant DL will inherit the minimum

complexity results from Table 2.3. Therefore, when extending a language with additional

constructors whilst maintaining the complexity of the original language, care should be taken

so that the combination of constructors used preserves the core complexity of the language,

and not extend it to a language with completely different complexity results.

Baader (2003) has shown that subsumption in EL with respect to GCI’s can be decided

in polynomial time. The question arises whether we may simply use existing tableaux based

algorithms designed for more expressive DLs or if new algorithms are required.

2.3.4 Subsumption Testing in ELH

Given an EL TBox T and the subsumption entailment T |= C v D, in order to decide if the

subsumption entailment holds, an intuitive decision procedure to choose would be the ALC

tableaux algorithm deciding consistency of ALC-concepts with respect to ALC terminologies

2.3. Reasoning Services for Description Logics 20

(Baader et al. 2003). The DL ALC extends EL by value restrictions (∀), disjunction (t) and

negation(¬). The entailment T |= C v D can thus be decided by deciding the satisfiability

of C u ¬D. However, Brandt (2004b) shows that using tableaux based algorithms for more

expressive DLs like ALC in order to reason over less expressive DLs like EL does in fact

not reduce the exponential worst case running time of these algorithms and that specialized

algorithms are needed to utilize the reduced complexity of EL.

In this section we illustrate the standard approach used to decide the subsumption prob-

lem for the tractable subset of the EL family, listed in Table 2.53, by outlining the algorithm

as applied to ELH.

Name EL ELH ELH⊥ EL+

top × × × ×
bottom × ×
conjunction × × × ×
existential restriction × × × ×
GCI × × × ×
RH (role hierarchy) × × ×
RI (role composition) ×
transitive roles ×
range restrictions ×
domain restrictions ×
reflexive roles

Table 2.5: Tractable subset of the EL family of DLs

In order to limit the use of complex concept descriptions to the most basic cases, the

notion of a normalized TBox is introduced. In the case of ELH a normalized TBox is defined

as:

Definition 15 (Normalized ELH TBox (Brandt 2004a)) Let T be an ELH-TBox over

CN and RN . T is normalized if:

1. T contains only GCIs and role hierarchies r v s and,

2. all of the GCIs have one of the following forms:

A v B

A1 uA2 v B

A v ∃r.B

∃r.A v B

3We note that, for the purposes of this dissertation, our definition of EL+ in Table 2.5 excludes reflexive
roles.

2.3. Reasoning Services for Description Logics 21

where A,A1, A2, B represent concept names from CN , and r, s roles names from RN .

The normal form can be computed in linear time and does not increase the size of the TBox

more than linearly (Brandt 2004b). To achieve the normalization the following normalization

rules can be applied to an arbitrary ELH TBox.

Definition 16 (Normalization rules for an ELH TBox (Brandt 2004a)) Let T be an

ELH-TBox over CN and RN . For every ELH-concept description C,D,E over CN(T)>

and RN(T), the ELH-normalization rules are defined modulo commutativity of conjunction

(u) as follows:

NF1 C ≡ D → {C v D,D v C}

NF2 Ĉ uD v E → {A v Ĉ, A uD v E}

NF3 ∃r.Ĉ v D → {A v Ĉ,∃r.A v D}

NF4 C v ∃r.D̂ → {C v ∃r.A,A v D̂, }

NF5 C v D u E → {C v D,C v E}

Here C, D, E represent concept names. Ĉ, D̂ denote complex concept descriptions, that is,

concept descriptions that do not consist of single concept names only. A denotes a new

concept name not from CN .

Applying a rule R := G → S to T changes T to (T \ G) ∪ S. The normalized TBox

norm(T) is defined by exhaustively applying Rules NF1 to NF3 and, after that, exhaustively

applying Rules NF4 and NF5.

The size of T is increased only linearly by exhaustive application of Rule NF1. Since

this rule never becomes applicable as a consequence of Rules NF2 to NF5, we may restrict

our attention to Rules NF2 to NF5. A single application of one of the Rules NF2 to NF3

increases the size of T only by a constant, introducing a new concept name and splitting one

GCI into two. Exhaustive application therefore produces an ontology of linear size in the size

of T . After exhaustive application of Rules NF1 to NF3, the left-hand side of every GCI is of

constant size. Hence, applying Rules NF4 and NF5 exhaustively similarly yields an ontology

of linear size in T . Consequently, the following lemma holds.

Lemma 1 (Brandt 2004a) The normalized TBox norm(T) can be computed in linear time

in the size of T . The resulting ontology is linear in the size of T .

2.3. Reasoning Services for Description Logics 22

Once the TBox has been normalized, the next part of the classification algorithm is to

compute for every concept A ∈ CN> a set of concepts ST (A) ⊆ CN> with the following

property: for all models I = (∆I , .I) of T and all individuals a ∈ ∆I , if a ∈ AI then for

every concept name B ∈ ST (A) we have that a ∈ BI . The simple structure of an ELH-TBox

in normal form allows us to define an implication set as follows.

Definition 17 (Implication sets for concept names (Brandt 2004a)) Let T denote

a normalized ELH-TBox T over CN and RN . For every A ∈ CN(T)>, the implication

set ST (A) is defined by
⋃
n≥0 Sn(A) where the sets Sn are inductively defined on n such that

S0(A) := {A,>}. If Sn(B) is already defined for all concept names B ∈ CN>, then Sn+1(A)

is the result of an exhaustive application of the extension rules in Fig 2.2.

Definition 18 (Implication sets for role names (Brandt 2004a)) Let T denote a

normalized ELH-TBox T over CN and RN . For every r ∈ RN(T), the implication set

ST (r) is defined by
⋃
n≥0 Sn(r) where the sets Sn are inductively defined on n such that

S0(r) := {r}. If Sn(r) is already defined for all role names s ∈ RN , then Sn+1(r) is the

result of an exhaustive application of the extension rules in Fig 2.2.

ISR If s ∈ Si(r) and s v t ∈ T and t /∈ Si+1(r)
then Si+1(r) := Si+1(r) ∪ t

IS1 If A1 ∈ Si(A) and A1 v B ∈ T and B /∈ Si+1(A)
then Si+1(A) := Si+1(A) ∪B

IS2 If A1, A2 ∈ Si(A) and A1 uA2 v B ∈ T
and B /∈ Si+1(A) then Si+1(A) := Si+1(A) ∪B

IS3 If A1 ∈ Si(A) and A1 v ∃r.B ∈ T
and B1 ∈ Si(B) and s ∈ Si(r) and ∃s.B1 v C ∈ T
and C /∈ Si+1(A) then Si+1(A) := Si+1(A) ∪ C

Figure 2.2: ELH Implication set rules

Note that the successor Si+1(A) of some Si(A) is generally not the result of only a single

rule application. Si+1(A) is complete only if no more rules are applicable to any Si(B)

or Si(r). Implication sets induce a reflexive and transitive but not symmetric relation on

CN(T) and RN(T), since B ∈ Sn(A) does not imply A ∈ Sn(B). The following theorems

from Brandt (2004a) show that implication sets characterize subsumption in ELH, as well as

the fact that they can be computed in polynomial time.

Theorem 1 (Brandt 2004a) For every normalized ELH-TBox T over CN and RN

1. for every r, s ∈ RN(T), s ∈ ST (r) implies T |= r v s, and

2.3. Reasoning Services for Description Logics 23

2. for every A,B ∈ CN(T)> it holds that B ∈ ST (A) iff T |= A v B

It is therefore clear that any algorithm for computing implication sets also computes all

possible subsumption relationships between concept names and between role names. Since

the algorithm computes all possible subsumption relationships it is in reality a classification

algorithm. What remains to be shown is that this can be achieved in polynomial time.

Theorem 2 (Brandt 2004b) Subsumption in ELH with respect to GCIs can be decided in

polynomial time.

In this section we considered subsumption testing for the DL ELH obtained by extending

EL with role hierarchies. Since EL is a strict subset of ELH, the same algorithm will work

equally well on it. Suntisrivaraporn (2005) provides an algorithm based on implication sets

and the satisfiability algorithm for propositional Horn formulae (Dowling & Gallier 1984).

The algorithm computes subsumption between EL concepts in time cubic in the size of the

TBox T , i.e. |T |3.

Though the algorithm introduced in this section is designed specifically for classifying an

ELH TBox, similar polynomial worst case algorithms, based on computing implication sets,

exist for other tractable members of the EL-family as summarized in Table 2.5.

2.3.5 Intractable Members of the EL-family

Having introduced the EL-family of DLs, as well as the basis for polynomial worst case time

subsumption testing algorithms, it is of practical interest to look at those extensions to EL for

which reasoning becomes intractable. For convenience Table 2.6 lists a more comprehensive

set of both description language constructors and ontological constructors.

The first intractable extension we discuss is EL¬ (Table 2.7). It is defined as EL extended

with negation of concept descriptions, and EL(¬) as EL extended with atomic negation, i.e.

only negation of concept names are allowed. If C is a complex concept description, we see

that by introducing a new concept name A and the two GCIs A v C,C v A, the negation

of C, namely ¬C can be represented as atomic negation ¬A. The two DLs are therefore

equivalent and thus share the same complexity results. EL¬ is a notational variant of ALC

and shares the complexity results for subsumption in ALC w.r.t TBoxes with GCIs (Baader

et al. 2005, Lutz & Satler 2000).

2.3. Reasoning Services for Description Logics 24

Description Language Constructors
Name Syntax Semantics
top > ∆I

bottom ⊥ ∅
conjunction C uD CI ∩DI
existential restriction ∃r.C {x ∈ ∆I | ∃y ∈ ∆I : (x, y) ∈ rI ∧ y ∈ CI}
value restriction ∀r.C {x ∈ ∆I | ∀y ∈ ∆I : (x, y) ∈ rI → y ∈ CI}
negation ¬C ∆I \ CI
disjunction C tD CI ∪DI
inverse roles ∃r−.C { x | ∃y ∈ ∆I : (y, x) ∈ rI ∧ y ∈ CI }
role negation ∃¬r.C { x | ∃y ∈ ∆I : (x, y) 6∈ rI ∧ y ∈ CI }
role union ∃r ∪ s.C { x | ∃y ∈ ∆I : (x, y) ∈ rI ∪ sI ∧ y ∈ CI }
transitive closure ∃r∗.C { x | ∃y ∈ ∆I : (x, y) ∈ (rI)+ ∧ y ∈ CI }

Ontologicial Constructors
Name Syntax Semantics
concept inclusion C v D CI ⊆ DI
concept definition C ≡ D CI = DI

role hierarchy r v s rI ⊆ sI
role composition r1 ◦ . . . ◦ rk v r rI1 ◦ . . . ◦ rIk v rI
transitive roles transitive(r) ∀x, y, z ∈ ∆I : (x, y), (y, z) ∈ rI → (x, z) ∈ rI
reflexive roles reflexive(r) ∀x ∈ ∆I : (x, x) ⊆ rI
range restrictions range(r)v C {y ∈ ∆I | ∃x : (x, y) ∈ rI} ⊆ CI
domain restrictions domain(r)v C {x ∈ ∆I | ∃y : (x, y) ∈ rI} ⊆ CI
at-most restriction (≤ rn), n ∈ N {x ∈ ∆I | #{y | (x, y) ∈ rI} ≤ n}
at-least restriction (≥ rn), n ∈ N {x ∈ ∆I | #{y | (x, y) ∈ rI} ≥ n}

Table 2.6: Syntax and semantics of DL constructors

Theorem 3 (Baader et al. 2005) In EL(¬) subsumption and satisfiability with respect to

general TBoxes is EXPTime-complete.

ELU is defined as EL with the disjunction of concept descriptions (C t D). Baader

et al. (2005) show that satisfiability in EL(¬) can be reduced to subsumption in ELU , by

appropriate substitutions. Since by Theorem 3 satisfiability in EL(¬) is EXPTime-complete,

the same result holds for ELU .

Theorem 4 (Baader et al. 2005) In ELU subsumption with respect to general TBoxes is

EXPTime-complete.

ELN is defined as EL extended with both at-most number restrictions (≤ rn) and at-

least number restrictions(≥ rn). Baader et al. (2005) show that subsumption in ELU w.r.t

general TBoxes can be reduced to subsumption in EL extended with at-least restrictions.

Therefore the EXPTime hardness from ELU carries over to ELN . The same result holds for

EL extended with at-most number restrictions.

2.3. Reasoning Services for Description Logics 25

Name EL¬ ELU ELN ELR∪ EL∗ ELI ELR¬

top × × × × × × ×
bottom ×
conjunction × × × × × × ×
existential restriction × × × × × × ×
concept inclusion × × × × × × ×
negation ×
disjunction × ×
value restriction ×
at-most restriction ×
at-least restriction ×
inverse roles ×
role negation ×
role union ×
transitive closure ×

Table 2.7: Intractable subset of the EL family of DLs

Theorem 5 (Baader et al. 2005) In ELN subsumption with respect to general TBoxes is

EXPTime-complete.

Subsumption in ELU can be reduced, with appropriate substitutions, to subsumption in

ELR∪, EL∗ and ELR¬ respectively (Baader et al. 2005). Therefore we have from Theorem 4

that subsumption with respect to general TBoxes in any of these is EXPTime-complete.

Theorem 6 (Baader et al. 2005) In ELR∪, EL∗ and ELR¬ subsumption with respect to

general TBoxes is EXPTime-complete.

ELI is defined as EL extended with inverse roles. Satisfiability of ALE with respect to

primitive TBoxes can be reduced to subsumption in ELI w.r.t general TBoxes (Baader et al.

2005). The problem has been shown by Calvanese (1996) to be PSPACE-Complete.

Theorem 7 (Calvanese 1996) In ELI subsumption with respect to general TBoxes is PSPACE-

hard.

2.3.6 Supplementary Reasoning Services for the EL-family

The standard reasoning services from the previous section address very specific reasoning

tasks. Though these form some of the most basic reasoning tasks required by DL systems,

there is a second set of reasoning tasks gaining more and more relevance in terms of aiding in

the design and maintenance of ontologies. As the size of ontologies increases from thousands

2.3. Reasoning Services for Description Logics 26

to hundreds of thousands of axioms, ontology engineers find it more and more difficult to

cope with the design and maintenance aspect of these ontologies. Not only is it difficult to

understand the expert knowledge contained in these hundreds of thousands of axioms, but

understanding the relationships inherent in this knowledge is a task that requires teams of

experts and close collaboration when changes are made to the ontology.

With the growth of the Internet and the emergence of the semantic web comes the emer-

gence of highly distributed ontologies. Not only is there the need for reusing ontologies in

order to compose larger ontologies in a distributed fashion, it is also of paramount importance

that only small relevant subsets of ontologies be extracted from existing ontologies (Schlobach

& Cornet 2003, Cuenca Grau et al. 2007, 2008, Suntisrivaraporn 2009).

To this end modularization as a supplementary reasoning service has gained importance.

Intuitively, a module is a small self contained subset of an ontology preserving a specific

statement or set of statements4 of interest. We formally define a module as follows:

Definition 19 (Module for the arbitrary DL L) Let L be an arbitrary description lan-

guage, O an L ontology, and σ a statement formulated in L. Then, O′ ⊆ O is a module

for σ in O(a σ-module in O) whenever: O |= σ if and only if O′ |= σ. We say that O′ is a

module for a signature S in O (an S-module in O) if, for every L statement σ with Sig(σ)

⊆ S, O′ is a σ-module in O.

Definition 19 is sufficiently general so that any subset of an ontology preserving a state-

ment of interest is considered a module, the entire ontology is therefore a module in itself. An

important property of modules in terms of the modular reuse of ontologies is safety (Cuenca

Grau et al. 2007, 2008). Intuitively, a module conforms to a safety condition whenever an

ontology T reuses concepts from an ontology T ′ in such a way so that it does not change the

meaning of any of the concepts in T ′ . We may then say that T uses T ′ safely. This safety

condition holds exactly whenever a module is closed under domain expansions:

Definition 20 (Domain expansion (Cuenca Grau et al. 2008)) Let I = (∆I , .I) and

J = (∆J , .J) be two interpretations such that:

1. ∆J = ∆I ∪ Φ with Φ a non empty set disjoint with ∆I ,
4Here the statement of interest usually refers to an axiom composed using the same rules as axioms con-

tained within the terminology. In order to differentiate between axioms within a terminology and statements
over which we wish to perform reasoning we utilise the convention from Suntisrivaraporn (2009) and refer to
the latter as statements of interest.

2.3. Reasoning Services for Description Logics 27

2. AJ = AI for each concept name A,

3. RJ = RI for each role name R.

We say that J is the expansion of I with Φ.

Intuitively, the interpretation J is identical to I except for the fact that it contains some

additional elements in the interpretation domain. These elements do not participate in the

interpretation of concept or roles.

A different but semantically equivalent definition of safety depends on the notion of con-

servative extensions (Cuenca Grau et al. 2007, 2008):

Definition 21 (Conservative extension (Cuenca Grau et al. 2008)) Let T and T1 be

two ontologies such that T1 ⊆ T , and let S be a signature. Then

1. T is an S-Conservative Extension of T1 if, for every α with Sig(α) ⊆ S, we have T |= α

iff T1 |= α

2. T is a Conservative Extension of T1 if T is an S-conservative extension of T1 for S =

Sig(T1)

The safety for a module may now be formally defined as follows:

Definition 22 (Safety for a module (Cuenca Grau et al. 2008)) An ontology T is

safe for T ′ if T ∪ T ′ is a conservative extension of T ′.

As is the case for standard reasoning services, when designing supplemental reasoning

services we wish to normalise an ontology so that complex concept descriptions are reduced

to a few base cases. In terms of modularization there are two normal forms of interest. The

first is the normal form for ELH from Definition 15 extended to include all the constructors

for the DL EL+ (Table 2.5).

We require that an EL+ ontology O be in normal form. We use the same form as Brandt

(2004a) and Suntisrivaraporn (2009). Any EL+ ontology O can be converted to an ontology

O′ in normal form in linear time, with at most a linear increase in the size of the ontology

(Suntisrivaraporn 2009).

Definition 23 (Normal Form for EL+) An EL+ ontology O is in normal form if the

following conditions are satisfied:

2.3. Reasoning Services for Description Logics 28

1. all concept inclusions in O have one of the following forms:

A1 u . . . uAn v B,

A1 v ∃r.A2,

∃r.A1 v B

where Ai ∈ CN>(O) and B ∈ CN⊥(O);

2. all role inclusions in O have one of the following forms:

ε v r,

r v s,

r ◦ s v t,
where r, s, t ∈ RN(O) and ε is the identity element;

3. there are no reflexivity statements, transitivity statements or domain restrictions, and

all range restrictions are of the form range(r) v A with A a concept name.

The second, but less restrictive, normal form will be used in this dissertation exclusively

during the extraction of reachability-based modules in Section 3.2 and may be defined as:

Definition 24 (Module normal form (Suntisrivaraporn 2009)) An EL+ ontology O

is in module normal form if all of its axioms are either:

• concept inclusions C v D, where ⊥ does not occur in C, or

• role inclusions r1 ◦ · · · ◦ rn v s, or

• range restrictions range(r) v D.

We note that every EL+ module in normal form is by default also in module normal

form, the converse however does not necessarily hold. In this paper when we refer to the

term ‘normal form’ we refer to the normal form of Definition 23, where we need to refer to

the less restrictive form of Definition 24 we will explicitly use the term ‘module normal form’.

The second supplementary reasoning service we investigate is designed to aid in the debug-

ging of ontologies. More specifically, as inconsistencies and modelling errors are introduced

during the design or augmentation of ontologies, standard reasoning services may reveal un-

wanted consequences or inconsistencies. Pinpointing, by hand, the exact reasons for these

modelling errors amongst hundreds of thousands of axioms is at best an impossible task. In

order to assist in finding such errors the notion of Axiom Pinpointing (Schlobach & Cornet

2.3. Reasoning Services for Description Logics 29

2003) has been introduced as a supplementary reasoning service. It is worthwhile to note

that the technique for pinpointing was first introduced by Baader & Hollunder (1995).

In essence Axiom Pinpointing refers to the process of extracting Minimal Axiom Sets or

MinAs for a specified statement of interest. A MinA is formally defined as:

Definition 25 (Minimal axiom set (Suntisrivaraporn 2009)) Let O be an ontology,

and σ a subsumption statement such that O |= σ. A subset S ⊆ O is a minimal axiom set

(MinA) for σ with respect to O, also written as ‘S is a MinA for O |= σ’, if and only if

1. S |= σ, and

2. for every S′ ⊂ S, S′ 6|= σ.

From the definition it is clear that a MinA is a minimal module which preserves the given

entailment, the set of all MinAs is then the set of all minimal modules. Though it is the case

that every MinA is a minimal module for an entailment, many different MinAs may exists

for the same entailment. In the literature MinAs are synonymously referred as to MUPS

(Schlobach & Cornet 2003) or as justifications (Kalyanpur et al. 2007), where a single MinA

is a justification for the entailment to hold in the ontology.

Chapter 3

Module Extraction

In this chapter we investigate module extraction methods and extend the notion of reachability-

based modules (Suntisrivaraporn 2009) by introducing a top-down and bidirectional version

of a reachability heuristic. Preliminary versions of these new heuristics were first introduced

at AOW’09 (Nortjé et al. 2009).

One of the original motivations behind ontology research was the belief that ontologies can

help with reuse in knowledge representation (Gruber 1993). Designing ontologies specifically

aimed at reuse is considered by Barnaras et al. (1996) as an engineering good practice principle

for building ontologies. However, reusing ontologies poses certain difficulties (Noy & Musen

2004, Stuckenschmidt & Klein 2004):

• General ontologies are very large, containing from a few thousand to a few hundred

thousand concepts, from this the developer only requires a small self-contained portion

of the ontology.

• Importing a whole ontology includes a lot of unnecessary concepts, which will never be

of use to the developer.

• From the view of the developer, there is the cognitive challenge of understanding a large

ontology, with teams of experts often working in conjunction in order to maintain it.

• Large ontologies introduce a computational penalty when the user needs to perform

reasoning over the whole ontology.

Modularization aims to resolve these difficulties by extracting small subsets of ontologies,

referred to as modules. These modules may then:

• be reused by importing them into other ontologies,

• serve as self contained sub-ontologies,

30

3.1. Modularization Methods 31

• assist the developer in understanding specific smaller subsets of an ontology,

• simplify query answering,

• improve the efficiency of reasoning performance, and

• aid in the debugging of ontologies.

Though modules are of great practical use, their utility comes at a price. The various

functional roles modules are to perform necessitate different formal specifications of their

exact nature. Each of these has its own strengths and weaknesses.

In Section 3.1 we look at some of the more common approaches to module extraction

and their uses. Then in Section 3.2 we focus on reachability-based modules as introduced

by Suntisrivaraporn (2009). Section 3.3 introduces a new module extraction heuristic based

on top-down reachability. Lastly Section 3.4 combines the work from Sections 3.2 and 3.3

to introduce a bidirectional reachability-based heuristic specifically aimed at optimizing sub-

sumption testing and debugging. Hence Sections 3.3 and 3.4 constitute original contributions

made by this dissertation.

3.1 Modularization Methods

In this section we investigate different approaches to module extraction, the criteria these

modules must adhere to and their uses. This section by no means aims to be comprehensive

in its treatment of all module extraction methods, but rather aims to introduce some of the

key concepts behind different modularization methods.

Partitioning Methods: Small self contained modules aid in the understanding, verification,

debugging, reuse and collaborative development of larger ontologies. For large web ontologies,

where collaboration is uncoordinated, there is a requirement that small self-contained modules

may be extracted that are usable outside the context of the original ontology, whilst yet

preserving its meaning in the context of the original ontology.

Cuenca Grau et al. (2005) define a module as a self contained unit where no subsumption

relationships exist between concepts defined inside the module and concepts defined outside

the module, enforcing a logical separation between a module and its context. The authors

show that only those ontologies meeting a safety requirement may be modularized in this way,

where an ontology is considered safe if all its models are closed under domain expansions.

3.1. Modularization Methods 32

Unsafe axioms are, for example, those axioms that establish concepts as equivalent to the

universal concept (> v Fish).

Once the classical consistency and safety of an ontology have been verified, a partition-

ing graph is created. The partitioning graph contains partitions that describe intuitively

disjoint subject matter corresponding to well defined application domains. From these par-

titions, modules meeting the safety criteria above may then be extracted. A criticism raised

against this method is that not all ontologies meet the safety requirement, thus limiting the

availability of reusable ontologies (Doran et al. 2007).

Stuckenschmidt & Klein (2004) argue that, for a module to be self contained, concept

names inside a module should not have strong dependencies to concept names outside of

the module. They calculate dependencies between concept names in terms of the structure

of the ontology, which includes the concept hierarchy, constraints on properties, domains

and ranges. This is achieved by creating a dependency graph between concepts and then

forming a proportional strength network by assigning weights to these dependencies using

formulae from social networking theory. Using this framework, concepts with a low number

of dependencies with other concepts are more strongly dependant on each other than highly

connected concepts. The proportional strength network is then used to iteratively break up

the ontology into dynamically sized modules.

Syntactic Traversal Methods: A close analogy can be drawn between query answering

in ontologies and query answering in databases, as obtaining self contained portions of a

resource has long been an area of research in databases. A database view provides that a

user may specify, by means of a query, the exact portion of a database she is interested in.

Creating a specific view of the data in the database, where all instances of data satisfying a

specific query, constitutes a view. An ontology view is analogously defined as a portion of an

ontology that results from a query specified in some ontology-query language.

A criticism against ontology views is that they do not allow users to specify a portion of

an ontology that results from a particular traversal of ontology links (Noy & Musen 2004).

As an example, a user may specify, in a medical ontology, that she requires everything that

is directly related to the concept ‘heart’ as well as definitions of all organs and organ parts

that surround the heart. The user may also ask to include all organs or organ parts that are

‘twice removed’ from the heart. Traditional ontology views do not allow the user to restrict

the results in this way.

3.1. Modularization Methods 33

Noy & Musen (2004) suggest a complementary way of defining ontology views: i.e. a

traversal specification. In such a specification, a starter concept or concepts is defined, these

are the ‘central’ or ‘focus’ concepts in the results. Next, the details of the relationship to

traverse, starting at these concepts, are specified. The result of such a query is called a

traversal view.

Intuitively, a traversal view is specified by specifying a starter concept (e.g. Heart), a list

of relationships (property names) that should be traversed, and the maximum distance to

traverse along each of the relationships. Since ontology views are not extracted, nor treated

as separate entities, the user may shrink or expand the view as required, thereby targeting

specific parts of the ontology as needed.

Modular reuse of ontologies is not limited to extracting modules from existing ontologies

but also composing larger ontologies from smaller self-contained ones, each containing a set of

internal and external symbols. External symbols are those symbols for which axioms will be

imported from another ontology. These have the property that they are used in the definition

of internal concept names but their interpretations are not constrained by the internal concept

names in any way.

For example, when a TBox T reuses concepts from another TBox T ′, the integration

process must be carried out in such a way that the consequences of T ′ are not changed.

This property may be formally expressed by the notion of safety for a module as defined in

Definition 22. However, since computing safety is undecidable for complex DLs, EXPTime

complete for EL and 2EXPTime complete for ALC, Cuenca Grau et al. (2008) introduce

locality as sufficient conditions for safety. Locality of a module can be expressed in terms

of either semantic locality, which is computationally hard, or its approximation syntactic

locality.

Based on these locality conditions, an ontology will be called a local ontology if, for a given

signature S, all its axioms are satisfied by a specified class of interpretations. Two classes

of interpretations are of interest, namely bottom(⊥)-locality, used for refining the symbols

from a signature, and top(>)-locality, used for generalising the symbols from the signature

(Cuenca Grau et al. 2008). Locality provides sufficient conditions for safely extracting and

integrating modules, as well as a framework for developers to use during the collaborative

design stage of modules. These methods have been implemented in the ProSE (Jiménez-Ruiz

et al. 2008) plugin for the Protégé ontology development environment.

3.2. Reachability-based Module Extraction 34

3.2 Reachability-based Module Extraction

In this section we look at reachability-based modules as introduced by Suntisrivaraporn

(2009). Though modules in this section may be usable in the ontology reuse scenario, the

main focus of modules as introduced by Suntisrivaraporn (2009) is for the optimization of rea-

soning tasks. Therefore, given an ontology O and an entailment O |= σ, with σ a statement

of interest, extracting a module in this section aims to obtain a small subset O′ of O, such

that entailment of σ is preserved. For the purposes of this section σ is always a subsumption

statement, the DL is restricted to EL+ and every ontology is in at least ‘module normal form‘

as defined in Definition 24.

Extracting modules aims to preserve both subsumption and non-subsumption relation-

ships in a subset of an ontology. This can be understood as the reachability problem in a

directed graph, considering concept names as nodes and explicit subsumption relationships

as edges in the graph.

Definition 26 (Tight reachability (Suntisrivaraporn 2009)) Let O be an EL+ ontol-

ogy, and A, B concept names in O. The tight reachability graph Gt(O) for O is a tuple

(Vt,Et) with Vt = CN(O) and Et the smallest set containing all edges 〈A,B〉 if A v D ∈ O

s.t. B is a conjunct in D. We say that B is tightly reachable from A in O if there is a path

from A to B in Gt(O).

Definition 27 (Loose reachability (Suntisrivaraporn 2009)) Let O be an EL+ ontol-

ogy, and A, B concept names in O. The loose reachability graph Gl(O) for O is a tuple

(Vl,El) with Vl = CN(O) and El the smallest set containing all edges 〈A,B〉 if C v D ∈ O

s.t. A occurs in C and B occurs in D. We say that B is loosely reachable from A in O if

there is a path from A to B in Gl(O).

According to the definition of loose reachability, given the axiom C1 u . . . u Cn v B and

A v Ci for some i s.t. 1 ≤ i ≤ n, there exists a possible subsumption relationship A v B.

However, in terms of the semantics of conjunction, we know that for A v B to hold, we

require that A v Ci for all 1 ≤ i ≤ n, hence this definition of reachability is too weak.

This definition is therefore extended so that an ontology is viewed in terms of a directed

hypergraph (Ausiello et al. 2001) where each inclusion axiom αL v αR ∈ O essentially

specifies a collection of hyperedges from the connected node Sig(αL) to each of the symbols

in Sig(αR). Formally:

3.2. Reachability-based Module Extraction 35

Definition 28 (Bottom-up reachability-based modules (Suntisrivaraporn 2009)) 1

Let O be an EL+ ontology and S ⊆ Sig(O) a signature. The set of S-reachable names in O

is defined inductively as:

• x is S-reachable in O, for every x ∈ S;

• for all inclusion axioms αL v αR, if x is S-reachable in O for every x ∈ Sig(αL), then

y is S-reachable in O for every y ∈ Sig(αR).

We call an axiom αL v αR S-reachable in O if every element of Sig(αL) is S-reachable in

O. The reachability-based module for S in O, denoted by OreachS , consists of all S-reachable

axioms in O.

When S is the single concept A, we write A-reachable and OreachA . An interesting result

of reachability is that it can be used to test negative subsumption. That is, if B is not A-

reachable in O, then O 6|= A v B, unless A is unsatisfiable w.r.t O (Suntisrivaraporn 2009).

We observe that, for the DL EL+, there are axioms αL v αR for which Sig(αL) = ∅. These

axioms have the form > v αR or ε v r and are trivially reachable from any concept, thus

they will form part of every reachability-based module extracted.

We note that the set OreachS is unique in terms of the ontology O and the signature S.

This is apparent from the inductive definition of OreachS and that every S-reachable axiom in

O is always part of OreachS by definition.

An important result of reachability-based modules are that they not only preserve all sub-

sumption relationships in terms of the subsumee of an entailment, but that they correspond

to strong subsumption modules and thus contain all possible MinAs, as defined in Definition

25 for any entailment with the given subsumee. Strong subsumption modules are defined as

follows:

Definition 29 (Subsumption module (Suntisrivaraporn 2009)) Let O be an ontology,

and A a concept name occurring in O. Then, O′ ⊆ O is a subsumption module for A in O

whenever: O |= A v B if and only if O′ |= A v B holds for every concept name B occurring

in O.

A subsumption module O′ for A in O is called strong if the following holds for every

concept name B occurring in O: if O |= A v B, then every MinA for O |= A v B is a subset

of O′.
1The original definition by Suntisrivaraporn does not have the qualifier ‘bottom-up’, but because we introduce

‘top-down’ reachability-based modules later on in Definition 31, the qualifier is used to avoid confusion.

3.2. Reachability-based Module Extraction 36

Theorem 8 (Suntisrivaraporn 2009). The module OreachA is a strong subsumption module

for A in O.

Suntisrivaraporn (2009) shows that reachability-based modules are equivalent to minimal

locality-based modules (Cuenca Grau et al. 2008), with the interesting consequence that

any algorithm for extracting reachability-based modules is also an algorithm for extracting

minimal locality-based modules. Syntactic locality based modules for EL+ are defined as:

Definition 30 (Locality-based modules (Cuenca Grau et al. 2007)) Let O be an EL+

ontology, and S a signature. The following grammar recursively defines the set Con⊥(S) for

a signature S:

Con⊥(S) := A⊥|(C⊥ u C)|(C u C⊥)|(∃r.C⊥)|(∃r⊥.C)

with r a role name, C a concept description, A⊥ /∈ S a concept name, r⊥ /∈ S a role name,

and C⊥ ∈ Con⊥(S). An EL+ axiom α is syntactically local with respect to S if it has one of

the following forms:

1. R⊥ v s where R⊥ is either a role name r⊥ /∈ S or a role composition r1 ◦ · · · ◦ rn with

ri /∈ S for some i ≤ n, or

2. C⊥ v C where C⊥ ∈ Con⊥(S).

We write local(S) to denote the collection of all EL+ axioms that are syntactically local

with respect to S. If O can be partitioned into O1 and O2 such that every axiom in O2 is

syntactically local with respect to S ∪Sig(O1), then O1 is a locality-based module for S in O.

We say that O1 is minimal if there is no O′ ⊂ O1 that is a locality-based module for S in O.

Given an ontology O and a signature S ⊆ Sig(O), Algorithm 1 correctly extracts a

reachability-based module OreachS in O(n2) time where n is the number of axioms in the

ontology. Using elements from the algorithms in Dowling & Gallier (1984) it is possible

to extract reachability-based modules in linear time, i.e. O(n), where n is the size of the

ontology. It must be noted that, though the algorithm given runs in quadratic time, the size

of the input is the number of axioms in the ontology, whereas for a linear algorithm the size

of the input is the number of concepts in the ontology. Here active-axioms(x) comprises all

and only those axioms αL v αR ∈ O such that x ∈Sig(αL).

Theorem 9 (Suntisrivaraporn 2009) Algorithm 1 produces OreachS .

3.3. Top-Down Reachability-based Modules for EL+ 37

Algorithm 1 (Extract bottom-up reachability-based module (Suntisrivaraporn 2009))
Procedure extract-module(O, S)
Input 1: O - EL+ ontology in at least module normal form;
Input 2: S - signature
Output: OS - reachability-based module for S in O
1: OS := ∅
2: queue := active-axioms(S)
3: while not empty(queue) do
4: (αL v αR) := fetch(queue)
5: if Sig(αL) ⊆ S∪Sig(OS)
6: OS := OS ∪ {αL v αR}
7: queue := queue ∪(active-axioms(Sig(αR))\OS)
8: end if
9: end while
10: return OS

3.3 Top-Down Reachability-based Modules for EL+

The reachability heuristic from Section 3.2 can be viewed as a bottom-up searching procedure,

that is, starting with a concept A we expand the search to find all super-concepts B such that

A v B. One of the criticisms that may be raised against these bottom-up reachability-based

modules, in terms of finding justifications, is that they contain many irrelevant axioms, and

in some cases do not reduce the size of the ontology at all (Du et al. 2009). This stems from

the fact that OreachA considers only the sub-concept A in O |= A v B; the super-concept B is

never used to eliminate unwanted axioms. The following example illustrates this:

Example 3 Given the small ontology O below, as well as O |= A v B, OreachA will consist

of axioms 3.1, 3.2 and 3.4. Axiom 3.4 is irrelevant in terms of finding justifications for

O |= A v B, yet it is included in OreachA .

A v ∃r.D (3.1)

∃r.D v B (3.2)

E v B (3.3)

A v F (3.4)

It is clear from this example that, for large ontologies, we may include many such ir-

relevant axioms in a reachability-based module. As a first step towards extracting modules

that consider both the sub-concept as well as the super-concept of an entailment, we show

3.3. Top-Down Reachability-based Modules for EL+ 38

in this section that reachability may also be applied in a top-down manner, that is, starting

with the super-concept B we expand the search to find all of its subsumees A such that A v B.

By definition, a module must contain all axioms that are required to preserve the en-

tailment of a specific statement of interest. In terms of top-down reachability our aim is

to obtain a module in terms of the super-concept of a subsumption statement. Therefore,

the inclusion of axioms in a top-down reachability-based module must be dependent on the

symbols of the super-concepts appearing on the right hand side of axioms. Given an axiom

αL v αR in normal form, as defined in Definition 23, αR may have one of the following forms:

1. αR ∈ CN(O), or

2. αR ∈ RN(O), or

3. αR = ⊥, or

4. αR = ∃r.C with C ∈ CN(O).

In the discussion that follows we assume that the statement of interest is A v B. Con-

sidering forms 1 and 2 we see that Sig(αR) contains only a single symbol each. It is clear

that axioms in one of these forms must be included in a top-down reachability-based module

whenever these symbols are top-down reachable from the super-concept symbol B.

For form 3 however Sig(αR)=∅, and in terms of the semantics of ⊥, we know that ⊥ v xi

for all xi ∈ CN(O). Therefore, in order to preserve all subsumption relationships, these

axioms have to form part of every top-down reachability-based module.

The only remaining axioms to consider are axioms of form 4. At a first glance it may

seem that the requirement for the inclusion of the axiom αL v ∃r.C containing an existential

restriction on the right hand side in a top-down reachability-based module is that both the

symbols r and C be reachable from B. The following example shows that this assumption is

incorrect:

Example 4 Given the small ontology O below, and A v B as the statement of interest, if we

require that all symbols of an existential restriction be top-down reachable from B, only axiom

3.6 will be chosen. Since Sig(>) = ∅, C in axiom 3.5 will never be reachable from B. This

is undesirable since O |= A v B and the module we extract must preserve all entailments in

3.3. Top-Down Reachability-based Modules for EL+ 39

terms of the super-concept.

A v ∃r.C (3.5)

∃r.> v B (3.6)

From this example it is clear that requiring both symbols of an existential restriction to

be reachable from the top will result in modules that do not preserve all entailments. We

therefore require that axioms of this type always be included in a module whenever any

one of the symbols becomes reachable from the top. Applying this method to the previous

example we see that this approach results in a module being extracted that preserves the

given entailment. We therefore define top-down reachability as follows:

Definition 31 (Top-down reachability-based module) Let O be an EL+ ontology and

S ⊆ Sig(O) a signature. The set of ←S -reachable names in O is defined inductively as:

• x is ←S -reachable in O, for every x ∈ S;

• for all inclusion axioms αL v αR, if x is ←S -reachable in O for some x ∈ Sig(αR), or

if αR = ⊥, then y is ←S -reachable in O for every y ∈ Sig(αL).

We call an axiom αL v αR ←S -reachable in O if some element of Sig(αR) is ←S -reachable or

if αR = ⊥. The top-down reachability-based module for S in O, denoted by Oreach←
S

, consists

of all ←S -reachable axioms from O.

Because of its inductive nature the set Oreach←
S

is by definition unique in terms of the

ontologyO and the signature S. We note that the reachability graph for top-down reachability

differs from that in Definition 27 in that nodes in the top-down graph includes both concept

and roles names, whereas in the reachability graph from Definition 27 nodes consists of only

concept names.

From this definition it is clear that besides the direction of application, there are some

differences between bottom-up and top-down reachability-based modules. That is,

1. When extracting OreachA , the axiom αL v αR becomes A-reachable only when all xi ∈

Sig(αL) are A-reachable, whereas

2. when extracting Oreach←
B

, the axiom αL v αR is ←B-reachable whenever any xi ∈ Sig(αR)

is ←B-reachable.

3.3. Top-Down Reachability-based Modules for EL+ 40

We now proceed to show that top-down reachability modules preserves all subsumption

relationships in terms of super-concepts. In order to do so we define top-down subsumption

modules analogous to reachability-based subsumption modules. We then proceed to prove

that they indeed preserve all subsumptions and furthermore, that they also contain all MinAs

for an entailment O |= A v B.

Definition 32 (Top-down subsumption module) Let O be an ontology, and B a concept

name occurring in O. Then, O′ ⊆ O is a top-down subsumption module for B in O whenever:

O |= A v B if and only if O′ |= A v B holds for every concept name A occurring in O.

A top-down subsumption module O′ for B in O is called strong if the following holds for

every concept name A occurring in O: if O |= A v B, then every MinA for O |= A v B is a

subset of O′.

Lemma 2 Let O be an EL+ ontology, as defined in Table 2.5, and S ⊆ Sig(O) a signature.

Then, O |= C v D if and only if Oreach←
S
|= C v D for arbitrary EL+ concept descriptions C

and D such that Sig(D) ⊆ S.

Proof: We have to prove two parts. First: If Oreach←
S

|= C v D then O |= C v D. This

follows directly from the fact that Oreach←
S
⊆ O and that EL+ is monotonic.

Conversely, we show that, if O |= C v D then Oreach←
S
|= C v D: Assume the contrary,

that is, assume O |= C v D but that Oreach←
S

6|= C v D. Then there must exist an inter-

pretation I and an individual w ∈ ∆I such that I is a model of Oreach←
S

and w ∈ CI \ DI .

Modify I to I ′ by setting xI
′

:= ∆I for all concept names x ∈ Sig(O) \ (S∪ Sig(Oreach←
S

)),

and rI
′

:= ∆I ×∆I for all roles names r ∈ Sig(O) \ (S∪ Sig(Oreach←
S

)) and leaving everything

else unchanged. I ′ is a model of Oreach←
S

since it does not change the interpretation of any

symbol in its signature. Every α = (αL v αR) ∈ O \ Oreach←
S

is not ←S -reachable and thus

when:

1. αR is a concept name, we have that αI
′
R = ∆I , or

2. αR is a role name, we have that αI
′
R = ∆I ×∆I , or

3. αR is an existential restriction ∃r.A2, we have that rI
′

= ∆I × ∆I and AI
′

2 = ∆I so

that (∃r.A2)I
′

= ∆I .

Since for all cases αI
′
L ⊆ αI

′
R we conclude that I ′ is a model for O. But I and I ′ correspond

on all symbols y ∈ Sig(D) ⊆ S and therefore DI
′

= DI . Now since CI ⊆ CI
′

and w ∈ CI

3.3. Top-Down Reachability-based Modules for EL+ 41

we have that w ∈ CI′ \DI′ and hence O 6|= C v D, contradicting the assumption. 2

In order to show that Oreach←
B

contains all MinAs for the entailment O |= A v B, we show

that Oreach←
B

is a strong top-down subsumption module:

Theorem 10 Let O be an EL+ ontology and B a concept name occurring in O. Then Oreach←
B

is a strong top-down subsumption module for B in O.

Proof: That Oreach←
B

is a top-down subsumption module follows directly from Lemma 2 above.

To show that it is strong, assume that O |= A v B for some concept name A, but there is

a MinA M for O |= A v B that is not contained in Oreach←
B

. Thus, there must be an axiom

α ∈ M \ Oreach←
B

. Define M1 := M ∩ Oreach←
B

. M1 is a strict subset of M since α 6∈ M1. We

claim that M1 |= A v B, which contradicts the fact that M is a MinA for O |= A v B.

We use proof by contraposition to show this. Assume that M1 6|= A v B i.e., there is a

model I1 of M1 such that AI1 6⊆ BI1 . We modify I1 to I by setting yI := ∆I1 for all concept

names y that are not ←B-reachable, and rI := ∆I1 ×∆I1 for all roles names r that are not

←B-reachable. We have BI = BI1 since B is ←B-reachable, and AI = AI1 if A is ←B-reachable,

or AI = ∆I1 otherwise. For both cases it follows that AI 6⊆ BI . It remains to be shown that

I is indeed a model of M , and therefore satisfies all axioms β = (βL v βR) in M , including

A v B. There are two possibilities:

• β ∈M1. Since M1 ⊆ Oreach←
B

, all symbols in Sig(βL) and one or more symbols in Sig(βR)

are ←B-reachable. Consequently, I1 and I coincide on the names occurring in βL and

since I1 is a model of M1, we have that (βL)I = (βL)I1 and (βR)I1 ⊆ (βR)I . Therefore

(βL)I ⊆ (βR)I .

• β 6∈ M1. Since B ∈ M , we have that B 6∈ Oreach←
B

, and hence β is not ←B-reachable.

Thus no x ∈Sig(βR) is ←B-reachable. By the definition of I, (βR)I = ∆I1 . Hence

(βL)I ⊆(βR)I .

Therefore I is a model for M . But since AI 6⊆ BI we have that M 6|= A v B proving the

contrapositive. 2

Algorithm 2 shows one method to extract a top-down reachability based module given an

EL+ ontologyO and a signature S as input. In the context of the algorithm active-axioms(x)

are all those, and only those axioms (αL v αR) ∈ O such that x ∈ Sig(αR), thus every such

3.3. Top-Down Reachability-based Modules for EL+ 42

Algorithm 2 (Extract top-down reachability-based module)
Procedure extract-top-down-module(O, S)
Input: O - EL+ ontology; S - signature
Output: OS: top-down reachability-based module for S in O
1: OS := ∅
2: queue := active-axioms(S)
3: while not empty(queue) do
4: (αL v αR) := fetch(queue)
5: OS := OS ∪ {αL v αR}
6: queue := queue ∪ (active-axioms(Sig(αL)) \OS)
7: end while
8: return OS

axiom is also by definition top-down reachable. For a signature S we define active-axioms

(S) :=
⋃
x∈Sactive-axioms(x).

Theorem 11 (Algorithm 2 produces Oreach←
S

) Let O be an EL+ ontology, n the number

of axioms in O, and S ⊆ Sig(O) a signature. Algorithm 2 terminates after O(n) steps and

returns the top-down reachability-based module for S in O.

Proof: The proof consists of three parts: There are at most n axioms that may be added

to OS , once they are added they are never removed. After each addition, the queue is

augmented by active-axioms(.), but every axiom in active-axioms(.) is by definition

reachable from the S, therefore every axiom will only ever be added to the queue once and

once added, never considered again. Assuming that each operation runs in constant time,

the algorithm’s runtime is O(n).

Let OiS be the value of OS the algorithm has computed at the ith iteration, and O∞S
be the output after no more active axioms are to be processed. We prove by induction on

i that all axioms in OiS are ←S -reachable. The base case is trivial since O0
S is empty. For

the induction step, assume that αL v αR ∈ Oi+1
S is the new axiom added at iteration i+ 1.

This is possible only when some x ∈Sig(αR) is ←S -reachable. By the induction hypothesis, all

axioms in OiS are ←S -reachable, and every axiom in active-axioms(.) is ←S -reachable, thus

αR is ←S -reachable. Therefore, αL v αR ∈ OiS is ←S -reachable as required.

It remains to be shown that the algorithm extracts all ←S -reachable axioms. An axiom

α = (αL v αR) is ←S -reachable if some symbol in Sig(αR) is ←S -reachable. All potential

←S -reachable symbols according to Definition 31 are considered through the way the algo-

rithm initializes and maintains queue. In fact, it starts with the set of all active-axioms(S)

3.4. Bidirectional Reachability-based Modules 43

which corresponds to the base case in Definition 31. Then, it recursively extends queue with

all active-axioms(x) for x ∈ (Sig(αL), since all active-axioms(αL) are ←S -reachable, this

corresponds to the induction case in Definition 31. 2

Though top-down reachability-based modules as defined above are correct, the following

example shows that they contain many irrelevant axioms in themselves and the decision

procedure regarding the inclusion of axioms containing existential restrictions on the right

hand side of an axiom may possibly be further improved, leading to possible better top-down

reachability heuristics. Investigating these are however beyond the scope of this dissertation.

Example 5 Given the small ontology O below, as well as A v B as the statement of interest,

if we require that any one of the symbols of an existential restriction be top-down reachable

from B, both axioms 3.7 and 3.8 will be chosen. Since O 6|= A v B, axioms like these will

result in modules that include many unnecessary axioms.

A v ∃r.C (3.7)

C v B (3.8)

3.4 Bidirectional Reachability-based Modules

One of the motivations behind module extraction methods in Description Logics is to increase

the performance of reasoning tasks as well as reduce the complexity of debugging ontologies.

Lutz et al. (2007) have shown that the problem of extracting minimal modules (conservative

extensions) for ALC is undecidable, and various approximation methods, such as locality-

based modules, have been introduced in the literature. These methods aim to extract small

modules in polynomial time that are not necessarily minimal.

In this section we focus on extracting modules for specific entailments, with the aim of

improving reasoning performance. We have seen that one criticism that may be raised against

bottom-up reachability module extraction methods is that they only extract axioms based on

the subsumee of an entailment, yet never consider the subsumer of the entailment to further

reduce the number of axioms in the module. The same criticism may be raised against

the top-down reachability based extraction method from Section 3.3, in that the top-down

reachability heuristic only considers the subsumer of an entailment and never the subsumee

in the pruning process.

3.4. Bidirectional Reachability-based Modules 44

Given an ontology O and an entailment O |= A v B we have that bottom-up reachability

OreachA preserves all entailments in terms of the sub-concept A and Oreach←
B

preserve all entail-

ments in terms of the super-concept B. In order to introduce modules that consider both the

subsumee and subsumer of an entailment we note the following:

Theorem 12 Given the axiom α = αL v αR:

• OreachA will contain α if, and only if, αL is A-reachable, and

• Oreach←
B

will contain α if, and only if, αR is ←B-reachable

Proof: The proof follows trivially from the definitions of OreachA and Oreach←
B

. 2

The definitions of bottom-up reachability and top-down reachability are both inductive,

and the inclusion of any axiom in each of these sets, is dependent on the inclusion of all axioms

that it requires to conform to its respective definition. Therefore, the set OreachA ∩ Oreach←
B

contains all axioms that are simultaneously both A-reachable and ←B-reachable.

It is easy to show that top-down reachability-based modules are equivalent to a subset

of >-locality modules (Cuenca Grau et al. 2008, Sattler et al. 2009). These modules can be

criticized in a similar manner to bottom-up reachability-based modules, in that they include

many irrelevant axioms. Combining ⊥-locality modules with >-locality based modules allows

us to extract so called nested locality modules denoted by >⊥ or ⊥> (Sattler et al. 2009). We

introduce a slightly different form of module called bidirectional reachability-based modules,

aimed towards finding small modules preserving subsumption relationships between single

concept names. We thus define the bidirectional reachability-based module denoted by OreachA↔B

as follows:

Definition 33 (Bidirectional reachability-based module) The bidirectional reachability-

based module, denoted OreachA↔B, for the statement A v B in terms of O, is defined as the set

of all axioms αL v αR ∈ O such that:

• for every xi ∈ Sig(αL), xi is A-reachable in terms of O, and

• αR is ←B-reachable in terms of O

Any non-empty subset S ⊆ OreachA↔B such that SreachA↔B = S is called a bidirectional reachability-

based sub-module of O in terms of S for the statement A v B. SreachA↔B is minimal if there

exists no non-empty S1 ⊂ S such that S1
reach
A↔B = S1.

3.4. Bidirectional Reachability-based Modules 45

Figure 3.1: Sample ontology
α1 A v C1

α2 A v D
α3 D v C3

α4 C1 v ∃R.C2

α5 C2 v C3

α6 C3 u C4 v B
α7 ∃r.C3 v C4

α8 C3 v B
α9 C2 v E
α10 E v F

These modules differ from nested locality modules as follows: Given a subsumption state-

ment A v B, and the ⊥> module O′, then O′ will contain all axioms for the signature

S = {A,B}, thus it will include all the axioms for the entailments O′ |= A v B and

O′ |= B v A. A bidirectional reachability-based module O′′, however, only contains axioms

for the entailment O′′ |= A v B. Using the notation that ⊥{A,B} represents the ⊥ locality

module for the signature {A,B} the relationship between these modules can be illustrated

as follows:

OreachA↔B ⊆ ⊥{A}>{B} ⊆ ⊥{A}>{B} ∪ ⊥{B}>{A} ⊆ ⊥>{A,B} ⊆ ⊥{A,B}

Nested locality based modules can thus be considered as bidirectional reachability-based mod-

ules for general signatures. The following example shows the relationship between a bidirec-

tional reachability-based module, bidirectional reachability-based sub-modules and minimal

bidirectional reachability-based modules.

Example 6 Given the ontology O in Figure 3.1, the entailment O |= A v B, we have that:

• OreachA = O,

• (OreachA)reach←
B

= OreachA↔B consists of axioms:

α1, α2, α3, α4, α5, α6, α7, α8

• Given that the sets S0, S1, S2 and S3 are defined as follows:

S0 = {α1, α4, α5, α6, α7}

S1 = {α2, α3, α8}

S2 = {α1, α4, α5, α8}

S3 = {α1, α2, α3, α4, α5, α6, α7}

3.4. Bidirectional Reachability-based Modules 46

– S0, S1, S2 and S3 are bidirectional reachability-based sub-modules Si ⊆ OreachA↔B,

that is, Si = SireachA↔B.

– S1 and S2 are both minimal bidirectional reachability-based sub-modules with S1

being the only one of these sets that is both a minimal bidirectional reachability-

based sub-module and a MinA for the statement A v B.

– S3 is a MinA for the statement A v B but S3 is not a minimal bidirectional

reachability-based module.

Since OreachA↔B consist of all axioms in OreachA ∩ Oreach←
B

, we may now extract OreachA↔B by

finding (OreachA)reach←B or (Oreach←B)reachA . This can be achieved by applying algorithms 1 and 2

in any order and in sequence. Since Oreach←
B

is in general very large, our algorithm extracts

(OreachA)reach←B .

Algorithm 3 (Extract bidirectional reachability-based module)
Procedure extract-bidirectional-module(O, A v B)
Input: O - EL+ ontology; A v B - entailment
Output: OreachA↔B
1: Ot := OreachA

2: return Otreach←
B

Theorem 13 (Algorithm 3 produces OreachA↔B) Let O be an EL+ ontology, n the number

of axioms in O, and O |= A v B an entailment. Algorithm 3 terminates after O(n2) steps

in the worst case and returns the bidirectional reachability based module for O |= A v B.

Proof: The proof consists of three parts: There are at most n axioms in O, once they are

removed they are never added again. At Line 1, OreachA terminates after at most n2 operations

in the worst case. After this no axioms are added to Ot. Otreach←
B

at Line 2 terminates after

at most n operations in the worst case. In total the algorithm terminates after performing

at most n+ n2 = O(n2) operations in the worst case

By Theorem 9, after extracting OreachA at Line 1, Ot contains only those axioms that are

A-reachable in terms of O. By Theorem 11, extracting Otreach←
B

at Line 2 will remove all

axioms in Ot that are not ←B-reachable in terms of Ot. But Ot ⊆ O, thus every ←B-reachable

axiom in Ot is by definition also ←B-reachable in terms of O. Since the resultant module

contains all those axioms that are A-reachable and simultaneously ←B-reachable, it contains

3.5. Conclusion 47

only those axioms that are both A-reachable and ←B-reachable. 2

Algorithm 3 extracts the bidirectional reachability-based module for the statement A v

B in terms of the ontology O by using iterative applications of bottom-up and top-down

reachability-based module extraction methods. By Theorem 9, extracting OreachA results in a

module that contain all A-reachable axioms. This module is unique in terms of the ontology

O and the signature {A}, since only one such module exists for A in O. By Theorem 11 the

same uniqueness principle holds for Oreach←
B

, that is Oreach←
B

is unique in terms of the symbol

B and the ontology O. It follows that after each iteration of any of these algorithms, that

the remaining set of axioms is unique in terms of the ontology and the statement of interest,

thus upon termination of the algorithm, the set OreachA↔B is unique in terms of the ontology O

and the statement A v B.

From Theorem 8 we have that bottom-up reachability-based modules are strong sub-

sumption modules and from Theorem 10 we have that top-down reachability based modules

are strong top-down subsumption modules, we therefore have that an iterative application

of these extraction methods preserve all MinAs at each iteration. Thus upon completion of

Algorithm 3 OreachA↔B |= A v B only if O |= A v B. OreachA↔B is thus a strong bidirectional

subsumption module for the statement A v B in terms of O.

Theorem 14 OreachA↔B preserves all MinAs for O |= A v B. (OreachA↔B is a strong subsumption

module for A v B in O)

3.5 Conclusion

In this chapter we investigated module extraction methods with the focus on syntactic

traversal-based algorithms. We showed that a top-down version of reachability-based module

extraction preserves all MinAs in terms of the super-concept of an entailment. The top-down

reachability and bottom-up reachability were then combined to form a bidirectional version

of reachability, which considers both the subsummee and the subsumer of a subsumption

entailment in order to extract smaller modules. Bidirectional reachability-based modules

are strong subsumption modules and thus preserve all MinAs for a subsumption statement.

In the next chapter we investigate the exact nature of the relationship between MinAs and

bidirectional reachability-based sub-modules more closely.

Chapter 4

MinA Extraction

In this chapter we investigate the relationship between MinAs and bidirectional reachability-

based sub-modules and how MinA extraction may benefit from bidirectional module ex-

traction methods. By definition every MinA is a minimal module, and since bidirectional

reachability-based modules are strong subsumption modules they preserve all MinAs for the

statement A v B, thus we have that every MinA is by definition a bidirectional reachability-

based sub-module (Theorem 15). What is unclear is the exact nature of the bidirectional

reachability-based sub-module corresponding to a MinA.

We start this chapter by investigating a subset of the common approaches to MinA ex-

traction methods as categorized into black-box and glass-box approaches. In Section 4.2

we investigate the relationship between MinAs and minimal bidirectional based sub-modules

for the very inexpressive DL HL. We show that the problem of finding MinAs for HL

syntactically resembles that of parsing sentences using Context Free Grammars. As a re-

sult of this syntactic resemblance we show how the popular Earley algorithm (Earley 1970)

for parsing with Context Free Grammars may be used to extract an indexed bidirectional

reachability-based module from which every HL MinA for an entailment may be obtained

without performing a single subsumption test. In Section 4.3 we investigate how this method

may be extended to members of the EL family of DLs. We show that for EL TBoxes con-

sisting of only primitive concept definitions, the algorithms for EL may be used directly to

extract all MinAs. However, when general EL TBoxes are introduced, there is an exponential

explosion in the number of bidirectional reachability-based sub-modules for a single MinA.

With the exception of Sections 4.1 and 4.2.2, all the work presented in this chapter constitute

original contributions made by this dissertation.

48

4.1. Introduction to MinA Extraction 49

4.1 Introduction to MinA Extraction

The term axiom pinpointing, coined by Schlobach & Cornet (2003), refers to the process

of obtaining justifications (explanations) for entailments and plays an important role in the

debugging of ontologies. As ontologies grow in size, from a few hundred to hundreds of

thousands of axioms, finding a minimal set of axioms responsible for a wrongful entailment

becomes extremely difficult for the ontology developer. Axiom Pinpointing algorithms aim

to simplify this process by extracting Minimal Axioms Sets (MinAs) for an entailment.

Suntisrivaraporn (2009) shows with the following example that there exists an HL ontol-

ogy O that contains exponentially many MinAs for an entailment.

Example 7 (Exponentially many MinAs) For all n ≥ 1, define Tn to be an acyclic HL

TBox consisting of the following concept inclusions:

A v P1 uQ1

Pi v Pi+1 uQi+1 for 1 ≤ i ≤ n

Qi v Pi+1 uQi+1 for 1 ≤ i ≤ n

Pn v B

Qn v B

The size of Tn is linear in n, and we have the consequence Tn |= A v B. There are 2n MinAs

for Tn |= A v B since, for each i such that 1 ≤ i ≤ n, it suffices to have either Pi’s or Qi’s

definition. That is, either Pi v Pi+1 uQi+1 or Qi v Pi+1 uQi+1 in the case that i ≤ n, and

either Pn v B or Qn v B. For the case where n = 2 we have that Tn consists of the following

axioms:

α1 : A v P1 uQ1 α4 : P2 v B

α2 : P1 v P2 uQ2 α5 : Q2 v B

α3 : Q1 v P2 uQ2

With the final MinAs(22 = 4) being:

MinA1 : α4 α2 α1

MinA2 : α4 α3 α1

MinA3 : α5 α2 α1

MinA4 : α5 α3 α1

4.1. Introduction to MinA Extraction 50

The exponential behaviour of extracting all MinAs for an HL entailment, even with an

unfoldable TBox, naturally extends to all possible DLs. Since the worst case behaviour of

extracting all MinAs for an entailment is unavoidable, researchers have endeavoured to find

practical algorithms that minimize the cost of finding MinAs as much as possible. There are

two main approaches to axiom pinpointing namely black-box and glass-box methods.

4.1.1 Black-box Algorithms

‘Black-box’ algorithms utilize an existing DL reasoner’s standard inference engines, such as

subsumption, without the need to internally modify the algorithm. These black-box algo-

rithms systematically eliminate unwanted axioms from consideration by using an elimination

function. After each iteration of this elimination function, a standard subsumption test is

run in order to test whether the entailment still holds in the resultant set of axioms. This

iterative procedure continues until no more axioms may be removed without invalidating the

entailment. Since subsumption testing is expensive even for the inexpressive DL EL+, which

runs in O(n4) time in the number of axioms, black-box algorithms aim to reduce as many

axioms as possible during every iteration of the elimination procedure, thus reducing the

total number of subsumption tests needed to extract each MinA. Various algorithms have

been proposed in the literature, including:

• Sliding Window: This technique is introduced in Kalyanpur et al. (2007) as part of

their fast pruning algorithm which tests unsatisfiability of a concept. The idea here is to

use a window of n axioms which slides across all axioms in a possible MinA. Removing

axioms from this window allows us to test if the concept remains unsatisfiable or not

w.r.t the removed axioms. If the concept remains unsatisfiable, then the whole window

of n axioms can be eliminated. Thus the algorithm can remove chunks of n axioms at

once, reducing the size of the search space by n axioms during each iteration. The win-

dow is initially set to one tenth of the number of axioms, this size is then systematically

reduced in the case where the set contains a relevant axiom. The pruning process is

repeated until the window contains only those axioms that may not be removed.

• Logarithmic algorithm (Suntisrivaraporn 2009): Instead of going through the

axioms one by one and pruning one axiom at a time, the algorithm partitions the

ontology into two halves. It then employs a DL reasoner to check whether one of the

halves preserves the entailment. If the answer is ‘yes,’ it immediately recurses on that

4.1. Introduction to MinA Extraction 51

half, throwing away half of the axioms in one step. Intuitively, this means that the

essential axioms in a MinA are all in one of the partitions. Otherwise, i.e., if the answer

is ‘no,’ essential axioms are spread over both partitions of the ontology. In this case,

the algorithm recurses on each half, while using the other half as the ”support set”.

• Relevance based selection: Qi et al. (2008) introduced a relevance based selection

function in order to obtain a MinA. Two axioms α, β are directly relevant if they

share a common symbol name. The selection function is recursive, in that at each

iteration it adds new axioms that become relevant to the axioms added at the previous

iteration. The axioms introduced at each iteration form an ordering relation, where

axioms introduced later are further away from the initial concept, i.e. axioms introduced

in the final iterations are less relevant than axioms introduced in the first iterations.

They show that in order to extract a justification that is more relevant to a concept it

suffices to extract the more relevant axioms from the ontology.

Once an optimized algorithm has been designed to extract a single MinA, most algorithms

employ some variation of Reiter’s Hitting Set Tree (HST) algorithm in order to extract all

MinAs (Reiter 1987). Hitting sets are defined as follows:

Definition 34 (Hitting set) Given a universal set U , and a set S = {s1, · · · , sn} of subsets

of U that are conflict sets, i.e. subsets of the system components responsible for the error.

A hitting set T for S is a subset of U such that si ∩ T 6= ∅ for all 1 ≤ i ≤ n. A minimal

hitting set T for S is a hitting set such that no T ′ ⊂ T is a hitting set for S. A hitting set T

is cardinality-minimal if there is no other hitting set T ′ such that |T ′| ≤ |T |.

Reiter’s algorithm is used to calculate minimal hitting sets for a collection S = {s1, · · · , sn}

of sets by constructing a labeled tree, called a Hitting Set Tree (HST). In a HST, each node

is labeled with a set si ∈ S, and each edge is labeled with an element in ∪si∈Ssi. For each

node n in a HST, let H(n) be the set of edge labels on the path from the root of the HST to

n. Then the label for n is any set s ∈ S such that s∩H(n) = ∅, if such a set exists. Suppose

s is the label of a node n, then for each σ ∈ s, n has a successor nσ connected to n by an edge

with σ in its label. If the label of n is the empty set, then we have that H(n) is a hitting set

of S.

In the case of finding justifications for an entailment, the universal set describing the

system corresponds to the total set of axioms in the ontology, and a justification corresponds

4.2. Computing and Extracting all MinAs in HL 52

to a single conflict set. The algorithm correctly and dynamically finds all conflict sets (justi-

fications).

Suntisrivaraporn et al. (2008) found that by first extracting the standard bottom-up

reachability-based module, and then utilizing Reiter’s HST algorithm with a relevance based

selection function, the performance of MinA extraction is increased by an order of magnitude.

Module extraction therefore plays an important role in reducing the search space for Black-

box algorithms.

4.1.2 Glass-box Algorithms

The term ‘glass box’ refers to the visibility of the internal workings of a DL reasoner’s

algorithms. The glass-box approach to MinA extraction takes an existing DL algorithm

for testing logical entailments and modifies it to generate all MinAs for the entailment in

question. All previous work on glass-box methods essentially extends a descision procedure,

such as a tableaux based subsumption testing algorithm, with a labelling function that keeps

information about axioms during its computation cycle. It then uses this information to

generate a monotone Boolean formula that represents all possible sets of axioms that form

part of MinAs (Suntisrivaraporn 2009).

Since the internal workings of specific reasoning algorithms needs to be modified, a dis-

advantage of glass-box approaches is that they are usually tailored for very specific DLs

(Schlobach & Cornet 2003, Kalyanpur et al. 2007, Baader & Hollunder 1995, Meyer et al.

2006, Suntisrivaraporn 2009). However, Baader & Penaloza (2007) considered a glass-box

approach for arbitrary DLs. Another disadvantage of glass-box based algorithms is that they

alter the complexity of the decision algorithm when extended with a labelling functionality.

As an example, in Suntisrivaraporn (2009) the quartic O(n4) classification algorithm dete-

riorates to a exponential worst case classification algorithm when augmented with labelling

functionality.

4.2 Computing and Extracting all MinAs in HL

In this section we investigate MinA extraction in the DL HL and the relationship between

a single MinA and a minimal bidirectional reachability-based sub-module. First we look

at some properties of MinAs in HL that are of interest in designing an algorithm based

on minimal bidirectional reachability-based sub-modules. Then we introduce the Earley

4.2. Computing and Extracting all MinAs in HL 53

algorithm for parsing with Context Free Grammars and modify the algorithm to compute an

indexed bidirectional reachability-based module from which all possible sub-modules may be

extracted. Each of these sub-modules therefore corresponds to a bidirectional reachability-

based sub-module, some of which are minimal bidirectional reachability-based sub-modules.

Lastly, we introduce an algorithm to extract all MinAs from the module returned by the

modified Earley algorithm.

4.2.1 Relationship Between MinAs and Bidirectional Reachability-based

sub-modules in HL

In this section we investigate the relationship betweenHLMinAs and bidirectional reachability-

based sub-modules. Recall from Definition 3 that the sublanguage HL does not allow for

roles and existential restrictions, with the name motivated by the fact that GCIs involving

HL concepts are essentially propositional Horn clauses (Suntisrivaraporn 2009).

From Theorem 14 we know that the set OreachA↔B contains all MinAs for the statement A v

B. Thus if M1 is a MinA for the statement A v B, then it follows that M1 is a bidirectional

reachability-based sub-module for the statement A v B in terms of itself. Formally:

Theorem 15 Given an acyclic general HL TBox T and the statement A v B such that

T |= A v B. Let M1 be a MinA for A v B, then M1
reach
A↔B = M1.

Proof: By Definitions 25 and 33 and Theorem 14 we know that M1 ⊆M1
reach
A↔B. But M1

reach
A↔B

is a bidirectional reachability-based sub-module for the ontology M1 and thus by definition

M1
reach
A↔B ⊆ M1. Since M1 ⊆ M1

reach
A↔B and M1

reach
A↔B ⊆ M1, we conclude that M1 = M1

reach
A↔B.

Thus every MinA M for A v B is of the form M reach
A↔B . 2

The absence of role names and existential restrictions in HL has the following effect:

Lemma 3 Given an acyclic general HL TBox T and the statement A v B such that T |=

A v B, then for every axiom αL v αR ∈ T reachA we have that T reachA |= A v αR.

Proof: Since the definition of T reachA is inductive and Algorithm 1 extracts T reachA we prove

this lemma by using Algorithm 1 and induction. The initialization at Step 2 adds all active

axioms to the queue. These axioms are all axioms of the form A v αR or > v αR. Each of

these axioms will be added to OS by Lines 5 and 6. Thus for these axioms it follows trivially

that OS |= A v αR. Assume that after n iterations of the algorithm, each axiom αL v αR in

4.2. Computing and Extracting all MinAs in HL 54

OS has the property OS |= A v αR. Now let σL v σR be the axiom added to OS at iteration

n + 1. The test at Line 5 ensures that for all x ∈ Sig(σL) it is the case that x ∈ Sig(OS).

But x may only be an element in Sig(OS) if x = A, x = > or x appears on the right hand

side of at least one of the axioms in OS . For all these cases it follows that OS |= A v σL and

thus that OS |= A v σR. Therefore, by induction it follows that for every axiom αL v αR in

T reachA we have that T reachA |= A v αR. 2

An interesting result that directly follows from this lemma is that any two axioms, αL1 v x

and αL2 v x ∈ T reachA that share the same symbol on the right hand side, have the property

that T reachA |= A v x. Since the TBox is acyclic and both these axioms have the same concept

on the right hand side, none of these axioms may use (Definition 7) each other. Thus they

are independent of each other and may not both form part of the same MinA.

Theorem 16 Given an acyclic general HL TBox T in normal form, the statement A v B

and a MinA M1 for A v B, then for every x ∈ Sig(M1) there is at most one axiom αL v

x ∈M1.

Proof: We give a proof by contradiction. Let M1 be a MinA for A v B. Suppose that for

some x ∈ Sig(M1) there are two axioms αL1 v x and αL2 v x in M1. Then by Lemma 3 we

have that for each of these axioms M1 |= A v x. Now let M2 = M1 \ (αL1 v x). Since T is

acyclic we know that neither one of these axioms uses the other and therefore the inclusion of

either of these axioms in M1 is not dependent at all on the inclusion of the other. Now extract

(M2)reachA , since the inclusion of αL2 v x is not dependent on the symbol x as introduced by

αL1 v x, we have that αL2 v x ∈ (M2)reachA . But both αL1 v x and αL2 v x introduce the

same symbol x, hence all axioms αL v αR ∈ M1 that require the symbol x to be active will

still be included in M2, and for each of these we have that M2 |= A v αR by Lemma 3. Thus

M2 |= A v B and since M2 ⊂M1 we conclude that M1 is not a MinA. 2

The above proof is applicable only to acyclic generalHL TBoxes in normal form. A similar

result holds for cyclic general HL TBoxes in normal form. For these ontologies whenever the

said two axioms do not use each other, the proof is the same as above. However, when

one of these axioms uses the other, the choice of which axiom is to be removed may not be

arbitrarily decided upon but instead the axiom being used must be removed. The proof then

proceeds directly as stated above.

4.2. Computing and Extracting all MinAs in HL 55

Given that by Theorem 15 every MinA is a bidirectional reachability-based sub-module,

we now prove that every MinA in HL is a minimal bidirectional reachability-based sub-

module in terms of itself. This is quite a subtle point, because MinAs are already minimal.

Note, however, that MinAs are minimal with respect to the property of entailing a given

statement of interest, whereas bidirectional reachability-based sub-modules are minimal with

respect to the syntactic requirement for both bottom-up reachability and top-down reacha-

bility.

Theorem 17 Given an acyclic general HL TBox T in normal form, the statement A v B

and a MinA M1 for A v B, then M1 is a minimal bidirectional reachability-based sub-module

M1
reach
A↔B in terms of M1.

Proof: From Theorem 15 we have that every MinA Mi for the statement A v B is a

bidirectional reachability-based sub-module in terms of Mi .i.e Mi = Mi
reach
A↔B, and thus so

is M1. Suppose M1 is not minimal, then M1 must contain an axiom αL v xi such that

M2 = M1 \ (αL v xi) contains some bidirectional reachability-based sub-module in terms of

itself, say M3 ⊆M2. Since M3 ⊂M1 we have that M3 is not a MinA and thus M3 6|= A v B.

Now for M3 to be a bidirectional reachability-based sub-module in terms of itself, for every

axiom (σL1 v σR1) ∈ M3 and every yi ∈ Sig(σL1) we have that there must be some other

axiom (σL2 v y1) ∈M3 in order for bidirectional reachability to be preserved. Since M3 is a

bidirectional reachability-based sub-module there is such an axiom for the symbol xi namely

(σL v xi) ∈ M3. But by Theorem 16 there is at most one axiom in every MinA for each

symbol xi on the right hand side of an axiom. Thus there can be no axiom (σL v xi) ∈M3.

We conclude that M3 is not a bidirectional reachability-based sub-module in terms of itself

and that M1 is a minimal bidirectional reachability-based sub-module in terms of itself. 2

Next we show that every minimal bidirectional reachability-based sub-module in HL for

a statement A v B corresponds to a MinA.

Theorem 18 Given an acyclic HL TBox T in normal form, the statement A v B such that

T |= A v B and a minimal bidirectional reachability-based sub-module M1
reach
A↔B with M1 ⊆ T ,

then M1 is a MinA for A v B.

Proof: We prove by contradiction. Suppose M1 is a minimal bidirectional reachability-based

sub-module M1
reach
A↔B for the statement A v B but that M1 6|= A v B. By definition of bidi-

rectional reachability every axiom in M1
reach
A↔B is A-reachable and thus by Lemma 3 we have

4.2. Computing and Extracting all MinAs in HL 56

for every axiom (αL v xi) ∈ M1
reach
A↔B that M1 |= A v xi, including the case where xi = B.

This contradicts the assumption that M1 6|= A v B. Since M1 is minimal there exist only

one axiom (αL v xi) ∈M1
reach
A↔B for each xi, thus M1 |= A v xi only once for each xi. Hence

by Theorem 16 M1 is a MinA. 2

Theorems 17 and 18 allows us to conclude that there is a one-to-one correspondence

between minimal bidirectional reachability-based sub-modules and MinAs in HL.

Corollary 1 There is a one-to-one correspondence between MinAs and minimal bidirectional

reachability-based sub-modules in HL.

One of the problems experienced with mapping normal form axioms in a MinA back to

axioms in the original ontology, is that the resulting axiom set may no longer be minimal

(Suntisrivaraporn 2009). Another interesting consequence of Theorem 16 is that in order to

minimize the resultant set after mapping a MinA back to its original axioms, one does not have

to decide arbitrarily which axioms to remove in order to minimize it. The theorem provides a

good heuristic for this process: if a set is no longer minimal there must be two or more axioms

where the same symbol appears on the right hand side. Starting the minimizing process at

these axioms may provide a good pruning heuristic which may improve the performance of a

minimizing algorithm.

4.2.2 The Earley Algorithm for Parsing Sentences with CFG’s

In the previous section we saw that every MinA M1 in an acyclic general HL TBox corre-

sponds to a minimal bidirectional reachability-based sub-module M1
reach
A↔B. As there are an

exponential number of possible MinAs for the DL HL, it follows that there are an expo-

nential number of minimal bidirectional reachability-based sub-modules. For any set P with

n elements, there are a possible 2n unique subsets, thus given OreachA↔B there exists an expo-

nential number of bidirectional reachability-based sub-modules SreachA↔B ⊆ OreachA↔B only some of

which are minimal. Hence when extracting all possible minimal bidirectional reachability-

based sub-modules and thus all MinAs in HL we not only wish to extract all bidirectional

reachability-based sub-modules, but only those that are minimal.

In the rest of this chapter, whenever we refer to the term module we refer to the bidirec-

tional reachability-based module for a statement of interest, every bidirectional reachability-

based sub-module is then called a sub-module and a MinA is a minimal module. When

4.2. Computing and Extracting all MinAs in HL 57

reference needs to be made to a different class of module it will be explicitly mentioned.

In this section we investigate a dynamic programming algorithm designed to compute all

parse trees given a Context Free Grammar and a sentence to parse. The Earley algorithm

for parsing with CFGs computes a representation of an exponential number of parse trees in

O(n3) worst-case time, where n is the length of the input string. Each of the individual parse

trees may then be extracted in linear time, without any additional computation. In the rest

of this section we introduce the Earley algorithm as well as give a definition of Context Free

Grammars. We then show the syntactic resemblance between CFG production rules and that

of HL axioms in normal form. We show that the algorithm computes a representation of all

sub-modules in the form of an indexed bidirectional reachability-based module, from which

all minimal modules may be extracted.

Earley’s parsing algorithm is a well known algorithm for parsing sentences given some

Context Free Grammar (CFG) (Earley 1970). It computes all possible parse trees in parallel

with a worst case running time of O(n3), where n is the length of the input string. Though

the relationship between parsing sentences and extracting all sub-modules and hence also

minimal modules is not apparent at first, the Earley algorithm is of interest due to the

following:

• The algorithm uses a dynamic programming approach which reduces a potential ex-

ponential problem to one of polynomial complexity. This is achieved by employing a

parallel left to right top-down depth-first searching method with bottom-up filtering to

reduce the search space (Jurafsky & Martin 2008).

• Top-down searching with bottom-up filtering can be seen as abstractly resembling bidi-

rectional reachability-based module extraction methods, where top-down searching can

be viewed as extracting a top-down reachability-based module with bottom-up filtering

limiting the axioms extracted to only those that form part of a bottom-up reachability-

based module.

• When viewed in terms of top-down reachability, CFG production rules have a syntactic

resemblance to HL GCI axioms in normal form. CFG production rules have the form

X → Y1 . . . Yn, whereasHL GCI axioms in normal form have the form C1u. . .uCn v D.

Viewing these axioms from the right hand side and removing the conjunction operators

we have D w C1 . . . C2.

4.2. Computing and Extracting all MinAs in HL 58

• The algorithm has been well studied and optimized (Chiang & Fu 1984), with existing

hardware implementations available (Pavlatos et al. 2003), with a potential gain for

utilizing these hardware implementations in order to extract MinAs.

Context free grammars (CFGs) provide a well-known method for modeling the structure

of English and other natural languages (Jurafsky & Martin 2008). A grammar consists of

a set of productions or rules, each of which expresses the ways the symbols (strings) in a

language can be grouped together, as well as a lexicon of words or symbols.

Definition 35 (CFG production rules) Let X represent a single non-terminal, the symbol

’a’ represents a single terminal and α represent a mixed string of terminals and non-terminals,

including the null string. CFG production rules have the form:

X → α (4.1)

X → a (4.2)

Definition 36 (Context Free Grammar) (Jurafsky & Martin 2008) A Context Free

Grammar (CFG) is defined as a 4-tuple (N,Σ, P, S) where:

• N is a set of non-terminal symbols, and

• σ is a set of terminal symbols disjoint from N , and

• a set P of productions, each of the form as defined in Definition 35, and

• a designated start symbol.

A language is defined via derivation, i.e. where one string can be rewritten as a second

one by a series of rule applications. Formally

Definition 37 (Language generated by a CFG) (Jurafsky & Martin 2008) If A→ β

is a production of P and α and γ are any strings in the set (Σ ∪N)∗, then we say that αAγ

directly derives αβγ, or αAγ ⇒ αβγ. Derivation is then a generalization of direct derivation.

Let α1, α2, . . . , αm be strings in (Σ ∪N)∗, m ≥ 1, such that

α1 ⇒ α2, α2 ⇒ α3, . . . , αm−1 ⇒ αm

then we say that α1 derives αm or α1 ⇒∗ αm. The language LG generated by a grammar G

is defined as the set of strings composed of terminal symbols which can be derived from the

designated start symbol S : LG = W | w is in Σ∗ and S ⇒∗ w.

4.2. Computing and Extracting all MinAs in HL 59

Parsing refers to the process of mapping a string of words to its parse tree, assigning syn-

tactic structure to it. The Earley parsing algorithm (Earley 1970) uses a dynamic program-

ming approach, applying a single left-to-right, top-down, depth-first parallel search strategy

to compute a chart that contains all possible parses for a given input. It accomplishes this

in polynomial worst case time (n3), where n is the size of the input string.

Example 8 Consider the sample CFG for a subset of English grammar below. The set of

symbols {that, book, flight} represent terminal symbols and all other symbols represent non-

terminals.

S → V P

S → NP V P

V P → V P NP

NP → Det Noun

V P → V erb

Det → that

V erb → book

Noun → flight

During execution the Earley algorithm generates a state entry for each production rule

it operates on. The purpose of the state is to record the progress made during the parsing

process.

Definition 38 (Parse states) Let X and Y represent single non-terminal symbols, let a

represent a single terminal symbol, and let α, β and σ represent mixed strings of terminal

and non-terminal symbols, including the null string. Then for each token (word) in the input

string, the Earley algorithm creates a set of states, called a chart. A chart at position k of

the input is represented by Ck. Each state consists of a tuple (X → α • β, i) where

1. X → αβ is the current production rule,

2. • indicates the dot rule which represents the current parsing position in the state, with

α • β indicating that α has previously been parsed and β is expected next, and

4.2. Computing and Extracting all MinAs in HL 60

3. i indicates the starting index of the substring where parsing of this production began.

Algorithm 4 (Earley parser (Jurafsky & Martin 2008)) The parser consists of three

sub-parts, the predictor, scanner and completer. Initially Chart C0 contains all production

rules for the start symbol S. For each state in chart Ci, the tuple (X → α • β, j) is evaluated

and the appropriate sub-part executed:

1. Predictor: If state = (X → α•Y β, j) , then for every production Y → σ, if (Y → •σ)

/∈ Ci then Ci := Ci + (Y → •σ, i),

2. Scanner: If state = (X → α • aβ, j), with a the next symbol in the input stream, and

if (X → αa • β, j) /∈ Ci+1 then Ci+1 := Ci+1 + (X → αa • β, j),

3. Completer: If state = (X → γ•, j), then for every (Y → α •Xβ, k) ∈ Cj, Ci := Ci

+ (Y → αX • β, k).

The algorithm executes all states iteratively in a top-down manner until no new states are

available for processing, and no state may appear more than once in a given chart. The output

of the Earley algorithm is defined as a set of n+ 1 charts, where n is the length of the input

string. Each chart contains a set of parse states as defined in Definition 38. A successful

parse is indicated by the state S → α• in chart n+ 1.

Example 9 The following table shows the output of the Earley algorithm given the input

string ‘book that flight’ and the CFG in Example 8. Each state entry consists of 4 compo-

nents.

• the number of the entry in the set of all charts,

• production rule T → NT . . .NT ,

• index j of the chart this entry was first introduced by the predictor, and

• the procedure and line number that placed this rule in current state.

The state (20. S → V P•) in chart 3 represents a successful parse of the string ”Book that

flight”.

4.2. Computing and Extracting all MinAs in HL 61

Chart 0: • book that flight

1. S → • NP VP j = 0 : Inital State

2. S → • VP j = 0 : Inital State

3. NP → • Det Noun j = 0 : Predictor 1

4. VP → • VP NP j = 0 : Predictor 2

5. VP → • Verb j = 0 : Predictor 2

6. Det → • that j = 0 : Predictor 3

7. Verb → • book j = 0 : Predictor 5

Chart 1: book • that flight

8. Verb → book • j = 0 : Scanner 7

9. VP → Verb • j = 0 : Completer 5, 8

10. VP → VP • NP j = 0 : Completer 4, 9

11. NP → • Det Noun j = 1 : Predictor 10

12. Det → • that j = 1 : Predictor 11

Chart 2: book that • flight

13. Det → that • j = 1 : Scanner 12

14. NP → Det • Noun j = 1 : Completer 11, 13

15. Noun → • flight j = 2 : Predictor 14

Chart 3: book that flight •

16. Noun → flight • j = 2 : Scanner 15

17. NP → Det Noun • j = 1 : Completer 14, 16

18. VP → VP NP • j = 0 : Completer 10, 17

19. VP → VP • NP j = 0 : Completer 4, 18

20. S → VP • j = 0 : Completer 2, 18

4.2.3 Converting a general HL ontology in normal form to a CFG

Before the Earley algorithm may be applied to the problem of extracting a representation of

all sub-modules and thus MinAs, where those sub-modules are minimal, we need to transform

the given TBox to an equivalent CFG. In this subsection we demonstrate how this may be

done given an HL ontology O. In the discussion that follows, we assume that we have an

HL TBox T in normal form and a statement A v B such that T |= A v B, where A and B

are single concept names.

4.2. Computing and Extracting all MinAs in HL 62

In order to be able to compute all sub-modules, every production rule introduced during

the conversion process must preserve bidirectional reachability. Given T reachA↔B , every axiom

αL v αR ∈ T reachA↔B has the following two properties:

1. every xi ∈ Sig(αL) is A-reachable, and

2. some yi ∈ Sig(αR) is ←B-reachable.

In terms of A-reachability in HL we know that there exists special cases in which A-

reachability implicitly holds for an axiom. For HL, implicit A-reachable axioms have the

form:

> v αR

In the steps that follow, all production rules we introduce have the form yi → σ, read as:

the rule yi → σ is bidirectionally reachable if the symbol yi is ←B-reachable and all symbols

xi ∈ σ are A-reachable, which clearly conforms to the definition of bidirectional reachability.

We further note that the symbols on the right hand side of CFG production rules have a fixed

order, whereas the conjunction of HL concepts and roles are commutative, i.e. AuB = BuA,

and thus order is unimportant. We therefore place no restrictions on the order of the symbols

on the right hand side of production rules and thus consider production rules differing only

in the order of symbols on the right hand side as identical.

The conversion process below proceeds in a step by step manner until all axioms in T

have been processed.

Step 1: All axioms αL v αR ∈ T such that Sig(αL) = ∅ are (implicitly) A-reachable.

By definition of bottom-up reachability all such axioms are always A-reachable. For

each such axiom the implicit A-reachability of αL is made explicit by introducing the

production rule:

yi → A

This rule is read as: yi → A is bidirectionally reachable if the symbol yi is ←B-reachable

and A is A-reachable.

Step 2: For each axiom αL v yi ∈ T introduce the production rule:

yi → Sig(αL)

4.2. Computing and Extracting all MinAs in HL 63

Axioms of this kind do not have any implicit reachability concerns like those in Step 1

above. This rule is read as: yi → Sig(αL) is bidirectionally reachable if the symbol yi

is ←B-reachable and all symbols xi ∈ Sig(αR) are A-reachable.

Every step in the conversion process simply converts an axiom to an equivalent production

rule. Since there is a one-to-one correspondence between HL axioms in normal form and

production rules introduced by the above conversion process, it follows that a bidirectional

reachability based module extracted on either the CFG or the TBox will result in the same

set of axioms. Therefore bidirectional reachability is in no way affected by the conversion

process and the correctness of the conversion process is implicit in the individual steps. We

may thus formally define a reachability preserving CFG as:

Definition 39 Reachability preserving CFG for a HL TBox.

Let T be an HL TBox in normal form and A v B a statement such that T |= A v B, then

the reachability preserving CFG, denoted CFGAT , is a minimal set of CFG production rules

such that for each axiom αL v αR ∈ T :

• if Sig(αL) = ∅ the rule xi → A ∈ CFGAT for each xi ∈ Sig(αR);

• for all other axioms the rule xi → Sig(αL) ∈ CFGAT ;

where the symbol A represents the only terminal symbol and the set Sig(T)\A represents the

set of non-terminals.

Given a TBox T and a statement A v B, we note that during the transformation process

every axiom in the TBox T will be transformed into an equivalent production rule. Since

the only terminal symbol is A, all production rules not containing A will consist of only

non-terminal symbols. Therefore, during parsing, if some production rules are never both A

and B reachable, they will not form part of any parse tree and thus not part of any MinA.

The conversion process may be illustrated by the following example:

Example 10 Given the acyclic HL TBox T and the statement A v D, with T ′ as T in

normal form:

4.2. Computing and Extracting all MinAs in HL 64

TBox T Normal form TBox T ′

A v B1 uB2 α1 : A v B1

B1 v C1 uD α2 : A v B2

B2 u C1 v D α3 : B1 v C1

> v B2 α4 : B1 v D

α5 : B2 u C1 v D

α6 : > v B2

Then CFGAT is given by:

B1 → A (Step 2 applied to α1)

B2 → A (Step 2 applied to α2 or Step 1 applied to α6)

C1 → B1 (Step 2 applied to α3)

D → B1 (Step 2 applied to α4)

D → B2C1 (Step 2 applied to α5)

4.2.4 Computing the Set of all Sub-modules with the Earley Algorithm

From the previous section we know that an HL TBox may be transformed to an equivalent

CFG such that bidirectional reachability is preserved. In order to apply the Earley algorithm

on the resulting CFG so that we may compute a representation of all sub-modules, we note

that besides a CFG, the Earley algorithm requires the following additional information:

• a set of terminal symbols, and

• an input string to parse, and

• a start symbol.

Terminal symbols: Applying the Earley algorithm to the problem of computing Mi-

nAs is effectively a top-down depth first search on the TBox, corresponding to a top-down

reachability searching procedure. When the search reaches the sub-concept in the entailment

we initiate a bottom-up filtering process, corresponding to bottom-up reachability filtering.

Thus the only symbol corresponding to a terminal symbol is the sub-concept of the entailment.

Input string: The input string serves two main purposes during the parsing process:

4.2. Computing and Extracting all MinAs in HL 65

• Firstly, each symbol in the input string is a terminal symbol, thus search trees ending

in the correct terminal symbol corresponds to a possible correct parse. This guides

the search process and reduces the search space. When computing MinAs there is no

explicit input string and the only terminal symbol is the sub-concept of the entailment.

Thus the input string may be implicitly defined as a finite string consisting of a sufficient

number of repetitions of the sub-concept.

• Secondly, the complexity of the algorithm is bounded by the length of the input string.

In terms of MinA computation there exists no explicit input sentence and thus the

complexity of the algorithm is harder to define.

Start symbol: The start symbol is chosen as any symbol name S such that S 6∈

CN(T) ∪RN(T).

Applying the standard Earley algorithm to the sub-module extraction problem may be

illustrated by the following example. Given the HL subset of the Nci ontology, find the set

of all MinAs for the entailment TNci |= 12p13-2 v Cell-Struct. In this example the set of

terminal symbols consists of the symbol {12p13-2}, the input is a finite string consisting of

a sufficient number of repetitions of this symbol and the start symbols is S.

Axioms Production Rules
α1 Subcell-Struct v Cell-Struct Cell-Struct → Subcell-Struct
α2 Nuclear-Struct v Subcell-Struct Subcell-Struct → Nuclear-Struct
α3 Organelle v Subcell-Struct Subcell-Struct → Organelle
α4 Chromosome v Nuclear-Struct Nuclear-Struct → Chromosome
α5 Chromosome-Struct v Nuclear-Struct Nuclear-Struct → Chromosome-Struct
α6 Nucleus v Organelle Organelle → Nucleus
α7 Human-Chromosome v Chromosome Chromosome → Human-Chromosome
α8 Chromosome-Arm v Chromosome-Struct Chromosome-Struct → Chromosome-Arm
α9 Chromosome-Band v Chromosome-Struct Chromosome-Struct → Chromosome-Band
α10 Chromosome-12 v Human-Chromosome Human-Chromosome → Chromosome-12
α11 12p v Chromosome-Arm Chromosome-Arm → 12p
α12 12p-13-2 v Chromosome-Band Chromosome-Band → 12p-13-2

Figure 4.1: Sample from Nci ontology

Example 11 Compute the set of all sub-modules for the entailment (TNci)reach12p13−2 |= 12p13-2 v

Cell-Struct from the HL subset of the Nci ontology in Figure 4.1.

4.2. Computing and Extracting all MinAs in HL 66

Adding the initial state S→ •Cell-Struct to Chart 0, the charts produced by the Earley

algorithm are as follows:

Chart 0

1. S→ •Cell-Struct j=0 : Initial

2. Cell-Struct→ •Subcell-Struct j=0 : Predictor: 1

3. Subcell-Struct→ •Nuclear-Struct j=0 : Predictor: 2

4. Subcell-Struct→ •Organelle j=0 : Predictor: 2

5. Nuclear-Struct→ •Chromosome j=0 : Predictor: 3

6. Nuclear-Struct→ •Chromosome-Struct j=0 : Predictor: 3

7. Organelle→ •Nucleus j=0 : Predictor: 4

8. Chromosome→ •Human-Chromosome j=0 : Predictor: 5

9. Chromosome-Struct→ •Chromosome-Arm j=0 : Predictor: 6

10. Chromosome-Struct→ •Chromosome-Band j=0 : Predictor: 6

11. Human-Chromosome→ •Chromosome-12 j=0 : Predictor: 8

12. Chromosome-Arm→ •12p j=0 : Predictor: 9

13. Chromosome-Band→ •12p13-2 j=0 : Predictor: 10

Chart 1

14. Chromosome-Band→ 12p13-2• j=0 : Scanner: 13

15. Chromosome-Struct→ Chromosome-Band• j=0 : Completer: 14

16. Nuclear-Struct→ Chromosome-Struct• j=0 : Completer: 15

17. Subcell-Struct→ Nuclear-Struct• j=0 : Completer: 16

18. Cell-Struct→ Subcell-Struct• j=0 : Completer: 17

19. S→ Cell-Struct• j=0 : Completer: 18

Starting with the final correct parse at Line 19, and working backwards we see that there

is only a single parse tree to extract and it consists of entries 14, 15, 16, 17, 18 and 19.

Mapping these back to the axioms in Figure 4.1, we obtain the set of axioms α1, α2, α5, α7

and α12. This set corresponds exactly to a single MinA for the entailment (TNci)reach12p13−2 |=

12p13-2 v Cell-Struct.

The Earley algorithm extracts all parse trees given a CFG and an input string to parse.

It terminates in O(n3) worst case time, where n is the length of the input string (Earley

1970). The running time of the Earley algorithm is bounded by the length of the input

4.2. Computing and Extracting all MinAs in HL 67

string. However, in terms of sub-module computation there is no explicit input string and

the number of charts created by the algorithm is dependent on the TBox in question. The

following example shows that there exists an acyclic HL TBox such that the running time of

the Earley algorithm is exponential in the number of production rules.

Example 12 (Exponential running time of the Earley algorithm.) Define Tn to be

the acyclic HL TBox consisting of the following GCI’s:

GCI’s Production Rules

A v C1 C1 → A

C1 u . . . u Ci−1 v Ci, for 1 < i ≤ n Ci → Ci−1 . . . C1 , for 1 < i ≤ n

C1 u . . . u Cn v B B → Cn . . . C1

It follows that Tn |= A v B. The only production rule that terminates is C1 → A, every time

it is present in a chart, the scanner procedure will be called, resulting in a new chart being

created and the state entry C1 → A• added to it. Given the rule C2 → •C1, the predictor

will add C1 → •A to the current chart, which in turn will cause the scanner to be called once

again. Every rule Ci → Ci−1 . . . C1 encountered, where 2 < i ≤ n, has both C1 and C2 as

part of its right hand side. Each of these rules will thus cause the scanner to be called at

least twice. Rule C3 → . . . contains only C1 and C2 and as a result will call the scanner

twice. Rule C4 contains C1 and C2 as well as rule C3, thus the scanner will be called a total

of 22 times. For rule C5 a total of 23 times, and rule Ci a total of 2i−2 times. Finally,

rule B → Cn . . . C1 will call the scanner a total of 2n−1 times, resulting in a total of 2n−1

new charts being created. In order to compute all sub-modules in this example, the Earley

algorithm will run in exponential time.

4.2.5 Adapting and Improving the Algorithm

From the previous section we see that the Earley algorithm applied to sub-module compu-

tation results in an algorithm that runs in exponential worst-case time. The deterioration of

the algorithm’s performance is mainly due to the absence of an input string. In an attempt

to improve the performance of the algorithm we investigate the effect of the input string more

closely as well as how the difference between sub-module computation and sentence parsing

may influence the performance of the algorithm. Consider the following production rules

from Example 12 where n = 4:

4.2. Computing and Extracting all MinAs in HL 68

B → C4C3C2C1

C4 → C3C2C1

C3 → C2C1

C2 → C1

C1 → CA

When parsing an input string, whenever the scanner procedure is called for a production

rule, there is a terminal symbol on the right hand side of the dot that matches the word at

the current position of the input string. In our example, after the completer has completed

the rule C4 → C3C2C1, the predictor will be called for the rule B → C4 •C3C2C1 in order to

add all rules for the non-terminal C3. Though all these production rules have been expanded

previously, the repeated searching of sub-trees is neccesary, since at every position of the

input string, the word at that position is potentially different from all words in other parts

of the string, resulting in different sub-trees being completed.

However, in terms of sub-module computation, our input string is a finite string of the

same symbol. Therefore re-searching the subtrees associated with a specific non-terminal

symbol will result in exactly the same sub-trees being searched and completed repeatedly

at every occurrence of this symbol. By excluding such repetitive searching of sub-trees we

may potentially improve our sub-module computation algorithm. The first change to the

algorithm is to the predictor procedure, which in turn cascades to changes in the completer

procedure and the data structures used. The following changes to the algorithm were first

proposed by Nortjé et al. (2009).

Changes to the Predictor: The predictor procedure normally expands all relevant

production rules for a symbol and adds new states for these rules to the current chart.

Duplicate states may never occur in the same chart, in a different chart however, the same

state may be added again. We adapt the procedure so that every production rule may only

be introduced once during the entire run of the algorithm. In this way, once the search of a

sub-tree has been started, we never initiate a search down the same sub-tree again.

Changes to the Completer: There are two changes needed to the completer procedure

in order to facilitate the above optimization to the predictor. Firstly, when the completer

is called for the production rule X → ABC•, it searches for all other production rules, in

the chart that initiated this rule, for all rules such that X immediately appears on the right

hand side of the dot. For each such state found it advances the dot over this symbol and

4.2. Computing and Extracting all MinAs in HL 69

adds the modified state to the current state for further processing. However, when a different

rule Y → •X . . . needs to be processed by the predictor whenever the symbol X have been

completed, the above changes to the predictor will cause it not to add any rules for X again.

The algorithm will thus fail to advance the dot over X and processing for this rule will not

continue.

Considering that we never searchX rules again once it has been completed, we may modify

the completer procedure so that once it completes the non-terminal X, it changes the symbol

from a non-terminal to a terminal symbol. In this way, when the above rule Y → •X . . . is

encountered the symbol X is no longer considered a non-terminal but a terminal symbol. In

this case the scanner instead of the predictor will be called to further process the rule. We

therefore require a dynamic terminal list, which initially has only one terminal symbol, and

expand it with every symbol the completer completes.

Let the rules Y → •X . . . and X → • . . . appear in chart i, and the rule Z → •X . . . in

chart i + 1. Now let the rule X → . . . • be completed in chart k with k > i + 1. Since the

rule X → . . . was initiated in chart i, the above modification to the completer will select

the rule Y → •X . . . in chart i, and advance the dot over the symbol X and add X to the

list of terminal symbols. However since we are processing chart k, chart i + 1 will never be

processed again and as a consequence the dot in rule Z → •X . . . will never be advanced over

the X, resulting in and searching prematurely terminating for this rule. The completer must

therefore not only search for previous rules, with the symbol X to the right of the dot, in the

chart that originated the X rule, but rather it must search for any rule in any prior chart

that meets this condition.

Modifying the completer to scan all previous charts instead of only the one that initiated

the rule of interest could result in excessive backwards scanning. However, considering that

the non-terminal being completed will in the future be considered a terminal symbol, when-

ever another rule completing the same non-terminal needs to be completed, the Completer

does not have to scan all previous charts again. Let the rule X → . . . • be the first rule to be

completed containing the symbol X on the left hand side. Then for all rules Zi → . . . •X . . .

in any chart, the completer will add the rule Zi → . . . X • . . . to the current chart. Thus there

is no non-completed rule in any chart prior to the current in which the bullet appear before

the X. And all those that do contain an X to the right of the bullet in the current chart, X

will be considered a terminal and thus handled by the scanner procedure.

Summarizing the changes to the Completer procedure we have that: for every rule X →

4.2. Computing and Extracting all MinAs in HL 70

. . . • handled by the completer, if X is not a terminal symbol, then it is the first time any

rule with X on the left hand side is completed. We therefore,

• mark X as a terminal symbol, and

• scan all previous charts for rules Zi → . . . •X . . ., advance the dot over to symbol X,

and add the new rule to the current chart.

Changes to the data structures: After processing, valid parses will leave the state

S → α• in the chart. The current implementation of the Earley algorithm presented has

no way of retrieving the tree structures associated with these states. Jurafsky & Martin

(2008) address this issue by making a change to the completer procedure. Recall that the

completer creates new states by advancing incomplete ones when the symbols following the

dot is completed. The only change that is necessary is to have the completer add a pointer

to the older state, onto a list of previous states, to the new state. Retrieving a parse tree

from the chart is then merely a recursive retrieval starting with the state(s) representing a

complete S. Let Y → •X . . . and X → • . . . be two states, and let the completer complete

the state X → . . . • in position i of the chart. The state Y → X • . . . is then inserted into

the current chart but augmented with the list [i, . . .].

A dynamic terminal set, combined with the above changes to the completer procedure,

complicates the method for marking parse trees. The new Completer only completes the first

occurrence of the rule X → . . . •, whenever another such rule is encountered by it, it does

not rescan all previous charts to advance the dot. The method for marking parse trees as

proposed by Jurafsky & Martin (2008) therfore does not apply to the adapted alogorithm.

This issue may be addressed by creating a two dimensional table structure in which the first

column corresponds a non-terminal symbol Zi, and the second to a list of pointers to states

in which rules with Zi on the left hand side are completed. Thus, whenever the completer

encounters a rule X → . . . •, it must not only perform all previous operations but also, in

addition, it must add a pointer to the rule it completes. Figure 4.2.5 shows the initial table

for Example 12.

Algorithm 5, initially proposed in Nortjé et al. (2009), is a preliminary algorithm which

implements the above changes:

Algorithm 5 (Modified Earley parser) The parser consists of three sub-parts, the pre-

dictor, scanner and completer. For each state in chart Ci, the tuple (X → α • β, j), with α

4.2. Computing and Extracting all MinAs in HL 71

Non-terminal List of pointers
[B] [. . .]
[C1] [. . .]
[C2] [. . .]
[C3] [. . .]
[C4] [. . .]

Figure 4.2: Completion Table

and β mixed string of terminals and non-terminals, is evaluated and the appropriate sub-part

executed:

1. Predictor: If state = (X → α • Y β), then for every production Y → σ, if (Y → •σ)

/∈ Ci and no production rule for Y has ever been added to any chart, then Ci := Ci +

(Y → •σ),

2. Scanner: If state = (X → α • aβ), with a the next symbol in the input string, and if

(X → αa • β) /∈ Ci+1 then Ci+1 := Ci+1 + (X → αa • β),

3. Completer: If state = (X → γ•), then

• add a pointer to this state in the completion table for X,and

• mark X as a terminal symbol, and

• if X is a new terminal symbol, then

– for every (Y → α •Xβ) ∈ Ck for 0 ≤ k < i, Ci := Ci + (Y → αX • β), and

– for every (Y → α •Xβ) ∈ Ci occurring prior to this state, Ci := Ci + (Y →

αX • β).

The algorithm executes all states iteratively in a top-down manner until no new states are

available for processing, and no state may appear more than once in a given chart.

The exponential complexity of Algorithm 4 when applied to sub-module computation has

been shown to result from the absence of an input string, which caused, in the worst case, an

exponential number of new charts to be created. The following proof shows that Algorithm

5 creates in the worst case a polynomial number of new charts.

Theorem 19 Let T be an HL TBox in normal form, and let CFGAT be the reachability

preserving Context Free Grammar for T and the statement A v B. Further let | CFGAT |= n

be the number of production rules in CFGAT , and m the total number of distinct symbols in

4.2. Computing and Extracting all MinAs in HL 72

CFGAT . Then Algorithm 5 creates n× (n + 1) new charts in the worst case, with each chart

containing a maximum of n× (m+ 1) state entries.

Proof: For each non-completed production rule X → Y1 . . . Ym ∈ CFGAT and each Yi for

1 ≤ i ≤ m, the algorithm may either call the predictor or the scanner. The scanner is

only called for symbols that are terminals, for all other symbols the predictor is called. But

initially there is at most one terminal symbol, and each of the n rules completed may add

at most one new terminal symbol, hence there are at most n + 1 terminal symbols. Thus

for each non-completed rule, the scanner may be called at most n + 1 times. The predictor

only adds a rule once throughout the entire run of the algorithm, hence there are at most n

uncompleted rules that may at any point still require further processing. The scanner may

be called at most n+ 1 times for each of these, and hence a total of n× (n+ 1) times in the

worst case.

Every production rule may have at most m symbols on its right hand side, with the dot

having a maximum of m+1 positions in each rule. Given that each of these m+1 possible dot

positions determines a unique state for each production rule, and that each rule may appear

at most once in any chart Ci, we have that every chart Ci contains at most n× (m+ 1) state

entries. From above we have that 1 ≤ i ≤ n× (n+ 1) in the worst case and thus a maximum

of n× (n+ 1)× n× (m+ 1) = (m+ 1)× n3 + (m+ 1)× n2 state entries upon termination of

the algorithm. 2

The above adaptations produce a significant performance benefit in that it reduces the

number of charts created by Algorithm 4 from an exponential number to a polynomial num-

ber of charts created by Algorithm 5. There are however further adaptations to be made to

Algorithm 5 when the commutative nature of conjunction is taken into account. In terms of

string parsing, the order in which the right hand side of a production rule’s symbols must be

processed is fixed. However, due to the commutative nature of conjunction, the order symbols

are processed during sub-module computation is irrelevant. The commutative property of

conjunction not only allows us to apply the predictor to the symbols on the right hand side

of a rule in any order without affecting the outcome of the algorithm, but also apply it to

all non-terminals in a rule simultaneously. The following adaptations effectively changes the

algorithm from a parallel depth-first searching algorithm to a parallel breadth-first algorithm:

4.2. Computing and Extracting all MinAs in HL 73

Predictor: For every production rule X → Y1 . . . Yn encountered, for each Yi, add all

productions rules Yi → . . . , 1 ≤ i ≤ n not in the chart to the end of the current chart.

Completer: For every rule X → Y1 . . . Yn encountered with all Yi being terminal sym-

bols, mark X as a terminal symbol. If X is marked a terminal symbol for the first time, apply

the completer recursively to all production rules in the chart that, by virtue of X becoming

a terminal symbol, contain only terminal symbols on the right hand side of the rule.

The scanner: The changes to the Predictor and Completer procedures ensure that all

symbols on the right hand side of a rule are processed simultaneously, therefore both the dot

and the scanner procedure becomes obsolete and may be removed from the algorithm.

Algorithm 6 (Sub-module computation) The parser consists of two sub-parts, the pre-

dictor and completer. For each state in CHART, the state (X → α • β) is evaluated and the

appropriate sub-part executed:

Input: Reachability preserving CFG - CFGAT for an HL TBox T and the statement A v B;

Output: Reference table CHART and a Completion Table (Figure 4.2.5).

1. Add the initial state S → B to CHART.

2. Predictor: Given the state (X → Y1 . . . Yn), for all Yi such that (Yi → σ) /∈ CHART,

add all rules (Yi → σ) to CHART.

3. Completer: If state = (X → Z1 . . . Zm) with all Zi terminals, then

• add a pointer to this state in the completion table for X,and

• if X is not a terminal symbol, then mark it a terminal symbol, and

• if X is a new terminal symbol, then call the completer for each rule (Y → . . . X . . .)

∈CHART such that all symbols on the right hand side of the rule are terminal

symbols.

The algorithm executes all states iteratively in a top-down manner until no new states are

available for processing. The absence of the Scanner procedure guarantees that there will only

be one chart CHART, with no state appearing more than once in CHART. All non completed

rules in CHART is removed once the algorithm terminates. Thus CHART contains only those

entries that are bidirectionally reachable.

4.2. Computing and Extracting all MinAs in HL 74

Given CFGAT , the output of Algorithm 6 consist of a single chart, containing only com-

pleted production states (Definition 38), as well as a completion table (Figure 4.2.5). Since

every production state in CHART has been completed, there exists a parse tree for the

derivation S ⇒∗ A that includes every production rule used in CHART. Every rule applica-

tion preserves bidirectional reachability, hence the production rule for each state in CHART

is bidirectionally reachable from the input parameters. Hence CHART contains only rules

that for part of some bidirectional reachability-based sub-module, where each sub-module

corresponds to a parse tree for a derivation S ⇒∗ A.

From Theorem 17 we know that every MinA, for an acyclic HL TBox consisting of only

GCI’s, corresponds to a minimal bidirectional reachability-based sub-module. We show that

Algorithm 6 computes all possible bidirectional reachability-based sub-modules and thus all

possible MinAs, and that it terminates in polynomial time.

Theorem 20 Given an acyclic HL TBox T in normal form and the statement A v B such

that T |= A v B, with CFGAT the context free grammar associated with T . If n is the

number of production rules in CFGAT , then Algorithm 6 computes all possible bidirectional

reachability-based sub-modules in O(n2) worst case running time.

Proof: The proof proceeds in two parts: For the first part of the proof we have that there

are at most n rules that may be added by the predictor, once they are added they are

never removed. For every rule X → Y1 . . . Yn where X /∈ TERMINALS and all Yi ∈ TER-

MINALS, the completer will add X to TERMINALS. It then proceeds to check all rules

Y → Zi . . . X . . . Zm already in CHART. For each of these, if all Zi ∈ TERMINALS and

Y /∈ TERMINALS, the completer will call itself recursively for this rule. Every rule may be

completed only once, hence the completer may be called a maximum of n times. During the

n possible iterations of the Completer it may check at most n− 1 axioms in CHART for new

rules to complete. Assuming each check takes constant time, the Completer will perform at

most n× (n− 1) operations in the worst case. The algorithm thus has an O(n2) worst case

running time.

Secondly, we show by contradiction that all bidirectional reachability-based sub-modules

are computed by the algorithm. Let T1 be a bidirectional reachability-based sub-module in

CFGAT that is not computed by the algorithm. Then it must be the case that for at least one

rule α = (X → Y1 . . . Z . . . Yn) ∈ T1 ⊆ CFGAT such that:

• α 6∈ CHART, or

4.2. Computing and Extracting all MinAs in HL 75

• α ∈ CHART but there is no completion reference in the completion table for the symbol

X to this rule.

First assume that α 6∈ CHART. Starting with the initial rule S → B, for every rule X → σR

encountered in CHART and every symbol Y ∈ σR the predictor will add all rules Y →

. . . 6∈CHART to CHART. The addition of these rules are independent of any completions,

thus for every rule encountered in CHART, all possible additional rules will be added by the

Predictor for every symbol Y ∈ σR except for rules for the symbol A, the initial terminal

symbol. Since T is acyclic we have that there can be no sub-module where the symbol A uses

itself, thus the predictor must never expand rules for this symbol. Hence, if α 6∈ CHART, the

symbol X does not appear on the right hand side of any rule in CHART, and since all rules

preserve top-down reachability, we have that the symbol X is not ←B-reachable, and hence

can not form part of any bidirectional reachability-based sub-module and thus that, T1 is not

a bidirectional reachability-based sub-module, which contradicts the assumption.

Now assume that α ∈ CHART. For every rule X → σR encountered by the Completer

in CHART, such that all Y ∈ σR are terminal symbols, a reference to this rule is made in

the completion table for the symbol X, the symbol X is marked as a terminal symbol, and

Completer is called recursively for all rules Z → Zi . . . X . . . Zm in CHART. Upon completion

of the algorithm, we have that for every symbol X completed, there is a reference to every

rule X → σR in which the symbol X has been completed. If there is no reference to α

in the completion table for the symbol X, then at least one symbol Y ∈ σR has not been

completed. Since all rules preserve bottom-up reachability, we have that, if a symbol Y has

never been completed then Y is not A-reachable, and hence the rule Y ∈ σR cannot form part

of any bidirectional reachability-based sub-module. In conclusion, T1 is not a bidirectional

reachability-based sub-module, which contradicts the assumption. 2

4.2.6 Extracting MinAs

Once Algorithm 6 terminates, the chart returned contains a representation of all possible

bidirectional reachability-based sub-modules, and hence a representation of all MinAs. This

set is essentially an indexed bidirectionally reachable module. Though the algorithm termi-

nates in polynomial time, we know that the chart may contain an exponential number of

sub-modules, hence any algorithm extracting the set of minimal modules (MinAs) from the

4.2. Computing and Extracting all MinAs in HL 76

chart must run in exponential worst-case time. When designing an extraction algorithm the

properties of MinAs listed in Section 4.2.1 are of paramount importance. That is:

• All MinAs are bidirectional reachability-based sub-modules, thus for every symbol Yi

on the right hand side of a production rule, we need at least one other rule Yi → . . .,

with Yi on the left hand side of the rule, in order to preserve bidirectional reachability.

• By Theorem 16 we have that, in every MinA, at most one rule Xi → . . . for the symbol

Xi on the left hand side may be present.

Based on these two properties, we note that, given a MinA M1 for the statement A v B

such that M1 |= A v B, we have that for every symbol xi ∈Sig(M1), other than the symbol A,

there is exactly one production rule (xi → . . .) ∈ CFGM1 . We therefore base our extraction

algorithm on finding a production rule for every symbol in the set of symbols represented by

SYM , where a symbol xi ∈ SYM if and only if it appears on the right hand side of some

production rule. The algorithm we present makes use of the following data structures:

• CHART - Reference table returned by Algorithm 6,

• SYM - The set of symbols {x1, . . . , xi, . . . xn} for which no production rule xi → . . .

have yet been chosen,

• IMPL - The set of symbols {yi, . . . , yj , . . . ym} for which production rules yi → . . . have

already been chosen,

• LIST - The set of all current production rules being processed,

• REF - A reference table, indexing every symbol zi on the the right hand side of every

production rule chosen. Every reference for symbol zi in REF indicates the occurrence

of zi on the right hand side of some rule in the current set of rules in LIST.

Algorithm 7 extracts all MinAs for a given statement of interest given the reference table

CHART returned by Algorithm 6. Given the statement of interest A v B, it utilises a couple

of procedures in order to extract all possible MinAs in HL. Each of these procedures must

must maintain the properties of MinAs in HL and thus the following set of invariants:

• INVARIANT-1: IMPL ∩ SYM = ∅.

4.2. Computing and Extracting all MinAs in HL 77

Algorithm 7 (Extract-All-HL-MinAs)
Procedure Extract-All-HL-MinAs
27: LIST:=REF:=SYM:=IMPL:=ResultSet:=∅
28: SYM:=SYM + S
29: while SYM6= ∅
30: Extract-Single-HL-MinA
31: if LIST.Size > 0 then
32: ResultSet := ResultSet + LIST
33: Prepare-Next-MinA
34: return ResultSet

• INVARIANT-2: for every rule yi → σR ∈LIST, and for every zi ∈ Sig(σR) besides A,

we have that zi ∈SYM or zi → . . . ∈LIST but not both.

• INVARIANT-3: for every rule yi → σR ∈LIST, and for every zi ∈ Sig(σR) besides A,

we have that REF[zi] contains a reference to yi → σR.

The first procedure adds a production rule to the set of production rules that make up the

current MinA being extracted. It adds the given rule to the MinA and adds any new symbols

on the right hand side of the rule that needs to be implemented to SYM. The procedure is

formally defined as follows:

Procedure ADD RULE(xi → αR)
Input: xi → αR - Production rule to add to list
1 : LIST:=LIST + (xi → αR)
2 : SYM:=SYM - xi
3 : IMPL:=IMPL + xi
4 : for each yj ∈ αR do
5 : REF[yj] := REF[yj] + (xi → αR)
6 : if yj 6∈IMPL then SYM := SYM + yj

Lemma 4 ADD RULE(xi → αR) preserves invariants INVARIANT-1, INVARIANT-2 and

INVARIANT-3.

Proof: Assuming that all three invariants hold when the procedure is entered, and that xi ∈

SYM, then upon termination of ADD RULE(xi → αR) all invariants will be preserved:

• INVARIANT-1: Only Lines 2, 3 and 6 alter the sets SYM and IMPL, as soon as xi is

removed from SYM at Line 2 it is added to IMPL at Line 3, thus IMPL ∩ SYM = ∅.

4.2. Computing and Extracting all MinAs in HL 78

Line 6 adds yj to SYM only when yj 6∈ IMPL and thus IMPL ∩ SYM = ∅. Therefore,

ADD RULE maintains this invariant.

• INVARIANT-2: Since the invariant holds when the algorithm is entered, and xi ∈SYM,

we have that lines 1 and 2 together ensure that xi 6∈ SYM and that xi → . . . ∈ LIST.

Now for every yj ∈ Sig(αR), lines 4 and 6 ensures that yj ∈ IMPL or yj ∈ SYM but

not both. However, by Line 3, yj ∈ IMPL whenever yi → . . . ∈LIST. Therefore, Line 6

adds yj to SYM whenever yj → . . . 6∈LIST. Hence, INVARIANT-2 is preserved.

• INVARIANT-3: This invariant is trivially preserved by lines 1, 4 and 5. Line 1 adds

the rule (xi → αR) to LIST and while iterating through all yj ∈Sig(αR) in Line 4, Line

5 adds a reference to (xi → αR) in REF[yj]. 2

The second procedure we implement is designed to remove a production rule from the

current MinA being extracted. It removes the production rule, then after verifying that a

symbol on its right hand side is not required by any other rule it removes the symbol from

SYM:

Procedure REMOVE RULE(xi → αR)
Input: xi → αR - Production rule to remove from list
7 : LIST:=LIST - (xi → αR)
8 : IMPL:=IMPL - xi
9: for each yj ∈ αR do
10: REF[yj] := REF[yj] - (xi → αR)
11: if REF[yj] = ∅
12: SYM := SYM - yj
13: if REF[xi] 6= ∅
14: SYM := SYM + xi

Lemma 5 REMOVE RULE(xi → αR) preserves invariants INVARIANT-1, INVARIANT-

2 and INVARIANT-3.

Proof: Assuming that all three invariants hold when the procedure is entered, and that

xi → αR ∈LIST, then upon termination of REMOVE RULE(xi → αR) all invariants will be

preserved:

4.2. Computing and Extracting all MinAs in HL 79

• INVARIANT-1: By the invariants, when the procedure starts, we have that xi 6∈ SYM,

xi → αR ∈ LIST and xi ∈IMPL. Line 8 removes xi from IMPL and lines 13 and 14

conditionally adds xi to SYM. Whether or not xi is added to SYM at Line 14, we

have that IMPL ∩ SYM = ∅ and thus INVARIANT-1 holds true when the procedure

terminates.

• INVARIANT-3: Lines 7, 9 and 10 trivially maintains this invariant. Line 7 removes

xi → αR from LIST and lines 9, 10 iterates over all yj ∈Sig(αR) and removes the

reference to xi → αR from REF[yj].

• INVARIANT-2: By INVARIANT-3 we have that whenever REF[yj] 6= ∅, the symbol

yi appears on the right hand side of some rule in LIST. For the symbol xi, Line 7

removed xi → αR from LIST and thus lines 13 and 14 ensures that if xi appears on

the right hand side of any remaining rule in LIST that xi ∈SYM. Thus for the symbol

xi the invariant is preserved. For all symbols yj ∈Sig(αR) only appearing on the right

hand side of the rule being removed and not in any other rule in LIST, lines 11 and 12

ensures that these symbols also does not appear in SYM. Hence, upon termination of

the procedure, INVARIANT-2 is preserved. 2

The next procedure we introduce extracts a single MinA, for the statement A v B, by

iterating over SYM and introducing a production rule for every entry in SYM except the

symbol A and possibly the symbol S. Upon termination of Algorithm 6 the reference table

CHART[A] = ∅ since A is the initial terminal symbol and thus there is no production rule

A → αR referenced. For all other symbols Ci besides S, occurring on the left hand side

any production rule in the bidirectional reachability-based sub-module retuned by Algorithm

6, CHART[Ci] 6= ∅. CHART[S]=∅ whenever no bidirectional reachability-based sub-module

exists for the statement A v B and thus no MinA.

Procedure Extract-Single-HL-MinA
15: for each xi ∈ SYM do
16: if CHART[xi] 6= ∅
17: ADD RULE(CHART[xi].First)
18: else
19: SYM := SYM - xi

4.2. Computing and Extracting all MinAs in HL 80

Lemma 6 Extract-Single-HL-MinA preserves invariants INVARIANT-1, INVARIANT-2

and INVARIANT-3 and upon termination LIST is either empty or it contains all produc-

tion rules representing a single MinA M1 for the statement A v B. Further, let m be the

number of symbols in Sig(M1), then Extract-Single-HL-MinA terminates after at most m×m

operations.

Proof: Firstly, we assume that all three invariants hold when the procedure is entered, then

we show that upon termination all invariants will be preserved. Secondly, we show that given

that the invariants hold upon termination of the algorithm and that SYM = ∅, then the set

LIST is either empty or contains all the production rules representing a single MinA.

The first part of the proof is trivial since no modifications are made to any of the data

structures except by Procedure ADD RULE, but by Lemma 4, ADD RULE preserves the

invariants for all Ci ∈SYM except when CHART[S]=∅. In this last case the invariants are

trivially preserved since IMPL=LIST=∅ and Line 19 will remove S from SYM.

Now let SYM= ∅, LIST 6= ∅ and let INVARIANT-1, INVARIANT-2 and INVARIANT-3

hold when Extract-Single-HL-MinA terminates. By INVARIANT-2 we have that for every

rule yi → σR ∈LIST, and for every zi ∈ Sig(σR) besides A, we have that zi ∈SYM or

zi → . . . ∈LIST but not both, yet SYM = ∅ thus for every rule yi → σR ∈LIST, and for every

zi ∈ Sig(σR) besides A, we have that zi → . . . ∈LIST. Hence, LIST represents a bidirectional

reachability-based sub-module for the statement A v B. To show that it is minimal, we

note that by INVARIANT-1, IMPL ∩ SYM = ∅ at every iteration of the for loop at Line 17.

Since ADD RULE preserves INVARIANT-1 and for every rule Ci → . . . processed adds the

symbol Ci to IMPL and removes it from SYM, it is the case that once a rule Ci → . . . have

been processed by ADD RULE the symbol Ci will never be added to SYM again during the

entire run of the procedure. Hence, every symbol Ci occurs at most once on the left hand

side of any production rule in LIST. Thus LIST is a minimal bidirectional reachability-based

sub-module and by Theorem 17 a MinA.

Lastly we show that Extract-Single-HL-MinA terminates in quadratic worst case time in

the number of symbols in the MinA M1. Let m be the number of symbols occurring in the

MinA M1, i.e. let m = |Sig(M1)|. Then from the second part of the proof above, we know

that each symbol Ci is added to SYM at most once throughout the entire run of Extract-

Single-HL-MinA, thus at most m symbols may ever be added to SYM. Since for each of these

Procedure ADD RULE is called exactly once, we have that the for loop at Line 17 will do

4.2. Computing and Extracting all MinAs in HL 81

at most m iterations. However, since every rule may have at most m symbols appearing on

its right hand side, we see that during the execution of ADD RULE the for loop at Line 4

may cause at most m iterations of lines 5 and 6. Hence, assuming that all other operations

runs in constant time, the worst case running time of Procedure Extract-Single-HL-MinA is

O(m2). 2

The previous algorithm extracts a single MinA by assigning, in a depth-first manner, for

each possible symbol Ci ∈ SYM, a single production rule Ci → . . . to LIST. In order to

extract all possible MinAs, the same depth first approach may be followed by choosing, for

each rule Ci → αR occurring in LIST, an alternate rule Ci → σ for the same symbol Ci. For

each of these CHART[Ci] represents all possible rules for the symbol Ci. However, Procedure

ADD RULE only ever adds the first entry in CHART[Ci] to LIST. In order to prepare LIST

and SYM so that all alternate MinAs may be extracted we introduce the procedure Prepare-

Next-MinA.

Intuitively, starting with the last rule added to LIST for the symbol Ci, we remove the

rule from LIST and choose, if possible, an alternate rule from CHART[Ci] and add it to LIST,

after which Extract-Single-HL-MinA may be called to extract the next MinA. When no more

alternates are available for the symbol Ci, the previous next last rule is chosen from LIST

and alternates chosen. This procedure continues until an alternate has been found for some

rule in LIST or no rule in LIST has an alternate, in which case there are no more additional

MinAs to extract.

Procedure Prepare-Next-MinA
20: while LIST.Size > 0 do
21: Index := LIST.Size - 1
22: xi → αR :=LIST[Index]
23: REMOVE RULE(xi → αR)
24: if CHART[xi].HasNext AND (xi ∈ SYM or xi = S)
25: ADD RULE(CHART[xi].Next)
26: return

Lemma 7 Procedure Prepare-Next-MinA preserves invariants INVARIANT-1, INVARIANT-

2 and INVARIANT-3. Upon termination, either LIST = ∅ or exactly one rule Ci → αR for

the symbol Ci has been replaced by an alternative rule Ci → σR.

4.2. Computing and Extracting all MinAs in HL 82

Proof: Assuming that all three invariants hold when the procedure is entered, we show

that upon termination of Prepare-Next-MinA all invariants are trivially preserved. The

sets SYM, IMPL, LIST and REF are accessed only through the procedures ADD RULE and

REMOVE RULE. After execution of REMOVE RULE at Line 23, by Lemma 5 all invariants

will be preserved. If an alternative rule exists for the symbol xi, we have that by INVARIANT-

2, xi ∈ SYM only if xi appears on the right hand side of some other rule in LIST or when

xi = S. The check at Line 24 ensures that the alternate rule for xi will only be added by

ADD RULE when xi ∈ SYM, thus, by Lemma 4, after execution of Line 25 all invariants

will be preserved. Since all changes to the data structures are done at these two points, after

every iteration of the while loop at Line 24, all invariants will be preserved.

Next we show that at termination of Prepare-Next-MinA, either LIST = ∅ or exactly one

alternate rule has bee chosen. At every iteration of the while loop, a single rule xi → . . .

is removed by REMOVE RULE at Line 23. Since all invariants are preserved at this point,

xi ∈ SYM only if xi appears on the right hand side of some remaining rule in LIST. At Line

24, CHART[xi] is checked for an alternative rule for xi. If an alternative rule exists then it is

added to LIST by Line 25, after which Line 26 immediately exists the procedure. Since the

inclusion of an alternate rule in LIST immediately leads to termination of the procedure, if

an alternate rule is chosen, exactly one such rule is chosen during the execution of Prepare-

Next-MinA. If no alternative rule has been found for xi, no rule for xi will be in LIST, the

new last rule yi → . . . ∈ LIST will be chosen and an alternative rule chosen if possible. This

process continues until a alternative rule has been found for some symbol Ci or LIST = ∅. 2

We may now show that given CFGAO, for the statement A v B, Algorithm 7 returns a set

containing all MinAs, and that each MinA is extracted in O(m2) worst case time, where m

is the number of symbols occurring in Sig(CFGAO).

Theorem 21 Given the indexed bidirectional reachability-based HL CFG for the statement

A v B, CFGAO and the reference table CHART returned by Algorithm 6, Algorithm 7 will

extract all MinAs Mi for the entailment A v B. Each Mi will be extracted in O(m2) worst

case running time, where m =|Sig(CFGAO)|.

Proof: We give a proof in three parts. Termination: By Lemma 6, Extract-Single-HL-

MinA terminates in O(m2) worst case time for the MinA M1, where m is |Sig(M1)| ⊆

|Sig(CFGAO)|. Procedure Prepare-Next-MinA does m operations in the worst case, which

4.2. Computing and Extracting all MinAs in HL 83

occurs whenever no alternate rules for all m symbols exists and all m rules are removed from

LIST. Hence each iteration of the while loop at Line 29, will run in at most O(m2+m)=O(m2)

worst case time. During the execution of Prepare-Next-MinA at least one rule is removed

from LIST and possibly changed with an alternative rule for the same symbol. Since O is

acyclic, and CHART contains a finite number of alternate production rules for every symbol,

Procedure Prepare-Next-MinA may be called at most a finite number of times before no more

substitution is possible. At this point after the call to Prepare-Next-MinA, the set LIST =

∅, at which point the algorithm will terminate. By Example 7 there can be an exponential

many MinAs and hence Algorithm 7 runs and terminates in exponential worst case time.

Soundness: By Lemma 6, if INVARIANT-1, INVARIANT-2 and INVARIANT-3 hold

when Procedure Extract-Single-HL-MinA is called, LIST contains a MinA upon its termina-

tion. We therefore show that during each iteration of the while loop at Line 29, all invariants

are preserved and thus that after every execution of Line 30, LIST contains a valid MinA.

Initially IMPL=LIST=REF=∅ and SYM={S}, hence, all invariants are trivially preserved

during the first execution of Line 30. By Lemma 6, after execution of Extract-Single-HL-

MinA all invariants are preserved and by Lemma 7 every call to Prepare-Next-MinA preserves

all invariants. Since these are the only two procedures called during the execution of every

iteration of the while loop at Line 29, we have that every time Line 30 is executed all invari-

ants are true, and thus by Lemma 6, every time Line 32 is executed, the set LIST contains

a valid MinA.

Completeness: Alternate MinAs are introduced by Prepare-Next-MinA. By Theroem

7, after termination of this procedure LIST is either empty, which indicates that no more

MinAs are available, or exactly one alternate rule has been introduced in LIST. Since this

rule change preserves all invariants, we know that SYM contains all symbols yi that appear

on the right hand side of rules in LIST for which no rule yi → . . . appear in LIST. For these

symbols, at the next call to Extract-Single-HL-MinA, at Line 30, a MinA is extracted. Since

Prepare-Next-MinA introduces every possible combination of rules for each symbol in LIST

in turn, and after each such rule change all invariants are preserved, Algorithm 7 will extract

all possible MinAs before termination. 2

4.3. Computing and Extracting all MinAs in EL 84

4.3 Computing and Extracting all MinAs in EL

In this section we investigate the applicability of the sub-module computation algorithm

(Algorithm 6) and the HL MinA extraction algorithm (Algorithm 7) as MinA computation

algorithms for the more expressive DL EL. In Section 4.3.1 we show how an EL TBox may

be transformed to an equivalent CFG such that each production rule in the CFG preserves

bidirectional reachability. Then in Section 4.3.2 we show that, for an EL TBox consisting

of only primitive concept definitions, Algorithms 6 and 7 may be applied directly in order

to extract all MinAs for a subsumption statement of interest. Lastly, we show there is an

exponential explosion in the number of minimal modules associated with every MinA when

general EL TBoxes are introduced.

4.3.1 Converting an EL ontology in normal form to a CFG

As in the case for HL TBoxes we show how a general EL TBox may be converted to an

equivalent CFG. In the discussion that follows we assume that we have an EL TBox T in

normal form, and a statement A v B such that T |= A v B, where A and B are single

concept names.

Similar to HL we have that every MinA in EL is a bidirectional reachability-based sub-

module, hence every production rule introduced during the conversion process must preserve

bidirectional reachability. Given T reachA↔B , every axiom αL v αR ∈ T reachA↔B has the following

two properties:

1. every xi ∈ Sig(αL) is A-reachable, and

2. some yi ∈ Sig(αR) is ←B-reachable.

We know that there also exists a special case in which A-reachability implicitly holds for

an axiom. For the DL EL, implicit A-reachable axioms have the form:

> v αR

The conversion process below proceeds exactly as in the case of HL. Every axiom is dealt

with in a step by step manner until all axioms in T have been processed.

Step 1: All axioms αL v αR ∈ T such that Sig(αL) = ∅ are (implicitly) A-reachable.

By definition of bottom-up reachability all such axioms are always A-reachable. For

4.3. Computing and Extracting all MinAs in EL 85

each such axiom the implicit A-reachability of αL is made explicit by introducing the

production rule:

yi → A

This rule is read as: yi → A is bidirectionally reachable if the symbol yi is ←B-reachable

and A is A-reachable.

Step 2: For each axiom αL v αR in O such that |Sig(αL)|>= 1 and |Sig(αR)|>= 1,

introduce the production rule:

yi → Sig(αL)

for each yi ∈ Sig(αR). Axioms of this kind do not have any implicit reachability

concerns like those in Step 1 above. This rule is read as: yi → Sig(αL) is bidirectionally

reachable if the symbol yi is ←B-reachable and all symbols xi ∈ Sig(αR) are A-reachable.

Every step in the conversion process conserves the bidirectional reachability properties

of the original axioms. During the execution of Step 2, axioms of the form αL v ∃r.C are

broken up into two separate production rules namely:

r → αL

and

C → αL

By Definition 31, top-down reachability is preserved whenever any of the symbols of an

existential restriction that appears on the right hand side of an axiom are ←B-reachable, hence

the introduction of two separate productions rules preserves top-down reachability. Therefore,

bidirectional reachability is in no way affected by the conversion process and the correctness

of the conversion process is implicit in the individual steps. We may thus formally define a

reachability preserving CFG as:

Definition 40 (Reachability preserving CFG for an EL TBox.) Let T be an EL

TBox in normal form, and A v B a statement such that T |= A v B, then the reachability

preserving CFG, denoted CFGAT , is a minimal set of CFG production rules such that for each

axiom αL v αR ∈ T :

• if Sig(αL) = ∅ the rule xi → A ∈ CFGAT for each xi ∈ Sig(αR);

• otherwise, the rule xi → Sig(αL) ∈ CFGAT for each xi ∈ Sig(αR);

4.3. Computing and Extracting all MinAs in EL 86

where the symbol A represents the only terminal symbol and the set Sig(T)\A represents the

set of non-terminals.

The conversion process may be illustrated by the following example:

Example 13 Given an acyclic EL TBox T , with T ′ as T in normal form, and A v D the

statement of interest:

TBox T Normal form TBox T ′

A v B1 α1 : A v B1

B1 v C1 uD α2 : B1 v C1

B2 u C1 v D α3 : B1 v D

> v B2 α4 : B2 u C1 v D

C1 v ∃r.D α5 : > v B2

∃r.B1 v B2 α6 : C1 v ∃r.D

α7 : ∃r.B1 v B2

Then CFGAT is given by:

B1 → A (Step 2 applied to α1)

B2 → A (Step 1 applied to α5)

C1 → B1 (Step 2 applied to α2)

D → B1 (Step 2 applied to α3)

D → B2C1 (Step 2 applied to α4)

r → C1 (Step 2 applied to α6)

D → C1 (Step 2 applied to α6)

B2 → rB1 (Step 2 applied to α7)

4.3.2 Extracting all EL MinAs

In Section 4.2 we saw that, given a CFG representation of an HL TBox, Algorithm 6 com-

putes an indexed bidirectional reachability-based sub-module from which all sub-modules

may be extracted. Algorithm 7 may then be used to extract all minimal modules and thus

MinAs. Since the algorithm’s correctness is dependent on the implicit correctness of the

CFG production rules and not the specific TBox the CFG represents, the algorithm may be

applied to any DL for which bidirectional reachability-based sub-modules may be extracted.

We therefore state the following without proof:

4.3. Computing and Extracting all MinAs in EL 87

Theorem 22 Let T be an acyclic EL TBox in normal form, and A v B a statement such

that T |= A v B, with CFGAT the context free grammar associated with T . If n is the

number of production rules in CFGAT , then Algorithm 6 computes all possible bidirectional

reachability-based sub-modules in O(n2) worst case running time.

Once Algorithm 6 terminates we need to extract all possible sub-modules representing

MinAs. By Corollary 1 there is a one-to-one correspondence between HL MinAs and mini-

mal bidirectional reachability-based sub-modules. However, when existential restrictions are

introduce, it is no longer the case that every minimal module corresponds to a MinA.

Example 14 Let T be an acyclic EL TBox consisting of only primitive concept definitions.

Further let M1 be a minimal bidirectional reachability-based sub-module for the statement

A v B consisting of the axioms A v ∃r.C and C v B. Then M1
reach
A↔B = M1 and M1 is

minimal, but M1 6|= A v B unless M1 |= B v ⊥. Hence M1 is not a MinA for T |= A v B.

In fact, let T be an acyclic EL TBox consisting of only primitive concept definitions, and

let M1 be a minimal bidirectional reachability-based sub-module for the statement A v B

such that (αL v ∃r.C) is the only existential restriction occurring in M1. Since T consists

of only primitive concept definitions, the symbol r does not appear on the left hand side

of any axiom in T and bidirectional reachability is preserved solely through the symbol C.

However, since EL does not contain the ⊥ concept or ¬ constructor and only allows for

the conjunction of concept descriptions, all concepts are satisfiable including C and thus

M1 6|= C v ⊥. Thus any axiom with ∃ in its right hand side cannot contribute to the

entailment T |= A v B, and hence any minimal bidirectional reachability-based sub-module

containing such a statement cannot be a MinA. Each minimal bidirectional reachability-based

sub-module Mi not containing existential restrictions on the right hand side of any axiom in

Mi corresponds to a minimal sub-module in the DL HL.

Corollary 2 Let T be a EL TBox consisting of only primitive concept definitions in normal

form, and let A v B be a statement such that T |= A v B. Then for every minimal

bidirectional reachability-based sub-module Ni such that αL v ∃r.C ∈ Ni we have that Ni 6|=

A v B. Further, for every minimal bidirectional reachability-based sub-module Mi such that

αL v ∃r.C 6∈Mi we have that Mi |= A v B.

Consequently, Algorithm 7 may be used in order to extract all minimal modules and

thus MinAs for acyclic EL TBoxes consisting of only primitive concept definitions. When a

4.3. Computing and Extracting all MinAs in EL 88

minimal module includes axioms containing existential restrictions this module may simply

be discarded as not being a MinA. Thus Algorithm 7 is complete in that it will extract all

MinAs, however since not all minimal modules extracted are MinAs it is no longer sound.

Extending the MinA extraction problem to general EL TBoxes we show, by the fol-

lowing example, that for these TBoxes there are MinAs that are not minimal bidirectional

reachability-based sub-modules.

Example 15 Let T be an acyclic general EL TBox in normal form, further let M be a

bidirectional module for the statement A v D such that M |= A v D, where M consists of

the following axioms:

A v C1, A v B, B v C3, C1 v ∃r.C2, C2 v C3, C3 u C4 v D, ∃r.C3 v C4

Then there are two minimal bidirectional reachability-based sub-modules M1
reach
A↔B and M2

reach
A↔B ⊂

T reachA↔B such that M1
reach
A↔B 6|= A v D and M2

reach
A↔B 6|= A v D.

M1 = {A v C1, A v B, B v C3, C1 v ∃r.C2, C3 u C4 v D, ∃r.C3 v C4}

and

M2 = {A v C1, C1 v ∃r.C2, C2 v C3, C3 u C4 v D, ∃r.C3 v C4}

Analysing this example we can conclude that:

1. M is the only MinA, but since it is not a minimal bidirectional reachability-based

sub-module, not all MinAs are minimal bidirectional reachability-based sub-modules,

and

2. M1 and M2 are minimal bidirectional reachability-based sub-modules, but neither M1

not M2 are MinAs, minimal bidirectional reachability-based sub-modules are not nec-

essarily MinAs.

Here the loss of minimality is caused by concept C3. In both M1 and M2 we have that

C3 occurs on the left hand side of axioms on two occasions. For each of these bidirectional

reachability requires the occurrence of C3 on the right hand side of only one axiom. In terms

of production rules, we see that there are two rules for the symbol (C3 → . . .). In order to

preserve minimality Algorithm 7 restricts the choice to only one of these, however in this case,

whenever the symbol C3 occurs on the right hand side of a production rule, a different choice

of production rule implementing the symbol C3 needs to be made. We note here that the

4.3. Computing and Extracting all MinAs in EL 89

above samples are for general TBoxes and thus not MinAs do not neccesarily correspond to

minimal bidirectional sub-modules, however, for the acyclic TBoxes containing only primitive

concept inclusion every MinA still corresponds to a minimal bidirectional reachability-based

sub-module.

Generalizing this result we have that for every occurrence of the symbol Ci on the right

hand side of a production rule, a MinA extraction algorithm would have to iterate over every

possible implementation of the symbol Ci. Each possible choice does not necessarily lead

to subsumption being preserved, and where subsumption is preserved, the resulting set may

not necessarily be minimal. Hence not only is it required to extract all possible bidirectional

reachability-based sub-modules and test for subsumption preservation, it is also required to

run a minimality test on each module returned. This leads to a possible exponential explosion

in the number of modules being extracted and tested.

Theorem 23 Let T be an acyclic general EL TBox in normal form and A v B a statement

of interest. Let CHART represent the resultant reference set returned by Algorithm 6. Let

M1 be a MinA for A v B and P1 represent the set of production rules for M1. Now let mi

be the number of times a symbol Ci occurs on the right hand side of all production rules in

P1 and let ki be the number of entries in CHART[Ci]. Then for the n possible symbols in P1

there are a total of
∏n
i=1

∑j=mi≤ki
j=1 C(ki

j) bidirectional reachability-based sub-modules.

Proof: Let S be a set of n elements and let 1 ≤ r ≤ n, then the number of subsets of S with

r elements is given by C(nr). Now for each symbol Ci the number of possible choices is given

by ki, one choice for each entry in CHART[Ci]. Thus, if the symbol Ci appears only once

on the right hand side of all production rules in P1, there are a total of C(ki
1) = ki possible

variations of sub-modules introduced by this symbol. Now, when the symbols Ci appears

twice on the right hand side of all production rules in P1, we may assign the same rule from

CHART[Ci] to both occurrences of the symbols which allows for C(ki
1) = ki possible choices,

or we may assign all possible 2-combinations of alternating rules from CHART[Ci] i.e. C(ki
2).

Combining these results we have a total of C(ki
1) +C(ki

2) possible choices of rule assignments.

For the mi occurrences of the symbol Ci on the right hand side of all production rules in

P1, we have a total of
∑j=mi≤ki

j=1 C(ki
j) possible choices of elements from CHART[Ci], where

j iterates over all values between 1 and mi or 1 and ki whenever mi > ki. The maximum

number of choices for any symbol Ci is occurs when mi = ki and amounts to a total of 2ki−1

variations. However, whenever mi < ki, we have that
∑j=mi<ki

j=1 C(ki
j) ≥ 2mi − 1. Thus if

4.4. Conclusion 90

|Ci| denotes the number of possible sub-module variations introduced by the symbol Ci, then

|Ci| lies in within the boundary given by 2mi ≤ |Ci|+ 1 ≤ 2ki . Now let |Ck| denote the total

number of variants of sub-modules introduced by the symbol Ck, then for both Ci and Ck

together there are a total of |Ci| × |Ck| possible sub-modules, and thus for all n symbols a

total of
∏n
i=1 |Ci| distinct variants. 2

Calculating the total number of bidirectional reachability-based sub-modules in Example

15 we have that all symbols Ci besides C3 occur only once on the right hand side of production

rules and have only one entry in CHART. For all these symbols we have that C(11) = 1. The

symbol C3 appears twice on the right hand side of production rules, and twice in CHART[C3],

hence we have a total of 22− 1 = 3 bidirectional reachability-based sub-modules, namely M ,

M1 and M2.

From Theorem 23 we see that any algorithm iterating over all possible bidirectional

reachability-based sub-modules in order to extract MinAs for general EL TBoxes runs in

exponential worst case time for every single MinA being extracted. Every bidirectional

reachability-based sub-module Mi extracted also has to be tested for subsumption i.e. Mi |=

A v B and for minimality. Since other MinA extraction methods, such as those presented

by Suntisrivaraporn et al. (2008), require in the worst case, only a logarithmic number of

subsumption tests in order to extract a single MinA, iterating over an exponential number

of bidirectional reachability-based sub-modules in order to find a single MinA is potentially

inefficient.

4.4 Conclusion

In this chapter we investigated the relationship between bidirectional reachability-based mod-

ules and MinAs. We showed that there is a one-to-one correspondence between MinAs and

minimal bidirectional reachability-based modules for a subsumption entailment in the DL

HL. Extending our investigation to EL we saw that for EL TBoxes consisting of only primi-

tive concept definitions, axioms in normal form containing existential restrictions on the right

hand side cannot contribute to a MinA and thus that, for these TBoxes, the algorithms for

HL can be used to extract all MinAs. For general EL TBoxes we know that every MinA is

a bidirectional reachability-based sub-module but we have shown that these need not necce-

sarily be minimal and thus in order to extract a single MinA, any algorithm iterating over

4.4. Conclusion 91

bidirectional reachability-based sub-modules would need, in the worst case, to iterate over all

such modules in order to extract even a single MinA. Thus any MinA extraction algorithm

that iterates over bidirectional reachability-based sub-modules would be extremely inefficient.

Chapter 5

Empirical Results

In this chapter we test the algorithms presented in Chapters 3 and 4 and evaluate their perfor-

mance in terms of real world biomedical ontologies. The main contribution in this dissertation

is the introduction of a bidirectional reachability-based modularization method, which may

be used to obtain small modules that consider both the sub-concept and super-concept in

a subsumption entailment. Testing is therefore limited to that of extracting modules based

on subsumption statements between single concepts. Module extraction based on general

signatures are not evaluated in this dissertation.

5.1 Test Suite

Three real world, generally large scale, biomedical ontologies are considered for testing pur-

poses in this chapter, which for comparison purposes, are identical to those used by Suntisri-

varaporn (2009) during the testing of the CEL reasoner1. Since the focus of the algorithms

that were introduced in the previous chapters is on inexpressive DLs in the EL family we

have restricted our choice of ontologies to the following:

OSnomed - The Systematized Nomenclature of Medicine, Clinical Terms (Snomed).

A comprehensive medical and clinical ontology. It is an unfoldable ELH TBox augmented

with two complex role inclusion axioms. We utilise the January/2005 release which consists

of 340 972 primitive concept definitions, 38 719 full concept definitions, 11 role hierarchy ax-

ioms, and a role inclusion axiom, and with a total of 379 691 concept names and 62 role names.

1These were obtained and used without alteration from http://lat.inf.tu-dresden.de/systems/cel/

92

5.1. Test Suite 93

ONci - The Thesaurus of the US National Cancer Institute (Nci). This a large

cancer-centric ontology that is a reference terminology for covering domains such as diseases,

drugs, anatomy, genes, gene products, techniques and biological processes. The ontology

is designed as an unfoldable EL TBox augmented with domain and range restrictions. It

consists of 27 652 primitive concept definitions which refers to 70 role names. In the CEL

version of the ontology, as obtained from http://lat.inf.tu-dresden.de/systems/cel/, all ex-

plicit domain and range restrictions have been removed.

OGo - The Gene Ontology (Go). This ontology is a collaborative effort to provide consis-

tent descriptions of gene products over different databases. It is formulated as an unfoldable

EL TBox with a single transitive role part-of. The release of OGo used in Suntisrivaraporn

(2009) and in our evaluations, is an acyclic primitive TBox and consists of 20 465 primitive

concept definitions, each defining a single concept name.

The algorithms presented were all implemented in Java as part of a plugin for the Protégé

4.1 ontology editor. All tests were performed on a single Intel Quad Core based computer,

with 6 Gig of RAM, running on Microsoft Windows 7 x64 and hosted in a 64 bit Java

virtual machine. No consideration was given during the implementation of the algorithms for

utilising the multi-core capabilities of the processor. All algorithms were thus implemented

using a single threaded approach.

In all cases the standard classes from the OWLApi version 3.0.0 were used without alter-

ation, no additional processing was performed to alter an ontology once loaded. Thus any

internal processing, bookkeeping, normalisation and indexing as performed by the standard

ontology classes were left unaltered. All axioms were explicitly left in their standard denor-

malised form as loaded by the ontology. Where normalisation was required by the algorithms,

it was done implicitly during a separate indexing phase on both the left and right hand side

of axioms, where elements of a signature were indexed based on their projected normal forms.

In this way axioms could be left unaltered whilst all processing could be performed using the

relevant indexes.

We did not implement nor utilise an optimized subsumption testing algorithm for inex-

pressive DLs. Where subsumption testing was required by the MinA extraction algorithm,

the procedure adopted were as follows. Given a set of axioms S representing a possible MinA,

create a new ontology consisting of these axioms. Once the ontology has been created we

5.2. Module Extraction 94

call the standard HerMit2 reasoner to perform the neccesary subsumption testing. Though

this method is probably not as efficient as providing a custom subsumption testing algorithm

specifically optimized for the task at hand, our goal was to test the effectiveness of our MinA

extraction algorithm by using the existing standard reasoning algorithms provided by the

Protégé environment.

5.2 Module Extraction

In this section we investigate the performance of Algorithm 3 in terms of extracting bidi-

rectional reachability-based sub-modules for subsumption statements between single concept

names.

Given that our aim is to extract bidirectional reachability-based sub-modules for all pairs

of concept names, we observe that, given an ontology O and a concept name A, extract-

ing a bidirectional reachability-based sub-module OreachA↔B for any concept name B not in

Sig(OreachA), will result in an empty module being extracted. We therefore followed the follow-

ing approach: for an ontology O, and each symbol A ∈Sig(O), we extracted the reachability-

based module OreachA and limited bidirectional reachability-based sub-module extraction to

only those concept names in Sig(OreachA).

Thus for each concept name A ∈Sig(O) and all concept names B in Sig(OreachA) such

that O |= A v B we calculated the average additional time to extract, as well as the size

of, the bidirectional reachability-based module for A v B. For each symbol A ∈Sig(O) we

averaged the results over all bidirectional reachability-based modules OreachA↔B for each symbol

B ∈Sig(OreachA). Median and maximum values are thus averaged values for these bidirectional

reachability-based modules and therefore not integer values.

Table 5.1 shows the results3 of all bidirectional reachability-based sub-modules extracted

using Algorithm 3. The columns in the table are organised as follows:

• Ontology - The ontology for which the modules are being extracted.
2http://hermit-reasoner.com/
3We note that the number of axioms in the reachability-based modules reported here differs substantially

from those reported in Suntisrivaraporn (2009). The reason for this discrepancy is not due to differences
in the core reachability module extraction algorithm, but rather the fact that we do not normalize axioms
within the ontology. Thus we have fewer axioms in each extracted module and no penalties with regards to
de-normalisation. We further note that, we did not calculate the average values for all bottom-up reachability-
based modules, but rather only for those for which bidirectional reachability-based modules for a subsumption
entailment could be extracted.

5.2. Module Extraction 95

• | OreachA | - The number of axioms in the reachability-based modules for all concepts

A ∈Sig(O).

• T(OreachA) - The average time, in seconds, required by the algorithm to extract all

reachability-based modules.

• | OreachA↔B | - The average number of axioms for all bidirectional reachability-based sub-

modules.

• T(OreachA↔B) - The additional time, in seconds, required to extract the bidirectional

reachability-based sub-modules, i.e. Total time = T(OreachA) + T(OreachA↔B).

Average Values
Ontology | OreachA | T(OreachA) | OreachA↔B | T(OreachA↔B)
OGo 13.16 0.000032 4.48 0.000006
ONci 25.68 0.000048 5.59 0.000006
OSnomed 27.70 0.040725 18.40 0.000175

Maximum Values
Ontology | OreachA | T(OreachA) | OreachA↔B | T(OreachA↔B)
OGo 68 0.000417 20.15 0.000666
ONci 398 0.001916 55.00 0.000569
OSnomed 254 0.217781 222.06 0.004843

Median Values
Ontology | OreachA | T(OreachA) | OreachA↔B | T(OreachA↔B)
OGo 10 0.000026 3.86 0.000005
ONci 11 0.000026 4.37 0.000005
OSnomed 16 0.001800 6.66 0.000008

Table 5.1: Bidirectional reachability-based module extraction using Algorithm 3

Table 5.2 shows a summary of the average values from Table 5.1. Here we see that

bidirectional reachability-based modules are between 30% and 80% smaller than standard

reachability-based modules and may be extracted at the additional cost of between 0.4% and

19.0% in the running time of the algorithm. Though the initial reachability-based modules

are small in themselves, the reductions can still be considered considerable when the negligible

extra cost for these reductions are taken into consideration.

We note here that the average runtime increases for the GO and NCI ontologies tested

seems excessively high. However, it is important to note that, the running times are mea-

sured in the low microsecond range. At these extremely small intervals the accuracy of our

measuring tools is very low and the true runtime performance of the algorithms only becomes

evident in relatively large ontologies. Therefore, the runtime performance of the algorithms

5.2. Module Extraction 96

for the SNOMED ontology gives a more accurate measure of the true performance of the

algorithms.

Ontology Decrease in size % Increase in Time
OGo 66.00% 18.00%
ONci 78.00% 12.00%
OSnomed 33.00% 0.40%

Table 5.2: Average value summary

The summary of median values as shown in Table 5.2 indicates that extracting bidi-

rectional reachability-based modules results in very stable performance across all ontologies

tested, with an approximate 59% decrease in the size of all modules extracted.

Ontology Decrease in size % Increase in Time
OGo 61% 19.20%
ONci 60% 18.50%
OSnomed 58% 00.46%

Table 5.3: Median value summary

The relatively bad average performance of the algorithm in the case of OSnomed can be

attributed to the extensive use of the roleGroup role name, which is used in about 28% of

all axioms throughout the ontology and serves the purpose of grouping together multiple

existential restrictions in a definition (Suntisrivaraporn 2009). In terms of top-down reach-

ability, whenever this role is present in one axiom in the module, all axioms containing the

symbol on its right hand side will be included in the module. This behaviour of the top-down

reachability heuristic seems to reduce its effectiveness in cases, such as in OSnomed, where

specific role name symbols are used extensively throughout an ontology.

Ontology Decrease in size Increase in Time
Algorithm 3 Algorithm 6

OGo 66% 0.000006 0.000018
ONci 78% 0.000006 0.000020

Table 5.4: Comparative summary

The sub-module computation algorithm (Algorithm 6) extracts an indexed bidirectional

reachability-based module that requires an additional iteration of the extracted module as well

as runtime overhead for bookkeeping purposes. As a result, upon termination of Algorithm

6, all MinAs may be extracted from the module, whereas Algorithm 3 extracts a bidirectional

reachability-based modules without any additional preparation for MinA extraction. From

5.3. MinA Extraction 97

the comparison of the average additional running times of Algorithms 3 and 6 in Table 5.2

we see that the running time of Algorithm 6 is slightly higher than that of Algorithm 3.

However, since these values are effectively measured in the very low microsecond range the

performance of the two algorithms can be seen as almost being equal and that the additional

cost of the bookkeeping done by Algorithm 6 is negligible.

5.3 MinA Extraction

In this section we look at the performance of Algorithms 6 and 7 in terms of MinA extraction

for the ONci and OGo ontologies. Tests were not performed on OSNOMED as it contains

GCI’s. The presence of GCI’s causes an exponential blow-up in the number of bidirectional

reachability-based sub-modules to test, where each such sub-module does not necessarily

correspond to a MinA. This Algorithm 7 cannot be used to extract all MinAs. The tests

were performed as follows:

Similar to the process used for testing module extraction, we did not normalise the TBoxes

nor did we convert them to their equivalent CFG representations. Instead, during runtime,

the form of all axioms were checked and an on-the-fly implicit conversion were done, the results

of which were used to index axioms so that the algorithms could be applied as if explicit

normalisation and conversion was done. Using this approach we eliminate all minimality

issues usually associated with normalisation and de-normalisation as well as mapping axioms

to CFG and vice versa.

For every concept name A ∈ in Sig(O) we extracted OreachA , then Algorithm 6 was called

for each concept name B ∈Sig(OreachA) in order to extract OreachA↔B. For each of these indexed

bidirectional reachability-based modules we then extracted all possible minimal bidirectional

reachability-based sub-modules Mi, the standard HerMit reasoner was then called to test

each minimal module Mi in order to see whether or not Mi |= A v B.

Instead of doing the additional subsumption tests for each minimal module, we could have

simply eliminated all axioms dependant upon existential restrictions as described in Section

4.3.2. However, we wanted to test the performance of the algorithm on all possible minimal

bidirectional reachability-based sub-modules. The columns in the table are organised as

follows:

• Ontology - The ontology for which the MinAs are being extracted.

5.3. MinA Extraction 98

• | OreachA↔B | - The average number of axioms for all bidirectional reachability-based sub-

modules.

• |Min(OreachA↔B) | - The average number of minimal bidirectional reachability-based sub-

modules.

• T(Min(OreachA↔B)) - The additional time, in seconds, required to extract all minimal

bidirectional reachability-based sub-modules i.e the running time of Algorithm 7.

• %MinAs - The percentage of minimal bidirectional reachability-based sub-modules that

are MinAs.

• |MinA| - The average size of each MinA.

• T(MinA) - The additional time required to test subsumption for all minimal modules,

i.e. To calculate the total time to extract all MinAs from the ontology = T(Min(OreachA↔B))

+ T(MinA).

Average Values
Ontology | OreachA↔B | |Min(OreachA↔B) | T(Min(OreachA↔B)) %MinAs |MinA| T(MinA)
OGo 13 2.720188 0.000023 89.18% 3.298866 0.005472
ONci 26 2.180851 0.000014 91.47% 3.721915 0.002842

Maximum Values
Ontology | OreachA↔B | |Min(OreachA↔B) | T(Min(OreachA↔B)) %MinAs |MinA| T(MinA)
OGo 68 41.750000 0.000431 100.00% 9.359477 0.121236
ONci 398 72.375000 0.001298 100.00% 10.480000 0.199400

Median Values
Ontology | OreachA↔B | |Min(OreachA↔B) | T(Min(OreachA↔B)) %MinAs |MinA| T(MinA)
OGo 10 1.500000 0.000013 100.00% 3.000000 0.002327
ONci 11 1.000000 0.000010 100.00% 3.500000 0.001452

Table 5.5: MinA extraction using Algorithms 6 and 7

From Table 5.5 we see that the results are very similar for both ontologies tested. On

average there are between 2 and 3 minimal bidirectional reachability-based sub-modules for

each possible subsumption statement. From these, about 90% are MinAs, each of which

contains between 3 and 4 axioms on average. The total additional time required to extract

all minimal bidirectional reachability-based sub-modules using Algorithm 7 is in the low

hundredths of a millisecond. The most expensive costs incurred, occurred when we tested

whether subsumption holds for each minimal bidirectional module, with a total running time

for testing all minimal modules for a statement of interest in the low to mid millisecond range.

5.3. MinA Extraction 99

This testing however is unnecessary and is only included to illustrate the costs involved in

testing all minimal modules for subsumption.

Overall, once a bottom-up reachability-based module has been extracted, the additional

runtime costs incurred in order to extract a bidirectional reachability module together with

all minimal bidirectional reachability-based sub-modules, and thus MinAs, is less that 1% of

the cost of performing a subsumption test on a single MinA. This makes MinA extraction,

for acyclic EL TBoxes consisting of only primitive concept definitions, negligible. For more

expressive DLs in the EL family, the average reduction of 59% in the number of axioms for

bidirectional reachability-based modules, over that of standard reachability-based modules,

will still yield a significant improvement during MinA extraction when standard black-box

algorithms are used. The projected improvement in performance of these algorithms results

not only from the 59% reduction in the number of axioms to consider during a single MinA

extraction cycle, but a 59% reduction in the number of all axioms over all possible MinAs for

a subsumption statement. Testing the performance of these algorithms however is beyond

the scope of this dissertation.

Chapter 6

Conclusion

In this dissertation we investigated syntactic module extraction methods for the inexpressive

EL family of description logics. Though it has been shown that extracting minimal modules

is undecidable for ALC, various heuristic based extraction algorithms, such as bottom-up

reachability-based module extraction, have been introduced in the literature. The various

functional roles modules are to perform, necessitate different functional specifications of ex-

actly what a module should be. However, during this dissertation, we limited our attention

to the extraction of modules that would aid in reasoning tasks such as subsumption testing

and MinA extraction.

Discussion and Results

Given a specific subsumption statement, bottom-up reachability-based modules have been

shown to significantly reduce the running time of these reasoning services. It has however

been criticised for only utilising the subsumee of the entailment to extract a module, never

utilising the subsumer to further reduce the number of axioms in a module, thus in certain

cases not providing the expected improvements. As a first step to addressing this issue,

we introduced the notion of top-down reachability-based modules. Instead of utilising the

subsumee of an entailment to extract modules, top-down reachability uses the subsumer to

extract modules. However, these modules are generally very large and can be criticized in

a similar fashion to bottom up reachability-based modules for considering only one of the

operands in a subsumption statement. We then combined the two reachability heuristics,

forming the basis for bidirectional reachability-based modules, which consider both the sub-

sumee and the subsumer of an entailment when extracting modules.

The empirical results from Section 5.2 show that, for the bio-medical ontologies tested,

bidirectional reachability-based module extraction provides, on average, an additional 59%

100

101

reduction in the size of the modules extracted over that of bottom-up reachability-based

modules. Taking into consideration that this reduction, for large ontologies like SNOMED,

can be obtained for less than a 1% increase in the running time of the bottom-up reachability

module extraction algorithm, further increases the utility to be gained from bidirectional

reachability-based modules.

Since bidirectional reachability-based modules have been shown to be strong subsumption

modules, and each MinA for a subsumption statement is also a bidirectional reachability-

based module for that statement, we investigated the relationship between MinAs and bidi-

rectional reachability-based sub-modules more closely. We determined that for the DL HL,

every MinA corresponds exactly to a minimal bidirectional reachability-based sub-module.

We provided an algorithm based on the Earley algorithm for extracting parse trees given a

CFG, that extracts an indexed bidirectional reachability-based module, from which all bidi-

rectional reachability-based sub-modules may be extracted, including all minimal ones. We

then introduced an algorithm to extract all MinAs in HL.

Having determined the exact relationship between MinAs and bidirectional reachability-

based sub-modules forHL, we investigated the relationship between MinAs in EL and bidirec-

tional reachability-based sub-modules. We found that for acyclic EL TBoxes consisting of only

primitive concept definitions, every MinA corresponds to a minimal bidirectional reachability-

based sub-module, however, unlike forHL, not every minimal bidirectional reachability-based

module corresponds to a MinA. Thus, though the same algorithms for extracting all HL Mi-

nAs could be used to extract all MinAs in EL, additional processing would be required to

separate the minimal modules that correspond to MinAs and those that don’t. We then

showed that as soon as general EL TBoxes are introduced, there is an exponential number

of possible bidirectional reachability-based sub-modules that must be considered in order to

extract a single MinA.

Future Work

The top-down reachability heuristic performs badly in the presence of existential quantifica-

tions, especially when those are used extensively throughout the ontology. A case in point

is the roleGroup role name symbol in the Snomed Ontology. Possible improvements to the

top-down reachability heuristic may be obtained by investigating these more closely and de-

termining the syntactic relationship between the role name symbols and the role filler symbols

102

and their effect on top-down and thus bidirectional reachability-based module extraction.

Syntactic locality based modules, an equivalent to bottom-up reachability-based mod-

ules, have been used by Suntisrivaraporn et al. (2008) to improve MinA extraction for the

DL SHOIN . The empirical benefits of bidirectional reachability-based module extraction

methods, over that of bottom-up reachability-based modules for EL, warrants further re-

search into extending the top-down and thus bidirectional reachability heuristics to more

expressive DL’s such as the DL SROIQ (Horrocks et al. 2006) which forms the basis for the

W3C standardized OWL 2 DL.

Though bidirectional reachability-based modules reduce the size of ontologies, and thus

may improve the extraction of all MinAs using black-box methods, we have seen that for

a single EL MinA, there may be an exponential number of bidirectional reachability-based

modules. Black-box MinA extraction algorithms arbitrarily removes axioms from an ontol-

ogy, until no more may be removed without invalidating a subsumption statement, after each

removal operation a subsumption test is usually run on the remaining set of axioms. This

process continues until no more axioms may be removed and thus a MinA has been found.

However, we know that every MinA is also a bidirectional reachability-based module. Inves-

tigating how axiom removal may be guided in such a way that bidirectional reachability is

always preserved may therefore improve these black-box algorithms and reduce the overall

number of subsumption tests required during every MinA extraction cycle.

Bibliography

Ausiello, G., Franciosa, P. G. & Frigioni, D. (2001), Directed hypergraphs: Problems, algo-

rithmic results, and a novel decremental approach, in ‘Proceedings of the Seventh Italian

Conference on Theoretical Computer Science (ICTCS)’, Vol. 2202 of Lecture Notes in Com-

puter Science, Springer, London, UK, UK, pp. 312–327.

Baader, F. (1996), ‘Using automata theory for characterizing the semantics of terminological

cycles’, Annals of Mathematics and Artificial Intelligence 18(2-4), 175–219.

Baader, F. (2003), Terminological cycles in a description logic with existential restrictions,

in G. Gottlob & T. Walsh, eds, ‘Proceedings of the 18th International Joint Conference on

Artificial Intelligence (IJCAI-03)’, Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, pp. 325–330.

Baader, F., Brandt, S. & Lutz, C. (2005), Pushing the EL envelope, in ‘Proceedings of the

19th International Conference on Artificial Intelligence (IJCAI-05)’, Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, pp. 364–369.

Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D. & Patel-Schneider, P. F., eds

(2007), The Description Logic Handbook: Theory, Implementation and Applications, 2

edn, Cambridge University Press, Cambridge, UK.

Baader, F., Hladik, J., Lutz, C. & Wolter, F. (2003), From tableaux to automata for de-

scription logics, in M. Vardi & A. Voronkov, eds, ‘Proceedings of the 10th International

Conference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR-03)’,

Vol. 2850 of Lecture Notes in Computer Science, Springer, Berlin Heidelberg, pp. 1–32.

Baader, F. & Hollunder, B. (1995), ‘Embedding defaults into terminological knowledge rep-

resentation formalisms.’, Automated Reasoning 14, 149–180.

103

BIBLIOGRAPHY 104

Baader, F., Kusters, R. & Molitor, R. (1998), Computing least common subsumers in de-

scription logics with existential restrictions, LTCS-Report LTCS-98-06, LuFG Theoretical

Computer Science, RWTH Aachen, Germany.

Baader, F. & Penaloza, R. (2007), Axiom pinpointing in general tableaux, in N. Olivetti, ed.,

‘Proceedings of the 16th International Conference on Automated Reasoning with Analytic

Tableaux and Related Methods (TABLEAUX’07)’, Lecture Notes in Computer Science,

Springer, Berlin Heidelberg, pp. 11–27.

Barnaras, A., Laresgoiti, I. & Corera, J. (1996), Building and reusing ontologies for electrical

network applications, in W. Wahlster, ed., ‘Proceedings of the 12th European Conference

on Artificial Intelligence (ECAI-96)’, John Wiley and Sons, pp. 298–302.

Brachman, R. J. & Levesque, H. J. (1984), The tractability of subsumption in frame-based de-

scription languages, in ‘Proceedings of the 9th Conference on Artificial Intelligence (AAAI-

84)’, AAAI Press, Menlo Park, California, pp. 34–37.

Brachman, R. J. & Levesque, H. J., eds (1985), Readings in Knowledge Representation,

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Brachman, R. J. & Schmolze, J. G. (1985), ‘An overview of the KL-ONE knowledge repre-

sentation system’, Cognitive Science 9(2), 171–216.

Brandt, S. (2004a), Polynomial time reasoning in a description logic with existential restric-

tions, gci axioms, and - what else?, in R. L. de Mántaras & L. Saitta, eds, ‘Proceedings of

the 16th European Conference on Artifcial Intelligence (ECAI-2004)’, IOS Press, Amster-

dam, The Netherlands, pp. 298–302.

Brandt, S. (2004b), Subsumption and instance problem in ELH w.r.t. general tboxes,

LTCS-Report LTCS-04-04, Chair for Automata Theory, Institute for Theoretical Com-

puter Science, Dresden University of Technology, Germany. See http://lat.inf.tu-

dresden.de/research/reports.html.

Calvanese, D. (1996), Reasoning with inclusion axioms in description logics: Algorithms

and complexity, in ‘Proceedings of the 12th European Conference on Artificial Intelligence

(ECAI-96)’, IOS Press, Amsterdam, The Netherlands, pp. 303–307.

BIBLIOGRAPHY 105

Chiang, Y. & Fu, K. (1984), ‘Parallel parsing algorithms and VLSI implementation for syntac-

tic pattern recognition’, IEEE Transactions on Pattern Analysis and Machine Intelligence

6(3), 302–314.

Cote, R., Rothwell, D., Palotay, J., Beckett, R. & Brochu, L. (1993), The systematized nomen-

clature of human and veterinary medicine, Technical report, SNOMED International.

URL: http://www.ihtsdo.org/

Cuenca Grau, B., Horrocks, I., Kazakov, Y. & Sattler, U. (2007), Just the right amount:

extracting modules from ontologies, in C. Williamson & M. Zurko, eds, ‘Proceedings of the

16th International Conference on World Wide Web (WWW ’07)’, ACM, New York, NY,

USA, pp. 717–726.

Cuenca Grau, B., Horrocks, I., Kazakov, Y. & Sattler, U. (2008), ‘Modular reuse of ontologies:

Theory and practice.’, Journal of Artificial Intelligence Research (JAIR) 31, 273–318.

Cuenca Grau, B., Parsia, B., Sirin, E. & Kalyanpur, A. (2005), Modularity and web on-

tologies, in ‘Proceedings of the KCAp-2005 Workshop on Ontology management’, CEUR

Workshop Proceedings, CEUR-WS.

URL: http://ceur-ws.org/

Donini, F. M. (2007), Complexity of reasoning, in F. Baader, D. Calvanese, D. Nardi &

P. Patel-Schneider, eds, ‘The Description Logic Handbook: Theory, Implementation and

Application’, 2 edn, Cambridge University Press, chapter 3, pp. 101–141.

Doran, P., Tamma, V. & Iannone, L. (2007), Ontology module extraction for ontology reuse:

an ontology engineering perspective, in ‘Proceedings of the 16th ACM conference on infor-

mation and knowledge management (CIKM ’07)’, ACM, New York, NY, USA, pp. 61–70.

Dowling, W. F. & Gallier, J. (1984), ‘Linear-time algorithms for testing the satisfiability of

propositional Horn formulae’, Journal of Logic programming 1(3), 267–284.

Du, J., Qi, G. & Ji, Q. (2009), Goal-directed module extraction for explaining OWL DL en-

tailments, in A. Bernstein, D. R. Karger, T. Heath, L. Feigenbaum, D. Maynard, E. Motta

& K. Thirunarayan, eds, ‘Proceedings of the 18th International Semantic Web Conference

(ISWC’09)’, Vol. 5823 of Lecture Notes in Computer Science, Springer, Berlin Heidelberg,

pp. 163–179.

BIBLIOGRAPHY 106

Earley, J. (1970), ‘An efficient context-free parsing algorithm’, Communications of the Asso-

ciation for Computing Machinery 13(2), 94–102.

Givan, R., McAllester, D. A., Witty, C. & Kozen, D. (2002), ‘Tarskian set constraints’,

Information and Computation 174(2), 105–131.

Gruber, T. R. (1993), ‘A translation approach to portable ontology specification’, Knowledge

Acquisition 5(2), 199–220.

Haarslev, V. & Möller, R. (2001), Racer system description, in R. Goré, A. Leitsch & T. Nip-

kow, eds, ‘Proceedings of the 1st International Joint Conference on Automated Reasoning

(IJCAR’01)’, Vol. 2083 of Lecture Notes in Computer Science, Springer, Berlin Heidelberg,

pp. 701–705.

Hayes, P. J. (1979), The logic of frames, in D. Metzing, ed., ‘Frame Conceptions and Text

Understanding’, Walter de Gruyter and Co., Berlin, Germany, pp. 46–61.

Horrocks, I. (1998), ‘Using an expressive description logic: Fact or fiction?’, Proceedings of

the 6th International Conference on Principles of Knowledge Representation and Reasoning

(KR-98) pp. 636–647.

Horrocks, I., Kutz, O. & Sattler, U. (2006), The even more irresistible SROIQ, in P. Doherty,

J. Mylopoulos & C. Welty, eds, ‘Principles of Knowledge Representation and Reasoning:

Proceedings of the 10th International Conference (KR-06)’, AAAI Press, Menlo Park,

California, pp. 57–67.

URL: http://www.aaai.org/Press/Proceedings/kr06.php

Horrocks, I., Rector, A. L. & Goble, C. A. (1996), A description logic based schema for the

classification of medical data, Vol. 4 of CEUR Workshop Proceedings, CEUR-WS.

URL: http://ceur-ws.org/

Horrocks, I. & Sattler, U. (2004), ‘Decidability of SHIQ with complex role inclusion axioms’,

Artificial Intelligence 160(1), 79–104.

Horrocks, I., Sattler, U. & Tobies, S. (2000), ‘Practical reasoning for very expressive descrip-

tion logics’, Journal of the Interest Group in Pure and Applied Logic 8(3), 239–264.

Jiménez-Ruiz, E., Cuenca Grau, B., Sattler, U., Schneider, T. & Berl, R. (2008), Safe and

BIBLIOGRAPHY 107

economic re-use of ontologies: a logic-based methodology and tool support, in ‘5th Eu-

ropean Semantic Web Conference (ESWC2008)’, Vol. 5021 of Lecture Notes in Computer

Science, Springer, Berlin Heidelberg, pp. 185–199.

Jurafsky, D. S. & Martin, J. H. (2008), Speech and Language Processing: An Introduction

to Natural Language Processing, Computational Linguistics and Speech Recognition, 2 edn,

Prentice Hall, Upper Saddle River, NJ.

Kalyanpur, A., Parsia, B., Horridge, M. & Sirin, E. (2007), Finding all justifications of OWL

DL entailments, in K. A. et al., ed., ‘Proceedings of the 18th International Semantic Web

Conference (ISWC’07)’, Vol. 4825 of Lecture Notes in Computer Science, Springer, Berlin

Heidelberg, pp. 267–280.

Kazakov, Y. & Nivelle, H. D. (2003), Subsumption of concepts in FL0 for (cyclic) termi-

nologies with respect to descriptive semantics is pspace-complete, in ‘Proceedings of the

2003 International Workshop on Description Logics (DL2003)’, Vol. 81 of CEUR Workshop

Proceedings, CEUR-WS.

URL: http://ceur-ws.org/

Lutz, C. & Satler, U. (2000), Mary likes all cats, in ‘Proceedings of the 2000 Interna-

tional Workshop on Description Logics (DL-2000)’, Vol. 3 of CEUR Workshop Proceedings,

CEUR-WS, pp. 213–226.

URL: http://ceur-ws.org/

Lutz, C., Walther, D. & Wolter, F. (2007), Conservative extensions in expressive descrip-

tion logics, in ‘Proceedings of the Twentieth International Joint Conference on Articial

Intelligence (IJCAI-07)’, AAAI Press, Menlo Park, California, pp. 453–459.

Meyer, T., Lee, K., Pan, J. & Booth, R. (2006), Finding maximally satisfiable terminologies

for the description logic ALC, in ‘Proceedings of the 21st National Conference on Artificial

Intelligence (AAAI’06)’, AAAI Press, Menlo Park, California, pp. 269–274.

Minsky, M. (1975), A framework for representing knowledge, in P. Winston, ed., ‘The Psy-

chology of Computer Vision’, McGraw-Hill, New York, pp. 211–277.

Nebel, B. (1990), ‘Terminological reasoning is inherently intractable’, Artificial Intelligence

43, 235–249.

BIBLIOGRAPHY 108

Nortjé, R., Britz, K. & Meyer, T. (2009), Finding EL+ justifications using the Earley parsing

algorithm, in T. Meyer & K. Taylor, eds, ‘Australasian Ontology Workshop 2009 (AOW

2009)’, Vol. 112 of CRPIT, ACS, Melbourne, Australia, pp. 27–35.

URL: http://crpit.com/confpapers/CRPITV112Nortje.pdf

Noy, N. F. & Musen, M. A. (2004), Specifying ontology views by traversal, in S. A. McIlraith,

D. Plexousakis & F. van Harmelen, eds, ‘Proceedings of the International Semantic Web

Conference (ISWC’04)’, number 3298 in ‘Lecture Notes in Computer Science’, Springer,

Berlin Heidelberg, pp. 713–725.

Papadimitriou, C. H. & Steiglitz, K., eds (1989), Combinatorial Optimization: Algorithms

and Complexity, 1 edn, Dover Publications Inc, Mineola, NY.

Pavlatos, C., Koulouris, A. & Papakonstantinou, G. (2003), Hardware implementation of syn-

tactic pattern recognition algorithms, in M. Hamza, ed., ‘IASTED International Conference

on Signal Processing and Pattern Analysis’, Acta Press, Calgary, Canada, pp. 360–365.

Qi, G., Ji, Q. & Haase, P. (2008), A relevance-based algorithm for finding justifications

of DL entailments, Technical report, University of Karlsrube. http://www.aifb.uni-

karlsrube.de/WBS/qgi/papers/RegAlg.pdf.

Quillian, R. M. (1967), ‘Word concepts: A theory and simulation of some basic capabilities’,

Behavioral Science 12, 410–430. Republished in Brachman & Levesque (1985).

Rector, A. (2007), Medical informatics, in F. Baader, D. Calvanese, D. Nardi & P. Patel-

Schneider, eds, ‘The Description Logic Handbook: Theory, Implementation and Applica-

tion’, 2 edn, Cambridge University Press, chapter 13, pp. 415–435.

Reiter, R. (1987), ‘A theory of diagnoses from first principles’, Artificial Intelligence 32, 57–

95.

Sattler, U., 0002, T. S. & Zakharyaschev, M. (2009), Which kind of module should i extract?,

in ‘Description Logics’.

Schlobach, S. & Cornet, R. (2003), Non-standard reasoning services for the debugging of

description logic terminologies, in G. Gottlob & T. Walsh, eds, ‘Proceedings of the 18th

International Joint Conference on Artificial Intelligence (IJCAI-03)’, Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, pp. 355–362.

BIBLIOGRAPHY 109

Spackman, K. A. (2001), ‘Normal forms for description logic expressions of clinical concepts

in SNOMED RT’, Journal of the American Medical Informatics Association: Proccedings

of the annual AMIA Symposium pp. 627–631.

URL: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2243264/

Stuckenschmidt, H. & Klein, M. (2004), Structure-based partitioning of large concept hier-

archies, in ‘Proceedings of the 3rd International Semantic Web Conference’, Hiroshima,

Japan.

Suntisrivaraporn, B. (2005), Optimization and implementation of subsumption algorithms for

the description logic EL with cyclic TBoxes and general concept inclusion axioms, Master’s

thesis, Technical University of Dresden.

Suntisrivaraporn, B. (2009), Polynomial-Time Reasoning Support for Design and Mainte-

nance of Large-Scale Biomedical Ontologies, PhD thesis, Technical University of Dresden.

Suntisrivaraporn, B., Qi, G., Ji, Q. & Haase, P. (2008), A modularization-based approach

to finding all justifications for OWL DL entailments, in J. Dominque & C. Anutariya,

eds, ‘Proceedings of the Asian Semantic Web Conference’, Vol. 5367 of Lecture Notes in

Computer Science, Springer, Berlin Heidelberg, pp. 1–15.

Woods, W. A. & Schmolze, J. G. (1992), ‘The KL-ONE family’, Computers and Mathematics

with Applications 23(2-5), 133–177.

