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ABSTRACT OF THE DISSERTATION

USER-CENTRIC MUSIC INFORMATION RETRIEVAL

by

Bo Shao

Florida International University, 2011

Miami, Florida

Professor Tao Li, Major Professor

The rapid growth of the Internet and the advancements of the Web technologies have made

it possible for users to have access to large amounts of on-line music data, including music

acoustic signals, lyrics, style/mood labels, and user-assigned tags. The progress has made

music listening more fun, but has raised an issue of how to organize this data, and more

generally, how computer programs can assist users in their music experience.

An important subject in computer-aided music listening is music retrieval, i.e., the issue of

efficiently helping users in locating the music they are looking for. Traditionally, songs were

organized in a hierarchical structure such as genre->artist->album->track, to facilitate the

users’ navigation. However, the intentions of the users are often hard to be captured in such a

simply organized structure. The users may want to listen to music of a particular mood, style

or topic; and/or any songs similar to some given music samples. This motivated us to work on

user-centric music retrieval system to improve users’ satisfaction with the system.

The traditional music information retrieval research was mainly concerned with

classification, clustering, identification, and similarity search of acoustic data of music by way

of feature extraction algorithms and machine learning techniques. More recently the music

information retrieval research has focused on utilizing other types of data, such as lyrics, user-

access patterns, and user-defined tags, and on targeting non-genre categories for classification,
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such as mood labels and styles. This dissertation focused on investigating and developing

effective data mining techniques for (1) organizing and annotating music data with styles,

moods and user-assigned tags; (2) performing effective analysis of music data with features

from diverse information sources; and (3) recommending music songs to the users utilizing

both content features and user access patterns.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Music is very popular in modern life, and the amount of digital music available to music

listeners has increased dramatically. In computer science, researchers have been intensely

working on developing techniques for computationally dealing with music data. In particular,

the development of efficient and effective computational assistants in music listening has

recently become more and more urgent due to the high demand from web-based music stores

and services.

An important subject in computer-aided music listening is music retrieval, i.e., the issue

of efficiently helping users in locating the music they are looking for. Traditionally, songs

were organized in a hierarchical structure such as genre->artist->album->track, to facilitate

the users’ navigation. Some websites or systems allow users to create their own playlists so

that songs can be organized into a preferred personal collection. However, the intentions of the

users are often hard to be captured in such simply organized structures. The users may want

to listen to music of a particular mood, style or topic; and/or any songs similar to some given

music samples. This motivates us to work on user-centric music retrieval system to improve

users’ satisfaction with the system.

In particular, the goal of this research is to investigate and develop data mining techniques

to create a practical system that allows users to effectively and efficiently retrieve music. More

specifically, there are three closely related dimensions of this research theme:

• music data organization and annotation: How can we organize and annotate music by

appropriate labels, not only by artists, album titles, track titles, and genres, but also by

styles, moods and user-assign tags?

• music analysis from different information sources: Given the music data that are often
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represented by multiple sets of features (e.g., audio content, meta-data, lyrics etc.), how

can we perform effective music analysis from these diverse information sources?

• music recommendation: How can we develop good music recommendation systems

based on a good understanding of the users’ preferences and the music pieces in the

collection?

1.2 Background

In the past decade, music information retrieval has been receiving a considerable amount

of attention, e.g. [2, 44], but the state-of-the-art music retrieval techniques are still far from

mature and often fail to deliver satisfactory results. Various music retrieval approaches have

been developed, and music meta data, content data, user listening history have been utilized for

these approaches to work. Multimedia conferences, e.g. ISMIR (International Conference on

Music Information Retrieval) and WEDELMUSIC (Web Delivering of Music), have a focus

on the development of computational techniques for indexing, classifying, summarizing and

analyzing music data. Most of the previous researches on music retrieval focused on music

representation and its use in similarity search [8,30,47]. More details of the background review

can be found in the chapter 2.

1.2.1 Music Organization and Annotation

Huron [61] points out that, because the preeminent functions of music are social and

psychological, the most useful characterization of music would be based on a variety of

information including genre, style, mood, and similarity. Therefore, to enable music queries,

it is imperative that each piece of music be annotated by appropriate labels, not only by

artists, album titles, track titles, and genres, which in many cases are readily available at

GraceNote (http://www.gracenote.com), an access-free on-line database, but also by more

pertinent information, such as style and mood labels, which are available at online music stores

and AllMusic (http://www.allmusic.com), a registered-user-only on-line database. Music

annotation considers the problem of automatically assigning the latter type of labels so as to

eliminate the need of accessing those limited-access databases. Recently, the user-assigned

2



tags have turned into an essential component in music information retrieval and the problem

of automatic music annotation using user-assigned tags has also attracted a lot of research

attention.

1.2.2 Music Analysis from Different Information Sources

In music information retrieval, the data are naturally multi-modal, in the sense that they

are represented by multiple sets of features. For example, the representation of a song has

four modes: 1) the personnel (the producer, the director, the editor, the scenario writer,

the music composer, the cast, etc.), 2) the lyric features, 3) the user-assigned tags, and 4)

the acoustic features (which summarize the voice and the background audio). Having data

with heterogeneous sets of features, one may pose a natural question: can multi-modality be

effectively utilized in music data analysis, and if so, can such multi-modal learning methods

produce better analysis results than uni-modal methods?

1.2.3 Music Recommendation

Music recommendation is an important component of music information retrieval. The goal

of music recommendation is to present users lists of songs that they are likely to enjoy. Music

recommendation should be based on a good understanding of the users’ preferences and the

music pieces in the collection. Collaborative-filtering and content-based recommendations are

two approaches that have been widely used for this purpose. However, both approaches have

their own disadvantages: collaborative-filtering methods need a large collection of user history

data and content-based methods lack the ability of understanding the interests and preferences

of users. Therefore, new techniques are needed for effective music recommendation.

1.3 Contribution of this Dissertation

The traditional music information retrieval research was mainly concerned with

classification, clustering, identification, and similarity search of acoustic data of music by way

of feature extraction algorithms and machine learning techniques. More recently the music

3



information retrieval research has focused on utilizing other types of data, such as lyrics, user-

access patterns, and user-defined tags, and on targeting non-genre categories for classification,

such as mood labels and styles. My dissertation focuses on investigating and developing

effective data mining techniques for (1) organizing and annotating music data with styles,

moods and user-assigned tags; (2) performing effective analysis of music data with features

from diverse information sources; and (3) recommending music songs to the users utilizing

both content features and user access patterns. The main contribution of my work can be

summarized as follows:

1.3.1 Music Organization and Annotation

Music organization and annotation is the foundation of an intelligent music retrieval system.

More and more social-networking music listening websites are providing user-defined tags,

styles, and mood labels to help users to make quick selections of music songs. In this

dissertation, we develop new techniques to correlate style and mood models and also perform

multi-label mood/style classification by making use of user-assigned tags.

Correlating styles and mood labels [134]: An important characteristic of the style and

mood labels is that most labels are having close semantic relationships. The first type of

the relationships is that some labels are synonyms, e.g., “witty” and “thoughtful”, “happy”

and “cheerful”. The second type of the relationships is that some labels are more general

while some others are more specific, e.g., “Soft Metal” is a more specific style than “Metal”,

“Dance Pop” is a more specific style than “Pop”, “Extremely Provocative” is a more specific

tag than “Provocative”, and “Agony” is a more specific mood label than “Sadness”. One

challenge is whether we can automatically characterize such semantic relations among the

labels using a hierarchical structure. In this dissertation, we develop a hierarchical divisive

co-clustering algorithm for exploring the relationships among the style/mood models. The

discovered relationship can be used to compute the similarity between music artists.

Multi-label mood/style classification [150]: Traditional music mood/style classification

approaches assumed that each piece of music had a unique mood/style and they made use

4



of the music content (audio features) to construct a classifier for classifying each piece into

its unique mood/style. However, in reality, a piece of music may match more than one,

even several different moods/styles. In addition, how to incorporate the tag information into

the classification process is also a challenge. In this dissertation, we develop a novel multi-

label music mood/style classification approach with hypergraph regularization. The proposed

approach also integrates both music content and user-assigned tags for classification.

1.3.2 Music Analysis from Different Information Sources

In music information retrieval, the data are naturally multi-modal, in the sense that they

are represented by multiple sets of features. In this dissertation, we study the issue of

clustering pop music into groups with respect to the artists from diverse information sources.

In particular, we develop algorithms to improve the performance of clustering by integrating

different information sources [86].

1.3.3 Music Recommendation

Music recommendation aims to provide a music listener a list of music pieces that he/she

is likely to enjoy. It needs to satisfy the following two requirements [147]: (1) High

recommendation accuracy. A good recommendation system should output a relatively short

list of songs in which many pieces are favored and few pieces are not favored; (2) High

recommendation novelty. Good novelty is defined as rich artist variety / diversity and well-

balanced music content variety / diversity. Therefore, effective music recommendation should

be based on a good understanding of the preferences of the users and the music pieces in

the collection. The key to a success music recommendation system is to develop a good

measurement strategy of the music similarity and an effective recommendation method based

on the similarity measurement. In this dissertation, we develop a music recommendation

approach by incorporating collaborative-filtering approach and acoustic contents of music.

The new approach employs a novel dynamic music similarity measurement strategy, which

significantly improves the similarity measurement in terms of accuracy and efficiency. This

measurement strategy utilizes the user access patterns from large numbers of users and
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represents music similarity with an undirected graph. Recommendation is then calculated using

the graph Laplacian and label propagation defined over the graph [135].

1.3.4 System Development and Evaluation

We also develop a prototype system for multi-modal music information retrieval and a real

world user-centric music retrieval web application for evaluating our proposed techniques.

Please note that although the proposed algorithms and approaches are only evaluated based

on the music data and applied exclusively in the music information retrieval research area,

many of them can be adopted or at least adapted to handle other types of data and address the

problems in other research areas.

1.4 Dissertation Outline

The rest of the Dissertation is organized as follows: Chapter 2 provides the literature

review. Chapter 3 introduces our proposed techniques for exploring the relationships among the

style/mood models and for multi-label style/mood classification. Chapter 4 studies the problem

of identifying “similar” artists using features from diverse information sources and presents

the clustering algorithms that integrate features from both music content and lyrics to perform

bimodal learning. Chapter 5 discusses our proposed approach for music recommendation by

incorporating collaborative-filtering and acoustic contents of music. Chapter 6 describes our

developed prototype system and the real world user-centric music retrieval web application.

Finally, Chapter 7 concludes the dissertation and discusses future work.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Efficient and intelligent Music Information Retrieval (MIR) is a very important topic of

the 21st century. With the ultimate goal of building user-centric music information retrieval

systems, this chapter studies the problems of existing MIR approaches and systems. We will

first review different music data sources, and try to associate various music retrieval tasks to

each type of the data. This will answer the question of what types of music data are available

and for each data type, what retrieval tasks are often performed in the literature. We will then

study different approaches used for each task, attempting to answer the question of what data

mining algorithms or techniques are mostly used for each task.

2.2 Music Data Types and Associated Retrieval Tasks

Table 1 illustrates different music data types [79] used for music information retrieval tasks.

As suggested in [76], these data types are grouped into two categories in the table: 1) music

content data; and 2) social context data. In order to better understand the nature of each type of

the music data sources, we will discuss each of them and review various music retrieval tasks

that are based on analyzing these two different categories of data.

2.2.1 Content Features and Content-based Music Retrieval

Based on the content features used, content-based music retrieval methods can be

categorized into three major branches as discussed in the following subsections.

Music Retrieval Based on Acoustic Features

Acoustic features are exacted from audio data, which are audio recordings in a format like

WAV, AIFF, AU, MP3 or WMA. They are the essential part of the music objects for music

listeners as well as the core in music retrieval systems. MIR research community has been
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Data Category Data Type Details or Examples

Music Content Data

Music Metadata
artist name, track title,
track duration, album,
publisher, publishing date

Lyrics lyrics in text

Audio Data
audio recordings in format
like WAV, AIFF, AU, MP3, WMA

Symbolic Data MIDI files, MusicXML, Humdrum
Music Scores music score notations

Social Context Data

Expert Annotations genre, mood, style

Music Reviews
comments or feedback of music
listeners, generally in a very
long loose description

Social Tags
comments or feedback of music
listeners, generally in a concise
textual format

User Profiles
created by music listeners on
certain music websites to record
the user preferences of music

Playlists

list of songs that music
listeners created on music
websites or for personal
music collections

Table 1: Various music data sources

focusing on this data, trying to extract various types of acoustic features for different purposes,

and making use of them in different tasks and applications. As most of the work in the MIR

research area, of the proposed techniques, and of the developed systems are mainly based on

acoustic features or partially utilize acoustic features, it is critical for us to understand the most

commonly used features [107]:

• Pitch: It represents the perceived fundamental frequency of a sound. Pitch can range

from low or deep to high or acute. It is one of the major auditory attribute of the musical

tones. Note that pitch is related to frequency, but they are not equivalent. Frequency is

the scientific measure of pitch and is objective, while pitch is completely subjective.

• Intensity / loudness: It defines the amplitude of the sound vibration, the primary

psychological correlate of physical strength. It ranges from soft to loud. It is another

major auditory attribute of the music tones.

• Timbre: It is defined as the sound characteristics that allow listeners to distinguish

sounds even when they have the same pitch and intensity (loudness). Music listeners
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are generally sensitive to the timbre feature. For example, a piano generates sounds with

a very different timbre from the sounds generated by a violin. A music fan might favor

one singer’s songs mainly because of the unique timbre features of the sound produced

by the singer. In MIR research community, it is frequently used as one of the main

features for music genre classification.

• Tempo: It is the speed at which a musical work is played, or expected to be played, by

performers. Tempo is usually measured in beats per minute (bpm).

• Orchestration: It is the study or practice for a music ensemble or of adapting for orchestra

music composed for another medium. It is often based on the choice of the composers

and the performers in selecting which musical instruments are to be employed to play

the different voices, chords, and percussive sounds of a musical work. The orchestration

decision can sometime dramatically affect the music style. For example, one selection

of orchestration can make one music piece dignified, while another selection can make

the same music played funny or cheerful.

• Rhythm: It is related to the periodic repetition, with possible small variants, of a temporal

pattern of onsets alone. In other words, rhythm is the timing pattern of the musical sounds

and silences. Different rhythms can be perceived by the listeners at the same time in the

case of polyrhythmic music.

• Melody: It is a sequence of musical tones which is perceived as a single entry. The

tones in a melody generally have a similar timbre with a recognizable pitch in a small

frequency range. Melodies often consist of one or more musical phrases or motifs, and

are usually repeated throughout a music piece in various forms. Note that melody is used

in different ways in different music styles, and in consequence, it is an important acoustic

feature for MIR research.

• Harmony: It is the organization of simultaneous sounds with a recognizable pitch along
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the time axis. Harmony refers to the “vertical” aspect of music, as distinguished from

melodic line, which is the “horizontal” aspect.

In literature, different sets of acoustic features are extracted for different applications. The

popular feature sets are summarized as follows:

• Timbral texture feature set, rhythmic content feature set, and pitch content features set:

Proposed in [146] and implemented by George Tzanetakis, they are widely adopted for

the applications and studies of music genre classification and music recommendation,

including many of our research studies presented in this dissertation.

• Standard Low-Level (SLL) signal parameters, MFCC, Psychoacoustic (PA) features,

Auditory Filterbank Temporal Envelopes (AFTE): Summarized and compared in [98],

these feature sets are generally very useful for audio and music genre classification.

MFCC feature set is very often used in audio fingerprinting applications as well. As

claimed in [98], AFTE feature set is the most powerful for automatic genre classification.

For a few particular audio classes, however, classification performance would be better

if other feature sets (crowd noise: SLL and MFCC; classical music: SLL; speech: PA)

are used.

• Chroma features: This set of features capture both melodic information and harmonic

information. They are often used for the purpose of audio thumbnailing [5], audio

fingerprinting or content-based audio identification (CBID) [46, 66] and audio matching

[103].

Other than these three most popular feature groups, more and more novel feature sets

have been introduced recently in the MIR research community to improve music retrieval

performance. Here are a few examples:

The feature set of Daubechies Wavelet Coefficient Histograms (DWCH) of music signals

was introduced in [85] to provide some extra information that the existing feature sets do not

have. It is also used for the purpose of music genre classification and music recommendation.
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Bass-line features were proposed in [145] and applied to automatic genre classification and

music collection visualization. Bass lines are contained in many genres of music, and the

type of rhythmic pulse used in bass lines varies widely in different types of music. It was

claimed in [145] that the genre classification accuracy was improved by making use of these

new features.

Trap-tandem features, which describe the timbre and rhythmic context of a note onset, were

firstly adopted in [126] for music information retrieval. Several experiments were conducted

in [126] and it was demonstrated that these new features were helpful to the application.

Music Retrieval Based on Symbolic Features

Using the features extracted from symbolic data, the symbolic-analytic approach treats

music as sequences of notes and events making up a musical score. Symbolic data are mainly

in the format of MIDI files. They can also be MusicXML, Humdrum or in other formats. MIDI,

an abbreviation for Musical Instrument Digital Interface, is a criterion adopted by the electronic

music industry for controlling devices, such as synthesizers and sound cards, that emit music.

It is an encoding system representing, transferring and storing musical information. Instead of

containing actual sound samples as audio encoding methods do, MIDI files store instructions

that can be sent to synthesizers. The quality of sound produced when a MIDI file is played is

therefore highly dependant on the synthesizer that the MIDI instructions are sent to. In effect,

a MIDI recording gives us much the same information as we would find in a musical score.

Therefore, MIDI, and other formats such as KERN, MusicXML or GUIDO, are often called

symbolic formats.

Sometimes, music scores are also used in this analysis. Music score refers to a hand-written

or printed form of musical notation, which normally uses a five-line staff to represent a piece

of music work. The music scores are used in performing music pieces, for example, when a

pianist plays a famous piano music. In the field of music data mining, some researchers focus

on music score matching, score following and score alignment, to estimate the correspondence
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between audio data and symbolic score [32]. Some popular music score websites, e.g., music-

scores.com, provide music score downloading services.

As discussed in [96], conducting symbolic data analysis is to complement the analysis of

audio data. The reasons of doing this can be summarized into the following [96]:

• It is hard to extract certain high-level features from audio data, such as precise note

timing, voice and pitch. With symbolic data, we can achieve this.

• With audio data, due to the nature of the music recording, the processing speed and data

amount, researchers normally just extract features from a very limited segment of the

recording. While for symbolic analysis, it is possible to extract features of the entire file

from the symbolic data.

• In certain cases, we have the music scores handy, but we do not have audio recordings

available.

With symbolic features extracted from MIDI recordings, supervised learning techniques

were selected to conduct music genre classification in [96] as those used for genre classification

using audio data, because to keep a rule-based expert system is impractical, and to use

unsupervised learning might generate clusters that do not make sense to human.

Music Retrieval Based on Lyrics Features

Lyrics are a set of words that make up a song in a textual format. In general, the meaning of

the content underlying the lyrics might be explicit or implicit. Lyrics are very cultural-related,

and most of them convey very specific meanings to music listeners. They can describe the

artist’s emotion, religious belief, or represent themes of times, beautiful natural scenery and so

on. Well-written lyrics, such as poem-like lyrics, may significantly improve the attractiveness

of the music work. The analysis of the correlation between lyrics and other music information

may help us understand the intuition of the artists. Sometimes, lyrics might contain important

hints, from which we can easily deduce the music genre, style and/or mood. On the World Wide

Web, there are a couple of websites offering music lyrics searching services, e.g., SmartLyrics
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(http://www.smartlyrics.com) and AZLyrics (http://www.azlyrics.com). In music

retrieval systems, lyrics should be considered as an important factor that affects the preferences

of music listeners.

In [151], lyrics were used for keyword generation of songs, which can be applied to the

application of automatic tagging. In [94], natural language processing techniques were applied

to lyrics to perform interesting analysis like thematic categorization, and similarity searches of

lyrics in music collections. In [68], non-negative matrix factorization (NMF) was employed to

analyze lyrics and identify music topic clusters.

Lyrics are also utilized together with other music data such as audio data in music

information retrieval research community. In [81], a semi-supervised learning approach was

developed to analyze both lyrics and acoustic data to identify artist style. In [105], Self-

Organizing Maps were used to combine audio features and song lyrics to organize audio

collections and to display them via map-based interfaces. In our research study, we have also

successfully made use of lyrics features. They have been used along with acoustic features to

address the issue of clustering pop music into groups for the artists from diverse information

sources. This effort will be briefly discussed in chapter 4.

Note that Bibliographic metadata [76] are not directly utilized by itself in the literature, but

with its associated data such as artist information.

2.2.2 Social Context Data and Social-Context-based Music Retrieval

Social context data of music objects are often created by music consumers or experts

manually.

Relational metadata [76] are generally created by music experts. As they are not derived

directly from the music products, they are not unbiased, and can be heavily affected by cultural

context. Music genres are the main annotations that music experts are trying to create for

labeling and organizing music pieces. They are categories of music pieces that are closely

related to music pieces, artists, culture and even the market. Different taxonomy of genres

are adopted by different music stores to organize music collections. But for any set of genres,
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boundaries between the genres in the set are fuzzy [108]. Moods and styles are other terms

used to describe music objects. Compared with genres, they are more descriptive and less

abstractive, and in general one music piece can have many mood and style labels assigned.

Such information of songs can be found at AllMusic (http://www.allmusic.com).

Mood and style descriptions of music pieces are valuable information for applications of

music data organization and music recommendation, but to the best of our knowledge, not

many MIR researches are making use of mood or style information. Therefore, we have

conducted one study on music artist similarity measurement by utilizing the mood and style

information extracted from AllMusic, which will be presented in chapter 3.

Associative Information [76] of music objects are often created by music consumers when

they are listening to the music samples. As World Wide Web gets more and more popular, many

music websites, such as http://last.fm and http://music.strands.com, are available

for end users to generate such information on the websites. Below are the most available

associative music data on the web, which have been utilized in a considerable amount of

literatures:

• Music Reviews: Music reviews represent a rich resource for examining the ways that

music fans describe their music preferences and possible impacts of those preferences.

With the popularity of World Wide Web, an ever-increasing number of music fans are

joining the music society and describing their attitudes towards music pieces. Online

reviews can be surprisingly detailed, covering not only personal opinions of the reviewers

but also important background and contextual information about the music piece and

musicians [59].

• Music Social Tags: Music social tags are a collection of textual description that annotates

different music items. The tags are typically used to facilitate searching for songs,

exploring for new songs, locating similar music recordings, and finding other listeners

with similar interests [74]. An illustrative example of well-known online music social
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tagging systems is last.fm, which provides plenty of music tags through public tagging

activities.

• User Profiles and Playlists: User profile represents the user’s preference to music

information, e.g., what kind of songs the user is interested in, and/or which artist the user

favors. Playlist refers to the list of music pieces that the user created based on his/her

preferences or the user has listened to. Traditionally, user profiles and playlists were

stored in offline music applications, which could only be accessed by a single user. With

the popularity of cyberspace and many music websites, more and more music listeners

share their music preference online. As a result, the user profiles and playlists are now

stored and managed in the online music databases, which are open to all the Internet

users. Some popular online music applications, e.g., http://www.playlist.com and

http://music.strands.com, provide services of creating user profiles and playlists,

and sharing them on social networks.

Social-context-based music analysis generally use Collaborative Filtering (CF) approaches

to work with social behavior data mined from popular websites. A great amount of efforts have

been directed towards collecting textual correlations, and co-occurrences of music objects on

public websites. For example, Schedl et al. [130] analyzed artist-based term co-occurrences

based on web texts. Knees et al. [69] used semantic data mined from the results of web-

searches for songs, albums and artists to generate a contextual description of the music based

on large-scale social input. Whitman and Ellis [153] developed an unbiased music annotation

system by leveraging web-mined reviews.

A very common problem in social-context-based music retrieval is derived from text mining.

The retrieval can suffer from a lack of precision, and can be confused and not able to distinguish

band/artist name terms from non-associated content, as mentioned in [130]. Music social tag

information is also employed in our research study. In order to address the problem with text

mining, we try to combine the social-context data with the music content data by using multi-

label classification algorithm, which will be presented in chapter 3.
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Playlists have been treated as a valuable information source of user access patterns in our

research study. They have been utilized together with the acoustic features extracted from the

music pieces for music recommendation purpose. This effort will be presented in chapter 5.

2.3 Music Retrieval Tasks and Common Techniques

In this section, we will review the following topics in the music retrieval literature and

attempt to answer the question of what data mining algorithms or other related techniques are

mostly used for the tasks of music data organization and annotation, music similarity search

and recommendation, and retrieval result presentation. To be more exact, we will study the

literature on the research issues of music genre classification, artist identification/classification,

music similarity search and audio fingerprinting, user-centric music recommendation, and

audio thumbnailing.

2.3.1 Music Genre Classification

Table 2 lists the common data mining and machine learning techniques employed in the

music genre classification literature. The techniques are briefly introduced, and selected

publications for each technique are also discussed.

Techniques Publications
Bayesian Network [36]

Decision Tree [3]
Gaussian Mixture Model [16]
Hidden Markov Model [121]

K-Nearest Neighbor [146], [110]
Linear Discriminant Analysis [20]

Neural Networks [75], [97]
Support Vector Machine [77], [100]

Taxonomy [82]
Multi-labeling Classification [93]

Table 2: Various music genre classification techniques

• Bayesian Network. A Bayesian network is a graphical model that represents

probabilistic relationships among variables of interest. In [36], Decoro et al. use

a Bayesian framework to aggregate a hierarchy of multiple binary classifiers, which
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are support vector machines in the case of that publication, to generate music genre

hierarchical taxonomies and improve classification accuracy.

• Decision Tree. A decision tree is a tree-like graph that represents decisions and their

possible consequences. In [3], a musical piece is represented as a list of chords, and each

musical genre as a series of musical pieces. Then a decision tree induction algorithm is

adopted to find the patterns of chord sequences, that appear in many songs of one genre

and do not appear in the other genres. Finally the discovered patterns are used to classify

unknown musical pieces into genres.

• Gaussian Mixture Model (GMM). GMM models the Probability Density Function

(PDF) of observed variables using a multivariate Gaussian mixture density. Given a

series of inputs, it refines the parameters for each Gaussian component and the mixture

weights through iterative expectation-maximization (EM) algorithms. A 3-component

Gaussian Mixture Model was used as classifier in [16] to perform genre classification

task.

• Hidden Markov Model (HMM). A hidden Markov model is a Markov chain for which

the state is only partially observable. Hidden Markov models are especially known for

their applications in temporal pattern recognition such as speed recognition. In [121],

the acoustic segment model is employed to create a “timbre dictionary” , which is then

used to train HMMs that represent the entire acoustic space for genre classification.

• K-Nearest Neighbor (KNN). KNN is a method for classifying objects based on closest

training examples in the feature space. The basic idea of KNN is to allow a small number

of neighbors to influence the decision on a point. It is proven that the error of KNN is

asymptotically at most twice as large as the Bayesian error rate. A number of standard

statistical pattern recognition classifiers were used in [146] for comparison purposes,

including KNN. [110] also uses KNN as its classifier.
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• Linear Discriminant Analysis (LDA). In the statistical pattern recognition

literature discriminant analysis approaches are known to learn discriminative feature

transformations very well. The basic idea of LDA is to find a linear combination of

features which characterize or separate two or more classes of objects. LDA with

Adaboost is used in [20] as the genre classifier in conjunction with other learning

algorithms to improve their classification and generalization performances.

• Neural Networks (NNs). Artificial Neural Networks (ANNs) are non-linear statistical

data modeling tools. They are usually used to model complex relationships between

inputs and outputs or to find patterns in data. The most widely used supervised ANN

for pattern recognition is the Multi-Layer Perceptron (MLP). [75] uses MLP as the genre

classifier, which is provided by WEKA, a machine learning tool. In [97], classification

is performed using an ensemble of feedforward neural networks and k-nearest neighbour

classifiers. It claims that the use of both techniques allows them to use Neural Networks

to model the sophisticated relationships between features when required, while using

KNN classifiers elsewhere to limit training times.

• Support Vector Machines (SVMs). Support Vector Machines [149] aim at searching for

a hyperplane or a set of hyperplanes that separate the positive data points and the negative

data points with maximum margin. SVMs have demonstrated excellent performance

in binary classification tasks. [77] and [100] use SVMs as their classifier for genre

classification.

From the above description, we can see that most popular classification algorithms have

been tried in the music genre classification research community. Advanced classification

techniques have also been used in certain work, such as in [82], hierarchical classification with

taxonomies was applied to music genre classification task, while SVMs were used to build

the classifiers. The basic idea was to first classify audio excerpts into several genre groups that

were a combination of several genres, then classify them into the desired genre within the genre

groups. [93] tried to assign multi genre labels to music pieces. It decomposed the multi-label
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classification problem into multiple single-class classification problems by breaking it down in

two dimensions. The classifier used was GMMs.

There have been as well a few comparative studies on different music genre classification

algorithms. [85] compared the performances of SVM, KNN, GMM, and LDA applied to

different acoustic features. [127] compared the performances of five modified methods based

on three different classifiers (SVM, NN, and HMM). [128] provided a comprehensive survey

on music genre classification topic. Expert systems were explained to be impractical, and

different approaches in unsupervised learning and supervised learning systems were discussed.

Specifically in our research effort, we have proposed a multi-label classification approach,

called Hypergraph integrated Support Vector Machine (HiSVM). It can integrate several types

of music information including music audio features, music style correlations, and social tag

information and correlations.

2.3.2 Artist Identification/Classification

Automated artist identification is important for many MIR applications including music

indexing and retrieval, copyright management and music recommendation systems. The

development of artist identification enables the effective management of music databases based

on “artist similarity”. Automatic artist classification refers to classifying musicians as the

predefined artist label given a music document. Most often, artist identification/classification

is performed based on acoustic features of the singer voice. Sometimes, social context data

such as web data can be used for this purpose [69].

Table 3 lists the common data mining and machine learning techniques employed in the

automatic artist identification/classification literature.

Techniques Publications
Gaussian Mixture Model [50], [67], [136], [144], [161]

K-Nearest Neighbor [88]
Neural Networks [7]

Support Vector Machine [69]

Table 3: Various artist identification/classification techniques

In this dissertation, we investigated a new approach to quantify the music artist similarity
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by employing the artist style and mood information extracted from All Music Guide. A

hierarchical co-clustering algorithm was adopted for this study.

2.3.3 Music Similarity Search

In the field of music data mining, similarity search refers to searching for music sound

files/samples similar to a given music sound file/sample. In principle, searching can be carried

out on any dimension. For instance, the user could provide an example of the timbre, or of the

sound, that he is looking for, or describe the particular structure of a song, and then the music

search system will be search similar music works based the information given by the user.

The similarity search processes can be divided into feature extraction and query

processing [80]. Feature extraction is the procedure to extract the content features described in

section 2.2.1. Some feature extraction procedures or instructions will be explained in chapter 3.

After feature extraction, music works can be represented based on the extracted features. In the

step of query processing, the main task is to employ a proper similarity measure to calculate the

similarity between the given music work and the candidate music works. A variety of existing

similarity measures and distance functions have previously been examined in this context,

spanning from simple Euclidean and Mahalanobis distances in feature space to information

theoretic measures like the Earth Mover Distance and Kullback-Leibler [8]. Regardless of the

final measure, a major trend in the music retrieval community has been to use a density model

of the features (often timbre space defined by MFCC’s [118]).

Numerous data mining and machine learning approaches have been applied to the problem

of music similarity search task. Rauber et al. studied a hierarchical approach in retrieving

similar music sounds [120]. Schnitzer et al. re-scaled the divergence and used a modified

FastMap implementation to accelerate nearest-neighbor queries [132]. Slaney et al. learned

embeddings so that the pairwise Euclidean distance between two songs reflected semantic

dissimilarity [137]. Deliège et al. performed the feature extraction in a two-step process

that allowed distributed computations while respecting copyright laws [38]. In [80], Li et

al. defined the distance between two sound files to be the Euclidean distance of the normalized
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representations of acoustic features. Pampalk et al. presented an approach to improve audio-

based music similarity and genre classification [110]. Berenzweig et al. examined both

acoustic and subjective approaches for calculating similarity between artists, comparing their

performance on a common database of 400 popular artists [8]. Aucouturier et al. introduced a

timbral similarity measures for comparing music titles based on a Gaussian model of cepstrum

coefficients [4].

As a special type of music similarity search, audio fingerprinting is best known for its

ability to associate an unlabeled music piece with its singer and track title. Compared

to other music similarity search applications, audio fingerprinting applications or audio

identification applications try to search an exact match of a given audio input in a large music

database. Similar to the music similarity search, there are two fundamental processes in audio

fingerprinting: the fingerprint extraction and the matching algorithm [18].

Fingerprint extraction is the process of extracting content features from the audio data,

or cryptographic audio hashing of the audio data to represent the music piece. Applications

using feature extractions for audio fingerprinting work very similarly to other similarity search

applications. MFCC features [6], and chroma features [46] are the normal selections for

this purpose. Systems based on audio hashing are generally designed case by case in this

process. [53] extracted 32-bit hash value for every frame and represented the music pieces as

binary vector sequences. The fingerprint used in [112] was a sequence of vectors representing

band information.

There were numerous matching algorithms used in this context. The identification

system in [6] was built on Hidden Markov Models (HMM). [53] designed an efficient bit

matching algorithm to search the audio in the music database. [19] adopted an approach

used in computational biology for the comparison of DNA to accelerate the search speed of

fingerprints.
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2.3.4 User-Centric Music Recommendation

Music recommendation aims to provide a music listener a list of music pieces that he/she

is likely to enjoy. User-centric music recommendation should focus on the user to whom the

system is intended to deliver the retrieval results, and therefore should be based on a good

understanding of the user preferences as well as the music pieces in the collection.

Various music recommendation approaches have been developed, and user demographic

information, music contents, user listening history, and the discography (e.g., Last.fm,

Goombah, and Pandora) have been used for music recommendations [17,24,89,106,109,113,

116, 147]. These approaches can be generally divided into two groups: collaborative-filtering

methods and content-based methods.

Collaborative-filtering methods recommend songs by identifying similar users or items

based on ratings of items given by users [14, 28, 57]. If the rating of an item by a

user is unavailable, collaborative-filtering methods estimate it by computing a weighted

average of known ratings of the items from similar users. Thus, for collaborative-filtering

methods to be effective, large amount of user-rating data are required, which is a major

limitation [125, 129]. Content-based methods provide recommendations based on the meta-

data such as genre, styles, artists, and lyrics [113, 119], and/or the acoustic features extracted

from audio samples [60,70,78,80]. Since acoustic contents are susceptible to feature extraction,

music recommendation is considered different from movie recommendation, in which meta-

data is generally the only available information [99]. In music recommendation, the reflective

and consistent acoustic features can represent song-specific characteristics such as genre,

timbre, pitch, and rhythm. Comparing with the acoustic features, a large portion of meta-

data are the descriptions of contents given by musicians. Music meta-data are thus very

time-consuming to obtain and not capable of providing adequate information for describing

listeners’ preferences [78].

Recently probabilistic models and hybrid algorithms [65, 117, 159] have been proposed to

overcome the aforementioned limitations by combining contents and user ratings. Yoshii et

al. [159] attempted to integrate both rating and content data. They utilized Bayesian network
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to statistically estimate the probabilistic relations over users, ratings and contents. Popescul

et al. [117] proposed a probabilistic model similar to the one suggested by Yoshii et al. to

take advantage of both collaborative-filtering and content-based recommendations. Jung et

al. [65] designed a hybrid method that combines collaborative-filtering and content-based

methods to improve recommendation performance. However, these models and methods

significantly degraded when they were short of corresponding user access data as illustrated

in our experiments that will be presented in chapter 5.

In this dissertation, user-centric music recommendation is one of the major research issue.

We propose a music recommendation approach by incorporating collaborative-filtering and

acoustic contents of music. This approach employs a novel dynamic music similarity

measurement strategy, which significantly improves the similarity measurement in terms of

accuracy and efficiency. This measurement strategy utilizes the user access patterns from large

numbers of users and represents music similarity with an undirected graph. Recommendation

is calculated using the graph Laplacian and label propagation defined over the graph. More

details can be found in chapter 5.

2.3.5 Music Audio Thumbnailing

Audio Thumbnailing, also called Music thumbnailing or music summarization, aims at

finding the most representative part of a song, which can be used for music browsing, music

searching and music recommendation. In this context, if the music retrieval results tend to

present a long list, summarized music pieces would be very helpful for the end users to digest

the information.

[72] presented a music summarization system developed on MIDI format, which utilized

the repetition nature of MIDI compositions to automatically recognize the main melody

theme segment and generate music summary. [58] also proposed two approaches dealing with

symbolic data for music thumbnailing purpose.

However, most such studies have been worked on music audio signals. Logan et al. [90]

tried to use a clustering technique or Hidden Markov Models to find key phrases of songs.
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MFCC features were selected to parameterize each music song. This summarization method

was suitable for certain genres of music such as rock or folk music, but it was less applicable

to classical music. MFCCs were also used as features in Cooper and Foote’s works [30, 31].

They used a two-dimensional similarity matrix to represent music structure and generate music

summary. But this approach would not always yield intuitive music pieces. In [21] and [22],

Chai and Vercoe presented a structural analysis method with five steps, which were: 1) feature

extraction, 2) pattern matching, 3) repetition detection, 4) segment merging, and 5) structure

labeling. Peeters et al. [114] proposed a multi-pass approach to generate music summaries.

[157] proposed effective algorithms to automatically classify and summarize music content.

Support vector machines were applied to classify music into pure music and vocal music by

learning from training data.

In the prototype system we developed in this study, the approach proposed in [30] was

adopted to create audio thumbnails, which were continuous excerpts of the whole music pieces.
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CHAPTER 3

MUSIC DATA ORGANIZATION AND ANNOTATION

3.1 Introduction

Huron [61] points out that, because the preeminent functions of music are social and

psychological, the most useful characterization of music would be based on a variety of social

context information [76] including genre, style, mood, and similarity. Therefore, to enable

music queries, it is imperative that each piece of music be annotated by appropriate labels, not

only by artists, album titles, track titles, and genres, which in many cases are readily available

at GraceNote, an access-free on-line database, but also by more pertinent information, such as

style and mood labels, which are available at online music stores and AllMusic, a registered-

user-only on-line database. Music annotation considers the problem of automatically assigning

the latter type of labels so as to eliminate the need of accessing those limited-access databases.

Recently, the user-assigned tags have turned into an essential component in music information

retrieval research and the problem of automatic music annotation using user-assigned tags has

also attracted a lot of research attention.

We study two important problems for music data organization and annotation. The first

problem is correlating styles and mood labels. An important characteristic of the style and

mood labels is that most labels are having close semantic relationships. One challenge is

whether we can automatically characterize the semantic relations among the labels using a

hierarchical structure. In this dissertation, we develop a hierarchical divisive co-clustering

algorithm for exploring the relationships among the style/mood models. The discovered

relationship can be used to compute the similarity between music artists. The second problem

is multi-label mood/style classification. Traditional music mood/style classification approaches

usually assume that each piece of music has a unique mood/style and they make use of

the music content (audio features) to construct a classifier for classifying each piece into its

unique mood/style. However, in reality, a piece of music may match more than one, even
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several different moods/styles. In addition, how to incorporate the tag information into the

classification process is also a challenge. In this dissertation, we develop a novel multi-

label music mood/style classification approach with hypergraph regularization to address this

problem.

The rest of this chapter is organized as follows: Section 3.2 introduces audio feature

extraction that is useful for subsequent analysis, Section 3.3 presents the study of quantifying

the artist similarity via a hierarchical divisive co-clustering algorithm of the style/mood models,

and Section 3.4 describes the developed multi-label mood/style classification algorithm with

hypergraph regularization.

3.2 Audio Feature Extraction

Before applying data mining approaches into music information retrieval tasks, an important

step is the determination of the features extracted from music data. All the machine learning

methods discussed in this chapter and the following chapters are making use of the acoustic

content features extracted from music audio signals to certain extent. There has been a

considerable amount of work in extracting descriptive features from music signals for music

genre classification and artist identification. In our study, we use timbral features along

with wavelet coefficient histograms. The feature set consists of the following three parts

and total 80 features, which can efficiently reflect the moods and styles of the corresponding

artists [49, 85, 91, 146].

• Mel-Frequency Cepstral Coefficients (MFCC): MFCC is a feature set that is highly

popular in speech processing. It is designed to capture short-term spectral-based features.

The features are computed as follows: First, for each frame, the logarithm of the

amplitude spectrum based on short-term Fourier transform is calculated, where the

frequencies are divided into thirteen bins using the Mel-frequency scaling. Next, this

vector is decorrelated using discrete cosine transform. This is the MFCC vector. In this

work, we use the first five bins, and compute the mean and variance of each over the

frames.
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• Short-Term Fourier Transform Features (STFT): This is a set of features related to

timbral textures and is not captured using MFCC. It consists of the following five types:

Spectral Centroid, Spectral Rolloff, Spectral Flux, Zero Crossings, and Low Energy.

More detailed descriptions of STFT can be found in [146].

• Daubechies Wavelet Coefficient Histograms (DWCH): Daubechies wavelet filters are a

set of filters that are popular in image retrieval. The Daubechies Wavelet Coefficient

Histograms, proposed in [85], are features extracted in the following manner: First,

the Daubechies-8 (db8) filter with seven levels of decomposition (or seven subbands) is

applied to 30 seconds of monaural audio signals. Then, the histogram of the wavelet

coefficients is computed at each subband. Following that, the first three moments of a

histogram, i.e., the average, the variance, and the skewness, are calculated from each

subband. In addition, the subband energy, defined as the mean of the absolute value of

the coefficients, is computed from each subband. More details of DWCH can be found

in [84, 85].

3.3 Quantify Music Artist Similarity Based on Style and Mood

3.3.1 Introduction

Music artist similarity has been an active research topic in music information retrieval

area for a long time since it is especially useful for music recommendation and data

organization [47, 84]. Many characteristics can be brought into consideration for defining

similarity, e.g., sound, lyrics, genre, style, and mood. Methods for calculating artistic similarity

include recent proposals that are based on the similarity information provided by the All Music

Guide website (http://www.allmusic.com) as well as those based on the user access history

(e.g., see [47]). Although there have been considerable efforts into developing effective and

efficient methods for calculating artist similarity, several challenges still exist. First, artist

similarity varies significantly when considering different aspects of artists such as genre, mood,

style, culture, and acoustics. Second, the user access history data are often very sparse and

hard to acquire if we are to calculate the artist similarity based on the user access history.
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Third, even if we can obtain the categorical descriptions of two artists using All Music Guide,

correlating and comparing the descriptions is not trivial since there are semantic similarities

among different descriptions. For example, given two mood terms witty and thoughtful, we

cannot simply quantify their similarity as 0 just because they are different words or as 1 because

they are synonyms.

In this section, we propose a new framework for quantifying artist similarity. In this

framework, we focus on two important aspects of music: style and mood [147]. The style

and mood descriptions of famous artists are publicly available on All Music Guide website.

We collect the information of the artists and their style and mood descriptions. The All Music

Guide style terms are nouns and adjectives while its mood terms are adjectives only. These

terms carry significant linguistic meanings given some context, but the use of the terms at the

All Music Guide web site is little contextual. In this research work, we study how these terms

are collectively used in describing artists.

3.3.2 Hierarchical Co-clustering of style and mood labels

An important characteristic of the style and mood labels is that most labels are having close

semantic relationships. The first type of the relationships is that some labels are synonyms,

e.g., “witty” and “thoughtful” are synonyms, and “happy” and “cheerful” are synonyms as

well. The second type of the relationships is that some labels are more general while some

others are more specific, e.g., “Soft Metal” is a more specific style than “Metal”, “Extremely

Provocative” is a more specific tag than “Provocative”, and “Agony” is a more specific mood

label than “Sadness”. One challenge is whether we can automatically characterize such two

types of semantic relations among the labels using a hierarchical structure.

To capture the semantic similarity among different style and mood descriptions, we generate

a style taxonomy and a mood taxonomy using a hierarchical co-clustering algorithm. Then we

quantify the semantic similarities among the style/mood terms based on the taxonomy structure

and the positions of these terms in the taxonomies. Finally we calculate the artist similarities

according to all the style/mood terms used to describe the music artists.
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Similarity Taxonomy Generation

The style and mood labels of 2431 artists are collected for those artists having both labels

appearing on the All Music Guide website. Altogether 601 style terms (nouns like Electric

Chicago Blues, Greek Folk, and Chinese Pop, as well as adjectives like Joyous, Energetic, and

New Romantic), and 254 mood terms (such adjectives as happy, sad, and delicate) are used

to describe these artists. Table 4 lists an example of the mood and style descriptions of three

randomly picked artists: ABBA, The Beatles, and Elvis Presley. The mood terms and style

terms are subjective. However, we consider the labels of moods and styles from All Music

Guide as representing collective opinions of many music experts/critics thereby representing

the subjective opinions of a large proportion of music listeners.

Artist Mood Description Style Description
ABBA Light, Delicate, Rousing,

Sentimental, Joyous, Fun, Sweet,

Sparkling, Sugary, Cheerful,

Happy, Playful, Naive, Plaintive,

Gentle, Gleeful, Giddy, Stylish,

Romantic, Energetic, Exuberant,

Ambitious, Complex, Exciting,

Fun, Bright, Lively, Witty,

Carefree, Wistful

Euro-Pop, Pop/Rock, Swedish

Pop/Rock, Pop, British Invasion,

Psychedelic

The Beatles Wistful, Searching, Sweet,

Warm, Yearning, Whimsical,

Amiable/Good-Natured, Poignant,

Lush, Laid-Back/Mellow, Literate

Merseybeat, Pop/Rock, British

Psychedelia, Folk-Rock, Rock &

Roll

Elvis Presley Rock & Roll, Rockabilly, Pop,

Pop/Rock

Carefree, Dramatic, Exciting,

Confident, Exuberant, Energetic,

Summery, Joyous, Rambunctious,

Bright, Light, Romantic, Cheerful,

Freewheeling, Raucous, Sweet,

Playful, Fun, Warm, Swaggering,

Lively

Table 4: An example of artist mood and style descriptions

Algorithm Description

In order to organize the style terms and mood terms into the corresponding taxonomies, we

need to apply clustering algorithms to them. Clustering is the problem of partitioning a finite
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set of points in a multi-dimensional space into classes (called clusters) so that (i) the points

belonging to the same class are similar and (ii) the points belonging to different classes are

dissimilar [54, 62].

However, most clustering algorithms aim at clustering homogeneous data, i.e, the data points

of a single type [10]. In our application, the data set to be analyzed involves more than one type,

e.g. styles and artists. Furthermore, there are close relationships between these types of data.

It is difficult for the traditional clustering algorithms to utilize those relationship information

efficiently.

Co-clustering algorithms are designed to cluster different types of data simultaneously by

making use of the dual relationship information such as mood–artist matrix. For instance,

Dhillon [40] and Zha et al [160] proposed bipartite spectral graph partitioning approaches

to co-cluster words and documents, Cho. et al [25] proposed to co-cluster the experimental

conditions and genes for microarray data by minimizing the Sum-Squared Residue, Long et

al. [92] proposed a general principled model, called Relation Summary Network, to co-cluster

the heterogeneous data on a k-partite graph.

On the other hand, hierarchical clustering is the problem of organizing data in a tree-like

structure in which the input set of data points is recursively divided into smaller subgroups,

usually until the subgroups become individual data points [142]. While both hierarchical

clustering and co-clustering have their own advantages, few algorithms exist that execute both

simultaneously [11]. In our work, to further utilize the cluster information obtained from the

co-clustering algorithms and generate the taxonomies, we utilize a hierarchial co-clustering

algorithm [158].

In our work, the artist style description is represented as a 2431× 601 artist–style matrix,

S, and the artist mood description as a 2431× 254 artist–mood matrix, M. In the following,

we will describe our algorithm for the artist–style matrix S. The algorithm is the same for

the artist–mood matrix M. The core idea behind the procedure is to combine Singular Value

Decomposition (SVD) and K-means using a top-down iterative process [158]. The procedure

is described as follows:
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1. Given an m×n artist–style matrix, S, perform SVD on S to obtain: S =U×Λ×V T .

2. Let λ1 � λ2 � . . .� λm be the largest m singular values. Then the number of clusters is

k where:

k = argmax(m�i>1)(λi−1−λi)/λi−1.

3. Find k singular vectors of S: u1,u2, . . . ,uk and v1,v2, . . . ,vk, and then form a matrix Z by:

Z =

[
D−1/2

1 [u1, ...,uk]

D−1/2
2 [v1, ...,vk]

]
.

4. Apply K-means clustering algorithm to cluster Z into k clusters.

5. For each cluster, check the number of artists in it. If the number is higher than a given

threshold (in our experiment, we set the threshold = 3), construct a new artist–style

matrix formed by the artists and styles in that cluster, and continue to the first step.

According to this algorithm, 601 style terms are clustered into 20 clusters, and 254 mood

terms are clustered into 68 clusters. They are further recursively clustered into many subclasses

until the algorithm converges. We organized the generated taxonomies and present them in

two trees, which can be viewed at http://www.newwisdom.net/MIR/styletree.jsp and

http://www.newwisdom.net/MIR/moodtree.jsp.

Figure 1 is an example of a style cluster obtained from the style similarity tree. By checking

the positions of the terms in the taxonomy of this cluster, we can easily observe that Country-

Rock and Progressive Country are the most similar (similarity value between them equals to

1 in our system) in the semantic meanings of styles, and the similarity between Country-Pop

and Urban Cowboy is greater than the similarity between Country-Pop and Cajun as well as

the similarity between Urban Cowboy and Cajun. Figure 2 is an example of a mood cluster

obtained from the mood similarity tree that is generated following the same construction rule.

Figure 3 shows the distribution of the sizes of all the 20 style clusters and Figure 4 shows the
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Figure 1: An example of a style cluster from the style similarity tree (= means the most similar)

Figure 2: An example of a mood cluster from the mood similarity tree (= means the most

similar)

distribution of the sizes of all the 68 mood clusters. From these two figures, we observe that

both style terms and mood terms are distributed into each classes in a quite balanced manner.

Based on this co-clustering algorithm, we can also obtain the style-based artist similarity

structure and mood-based artist similarity structure directly, which can be viewed at http:

//www.newwisdom.net/MIR/artisttrees.jsp and http://www.newwisdom.net/MIR/

artisttreem.jsp. They have the similar well-balanced cluster member distributions.

However, the similarity between two artists has not been quantified up to now. Furthermore,

if we have new artists with style and/or mood descriptions, it is very hard for us to integrated

them into the tree structures. Therefore, we need to go steps further to study how to quantify

the term similarity and artist similarity based on the generated taxonomies.
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Figure 3: The distribution of sizes of style clusters

3.3.3 Similarity Quantification

To calculate artist similarity, we need to quantify the semantic similarity between all pairs

of style/mood terms first. In order to do this, we investigate the methods proposed by

Resnik [122], Jiang and Conrath [63], Lin [87], and Schlicker et al. [131]. The approaches

for calculating the similarity proposed by them are briefly described as follows:

Resnik:

simR(s1,s2) = max
s∈S(s1,s2)

{−log(p(s))}. (1)

Jiang-Conrath:

distJC(s1,s2) (2)

= max
s∈S(s1,s2)

{2log(p(s))− log(p(s1))− log(p(s2))}.

Lin:

simL(s1,s2) = max
s∈S(s1,s2)

{ 2× log(p(s))
log(p(s1))+ log(p(s2))

}. (3)
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Figure 4: The distribution of sizes of mood clusters

Schlicker:

simS(s1,s2) (4)

= max
s∈S(s1,s2)

{ 2× log(p(s))
log(p(s1))+ log(p(s2))

(1− log(p(s)))}.

Here p(s) = freq(s)/N and freq(s) is the number of artists that utilize the given style/mood term

s to describe them, N is total number of artists, and S(s1,s2) is the set of common subsumers

of style/mood terms s1 and s2. The basic idea of these approaches is to capture the specificity

of each style/mood term and to calculate the similarity between style/mood terms that reflects

their positions in the taxonomy generated in Section 3.3.2.

Once we obtain the pairwise semantic similarity of style/mood terms, we can calculate the

artist similarity based on style/mood. For example, if artist A1 is described by a group of styles

s1,s2, . . . ,si, and artist A2 is described by another group of styles s′1,s
′
2, . . . ,s

′
j, we define the

style-based similarity between A1 and A2 as:

sim(A1,A2) =
∑x∈[1,i](maxy∈[1, j]sim(sx,s′y))

j
. (5)
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Here sim(sx,s′y) is the similarity between style sx and style s′y. Mood-based artist similarity

can be obtained using the same approach.

In some applications, people may see the differences among these four different approaches

due to the different scales of their results and the different ways they are associating with the

terms in the taxonomies. In our system, however, we compared their results and do not observe

any significant differences among them after normalizing them into the same scale (0∼1). To

further illustrate this, let us check the data distribution of the artist similarity values generated

using these four different approaches.

The distribution of artist similarity values based on style similarity calculated using the

four different approaches is presented in Figure 5, and the distribution of artist similarity

values based on mood similarity calculated using the four different approaches is presented

in Figure 6.
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Figure 5: The distribution of artist similarity values based on style similarity calculated using

the four different approaches

From these two figures, we observe that there are almost no difference among the

distributions of the artist similarity values using 4 different approaches described above. Hence

we use the average of all the 4 normalized quantified similarity values as the final artist

similarity. We also observe that the style-based artist similarity values are a little more diverse
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Figure 6: The distribution of artist similarity values based on mood similarity calculated using

the four different approaches

than the mood-based artist similarity values, therefore we use a heuristic proportion value to

calculate the final combined artist similarity value:

c = 0.4×m+0.6× s, (6)

where c is the combined artist similarity, and m is mood-based similarity while s is style-based

similarity. In our system, “0” stands for the most different and “1” the most similar.

3.3.4 Evaluation

For the evaluation purpose, we are interested in how these professionally assigned mood

and style terms are grouped together in describing artists. We believe that neither acoustic

similarity nor mood/style labels provide sufficient information to enable accurate similarity

calculation. We are rather interested in how related the label-based similarity and the acoustics-

based similarity are to each other. To explore more on this question, it would be ideal if we had

acoustics data for all the 2431 artists in the study, but the time and cost required for collecting

the data would be prohibitive. So for this experimental study, we consider a limited number

of artists to demonstrate the effectiveness of our framework. The case study we conducted is

based on six famous artists (bands): the Beatles, the Carpenters, Celine Dion, Elvis Presley,
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Madonna, and Michael Jackson. The quantified artist similarities among them are listed in the

second, third, and fourth columns of Table 5.

To compare with the artist similarity based on the mood and style labels, we use the distances

of the acoustic features extracted from the songs of these artists (bands). For each artist (band),

we randomly pick 5 songs and conduct the following procedure. Firstly, we exact the acoustic

features of each song using the approach explained earlier in this chapter. Then we calculate

the pairwise Euclidean distances between the feature points that represent the songs of different

artists (bands). Finally we calculate the average of all the pairwise distances as the content-

based distance of the two artists. The results are listed in the last column of Table 5.

Name Pair Mood-

based

Similarity

Style-

based

Similarity

Combined

Similarity

Average

Distance

Elvis Presley : Michael Jackson 0.33 1 0.732 4.807
The Carpenters : Celine Dion 0.15 1 0.66 4.836
Michael Jackson : Madonna 0 1 0.6 6.840

The Carpenters : Michael Jackson 0 1 0.6 7.921
Celine Dion : Michael Jackson 0 1 0.6 7.991

Elvis Presley : Madonna 0 1 0.6 8.555
The Beatles : Michael Jackson 0 0.875 0.525 9.455

Celine Dion : Madonna 0 0.75 0.45 8.229
The Carpenters : Madonna 0.143 0.5 0.357 8.344
Celine Dion : Elvis Presley 0 0.75 0.45 8.655

The Carpenters : Elvis Presley 0.048 0.5 0.319 8.756
The Beatles : Madonna 0 0.5 0.3 9.688

The Beatles : Elvis Presley 0 0.5 0.3 9.324
The Beatles : Celine Dion 0 0.278 0.167 10.887

The Carpenters : The Beatles 0 0.25 0.15 11.134

Table 5: Quantified similarity values and average distances

In this case study, we also evaluate the sensitivity of the heuristic values used to calculate the

combined similarity from the style-based similarity and mood-based similarity. They are based

on the same artists (bands). Combinations based on different heuristic values are illustrated in

Figure 7. In this figure, the values of content-based distances are decreased to 10% of their

original values to fit into the scale. 0.2 + 0.8 combination stands for c = 0.2×m+ 0.8× s,

where c is the combined artist similarity, and m is mood-based similarity while s is style-based

similarity. All other types of combined similarities are calculated following the same rule.
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Figure 7: Comparison of combined similarities based on different heuristic values

Result Analysis

From the results, we observe that our quantified artist similarities match very closely the

artist similarities based on the acoustic features extracted from the music recordings of the

corresponding artists. By checking the last two columns of Table 5, we can easily observe that

the data variation trends from the top to the bottom, i.e, while the average distance increases

one by one, the combined similarity decreases almost constantly. In other words, the acoustic

feature points of songs from the artists with higher similarity values (e.g., The Carpenters

versus Celine Dion) are closer than those of songs from the artists with lower similarity values

(e.g., The Beatles versus Celine Dion, and The Beatles versus The Carpenters), while the

acoustic feature points of songs from the artists with lower similarity values (e.g., Elvis Presley

and The Beatles) are farther than those of songs from the artists with higher similarity values

(e.g., Elvis Presley and Michael Jackson). This demonstrates that our quantified artist similarity

based on style and mood descriptions is consistent with the content-based artist similarity.

By checking Figure 7, we can observe that the calculation of combined artist similarity is not

sensitive to the heuristic values used. All four combinations are having the same decreasing

pattern when the content-based distance increases. This result indicates that it is possible to

choose any of these four combinations to calculate the combined artist similarity given the

style-based similarity and mood-based similarity. However, in order to let the combined
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similarity be able to reflect most of the information in the two components and the more

diversified nature of style-based similarity, we use the 0.4 + 0.6 combination in our system.

3.3.5 Conclusion

Music artist similarity has been an active research topic in music information retrieval for

a long time since it is especially useful for music recommendation and organization. But

artist similarity varies from different aspects considered, and is hard to quantify although

considerable efforts have been put into this venue. In this investigated approach, we focus

on two very important aspects of musical artists: style and mood. we extract authoritative

information from All Music Guide, generate style and mood similarity taxonomies to represent

the semantic relations among the style and mood terms, and quantify the artist similarities

based on the semantic similarities of the style and mood terms. We also conduct a case study

based on acoustic content analysis, which validates this quantification approach and shows the

effectiveness of our proposed framework.

3.4 Tag Integrated Multi-label Music Style Classification with Hypergraph

Music genre and style classification has been a hot topic in Music Information Retrieval

research area, and a significant amount of efforts have been put in this venue [85, 164]. Many

approaches are highly successful, however there are two major limitations: 1) Most of them

are single-label methods in that they can assign only one genre or style label to the music

object, but many music pieces may map to more than one genre or style; 2) They mostly only

make use of the music content information, which actually ignores the essential social context

information of the music object.

In our work, we propose a SVM-like multi-label music style classification approach,

called Hypergraph integrated Support Vector Machine (HiSVM). The algorithm employs a

hypergraph Laplacian regularizer and the problem can be efficiently solved by the dual

coordinate descent method. The proposed approach can effectively perform multi-label music

style classification by integrating three type of information: 1) audio features; 2) music style

correlations; and 3) social tag information and correlations.
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3.4.1 Method description

We build two hypergraphs in this work. A hypergraph is a generalization of a graph, where

an edge can connect any positive number of vertices [9]. Formally, a hypergraph G is a

pair (V,E) where V is a set of vertices and E ∈ 2V−Φ is a set of edges. An edge-weighted

hypergraph is a hypergraph in which each edge is assigned a weight. Let us use w(e) to denote

the weight given to an edge e. The degree of an edge e, denoted as δ(e), is the number of

vertices connected to e. Thus for a standard graph (“2-graphs”) the value of δ is 2 for all edges.

The degree of a vertex v is d(v) = Σv∈e,e∈(e)w(e).

The two hypergraghs we constructed in our music style classification are: the style

hypergraph Gs and the tag hypergraph Gt . The vertices of Gs and Gt are simply the data points.

The hyperedges of Gs correspond to the style labels, i.e., each hyperedge in Gs contains all the

data points that belong to a specific style category. Similarly, each hyperedge of Gt contains all

the data points that own the corresponding tag.

Figure 8 shows an intuitive example on the music style and tag hypergraphs. In the figure, the

nodes on the hypergraphs correspond to the music “Angola Bond”, “Who is he”, “Dangerous”,

“Pleasure”, and “Strip”. The regions of different colors correspond to different hyperedges.

The hyperedges correspond to music styles in the left panel and to music tags in the right

panel.
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Figure 8: An example of the music style (left) and tag (right) hypergraph

Keep the concept of hypergraph in mind, and now let us describe our proposed multi-label

classification algorithm:

Suppose there are n training samples {(xi,yi)}n
i=1, where each instance xi is drawn from
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some domain X ⊆ R
m and its label yi is a subset of the output label set Y = {1, · · · ,k}. For

example, if xi belongs to categories 1, 3, and 4, then yi = {1,3,4}. We use X = (x1, · · · ,xn)
T

to represent the data feature matrix.

The basic strategy of this algorithm is to solve the multi-label learning by combing a label

ranking problem and a label number prediction problem. That is, for each instance we produce

a ranked list of all possible labels, estimate the number of labels for the instance, and then

select the predicted number of labels from the list.

Label Ranking Algorithm

Label ranking is the task of inferring a total order over a predefined set of labels for each

given instance [37]. Generally, for each category, we define a linear function fi(x) = 〈wi,x〉+
bi (i = 1, · · · ,k), where 〈·, ·〉 is the inner product and bi is a bias term. One often deals with the

bias term by appending to each instance an additional dimension

xT ← [xT ,1], wT
i ← [wT

i ,bi], (7)

then the linear function becomes fi(x) = 〈wi,x〉. The goal of label ranking is to order

{ fi(x), i = 1, · · · ,k} for each instance x according to some predefined empirical loss function

and complexity measures. Elisseeff and Weston [45] apply the large margin idea to multi-label

learning and present an SVM-like ranking system, called Rank-SVM, given as follows:

min
1

2

k

∑
i=1

‖wi‖2 +C
n

∑
i=1

1

|yi||yi| ∑
(p,q)∈yi×yi

ξipq

s.t. 〈wp−wq,xi〉 ≥ 1−ξipq,(p,q) ∈ yi× yi

ξipq ≥ 0, (8)

where C ≥ 0 is a penalty coefficient that trades off the empirical loss and model complexity,

yi is the complementary set of yi in Y, |yi| is the cardinality of the set yi, i.e., the number of

elements of the set yi, and ξipq(i= 1, · · · ,n;(p,q)∈ yi×yi) are slack variables. The margin term

∑k
i=1 ‖wi‖2 controls the model complexity and improves the model generalization performance.
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Although this approach performs better than Binary-SVM in many cases, it still does not model

the category correlations clearly. Next, we will describe how to construct a hypergraph to

exploit the category correlations and how to incorporate the hypergraph regularization into the

problem in the form of Eq. (8 ).

To model the correlations among different categories effectively, a hypergraph is built where

each vertex corresponds to one training instance and a hyperedge is constructed for each

category which includes all the training instances relevant to the same category. Here, we apply

the Clique Expansion algorithm [26] to construct the similarity matrix of the hypergraph. It

means that the similarity of two instances is proportional to the sum of the weights of their

common categories, thereby captures the higher order relations among different categories.

This kind of hypergraph structure was used in the feature extraction by spectral learning [140].

However, we consider how to apply the relation information encoded in the hypergraph to

directly design the multi-label learning model. Intuitively, two instances tend to have a large

overlap in their assigned categories if they share high similarity in the hypergraph. Formally,

this smoothness assumption can be expressed using the hypergraph Laplacian regularizer,

trace(F̂T LF̂). Therefore we can introduce the smoothness assumption into Eq. (8 ) and obtain

min
1

2

k

∑
i=1

‖wi‖2 +
1

2
λtrace(F̂T LF̂)+

C
n

∑
i=1

1

|yi||yi| ∑
(p,q)∈yi×yi

ξipq

s.t. 〈wp−wq,xi〉 ≥ 1−ξipq,(p,q) ∈ yi× yi

ξipq ≥ 0. (9)

Here F̂ is the matrix of label prediction, that is, the n× k matrix ( f j(xi)), 1≤ i≤ n, 1≤ j ≤ k.

L is the n×n hypergraph Laplacian and λ � 0 is a constant that controls the model complexity

in the intrinsic geometry of input distribution.

Problem (9 ) is a linearly constrained quadratic convex optimization problem. To solve it, we

first introduce a dual set of variables, one for each constraint, i.e., αipq ≥ 0 for 〈wp−wq,xi〉−
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1+ ξipq ≥ 0 and ηipq for ξipq ≥ 0. After some linear algebraic derivation, we obtain the dual

of Problem (9 ) as

ming(α) =
1

2

k

∑
p=1

n

∑
h,i=1

βphβpixT
h (I +λXT LX)−1xi

−
n

∑
i=1

∑
(p,q)∈yi×yi

αipq

s.t. 0≤ αipq ≤ C
|yi||yi|

, (10)

where α denotes the set of dual variables αipq and I is the (m+1)× (m+1) identity matrix.

Once the variables αipq that minimize g(α) are obtained, we can compute wp by

wp = (I +λXT LX)−1
n

∑
i=1

βpixi, (11)

where

βpi = ∑
( j,q)∈yi×yi

t p
i jqαi jq (12)

t p
i jq =

⎧⎪⎪⎨⎪⎪⎩
1

−1

0

j = p

q = p

if j �= p and q �= p.

(13)

Compared to the primal optimization problem, the dual has k(m+1) less variables and includes

simple box constraints. The dual can be solved by the dual coordinate descent algorithm shown

in Algorithm 1.

Label Number Prediction Algorithm

To identify the final labels of data, we need to design an appropriate threshold for each

instance to determine the size of its corresponding label set. Here, we adopt the strategy

proposed by Elisseeff and Weston [45], which treats threshold designing as a supervised

learning problem. More concretely, for each instance x, define a threshold function h(x) and the
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Algorithm 1 A dual coordinate descent method for HiSVM

Start with α = 0 ∈ R
nα (nα = ∑n

i=1 |yi||yi|), and the corresponding wi = 0 (i = 1, · · · ,k)
while 1 do

for i = 1, · · · ,n and ( j,q) ∈ yi× yi do
1. G = (wp−wq)

T xi−1

2. PG =

{
G
min(0,G)
max(0,G)

if 0 < αipq <
C

|yi||yi|
if αipq = 0

if αipq =
C

|yi||yi|
3. If |PG| �= 0,

α∗ipq ←min
(

max
(

αipq− G
2Aii

,0
)
, C
|yi||yi|

)
wp ← wp +(α∗ipq−αipq)(I +λXT LX)−1xi

wq ← wq− (α∗ipq−αipq)(I +λXT LX)−1xi
end for
if ‖α∗ −α‖/‖α‖< ε(e.g. ε = 0.01) then

Break

end if
α = α∗

end while

size of label set s(x) = ‖{ j | f j(x)> h(x), j = 1, · · · ,k}‖. Our goal is to obtain h(x) through a

supervised learning method. For the training data xi, its label ranking values, f1(xi), · · · , fk(xi),

can be given by the foregoing ranking algorithm, and its corresponding threshold h(xi) is

simply defined by

h(xi) =
1

2
(min

j∈yi
{ f j(xi)}+max

j∈yi
{ f j(xi)}).

Once the training data (x1,h(x1)), · · · ,(xu,h(xu)) are generated, we can use off-the-shelf

learning methods to learn h(x). In this study, Linear Support Vector Regression [148] has

been adopted to solve h(x). Note that all the label ranking based algorithms toward multi-label

learning can use this postprocessing approach to predict the size of label set.

3.4.2 Description of Experiments

Dataset Description

For experimental purpose, we created a data set consisting of 403 artists. For each artist,

we include a representative song and also obtain the style and tag description. Music audio

data were provided by http://www.newwisdom.net. For experimental purpose, we created
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a common data set of 403 artists that we can find the music audio data and the mood, style, as

well as tag descriptions. We requested 1 piece of audio data for each artist. As the songs in

our test domain tend to have introductory non-vocal parts in the first 60 second, we generate

a music sample using the third 30-second block (i.e., between time 1’00” and 1’30”) for each

song. The audio feature extraction is performed as described in Section 3.2. The social Tag

data came from the popular music website http://www.last.fm. An open research data set is

available to download at http://blogs.sun.com/plamere/entry/open_research_the_

data_lastfm. It was collected by Paul Lamere, a researcher in Sun Labs during the spring of

2007. Music tags are descriptions given by visitors or music tag editors from the website to

express their idea on the music artists, albums or songs. Tags can be as simple as a word or

as complicated as a whole sentence. Popular tags are terms like rock, black metal, and indie

pop. Long tags are like I love you baby can I have some more. They are not as formal as style

or mood description created by music experts. But they give us ideas of how large population

music listeners think about the music artists, music albums or songs. In order to understand

how important and accurate a tag is when reflecting an artist, the frequencies of all the tags to

describe the artists (tag counts) were also taken into consideration in the experiments.

Experimental Setup

For the data set of 403 artists, we use 70% of the data for training (282 pieces total), and

the remaining 30% for testing (121 pieces total). Here, the five models used for multi-label

learning are compared as follows:

• Binary-SVM. In this model, first, for each category, train a linear SVM classifier

independently. Then, the labels for each test instance can be obtained by aggregating

the classification results from all the binary classifiers. Here, we use LIBSVM [23] to

train the linear SVM classifiers.

• Rank-SVM [45]. In this model, first, using Eq. (8 ), we implement the optimization

algorithm [150] (λ = 0) to train a linear label ranking system. We then apply the

prediction method for the size of label set described in Section 3.4.1 to design the
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threshold model. Finally, for each test instance, we combine the label ranking and

threshold models, thereby infer its labels.

• HiSVM. This is our proposed algorithm. The algorithm is composed of three steps: (1)

we implement the optimization algorithm [150] to achieve a linear label ranking system;

(2) we apply the method in Section 3.4.1 to design the threshold model; (3) for each test

instance, we combine the label ranking and threshold models to infer its labels.

• HSVM. HSVM is the style Hypergraph regularized SVM method, which is the same as

the HiSVM method except that it only makes use of the style hypergraph and does not

use the tag hypergraph.

• GSVM. GSVM is similar to HiSVM except we construct a traditional 2-graph where

each vertex represents one training instance in GSVM rather than a hypergraph. In order

to compute the Laplacian, the weight wi j of the edge between xi and x j is defined as

follows

wi j = exp(−ρ‖xi− x j‖2), (14)

where ρ is a nonnegative constant. Apparently, the category correlation information is

not used during the construction of 2-graph in GSVM.

Experimental Results

Table 6 illustrates the experimental results on our HiSVM algorithm along with the four

other methods on the data set. The values in Table 6 are the F1 Micro values and F1 Macro

values averaged over 50 independent runs together with their standard deviations.

Methods F1 Macro F1 Micro
Binary-SVM 0.4231±0.0025 0.4317±0.0103
Rank-SVM 0.4526±0.0114 0.4733±0.0036

GSVM 0.5018±0.0054 0.5244±0.0103
HSVM 0.5365±0.0120 0.5509±0.0072
HiSVM 0.5613±0.0069 0.5802±0.0116

Table 6: Performance comparisons of four models on the last.fm dataset

From the table we can clearly observe the following:
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• Multi-label methods perform better than the simple Binary-SVM method.

• The consideration of label correlations is helpful for the final algorithm performance.

• Hypergraph regularization is better than flat two-graph regularization because it can

incorporate the high-order label relationships naturally.

• The incorporation of tag information is helpful for the final classification performance.

Figure 9 shows how the relative error ‖α∗ −α‖/‖α‖ varies with the process of iteration

using the dual coordinate descent method introduced in Algorithm 1.
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Figure 9: The relative error vs. iteration step plot of our proposed dual coordinate descent

algorithm for solving HiSVM

From the figure we clearly see that with the process of coordinate descent, the relative error

will decrease and it takes approximately 30 steps to converge. This validates the correctness of

our algorithm experimentally.
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CHAPTER 4

MUSIC ANALYSIS FROM DIFFERENT INFORMATION SOURCES

4.1 Introduction

As described in the previous chapter, the music data are naturally multi-modal, in the sense

that they are represented by multiple sets of features. For example, the representation of a

song can have four dimensions of features: 1) the personnel dimension, including the singer,

the composer, the producer, the director, the editor, the scenario writer, the cast, and so on; 2)

the lyric features; 3) the content features, which summarize the voice and background audio.

They can be acoustic features extracted from audio recordings or higher-level features extracted

from MIDI files [96]; and 4) the feedback from listeners or labels from music experts, such

as tags, genres, mood and styles. Having data with heterogeneous sets of features, one may

pose a natural question: can multi-modality be effectively utilized in music data analysis, and

if so, can such multi-modal learning methods produce better analysis results than uni-modal

methods?

Two fundamental approaches in dealing with the music data are classification and clustering.

While classification assigns predefined class labels to the data, clustering divides the data into

classes based on their similarity without predefined class labels. Since it requires user input

(or labeled data) for training, the former approach is called supervised learning, while the

latter approach does not require user input (or only use unlabeled data), and thus is called

unsupervised learning. Practically, these approaches can be revised, while the data sets can

be combined to improve the organization performance and accuracy. While there is a vast

literature on music classification, the problem of music clustering is much less explored [27,

111, 143].

Note that many strategies such as co-learning [1, 13, 33, 123] and co-boosting [29] have

been developed to perform supervised learning as well as semi-supervised learning (where

both labeled and unlabeled data are used for training) from the data with heterogeneous sets of
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features. In our work, we study the issue of clustering pop music into groups with respect to

the artists from diverse information sources.

We first develop a new bi-modal music clustering algorithm for integrating the features

based on minimizing disagreement. To apply the bi-modal music clustering, we need to have

a complete feature representation, i.e., we need to know the content and lyrics information

for each song. However, sometimes we might not be able to get the complete feature

representation. For example, the lyrics may not be available for certain songs in our study.

In addition, in many cases, some data sources may not be as informative as other data

sources. For example, the lyrics may not be able to provide the same level of details of

genre/style information as the acoustic features. This motivates us to study music clustering

with constraints: One data source is chosen as primary information source. The other data

sources are treated as secondary information and are used as constraints to improve the

clustering results based on the primary source.

In summary, this chapter studies the following two related problems:

• Bi-modal music clustering: Note that in music information retrieval, the personnel

feature set of the representation of music, is significantly smaller than that of movies,

since many music artists produce, compose, and perform themselves. This compels one

to take the standpoint that the representation of popular music is bimodal, consisting

of the acoustic features, which summarize the sound, and the text features, which

summarize the words put into the music. To apply the bi-modal music clustering,

we need to have a complete feature representation, i.e., we need to know the content

and lyrics information for each song. We of course anticipate that bimodal clustering

techniques can be naturally extended to general multi-modal clustering.

• Music clustering with constraints: In practice, bi-modal clustering might not be plausible

for the following two scenarios: (1) The feature set from some information source

might not be sufficient enough to represent the music (e.g., the personnel features

described above); (2) We may not always have the complete feature representation. For

49



instance, sometimes we only have the lyrics information or meta-data information of a

small number of songs. To utilize these partial or incomplete information from diverse

information sources, we represent it as instance-level constraints (e.g., two artists share

similar lyrics or personnel features) and study the problem of music clustering with

constraints [115].

The rest of the chapter is organized as follows: Section 4.2 presents the bi-modal clustering

algorithm, Section 4.3 describes constraint-based clustering algorithm, Section 4.4 introduces

text-based feature extraction and constraint generation, Section 4.5 shows the experimental

results, and finally Section 4.6 concludes the chapter.

4.2 Bimodal Clustering Algorithm Description

Table 7: The list of notations used in Bimodal Clustering Algorithm

Our clustering algorithm is based on the the basic principle of minimizing disagreement,

which is claimed in [83]: minimizing the disagreement between two individual models could

lead to the improvement of learning performance of individual models. It should be pointed

out that although the principle of minimizing the disagreement was originally proved in the

context of supervised learning [35], it can be regarded as a simple common theme of multi-

modal information retrieval: individual feature sets interact to help each other by reducing

disagreement among their outputs.

The clustering algorithm can be considered as an extension of the EM method [39]. In

each iteration of the algorithm, an EM type procedure (an Expectation step followed by a
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Figure 10: Bimodal Clustering Algorithm

Maximization step) is employed to bootstrap the model by starting with the cluster assignments

obtained in the previous iteration. At the end of each iteration, the algorithm explicitly checks

whether the agreement between two clusterings (one clustering from each data source) has been

improved. If it is improved, the algorithm continues to iterate. Otherwise, it will go back to the

allocation step and try to get a new clustering. Table 7 lists the notions used for the bimodal

clustering Algorithm while Figure 10 gives a formal description of the algorithm procedure.

4.3 Constraint-based Clustering

In our work, music clustering with constraints [115] is also studied. In practice, bimodal

clustering might not be feasible in the following situations: 1) The feature set from some
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information source is not sufficient to represent the music; 2) We do not always have the

complete feature representation. For instance, sometimes we only have the lyrics information

or meta-data information of a limited number of songs. In such cases, the incomplete or partial

information are just used as constraints to improve the clustering performance. This section

provides some background on the K-means algorithm and then discusses the constraint-based

clustering algorithm following the exposition in [34].

4.3.1 K-means Clustering

K-means is a popular clustering algorithm where the input data set is partitioned into K

groups, where the number K is specified by the user. The quality of partition into K clusters

can be viewed as the quantization error described below:

E =
1

2

K

∑
j=1

∑
s∈Cj

(c̄ j− s)2. (15)

Here C1, . . . ,CK are the K clusters and c̄1, . . . , c̄K their centroids. The goal of K-means is to

minimize this quantization error, which is accomplished by iteratively alternating between the

allocation step and the evaluation step. In the former each data point is allocated to the cluster

whose centroid is the closest to it so as to minimize the quantization error with respect to the

current centroids, while in the latter, the centroid of each cluster is updated based on the new

allocation.

4.3.2 Constraint-based Clustering

Following [34] we define the concept of constraint-based clustering for music similarity. We

modify the the objective function so that penalty is added for each constraint that is not satisfied.

For a positive constraint (si,s j) the penalty (in the case where they go to different clusters) is the

squared distance between their cluster centroids. For a negative constraint (si,s j) the penalty

(in the case where they go to the same clusters) is the squared distance between the centroids

that are the closest and the second closest to either si or s j. In both cases, we use the centroids

to determine the penalty so as to treat constraint violations equally within a cluster, and we use
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squared distance since the quantization error is based on squared distance.

The formula for the objective function is given bellow:

CE =
1

2
(E +PM+PC) (16)

=
1

2

(
K

∑
j=1

∑
s∈Cj

(c̄ j− s)2 +PM+PC

)
(17)

PM = ∑
(si,s j)∈M

pm
i j(1−Δ(y(si),y(s j))), (18)

PC = ∑
(si,s j)∈C

pc
i jΔ(y(si),y(s j)), (19)

pm
i j = (c̄y(si)− c̄y(s j))

2, (20)

pc
i j = (c̄y(si)− c̄∗i j)

2. (21)

Here M and C respectively represent the set of positive constraints and the set of negative

constraints, pm
i j and pc

i j are respectively penalty parameters for the positive and negative

constraints, and the value of y(si) is the index of the cluster to which the data point si belongs.

Also, Δ is the Kronecker delta function defined by: Δ(x,y) = 1 if x = y and 0 otherwise. That

is, the penalty pm
i j is added only if (si,s j) ∈M but si and s j belong to different clusters; and the

penalty pc
i j is added only if (si,s j) ∈C but si and s j belong to the same cluster. Furthermore,

c̄∗i j is the centroid that is the next closest to either si or s j.

Like K-means, the constraint-based clustering algorithm is iterative, alternating between the

allocation step and the centroid update step. In the allocation step, the goal is to minimize

the generalized constrained vector quantization error in Eq. 17 . This is achieved by assigning

instances so as to minimize the proposed error term. For pairs of instances in the constraint set,

the quantization error CE is calculated for each possible combination of cluster assignments,

and the instances are assigned to the clusters so that CE is minimized. In the update step, the

centroids are cluster centroids. As in K-means, the first order partial derivatives of CE with

respect to each centroid is evaluated and the solution that makes all these derivatives equal to

zero is obtained.
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4.4 Feature Extraction and Constraints Generation

4.4.1 Lyrics-based Feature Extraction

In our work, we use the feature sets extracted from the lyrics and the acoustic content. The

audio feature extraction is described in Chapter 3. To accommodate the characteristics of the

lyrics, our text-based feature extraction consists of four components: bag-of-words features,

Part-of-Speech statistics, lexical features and orthographic features.

• Bag-of-words: We compute the TF-IDF measure for each word and select top 200 words

as our features. Stemming operations are not applied.

• Part-of-Speech statistics: We use the output of the part-of-speech (POS) tagger by

Brill [12] as the basis for feature extraction. The POS statistics usually reflect the

characteristics of writing. There are 36 POS features extracted from each document,

one for each POS tag expressed as a percentage of the total number of words for the

document.

• Lexical features: By “lexical features” we mean the features of individual word tokens

in the text. The most basic lexical features are lists of 303 generic function words taken

from [101], which generally serve as proxies for choice in syntactic (e.g., preposition

phrase modifiers vs. adjectives or adverbs), semantic (e.g., usage of passive voice

indicated by auxiliary verbs), and pragmatic (e.g., first-person pronouns indicating

personalization of a text) planes. Function words have been shown to be effective style

markers.

• Orthographic features: We also use orthographic features of lexical items, such as

capitalization, word placement, word length distribution as our features. Word orders

and lengths are very useful since the writing of lyrics usually follows certain melody.

4.4.2 Constraints Generation

The constraints come naturally in the context of music applications. Constraints can be

generated from the background knowledge. If we already know that two songs are of the same
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styles, or formally, if we know two songs have the same cluster labels, then they must be in the

same cluster (e.g., a positive constraint). Similarly, if it is known that two songs are of different

styles, then they should be in different clusters (e.g., a negative constraint).

In our study, constraints can be generated from complementary and diverse music

information sources. For example, if two piece of music have the same personnel-related

features or lyrics, then they can be considered to be similar based on content.

4.5 Description of Experiments

4.5.1 Data Description

Our experiments are performed on the data set consisting of 570 songs from 53 albums of a

total of 41 artists. The related audio recordings and the lyrics are collected. Acoustic features

and lyrics-based features are then extracted using the approaches described above. In order to

obtain the ground truth of song styles, we decided to use artist similarity information available

at All Music Guide artist pages (http://www.allmusic.com), assuming that this information is

the unbiased reflection of multiple individual users. On All Music Guide artist pages, if the

name of an artist X appears on the list of artists similar to Y, we consider that X is similar to

Y. The similarity graph of the 41 artists is shown in Figure 11. Following this direction, we

identified four clusters for these 41 artists in our collection as listed in table 8. Our goal is to

identify the song styles of the 570 songs in our data set using both the acoustic features and the

lyrics-based features extracted.

Clusters Members
No. 1 {Fleetwood Mac, yes, Utopia, Elton John, Genesis, Steely

Dan, Peter Gabriel}
No. 2 {Carly Simon, Joni Mitchell, James Taylor, Suzanne Vega,

Ricky Lee Jones, Simon & Garfunkel}
No. 3 {AC/DC, Black Sabbath, ZZ Top, Led Zeppelin, Grand Funk

Railroad, Derek & The Dominos}
No. 4 All the remaining artists

Table 8: Cluster memberships
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Figure 11: The artist similarity graph. The names in bold are “core” nodes.

4.5.2 Performance Measurement Criteria

We use Purity and Accuracy [42,162] as our performance measures of the clustering results.

Purity measures the extent to which each cluster contains data points from primarily one class

[162]. In general, the larger the purity value, the better the clustering solution is. Accuracy

discovers the one-to-one relationship between clusters and classes, therefore measures the

extent to which each cluster contains data points from the corresponding class [42]. It sums up

the whole matching degree between all pair class-clusters. The larger accuracy value usually

indicates the better clustering performance.

Feature Set(s) Purity Accuracy
Content-only 0.436 0.438
Lyrics-only 0.444 0.402

Feature-Level Integration 0.425 0.380
Cluster Integration 0.465 0.423

Sequential Integration I 0.431 0.434
Sequential Integration II 0.438 0.407

Bimodal Clustering 0.471 0.453

Table 9: Performance comparison for bimodal clustering. The numbers are obtained by

averaging over ten trials.
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4.5.3 Bi-modal Clustering Results

We compare the results of bimodal clustering with the results obtained when clustering is

applied on content and lyrics separately, and with the results of other integration strategies.

Table 9 presents the experimental results. From the table, we observe the following:

• The performance of purity and accuracy relative to the other is not always consistent

in our comparison, i.e., higher purity values do not necessarily correspond to higher

accuracy values. This is due to the fact that different evaluation measures consider

different aspects of the clustering results.

• The purity and accuracy of feature-level integration are worse than those of content-only

and lyric-only clustering methods. This shows that even though the joint feature space

is more informative than that available from individual sources, naive feature integration

tends to generalize the information poorly [155].

• Cluster Integration: Cluster integration refers to the procedure of obtaining a combined

clustering from multiple clusterings of a data set [52, 102, 139]. Formally, let C1
1,...,Ck1

1

denote the clusters obtained from source 1, C1
2,...,Ck2

2 denote the clusters obtained from

source 2. Each point di can then be represented as a (k1 + k2)-dimensional vector

di = (di11, ...,di1k1
, ...,di21, ...,di2k2

)

di jl =

{
1 di ∈ Ck j

j

0 otherwise,
f or 1≤ j ≤ 2.

A combined clustering can be found by applying the K-means algorithm on the new

representation. The cluster integration performs better than content-only and lyrics-only.

We can observe that cluster integration has higher purity and accuracy values than those

of content-only and lyrics-only.

• Sequential Integration: Sequential integration is an intermediate approach of combining
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different information sources. It first performs clustering on one data source and obtains

a clustering assignment, say, C1,...,Ck1 . And each point di is represented as a ki-

dimensional vector using the similar idea in cluster integration. Then it combines the

new representation with another data source using feature integration. Clustering can

thus performed on the new concatenated vectors. Depending on the order of the two

sources, we have two sequential integration strategies:

– Sequential Integration I: firstly cluster based on content, then integrate with lyrics;

– Sequential Integration II: firstly cluster based on lyrics, then integrate with content.

The results of sequential integration are generally better than feature-level integration,

and they are comparable with those of content-only and lyrics-only.

• Our bimodal clustering outperforms all other methods in all three performance measures.

The bimodal clustering algorithm can be regarded as a type of semantic integration of data

from different information sources. The performance improvements proves that our bimodal

clustering has advantages over the cluster integration. The bimodal clustering aims to minimize

the disagreements between different sources and it can implicitly learn the correlation structure

between different sets of features.

4.5.4 Experimental Results on Constraint-based Clustering

30 constraints (including 10 positive constraints and 20 negative constraints) are randomly

generated from the cluster labels. We compare the results of constraint clustering with the

results obtained when clustering is applied on content without any constraints. Table 10

presents the experimental results over ten independent trials.

Measurement Purity Accuracy
Without Constraints 0.436 0.438

With Constraints 0.471 0.472

Table 10: Performance comparison for clustering with constraints. The numbers are obtained

by averaging over ten trials.
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We observe that constraint-based clustering achieves better performance (i.e., higher purity

and accuracy values) than clustering without any constraints, and that the performance of

purity and accuracy relative to the other is consistent in our comparison, i.e., higher purity

values correspond to higher accuracy values. Note that different evaluation measures consider

different aspects of the clustering results. We hope that these different measures would provide

enough information to understand the results of our experiments.

Figure 12 illustrates the effects of the constraint size. The X-axis of figure shows the number

of constraints while the Y-axis shows the clustering accuracy. Here different constraint sizes are

tested to investigate the effect of the size of the constraint on the overall clustering performance.

An approximate 1 : 2 ratio of the number of positive constraints to the number of negative

constraints is maintained throughout the experiment. We observe that as the constraint set size

increases, the accuracy measures steadily improves and flattens out after 40. Then, after that,

it looks as if the accuracy was to decrease. This may suggest that too many constraints may

force our clustering algorithm to over-fit.
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Figure 12: Comparisons of the clustering accuracy as a function of constraint size

4.6 Conclusion

In this chapter, we study the problem on whether multi-modal interactive methods can be

more powerful than uni-modal methods in the case of clustering. In particular, we present a bi-

clustering framework for integrating the features based on minimizing disagreement, and also
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provide a constraint-based clustering framework for clustering music songs in the presence of

constraints. Experimental results show the effectiveness of our approaches.
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CHAPTER 5

MUSIC RECOMMENDATION BASED ON ACOUSTIC FEATURES

AND USER ACCESS PATTERNS

5.1 Introduction

5.1.1 Music Recommendation

Music recommendation is receiving increasing attention as the music industry develops

venues to deliver music over the Internet. It is the procedure of providing a music listener

a list of music pieces that he/she is likely to enjoy listening to. When the music data are

well organized, annotated and analyzed using the strategies described in the previous chapters,

music recommendation goal can be better reached. However, as we are intended to build a

user-centric music information retrieval system, music recommendation should be based on a

good understanding of the user preferences and the music pieces in the collection. Therefore,

the key to a success music recommendation is to develop a good measurement strategy of the

music similarity and an effective recommendation method based on the similarity measurement

that can take the user preferences into account. Our goal for the music recommendation is to

satisfy the following two requirements:

• High recommendation accuracy. A good recommendation system should output a

relatively short list of songs in which many pieces are favored by the user and few pieces

are not.

• High recommendation novelty. Good novelty is defined as rich artist variety and well-

balanced music content variety. Music content represents the information of genre,

timbre, pitch, rhythm, and so on [146]. Well-balance means that the music content is

diverse and informative while not diverging much from the user’s preferences.
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Various music recommendation approaches have been developed in the literature, and

they can be generally divided into two groups: collaborative-filtering methods and content-

based methods. As discussed in chapter 2, both approaches have their own disadvantages:

collaborative-filtering methods need a large collection of user history data and content-based

methods lack the ability of understanding the interests and preferences of users. Probabilistic

models and hybrid algorithms proposed recently also degraded significantly when they were

short of corresponding user access data as illustrated in our experiments later in this chapter.

5.1.2 Contributions of this work

This chapter proposes a music recommendation approach by incorporating collaborative-

filtering and acoustic contents of music. This approach employs a novel dynamic music

similarity measurement strategy, which significantly improves the similarity measurement

accuracy and efficiency. This measurement strategy utilizes the user access patterns from large

numbers of users and represents music similarity with an undirected graph. Recommendation

is calculated using the graph Laplacian and label propagation defined over the graph.

Figure 13 shows the framework of our proposed music recommendation system. First music

data and user access patterns are collected and pre-processed. Then dynamic music similarity

measurement is then used to compute the similarities between pairs of songs and construct the

song graph. Finally, when seed songs are given, label propagation and ranking are performed

for music recommendation. In the rest of the chapter, we call our recommendation approach

as DWA since it utilizes dynamic weighting scheme based on user access patterns.

The proposed DWA approach is tested through experiments on a real data set constructed

by anonymous users at http://www.newwisdom.net and has been adopted for music

recommendation on that website.

5.2 Dynamic Music Similarity Measurement

5.2.1 Audio Similarity

Extraction of audio features for music similarity search has been well studied in the

literature [49, 85, 91]. The use of acoustic features is justified by the fact that similar music
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Figure 13: The framework of the proposed music recommendation approach

pieces use similar instruments and possess similar sound textures [43].

The music features are vectors in a multi-dimensional space, and the distance between the

representation vectors characterizes and quantifies the closeness between two pieces of music.

Traditionally there are two popular distance functions for measuring similarity in multimedia

retrieval [48, 91, 124]:

• Minkowski Distance Function. Given two music songs A and B. Suppose their

audio representations are given by two m dimensional vectors (a1,a2, · · · ,am) and

(b1,b2, · · · ,bm), respectively. The Minkowski distance d(A,B) is then

d(A,B) =

(
m

∑
i=1

|ai−bi|p
) 1

p

,

where p is the Minkowski factor for the norm. In particular, if p = 1, this is the

Manhattan distance, and if p = 2, it is the well-known Euclidean distance. The
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assumption of using Minkowski distance function is that the similar objects should be

close in all dimensions as all the dimensions are treated equally.

• Weighted Minkowski Distance Function. The basic idea of weighted Minkowski

distance function is to introduce weights to identify important features. If we assign

each feature a weight wi, then the weighted Minkowski distance function is

dw(A,B) =

(
m

∑
i=1

wi|ai−bi|p
) 1

p

.

The weighted Minkowski distance function is based on the static weighting scheme that

assumes similar songs should be close in the same way (w.r.t to the same set of weights).

Although both distance functions have been previously used in music retrieval, they have the

following two drawbacks:

• Uniform weights for acoustic features. In the Minkowski distance measurement, every

audio feature is assigned with the equal weight when determining the similarity of music.

This could be inappropriate given that people might be more sensitive to certain acoustic

features than the others. This problem is further complicated when feature weights vary

from one type of music to another. For example, for Rock, the audio intensity is an

important feature in determining music similarity while it becomes a much less important

feature for classic music. Thus, it is essential to assign dynamic weights to different

acoustic features.

• Subjective perception of music. It is well known that the perception of music is subjective

to individual users. Different users can have totally different opinions for the same pieces

of music. Using a fixed set of weights for acoustic features is likely to fail in accounting

for the taste of individual users. It is thus important to assign different weights to audio

features based on the taste of individual users.

To address the above two issues, we propose a novel dynamic similarity measurement

scheme. This scheme utilizes the access patterns of music from a considerable number of users.
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m1 m2 m3 m4
u1 1 1 0 0
u2 1 1 0 0
u3 0 0 1 1
u4 0 0 1 1

Table 11: An example of user access patterns

It is based on the assumption that two music pieces are similar in human perception when they

share similar access patterns across multiple users. Table 11 illustrates the assumption. It

shows a toy example of user access patterns on four pieces of music by four users. In this

table, 1 represents that the music piece is accessed by the corresponding user while 0 indicates

not. It is clear that m1 and m2 are similar from the user’s viewpoint because they are accessed

by users u1 and u2, but not by users u3 and u4. Also, m3 and m4 are similar to each other in that

they are accessed by users u3 and u4, but not by u1 and u2. Similar ideas have been successfully

applied to image retrieval to improve the accuracy of similarity measurement [55, 56, 104].

5.2.2 Dynamic Weighting Schemes

A simple approach capable of combining acoustic features and user access patterns for

similarity measurement is to compute the similarity based on each representation and then

combine the two similarity measurements linearly. By incorporating the user access patterns,

the combined similarity measurement can more accurately reflect human perception of music

than the one based only on acoustic features. A major drawback with such an approach is that

user access patterns are usually sparse. Only for a relatively small number of music pieces, their

user access data are adequate to provide robust estimation of similarity with other music pieces.

This drawback will substantially limit the impact of the use of user access patterns. Also, since

the approach uses the Minkowski distance for the audio-based similarity calculation, it cannot

provide a means for estimating the weights on acoustic features, the essential components in

making similarity measurement that is both genre-dependent and user-dependent.

Problem Formulation

Thus, the calculation of appropriate similarity measures can be casted as a learning problem

aiming to assign approximate weights to each feature [152]. To automatically determine the
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weights for audio features, the metric learning approach [56, 156], which learns appropriate

similarity metrics based on the correlation between acoustic features and user access patterns of

music, needs to be explored. Given that human perception of music is well approximated by its

user access patterns, a good weighting scheme for acoustic features should lead to a similarity

measurement that is consistent with the one based on user access patterns. Let mi = (ai,ui)

denote the i-th piece of music in the data set, where ai and ui represent its acoustic features and

user access patterns, respectively. Let Sa(ai,a j;w) = ∑l ai,la j,lwl be the sound-based similarity

measurement between the i-th and the j-th pieces of music when the parameterized weights are

given by w. Let Su(ui,u j) = ∑k ui,ku j,k be the similarity measurement between the i-th and j-th

pieces of music based on their user access patterns. Here for each k, ui,k denotes whether the

k-th user accesses the i-th piece of music. To learn appropriate weights w for audio features,

we can enforce the consistency between similarity measurements Sa(ai,a j;w) and Su(ui,u j).

The above idea leads to the following optimization problem:

w∗ = argmin ∑
i�= j

(Sa(ai,a j;w)−Su(ui,u j))
2 (22)

s.t. w≥ 0.

Let p be the number of content features. The summation in Equation 22 is rewritten as

follows:

∑
i�= j

(Sa(ai,a j;w)−Su(ui,u j))
2

= ∑
i �= j

(ai,1a j,1w1 + · · ·+ai,pa j,pwp−∑
k

ui,ku j,k)
2

= ∑
i �= j

((ai,1a j,1w1 + · · ·+ai,pa j,pwp)
2−2(ai,1a j,1w1 +

· · ·+ai,pa j,pwp)(∑
k

ui,ku j,k)+(∑
k

ui,ku j,k)
2),

where ai,l is l-th feature in the acoustic feature set ai and a j,l is l-th feature in the acoustic
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feature set a j. Let n be the number of pieces of music, and let

A =

⎡⎢⎢⎣
a1,1a2,1 a1,2a2,2 ... a1, f a2, f

... ...

an−1,1an,1 an−1,2an,2 ... an−1, f an, f

⎤⎥⎥⎦
and

U =

⎡⎢⎢⎣
∑i �= j ai,1a j,1(∑k ui,ku j,k)

...

∑i�= j ai, f a j, f (∑k ui,ku j,k)

⎤⎥⎥⎦ ,

where A is a (C2
n× p) matrix and U an (p×1) matrix. Thus, Equation 22 is equivalent to:

w∗ = argmin

[
1

2
×2(Aw)T (Aw)−UT w

]
= argmin

[
1

2

(
wT (2AT A)w+(−2UT )w

)]
(23)

s.t. w≥ 0.

This optimization problem can be addressed using quadratic programming techniques [51].

Discussions

A similar strategy can be applied to make the similarity measurement dependent on the

preferences of individual users. This is accomplished by selecting a subset of users whose

access patterns are similar to those of the active users and then use only those selected in

the estimation of music similarity. In other words, the quantity Su(ui,u j) in Equation 22 is

estimated only based on those users that are deemed similar. An important issue in employing

such an approach is the method and the cost of selecting similar users. One possibility is to

use the min-wise hash indexing scheme (to be discussed in Section 5.3.1), in which a set of

t independent hash functions are applied to each component of the user access pattern vector,

which is of dimension n and the minimum of the t values is chosen as the hash value of each

component. Then two representations are compared for similarity by simply counting how

many components have the same hash value. By applying a simple threshold to the count,
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similar users can be selected. The time that it takes to compute similarity is O(n) for each pair

of users, assuming that the hash values have been already computed. Therefore, the selection

of similar users to the active user requires time O(nm), where m is the number of users. This

possibility is not explored here in this work since the number m of the dataset is small.

5.3 Music Recommendation Over Song Graph

In this study, we employ timbral features and wavelet coefficient histograms for feature

extraction. The extracted feature set consists of the following three components and total 80

features. The detailed process has been described in the previous chapter and is omitted here.

5.3.1 Music Indexing

Once the features/signatures for each song are obtained, efficient data structures can be

built for similarity search. In this study, min-wise hashing [15] is used to speed up similarity

computation for large data sets, especially in online calculation. The key idea is that we can

create a small signature for each song and the resemblance of any pair of songs si and s j can

be accurately estimated based on their min-wise hashing signatures.

The min-wise hashing signature is computed as follows. Given a signature of size r, r

independent random hash functions f1, . . . , fr are firstly generated. For a song si (si is the

feature set of song i), the t-th component of its signature is given by

min{ ft(d) | d ∈ si},

where d represents any feature in the feature set.

In doing so, the minimal hash value in si for the t-th hash function ft is reserved. Note that

the same hash function ft is used for every song to generate its t-th signature component. Let

Si and S j be the signatures of si and of s j thus obtained, respectively. Let Si
t and S j

t be the t-th

components of Si and S j. We say that they match at t if Si
t = S j

t . The resemblance between si

and s j can be then measured by the proportion of the number of matches between Si and S j to

r, the number of components.
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The min-wise hashing estimator is unbiased. An error bound was given in [15] and the

accuracy increases with the resemblance value. Note that the number of matches between two

signatures can be computed in O(r) time and that r is independent of the size of database.

5.3.2 Song Graph

In previous section, we presented an efficient method to compute the similarities between

pairs of songs. We are now ready to construct the song graph.

Definition 1 (Song graph). A song graph is an undirected weighted graph G= (V,E), where

1. V = I is the node set (I is the song set, which means that each song is represented as a

node on the graph G);

2. E is the edge set. Associated with each edge epq ∈ E is the similarity wpq, which is

nonnegative and satisfies wpq = wqp.

Once the song graph is constructed, music recommendation can be treated as a label

propagation from labeled data (i.e., items with ratings) to unlabeled data. In its simplest form,

the label propagation is like a random walk on a song graph G [141]. Using diffusion kernel [71,

138], the label propagation is like a diffusive process of the labeled information [163,165]. Zhu

et al. [165] utilizes the harmonic nature of the diffusive function, Zhou et al. [163] emphasize

the spread of label information in a consistent and iterative way. Motivated from the previous

research, we emphasize the global and coherent nature of label propagation and use the Green’s

function of the Laplace operator for music recommendation [41].

5.3.3 Label Propagation on Graph

Given a graph with edge weights T , the combinatorial Laplacian is defined to be L = D−T,

where D is the diagonal matrix consisting of the row sums of W ; i.e., D = diag(T e), e =

(1 · · ·1)T .

Green’s function is defined on the generalized eigenvectors of the Laplacian matrix:

Lvk = ζkDvk, vT
p Dvq = zT

p zq = δpq, (24)
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where 0 = ζ1 ≤ ζ2 ≤ ·· · ≤ ζn are the eigenvalues and the zero-mode is the first eigenvector

v1 = e/
√

n. Then we have

G =
1

(D−T )+
=

n

∑
k=2

vkvT
k

ζk
. (25)

In practice, the expansion after some K terms is truncated and the K vectors are stored. Green’s

function is computed on the fly. Therefore the storage requirement is O(Kn).

The recommendation on the song graph is illustrated in Figure 14. In the figure, the colored

(shaded) nodes represent the rated items with their corresponding ratings. The others are the

unrated items, whose ratings are unknown. Let yT = (y1, · · · ,yn) be the rating for a user.

Given an incomplete rating yT
0 = (5,?,?,4,2,?,?,?,3), the question is to predict those missing

values. Using Green’s function, we initialize yT
0 = (5,0,0,4,2,0,0,0,3), and then compute the

complete rating as the linear influence propagation

y = Gy0, (26)

where G is the Green function built from the song graph.

Figure 14: An illustration of a recommendation task

5.3.4 Music Ranking

After label propagation, the ratings for unrated songs are obtained and many of them might

have the same rating. In practice, a ranked list of the items to be recommended is required.

The music ranking over a song graph G can be treated as the problem of finding the shortest
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path from the seed song node to the rest of the nodes in the song graph. The edges with low

similarity have already been eliminated, so only the remaining edges can be used to construct

shortest paths. For any M ≥ 1, to recommend M songs after a seed song s, we simply select the

M songs that are the closest to s. The standard single-source shortest-path algorithm produces

the shortest path to any node in time O(|V|2+ |E|log|V|) where |V| is the number of nodes and

|E| is the number of edges in the graph. The time that it takes for identifying M closest nodes

after the shortest path length is obtained can be O(M|V|).

5.4 Experiments and Evaluation

In this section, we present the performance evaluation of our music recommendation system,

including effectiveness and novelty analysis. Various case studies and the user study show the

promising recommendation quality of our system.

5.4.1 Data Collection

The music data were collected from http://www.newwisdom.net. It is a website in

Chinese language with major functions of education and entertainment. This website has

approximately 10,000 registered users visiting its forums regularly. These users also listen

to music and meanwhile create their own favorite playlists (called CDs on this website). The

website had a collection of more than 10,000 songs and hundreds of playlists at the moment of

this experimentation. More than 80% of songs were from famous Chinese artists, others were

from famous American, European, Japanese, and Korean artists. The songs covered many

different genres including Pop, Classical, Jazz, Rock, Country, R&B, Blues, Disco, Rap and

Hip-hop.

In the experiments described below, we sampled 2829 songs from the playlists created by

“serious” users in the same group on the website. The criterion for a “serious” user is the

number of songs in his/her playlists. We eliminated those whose playlists containing either

less than 10 or more than 20 songs from the data collection. Those users are assumed to be

either “too uninterested” or “too eager.” and then defined not “serious”. This culling process

leaves us 274 playlists.
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5.4.2 Data Processing

We process the collected songs and user playlists to get the content features and user access

patterns. Then our dynamic weighting scheme and music ranking algorithm are applied to

generate the recommendation identifications of music pieces.

Acoustic Feature Representation

For each song, a music sample using the third 30-second block (i.e., between time 1’00” and

1’30”) is generated, given the songs in our test domain tend to have introductory non-vocal part

in the first 60 seconds. Then the content features of the 30 second block are extracted using

the approach described in section 3.2. After feature extraction, each music track is represented

as a 80-dimensional feature vector: Fi = (Fi,1,· · · ,Fi,80). As described in Section 3.2, the first

12 features are based on the magnitude of the Short Time Fourier Transform (STFT) (e.g.,

means and variances of Spectral Centroid, Rolloff, Flux, Zero Crossings, and Low Energy),

the next 52 features represents the means and variances of Mel-Frequency Cepstral Coefficients

(MFCC), and the last 16 features are DWCH features.

User Access Pattern Representation

The access pattern of a user is represented as a 0/1-vector. Its dimension is equal to the

number of songs available. For each i, the i-th entry of the vector is 1 if the user added the song

in his/her playlist and 0 otherwise.

Recommendation List Generation

By combining the user access pattern data with the content features of the songs, the weight

is generated for each feature using the dynamic weighting scheme described above. Then the

music ranking algorithm aforementioned is employed to output the desired number of music

pieces as our recommendations. In the experiments, the values of the ratings for the seed songs

are set to be the same.
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5.4.3 Evaluation on Dynamic Weighting Schemes

First of all, the performance of the dynamic weighting schemes is evaluated. In order to

do so, we take a sample dataset consisting of 50 songs from three different classes. Note that

the classes are determined by a group of users. Now we use the following methods to scatter

positions of the 50 songs, and compare them in Figure 15. Note that each subfigure visualize

the grouping results of different methods where each shape (there are three shapes: diamond,

circle, and star) represents a class of songs.
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Figure 15: Evaluation on weighting schemes
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1. Randomly select three original content features and scattering the position of each song

based on these features.

2. Choose three content features with highest variances and scattering positions of the 50

songs.

3. Use principal components analysis (PCA) to select three principal components

associated with the largest eigenvalues of the covariance matrix.

4. Choose three features with the highest weights by the dynamic weighting scheme

(DWA).

From Figure 15, we observe that the Dynamic Weighting Approach (DWA) outperforms the

other feature selection methods in separating three groups of songs: the features selected by

DWA are highly relevant to the grouping. It shows that the features associated with the learned

weighted from the user access patterns have the description power to distinguish the music

pieces, while features with large variances or covariances do not help much in this case.

5.4.4 Comparison on Different Recommendation Approaches

To demonstrate the performance of DWA, we compare the performance of the following five

approaches:

• Content-based Approach(CBA) This is solely based on acoustic content features

extracted from the pieces of songs.

• Artist-based Approach(ABA) This is solely based on artist, namely, it recommends

songs only from the same artist.

• Access-pattern-based Approach(APA) This is based on user access patterns. It

selects the top songs with the highest co-occurrence frequency in the same playlists with

the input song. This can also be thought as the item-based collaborative filtering method.
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• Hybrid Approach(HA) This is the approach explained in section 5.1. It tries to

integrate the collaborative filtering method and content-based method based on the

algorithms described in [65].

• DWA This is based on our approach, which first utilizes user access patterns to

dynamically learn weights for each content features and then perform label propagation

and ranking for music recommendation.

An Illustrating Example

App- Artist Title Genre
roach

Tu Honggang Singing with Wines Rock
Leehom Wang Revolution R & B

1 Teresa Teng I Only Care About You Folk
Faye Wong Half Way Pop
Fish Leong Shining Star Rock
Jay Chou Sunny Day Blues
Jay Chou Thousand Miles Away Pop

2 Jay Chou Sorry R&B
Jay Chou Happier Than Before R&B
Jay Chou Last Campaign R&B
Jay Chou Thousand Miles Away Pop
Jay Chou Happier Than Before R&B

3 Hongmin You Sand Rain Pop
Jay Chou Cute Lady R&B
Jay Chou Nunchucks R&B
Jay Chou Chrysanthemum Terrace R&B
Jay Chou Romance Mobile R&B

4 Tu Honggang Singing with Wines Rock
Rong Zhong The Everest Folk

Jolin Tsai Disappearing Castle Pop
Jay Chou Sorry R&B

Leehom Wang Revolution R&B
5 Jolin Tsai Spirit of Knight R&B

Leehom Wang Bamboo R&B
Fish Leong Silk Road of Love Rock

Table 12: An illustrating example of different recommendation approaches

Table 12 shows an example of recommendation results by the five approaches that have just

been described. In this example, the seed piece (which the user is currently listening to and

from which the recommendation approaches are expected to produce a list of recommended

songs) is “Love Before Christ”, an R&B song by a popular Chinese singer, Jay Chou.

From Table 12, we can see that if the recommendation only bases on content features, the
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results are somehow messy. And if we recommend only the songs from the same artist, the

results do not “surprise” users at all because everybody knows other songs of the same artist

might be in a similar flavor. What users expect is a novel and refreshing recommendation.

We observe that our approach can provide some songs from different artists and with similar

genre. Actually these songs do relate to the input song because some of them are from the

same composers or lyricists, and these artists are of the same style as well.

Based on the the data we collect and process, we conduct several sets of experiments to

compare the performance of the listed approaches. The first two comparisons are designed

to test the recommendation novelty and the playlist generation experiment is to examine the

recommendation prediction ability, while the user study conducted is to assess the overall

recommendation performance from the viewpoints of the end users.

Artist Variety Comparison

In this experiment, we evaluate how artist variety is achieved in different approaches.

Since artist-based approach consider songs from the same artists, we only have to compare

approach CBA, APA, HA and DWA. For each of the 2829 songs, 10 songs are chosen for the

recommendation output. We count the number of distinct artists that the 10 songs come from.

From the statistical results listed in Table 13, we can see that content-based approach and our

dynamic-weighting approach recommend songs with the richest artist variety, which is better

than the hybrid approach and the access-pattern-based approach.

Approach CBA APA HA DWA
Average Number of Artists 8 5 7 8

Table 13: Results for artist variety comparison. The numbers are rounded to integers to be

practically meaningful.

Content Variety Comparison

In this experiment, we evaluate if content variety as described in 5.1 are well balanced in

different approaches.

First of all, we cluster the 2829 songs using K-means algorithm according to their content
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features, and then, we study how many clusters the 10 songs recommended by each approach

belong to. Also, we calculate the average distance among the 10 recommended songs of

each of the 2829 seed songs using their content features. The more the clusters and/or the

larger the distances, the more diverse the 10 songs, i.e. the more opportunity to get novel

recommendation results.

Approach Mean of Mean of Average
Average Distance Number of Clusters

CBA 2.55 2
ABA 8.74 5
APA 10.01 6
HA 5.28 4

DWA 5.88 4

Table 14: Results for content variety comparison

From the experimental results listed in Table 14, we can clearly observe that content-based

approach recommends songs with the highest content similarity, and the variety is very low.

On the contrary, the access-pattern-based approach and the artist-based approach are diverse

enough but lack of content similarity. Hybrid approach and our dynamic-weighting approach

have comparable performance in well-balancing the content variety.

Playlist Generation Comparison

Since playlists are generally a good means to reflect the interests of users, by comparing how

accurate we can generate the whole original playlists from part of songs in them using different

methods, we can analyze the ability of the approaches to predict the interests and preferences

of the users.

In this set of experiments, we randomly select 200 playlists from the dataset of 274

playlists, and run hybrid approach and our dynamic-weighting approach on the data for the

two approaches to learn. Then we randomly select 5 songs from each of the rest 74 playlists,

and generate 74 new playlists, each of which contains 50 distinct songs based on the ordered

recommendation lists of the these 5 songs. Then we check how many of the songs in the rest of

each original playlists (the number of songs available for checking varies from 5 to 15) match
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the songs in the new larger playlists. Figure 16 lists the boxplot results of the comparison

among content-based approach, hybrid approach, and our dynamic-weighting approach.
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Figure 16: Number of songs matched in the original user playlists and the generated playlists

Approach CBA HA DWA
Winning Rounds 8 20 37

Table 15: Times of one approach outperforms the other two approaches by comparing the

matches in two playlists

From Figure 16 and Table 15, we clearly see that our DWA approach outperforms content-

based approach and the hybrid approach. If we check the data in detail, we can find that for

predicting some playlists, when there is enough song co-occurrence information, the hybrid

approach works very well and have the comparable performance with our dynamic-approach.

However, when dealing with new song sets and there are very little song co-occurrence data, the

hybrid approach is almost degraded to content-based approach. On the contrary, our dynamic-

weighting approach is trying to predict the recommended songs based on the weights already

learned and the content features extracted, it can keep the similar performance when dealing

with new song sets.

User Study

We develop a web interface and invite the users from the website to assess the

recommendation results of different approaches. The interface can be found at:(http://www.
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newwisdom.net/music/songUserStudy.jsp). For each song, we list the recommended

songs (song titles and singers) using the five approaches described above. For each seed

song that interests the user, he/she is invited to choose those that also interest him/her in the

recommended list, and also select the best approach based on their perception. Note that the

songs presented to the visitors are randomized and there is no fixed song appearance order. We

asked the visitors to rate the recommended songs as well as the overall impression of all the

five approaches for a given seed song.

To submit a feedback, the user must choose one and only one best approach from the five,

but he/she can select any number of songs from the recommendation list as he/she likes. To

make different songs have nearly equal chances to be exposed to the users for judgment, the

selection of songs from the repository is also randomized. By collecting the IP addresses of the

users, we know that more than 50 users (59 IP addresses) participated in the user study, and the

recommendation results of 166 distinct songs are assessed by one or some of them. Altogether

there are 201 submission of feedbacks. Table 16 lists the statistical results of the user study

and Figure 17 compares the number of times people claim that an approach is the best among

the five approaches.

Approach
CBA ABA APA HA DWA

r1 25 47 38 48 69
r2 31 54 44 52 60
r3 19 34 41 49 52
r4 17 37 33 51 58
r5 22 38 45 47 44
r6 19 49 31 44 43
r7 13 22 27 52 47
r8 22 14 25 19 42
r9 7 17 24 32 39
r10 16 19 28 16 38
sum 191 331 336 410 492

Table 16: Results of the user study

The results of the user study were listed in Table 16. In the table, for each i, 1≤ i≤ 10, the

row “ri” shows the total number of times that songs at the ith position in the recommendation

list is selected by users for each approach. The row “sum” lists the corresponding summation
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of all the values for each of the five approaches. By checking the statistical results of the

user study, we can clearly see that our approach outperforms all the rest. For example, in row

“r1”, there are 69 times that the recommended songs in position 1 by our dynamic-weighting

approach are considered to be valuable recommendations while for hybrid method, there are

only 48 times. In Figure 17, we also know that our dynamic-weighting approach is regarded as

the best one among the five choices for most users at most times. Users sometimes also think

the recommended songs from the same artists are what they prefer, but as we all know, that

recommendation does not give users enough novel information.
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Figure 17: Times people say one approach is the best among all approaches

5.5 Conclusion

Both collaborative-filtering and content-based recommending schemes have their own

advantages and limitations. In this paper, we propose a novel dynamic music similarity

measurement scheme that integrates the acoustic content features and user access patterns.

This scheme is based on the assumption that two pieces of music are similar in human

perception when they share similar access patterns across multiple users. To calculate the new

similarity measure, we use the metric learning approach, which learns appropriate similarity

metrics based on the correlation between acoustic features and user access patterns of music,

to automatically determine the weights for audio features. After obtaining the music similarity,
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music recommendation can be treated as a label propagation from labeled data (i.e., items

with ratings) to unlabeled data. Comparing with other probabilistic models and hybrid

approaches, our method incorporates the content similarity data and collaborative filtering

information seamlessly. Experimental results and user study on a real data set demonstrate

the recommendation quality of our proposed approach outperforms the others.

Although our proposed recommendation scheme has been tested to be effective, there are

several venues for further research. One natural direction is to extent our current framework

for personalized music recommendation. Furthermore, we can investigate more comprehensive

music content features for similarity measurements.
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CHAPTER 6

SYSTEM DEVELOPMENT

A prototype system for multi-modal music information retrieval and a real world user-centric

music retrieval web application have been developed in the research study.

6.1 A Prototype System for Multi-modal Music Information Retrieval

This prototype system was the first attempt to evaluate our proposed techniques. The

prototype system was implemented as a web application and it was able to: (a) provide a

multi-model query interface for music information retrieval; (b) conduct genre classification

off-line to help to build the system and offer the user a way to check the genre of the search

music online; (c) summarize music pieces off-line and present the audio thumbnails to the

users so that the results could be easily digested; (d) keep track of user listening behaviors; and

(e) invite the users to actively provide feedbacks. This served as a framework for us to further

investigate the key issues to improve music information retrieval.

Text-based search and content-based search were implemented in the system. Text-based

search asks the user to input a piece of text information which can be song title, lyrics (sample

piece), album title, artist, and/or genre. The returned results have similar titles, lyrics, etc.

Content-based search requires the user to provide a sample music piece. The system

automatically extracts the content features from the music sample and compares the extracted

features with the features of each song in our database. The feature extraction process was

described in section 3.2. By default, the system returns the top 10 similar music pieces.

When users listen to (click) a song in the result set, their listening behaviors are recorded in

the system. We also invite them to rate the search results.

6.1.1 System Architecture and Design

Figure 18 shows the typical 3-tier architecture we have adopted in this Web application.

The Web Interface client uses the HTTP protocol to submit requests to the Query Processing
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Engine, and this Engine receives the data from the Music Database using JDBC. The User

Feedback Module aims to record the users’ listening behaviors and obtain the active user

feedbacks. The information is maintained and accumulated in the User Access Pattern

Database. We use this information to adjust or tune the searches.

Figure 18: The system architecture

The summary of each module is listed as follows:

• Music Database: This module deals with the music data collection of each individual

user. It enables browsing and sorting music pieces based on indexed keys. The database

contains the information for about 800 songs including their signals, lyrics, artists, titles,

composers etc.

• User Access Pattern Database: This module collects and stores access patterns for each

individual user. The user access patterns can be used to identify user communities.

• Query Processing Engine: The module takes a user query as input, translates it into an
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executable form, executes the actual search, and presents the search results. The system

supports text-based search and content-based search.

• User Feedback Module: This module collects the user feedback.

• Web Interface: This module provides a web-based interface for the users to communicate

with the system.

6.1.2 Similarity Search

In text-based search, the matched results are returned in prioritized order. Exact match (e.g.,

match of words in the same order, match with full words, or match with words appearing in

the title) has higher priority over the non-exact match (e.g., match of words in different orders,

match with partial words, match with words appearing only in the lyrics).

In acoustic content-based search, we compare the content features extracted from the sample

music with the features of the corresponding songs in database. The feature extraction process

was described in section 3.2. After feature extraction, we represent each music track as a 80-

dimensional feature vector: Si = (Si1,· · · ,Si80). We normalize each dimension of the vector by

subtracting the mean of that dimension across all the tracks and then dividing it by the standard

deviation. The normalized representation vector is Si = (Si1,· · · ,Si80), where

Si j =
Si j−Mean(Vj)

std(Vj)
,1 � i � 80. (27)

After normalization, we compute the Euclidean distance between the normalized

representations. The 10 tracks with the shortest distances to the query are returned. If a user

provides both types of the query, the system merges the top ranked results from text-based

search and content- based search.

6.1.3 Genre Classification

To automatically get the genre of a song, we perform classification based on the acoustic

features. Support Vector Machine classification algorithm (SMO from Weka) is employed for
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genre classification. The accuracy of the classification is about 85%. Since many songs do not

have their genres when we built the system, we conduct the genre classification on those songs

and complement the genre records for them.

6.1.4 Audio Summarization

The approach proposed in [30] was adopted to create audio thumbnails of all the music

pieces in the music database. The basic idea is to find the segment with maximum similarity to

the whole song based on self-similarity analysis. As the music summary is a continuous excerpt

of the whole music piece, it sometimes cannot contain all segmentations such as introduction,

verses, and refrains. But continuity does make the summary more natural when presented to

the end users.

With the help of jAudio [95], this work was done offline and a 30-second music excerpt was

generated for each song in the music database. MFCC feature set was used to represent the

audio for similarity comparison as suggested in [30].

6.1.5 A Case Study

We list a few user interfaces to show some basic functions implemented in this framework.

Figure 19 shows the main user interface where visitors can input their search conditions

including the text and acoustic content information and start search.

Figure 20 shows an example of searching based on the acoustic content information. The

top 10 results are returned as a default. We invite the visitors to actively rate the search results

to improve our search algorithm.

When the user tries to listen to a song by clicking the link, the system records the following

information: 1) user ID information including the user’s email, session ID, and IP address;

2) the song ID; 3) the time when the user clicks the link; and 4) search input including the

concrete text information and the search type, i.e, search by text or by acoustic content.

The user access pattern information collected here will be used to improve our music

similarity measures, facilitate personalized music recommendation, and so on.
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Figure 19: Main user interface

6.2 A Real World User-Centric Music Retrieval Web Application

Following this prototype system, a real world user-centric music retrieval web application

is being developed. In order to get the user access pattern from real web visitors, this web

application was embedded inside a public website http://www.newwisdom.net. This system

includes mainly the end user interface, the back end data management interface, and a light

weight web crawler to automatically collect music data. To avoid legal issues on music

copyrights, this website is not a commercial website, and the music system we developed

and the user access data the system collected are solely used for research purposes.

6.2.1 Main Functionalities Available to End Users

Here are the basic functionalities provided to the end users:

1. Visitors can search songs by singer name, singer popular aliases, album, and/or part of

the lyrics. Visitors can also browse songs via other navigation approaches such as genre

organization.
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Figure 20: An example of the content-based search

2. Registered users are encouraged to add/upload songs, provide metadata and lyrics

information. The songs can be the favorite song not available yet in the system or their

own creative music work. Visitors can also edit/update the information they provided.

They can also save their favorite songs in their profiles.

3. Registered users can create and update playlists. They have easy access to the playlists

they own. After the user creates an audio playlist, the system will automatically create a

video playlist if there are any songs that have the corresponding video information from

http://www.youtube.com.

4. Registered users can play songs, albums, and playlists created by any users.

5. Registered users can communicate to each other, or recommend songs and/or playlists

via on-site messages.
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Figure 21 shows a sample interface of a user playing a playlist created by another user. Other

playlists created by the second user were recommended to the first user.

Figure 21: An example of a user playing a playlist

A new functionality of inviting user to provide review tags to singers, albums, playlists and

songs, and search by tag combinations is under development. Any existing functionalities in

the prototype system will be integrated into this real world application.

6.2.2 Music Data Management Interfaces

Here are the major functionalities for the data management available to the authorized users

like the webmaster.

1. The authorized users have an overall view of all music data available in the system.

2. The authorized users can edit almost all metadata created by the visitors or the web

crawler.

3. The authorized users can delete playlists.

4. The authorized users can block malicious visitors from accessing the system.

5. The authorized users can control publishing/unpublishing a music piece to public.
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Figure 22 shows a sample interface of an authorized user viewing/editing the information

of all albums from the singer: Evanescence. We can see that the album name, publisher,

publishing date, main language, country/area, main genre, album cover image, description,

and all songs in the albums are listed. With a double click on the description, the content of

the description can be updated. When the actual music audio data is available for a song, a

hyperlink is presented to the user so that he/she can listen to the song. The controls on the right

side of a song are about to change the song title, delete the song from the album, and publish

the song to the public.

Figure 22: An example of an authorized user viewing or editing the albums of a singer

6.2.3 A Light Weight Web Crawler

To conduct a research on music information retrieval, it is essential to have access to a large

volume of music pieces covering many genres and styles. In order to perform hierarchical

music classification, to implement personalized music recommendation, and to attract more

visitors, we also need a considerable number of music samples and the corresponding metadata.

Developing a web crawler was one of the big efforts to expand the music database.
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For practical purpose, the web crawler was designed to collect music data from a limited

set of music websites. Configuration was provided for most part of it in order to adapt certain

changes of those websites. In the case that certain web contents were generated by JavaScript,

the crawler can simulate the functionality of a stand web browser and generate such contents.

Exceptions such as server or network error can be recorded to initiate a future retry of the same

page. Currently, it can navigate among the web pages and identify music metadata including

information of singers, albums, and songs:

• Information of singers: Including singer name/alias, gender or type (singer or band),

main language, country or area, singer portrait and introduction, and certainly the albums

created by the singers.

• Information of albums: Including album name, main language, publisher, publish date,

main genre, album cover image and description, and most importantly the songs in the

albums.

• Information of songs: Including song title, music genre, lyrics, music audio, the link

of corresponding video from http://www.youtube.com, and for sure the singer and

album information of the songs.

With the work of the web crawler and the help of web visitors, now this music system

has collected information about 13,000 singers with 44,000 albums from them, and metadata

of 480,000 songs with about 300,000 unique music pieces, about 60% of which have

corresponding video information. As the bandwidth of the website is very limited due to

budget, only about 10-20% of the information can be published and really accessible to the

web visitors. But it still has about 12,000 registered visitors and about 1,000 playlists created

by them.

The music recommendation research work presented in chapter 5 and some of the work

presented in chapter 3 were based on the music audio data and user access pattern information

gathered from this system.
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6.2.4 User Access Pattern and Personalized Music Recommendation

The playlists the users created have been a reliable resource of user access patterns. Our

system has also been keeping track of the users’ detailed access history, including the details

of each listening activity (such as date, time, music title, artist, album, genre, and duration).

Specifically, in order to record more accurate listening patterns, the system does not treat the

action of clicking a song hyperlink as a listening activity, but waits until the user actually

finishes listening the music piece. This was achieved via an AJAX request sent to the server

when the browser-embedded player reaches its very end of playing the song.

In the previous work presented in chapter 5, we have established a dynamic music similarity

measurement strategy. This is being actively integrated into the system. The basic idea is to

first cluster the registered users based on their listening history into multiple groups, then apply

the dynamic music similarity measurement strategy we proposed to generate the recommended

music items for each group of users. This is under development. With this implemented, users

in different groups will get different recommendations even given with the same seed song.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Summary of Major Research Work and Contribution

In the effort of developing a user-centric music information retrieval system, we have

performed numerous research studies. We have learned the existing algorithms in the

literature and investigated multiple approaches that can be utilized in the application of music

information retrieval. We developed serval useful algorithms and successfully applied them

in our research. We also conducted significant amount of experiments, including necessary

user studies, to evaluate the proposed algorithms and approaches. Finally we developed a

prototype system and a real world application to assist our research work. The major work and

contribution of the dissertation can be summarized as follows:

1. Developed a novel dynamic music similarity measurement strategy based on the

proposed dynamic weighting scheme by incorporating collaborative-filtering approach

and content-based approach. The dynamic weighting scheme is based on the assumption

that two pieces of music are similar in human perception when they share similar access

patterns across multiple users. To calculate the new similarity measure, we use the metric

learning approach, which learns appropriate similarity metrics based on the correlation

between acoustic features and user access patterns of music, to automatically determine

the weights for audio features. After obtaining the music similarity, we treated music

recommendation as a label propagation over a song graph from labeled data to unlabeled

data. This approach seamlessly integrates the acoustic content and user access pattern

data. The performance of this approach will not degrade when processing the audio

content data that does not have corresponding user access pattern information. This

approach has been successfully applied to the system that we developed to perform

music recommendation. It has been tested with multiple experiments including user
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studies, and the performance has been proved to be better than many other existing music

recommendation approaches.

2. Developed a new approach, namely hierarchical co-clustering algorithm, to quantify the

music artist similarity by employing the artist style and mood information extracted from

All Music Guide. This algorithm is able to represent the style/mood term similarity by

creating taxonomies. The term similarities are then quantified by capturing the positions

of the terms in the generated taxonomies. Artist similarity is then calculated based on

the style/mood term similarities. The quantified artist similarity has been validated by

the acoustic features extracted from the music pieces produced by the artists. This effort

facilitates the music artist organization and annotation in the overall music information

retrieval task.

3. Proposed a multi-label classification approach, called Hypergraph integrated Support

Vector Machine (HiSVM), which can integrate several types of music information

including music audio features, music style correlations, and social tag information and

correlations. This enables the classifier to assign multiple styles to music objects in the

classification.

4. Addressed the issue of clustering pop music pieces into groups with respect to the

artists from diverse information sources. In order to effectively analyze music utilizing

information from multiple modal data, we developed bimodal music clustering algorithm

for integrating the features based on minimizing disagreement between different data

sources. This algorithm can be considered as a kind of semantic integration of data from

multiple sources, and it can implicitly learn the correlation structure between different

sets of features. We also developed a music constraint-based clustering framework for

clustering music songs in the presence of constraints.

5. A prototype system for multi-modal music information retrieval was developed and

the combined search based on text as well as music content were implemented. The
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techniques of music genre classification and music audio summarization have been

studies from the literature and applied to the prototype system.

6. A real world user-centric music retrieval web application has been developed. User

retrieval interface and music data management module were implemented. Specifically,

a light weight web crawler was designed and implemented to expand the music database.

Playlists, as very reliable and informative user access pattern data, are created by the

registered users of the website on which the web application is hosted. Other user

listening activities are also recorded and have been employed for personalized music

recommendation functionality module that is under active development. This system has

greatly assisted the past research activities and will continue to help the future research

studies.

7.2 Potential Applications in Other Fields

Several algorithms, frameworks and approaches have been developed in this dissertation.

Experiments have been conducted based on music data to validate these developed algorithms,

and necessary user studies have been performed to demonstrate the effectiveness of these

approaches in music information retrieval research area. One might naturally pose a question:

can these algorithms, frameworks and approaches be applied to handle other types of data and

be utilized to address the problems in other research areas? Our answer is yes. Let us take a

deeper look at a few algorithms and approaches and explain which areas they can be applied

to, and how they can be utilized.

The first example is the dynamic weighting scheme. This scheme has been successfully

employed to learn the audio feature weights to measure audio similarity based on the user

access pattern. It can be easily applied to video recommendation tasks. If we can extract video

features and obtain corresponding user access pattern, we can use the same strategy to measure

the video similarity and conduct video recommendation.

The second example is the hierarchical co-clustering algorithm and the artist similarity

qualification framework. This algorithm and framework can be applied to multiple research
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areas, such as the quantification of document similarity. We can extract representative

keywords from each document, and using hierarchical co-clustering algorithms to generate

term taxonomies to quantify the term similarity, and finally we can calculate the document

similarity. This idea can also be utilized to search similar documents on the web. Another

useful area might be to look for similar items on a web store if the items have user-assigned

tags. We can firstly quantify the similarity of the tags using the algorithm, and then quality the

similarity among the items from the web store.

From these examples, we can understand that the developed approaches can be adopted or

adapted to other research areas although they were only applied to music information retrieval

tasks in this dissertation.

7.3 Future Work

As the user-centric music information retrieval system is such a complicated system, we

have been making constant efforts to improve it. In the near future, we plan to perform the

following studies:

7.3.1 Automatic Music Genre Classification in Large Taxonomies

In the current system, we have done the basic music genre classification. As we are

expanding our music database, we will include genre classes, and these classes will be

organized in a hierarchical tree such that related music classes are linked to the same nodes.

To reach this goal, we will firstly classify the music pieces into one of the internal nodes in the

hierarchy, then classify it into one of the music classes under the internal node. Each step of

classification will only involve a very limited number of classes, thus the classification is more

manageable and efficient than the direct approach. We plan to investigate the Hierarchical

Mixture of Expert (HME) model [64] for the classification.

One challenge of genre classification is that the genres are not always mutually exclusive;

that is, some music may be classified into more than one (but not many) genre. The problem

can be considered as a multi-label classification [133] and corresponding algorithms will be

designed to address it.
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7.3.2 Relevance Feedback for Music Retrieval

When the initial retrieval results are unsatisfactory, relevance feedback methods [154] will

be applied to improve the quality of retrieval results. We consider two different scenarios for

relevance feedback:

1. Relative relevance judgements. Most relevance feedback techniques assume that users

are able to provide absolute judgement regarding the relevance of retrieved items.

However, due to the complexity of music and that of human relevance judgement, users

may fail to provide absolute relevance judgements instantly. Therefore, we will ask them

to provide relative judgements instead, such as to rank the retrieved music according to

its relevance to their interests. This can be done in many iterations so that the query will

be refined step by step.

2. Explore collaborative access patterns. As aforementioned, in addition to the audio

features, each piece of music is also represented by its access patterns by large numbers

of users. Given that each song has two types of representations, we plan to investigate

methods that are able to explore the correlation between the two representations to better

utilize the relevance judgements.

7.3.3 Lyrics Summarization

Lyrics summarization is a very helpful way to reinforce automatic music summarization.

We plan to adopt the machine learning approach proposed in [73] to address this problem. In

particular, we will represent each sentence in a lyric using the following features:

1. Sentence length cut-off feature. Based on the assumption that short sentences tend not

to be included in summaries, we use this binary feature to determine whether the length

of a sentence exceeds a certain threshold so that this sentence should be kept.

2. Term frequency of thematic words. Thematic words in a lyric refer to the words that

appear across multiple different sentences. By comparing the term frequency of thematic
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words for a sentence with that for the whole lyric, we are able to measure the correlation

of the sentence to the lyric.

3. Number of repeats. This feature indicates how many times a sentence is repeated within

a lyric. Very often, we find a sentence to be a good summary when it is repeated multiple

times in the lyric.

We will train a classifier that learns weights for the above features from training examples.

With the estimated weights, each sentence will be scored based on the weighted sum of

features, and the sentence with the highest score will be selected as the summary.

7.3.4 Clustered Presentation of Retrieved Music

Upon receiving a query from the user the system searches for music pieces that match the

query. Those pieces whose estimated relevance reaches a certain threshold are presented to

the user. A rank list is typically used. When the set of returned records is too large, it is very

tedious and time-consuming for the user to try each music piece to find what they really want.

To facilitate users to browse through a dauntingly long list, we will design a clustered view to

present the large number of matches and a rank list augmented with summaries for presenting

a small number of them.

1. A rank list presentation with audio summaries will be presented to the end user. The list

will be divided into pages and shown vertically. Each entry will be presented with its

score, disco-graphic information, labels, and lyrics summary if available. Also, audio

summaries will be given and they will be concatenated into a single audio file. The page

will be presented with a side-bar with a marker. The marker position will indicate which

position in which summary is being played. The user then will be able to quickly go

through the whole list.

2. When there are many matches, the rank list approach in the above will not be effective.

So we propose to develop a two dimensional cluster presentation. We envision a plot in

a table, the row corresponding to genre and the column to mood. The retrieved data will
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be assigned to the locations in the table that match their metadata information. Then the

data will be hierarchically clustered row-wise and column-wise.
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