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Thesis Abstract 

The thesis describes research into graphical notations for software engineering, with a principal 

interest in ways of formalizing them. The research seeks to provi de a theoretical basis that will 

help in designing both notations and the software tools that process them. 

The work starts from a survey of literature on notation, followed by a review of techniques for 

formal description and for computational handling of notations. The survey concentrates on 

collecting views of the benefits and the problems attending notation use in software development; 

the review covers picture description languages, grammars and tools such as generic editors and 

visual programming environments. The main problem of notation is found to be a lack of any 

coherent, rigorous description methods. The current approaches to this problem are analysed as 

lacking in consensus on syntax specification and also lacking a clear focus on a defined concept of 

notated expression. 

To address these deficiencies, the thesis embarks upon an exploration of serniotic, linguistic and 

logical theory; this culminates in a proposed formalization of serniosis in notations, using 

categorial model theory as a mathematical foundation. An argument about the structure of sign- 

systems leads to an analysis of notation into a layered system of tractable theories, spanning the 

gap between expressive pictorial medium and subject domain. This notion of 'tectonic' theory 

aims to treat both diagrams and formulae together. 

The research gives details of how syntactic structure can be sketched in a mathematical sense, 

with examples applying to software development diagrams, offering a new solution to the problem 

of notation specification. Based on these methods, the thesis discusses directions for resolving 

the harder problems of supporting notation design, processing and computer-aided generic editing. 

A number of future research areas are thereby opened up. For practical trial of the ideas, the work 

proceeds to the development and partial implementation of a system to aid the design of notations 

and editors. Finally the thesis is evaluated as a contribution to theory in an area which has not 

attracted a standard approach. 
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Chapter 1 

Introduction 

Abstract 

Here we find the reasons for this research effort in the chosen topic of formalizing graphical 

notations. The research is motivated by a perceived need for flexible notational techniques in all 

aspects of software development. For a rigorous approach to development, notation processing 

must also be computer-aided. The objectives of the research therefore focus on formal 

specification for syntax and practical support for designing and using notation. 

The proposed method of research is described as an applied mathematical study, starting from an 

informal discussion, that is inspired by a semiotic view of human processes of idea-sharing and 

problem-solving. The research is related to other work on visual language, diagrammatic 

reasoning and computational linguistics, but intends a fresh and fundamental approach. 

Finally we find an overview of a thesis that applies and combines notions from a range of 

disciplines, in order to address the problems of describing, designing and processing formal 

graphical notations, particularly in relation to the tasks of developing computer systems. 
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Chapter 1. 

Introduction 

By relieving the mind of all unnecessary work a good notation sets itfree to 

concentrate on more advanced problems, and in effect increases the mental 

power of the race. - Alfred North Whitehead (1948) 

This opening chapter invites the reader to place themselves in the position of someone whose 

main interest lies in graphical expressions and diagrams that occur as technical notation within a 

design discipline such as software engineering. The text indicates the area of study, discusses 

methods of research, places the area in the context of other work and finally advertizes the 

content of the remaining chapters. 

1.1 The Study of Notations 

The first task is to introduce the subject area, to state broadly what aims and objectives the 

research is to pursue, and to outline reasons why the research is being undertaken. 

This work, then, is a thesis about notations - or, to be more specific, systems of graphical symbols 

that are used fairly formally in mathematics, the sciences and technology. In particular, the study 

focuses on kinds of diagram common in the practices of software engineering, where problems of 

notation are often observed. Research into such technical notations tries to understand how the 

techniques and mechanisms available in the graphical medium make it possible for drawn 

expressions to carry information. 

1.1.1 Aims and Objectives 

The work aims to provide theoretical support for both the design and use of notations. It aims to 

give the designers of a notation a way to describe and depict its structure, and thereby help in 

constructing generic editing and processing tools for diagrams in software development. This will 

offer better computer assistance to notation users, allowing the procedures of editing to be guided 

by the 'pictorial-syntactic' structure of a notation. 

The main objectives are firstly to establish an effective formal way for specifying the syntax of 

graphical expressions, and secondly to test the method practically, by building a prototype notation 

design tool. It is intended that the designed syntax specification itself be notated graphically. 

7 



1: Introduction 

1.1.2 Perspective 

How should we regard expressions and notations? Drawn expressions are in one sense cognitive 

objects, and in another, physical objects; a notation belongs, however, to the group of people that 

uses it and may be regarded as a cultural object, whose manifestations have cognitive and 

physical attributes. 

Software development is after all a 'cultural' process, which is subject to structures of social 

convention within a community of practitioners. It is thereby a field in which sign-systems play a 

large role; being a technical activity, we might expect such semidtic processes to be within reach of 

mathematical analysis. 

Such a formal analysis would also offer support in modelling human interaction with computers. 

Users ought to be able to engage with software (Laurel 1991), to feel involved as a participant in the 

domain of activity it represents to them. This they can do by internalizing its semiosis - learning the 

unconscious cognition needed to extract the Meanings of images and interactions - provided that 

the developer has designed into the software a suitable 'semiotic capacity' to make this feasible. 

Developers themselves use computer aids in order to help create application systems. Whether 

notations are for developers or for end-users, they must have their'rules of engagemenV, which this 

work endeavours to study. 

1.1.3 Motivation 

How will it be helpful, to formalize notations in software engineering? We find that diagramming 

methods have evolved informally in the software industry. By being adapted to the skills of current 

personnel, they provide flexible thinking tools that can represent structure in a variety of ways. 

Unfortunately notations are in the main not precisely defined and not rigorously usable in the 

development process; exactness is only enforced at the implementation stage, by the formality of 

program codes. By opening the way for computer-aided reasoning, formalized notation could help 

trap errors that may occur early in design and which can become costly if not discovered until the 

testing phase. 

With regard to this difficulty, Formal Methods notations have been devised to support rigorous 

methods of software development; they are concise, unambiguous and they enable logical checking 

throughout development. They are, however, neither pictorial nor familiar to personnel, who 

8 



1: Introducton 

who perceive them to be difficult to learn and use. In this case the research might make it feasible 

to pictorialize and thereby simplify any work with formal notations. 

The formalization of graphical notations promises a way to integrate the flexibility and familiarity of 

informal design practices with the rigorous standards of expression essential for verifiable and re- 

usable software. This research does not, however, seek to prescribe any particular form or 

method of using notations, but to find techniques for describing and supporting those forms that 

exist, even where these make no claim regarding formality. 

Computer-aided tools for software development are generally designed for a restricted range of 

graphical notations, depending on the individual choices and programming techniques adopted by 

the tool maker. Few of them support mixing of notations from different methods. By way of 

contrast, in compiler design, -systematic techniques apply across a range of textual languages, 

resting on mathematical syntactic theory. We might aim to make the same possible for 

diagrammatic syntax. 

1.1.4 Application of this Thesis 

Who will benefit? This work is intended to be applied in providing a standard for formal definition 

of notational structure, in building general-purpose tools for, practitioners using software 

engineering notations, and in improving design of notation within a computer system interface, for 

novices and experts in any field. In recent years, the increased availability of graphical user 

interfaces, and the popular appeal of visual methods and programming tools are evidence for 

growing opportunities to apply this research. 

1.2 Method of Research 

How is the research to be conducted? Different disciplines practise different methods of 

researching; what is appropriate here? 

For example in science the practice is to formulate hypotheses about certain phenomena and 

tests these by experiment or observation. In order to explain clusters of co-occurring phenomena, 

statements must be precise and logically consistent, though they may refer to entities that are not 

known to exist. 

9 



1: Introduction 

In the humanities, establishing a hypothesis requires the reaching of agreement on the explanatory 

usefulness of its concepts. The discussion of hypotheses helps to clarify intuition in an area where 

consensus is lacking. Without an agreed conceptual framework, scientifically testable hypotheses 

cannot be framed. 

In pure mathematics, we can discuss any concept in a very precise manner, without regard to 

external validity. Mathematics justifies its constructed theories by their elegance, as well as 

relevance to other internal problems. In applied mathematics, we aim to develop an elegant theory 

and to form an analogy between its terms and the concepts of some external problem. Practical 

problems can present a considerable challenge to the seeker of elegant theories. 

This thesis is conceived as a study in applied mathematics. The subject is the use of notations in 

software development. Its inspiration comes from a serniotic perspective on the human processes 

of problem-solving in developing computer systems. These ideas will be discussed informally, 

following the tradition in the humanities; from this discussion, concepts will be selected for more 

precise treatment. The mathematics will allow concepts to be developed formally, so that 

theoretical and experimental science can in the future make use of them. 

1.3 Relation to Other Work 

What other researches are relevant? Most work related to this topic is of very recent origin and is 

motivated by use of computers. Notational concerns are discussed in relation to specific software 

design methods, and sometimes more generally. Research into visual programming languages is 

an important new development. Many projects are concerned with building effective general 

support tools such as syntactic diagram editors, or compilers for visual languages. Cognitive and 

logical issues are the subject of active projects researching into diagrammatic reasoning and other 

aspects of knowledge representation. Techniques of graph rewriting have become an important 

area of study that is applied to generalized notions of grammar. Of less direct relevance are work 

on qualitative spatial theories and systems of constructive logic - which are applied to notation 

description and processing. More broadly, the thesis relates to the problem of formalizing 

semidtics, which has arisen out of philosophical logic traditions. 

This variety of work is mostly not directed strictly at notation itself, but at concerns that overlap the 

topic in some way. 

10 



1: Intrcducton 

1.4 Overview of the Thesis 

This thesis draws together notions in linguistics, logic, category theory and computing, and applies 

them to the description, design and processing of formal graphical notations for computer systems 

development. 

Chapter 2 surveys the notation issues described in the literature, starting with a search for theories 

about notational design. It attempts to discover the roles that notations play and the factors that 

affect their design, especially in regard to formality and pictorial properties. It investigates the 

problems and weaknesses that are reported, and how these have been addressed. 

The more formal approaches that have been tried are the subject of Chapter 3, which collects 

views on techniques and tools available for work with notations in the software development 

context. It reports on methods of formal representation that have been used in linguistics and 

applied with varying success to graphical language, and it reviews research into systems that offer 

editing or other processing of notation. The techniques and approaches are evaluated and their 

difficulties are analysed in order to formulate specific aims for this research. 

Chapter 4 defines the chosen area of research and explores the problems identified, starting from 

the viewpoint of serniotic theory. The particular characteristics of notations as symbol systems are 

discussed, and an examination of linguistic researches gives evidence for a logic-based approach. 

The challenge is to provide a uniform method of description for notations as layered logical 

structures -a method that can support varied operations on notations. To meet this, an outline for 

a 'tectonic' theory of notation systems is presented. 

The topic of pictorial syntax is the focus for Chapter S. It describes a schematic notation (SIGN) 

proposed for syntax definition, based on the Theory of Sketches as a logical institution; these 

'sketches' are mathematical objects that are presentations of theories. As the name implies, 

sketches lend themselves to graphical expression, which is in the manner of diagrams often used 

by category theorists. The method of definition with SIGN is explained and demonstrated in detail 

and applied to the case of Jackson's Structure Diagrams. 

Other structural layers are dealt with in Chapter 6, with a view to supporting the use of SIGN in 

constructing generic diagram editors. The chapter suggests possible ways of applying the tectonic 

theory in depth, and addresses several topics which offer directions for further research. 
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1: Introdudon 

Interpretive processes are considered and treated as systems of logical deduction; theories 

needed for geometric and graphical aspects of expressions are discussed. To support editing, 

mechanisms of rewriting are examined as ways of effecting changes to expressions. 

Chapter 7 proposes designs for a Notation Design Assistant (AGENDA) based on the principles of 

chapter 6. It then presents a more limited prototype generic tool for development of notations and 

diagram editors, and discusses implementation choices. It reports on the work of partially 

implementing the prototype, highlighting what has been learned in its construction. To assist in 

designing a notation, the prototype allows a user to build the syntax, to assign pictorial-geometric 

realizations, and to develop a simple editor. 

Chapter 8 concludes by summarizing and evaluating what has been achieved in relation to the 

objectives, the problems addressed and in comparison with other work. It looks forward to further 

developments of the approach. 

A pendix A gives examples to show how symmetry in expressions may be formally described. pI. 

Appendix B treats an example of re-formulating a BNF grammar as a sketch. 

Appendix C illustrates reasoning with sketches, and shows a strategy for displaying formal proofs, 

with a proof about logical properties of a simple rewrite rule. 

Appendlx D lists definitions of new or unfamiliar terms and concepts used in the thesis. 

Appendix E briefly outlines an approach to formalizing graphical metaphors. 

Appendix F lists selected Smalltalk classes and methods developed in the prototype tool, to 

illustrate the design. 

12 



Chapter 2 

Survey of Problems 

Abstract 

We here find a survey of views and researches into notation usage. From a historical perspective, 

the survey shows that little explicit analysis of the topic exists before the advent of computers. 

Early writings by mathematicians link notational concerns to the development of formal logic, 

which includes the origins of the subject of serniotics. More recent attention is reported to the 

study of visual languages in computing and the use of diagrams as tools for logical reasoning. 

Software engineering activities and respective notations are then classified, and the survey 

consults many views on notational needs and some assessments of performance. Analysis of 

reported problems and weaknesses of the notations shows that the varied needs have been 

satisfied in a piecemeal manner. Thus programming codes are formal but overly restricted; 

requirements analysis and systems analysis are served by informal diagramming techniques, 

unsupported by any clear formulation of the development process; formal specification and 

refinement methods have adopted much of the style of mathematical formulae, with little concern 

for ease of comprehension. 

Overall there is seen to be little awareness of any theoretical principles governing notations. This 

general lack of support for notation design is a cause for concern - continuing development and 

invention of notations is called for in software engineering, because of changes brought about by 

new technologies and applications. 

A summary of issues and difficulties raised by authors yields evidence that matters of notation 

design could be improved by formalization. Formal descriptions, it is argued, would bring 

precision to the many stages of software development and simplify the building of computer aids 

for notation. Suitable theory and science for notation structure would result in more reliable design 

principles and thus better decisions about styles and characteristics of notations used. Some 

possible programmes for research are suggested. 

13 



Chapter 2. 
Survey of Problems 

Confucius is often quoted as saying that a picture is worth ten thousand words - 
so please never draw one that isn't. - C. A. R. Hoare (1986) 

This chapter is devoted to a survey of the literature relating to notation and its place in software 

development. Its purpose is to collect and analyse commentaries on the properties required of 

notations. The survey starts from an historical perspective, with reports on notation problems that 

originate in relevant topics of mathematics. An overview of our chosen context is then provided, 

briefly classifying software engineering activities and their notations - after which the survey 

consults many views on how notations perform in the practice of system development. The writers 

selected have reported on problems and weaknesses recognized, and on how these have been (or 

could be) addressed. 

In all this material we seek to discover how important notations are, what roles they play, and what 

are the factors that affect their design. We look for stated principles of design, In particular 

opinions on formality and pictorial form. From these reports, we can analyse the issues raised and 

summarize the problems and concerns. What kinds of problem do people encounter when 

designing or using graphical notations? 

2.1 The Study of Notation Systems 

It is remarkable that there is no tradition of theoretical study dedicated to the specific subject of 

technical notations. In view of this lack, we instead take note of the reported views of early 

researchers in mathematical logic. In addition, we note that there is current of theoretical interest, 

in areas such as the use of diagrams as tools for logical reasoning. 

This material provides us with a suitable perspective from which to appreciate the notational needs 

in the chosen context of software development. 

2.1.1 Historical Material 

It is appropriate to begin with a rare commentary on the concerns of past mathematicians who 

wished to notate formal logic - important as a pre-cursor of computing - in a tradition that holds 

15 



2: Survey of Problems 

the origins of the subject of semiotics. 

2.1.1.1 Mathematical Notations 

One of the few writers on the subject of notation is Florian Cajori (1929), who devoted two 

volumes to reporting their history. Cajorl was surprised to find only one previous book on the 

subject, and suggested the reason for lack of studies might lie in social context: that the 

mathematician could not depend on commercial enterprises to exert a mcompelling influence" 

towards uniformity, as they had in science and technology. 1 This historical work is a source of 

quotations that are reminiscent of some present day concerns and complaints which are reported 

later in the chapter. In the following extracts, we hear the voices of those early mathematicians 

who expressed their own aims and principles in constructing notations. All were pioneers in logic 

and many had experimented with graphical notations. 

Cajori draws our attention to LeibniZ, 2 who in 1677 advocated the search for a universal calculus 

of logic: a medium of notation to act as a guide for solving problems, just as the laws of arithmetic 

support calculation and line drawings aid the work of geometry. Leibniz' vision was not realised 

until the twentieth century. 

In the nineteenth century, notation for logic became an important issue. Augustus De Morgan was 

concerned about the way that notation had developed without proper consideration, and observed 

that resemblance, analogy and abbreviation were involved. He preferred simple pictorial notation 

where possible, and proposed some principles for its design3: it should preserve familiar 

associations, but be free from unnecessary distinctions and ambiguity, so that difference in 

1 'rho mathematician cannot depend on Immense commercial enterprises involving large capital to exert a compelling Influence 

such as brought about the creation and adoption of a world system of electric and magnetic units. 0 (Cajori 1929 p348 §749) 

2"The true method should furnish us with an Arladne's thread, that Is to say, with a certain sensible and palpable medium, which 

will guide the mind as do the lines drawn In geometry and the formulas for operations, which are laid down for the learner of - 

arithmetic. ' (Cajorl 1929 p283) (Philosophischo Schriften von Leibniz, VII; C. I. Gerhardt, Berlin 1890 p22] 

3"DIsfinctions must be such only as are necessary, and they must be sufficient ... The simplicity of notative distinctions must bear 

some proportion to that of the real differences they are meant to represent... Pictorial or descriptive notation Is preferable to any 

other, when It can be obtained by simple symbols... Legitimate associations which have become permanent must not be 

destroyed, even to gain an advantage .. 0 (Cajorl 1929 p327 §713) 
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2: Survey of Problems 

symbols would match difference in referents. Alexander Macfarlane (1879)4, however, criticized 

the notations (of Boole and De Morgan) for a lack of computational rigour, and blamed the failings 

of formal logic on its dependence on pictorial notation unsupported by any investigation of the 

nature of pictorial symbols and laws of manipulation. 

At the end of the century, Gottlob Frege originated the earliest formulation of Predicate Calculus, 

inventing his own pictorial notations, which were entirely Individual and unfamiliar. He was aware 

of the dangers of his ustrange-looking formulas". Cajori comments that early neglect of this work 

had been attributed to its "repulsive symboliSM05. 

Cajori's conclusion was that the problem of creating efficient and uniform notation was serious for 

mathematicians. He regarded symbolic logic as the major approach to a uniform and universal 

language in mathematics, but noted that workers in the field had tended to be individualistic: - 

*A question - No topic which we have discussed approaches closer to the problem of a uniform and 
universal language in mathematics than does the topic of symbolic logic. The problem of efficient 

and uniform notations is perhaps the most serious one facing the mathematical public. No group of 

workers has been more active in the endeavour to find a solution of that problem than those who 
have busied themselves with symbolic logic - Leibniz, Lambert, Do Morgan, Boole, C. S. Peirce, 

Schroeder, Peano, E. H. Moore, Whitehead, Russell. Excepting Leibniz their mode of procedure has 

been in the main individualistic. Each proposed a list of symbols, with the hope, no doubt, that 

mathematicians in general would adopt them. That expectation has not been realized. What other 

mode of procedure Is open for the attainment of the and which all desire? " (Cajorl 1929 p314 §699) 

Since Cajori's day, there have been changes: Commercial pressure's have arisen for improvement 

and standardization of notations - in the software industry. Owing to computers, much obscure 

notation in mathematical logic has emerged into the industrial daylight. Mathematics itself has 

gained two candidates for a universal foundation, in the shape of Set Theory and more recently 

Category Theory, but their notation is far from standard. Yet much has remained the same to the 

4[commenting on George Boole (Laws of Thought 1854) and Do Morgan (Formal Logic)): 'rho reason why Formal Logic has so 
long been unable to cope Wth the subtlety of nature Is that too much attention has been given to pictorial notations. Formal Logic 

cannot be developed On these crudely expressed notations] because the nature of the symbols has not been Investigated, and 

laws of manipulation derived from their general properties! (Alexander Macfarlane, Principles of the Algebra of Logic, Edinburgh 

1879 p32] (Cajod 1929 p291) 

SFrege admits: 'Even the first Impression must frighten people away: unknown signs, pages of nothing but strange-looking 

formulas. It Is for that reason that I turned at times toward other subjects. 0 [Fundamental Laws of Arithmetic; Monist XXV; 

Chicago 1915; p491) (Calod 1929 p295) 

17 



2: Survey of Problems 

present day. Theoretical work on logic (for computation) is a source of notational innovation as it 

continues to push at the boundaries of the subject, while those practitioners of software 

development who find most need for notation still largely approach the problem as if they were the 

first to do so - as we shall see below (§2.2.2). 

2.1.1.2 Diagrams, Logical Reasoning and Semlotics 

Diagrams have a long history In mathematics. In ancient Greece, Reviel Netz informs us, the 

word Ataypagl. La means 'proposition' or 'proof' (Netz 1996); the drawing of diagrams was the 

central practice in mathematical reasoning. The greeks, he considers, did not develop symbolic 

expression; rather their formulaic language was based on an oral tradition, of arguing in the 

context of a diagram. The diagram had the role of an "inter-subjective object" supporting 

communication: NThe one fixed, solid object in Greek Mathematics is not the word, but the 

picture. ' 

Closer to our own era, but long before logic was codified, Leonard Euler (1707-1783) developed 

graphs and circle diagrams as aids to reasoning. The better known Venn diagrams extend Euler's 

circles into a more expressive form - as recently analysed by Shin Sun-Joo (1994,1996) and In 

(Hammer & Danner 1996). 

It was not until late in the nineteenth century that full expression of first-order logic (FOL) became 

possible, through the work not only of Frege, but of an important pioneer of mathematical logic, 

the philosopher Charles Sanders Pelrce6. Unlike the now established predicate calculus notation 

in mathematics, both are pictorial. 

Peirce superimposes a hierarchy of nested "contexts", denoted by closed boundaries, on a relational 

network whose nodes denote individuals (Hartshorne & Weiss 1933 vol. 4 book 2; Roberts 1973). The 

regions in between the nested curves change between negative and positive each time a boundary is 

crossed, encoding the alternate existential and universal quantification of the enclosed individuals. 

Frege's conceptual notation (Frege 1972) displays a binary tree of implications, with variables bound to 

edges as universal quantifiers. 

Peirce's Existential Graphs are the subject of a book by Roberts (1973), and papers on Peirce's 

logic can be found in (Houser et aL 1997); also see (Hammer 1996). Annual Peirce workshops 

6pronounced purse, according to J. F. Sowa. 
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have been held in association with the International Conference on Conceptual Structures7 (Ellis 

et at 1992, Levinson et al. 1993, Ellis et at 1994) 

Peirce was a prolific innovator. He also developed a calculus of binary relations, recently studied 

and extended by Vaughan Pratt (1993) in connection with the logic of concurrency. We find 

generally that such systems continue to be the basis for many modern notative methods in 

mathematics and computing, perhaps because computer technology has grown out of the 

mathematical progress in understanding of logic and calculation. Nevertheless, experts in these 

fields often prefer formulae to diagrams. 8 

Peirce is regarded as the originator of the subject of Semiotics: the study of sign systems 

generally. He took a specific interest in the practical problems of mathematical notation (see 

Hartshorne & Weiss 1933; Hardwick 1977; Peirce 1984). Despite this, most writings on serniotics 

arise in the Humanities, and take an informal approach that avoids technical detail (e. g. Saussure 

1916; Barthes 1967). Serniotic concepts have no agreed formal definitions or mathematical 

models, 9 and Peirce's work has not been followed up with a full treatment of complex systems of 

present day mathematical language. 

2.1.2 Recent Studies 

Although apparently so little current work is expressly dedicated to the topic of notation, there is an 

increasing interest in its different aspects, and especially in cognitive studies. Here a variety of 

research directions are reported. 

2.1.2.1 Laws of Form 

In a similar spirit to Peirce's explorations, an innovative approach to propositional logic notation is 

adopted by George Spencer Brown (1969). Stemming from his work, some researchers have 

espoused a 'minimalist' philosophy of mathematical notation, known as "boundary mathematics" 

7The proceedings of these workshops are electronically available. The author Is Indebted to J. F. Sowa (by electronic mail) for 

supplying this Information. 

8Evidence for the latter can be found In any advanced text on these subjects. Some writers are explicit about this, e. g. Hoare 

(1986). 

9- If we exclude the approach via systems theory, which Is not relevant to this thesis. Note, however, that recently published work 

by Goguen (1997) remedies tNs; see (§8.2.1). 
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(Bricken & Gullischen 1989, Kauffman 1988, James 1993). Although of tangential interest to us 

here, these systems have found application in the study of biological serniotics by Francisco 

Varela (Varela 1975,1979). 

2.1.2.2Wriften Mathematics 

A few authors have begun to pay attention to how mathematics is written. Edwin Coleman 

(1990)10 associates the "certainty and independent veracity" of mathematics with its use of 

notation, and he advocates the consideration of cognitive requirements and consequences of 

notation and diagram within mathematical prose, which he feels has never been treated seriously 

in philosophy. Bagchi & Wells (1994) have analysed prose styles; (Wells 1994) contains detailed 

proposals for making mathematics text more communicative. These pieces of work do not have 

much to say about diagramming. 

2.1.2.3 Higraphs 

Graphical notation has been addressed by David Harel (1988). In his work on diagrams for system 

development, Harel extends the ideas of Euler and Venn. He points out that Euler's circles, which 

represented logical propositions, rely on the (more recent) Jordan curve theorem - which states 

that every simple closed curve in a plane- divides it into an inside and an outsidell. The 

overlapping circles can convey set-theoretic notions, as applied by Venn. Harel proposes 

diagrams that he calls Higraphs to be used for various descriptive purposes, such as for 

databases, knowledge representation, and for the behaviour of complex concurrent systems using 

Statecharts (Harel et aL 1990). 

Higraphs modify and extend graphs and circles to systems of closed curves connected with multiple 
links, enabling the Cartesian products of sets to be represented, for instance. In activity charts the 

enclosures represent functions and subfunctions; edges denote dataflow. 

1 O'In the philosophy of mathematics, discourse In english, the epistemological significance of diagrams, of the difference 

between speech and writing, and of the difference between Word and Notation are all quite generally dismissed ..... ... Me 

objectivity of mathematics, like its certainty, Is largely bound up with the use of [notation and diagrams) ... Its veracity Is 

Independent of the reader's opinion ... If we can understand better why these effects are necessary and how they work, we can 

put mathematics In Its proper place. " (Coleman 1990) 

1 1This theorem Is more subtle than It seems; it states more than Is needed for the very smooth curves with few changes of sign 

In curvature that are involved in practical notations. 
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Statecharts are intended to answer the known problem of representing specification and design of 

large complex reactive systems. Harel acknowledges they are unable to represent easily both set 

inclusion and set membership, except by means of special edges, since two different kinds of 

insideness are required. 

Harel's motivation lies in the observation that the systems to be represented are complex - being 

composed of many sets that are related in nontrivial set-theoretic ways. His declared interest is in 

non-quantitative, structural, set-theoretical and relational information, notated by "topovisual* 

means in which geometric shapes, locations, distances have no significance. He claims that a few 

simple diagrammatic topological notions provide an effective means of representing systems. 

From this perspective he discusses notational principles in Entity Relationship Diagrams, 

Semantic and Associative Networks and Data-Flow Diagrams, noting that graphs are used 

extensively in computer science. He judges that hypergraphs are less common because they are 

hard to draw. 

Although he has a particular target, Harel remains one of the few researchers to take a broad look 

at notational problems in a software context, in order to justify his proposals. We would hope for 

some more theoretical and empirical evidence. Despite the interpretation of diagrams in set 

theory, Harel does not otherwise attempt to formalize his notative techniques; this task, however, 

is taken on by Hammer (1993). 

2.1.2.4 Visual Language Research 

The recent popularity of so-called "visual programming*12 and visual language in computer 

interfaces generally (Chang 1994), has led to increased theoretical and practical interest in 

construction of graphical notation. Tim Menzies (1995) makes an exploration of this "emerging 

field". His paper presents two overview frameworks: theoretical and evaluative, covering cognitive 

approaches and empirical studies of language use. It discusses in detail the kinds of expression, 

purpose and design of visual programming systems - in which scripting is not required. Such 

systems are held to require a semantic base, a syntactic base, and a set of basic constructs. 

Menzies emphasizes a connection between data-flow models and production rules. 

12Whilst 'visual language' clearly contrasts with "spoken language", It Is hard to see why 'visual programming' should be 

opposed to textual (verbal) programming, which Is also conducted visually. 
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He quotes the results of (Goel 1992) who tests the use of "ill-structured diagramso in solving poorly 

structured problems found in early system-design stages. Other empirical researches (Green et aL 

1991, Moher et aL 1993) reach similar conclusions, namely that different diagramming techniques 

are useful for different stages of the design process. Menzies quotes: - 

"Not only Is no single representation best for all kinds of program, no single representation is ... 
best for all tasks involving the same program. 0 (Moher etaL 1993) 

Menzies (1995) quotes some empirical studies by Kindfield (1992), into use of diagrams in biology, 

which support the view that: 

"[diagrams) serve as an external storage device that frees working memory, allowing for the 

performance of additional cognitive tasks during the pause when the problem solver is looking or 

touching the diagram. 

Many of the visual systems that Menzies discusses are not based upon notations in the sense of 

this thesis. He applies two criteria: (1) A visual programming system uses at least two dimensions 

to represent its constructs, which must be executable. (2) The specification of the program must 

be modifiable. "A very useful feature of a visual programming system is direct manipulation". 

Menzies discusses ways of analysing visual systems. He describes the work of Shu (1986), who 

defines a Triangle on three criteria: 

visual extent (the Intricacy of the visual modality employed), 

language level (high if more effective abstract instructions are offered) 

scope (generality, absolute limitations on expression abstraction) 

Though Menzies finds these useful, experience with students leads him to conclude that it is 

unwise to compare the scope of systems with a different semantic base, and that languagelevel 

should be measured using subjects who have already been trained. 

The range of structures treated in this thesis is more restricted than "visual language" generally. 

We draw a distinction between visualization of structure encoded in a computer, to help viewers' 

comprehension, and graphical notation used by a person to express ideas. Notations must control 

size, layout and complexity of symbols, so that they may be hand-drawn during a design task. 

Vinod Goel (11992) is one of the few researchers to introduce an awareness of the design process 

into the discussion on software notations. In another context of design studies, the author (Godwin 

et aL 1997) has analysed the reasons for varying needs of representation at different stages of 
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design practice. In this thesis, however, we shall put praxeological13 concerns to one side. 

2.1.3 Visual Reasoning 

There is now an active area of research into human ability to reason with diagrams (e. g. Glasgow 

et aL 1995; Hammer 1996; Allwein & Barwise 1996). This has partly been prompted by the 

software industry's problems with human factors in the design of computer system interfaces, 

where complex information must be displayed. It is also the result of success in using computers 

to help visualize information (Barwise and Etchemendy 1996). 

2.1.3.1 Diagrammatic Reasoning 

Zenon Kulpa, in his extensive survey of diagrammatic knowledge representation and reasoning 

(Kulpa 1994), regards this as "one of the most rapidly growing areas of research in artificial 

intelligence, O - though surprisingly late on the scene. Kulpa emphasises the distinction between 

diagrams as analogical and text as propositional representations. He describes the traditional 

view: - 

OMathematics has been generally ruled by an implicit dogma stating that propositional reasoning 

using logic is the ultimate tool of precise and formal thinking. Many mathematicians tend to use 

diagrams ... as heuristics to prompt certain trains of inference, but mostly only as Informal aids to 

understanding for uninitiated... some of them explicitly stated that the diagram has no proper place 

in the proof as such. 0 

Taking a cognitive focus, Kulpa summarizes the advantages of diagrams, based upon papers of 

Larkin & Simon (1987) and Koedinger (1992) 

Locality aids knowledge and problem search 

There is less necessity for symbolic labels 

Diagrams allow easy realization of perceptual inferences 

Certain inferences are already present in a diagram [as emergent properties]. 

We notice that this survey places the study of diagrams fully within the domain of cognitive 

science. A number of researchers choose the same perspective. Work by Keith Stenning (1994) 

and others has established a way of evaluating diagrammatic reasoning methods which tries to 

address cognitive constraints. One aspect of these studies is the analysis of differences between 

textual language and diagrams, in order to establish why and when diagrams assist reasoning 

131.8. the theory of practice (of using notations In software design). 

23 



2: Survey of Problems 

(Stenning & Obedander 1992). 

2.1.3.2 Media and Modalities 

Stenning & Tobin (1994) define media as the physical / perceptual aspects of representation 

systems, and modalities as kinds of interpretation function. Hence text and diagrams are in the 

graphical medium, though they differ in modality; braille and text are different media but the same 

modality. Their paper aims to give a general account of the cognitive effects of assigning 

information to different modalities. With the advent of new media, they regard this as an important 

practical problem; research will be useful if it helps avoid poor designs or speeds up the process of 

presenting information. 

2.1.3.3 Specificity: Direct Analogy In Diagrams 

For Stenning & Oberlander (1992), the crucial feature distinguishing graphica114 and linguistic 

representations is specificity: graphical representations compel the specifying of certain classes of 

information. The specificity found in diagrams results from the exploitation of homomorphisms 

(structure-preserving maps) - which Goodman (1968) placed the at the centre of his theory of 

graphical semantics. Specificity is also employed in natural language discourse conventions, but is 

not a feature of logical languages. Visual languages that are based on semantic networks also 

appear to enforce few specificities. Their report contends that diagrams are easy to process 

because they limit abstraction - hence their widespread use. 

Related research (Lee et al. 1991) asks what combination of graphics and language is optimal for 

particular information processing tasks. The paper finds that many features of natural language 

discourse can be seen as intermediate between logic and graphics (Klein 1987, Oberlander & 

Stenning 1990). It notes the view (expressed in Tennant 1986) that pictures and diagrams are 

little more than expository aids, having no place in fully formal treatments of mathematics and 

logic - which Barwise & Etchemendy (1990a, b) challenge on the grounds that diagrams are 

sometimes a major aid to theorem proving. The paper draws attention to the "total mappings of 

identity" that occur in graphical representations, instead of the abstraction favoured in text. It 

14We note that their theory avoids emphasis on the particularly visual; it applies equally to blind reasoners using embossed 

diagrams (e. g. tactile Venn diagrams have been used). This contrasts favourably with the imprecise use of the term 'visual* that 

we have found elsewhere. 
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relates this specificity of diagrams to the properties of cognitive images and the components of 

working memory. 

Stenning & Oberlander (1992) have undertaken a study of Euler Circles. Based on the analogy of 

spatial containment, in reasoning these are distinctive in exploiting constraints on movement. This 

kind of continuity introduces temporal specificity: the Nmechanical" constraints on discs in a plane 

helps navigate around the space of models. They refer to the work of Hinton (1979,1980) who 

argues that such continuity underlies our ability to solve visualization problems. The later paper 

(Stenning & Tobin 1994) extends this work on Euler's techniques. By comparing several 

alternative representation systems for syllogisms in detail, the paper explains that the advantage 

of Eulees Circles lies in their lack of expressiveness. Accordingly, they seek to define a distinction 

between language and graphics, based on the analogical directness of the representation (see 

Stenning, Neilson & Inder 1993). 

In a similar vein, other researchers find that logical approaches to these cognitive concerns are 

useful. By considering homomorphic mappings in representation systems, Gurr (11996) is able to 

provide a precise definition of the kinds of similarity that occur between the structure of 

expressions and the domain they represent. 

These interesting avenues of research provide important insights into notation usage, that we will 

come back to in Chapter 4. 

2.2 Notational Practice in Software Development 

This section collects reports of the many views on notations in the practice of software 

engineering, in order to find out how the attributes of notations may be related to their 

circumstances of application. Our interest is in interplay of various factors - the participants, their 

subject domains, and the notations in various styles that play certain roles in their activities - and 

in the problems that occur. We will then be in a position to analyse where research in notation 

may be able to help. 

2.2.1 A Preliminary Classification of Notation Use 

In the absence of theory about software notations, our objective here is to classify simply the tasks 

of software development where notations arise, and correlate these with the kinds of notation and 
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subject areas. This classification does not claim to be complete or definitive, but it will help in 

giving shape to the succeeding collection of reports, and in setting the scene for the ensuing 

investigation. 

2.2.1.1 Notation for System Design and Software Development 

We do not here concern ourselves with questioning the nature of the software design process, 

which is traditionally described as a sequence of problem-solVing phases. 

We start by listing the notational needs associated with each phase. The first phase is the capture 

of requirements, which may employ knowledge representation notations - or a 'soft systems' 

approach which encourages rich pictures for discussion of issues in the physical and social 

environment (Checkland 1981). Next comes system specification, the activity of logically defining 

required properties, that may involve formal specification languages, or a variety of less formal 

representations. The body of design and development activities often then rely on structural 

diagramming notations. Where appropriate, *formal methodsm of development may be applied; 

they call for the notating of proofs, refinement of specifications and program transformation. At 

the detailed end of software construction, programming languages can represent data structure 

and all operations upon data. 

Peripheral to these activities, there are two more areas of application. The end-users may need a 

developed system to incorporate their own notations - e. g. specialist professional notations, or 

visual schematic notations incidental to an operative interface. Lastly, the organization and 

management of large software projects may be assisted by operational charts or other notation to 

express progress and version control. 

These uses are summarized in the table: - 

Area Kind of notation Subjects 

Requirements Knowledge Representation General 

Specification Formal Description Techniques System properties and functions 

Development Structural Diagrams System structure 
Formal Methods Logical Calculi Refinement and program transformation 

Implementation Programming languages Data structures and operations 
User Interface Users'graphic notations Users' specialisms, System context 

ff Project Management Operational charts Organizational structure 
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2.2.1.2A Classification of Software Engineering Notations. 

Below is devised a short list of some notations used in software development, this time in an order 

that approximately reflects the history of growth in the industry. We shall not attempt to review 

these notations, of which there are hundreds, in specific detail. Also outside our brief lie the 

specialisms of end-users and, marginally, hardware design notations. 
Hardware Design: Logic Circuits, Timing Diagrams 

Programming Codes: 

Assembly codes 
Textual Programming Languages 

Visual Programming Languages 

4GLs, Visual Basic, ... 
Programming Aids: 

Decision Tables 

Flowcharts (PFCs) 

Nassi-Shneidermann Diagrams (NSD) 

Structure Aids: 

Entity-Relation Diagrams (ERDs) 

Dataflow Diagrams (DFDs) 

State Transition Diagrams (STDs) 

Petri Nets (PNs) 

Statecharts; (SC) 

Methodologies: 

SSADM 

Jackson Method: 

Structure diagrams (JSD) 

System Specification 

System Implementation 

HOS: Control Maps, Dynamics Graphs 

MASCOT System Diagrams 

Object-Oriented: HOOD, MOON, UML 

Databases: Query Languages 

Knowledge Representation: Semantic Nets, Conceptual Graphs 

Formal specification: Z, VDM; OBJ;... 

Concurrent Formalisms: CSP, CCS, LOTOS, 

This list furnishes us with a simple guide for the following reports. 

2.2.2 Activities and their Notations 

The comments collected here are chosen to reflect areas of concern within the varied tasks and 
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situations of software engineering practice. They comprise reports upon requirements for 

notations and practical assessments of languages employed. The reports are arranged in the 

historical order in which development activities have become important, as a result of the 

increasing size and complexity of systems. 

2.2.2.1 Languages for Programming 

Programming languages are a large, well-established and well understood class of notations 

adapted to purpose. Jean Sammet (1991) reflects that there is relatively little documented history 

of the thousand or more that have been created. They satisfy varied "functional needs" such as: 

specialized application areas, different capabilities of user (novice or expert), interactive uses, 

compatibility with other systems, and demand for a large or small number of features - but the 

main cause of this diversity15 is judged to be "the personal needs and interests of people". 

We find here that arguments about appropriateness of different languages tend to focus on 

semantics rather than syntactic style. General issues of expressiveness ("ontology") have for 

instance been studied informally by Harland (1984,1986). It is however not usual for 

programmers to know about the formal semantics of a language. Even so, textual programming 

language design has benefitted from extensive theoretical study of syntax and semantics. This 

will not be detailed here, but is touched upon in the next chapter (§3.1). 

2.2.2.2 Visual Programming 

Though most programming languages are textual in style, graphical forms of -notation such as 

Flowcharts have long been used as less formal ways of expressing program structure. Nassl- 

Shneiderman diagrams provide one of the first examples of a graphically supported programming 

notation (Nassi & Shneiderman 1973). Nowadays the almost universal use of graphical interfaces, 

makes possible many "Visual Programming Languages" that involve interactive techniques rather 

than simply notations. 

Cook & Masnav! (1988), in considering how to make the behaviour of. software more accessible to 

end users, propose graphical methods in programming as a design appropriate for non- 

programmers. These are suited to programming User Interfaces, where specification of dialogue 

1 5"... the subject of language design Is often a matter of intense debate; In my judgment the bottom line is still that personal 

opinion plays a much stronger role than any other factor In language design and development* (Sammet 1991) 
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In a textual language is "an inconvenient and time-consuming task even for experienced 

programmers". 

Brad Myers (1988) classifies programming systems which use graphical representation, and 

identifies several difficulties: - 

(a) Large programs or data could not be easily displayed or viewed, owing to a lack of abstraction 

mechanisms. 

(b) Absence of formal specification might be remedied by some form of graphical grammar. 
(c) There was no evidence of worth, in terms of ease and efficiency of use. 
(d) Representations were poor, with graphical code hard to understand and edit. 
(e) Automation of layout was needed. 

He offers the conclusion that for general-purpose programming Py professional programmers, 

textual languages are more appropriate. 

According to Menzies (1995), evaluation of visual programming systems is an open issue. He 

notes a tendency to claim superiority for visual systems (superlativist claims In the sense of Green 

1991), but finds that although studies suggest there is some inherent utility in visual expressions, 

experimental evidence yields numerous contradictory results. He judges that for some of these 

discrepancies the crucial factor determining the value of a representation Is not its superficial 

appearance, but its relevance to the task at hand. OskOdarli & Dinesh (1 995a) note that there are 

significant concerns regarding success of visual languages, which by consensus are best suited to 

special purposes within applications. 

2.2.2.3 Diagrams in Structured System Design methods 

The process of designing programs has often been informal and individual16, according to Martin 

& McClure (1985), whose book is something of a manifesto for structured methods and graphical 

notation. Structured design is intended as a more rigorous approach to software development, 

which concentrates on describing how a system operates, functions or behaves at various levels of 

abstraction and detail. As well providing help to programmers, the approach aims to improve 

accuracy of requirements by greater involvement of users. 

The "traditional" structured techniques are associated with the names Constantine, Yourdon, De 

16'There tends, however, to be less formality In programming, perhaps because It Is a young discipline full of brilliant people who 

want to make up there own rules. " (ibid. ch9 pl 10) 
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Marco, Jackson and Warnier-Orr. They are described (ibid. ch. 1) as a remedy for unsatisfactory 

results with early programming languages, especially for large programs. In applying the 

techniques, computers are to be employed at every stage of development, replacing the craft of 

programming by code-generating tools, with the goal of automatically verified design. There are 

four basic principles in a structured approach: - 

Abstraction, to simplify general form by omitting detail; 

Founality, by a rigorous methodical approach; 
Divide-and-Conquer, to treat Independent subproblems; and 
Hierarchy, to introduce more detail at each level of development. 

Development is driven by diagrams, depicting overview systems analysis, program architecture, 

program detail, data structures, database models and file structures. Principles of good 

diagramming technique are listed: - 

They are easily manipulated on screen; 
End users can read and draw them; 

They are printable on normal paper, or hand-drawn less elaborately; 
They avoid mnemonics and unexplained symbols; 
Complex diagrams can be analysed into easy modules; 
Overview and detail diagrams are similar in structure. 

The book (ibid. part 111) discusses informally many diagramming techniques and their problems, 

giving a practical guide to achieving good communication. Rigorous use of diagrams is the 

proposed way to remedy the poor communication that is seen as a major cause of errors and 

expense in software design (ibid. ch9). Fully involving the end-user is Nvitally important", hence 

notation must begin with "user-friendly sketches that the users can draw and argue about. " (ibid. 

ch2), so that the notation fulfils an instructive role: *The users should be taught to think about 

systems with clear diagrams. * 

Development proceeds by steadily refining these sketches into rigorous designs in a natural 

manner with computer assistance, but without using a fundamentally different representation or 

programming text, until code can be generated. Formality is to be provided in malhematical and 

automated support for diagramming notations, which are seen as a step towards formalization of 

the development process. The use of formulae that permit axiomatic verification are "not 

necessarily user-friendly" and therefore not a part of the methods described. 

30 



2: Survey of Problems 

Although the book emphasizes diagramming, we find that it does not completely avoid text. 

Labelled tree-structures are shown to be most conveniently notated as indented text, and the 

proposed Action Diagrams apparently amount to little more than graphical annotation of program 

text. Despite its stress on rigour, the book gives no formal syntax or semantics for any of the 

notations it describes. 

2.2.2.4 Requirements Specification Notations 

The need to introduce rigour early in the life-cycle and reduce the errors in defining end-users' 

requirements has led to an interest in specification languages. The argument in this area has 

been about the need to use formal notation rather than natural language. Gehani (1985) notes the 

inadequacies of informal specifications of systems, which "while easy to read, tend to be 

ambiguous, incomplete, imprecise and overspecific. " 

Zave & Yeh (1985) describe the specification document as the major channel of communication 

for development. It "synthesises a collective understanding" of the problem to be solved, forming 

the basis of a contract. It should therefore be: "precise, unambiguous, internally consistent, 

sufficiently complete, ... not over constrained", in language that is understandable and modifiable 

with support of integrated tools for synthesis and analysis, that may assist formal manipulation for 

verification, and testing for acceptance. Jones (1990 p46) emphasizes that specification 

expresses what the system is intended to achieve: maintaining relationships while obeying 

constraints. 

Balzer & Goldman (1985) require Specification Languages to provide means to represent a 

dynamic model of the system's environment, that expresses data uniformly as relations among 

objects, independent of their representation, and with facility for descriptive reference. 

Techniques are to allow specifying by extending analogous concepts. They do not consider syntax 

needed to achieve this. 

Tse & Pong (1991) describe the features of specification in natural, formal and graphical 

languages that are desired by other authors. They write that notations should enable one to 

Panalyse and manipulate a model abstracted from the real world, " in order to produce a solution. 

This abstraction must be easily understood by all concerned; the use of familiar language would 

also help reduce staff or management resistance. They admit that natural language text improves 
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user understanding, as it gives better persuasive power and freedom of expression in the initial 

phases where there is uncertainty; however ambiguities are caused, and there are unsolved 

problems in' manipulating it. Thus in engineering, diagrams and mathematics are used because 

they are more easily manipulated than verbal descriptions; and diagrams may be converted to 

equations. The need to transform one representation into another prompts them to prefer formal or 

mathematical text, which is to be explained through natural language. Formal correspondence 

between the various syntaxes of both formal and informal versions must be maintained. 

They see graphical language as more comprehensible because its two dimensions help express 

hierarchy and parallelism, and graphics can be read selectively rather than in sequence. Provided 

there are not too many symbols, the reader can focus on overall structure before inspecting 

details. They therefore propose hybrid notations that combine graphical languages best for 

overviews, with formal text preferred for detailed description. 

They claim that complexity is the main barrier to understanding, and propose to overcome this 

with the following structural norms, which aim to improve conceptual clarity: - 

Separation of concerns, essential versus physical; 

multi-level abstraction, hierarchical 'top-down'visualisation; 

structuring requirements into parts that are easy to modify; 

language to allow a natural and logically verifiable process of refining systems Into subsystems; 

self-contained Subsystems with minimal Interfaces between them. 

In order to support the necessarily different models, depending on environment, emphasis and 

stage of development, several very different notations are usually required. Hence they propose 

the ability to transform between styles/ notations with respect to their mathematical semantics, but 

without exposing untrained users to unusual symbols and jargon. These conclusions are echoed 

by the views of Cohen et A (1989), who write: - 

"Debates are held on such topics as graphics versus text, readability, ease of use, ease of learning 

and compatibility with existing tools. However little consideration seems to be given to the roles of 

such languages in the design process or to the relationships among the descriptions of systems 

expressed in them. ' 

Guttag & Horning (1985) report on their own experience of creating a specification, which was 

facilitated by inventing notational shorthands. As designers they found this compactness in 

notation greatly helpful, but it was a hindrance for uninitiated readers, who were therefore offered 
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an easier yet semantically equivalent style in their paper. They infer a need to "maintain 

semantically consistent, but notationally distinct versions of the same specification. " Also Zave 

(1985) highlights the need for different styles of notation to suit non-technical participants, and 

looks forward to tools which derive simpler reports and diagrams automatically. 

These various reports reflect a desire for rigour to cope with complexity, but they focus upon 

system design requirements rather than syntactic requirements. 

2.2.2.5 Formal Methods 

In opposition to the popular emphasis on diagramming, Hoare (1986) proposes a professional 

engineering approach based on explicit mathematical laws. He does not approve of the use of 

pictures such as flow charts, because they "inhibit the use of mathematics in programming". 

Hoare views a specification as an abstract program, that will be refined formally into a concrete 

implementation. This abstract program (which may well not be executable) delimits the set of 

alternative acceptable systems, and requires Othe full range of concepts and notations of 

mathematics*. We infer that specifying is a more complex task than describing behaviour of a 

single system. 

Cohen et aL (1989) likewise observe the need for 'sound scientifically based formal methods" to 

transform software development from its 'craft' status into a true engineering discipline. For this 

purpose, they propose that languages must "possess the primitives and constructors necessary 

for the expression of complex models, together with semantic definitions, calculi and proof rules 

which permit the properties of such models to be deduced. " 

Goguen (1985) prescribes that a specification language have a formal definition in terms of "some 

underlying logical language having a precise mathematical semantics and a set of inference rules 

which is consistent and complete", if it is to serve in formal verification. 

Notation for methods based on mathematical logic is rarely graphical; we find few diagrams used 

in standard books on formal development (e. g. Jones 1990; Dijkstra 1990; Potter et aL 1991) 

where they are mostly confined to informal illustration. Many formal specification notations make 

little use of diagrammatic features, with the minor exception of schema-boxes in Z specification. 

Formal diagrams have found more of a role in describing concurrent and communicating systems: 

for example Petri Nets, which rely on graph theoretic formalisms. 
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As with the previous, these writers express the need for underlying logical formulation, but only 

formalize the notations in a limited way, that disregards its graphical characteristics. 

2.2.2.6 Knowledge Representation 

Formalizing the requirements specification may be seen as a problem of Knowledge 

Representation. This topic is studied in the context of databases with inference mechanisms, and 

construction of query languages (Brodie et aL 1984). They identify three approaches: semantic 

networks, production systems and logical schemes. Mylopoulos & Levesque (1984) report that 

methods of representation suffer the drawback of lack of formal semantics and standard 

terminology. 

2.2.2.7 Conceptual Graphs 

We have noted above (§2.1.1) some of the early attempts to find a graphical notation that can 

serve as a logical language. These techniques have in recent years been further investigated and 

extended, by John F. Sowa and others - with the aim of allowing requirements to be formalized in 

logical propositions and expressed in diagrams. Sowa (1984) uses ideas of C. S. Peirce and 

semantic nets (Sowa 1991) to design a pictorial language which he claims to be formalizable. 

Conceptual Graphs are a typed (sorted) version of Peirce's existential graphs; they provide a basis 

for organization of knowledge, formal and informal logical inference and computation. He draws on 

research in cognitive psychology to support his method, and invokes Hintikka (1969) to extend 

Peirce's techniques to modern logics. Sowa recognizes the need for lambda-abstraction in his 

notation, but does not give a pictodal expression for this. 

Sowa provides a clear indication of an equivalent textual form for his Graphs. We do not find a 

formal treatment of his notations, though elsewhere he alludes to graph grammars as a possible 

formalization (Sowa 1979). Sowa encodes negation as a property, rather than a modifier, of a 

sentence; although this works in practice, it seems less elegant than Peirce's version. 

Loucopoulos & Champion (1990) apply Conceptual Graphs to the early requirements analysis, 

which must tolerate informality of expression. They find that the Graphs provide an unifying 

representation formalism for the user's concepts, and avoid confusion with the semantics of the 

development method. Application of Conceptual Structures has also been the subject of several 

conferences (Tepfenhart et al. 1994; Ellis et aL 1995). 
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The system of Conceptual Graphs is a rare example of how formulae In predicate logic can be 

diagrammed. It is a complex notation, however, with hierarchical enclosure of sub-graphs used for 

modal statements and negation. Interestingly, the graphs have topology not unlike Harel's, despite 

a very different semantics. Whereas Harel uses them for a variety of specific semantic purposes, 

Conceptual Graphs have uniform underlying logic, in which the depth of nesting shows the logical 

complexity of the expression. 

Most of the authors quoted above have given consideration to the suitability of notation for a 

particular type of task, without proposing any integrated approach to notational problems - other 

than increased rigour and more use of graphics. 

2.2.3 Reviews of Notations 

In addition to these general views, there are a few studies of the adequacy of particular notations. 

Alan Davis (1988) compares specification techniques and commends the simplicity, applicability 

and elegance of some of Harel's notational techniques in Statecharts, which are expressive and 

compact. Even so, he concludes that the more sophisticated rigorous graphical notations such as 

Petri nets, PAISley and Statecharts are much more difficult to comprehend for non-professionals. 

Harel (1988) himself expresses enthusiasm for the future of visualization, predicting that daily 

technical language will be Inherently diagrammatic, perhaps also three-dimensional and animated, 

to encourage both old and new visual modes of thinking when tackling systems of ever-increasing 

complexity. 

Tse & Pong review (1991) several languages in computer-aided software development (PSL, 

SADT, EDDA, SAMM, HOS, RSQ, which they mostly find to satisfy the list of structural criteria 

quoted above (§2.2.2). Many languages resulted from studies in formalism, however, which they 

saw as causing a psychological barrier to end-users. They felt that the main user-interface should 

avoid formalism, via an interface with popular tools such as structured methods. 

Hull et al. (1991) compare four real-time applications development methods (MOON, HOOD, JSD, 

MASCOT) that feature graphical notation. Their criteria for evaluation are: 
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ease of use and understanding; use of diagrams; 

ability to express requirements and constraints; 

ability to express concepts of the subject domain; 

simplicity and compactness of syntax; 

structural features: modularity, hierarchy, viewpoints; 

formality: unambiguous, consistent, implementable; 

support for methods: phases of development. 

None of the four are found to satisfy all criteria; they suffer from lack of abstraction mechanisms, 

inappropriate styles, lack of rigour, over-complexity, and inability to express requirements and 

constraints. At lower levels the authors find diagrams cumbersome for sequential actions - text 

was preferred. Otherwise, effective notational techniques are evident between the four: good 

abstraction mechanisms, support for concurrency, rigour, hiding of detail, and appropriate 

semantic range. 

These reviews, though helpful as a guide to concerns, are based on subjective assessments. We 

might ask what kind of theoretical study could support a more objective test of notation adequacy. 

2.2.4 Formalization of Notations 

We have seen that a desire for rigour in notation is common to many of these reports. This 

section ends with some further collected views on the issue. 

Martin & McClure (1985 p17) remark that formality enables the study of programs as mathematical 

objects, the clear communication of ideas and instructions unambiguously in a computable form, 

and a way to focus creativity, thereby blending the craft and engineering aspects of programming. 

But this formalization is not to be expressed by formulae; methods (such as HOS) are preferred 

which constrain the design process to be correct. 

A detailed case for formalization of specification and design language is given by Cohen et aL 

(1989 p99), in criticism of common informal approaches which do not meet the objective of re- 

usability. They propose that languages be formalized in order to express and deduce properties of 

complex models; they should have a tractable syntax and well-defined semantics. Ad hoc 

notational extensions are rejected in favour of providing soundly based semantic and syntactic 

flexibility by means of embedded extension mechanisms (capacity for definitions). In the work 

cited they also observe that formalization must also relate different notations needed for different 
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aspects of behaviour. 

Tse & Pong (1991) claim that notation formalism helps to reduce misunderstanding between 

designers and enables automated consistency and completeness checking. A unified 

mathematical framework must be present in a specification language: verification relies on relating 

the development to such a theory. They note that frequently the theoretical background adequate 

for rigour is absent. 

Spivey (1988 p7) discusses the applied mathematician's disregard for formal semantics, and gives 

practical reasons for taking a different attitude in the case of the specification language Z He finds 

that explicit formalization is necessary to explain Zs unusual modular structure, and to enable 

reasoning about specifications. It also provides a means of comparing specification techniques 

and language constructs. 

2.2.4.1 Need for explicit formality 

We note a variation in these comments regarding the strength of the term 'formal'. Formality in a 

weak sense may amount only to an implicit enforcement of conformity between representations, 

by computer-aided (CASE) tools. Explicit formalization is a. stronger notion, relying on 

mathematical models of linguistic and graphic syntax, related to semantic models for each subject 

domain - which is rarely available. Only for some programming codes and formal methods 

notations are strongly formal. The Views quoted suggest an awareness of need for weak formality, 

but only in a few cases do we find requests for the stronger, explicit formality. 

2.3 Analysis and Discussion 

From the comments in these reports, we wish to assess in what ways notations are succeeding or 

failing to f ulf il the roles allotted to them, in order to identify where research is needed. To help in 

the assessment, this section analyses and summarizes the issues and difficulties that have been 

noted, and considers their causes. The discussion concludes with an evaluation of the state of 

affairs and some suggestions for a programme of work in this area.. 

2.3.1 Analysis of Notational Issues 

The reports of the previous section are mostly situated in the professional context of software 
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engineering, and cannot be regarded as grounded in empirical objectivity. Because of this, an 

analysis of the opinions presented tends to take on an ethnographic flavour. Rather than taking at 

face value the views found, we hope to bring out the issues that require deeper investigation. 

Considering the force of the views surveyed, the difficulties and their causes, we arrive at the 

position that formalization is a necessary step in improving the design of notations. 

2.3.1.1 The Need for Visible Formality 

The first issue to notice is that of increasing formality in the use of language and notation. If we 

follow the historical sequence from elementary mathematical logic to computer-aided software 

engineering, we find a trend towards greater dgour and formality, associated with widespread use, 

mechanisation and increasing complexity of problems tackled. This has brought about a conflicting 

need to communicate widely Mld technically. Standard diagrams are desired for communication 

with both end-users and developers, while the less accessible notations of mathematical formulae 

are selected to provide a source of rigour and accuracy, through deductive method. 

Though both coded programs and supporting proofs are therefore hidden from general view, the 

unambiguous specifications of requirements and description of developed solutions must 

somehow be made appropriately visible to all participants. Thus Cohen et at (1989) stress the 

importance of differing roles of languages in the design process and the need to understand 

relationships among the varied descriptions of systems. In the views collated below, we see that 

mathematical and computational support are called for in order to manage these relationships. 

2.3.1.2 Tabulated Views 

We can analyse many of the views into claims, wishes, problems and fears about language 

needed for design representations. In this analysis, comments on language and notation are 

extracted from the reported views and organized into four tables. The specific role taken by the 

representing language is mostly filtered out, in order to highlight general Issues. To begin with, we 

find references to the advantages and disadvantages of natural language (in the form of text). 

For natural language: - 
Claims Problems 

better persuasive power and Incomplete, Imprecise, overspecific 
freedom of expression ambiguities are caused (twice) 

I I less easily manipulated 
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Replacement of informal writing by formal textual language carries a different set of concerns. It 

raises a worry about communications, and a desire for translation. 

For text / formula: - 
Claims Wishes Fears 

can transform one explained through formulae in axiomatic verification may not be friendly. 
representation 
into another 

formally corresponding 
natural language exposing untrained users to unusual symbols and jargon 

There are a number of general views about notation, which point to the conflict of needs: for 

simple expression of technically complex subjects. Here the worry is about precision and 

comprehension, with mathematics and logic needed for support. 

General concerns: - 
Wishes Problems 

must have primitives and constructors to express complexity is the main barrier to understanding 
complex models Specifying requires the full range of concepts 
separates conceptual from concrete and notations of mathematics 

precise, unambiguous, intemally consistent, sufficiently those resulting from formalisms, cause a 
complete, not over constrained psychological barrier to end-users 
understandable and modifiable 
integrated tools for synthesis and analysis 

allow logical refinement into submodules 

automatic verification; 
formal manipulation for verification and testing 

with semantics, calculi and proof rules; knowledge representations lack formal 
precise mathematical semantics, Inference rules semantics and standard terminology 

ability to transforrn between styles/ notations; programming notation diversity results mainly 
maintain notationally distinct versions of a specification from personal needs and interests 

a hybrid of graphical and formal notation 

abstraction, hierarchy, modularity 

The latter two wishes are for an integration of diagrams and formulae, with structuring facilities 

that are found in natural language narrative. Diagrams on their own only partially solve the 

concerns; contradictory views are found on their efficacy, reflecting varied success over the 

difficulty of dealing with complexity. 
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For diagrams: - 
Claims Wishes Problems 

a remedy for poor users learn to think about no evidence of ease and efficiency in use 
communication systems hard to understand 
more comprehensible 

over-complexity 
users can draw and 
argue about 

inappropriate styles 

inability to express requirements 

can be read selectively automatic layout Large programs or data not easily 

user can focus on overall abstraction, hide detail 
displayed 

structure 
modular, hierarchical. 

hard to edit 

2D helps express lack of abstraction mechanisms (twice) 
hierarchy and parallelism 

cumbersome for sequential actions 

may be converted to rigorous, methodical rigorous diagrams harder to comprehend 
equations formality proAded in 

for non-professionals 

mathematical and automated lack rigour 
support 

use of pictures inhibits the use of 
generate code from diagrams mathematics 

In summary, although graphical notations are held out as an aid to clear thinking and a better 

means of communication, the concern about rigour brings out a need for formalization. The 

rigorous diagramming methods adopted in some CASE tools may fail to be communicative, 

however, and are not as compact as the formulaic text which skilled users still value - even if 

rules for formal reasoning are not known explicitly. 

Researchers in Visual Programming for example now consider it unhelpful to make a blanket 

comparison as to which is best, text or graphics, since the two modes are suited to differing 

purposes. We also find no clear justification for a theoretical separation between modes, given 

the visual quality of text, and the fact that they are in practice mixed together. The evidence noted 

in (§2.1.2) suggests rather that we view notation comprehension as a collaboration between two 

specialized cognitive abilities - distinguished as linguistic and spatial (amongst others). 

2.3.1.3 Causes of Difficulty 

The above analysis brings to light several points of difficulty. It is seen that notations must cope 

with a wide range of kinds of system, and express different aspects of behaviour. Because they 

must be used in different ways by different participants to serve different purposes, we find many 

conflicting features and styles of expression. Design of notation is difficult, and requires 

development of both mathematical logic and pictorial metaphors. In order to cope with the 

complexity of large software systems, notations become abstract and hence hard to reason with. 

Systems can be described using mathematical or computational language, but this kind of 
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formality reaches only a small audience. 

What can be done? In order to reconcile the conflict between differing needs of participants in 

software development, computational support will be needed for all styles of notation (formulae, 

text, diagram). An explicit means of defining notational semiosis could offer users a more 

adaptable access to varieties of notation which better suit their cognitive abilities and prior 

knowledge. If we wish to have an objective test of notation adequacy, then an analysis of 

cognition is surely important, though it is not a prerequisite for formalization of functional structure. 

The difficulties noted go against the view that graphical notations should only be used informally - 

for explanation to users or for illustration in the development task. If instead we could supply a 

logical basis and computer support for notations, we could make possible a more flexible style of 

expression in standard notations, thus aiding both human reasoning and mechanical calculation. 

By formalizing, diagrams could be given precise meaning, to enable accurate communication with 

users, but without prohibiting the use of informal variations and annotations. Tasks which insist 

upon rigour may be made easier to grasp by the use of computer-aided manipulation of diagrams, 

made possible by formalization. 

2.3.2 Conclusions 

To round off the discussion, the weaknesses identified in the survey are summarized, and seen to 

result from a lack of support for notation design. It is argued that changing circumstances 

necessitate continuous development and invention of notations. In view of these considerations, 

possible directions for useful research are suggested. 

2.3.2.1 Weaknesses and Concerns 

The survey reveals that there is a lack of serious studies of notation, and little general theory 

which might support empirical investigation. Scientific observation of usage and study of cognitive 

aspects has lagged behind practical work on language design. Recognition of the need for 

rigorous semantic definitions has been belated, when It is acknowledged at all. 

There are reports of practical assessments of particular languages, and of requirements for 

notations fulfilling some role in the software lifecycle, but these references make little separation 

between notation and method. They suggest that the main difficulty with notation lies in 
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adaptation to the preferred styles of users or to the range of problems to which they are applied. 

Expressive principles uniform across different notations have not been established, which makes it 

hard to extend syntax and semantics when changes are called for. 

From the reports received we learn that users and designers of notation wish to avoid ambiguity 

and vagueness of meaning. As well as precision, there are practical concerns about training 

needs, effectiveness and compatibility with methods. Though there is a consensus on need for 

simplicity, accessibility, familiarity and expressiveness, there are no agreed principles for 

evaluating designs in these terms. 

2.3.2.2The Need for Notation Design 

Why is the designing of notation a cause for concern? What is its importance? 

We observe that notations arise to fill people's need to express and share ideas about technical 

problems; they support storage, communication and re-use of ideas, and are important as an aid 

to formal and Informal reasoning and calculation. Within software engineering, no tations provide 

means of thinking about a wide class of problems. Despite this, choices made in notation design 

have not been justified theoretically or empirically. The pattern has been for individual 

practitioners or groups of researchers to propose notational innovations and build languages based 

on them in an ad hoc manner. The chosen techniques have been assessed informally by 

popularity and usage of the languages. 

The pertinent question is not to decide between formulae and graphics, mathematics and intuition; 

it is how best to combine effective pictorial and linguistic metaphors within a formal basis - even if 

a notation is to be used informally. In computing there is no fully established "universal calculusm 

(as desired by Leibniz for mathematics) but there may be some hope for a universal thread 

connecting the known notational techniques. 

Notations are not only a means of talking to other members of the profession. Unlike the situation 

in mathematics, software engineering notation must sometimes be effective In communicating 

with non-professionals. In the interests of safety and effectiveness, we would wish to design 

notations that can express complex systems accurately in forms helpful to the understanding of 

the various participants In computer system development. It would surely be unwise to develop a 

software system so complex that it was humanly impossible to describe. New notation can be 
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powerful when expressing what was formerly too difficult. Notation design is then not just about 

convenience, it Is about understanding the subject domain. 

2.3.2.3 Pressure for Change 

Why should there be a need for design at this time? We can point to several factors. Firstly, 

visual languages are under development in many areas of application, aimed at many different 

end-users. The number of alternative notations and variants which exist, the lack of standards and 

tools, the arguments about comparative merits, all indicate that notations will continue to change 

and develop with increasing use. There is need for flexibility and adaptability in work with 

notations. 

Secondly, from the cognitive approaches in (§2.1.2) it appears that for a diagram to be effective, 

its visual structure must be linked by analogy to aspects of its subject domain. It follows that new 

understandings of subject areas, growing out of improved metaphors or better logical 

characterizations, bring about semantic change that will require improved notations. 

The third factor is that new theories of software behaviour are certain to arise. A semantics for 

concurrent interaction of communicating systems Is still a matter of debate. Computer systems 

are increasingly complex and frameworks for rigorous project development methods are still being 

sought. We can therefore expect invention of notations of all kinds, in order to cope with the 

resulting difficulties of expression. 

A final reason is that the developing skills and experience of the many users of notation may also 

have an effect on syntax preferences, even when semantics remains relatively stable. 

2.3.2.4 Some Research Avenues 

There are several directions that research could take in order to improve matters. Our 

understanding of the problems would be greatly improved by: - 

0a comprehensive examination of many software engineering notations 

0 an investigation of cognitive properties of diagrams, text and formulae 

0 an empirical study of actual usage of notations in software development 

By such means, from existing examples, we might learn which attributes of notation contribute to 

fitness and success, and in this way establish design principles. Each of these means, however, 
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requires a clearer theoretical foundation than has yet been developed. Therefore we might make: - 

0 an attempt to improve upon current methods of describing notation structure 

0 an attempt to improve upon current tools to process notation 

The difficulty here is that most of the relevant work in these directions is being carried out in 

parallel with research for this thesis. In the next chapter we shall review the diversity of 

approaches to techniques and tools. In any case, the principal research need that has been 

identified in this chapter is for: - 

0 mathematical and computational support for notation design and processing. 

The detailed research agenda chosen for this thesis will be presented at the end of the next 

chapter. 

2.3.2.5 Summary 

We have found in this chapter that the use of notations is bound up with logic and reasoning and 

has a long history, though most theoretical interest in how they work is very recent. Hardware 

design has perhaps more of a technical tradition of notation, crafted from practice with earlier 

electronic devices. In the subsequent historical growth of software development practice, we have 

identified many notational concerns: - 

The primary requirement for programming 'languages' has been addressed in a 

piecemeal fashion, though the problems engendered have lead to an awareness of the 

need to understand linguistic structure and to provide formal semantics. 

Systems analysis has been served in the main by informal diagramming techniques, 

based on no clear formulation of the development process, and lacking any notational 
theory. 

0 Requirements analysis suffers lack of support for precise means to communicate with 

users. 

0 Formal specification and development techniques have adopted much of the style of 

mathematical formulae, with little concern for ease of comprehension. 

Pictorial expression of programs has recently become popular, stimulating 

considerable interest in the usefulness of diagrams, but able to claim no definite 

empirical advantage. 

0 End-users of systems have their own notational needs, which have not been 

systematically studied. 
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An argument has been made for formalizing the description of notation in all its different uses, 

based on the need for computer-assistance, and the specific need for precision in many stages of 

software development. It has been proposed that the activity of notation design must be 

supported if the practice of software development is to be flexible enough to keep pace with 

changes in power and areas of application of its technologies. 

We are led to infer that an uniform theory of notation structure is needed before it will be possible 

to offer versatile support. Without appropriate theory and science, no clear design principles can 

be relied upon to recognize and resolve problems. Only theory will allow us to frame the right 

questions about choice of modality and language for the many aspects of the software 

development process. 
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Review of Notation Support in Software Engineering 

Abstract 

Here we find a review of techniques for definition of syntax and tools for developing notation 

editors. A compilation of reported problems and solutions leads to a statement of the research 

agenda for the thesis. 

First the review looks at theoretical techniques for formalizing syntax and semantics of languages, 

using mathematical or computational approaches, that could also apply to notational description. 

It then looks at formalisms that attempt to specify notations and visual language. The review 

shows that only during the later phase of this research have reasonably general methods of 

definition become available. These methods are based on a variety of theoretical principles, 

which are hard to compare or combine; the main trends are to apply specification logics, spatial 

theories, or graph grammars. Semantics is treated operationally, though algebraic methods are 

used to explain visual analogy. Grammar-based approaches are common, but graphs cause 

difficulties that are not found in string or term rewriting, and grammars must be augmented with 

spatial constraints. Some attempts are reported to place grammars within a general hierarchy 

according to expressive power. 

The review reports on the capabilities and limitations of the available aids for notation-processing. 

Reports of generic editors show that the task of developing an editor for a notation can be speeded 

by methods of graphical and syntactic specification such as graph-grammars. Theory has not, 

however, kept up with practice, and it is not clear how a designer of notations could reason about 

the syntax that is built up. Only the simpler grammars can easily be parsed, and it is not known 

how widely these can apply. 

These methods leave us with a jigsaw puzzle, whose pieces can yield only a patchy picture of 

several related scenes. The proposed way forward is to treat a notation as a sign-system; this 

function, rather than pictorial appearance or semantics, should determine its formal structure. The 

aim of this work is then to establish an uniform descriptive theory that can offer practical help with 

design and processing of notation. 
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Review of Notation Support in Software Engineering 

This chapter reviews research on compute r-assistance for the uses of graphical notation in system 

specification and development. The review selects contributions that may resolve the problems 

observed in the previous chapter (§2.3), where we have seen that notation has very little in the 

way of design science. We therefore hope to find standard techniques for formal description and 

tools that can cope with the complexity and diversity of notational needs, easily allowing 

combination of diagrammatic, formulaic and textual expression. 

The review first looks at theoretical techniques, from mathematical and computing fields, whose 

aim is to formalize language and notations. It then considers what is required of tools that aid in 

processing notations, and reports on the capabilities and limitations of those that are available. 

Reports on current research directions strengthen the argument in favour of developing a uniform 

basis for notational design. The consequent discussion of potential and problems in the material 

reviewed leads to a statement of the research agenda for the thesis. 

3.1 Formal Techniques for Describing Notations 

The purpose of this section is to review all the important published approaches to the problem of 

defining the structure of graphical notations. 

3.1.0.1 Inadequate Methods of Description 

The material in the previous chapter indicates that there is no tradition of rigorous description. 

instead, one of the more careful approaches is to relate graphical syntax directly to a textual 

language in an informal way, and rely on a formal syntax for the text - as is done in the MASCOT 

handbook (1987), using Wirth syntax diagrams and Backus Naur form (BNF). Inevitably the 

textual syntax does not cover the many connectivity constraints observed in the System Diagrams, 

since they translate to restrictions on naming of variables in the same syntactic category, that are 

generally not expressible in BNF. Nor does this method make formal reference to the spatial 

nature of the notation. 

Those authors who adopt formal or mathematical techniques, also mostly refer to syntax of 
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diagrams entirely informally. For example, Tse & Pong (1989) prescribe a formalization of Data 

Flow Diagrams via the algebra of Petri nets - which necessitates extending both of the notations 

they treat. They insist on graphical expression and formal method, with clear use of mathematics 

for semantics, but they omit to describe how the diagram syntax is to be formally manipulated. 

Less formal still, are the presentations usual in standard texts on software development such as 

(Jackson 1983; Martin & McClure 1985). Diagrams are described directly in terms of the concepts 

represented, with the aid of natural language and examples. 

In practice, for existing notations, we thus find the formality required is often lacking. * Without this, 

tools must employ a variety of programming languages to embody syntax, as we see later 

(§3.3.2). The infrequency of proper formal techniques has been criticized by other authors. 

Rekers & SchOrr (1995b) find it regrettable that new users can only guess the syntax from 

provided examples. They believe it would be very beneficial to agree upon a single syntax 

definition formalism - as long as it is highly expressive, unambiguous, with specifications that are 

easy to read and develop. 

3.1.0.2 Theoretical Remedies 

Since the methods of description in textbooks are not found to suffice as a basis for notation 

processing, we turn to theoretical studies of this problem. Largely the recent theoretical 

approaches have taken their cue from various means of formally defining how verbal languages 

work. We therefore first take note of the background work on study of grammar and semantics of 

language generally; the problems and methods of structural linguistic description are considered 

relevant to an understanding of the similarities and differences between 'natural' language and the 

more artificial world of notation. These methods are extended to the case of graphical notation 

with the help of a notion of 'graph', which is intermediate between linguistic and geometric 

structure. In the next section (§3.2), we find that this kind of work forms the basis of many 

reported methods for defining notational structure. 

3.1 .1 Formalizing Language Syntax 

We begin with an outline of the standard theory of formal grammars, in preparation for 

investigating below how theory has been generalized to graphical notations. 
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3.1.1.1 Formal Textual Languages and Generative Grammars. 

In his seminal work on the problems of natural language description, Noam Chomsky studied 

various mathematical idealizations of language, which feature a strict separation between 

syntactic and semantic aspects of structure. These formalizations have proved to be of value in 

their own right, forming the basis of design for artificial languages, notably for programming. 

A Formal Language is defined as a set of sequences ('strings') of symbols from a finite set, called its 

alphabet. Its syntax gives a way of specifying which sequences belong to the set, and may be presented 
by a generative grammar. 

In generative grammars, expressions are constructed by applying rewtite-rules (also known as 

productions). The adequacy of formal grammars is assessed in terms of how large or complex a 

class of languages can be specified by a certain kind of grammar. 

Different kinds of grammar give rise to four major families of languages generated, which form the 

NChomsky hierarchy" (van Leeuwen 1990 p109) from type 0 to type 3. Each language L of the 

most general family (type 0: recursively enumerable) can be generated by applying a finite set 

G(L) of literal substring replacement (rewriting) rules. The pattern of replacements culminating in 

a given expression is called a derivation of the expression (in the grammar G); before the 

expression can be interpreted, this valid derivation structure must be discovered by a process 

called Parsing, which is thus a first stage to any semantic processing of the language. The 

importance of the types of grammar is then evident, for they determine the complexity of 

automatic parsing; tyl2e 0 languages are in general impossible to parse, and are therefore too 

complex for practical languages. 

The preferred choice for artificial programming languages is context-free grammars (CFG) (van 

Leeuwen 1990 ch2), which define any tMe-2 language, and are commonly written in BNF. A CFG 

grammar consists of rules for rewriting single meta-symbols ('nonterminals', which stand for phrase 

types, and augment the language's alphabet). The generative process starts with a nonterminal 

(typically 'S' or '<sentence>') and is completed when the rewritten string contains only symbols 

from the 'terminal' alphabet. Parsing discovers a hierarchical decomposition of expression 

structure, a derivation that can be drawn as a labelled oriented tree, whose leaves constitute the 

sentence. Syntax rules that constrain the type of an item, however, often require a language of 

type 1, and context-sensitive grammars are needed (van Leeuwen 1990 p372), which set 
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conditions on when a symbol may be rewritten. 

3.1.1.2 Syntax for Natural and Artificial Language 

Although useful, these notions of grammar cannot capture the subtlety of structure found in 

Natural language, either in getting the 'right set of sentences, or the 'right' derivation structure. 

Chomsky (1965) proposed to remedy this by means of transformations on the derivation tree, as a 

second phase of production. An example from English is the formation of a passive sentence 

from a corresponding active one. Unfortunately such Transformational Grammars can in principle 

generate any recursively enumerable language, which is not justified empirically (Skousen 1975). 

The power of such formal approaches suggests that general syntactic structure is a complex 

matter. This is apparent in the various interesting formalizations proposed; for instance, Arc Pair 

Grammar of Johnson & Postal (11980), involves an elaborate graphical notation that is backed up 

by predicate logic. According to Carpenter (1995b) however, no formalism has even come close 

to providing a universal system in which all and only natural language grammars can be 

expressed. Nor have grammars for particular languages come close to covering a naturally 

occurring range of data in a theoretically clean fashion. 

Some of this difficulty in defining the 'right' syntax arises from attempting to separate syntax from 

semantics, or rather from trying to include too many semantic factors. According to Chomsky 

(1965), "any attempt to delimit the boundary [between syntax and semantics] must be tentative". 

Hintikka (1979) also disputes whether syntax can be completely independent of semantics. 

Montague (in Thomason 1974 p210) states that the construction of syntax and semantics must 

Rproceed hand in hand", as in syntax there are too many irrelevant ways to generate sentences. 

3.1.1.3 Design of Grammar 

Chomsky (1965 p62) advises his readers to seek the simplest theory of grammar which is 

empirically adequate. Since our requirements, in formalizing notations, are more limited than 

those of natural language, we should likewise avoid adopting too complex a view of language from 

its natural examples. Johnson & Postal (1980) maintain that such subtleties are unneeded in 

mathematical language where form directly relates to its logic. Yet their own notation for predicate 

52 



3: Review of Notation Support 

logic demonstrates counter-examples' to this statement. Whereas Montague (In Thomason 1974 

ch6 and p216) disputed that any important theoretical difference exists between formal and natural 

languages, he also held that if a language is to avoid ambiguity, or is to fit within a first order 

framework, then its theory of descriptions should not try to mirror English closely, but be influenced 

by simplicity. 

It has been the practice in programming languages to use grammars which are simple to parse, 

but retain some syntactic flexibility. This indicates the balance that must be struck between 

simplicity and flexibility in any kind of notation; it calls for a sufficiently general theory of grammar, 

but one that still allows efficient and unambiguous interpretation of expressions. There is 

continuing interest in making it easier for users to engage with the newer languages, which may be 

helped by a more sophisticated model of grammatical structure than has been customary in formal 

textual notation. 

3.1.2 Formalizing Semantics 

We next look briefly at studies of formal semantics of natural and artificial language (following 

Richard Montague and others) that use symbolic logic and model theory, that are equally available 

for treating diagram semantics. In the reports, their authors take various approaches to the 

analysis of meaning. The reason for this variety of views on semantics may relate to the different 

operations that are required on linguistic expressions - from type-checking to translation, logical 

deduction and computation. An appreciation of the context of use of expressions is properly the 

concern of pragmatics. 

There are evidently two distinct aspects to semantics as it affects notation processing. (1) The 

formulation of rules of acceptability: whereby an expression may be rejected if in all feasible 

situations it would appear anomalous, and (2) a formal interpretation of the meaning of 

expressions: in particular, their denotation. 

litiscommontowrite a, b<N afthough there Is no such object as 'a, b"; It Is certainly not the ordered pair (a, b). 

Johnson & Postal themselves Innovate the notation of first order logic by writing P(x&y) for Px&Py, afamillardevicein 

natural language; but no such object x&y logically has the property P. 

other examples of a subtle connection between syntax and semantics can be found In differential calculus; the sign dy/dx Is 

syntactically but not literally a fraction, and it also hides the functional dependency of y on x. which easily leads to ambiguity. 
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In regard to (1) we have observed that in linguistics a clear boundary cannot necessarily be drawn 

between syntactic rules and semantic rules. For formal languages, there is however a substantial 

difference between the rule-systems used for grammars and those used to determine logical 

validity, in proving semantic properties. 

In (2) several points of view can be found. Frege distinguished the denotation from the sense of 

an expression, as a collection of instructions (as discussed in Girard et al, 1989, ch. 1); the 

denotation is a kind of ideal result of these instructions. This is a distinction that Montague found 

useful (only) in certain artificial languages (Thomason 1974, p217). Galton (1988) suggests that if 

denotations are themselves notated, formal semantics may be reduced to a case of translation. 

Joseph Goguen remarks that semantics is a quotient of syntax; i. e. the expressions of a language 

divide into equivalence classes of those having the same meaning. There is also the formalist 

philosophy that does not acknowledge the need for semantics, but expects meaning to reside 

entirely in formal rules for manipulating expressions -a view expounded by Hilbert2. 

Accordingly, we note here some common systems of symbolic logic, followed by denotational 

methods, and then the semantic grammars that have found favour in computational linguistics, 

ending with pragmatics in the form of Situation Theory. 

3.1.2.1 Symbolic Logic 

Logical systems generally can be viewed as ways of formalizing semantics, since they provide 

formal languages designed to capture the meaning of natural language sentences. Below are 

summarized those standard systems that are most commonly referred to in the reports in the next 

section (§3.2): Predicate Logic, Algebra, Higher-Order Logic, Set Theory, and Category Theory. 

Predicate Logic allows for a hierarchy of entities: individuals, first-order predicates (which denote 

relations on individuals), second-order predicates (for relations on first-order predicates), and so 

on. Individuals and predicates may be variables, and expressions involving variables may be 

bound by the application of the quantifiers 'for all' and 'for some'. First-order logic with equality 

and functions (FOL) is widely used as a descriptive tool in mathematics; it permits no higher-order 

predicates, but is enriched with a special equality predicate and a set of function symbols. The 

use of second-order logics is not uncommon, but third-order systems are seldom mentioned. 

quoted by GrIes In (Dijkstra 1990 p229-236). 
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Modal logics enhance this framework with operators that express notions such as possibility and 

necessity. 

There are doubts that FOL is appropriate for natural language structures. Israel & Brachman 

(1984) criticize reliance on FOL: "no significant fragment of any natural language has ever been 

semantically analyzed by way of a systematic translation into a standard first-order language". 

They favour Montague's (1974) approach, and see quantification as a particular source of 

difficulty. Hintikka's (1979) reflections doubt the usefulness of quantifiers in first-order semantics. 

His game theoretic approach to semantics of FOL and natural language (in Saarinen 1979) 

reveals that sentences with nested quantifiers are hard to interpret because they involve planning 

several moves ahead in a game. Despite the resulting difficulty in feasible computation with FOL, 

to a certain extent its theories can be converted into logic programs - PROLOG is based on Horn 

Clause Logic, a restriction of FOL that avoids explicit quantifiers. 

An Algebra is a language of equations between terms that are constructed from function symbols 

and constants. Algebraic terms have tree-like structure and use equational logic which is easy to 

manipulate. As a logical language this is much less expressive than FOL, but has the advantage 

that it can be used as an executable specification language (e. g. 013,13 - Goguen & Meseguer 

1989). 

Higher-Order Logic (Combinatory Logic and Lambda Calculus) can be regarded as a restricted 

form of equational logic, that has long been used as a meta-language for general computation. It 

is based on functions and functional abstraction, and gives rise to the Functional Programming 

paradigm. Israel and Brachman (1984) consider lambda abstraction3 to be an essential technique 

in semantics. 

Set Theory accommodates all these forms of expression. It has been the foundational language of 

mathematics this century, and is a clear candidate for formalizing general systems, as applied in 

specification languages such as Z and VDM. Its relationship with FOL is circular: it is normally 

3Abstracton mechanisms are widely used to avoid (or at least hide) logical complexity. In computational terms, functional 

abstraction works by notating a game-winning strategy In place of mere assertion of winnability. 

Lambda abstraction enables compound predicates to be formed. For example, Pa & 0a could be written Ra 

where R=(Ix. Px&Clx). A similar construction exists in Set Notation: 

ae PA ar= Q can become a r: R, where Rz (xI x rE PAX6 Q); Le. R=P r-i 0. 
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presented as a theory in FOL, based on the 'membership' predicate (e); the standard semantics 

for FOL is based (in turn) within set theory. 

Category Theory (to be explored in Chapter 5) is an abstract foundational form of logic that 

provides a semantic approach to formal theories as categories, avoiding much of the tedious 

reasoning based on their internal syntax. One application is in studying algebraic theories; another 

is Topos Theory, which provides computational generalizations of set theory and a semantics for 

Lambda Calculus. 

3.1.2.2 Denotationall Semantics 

A denotational approach to semantics interprets expressions into mathematical objects in a 

domain; techniques for this have been pioneered for programming languages (Milner & Strachey 

1976, Gordon 1979). These domains may be complicated structures - e. g. directed-complete 

partial orders (dcpo) (Vickers 1989 ch1O) coherence spaces (Girard et aL 1989 ch8) and Chu 

Spaces (Pratt 1995) - defined to resolve foundational issues in computing. This kind of 

interpretation is not necessarily a translation, because mathematical objects may be specified by 

their external behaviour, not how they are represented - as advocated in Wells (1994). It seems 

that in all these cases there is a postulated Nspace" that these denotations, or abstract classes of 

manipulations, belong to, and semantic analysis determines the place of each expression in this 

space. 

A paper by Caswell (1997) compares three formalisms for programming language semantics. 

Denotational Semantics is shown to be equivalent to Action Semantics (Watt 1991) and Structural 

Operational Semantics (Plotkin 1981), for a particular target language. Caswell notes four uses of 

formal semantics: for language description, for checking compiler and interpreter correctness, for 

user reference manuals, and for reasoning about programs. 

3.1.2.3 Pragmatics and Categorial Grammars 

The idea that semantic aspects of language can be understood by logical analysis of its use in the 

intended context, i. e. pragmatics, was exploited by Montague (Thomason 1974). His work gave 

rise to unification grammars (Shleber 1986; Goguen 1988), which were developed in 

computational linguistics to interpret natural language into logic - the unification procedure is 

essentially a pattern-matching on algebraic terms, also used for example in execution of PROLOG 
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programs, and for function definitions in Functional Programming languages (Bird & Wadler 1988). 

Development of these methods is currently an active area of research, with recent work on feature 

structures (Pollard & Sag 1994), and Categorial Grammar (Moortgat 1988, Wood 1993, Morrill 

1994, Carpenter 1996), which derives from an elegant semantic calculus proposed by Lambek 

(1958). The intention (Carpenter 1995) is to create a general notion of grammar as constraints -a 

computational and logical system that integrates conditional constraints from all levels, 

phonological to pragmatic. Although these systems are idealizations of human language 

processing, he claims they have some affinity with psychological observations. 

Glyn Morrill (1993) approaches language as an association between prosodic and semantic 

properties, linkings of form and meaning, where form is a bundle of properties; this derives from 

the semiotic tradition of Saussure, Carnap, Tarski, and Montague. The resulting linguistic 

programme attempts to specify language models for fragments of natural language. He describes 

the intuitions behind Categorial Grammar, which could provide a high-level logic of signs, a 

general framework allowing new fragments to be formalized and integrated. 

Morrill reflects that empirical concerns have caused a trend towards 'lexicalism': the encoding of 

idiosyncratic information in the lexicon as the best way to formulate generalizations. Categorial 

Grammar has no syntactic component; it does not need to manipulate feature structures: just 

projection of lexical properties according to the interpretation of categorial operators. The syntax 

here is not in the data, but in the theory relating prosodics and semantics; in fact for categorial 

logic, it is the proof-theoretic meta-theory for the model theory or logic of the categorial operators. 

3.1.2.4 Situations 

An analysis of the pragmatics of language is provided by Situation Theory (Barwise & Perry 1981). 

Following this approach, Devlin (1991) has explored the possibility of basing a full theory of 

communicative acts on an abstract notions of situation and infons (items of information). 

Barwise & Etchemendy (1988) consider reasoning to be the manipulation not of symbols, but of 

multimodal information. They argue for accommodating the complex features of real reasoning 

tasks (incomplete information, uncertain relevance, unknown conclusion), for which purpose they 

have developed an integrated approach to human reasoning with text and graphics combined, that 

directly addresses the situation in which an expression is 'uttered'. This is demonstrated in their 
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system (Hyperproof Barwise & Etchemendy 1994), which is designed to help students learn to 

reason using both diagrams and the language of FOL. Hyperproof embodies a mathematical 

framework that considers models and propositions together; it formally describes both the syntactic 

and semantic domains in the same symbolism. It employs a situational calculus that has two 

binary predicates: a syntactic relation that a situation supports an infon, and a semantic relation 

that a situation carries an infon. 

The topic of reasoning with text and diagrams is researched further in (Barwise 1993, Barwise & 

Hammer 1994). 

3.1.3 Graphs and Graph Grammars 

We next observe how graph rewriting has provided an important group of techniques, through a 

generalization of methods well known in linguistics. 

3.1.3.1 Graphs, Attributes and Constraints 

Graphs are a family of mathematical combinatoric structures, i. e. a graph is a configuration of 

objects such as 'nodes' and 'edges' (or relations). The family contains digraphs, webs, hypergraphs 

and many other types, though terminology for these is not fully standard. Graphs can be seen as a 

generalization of the notion of string that underlies formal textual languages. This leads to a 

common way of modelling a graphical notation as a formal graph language. a set of expressions 

that are instances of a specific type of graph. 

For graph languages, Courcelle (1987a, b; 1990,1994,1996) has made extensive and detailed 

studies of specification by first- and (monadic) second-order logical constraint, and algebraic graph 

expressions (1987a, 1996), though his focus is not on graphical notation. From our point of view, 

his approach via Universal Algebra (Courcelle 1987a, 1996) has some relevance to editing of 

graphs, since it describes the process of generation by applying operations. 

In operational treatments, graphs are often augmented with attfibutes, which amount to linkages 

between objects and value-spaces (e. g. number). Since these spaces are often infinite and highly 

structured, the mathematics involved is no longer confined to combinatorics. Constraints on 

attribute-values must be expressed in some logical language. 

Nagl (1987) describes a software development environment which employs graphs as a meta- 
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notation for all structures, providing a uniform model for all problem areas. Graphs act as 

knowledge bases (one per document), and the graphs for a given class of documents belong to a 

certain type, whose structure reflects the requirements for processing those documents. He uses 

attributed directed graphs with labels oil nodes (to describe the class of item), and edge labels to 

specify the specific relation which holds between two items. Attributes represent values which are 

determined at certain nodes or edges. 

3.1.3.2 Grammars and Rewriting 

Corresponding to textual grammars, graph grammars have been studied extensively since 1970, 

and several international workshops have been held (Claus et aL 1979; Ehrig et aL 1983,1987, 

1991,1995). SchOrr (1 994a) defines a graph grammar as: 

Na system of productions that generates [from a start graph] a certain language of terminal graphs 

and produces nonterminal graphs as intermediate results. A graph rewriting system is a set of rules 
that transforms one instance of a given class of graphs into another instance of the same class., 

As with textual grammars, generative graph grammars provide support for syntax-directed editing 

operations in the form of rewrite rules. They are able to express both context-free and context- 

sensitive grammatical constra ints. 

Graph rewriting generalizes both string rewriting and algebraic term-rewriting. Often, studies of 

rewriting are restricted to one particular graph type; in order to accommodate greater generality, 

many authors have resorted to the powerfully abstract language of Category Theory. In (Claus et 

aL 1979) and the tutorial (Ehrig, Korff & Lowe 1991), Ehrig formulates rewrite rules elegantly and 

generally, as double pushouts (DPO) in any suitable category of expressions (as will be described 

in Chapter 6). Most notations of interest fit well with Ehrig's notion, as do specifications of abstract 

data-types (Ehrich & Lohberger 1979). 

Carradini & Montanari (1991) show how a hypergraph grammar of this kind can be converted into 

a term-rewriting system. Richard Banach (1996) has formally characterised graph grammars by 

forming categories whose morphisms are DPO rewrifte-sequences. Bauderon (1995,1996) is 

researching a general pullback method that encompasses DPO and other approaches, by 

describing parallel application of rewriting rules -a deterministic graph grammar can be 

described by a single rule that he calls a'P-grammae. 
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Implementation of rules entails a pattern-matching search, of a more general nature than the 

unification algorithms used in term-rewriting - and often much less efficient. Rules may be 

applied in parallel if they do not interfere, since their effects are local. The rewriting paradigm is 

also important as a candidate for modelling true concurrency in systems, and can be seen as a 

generalization of Petri-Nets (Corradini 1995). 

The literature describes applications of graph grammars to software specification (Nagl et at 1983; 

Engels et at 1987), development (Nagl 1987), programming-language semantics (Pratt 1983) and 

diagram editing (G6ttler 1983,1987), for which practical prototype tools have been constructed for 

specific types of graph. 

3.1.3.3 Attribute Grammars 

Attribute Grammars (Deransart et aL 1988) are one approach to interpretation of formal languages 

- in particular those generated by context-free grammars, as first used by (Knuth 1968). These 

generalise to graph languages (G6ttler 1983); the technique attaches values to nodes, and rewrite 

rules (attributed graph productions) specify how these values are to be updated, by means of 

formulas describing the evaluation rules for the attributes of its nodes. Thus the parsing operation 

is combined with computing the denotation of an expression. Attributes can also express layout 

features (G6ttler 1987). 

3.1.3.4 Computation by Rewriting Systems 

Rewriting systems of any kind are known to provide general computing paradigms. In (van 

Leeuwen 1990 ch3), string rewrite rules are shown to give an effective system of (Church-Turing) 

computation. More generally, rewriting of terms and graphs has found application in design of 

practical computational languages. 

A Term Rewrite System (TRS) is a set of rules which replace subtrees in tree-structured algebraic 

terms (Jouannaud 1985; Lescanne 1987; Dershowitz 1989; van Leeuwen 1990 ch6). Term 

rewriting has been studied in connexion with equational logic programming, for example OBJ. 

Peyton Jones (1987) uses a graph rewriting technique, "graph reduction", for implementing pure 

functional programming languages. Graph Rewriting Systems (GRS) generally are the subject of 
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research by the European collaborative reseach project GETGRATS4 (General Theory of Graph 

Transformation Systems), which aims to compare, combine and unify the various approaches to 

graph rewriting, and classify their expressive power. The related projects PROGRES (Scharr 

1990, SchOrr et aL 1995) and GRAS (Kiesel et al: 1995) successfully employ GRS as a core 

technique in a full software engineering support environment, as reviewed below (§3.3.3). 

3.2 Formalisms for Graphic Notations 

Having noted the basic theoretical approaches that we would expect to find applied to notational 

description, we now investigate some specific attempts at formalization. 

Descriptive methods have mainly been devised for the purpose of providing a foundation for 

diagram processing tools. For instance, G6ttler (11987) addresses the task as analogous to that of 

building a compiler for a new programming language, where standard definitions of syntax and 

operational semantics are necessary inputs to a compiler generating tool. For Rekers & SchOrr 

(1995b), syntax definition serves to specify syntax-directed editing, can generate a graphical 

parser, and is a necessary precondition for semantics definition. Minas & Viehstaedt (1995) hold 

that diagram notations should be described by a formal model, to support an editor that can guide 

users in syntactic correctness of diagrams. 

A variety of formalisms for defining graphical syntax of notations are reported in the literature; they 

may be divided into two main groups. The first group is based on systems of logic, and comprises 

specification languages, methods that focus on spatial properties, and algebraic semantics. The 

second group employs techniques of graph rewiffing to define grammars and operations on 

notational structures. 

Each subsection below ends by considering to what extent the reported formalizing methods are 

adequate, as regards our concerns here. We remark that most of these descriptive approaches 

have been developed in parallel with research for this thesis. 

4GETGRATS Is a research network funded by the European Community. The coordinator Is Andrea Corradini at the 

Dipartimento di Informatica, Unlversit& di Pisa, Italy. 
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3.2.1 Specification Languages for Notations 

We first review logical specification methods. Specification languages adapt more general logical 

systems to tfie specific problem of diagram definition. We find four textual languages (GDL, PSN, 

VCT and VODL) and a single example of a pictorial language for executable specification, which 

are described here. 

3.2.1.1 Graph Definition Language 

Expressions in GDL (Welland et al. 1990) are used by a tool to instantiate an appropriate diagram 

editor and checker. GDL is a textual language that includes hypergraph and enclosure notions, 

and first-order logic constraints. Despite this power, it in fact restricts the class of notations that 

can be defined. Its designers have avoided allowing a hierarchy of diagrams, which was felt to be 

outside notational syntax. They had to extend the language to cope with some of the notations 

they tried to specify. 

3.2.1.2 Picture Specification Notation 

PSN is a meta-language developed for formal specification of graphical notation (Hekmatpour & 

Woodman 1987), as a medium for driving graphics editors. It is a rich language admitting first- 

order logic formulae, set-theoretic notation, function definition and a query notation for binary 

relations, in a mathematical style. 

It is thus broader than GDL in expressive power, and it enables specification of a refinement 

hierarchy of diagrams, regarded as an important feature. Its designers report that it succeeds in 

overcoming dificulties previously experienced with grammar formalisms. PSN is supported by a 

LISP-like symbol manipulation system called Kernel (Hekmatpour), coded in V. The use of 

Hekmatpour's system Templa Graphica (1990) has been reported by Nickerson (1995). 

3.2.1.3 Visual Concepts: VCT 

A paper by Serrano & Welland (1997) describes the language VCT, a textual formalism for 

specifying syntax and semantics of diagrammed modelling techniques such data-flow and entity- 

relation - the authors note that software companies choose to tailor such diagrams to their own 

applications. The formalism is aimed at the automatic generation of software design tools, and is 

specific in scope so that its specifications may be concise, clear and readable. Indeed, it is not 

expressive enough to capture spatial inclusion, abstraction and specialization. The language is 
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based on set theory, and uses predicate logic to express semantic constraints. A specification of 

Data-flow diagrams (DFD), with some simplifications, is given as an example. 

The paper also reviews GDL and PSN; GDL is regarded as too expressive, and PSN does not 

clearly separate geometrical relationships from syntax. 

3.2.11AVisuall Object Definition Language 

More recently, OskOdadi & Dinesh (1995a, (&b)) discuss how to create a visual specification 

formalism and an environment for specifying the syntax and sema6tics of visual languages. They 

describe the language VODL, for use in generating visual editors -a constraint-based, 

declarative picture specification language influenced by (Helm & Marriott 1991) and (Wang 1995). 

The intent is to support only a visual Algebraic Specification approach to programming, however, 

and not diagrams in general. Even so, VODL has a large and complex signature, with many list- 

ordered and polyadic operations. 

VODL describes the visual tokens (lexicals) and spatial relations that comprise 'lexical syntax. 

VODL specifies visual elements (pictures) via units called visual object definitions (vods), built 

from: 

primitive vods (Point, Line, Circle, Text, Polygon; and Collection-of-vocls), 

vod-operations (overlap, difference) that recognize emergent objects, and 

standard graphical operations over all vods (e. g. add a geometric constraint, set an attribute value). 

This approach is extended to create a visual formalism for specifying the syntax and semantics of 

visual languages. The work attempts to extend algebraic specification formalism ASF+SDF 

(Bergstra, Heering & Klint 1989) which is successful for textual languages. The specified lexicals 

are incorporated in the visual syntax definition formalism (VSDF) via a mapping that associates 

syntactic constructs with lexicals (CJskOdadi 1995). The syntax specifies a context-free textual 

language, which is provided with an algebraic semantics in ASF. This has the advantage that 

algebraic specifications are easy to define and comprehend, and can be executed by orienting 

them as rewriting rules. Tools such as compilers, type-checkers, editors can be generated 

automatically. 

A simple context-free notation for set algebra is used to illustrate this. Definitions are stated in a 

textual algebraic syntax, which is specified like a context-free grammar; non-terminals are sorts, 
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rules are functions. The authors observe that their choice of algebraic meta-level leads to an 

underlying tree representation, and that it would be interesting to consider a meta-language that 

handles general graph rewriting. 

3.2.1.5 Picture Logic 

Bernd Meyer (1992) aims to provide visual languages with an executable specification that is itself 

expressed in a visual language - with the long term goal of building visual compiler development 

environments. He believes that declarative specifications, while having a formally defined 

semantics, should display 'an intuitive correspondence between description and object", and be 

flexible enough to support complex diagram languages. 

To achieve this he develops a Picture Logic for reasoning about visual structures which is derived 

from Horn clauses, augmented to specify spatial arrangements. Spatial properties can be 

expressed with abstract example pictures. Picture Logic uses visual terms instead of facts to 

capture the spatial structure of described expressions. 

A picture term is a directed acyclic bipartite graph. A picture language consists of a set of spatial 

object types and a set of relation types. Non-ground terms contain four flavours of variables: 

object, group, background and frame. Group variables are untyped, and can be bound to any 

connected cluster of objects. A term may contain a single background variable and a single frame 

variable. Unification of picture terms is similar to finding the maximal join of conceptual graphs in 

(Sowa 1984). During unification, only those objects are bound to the background that cannot be 

bound to some object or group variable, and only those spatial relations are bound to the frame in 

which objects participate that have been bound to different variables. 

To provide an operational semantics he embeds the logic in standard logic programming by 

implementing a new unification algorithm, but this is non-deterministic and so introduces a new 

level of backtracking. He notes that the inherent non-determinism of picture matching causes 

problems in parsing. For more efficient parsing, less expressive Picture Grammars can be 

derived in the same manner as Definite Clause Grammars in Prolog (Clocksin & Mellish 1987). 

As for textual grammars, regular, context-free and -sensitive classes can be distinguished. 

3.2.1.6 Other Approaches 

General purpose specification languages can clearly be applied to the problem, and some 
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examples are found. Ince & Woodman (1986) have proposed to formalize the graphical aspects 

of development methods by using semantic nets. David Gee (1995) uses Z notation to specify 

syntax of Yourdon data-flow diagrams, Jackson structure diagrams. 

An approach by Helm & Marriott (1991), Constraint Set Grammars, is mentioned above; their 

approach is based upon Constraint Logic Programming. Other Logic-based approaches can be 

found in (Marriott & Meyer 1996; Haarslev 1995), which are described later in this section. 

3.2.1.7Adequacy of Logical Specification Methods 

These reports show considerable disagreement on which notions of syntax or semantics they 

choose to focus upon. The power, spatial concepts and specification notations can also be called 

into question. 

The textual specification languages GDL and PSN are more powerful than is warranted for 

syntactic definition. Both attempt to accommodate a practical range of graphical forms, 

apparently with the result that their logic is powerful enough to express not only syntactic 

constraints but also semantic and stylistic constraints. VCT correctly aims at simplicity, but its 

scope is too restricted for notations in general - even though it employs powerful logical 

languages. 

VODL/VSDF is too restricted by the choice of an algebraic formalism. Picture Logic is interesting 

as a synthesis of grammar and logic-based techniques, but requires something more powerful than 

Prolog programming to formulate a definition. The VODUVSDF approach is interesting, though, 

in that it separates the formalisms for pictorial, syntactic and semantic structures; this is also 

intended in VCT. 

The specification languages intended for defining graphical notations are themselves 

predominantly textual. GDL, PSN, VCT and VODL do not provide a diagrammatic representation 

of their rules. Picture Logic advertises a pictorial form, but this is largely copied from the notation 

being defined, augmented with some abstractions. The resulting logical circularity is only resolved 

by the underlying term-based representation. The pictorial form is merely a convenient 

visualization of terms, which can only be interpreted by someone familiar with the notation being 

defined. The visualization in VSDF is of the same kind. 

None of these are based on any particular theory of diagrammatic structure, but are rather 
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experiments with certain styles of description. 

3.2.2 Spatial Logic Approaches 

Some authors argue the need for notation formalisms to be founded on the logical properties of 

space - approaches such as (Citrin et aL 1994) that are not based on graphical elements are seen 

as limited by (Haarslev 1996a). The next two formalisms do not simply refer to spatial relations, 

but incorporate properties of space in their logical bases. A third report attempts to be more 

precisely spatial. 

3.2.2.1 Description Logics 

Haarslev (1995) refers to the three main areas - formal models (grammars), semantics (e. g. 

declarative and logical), visual reasoning (spatial and temporal) - which are Identified by Chang 

(1994). He proposes a new formal framework to unify these, based on description logics (DLs); 

these are subsets of FOL that exhibit structured inheritance (Brachman & Schmolze 1985). 

Haarslev's paper features spatial logic for describing qualitative relations between elements: 

points, lines or convex regions. Pictorial Janus (PJ), a visual language for concurrent programs 

(Kahn & Saraswat 1990), is successfully used to illustrate the method -which is to be fully detailed 

in Haarslev (1996b). [PJ is also treated by Gooday & Cohn (1996a), and (Moller & Lehrenfeldt 

1994); see next and §3.2.4 below]. 

The framework, described in (Haarslev 1996a), uses a spatial logic for semantics of notations, 

based on research into reasoning with diagrammatic representations and spatial databases; it 

combines DLs with: 

(1) topology based on (Egenhofer 1991), with interior, closure and complement as 

primitive operators on point-sets (objects), that are used to define a complete basis of five 

binary relations on objects. 

(2) spatial relations based on (Randell & Cohn 1992), using the single binary relation is- 

connected-with, and a convex-hull operator. 

A Description Logic is a declarative knowledge representation system based on inheritance 

networks; it amounts to a term-rewriting language that rewrites single unique term names. It is 

specified by a set of concept terms, a set of roles (binary relations between individuals of 

concepts), a set of disjointness assertions among concepts and roles, a set of concept 
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membership assertions for individuals, and a terminology to map names to specifications of 

concepts and roles. Concepts may be primitive (specified by necessary conditions) or defined (by 

sufficient conditions). He claims the notation is much more suitable for human or mechanical 

inspection than FOL; defined concepts are preferred to Prolog clauses that can only-express 

sufficient conditions. It supports both parsing and constructing examples from specifications. DL 

systems automatically detect cycles in semantic specifications, which are known to cause 

problems (Haarslev 1995). 

Haarslev takes elementary lexical tokens as primitives, forming the roots of a taxonomy (a 

specialization hierarchy) of defined concepts topped by semantic categories. Assertions and 

queries are used to state and retrieve spatial information about individuals. This taxonomy is 

claimed to help reasoning via subsumption relationships; it is more expressive than type-theoretic 

frameworks (e. g. Wang et aL 1995). It can deal with ambiguous grammars by computing every 

model satisfying the specifications - though algorithms can be NP-complete or even undecidable. 

He proposes that DLs be combined with concrete domains, to enable algebraic definition of 

concepts and take advantage of constraint logic programming. 

He emphasises that different notations will require different. definitions for objects and 

relationships. A generic editor GenEd for visual notations has been developed from this theory 

(Haarslev & Wessel 1996). 

3.2.2.2 Region Connection Calculus 

Gooday & Cohn (1996a) apply a Region Connection Calculus (RCC), originally developed for 

qualitative reasoning about physical systems, to the syntactic and semantic specification of visual 

languages for implementation and verification. They blame the difficulty found in traditional 

formalisms such as attribute grammars on the absence of a spatial vocabulary. 

RCC is expressed in the order-sorted logic LLAMA, using a formulaic notation (Cohn 1987). The 

primitive C (x, y) holds when the closures of regions x and y share at least one point. From C, 

eight exhaustive and disjoint dyadic'base relations'are defined. The paper takes as example PJ, 

which it claims is very naturally specified in RCC (details in Gooday & Cohn 1996b). PJ is made 

up of Strings, Lines, Directedl-ines, ClosedCurves, their enclosing Regions, and 

PrimitivePicture Elements that may be superimposed at the same region. The parsing of a picture 
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into primitive elements is not addressed. 

The authors plan to formalize the execution-semantics of PJ by means of assertions and 

retractions of spatial relationships stored in a database. RCC expresses specification, parsing and 

execution in a common language, "breaking free from the need to use any non-spatial language"; 

this is contrasted with Haarslev's approach of translating to textual Janus. 

3.2.2.3 A Complete Spatial Logic 

Oliver Lemon (1996) highlights the importance of a deeper understanding of the formal semantics 

of spatial logics. He reviews several logics, and assesses them against an adequacy criterion: 

A logic is spatial only if it is equipped with classical or intended spatial interpretation(s) with respect 
to which it is complete. 

He shows that many fail to satisfy, since they are incomplete - consistent sets of formulae have no 

models of the intended sort. These include RCC (Randell et aL 1992, Gotts et aL 1996, Bennett 

1994,1995), which aims to model qualitative spatial relations between regions of R3 in FOL. 

Lemon notes that Modal Logics are known to be limited to capturing only positional constraints 

imposed by spatial structure; they cannot capture irreflexivity and intransitivity. By using the 

extended modal system of (de Rijke 1992), he provides a complete axiornatization of 2D space, 

presenting a modal logic of connected regions that obey the Kuratowski (1930) planarity 

conditions. The logic enlarges upon it has a modal operator Op meaning 'connects with a region 

where p holds'. The connection relation is taken to be symmetric, and all regions are distinct; Ou 

means 'anywhere'. Isomorphic graphs are dealt with using iterated modalities. 

3.2.2.4 Adequacy of Spatial Logics 

The argument for using spatial logic contrasts with the linguistic tradition; we do not find acoustic 

or phonic logic employed in describing spoken language syntax. Is the difference due to the 

importance of graphical analogy? 

Haarslev's work manages to bring together graphical, syntactic and semantic description, by a 

deeper analysis of diagram structure; in so doing it does not avoid complexity problems. Despite 

Lemon's criticism, there seems no clear benefit in imposing complete 2D spatial constraints on a 

syntactic structure that only makes partial use of them. The paper by Lemon is, however, 

important in considering the question of how properties such as planarity may be represented in 
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syntactic definitions. 

3.2.3 Algebraic Semantics 

Algebraic methods emphasize the analogical semantics of diagrams, Also included here are some 

methods of treating diagrams in a linguistic framework. 

3.2.3.1 Order-Sorted Algebra 

Wang & Zeevat (1996) criticise the picture specification language approach as not based on an 

understanding of cognitive use of pictures to give a better grasp of the application domain. They 

address cognitive issues of the analogy between picture and meaning by a notion of matching in a 

semantics based on order-sorted algebra (Goguen & Meseguer 1989). Both pictures and the 

application domain are described in an order-sorted signature. A match is enforced by a signature 

morphism, following the work of (Indurkhya 1992) on metaphor, and (Pineda 1990). 

A picture description language consists of a graphical signature to provide symbols and a graphical 

theory to give geometrical meanings to them, in an algebraic institution (Goguen & Burstall 1984). 

The signature has a partially ordered set of sorts, a set of function symbols and a set of relation 

symbols. Functions are either natural (representing emergent graphical objects, e. g. overlap) or 

artificial (generating a new object in the picture), or attributes (e. g. length, colour). Wang & Zeevat 

assume that graphical inference is axiornatizable by a geometrical theory expressible over the 

signature; similar assumptions are made about the application domain. 

An interpretation by metaphor is described as a partial mapping from graphical signature (G) to 

application signature (A): a signature morphism from a subsignature of G to A. This approach 

gives a semantics only for a single expression. A pictorial language will then be characterized as 

a set of picture algebras - items in an expression are constants in a picture signature. The paper 

does not make it very clear how this works. Deterministic FSMs are used as an example, but little 

detail is given. 

3.2.3.2 Homornorphisms 

Likewise, Gurr (1996) notes the common belief that specific representations share a similarity of 

structure with what they represent; he attempts to define such similarity precisely by means of 

homomorphisms and isomorphisms, generalized from their algebraic usage. 
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He models each of diagram and meaning as an cc -worlct a set of objects (domain) and a set of 

relations between these objects (relation-seo -a definition that "echoes or subsumes other 

descriptions" of situations and their representations. The mapping between two worlds - the 

representing and represented - is regarded as bi-directional. Again, a representation system will 

be a set of such maps, one for each representation-world pair. 

Gurr distinguishes between intrinsic isomorphism (illustrated by an use of the spatial 'left-of' 

relation to represent integer ordering) and extrinsic properties commonly enforced upon a 

representational system [as syntax] - (see §4.4.3). 

3.2.3.3 A Linguistic Approach 

Treatment of diagramming as having truly linguistic content is attempted by only a few authors, 

who have an interest in diagrammatic reasoning. Pineda et al, (1988) describe an interactive 

interface (GRAFLOG), that treats drawings as a linguistic extension of text, using Montague 

semantics to interpret interactions (Pineda 1990). Ewan Klein (1987) describes a project to 

develop (in Prolog) a system to integrate natural language with graphics in knowledge base query 

and update, via common meaning structures. Klein alms to find whether drawings can be 

analysed like expressions of a language, with syntax and semanti cs. He identifies the basic 

syntactic constituents of drawings by reference to the communicative context (textual annotations 

and dialogue history), rather than by formal structure alone. This work uses Kamp's Discourse 

Representation Theory, a version of first-order logic with a novel treatment of quantifiers, 

pronouns and anaphora (Kamp 1981). Klein develops and applies a sorted logic (inL) for semantic 

representation. 

3.2.3.4 Adequacy of Algebraic and Linguistic Methods 

What is lacking in both the algebraic studies is an appreciation of analogy as a systematic process 

within a notation as a whole. Without this, there is little we can do to untangle the the problem of 

how expressions are understood and used to aid thinking. The algebraic approach of Wang & 

Zeevat brings the graphical structure into relationship with its semantics, but ignores the need for a 

systematic syntax. 

Klein's and Pineda's work moves into a broader area of analysing diagrams in a linguistic context; 

although this is attractive, it takes us beyond the scope of this thesis. 
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3.2.4 Grammars for Notations 

We would hope that the generalized grammar-based approaches above (§3.1.3) would smoothly 

accommodate description of graphical language. Unfortunately, the reports show that this is not 

so. Graphs introduce problems that, are not found in string or term rewriting. Once again the 

representation of spatial properties appears as a concern. A grammar for translation is reviewed, 

followed by some research that alms to locate grammars within a general hierarchy according to 

expressive power. 

3.2.4.1 Difficulties In Grammars 

Woodman et aL (1986) have examined the feasibility of using three types of grammar for 

specifying software engineering notations. Tree and web grammars were dismissed in view of 

complexity and parsing problems; plex grammars were found more successful, but still not 

sufficiently general. They proposed a grammar based on EBNF production rules, augmented by a 

set of relational axioms to specify which kinds of node may participate in which relations. They 

conclude in (Hekmatpour & Woodman 1987) that formal grammars have inherent difficulties with 

expressiveness, parsing, and dealing with incomplete diagrams. 

G6ttler (1987) uses programmed grammars that allow one user-action to be modelled by a 

program of productions, which are themselves drawn as diagrams. He reports the problem of their 

inability to express mutual constraints on attributes, as found in certain aesthetic requirements 

though satisfying them is algorithmically NP-hard. 

Courcelle observes (1990) that graph grammars are worse-behaved than string grammars, and 

they support no good notion of graph automaton, Le. finite machine that decides whether a graph 

belongs to a given graph language. Other difficulties and limitations of various grammar 

approaches are described in (Wittenburg 1993). According to Scharr (1994a), the common belief 

that graph rewriting systems lead to inherently inefficient implementations, since many graph 

algorithms are NP-complete, is no longer well-founded. ' He considers that the situation is 

gradually improving. 

3.2.4.2 Embedding 

A central difficulty in defining graph rewriting is known as the embedding problem, described by 

Rekers & SchOrr (1 995b): - 
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When a nonterminal is replaced, how does the production establish relationships between its 

context elements and the elements of its replacement? 

They analyse three approaches: 

1) Implicit embedding. Picture Layout Grammars (Golin 1991b) and Constraint Multiset Grammars 

(Marriott 1994) do not distinguish between vertex and relation objects. They thus have to constrain 

attributes in order to express relationships between objects; the embedding rules are a side effect 

of attribute assignments. The users may not be aware of these effects, and parsing is complex. 

2) Extended context. The most readable solution is to embed new objects by extending left and 

right sides of a production with explicit context. In this case it is difficult to rewrite symbols that 

participate in a variable number of relationships. 

3) Embedding Rules. A more powerful and convenient method uses separate rules that redirect a 

set of relations to their new context - as in some graph grammar techniques (precedence graph 

grammar: Kaul 1982), (Rozenberg & Welzl 1986, Ferruccl et aL 1994). Not only are these hard to 

understand, but all known parsing algorithms are very inefficient, unless production sides are 

severely restricted. 

With regard to these issues, they tabulate the properties of eight approaches, and find all of them 

to be inadequate for defining the language of process flow diagrams. Their own approach (see 

§3.3.3 below) succeeds because it can handle context-sensitive productions that replace more 

than one non-terminal. 

3.2.4.3 Relation-Based Grammars 

A general notion of grammar need not be based explicitly on graphs. Grammars based on 

relations have been studied and applied by several authors (Wittenburg & Weitzmann 1996, 

Fe rucci et aL 19 96). 

Wittenburg & Weitzmann's Relational Grammar formalism was first proposed as an extension to 

unification grammars of computational linguistics, for the purpose of efficient parsing. Grammars 

generate expressions of the following kind: 

An indexed multidimensional multiset consists of an indexed multiset of symbols (for graphical items), 

and a sequence of relations on these symbols (relations refer to items and their attributes). 

The paper defends the choice of context-free syntax, despite the fact that it may not be powerful 
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enough to represent many visual languages. The work shows that such restricted grammar 

frameworks "can play useful roles in interfaces without having to represent the visual language in its 

entirety. " 

"if we cannot demonstrate that a weaker formalism Is useful in applications within its power, then 
how can we possibly be convinced that more powerful formalisms are of practical value given their 

known computational complexity? " Wiftenburg & Weitzmann (1996) 

We note that a relational grammar is presented in a formal textual syntax, with a clear but informally 

presented graphical equivalent, which borrows the graphical items of the language being defined. 

A paper by (Ferrucci, Tortora et aL 1996) discusses features of visual language generation and 

recognition, and the goal of an uniform framework, from the viewpoint of another kind of Relation 

Grammar. The model provides a high-level description of an expression as a set of symbol 

occurrences (s-items) and a set of relational items (r-items) over s-items. An uniform mechanism is 

defined to rewrite both r-items and s-items by means of context-free production rules. The model 

aims to specify relationships among symbols at a level of abstraction that is less dependent on the 

underlying implementation of a graphical interface. The authors believe that an accurate analysis of 

the expressive power of visual grammars is necessary to fully exploit the capabilities of such a 

formal model. 

The paper points out both analogies and differences with respect to other existing models; the main 

difference with the Wittenburg & Weitzmann approach is that r-productions can define constraints 

over composite objects in terms of relations between their components. In a further paper 

(Ferrucci, Pacini et aL 1996), relation grammars are compared with generative graph rewriting 

formalisms, and some equivalences between classes of grammars are established. 

3.2.4.4Spatial-Relation Grammars 

Moller & Lehrenfeldt (1994) provide a case study on the language Pictorial Janus, using a version 

of Ferrucci's context-free relational grammar, which they claim is more readable and simpler than 

other constraint-attribute grammars. Each rule rewrites a single symbol as a multiset of symbols, 

subject to a set of topological constraints between sequences of terminal symbols (which are 

graphical objects). The authors also wish to investigate free-hand recognition (Zhao 1993). 
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We can analyse the formal structure created by such a grammar as a hypergraph whose edges 

join two sequences of nodes. In their example, they use three binary constraints (external- 

touching, inside, internal-touching), and one multi-ary (for spatial separateness of a set of nodes). 

This last requires hyper-edges - rules would be cumbersome if the formalism allowed only simple 

two-ended edges (only pairwise separateness). 

Adjacency Grammars (AG) are used by Jorge & Glinert (1995) who extend them as a foundation 

for interactive parsing and handling partial input. Their work is related to Wittenburg's unification- 

based approach (Wittenburg et al. 1991, Weitzmann & Wittenburg 1994). Complexity is 

considered for distance-bounded adjacency languages, showing how spatial enumeration data- 

structures support efficient parsing. 

The authors observe that associating constraints with productions provides a general control 

mechanism for parsing, enhancing the power of declarative semantics. They review two 

approaches to parsing of visual sentences that focus on spatial relations as a main component in 

syntax analysis. Golin (1991a) shows that parsing arbitrary attribute multiset grammars is NP- 

complete. Using dynamic programming he has developed an O(N9) off-line parsing algorithm for 

a subset called Picture Layout grammars (PLG). Marriott's CMG approach (11994) addresses the 

role of spatial queries, but precise complexity bounds are not given. 

AGs extend PI-Gs with Adjacency and unbound productions (that establish logical aggregation). 

An adjacency relation is a constraint with an associated query function returning the neighbour set 

of a given visual symbol -a way of strongly grouping elements in a production. They achieve 

efficient parsing, refining Golin's (1991 a) spatial operators to enable fast retrieval of candidates. 

Adjacency is a upowerful and intuitive concept". There are three main types: 

Algebraic: A adjacent to B "if there is nothing in between"; 

Spatial: indicated by geometric distance; (closeness); 

Logical: non-spatial, indicated by same-labels, or recursively formed lists. 

Each production rewrites a non-terminal N, conditional upon an adjacency constraint over the 

attributes of the produced symbols, and synthesizes attributes of N. The parse result is a rooted 

directed acyclic graph (RDAG). 

Directed graphs are used as example. By using contextual symbols they are able to parse graph 

structures without separate explicit constraints on nodes as arc endpoints - this leads to "non-tree 
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branches", as in PI-Gs and CMGs. At the top of their grammar, productions occur that are 

unbound by geometric constraints - e. g. those that generate a set of separate nodes. 

The advantages claimed are a simple algorithm with easily specified visual grammars and easy 

parsing. They describe in detail an efficient on-line parse algorithm based on dynamic 

programming, alternating top-down / bottom-up operation; its near-linear complexity improves over 

purely syntactic methods that are quadratic. 

3.2.4.5 Graph Grammars and Translation 

SchOrr (1 994b) addresses the problem of using graph rewriting in translating graphs of one type 

into graphs of a different type, e. g. program syntax trees into control-flow diagrams. He argues 

against embedding source, target languages and the intermediate correspondences in a common 

superstructure, because this entails extending directed graphs with second-order relations; and 

needlessly preserving fine grain correspondences. He finds it more appropriate to use a pair of 

morphisms from correspondence graphs to source and target graphs. 

A Triple Graph Grammar (TGG) is a purely declarative specification of translation, that can 

accommodate Context-Sensitive productions and many-to-many relationships. Their 

correspondence graphs and rules record information about the transformation process needed to 

propagate incremental change. These derive from Pair Graph Grammars (Pratt 1971) that 

translate strings to graphs, but are restricted to context-free productions and 1-to-1 

correspondences between elements of data structures. 

The notion is presented simply for unlabelled directed graphs, with notes on how to extend it to 

more practical cases. Each triple production depicts how the correspondence between source and 

target is maintained during a rewrite. In translating, it is necessary to parse a given graph L to 

yield a left derivation sequence and then apply the related sequence of right-productions to a start 

graph to give result R in the target language. To simplify, SchOrr considers only monotonic 

productions, specified with a single pushout, so that a graph contains its own derivation history. 

For this case he develops a terminating translation algorithm; the result of a rewrite is proved to be 

unique (soundness), but completeness requires backtracking to find all left-derivations. 

3.2.4.6 New Hierarchies 

We have seen above that Ferrucci is concerned with comparing the expressive power of different 
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formalisms. Jorge & Glinert (1995) believe there can be hierarchies of formal visual languages 

according to the expressive power of spatial and logic constraints. Haarslev (11 996a) also intends 

to build a complexity hierarchy of visual languages in future work. 

Marrioft & Meyer (1996) attempt to define a'Chomsky hierarchy'of languages based on Constraint 

Multiset Grammars (Marriott 1994). These are chosen not only because of their generality, but for 

their close links with constraint logic programs. The authors have shown that certain other 

formalisms can be mapped to CMGs: Positional Grammars, Relational Grammars and Unification 

Grammars. 

CMGs rewrite multisets of typed attribute symbols, and form a computationally adequate system if 

simple arithmetic on attributes is permitted. In order to reduce their power, the authors restrict 

attribute manipulation to copying, resulting in "copy-restricted" or CCMGs. Marriott & Meyer 

examine the hierarchy of expressiveness formed by analogy with type 0,1,2,3 string grammars. 

The power of CCMGs can also depend, however, on the complexity of first-order logic (FOL) 

formulae used to state constraints; this leads to a taxonomy of nine types. Parsing of these types 

is investigated and found to be expensive in complexity. 

3.2.4.7Adequacy of Graph Grammar Methods 

We note that most of these descriptive techniques fall in between the difficulty of either being too 

powerful and impossible to parse, or feasible in parsing but too weak to cover all the notations 

desired. Marriott & Meyer (1996) find that the graph grammar approach is generally deficient in 

arithmetical or deductive treatment of spatial relations and their interdependencies. This is 

overcome by means of logical constraints to control productions. 

Efficiency is then an inevitable concern, given the difficulty of parsing powerful grammars. 

Although researchers have attempted to improve matters, many do not make the connection that 

this can ultimately only be achieved by reducing the power of the grammar to a minimum. The 

paper (Wittenburg & Weitzmann 1996) confronts this most clearly by suggesting that a simple 

grammar can usefully deal with part of a visual language syntax. The above attempts at 

organization into a hierarchy of strengths are thus a very welcome (recent) development. A 

hierarchy provides a way to reduce or at least control the parsing problem; by dividing into 

partitions, each with different power in the hierarchy, the part of the syntax that requires a more 
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complex grammar may be minimized. No authors, however, include In a hierarchy the logical 

specification methods reviewed earlier in this section. 

We ascertain that Adjacency Grammars (Jorge & Glinert 1995) make a helpful contribution to 

efficiency, since the techniqu e of mspatial enumeration" exploits advantages of 2D layout, 

corresponding to cognitive factors (ease of visual search) that are believed to be important in 

diagrams. There is no reason to believe that parsing should in general be feasible if such 

graphical constraints are ignored. 

The reports do not pay much attention to how the grammatical specifications are notated, being 

more concerned with their properties. Although the graph grammars are not specific to pictorial 

structure, their rules often invite a diagrammatic form of expression, based on the standard ways 

of drawing graphs. The pictorial forms of graphical elements can be incorporated into expression 

of rewrite rules, for the purpose of illustration. It is less clear how relational grammars or 

constraints within grammars might be diagrammed. 

3.3 Software Tool Support for Notations 

The various kinds of notation processing needs in software development methods are served by a 

range of computer aids or tools. This section remarks upon the notational functions required of 

tools, and gathers reports of several that employ formal techniques such as those outlined above. 

In the reports, several authors have assessed the tools available or have described their own 

developments. We now wish to discover how successful and versatile these aids are in their 

capability for processing notation in general. In this instance our principal concern lies with the 

suitability of any theory that underlies the tools, rather than their overall performance. 

3.3.1 Requirements for Tools 

We start by examining the capabilities that tools must possess in order to support notation in 

software engineering. The previous chapter (§2.2.1) mentioned many roles for notations, e. g. 

knowledge representation, formal specification, structural diagrams, logical calculi, programming 

codes, users' specialisms and project management. Here the kinds of processing required to 

assist the main roles are noted, and in particular the properties of notation editors are looked at in 

some detail. 
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3.3.1.1 Notation Processing Requirements 

We find two views of the place of notation in the software development context. In the first, 

expressiofis are seen as part of a growing documentation that records the current state of the 

project, and at least consists of a partially determined system description. Documents contain a 

set of views; when complete, all relevant knowledge of the system's behaviour may be deduced. 

Tools for browsing and understanding a notated document may need to translate into styles and 

views that suit the viewer. 

The second is an interactive view: for instance in (Ince & Woodman 1986) project knowledge is 

recorded in a database that expresses replies to queries using required notations. These replies 

are not simply extracts, views or translated forms from a static document, but are actively 

constructed by logical inference. The approach of Goguen & Meseguer (1987) is to regard a 

specification as an inefficient program; when a logical query is made about the system specified, it 

is answered by means of a deductive process. In the same way, executing a program effectively 

answers the precise "query" as to what output the system will give on receiving a given input. 

More generally, in (Cohen et at 1989), project documents and data would afford access by a 

pattern-matching, browsing mechanism, with general heuristic reasoning mechanisms to support 

inference. Knowledge is expected to be encoded in different logics, whose rules must therefore be 

available as parameters to the access process. 

In any case, notation tools support an User Interface to the documentation, enabling a participant 

to assimilate or extend the information in the system description. Queries could be answered in a 

notational style chosen by the user. There are two sides to this communication: output expressions 

must be automatically produced and presented; input expressions must be interactively composed 

and edited. Ince & Woodman (1986) have developed software ("Toolbuild") that is designed to 

support textual notations in this manner. They determine that tools must have facilities for storing 

and retrieving information in a project knowledge base, indicating a need to display structures 

pictorially, with editing assistance. Editing should involve checking syntactic correctness in terms 

of a formal definition, and performing some semantic checking. These facilities must be versatile 

enough to interface with existing and future tools. 

Such tools require a high level of abstraction. A requirement for some metalogical means for 

relating different notations is noted by Black et aL (1987) who have developed a unified semantic 
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model using a frame-based representation, in order to integrate the many contemporary 

development methods. 

Cohen et A (1989) consider automated aids for operating on specifications: - they require 

composition and editing of expressions, directed by syntax and semantics; and the ability to 

perform symbolic manipulations on system descriptions, such as theorem proving, simulation and 

execution. To fulfil these they envisage generic techniques for processing notations, or metatools: 

various symbolic manipulators, parametrized by the syntax and semantics of the languages. 

3.3.1.2 Editors 

Amongst these needs, we focus upon editors, that are clearly essential. What should we expect of 

a tool that facilitates the editing of expressions? 

We have some expectations owing to the familiar processes of editing and interpreting in respect 

of textual programming languages. In any graphical notation, creating expressions is a matter of 

making marks on a screen, mediated by software that both enables changes and restricts freedom. 

Text, for example, allows only shapes from a fixed character set to be displayed. The system's 

interpretation of the marks can play a part in guiding the usees input towards an acceptable 

expression. 

The early text editors used for programming provided no help with syntax; errors were detected 

and indicated by a separate parser during a subsequent compilation stage. Syntax-directed 

approaches avoid parsing by using a generative grammar to support insert/delete operations 

directly - but grammars do not enable copying of subexpressions nor deletions from lists, for 

example (Gruzlewski & Weiss 1991). These operations require a'derivation structure'to be stored 

and subjected to transformational rules. 

A paper by Kent Wittenburg & Louis Weitzman gives a useful discussion of the problems of 

generic editors for visual languages: 

"It is naive to think that satisfactory visual language Interfaces can be implemented using generic 

graphical editors combined with an analog of YACC to interpret graphics. Unlike generic text 

editors, visual language editors must be specialized to the graphical language at hand. " 

(Wittenburg & Weitzmann 1996) 

Thus Visual Language Interface toolkits cannot afford to ignore the relationship between the 
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language of user gestures and underlying representations of graphical objects and relationships. 

The authors consider approaches to the question of what ordering an user might follow when 

constructing an expression; one answer is to define mappings from the underlying grammatically- 

based descriptions to procedurally-defined editors for creating these descriptions (Backlund et aL 

1990). 

Wittenburg & Weitzmann's reported experience with some users of their editor indicated that the 

enforcement of a strictly hierarchical visual syntax was a matter of controversy. Some users 

"wanted to be able to informally sketch process diagrams, particularly at early stages of a project 

... " - requiring a language of general directed graphs that is not context-free. 

3.3.1.3 Flexibility and Guidance In Editing 

The question of how much guidance to give in editing is mentioned by several authors. Some 

(Coomber & Childs 1990, Gruzlewski & Weiss 1991) stress checking and maintaining semantic 

correctness during editing. Gruzlewski & Weiss address the problem of structural editing of 

program texts. Normal semantic checking is criticised as insufficient in that corrections may 

introduce new errors. They develop a syntax-driven editor using reversible grammar rules, that 

works directly on the derivation tree of an expression, in order to hold semantic correctness as an 

invariant. The prohibition of incompatible or inconsistent expressions, however, is likely to conflict 

with the need to store partial diagrams, that is noted by Hekmatpour & Woodman (1987). 

A syntax-directed editor prohibits the drawing of syntactically incorrect diagrams (G6ftler 1987). 

In contrast, Welland et aL (11990) feel that users should be offered a choice of how permissive or 

directed this syntactic control of editing is to be; and McWhirter (1995) says that syntax-directed 

editors may overly constrain how a user interacts with the application. Rekers (1994) notes the 

inadequacy of a pure syntax-directed approach, and asserts the necessity of offering users 

freedom in how they develop diagrams, with structured support on demand. 

3.3.1.4 Specific and Generic Tools 

Some tools are intended only for supporting a specified few notations. Specific notations are 

supported within the context of a particular methodology: CASE tools that have facilities for 

processing graphical notations exist for methods such as Yourdon Structured Design (Yourdon & 

Constantine 1978), JSD (Jackson 1983), SSADM (Gane & Sarson 1977), HOOD, HOS (Martin & 
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McClure 1985 ch38), MASCOT (MASCOT 1987). 

Generic tools can support a certain range of notations, when provided with suitable specifications 

for them. Such tools vary in restriction on freedom that users are offered in their choice of syntax. 

In a project to provide syntactic support for graphical notation tools, Hekmatpour et aL (1988) 

report experimental evidence that users sometimes require maximum flexibility in syntactic style 

and layout, preferring to modify syntax to suit their own conventions. This would require users to 

understand and modify notation specifications, or to indicate their preferences somehow by 

interacting with the tool. 

Both editorial guidance and the division between generic and specific operation are observed by 

Welland etaL (1990), who characterize tools according to three or four oppositions: 

stand-alone / integrated (within the development method) 

method-specific / configurable (for user's notations) 

syntax-driven / permissive; 

Checking may be: - off-line (global)/ Interactive (incremental). 

A configurable tool can be modified for a choice of diagram syntaxes; it is generic. 

They describe two of the better tools then available for generating and editing diagrams. Firstly, 

the method-specific tool Analyst is assessed. It uses a permissive-interactive style of editing, with 

checking coded as Prolog rules. Since diagram syntax is coded in PASCAL, it cannot be easily 

modified. Secondly, they assess MacCadct a configurable stand-alone tool with an interactive 

editor, that expresses syntax rules in Prolog, though the choice of syntax is very restricted - there 

is a fixed vocabulary of symbols. They comment that Prolog is. unsuitable for integrating into 

design method software. 

3.3.1.5 Assessing Editors 

The extent of liberty and guidance offerable by an editor depends on the depth of interpretation 

undertaken by software during the editing process. This in turn depends on the extent of the 

formalization of notation structure on which it is based. We may ask: 

Does the formalism cover geometric and semantic details as well as abstract syntax? 

If a tool is well constructed, there is a separation of various concerns, to allow flexibility. We may, 

for instance, ask: 
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Can the changes to editing style be made independently of the choice of notation? 
Can the notation syntax be changed independently of the development method? 

The power of the specification formalism determines how complex the syntax is allowed to 

become. 

How easy is it to make changes to syntax? 

3.3.2 Reviews of Notation Editors 

We seek to discover whether graphical tools are general and flexible enough to be easily 

integrated into any given software development method. Though we are mostly interested in 

designs for generic editors and other tools, -we begin with mention of a few tools for specific 

notations. The review here looks at the representations used for expressions, syntax specification 

and editor specification. 

The design of such tools is a cause for concern. Minas & Viehstaedt (1995) find that some tools 

support simple kinds of diagram, but only very few systems for generating a diagram editor are 

based on a formal model. 

3.3.2.1 Some Specific Graphical Tools 

Coomber & Childs (1990) have an object oriented editor & simulator (in Smalltalk) for graphical 

prototyping of Real Time Systems, specific to Transformation Schemas (Ward 1986). It verifies 

syntax, assists in proving semantic correctness. Editing consists of placing nodes and connectors; 

before a connexion is made it is checked for allowability, using menus to present available 

choices. 

Jensen (1991) discusses properties of editors for coloured Petri Nets as a language for system 

design. Standard ML was used for formal underpinning. 

I-Pigs is an interactive graphical environment for concurrent programming, developed by (Pong 

1991). It guarantees that the graphic program is syntactically and semantically correct, and can 

display execution. 

Ludwig2 is a general purpose event-driven visual programming language (Pfeiffer 1995). It uses 

three modes of expression: graph manipulation, arithmetic and user interaction, but is based on a 

common processing model of algebraic graph grammars; program and data are represented as 

82 



3: Review of Notation Support 

hypergraphs (i. e. arcs may link subgraphs as well as nodes). 

Citrin et aL (1995) describe a Visual Lambda Calculus VEX that is designed to be easier to 

understand than the textual calculus; it is a component of the object-oriented VIPR language. 

3.3.2.2 Some Generic Editors 

McWhirter (1995) reviews some extensible graph editors, which "provide support for a narrow 

domain of languages and Interfaces ... typically have a set of predefined language constructs (e. g. 

node, edge and graph)". - 

Garden (Reiss 1987) contains a tool GELO that allows definition of graphical representations of 

sets of typed objects, with a greater range than the others mentioned; it allows for text and tiling as 

well as graph layout. 

EDGE (Newberry & Tichy 1988) is a generic graph editor with focus on automatic layout, graph 

abstraction and extensibility. 'Subgraph abstraction' groups a set of nodes within a parent node 
(visual containment). 'Edge-concentration' groups sets of edges with common source and target, 

via a special node. Extensibility is provided by an object-oriented approach, but this is limited. 

PRONET(Sylva et aL 1991) is a generic graph editor for development of graphical network 

modelling, based on GNMS, a general descriptive mechanism for structural aspects. 

LOGG/E(Bolognesi etaL1991) uses attribute grammars. Editing commands take the form of 

complex derivation functions applied to the abstract syntax tree that represents an expression. 

Each node of the tree can have any number of graphical representations, called aspects; 

constraints can determine how a child node is placed with respect to its parent node, and nodes in 

the tree may be linked by garlands. 

Pallette (Golin et aL 1992), based on a picture layout grammar, uses a picture parsing approach 

that is criticized by McWhirter as providing support only for graphic constructs, not language 

constructs, thus creating a semantic gap. 

Two papers (Welland et al. 1990, Beer & Welland 1987) introduce a general purpose tool, 

ECLIPSE, which can be integrated with a project support environment to handle all its graphical 

notations. Its design aims for a configurable, permissive-interactive tool that accommodates to 

syntactic and semantic checking specified by the user. ECLIPSE uses the specification formalism 

GDL referred to in the previous section (§3.2.1). McWhirter (1995) assesses this tool as less 

restricted than most - it provides a graphical editor to define the basic representations of the graph 

objects. 

One of the earliest attempts is by G6ttler (1987,1990); he describes the process of eliciting 
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diagram knowledge from a user, and designing a Programmed Attribute Graph Grammar (PAGG) 

interface for syntax-directed editing, implemented in LISP. Design was found to be fast compared 

to ad hoc programming of an editor. Minas & Viehstaedt (1995) find, however, that the PAGG 

layout of diagrams is troublesome and editing is inconvenient. 

Clement et at (1990) describe CENTAUR, a generic interactive programming environment 

parametrized by syntax and semantics of programming languages. Tools generate a structure 

editor and an interpreter / debugger within a uniform graphical interface. Their software separates 

graphics from behaviour: Geometric graphical objects are treated as reactive systems that change 

state in response to input events and generate output events; their behaviour is written in the Real 

Time language ESTEREL. 

Ballance et aL (1990) present Pan: a language-based editor for integrating development 

environments, based on a context-free Logical Constraint Grammar (LCG) -a grammar that 

annotates its symbols and productions with goals expressed in Prolog. These specify constraints 

on the language generated by the grammar. LCGs were successful in solving problems of scoped 

variables, but the authors found that modifications were needed to the Prolog model to make them 

practical. 

Garnet (Myers et al. 1990) explores the use of constraints for graphical user interfaces. The 

structure of valid diagrams is more or less hidden, however, and must be maintained by the 

programmer - according to Minas & Viehstaedt (1995). 

Rekers (1994) proposes to implement graphical editors that allow both structured and free editing 

by parsing diagrams in two phases, corresponding to graphical structure described by a spatial 

relations graph and syntactic structure described by an abstract syntax graph. He considers this 

distinction to be very useful. Parsing makes use of the graph grammar formalism PROGRES 

(SchOrr 1990,1994a). Although the results were positive for the very simple graphical language 

considered, he concludes that it is unclear whether more complicated graph grammars can be 

treated as easily. 

Haarslev & Wessel (1996) are developing GenEd -a generic semantic editor for formal reasoning 

about visual notations (see §3.2.1 above). 

Further reviews of research on syntax-directed editing of text and diagrams, and visual language 
I 
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parsers, can be found in the thesis of Viehstaedt (1995). 

3.3.2.2 Guided Editing of Visual Objects 

Serrano (1995) purports to show why current tools supporting diagramming notations are not 

satisfactory. He aims to provide non-obtrusive guidance and allow flexibility in editing through the 

management of partially constructed expressions, an approach that he outlines but does not 

formalize. Entity-relation diagrams are used as an example, with constraints expressed in natural 

language. In acknowledging the need for a formal approach, he proposes constraints in FOL, 

executable by Prolog. 

He notes two extreme approaches to the question of guidance: (1) the editor offers none - when 

there is a separate phase for semantic evaluation (normally the diagram is translated into a textual 

version and then parsed), or (2) the editor "shepherds" the user through the editing process - 

evaluation is carried out during drawing and inconsistency is forbidden. 

The solution that Serrano proposes is to embed all the semantic constraints in the editor, so as to 

allow automatic diagram validation without limiting the user's freedom. A diagram is composed of 

Visual Objects (VO) that have a logical part and a physical part, and are either icons or 

connections. 'Semantics', which he defines as VO behaviour during the editing task, is expressed 

by constraints. A VO has three possible states: Complete, Accepted or Disconnected according to 

its degree of incorporation into the parsed structure. Diagrams may be Valid, Inconsistent or 

Wrong - Inconsistent diagrams are merely incomplete, but Wrong ones require backtracking to 

correct. The constraints enforced on a VO depend upon its state as well as its spatial relations. 

The four steps for editor design are (1) Identify VOs, (2) express their behaviour in terms of 

constraints, (3) Identify those constraint violations that would cause a diagram to enter a wrong 

state, and (4) Define any compound commands needed - as design options that enhance 

usability. 

3.3.2.3 VisualGen 

Chok & Marriott (1995) describes a parser generator (VisualGen) and a graphics editor which 

generate a sophisticated user interface from a CMG. It features quick incremental parsing with 

geometric error correction via a metric space. The editor allows manipulation of diagram 

components - maintaining constraints to preserve 'semantics' [i. e. syntax]. 
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Unlike attributed multiset grammars or relational grammars, CMGs allow negative constraints and 

thus enable deterministic parsing. The graphics editor is not syntax based, but is appropriate for a 

hand drawn approach. Constraints are generated automatically during parsing - diagrams can be 

drawn in any order. 

3.3.2.4 DIaGen 

Minas & Viehstaedt (1995) have recently addressed much the same problem area as this thesis. 

They describe a generator (DJaGen) for diagram editors that is supported by a formal method: 

hypergraph grammars, which they claim to be simpler than graph- or constraint- grammars. 

DaGen is a fully functional system that has been tested with large specifications. 

A hypergraph grammar describes the structure of diagrams (e. g. as Harel 1987 uses for 

Statecharts) in a "much more intuitive and advantageous model for diagram representation" that 

permits direct representation of multidimensional relationships, as needed for layout. Context-free 

hypergraph grammars rewrite edges, initiated by a starting graph. The total system is a "highly 

flexible method" of diagram representation. 

The user sees only valid diagrams, mapped to the screen from terminal hyperedges of an internal. 

derivation hypergraph. A terminal symbol image is composed of primitive elements (lines, text, 

etc. ) -a hyperedge connects (visits) a fixed number of nodes, which stand for points, fixing its 

position. Both edges and nodes carry attributes, and node attributes apply to all visiting edges; as 

a result, hypergraphs require few constraints. Editing is carried out by direct manipulation of 

diagram parts, to avoid concerning the user with grammar rules; an incremental algorithm adjusts 

layout. Layout conditions are attached to productions as multidirectional constraints, which may 

be linear inequalities. 

The examples given, NSD & Flowcharts, are found to have similar specifications, differing only in 

terminal-edge mapping and constraints. (Productions are shown graphically, with corresponding 

nodes labelled by letters. ) The authors are contemplating the use of context-sensitive grammars, 

needed for other examples. 

Edit modifications are specified by transformations - compound transitions from one set of 

diagrams to another, that operate on the derivation tree. This method also supports animation 

(execution) of diagrams. In practice, transformation specifications are the major part of the work. 
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In order to avoid this need and extend MaGen to allow arbitrary manipulations, they are 

constructing a parser that can efficiently identify maximal syntax-trees, find inconsistent or invalid 

parts, and suggest completions. A designer should then be able to create an editor in a few hours 

- ideally having 'drawing-tool' behaviour interpreted by a parser. 

3.3.3 Visual Programming Tools 

Lastly we look at attempts to support visual programming, an area which suffers from a lack of 

tools (OskOdadi & Dinesh 1995a). Together with the complexity of language representation and 

structure, this lack has prompted considerable work on generating visual programming 

environments (VPE). Rekers & SchOrr (11 995b), comment on the lack of tools that have efficiently 

working parsing algorithms. 

3.3.3.1 An Algebraic VPE Generator 

OskOdarli & Dinesh (1995a) propose a VPE generator environment which they have not yet 

implemented. Their paper discusses generation of visual editors and VPE generation based upon 

visual language specification in the picture definition language VODL and syntax formalism VSDF, 

reviewed above (§3.2.1). The editor-generator yields a tool for the construction and execution of 

visual programs (OskOdarli 1994), within an algebraic framework; programs are executed by term- 

rewriting. 

3.3.3.2 PROGRES 

SchOrr et aL (1995a) report on the multi-paradigm language PROGRES, mainly used for 

specifying abstract data types. It has the flavour of a visual database programming language with 

powerful pattern matching, replacing facilities, and recursion - claiming to be the first rule- 

oriented visual language which has a well-defined type-concept. The system provides an 

integrated set of language-specific tools to support intertwined editing, analyzing, browsing and 

debugging of specifications as well as generating prototypes. It is descended from a whole family 

of (programmed) graph rewriting languages. The underlying nonstandard database system is 

GRAS (described below). 

PROGRES has context-free syntax, and dynamic semantics - though not especially tailored to 

parsing diagrams. Its advantages over other VPEs are its strong typing, and provision of data 
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definition sub-languages (not just manipulation of data structures). 

The paper discusses the syntax-directed editor and its incremental type-checker, with the running 

example of control flow diagrams, and recognizing the absence of 'go-to. The recognition 

algorithm involves sequential non-deterministic application of rules, with backtracking to test all 

derivation sequences. (This is claimed as novel. ) The editor is syntax-directed for graphics, and 

free for text (for flexibility); all graphical constructs have an equivalent textual form - diagrams are 

modelled as directed node and edge labelled graphs with attributes on nodes. Editing modifies the 

underlying logical document's abstract syntax tree skeleton, which is 'unparsed' to modify all 

current views of the document. The editor code is generated by their IPSEN meta-environment, 

from EBNF specification plus text and graphic unparsing annotations. 

SchOrr et aL (1 995b) describe PROGRES Graph Grammar Engineering as aiming to establish a 

new specification and programming paradigm. They conclude that the approach is not restricted 

to the abstract syntax graphs used in CASE tools, but can develop very general complex data 

structures. In order to develop large systems, they require that efficiency of graph rewriting must 

be improved, flat graphs must be replaced by hierarchical graphs (with inter-graph edges), and a 

module concept introduced. The formal semantics is given in (SchOrr 1994c). 

GRAS (Kiesel et aL 1995) provides basic operations such as creation / deletion of nodes and 

edges, manipulation and incremental computation of attributes, according to a graph scheme 

defined in PROGRES. The paper describes techniques used to promote efficiency, such as 

attribute dependency graphs (for lazy evaluation) and the clustering of stored data according to 

usage. 

Structures are described by graph schemes (notated textually, but with an equivalent entity- 

relation diagram form). Graphs are labelled digraphs with attributed nodes that denote objects; 

each node has a type, and each node-type belongs to a node class. Edges denote binary relations, 

without attributes. Edge types represent intrinsic relations between nodes of certain classes or 

types. Paths (specified by path expressions) represent derived relations that are calculated from 

edges and node properties. 

Rekers & SchOrr (1995b) present a graphical parser that supports free editing of drawn diagrams, 
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to be implemented as part of the PROGRES environment. It uses a directed graph model. There 

are four stages: Pictorial elements of a drawing are fed to a Graphical Scanner that yields a spatial 

relations graph; Low-Level Parsing deduces an abstract relations graph; High-Level Parsing uses a 

grammar to create a syntax derivation graph. A proof of correctness is to be found in (Rekers & 

SchOrr 1995a). 

The output of the process may be a yes/no reply or a sequence of production instances, or a full 

derivation graph with all non-terminals - or the YACC approach of attaching an action to every 

production, yielding an action sequence that can generate a data-structure. 

Efficiency is achieved by recording the dependencies of all candidate rewritings as above and 

exclude relations - analysed from bottom-up. Starting from an empty graph, the top-down phase 

builds a derivation from the dependencies. Each rule-rhs must be connected, and is equipped with 

a search plan that determines the order In which the match must be constructed. The grammar 

must be acyclic to avoid non-termination. Ambiguity is admitted when distinct derivations are 

found, but distinct derivations may sometimes be equivalent, leading to duplication of effort. 

Rekers & SchOrr propose history relations to avoid this problem, improving upon Marriott (11994) 

and Golin (1991 b) who use cover checks, which restrict the context elements to be terminals. 

3.3.3.3 Escallante 

McWhirter's Thesis (1995) addresses some generic problems of tool support for general visual 

languages, and describes the solutions embodied in a system called Escalante. He notes that 

interface development environments have provided very little support for defining the application 

model and its representations, and interaction tasks. His modelling places primary emphasis on 

the meaning of a visual language, with mode of representation a secondary concern. Escalante 

contains a language specification environment (GrandView) that supports refinement and 

generation. Grand is itself a visual language. An object-oriented approach allows structuring of 

both the external representation and the internal semantics of the visual language. Automatic 

graph layout is not covered. 

McWhirter claims that the system enables applications to be developed in days or hours, and that 

it can support a much wider range of visual languages than the other systems he reviews. To do 

this it uses a characterization framework that serves as a conceptual meta-language for 'the 
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underlying structure' of graph-based languages. The graph characterization is used as a lingua 

franca for constructing applications. Examples given are Petri Nets, Bar Charts, Tables. The 

framework is intended to be powerful in its scope, in order to describe abstract relations that are 

implicit in diagram structure; it is not intended for, and does not easily apply to, complex fine 

grained geographical information. 

A visual expression is formulated as a set E of attribute-tuples, partitioned into binary relations R and 

entities N. The attributes are those required to specify syntactic and semantics. The framework 

addresses the propagation of changes to attribute values. Each tuple has a type (e. g. circle, arrow) based 

on its sequence of attribute tags. Relations are the domain of [polymorphic] functions head and tail, 

which take values in E. thus giving a higher order relational structure [not just a directed graph]. 

Behaviour (operational semantics) is addressed by a set of mechanisms that act on the graph 

constructs to define a subset of their syntax and semantics. An event (e. g. during editing) is 

treated as an operator, it is applied to an element, propagated to the incident relations and 

connected elements of the element, by means of a specified set of event maps associated with a 

relation. Cyclic propagation is disallowed. An event may not change the structure of the graph - 

deletions are carried out by marking followed by a global clean-up. An attribute propagation 

mechanism is specified by a set of attribute maps associated with a relation. This includes a filter 

function that defines changes to values, and a constraint function that constrains values. 

3.3.3.4 Some Others 

McWhirter (1995) reviews GLIDE (Kleyn & Browne 1993). GLIDE is a formal language for 

describing graph based languages and environments, by means of a structure grammar, view 

queries and transition predicates. The latter are of three types, for editing, execution (for dynamic 

semantics) and animation (for mappings between the state of a language element and its 

graphical representation). The proposed usage is to compile a language specification onto a pre- 

existing visual language substrate such as EDGE. 

Jorge & Glinert (1995), whose use of adjacency grammars is described above (see §3.1.5), have 

produced a visual compiler-compiler that generates C++ code. 

3.3.3.5 Adequacy of Notation Tools 

It is evident that a considerable amount of research is being pursued into development of tools 

which can process graphical notation. The reports here show that much headway has been made 
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in recent years, in practical terms. It is only appropriate here to criticize these tools in respect of 

the way they deal with notations, rather than their full function. Just a few tools come near to 

being satisfactory as generic notation editors, in that they have sufficient generality of application 

and are based on formal specification of notations. 

The most interesting of these tools is DiaGen, because of its claimed versatility. The hypergraph 

formalism employed is a close generalization of textual grammars. PROGRES is important 

because of its breadth of scope in kinds of processing and its methods to improve efficiency of 

parsing. The uniform use of graph grammar techniques is combined with the separation of spatial 

relations and abstract syntax as proposed by Rekers (1994). The approach of OskOdadi & Dinesh 

also provides formalisms for both graphical and abstract syntax, but without a common basis, and 

the term rewriting approach seems too restrictive by comparison with graphs. Escalante is a good 

example of an approach that uses a complex ad-hoc formalism in order to satisfy computational 

goals, but without justifying the power of the techniques in terms of notation properties. In 

common with other VPEs, there is no separation between formal semantics of the language and 

operational behaviour of expressions; no meaning can be attributed to an expression without 

executing it in a context. 

Several methods use variants of Prolog to encode grammatical representations and parsing 

procedures. This makes the specification of a notation into a programming exercise; the user 

must be able to predict the interactions between rules. Prolog is attractive over non-logical 

procedural languages, because it hides many implementation decisions relating to searches. 

Prolog is an executable formalism, however, and not purely a declarative language. 

Describing syntax is intrinsically simpler if the user is only required to declare properties, and not 

plan the execution of parsing. Checking for executability is then the job of a tool for constructing 

editors from syntax specifications. When a specification is compiled to generate a parser, the 

compiler must test whether it can be implemented efficiently. 

3.4 Discussion of Problems and Issues 

Following the survey on notation in the previous chapter and the reviews of techniques, 

formalisms and processing tools in this chapter, we are now in a position to highlight the issues 

raised and to summarize the strengths and weaknesses in the approaches covered. The purpose 
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of this section is to bring out the main challenges that must be met by research efforts. The 

discussion is divided into three areas: notation design, mathematical description and tool support. 

For each topic in an area, important points are organized into a numbered list and explained in a 

short commentary. 

3.4.1 Problems of Notation Design 

Based on the literature surveyed in Chapter 2, a summary can be presented of notational needs in 

a software development context. From the analysis (§2.3.1), several points of difficulty are to be 

found in the requirements that notations must satisfy. Further points of difficulty describe the 

current lack of knowledge of practical methods for design of notations. 

3.4.1.1 Difficult Conditions and Demands 

NI Coping with the complexity and size of software systems is problematic. 

N2 Software is non-material and hard to understand without using representations. 

N3 Notations must cope with a wide range of kinds of system, and express different aspects 

of behaviour. 

N4 Notations are used in different ways that demand conflicting features. 

N5 The need for rigour increasingly places formal demands upon notation. 

N6 The ne6d for reasoning and computation can lead to technical formality that conflicts both 

with ease of use and flexibility. 

N7 All aspects of notation use need to be supported by computer aids. 

The survey of Chapter 2 indicates two main reasons why software development needs notations, 

and why the needs are difficult to satisfy. Firstly, software systems are often large and complex 

objects [N1]. With large systems, notation can depict an abstract analysis into a hierarchy of 

named units. As a result, the notation may then lose some directness of expression, making 

reasoning less easy. Secondly, unlike many other artefacts, software is not directly appreciated by 

the senses [N2]; design must therefore go through several stages of abstract graphical 

representation before models and prototypes can be built. These stages require notations that can 

fulfil the many differing roles found within the development process. 

The wide variety of purposes [N3] warrants using a whole system of notations in many styles, 

suited to different participants, different methods and different application areas [N4]. The style 
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tends to be diagrammatic and informal in the early stages of requirements analysis and design of 

overall system structure, but textual and formal in later stages that produce program code. The 

supposed advantages of pictures over text conflict with the need for rigour and formality in 

notation. Diagrams, for instance, are rarely logically expressive enough for general use in 

specifying requirements, and they are not sufficiently concise for recording a mass of detail. 

With the introduction of formal specification and refinement techniques [N5], we find that notations 

are increasingly subject to formal demands, owing to the need for accuracy and reasoning, and the 

re-use of abstract structures. The practise of Formal Methods, for instance, imposes a formulaic 

style of logical expression in all stages. Since expression is generally not just a personal matter to 

assist individual problem-solving, documents must be precise and clear, and their meaning widely 

accessible to technical personnel. Program code and logical formulae are precise and formal 

[N6], but adhere to an inflexible, restricted syntax. In the practice of reasoning and calculation, a 

more flexible style of expression is normally preferred, owing to the confidence that results from 

the presence of a formal semantic basis. Such universal standard forms of notation require a firm 

logical basis so that their style can become less strict. 

Some authors see graphical notations as intrinsically desirable. Although textual notation may be 

preferred for formal work because of conciseness and ease of manipulation, patterns of reasoning 

may be better motivated by graphical analogy. For accurate calculation, paper and pencil give 

way to computer assistance [N7]; there is a similar need for flexible computational support in 

working with diagrams, and all styles must somehow be formally related. 

What determines choices of style in notation design? Many formulaic, notations, such as the logic 

languages of mathematics, attempt to accommodate varied semantic constructs in a common graphical 

and syntactic format. This makes it possible to express systems of arbitrary structure and complexity in 

a simple manner. 5 It can also be desirable, though, to link syntactic form closely to structure 

represented - even though this does tie the complexity of an expression to the complexity of the 

subsystem being expressed. This alliance between syntactic form and semantics is an aid to reasoning, 

as reported above (§2.1.3)-, diagrams commonly depict directly the operational units (functions, 

modules, objects, procedures or whatever) that are found in a software system under consideration. 

Thus practical concerns in software development raise issues of notation design and how it is 

SAs Stenning & Tobin (11994) put it: 0 In text, a single representing relation (concatenation) Is heterogeneously semantically 

Interpreted". 

93 



3: Review of Notation Support 

supported. 

3.4.1.2 Difficulties In Design Methods for Notation 

D1 There are no established principles to support design of notation, and little formal aftention 
has been given to diýgrammatic design. 

D2 There is little discussion of the way notations carry meaning; the structure and function of 

metaphor is poorly understood. 

D3 Central to the activity of notation lie some fundamental logical issues. 

D4 Text and graphics are treated as opposing alternatives of expressive technique. 

D5 It is hard to design formal notations to support informal discussions. 

The demands on notations are hard to fulfil [D11 because diagramming technique has evolved in 

an haphazard manner and there is a lack of design science for notation to help in these application 

areas. In the main, notational choices are not designed; they are arbitrarily adapted from past 

practice. Rarely are notation designs justified in the literature except by personal experience of 

their use. Although mathematics has been applied to specific cases (usually to explain semantics) 

in a piecemeal way, no coherent body of "notative conceptsm or structures has been recognized as 

deserving study. 

The starting point for design is the requirement to carry meaning and aid reasoning. Meaning and 

denotation are, however, rarely formally defined [D2]; outside of textual programming languages, 

denotational semantics is not used. In order to assist reasoning, it is essential to incorporate 

spatial, kinematic and other metaphors into the graphical design of diagramming. Though analogy 

has been studied within some important investigations into diagrammatic reasoning, software 

engineering notations have not yet been treated. The design of diagram syntax needs to start 

from the logical structure of the subject domain, which must be explained or depicted by 

analogical means. A formal notation of any kind then embodies a logical system [D3], which may 

not have been fully studied either by the notation designer or elsewhere. 

Once logical issues are settled, design can attend to the more concrete aspects of syntax. 

Notation design needs to exploit the different advantages of both text and graphics [D4], 

combining formulaic and diagrammatic features to best effect. For flexibility, there must be an 

adjustable balance between abstraction and specificity (directness), allowing choice of which 

configurations are abstracted. The hiding of detail made possible by abstraction opens up a way 
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to offer a more vague mode of expression [D5], which may be appropriate at the early stages of a 

software design process, when ideas are often diffusely represented. The preciseness of notation 

cannot be controlled until the concepts of ambiguity and vagueness are clearly defined. 

3.4.2 Problems in Specifying Notations 

Next we consider how notation is specified, taking note of several issues and openings for 

research, and highlighting some points on the lack of clarity over the subject of study (artificial 

notations), the problems of description and the choice of suitable formalisms. 

3.4.2.1 General Issues of Specification 

S1 The techniques and tools present us with a jigsaw puzzle of varied and disparate 

approaches. 

S2 There are no theories that define what constitutes an artificial notation, as opposed to a 

system of representation, or a spoken language. 

S3 Informal definition of syntax may obscure the underlying properties of the subject domain. 

S4 Mathematical formalizations help the specialist, but cannot be controlled by most users. 

S5 Disagreement exists on the underlying type of logical structure presumed in syntax. 

S6 Spatial relations and theories are important, especially in regard to analogy. 

S7 Descriptions of syntax involve a mix of logical constraints and structural rewrite-rules. 

S8 An operationa/ semantics for a notation can be given only if the context is formalized. 

We would hope for an uniform theory on which to base descriptions, but this is not what we find. 

The pieces of the jisaw [Sl] - qualitative spatial logic, grammars, algebraic semantics, declarative 

programming systems, analogical inference, graph rewriting and constraint logic - must somehow 

fit together to form a coherent picture. This predicament is acknowledged in recent work. Marriott 

& Meyer (1996) observe that progress in visual language specification has resulted in a wide range 

of formalisms that are hard to compare owing to diversity in underlying assumptions. They 

conclude that a common basis for specification is indispensible to gain clarity. Haarslev (1995) 

observes that there is "still a strong need for an adequate theoretical foundation of visual 

languages. 0 On the evidence collected in this chapter, a convincing common basis is yet to 

emerge. 

Another problem is the uncertainty of scope. We do not find clear definitions of what counts as a 
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notation or visual language [S2]. This causes difficulties, because the limits of a descriptive 

method must be determined from the range of phenomena to be described. Approaches differ in 

their treatment of syntax and semantics; for example, many notations we wish to support do not 

have the clear operational semantics required in the specialized area of visual programming. We 

must allow that the reported formal notions of graphical notation may not be defining the same 

thing -the pieces of the jigsaw may not all belong to the same puzzle. 

Many aspects of representation in computing are not notational. For instance, data and program 

structures are not in themselves notations, though they may be visualized. In this thesis we 

require notated expressions to be designed for people to view or read, but it is unclear what is in 

common between graphical language and spoken language. The linguistic theories in (§3.1.1) 

show that natural language is complex and rich in structure. For diagrams, it may not be possible 

to formalize all the notative mechanisms which may arise or evolve naturally, owing to the 

indefinite number of pictorial metaphors that could be created. If we restrict our aspirations to 

notations that are artifacts, formally devised for particular purposes, some simplification is 

essential. To base an analysis of notation structure on theories of natural language would build in 

unjustified complexity. Neither can it be assumed that graphical language adopts the same 

structural tactics as are found in spoken language. 

The thesis argues against the view that graphical notations should only be used as an informal aid 

in the development task, or in explanations to users. Diagrams with no precise meaning cannot be 

acceptable for accurate communication with users. There is then a need for appropriate methods 

of definition. If syntax definition is informal [S31, the true behaviour or semantics of expressions 

may differ from the user's intuitive understanding of the analogies embodied in the notation. This 

informality cannot assist a rigorous approach to software development. Mathematical techniques 

can support syntax definition [S4], but are also hard for most users to read and comprehend. 

Specialized methods each rely on a particular notion of structure. Research must establish what 

kinds of structure are suitable. 

The stnicture of expressions [S5] underlies any definition of syntax; it is a data-structure, normally 

some kind of graph or tree, upon which computations can be performed. Such structure is not 

essentially spatial- to become so it requires the help of an analogy [S6]. Much of the recent work 

has emphasized the spatial properties of diagrams, in terms of qualitative topology rather than the 
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mathematician's usual formulations. Suitable 'theories of place' are needed if software is to 

recognize hand-drawn forms or analyse perception; their relevance to syntax and semantics is 

more a matter of defining the analogical relationships between the data-structure and pictorial 

structure. 

Several different kinds of rules are proposed for syntax and semantics. Syntactic rules [S7] can 

be grouped into those that generate expressions and those that constrain them to be well-formed; 

constraints may apply either to the results or to the process of rewrit. ing. Both grammatical parsing 

and constraint-checking rely on pattern-matching algorithms, but the connection between these 

two kinds of rule is not well understood. There is thus a spectrum of specification techniques that 

ranges from wholly constraint-based techniques to those that use only rewriting. At one end of the 

range, computation relies on constraint-solving; at the other, defined structure is specified as that 

which can be generated by some grammar. The techniques vary in how much information on 

implementation is supplied in specifications. For semantics, some operational approaches [S8] 

are applied in the case of visual programming environments (§3.3.3). The notation processing 

requirements reported above (§3.3.1) suggest that operational rules may be usefully formulated 

wherever the usage of expressions within a context is sufficiently well-defined. 

3.4.2.2 Problems of Syntax Description Formalisms 

F1 Specification techniques are too powerful and general. 

F2 Formalisms do not embody specific theories of notation syntax (see S2 above). 

F3 Formalisms do not clearly separate different kinds of structure. 

R The grounds for using graph grammars to describe syntax are not clear. 

F5 There are no clear guidelines for determining which type of graph to use (see S5 above). 

F6 Implementation of general rewriting rules is a non-trivial task, and parsing is complex. 

F7 Graph grammars do not easily treat spatial reasoning and global constraints. 

F8 In most techniques, specifications for graphical notations are expressed in textual format. 

From the varied methods reviewed in this chapter, we can infer that necessary flexibility is only to 

be achieved by a highly abstract approach to structural representation. Where the difficulties lie is 

in how the expressive power of formalisms is managed [F11. Greater power has been introduced 

in order to ensure coverage of a wide enough range of notation structures. Programming 

languages, logical languages and graph grammars are technical tools that have great generality of 
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application; it is thus not surprizing that they are useful for defining various diagramming methods. 

It is certainly valuable to specify notations using a specification language such as Z but such 

general purpose formalisms fail to shed light on the simplicity of notation structure 

Attempts to devise formalisms especially for specifying notations have not yet uncovered the 

appropriate limits on expressiveness; properties peculiar to notations have not been taken into 

account [F21. If the general principles of graphical mechanisms were better understood it would be 

clearer how to provide a sufficiently simple theory - rather than rely on general methods of 

specification that have been developed in relation to computation. Formalisms therefore need to 

be adapted to the specific area of notation design. 

Methods of formalization address different aspects or kinds of notation structure. A 

comprehensive method [F3] must be capable of separating different structural processes - 

whether graphical, syntactic, semantic or pragmatic - which may be present. It is harder to design 

or modify a notation if the formalization allows boundaries between layers of structure to be 

unclear. Some recent researches separate pictorial structure from syntax - e. g. VODUVSDF 

(§3.2.1) and PROGRES (§3.3.3). 

Grammar formalisms are popular; these approaches use graph theory or relational structures to 

generalize the better known grammars of artificial textual languages, which In turn originate as 

simplified methods from linguistic theory. We need evidence [F4] that such grammars are in fact 

relevant to graphical notation. The grounds for choice of graph-type [F5] need to be explained; in 

the reviewed approaches, we find a full range from simple directed graphs to higher-order 

relational structures. 

Having fixed and formally specified the type of graph, in grammar formalisms the checking of 

syntactic correctness requires a complex search [176]. The complexity of computation is too great 

unless the expressive power of the formalism (and the range of notations covered) is restricted. 

Reports indicate that incremental graphical parsers are now capable of efficient operation for 

suitably restricted grammars. 

Spatial concepts [F7] are usually dealt with by means of attributes on elements, and constraints on 

these attributes during rewriting. The logical complexity of these constraints is then an issue. The 

use, of attributes in grammars allows local graphical constraints to be accommodated, but does not 
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easily manage global aspects of style. 

Although many authors emphasize the benefits of graphical expression for comprehension [178], 

these benefits are often forgotten when it comes to the specification formalism itself. Whether 

based on grammars or logical constraints, formal approaches rarely express their rules graphically; 

this may be because of a presumption that a professional programmer or other specialist will be 

the end-user. The approaches concentrate on facilitating the programmer's job (of building an 

editor, say). Certain grammar formalisms do have the advantage of being able to express rules 

graphically, though they borrow some pictorial items and spatial relations from the notation itself. 

3.4.3 Limitations of Notation Processing Tools 

We have seen that formal definitions of notations are a prerequisite in constructing tools to assist 

processing. Taking into account the scope of this chapter, we here consider problems of 

processing expressions, in particular the deficiencies of graphical editing tools that other 

researchers have described. 

3.4.3.1 The Scope of the Review 

The review presented in this chapter does not claim to cover every kind of processing support. 

Individual computer-aided software engineering (CASE) tools that support 'notations as an integral 

feature of a development method have not been reviewed. We have not considered how well 

CASE tools are able to extract and present requested information in notation suited to the user. 

Nor have we covered systems that assist human reasoning with diagrams or those that undertake 

general symbolic computation, calculating or querying knowledge-bases. These are regarded more 

as problems with visualization of data or computation, going beyond the notational issues that are 

the focus of this thesis. For our purposes, notation processing does not concern symbolic 

structures that are too large for display or coherent perception. 

The review has not covered the full range of activities that may be supported by tools. Less 

attention has been devoted to certain semi-automated operations that require little human 

intervention: 
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checking pragmatics: consistency with context, 
interpreting (especially the immediate interpretation that is needed in a graphical 
dialogue), 

translating and changing of viewpoint (hiding detail, revealing consequences), 

automatic or assisted layout control. I 

The tools considered are predominantly those that support operations that help people in the task 

of producing expressions: 

creating (drawing and composing), 

generating (by grammatical rule), 

editing (with syntactic & semantic checks). 

In addressing needs for notations, we seek tools which can provide help with their specification 

and design. Generic editors are the only available systems that might serve this purpose. 

3.4.3.2 Problems and Limitations of Processing Tools 

TI Building of notation-interfaces for software engineering tools has resulted in fragmented 

effort. 

T2 The lack of coherent notational design principles makes tools unsuitable for developing 

new notations. (see D1 above) 

T3 Current generic tools are limited in the features and structures which they can accept in a 

newly designed notation. 

T4 The notation-user is mostly excluded from the process of shaping notation, with little 

opportunity to create, amend or reason about the specification. 

T5 Current tools are limited in the processing they implement - principally editing and 

compiling, with little support for translating between notations or offering variant views. 

T6 Automatic layout satisfying global stylistic constraints is inherently complex. - 

Because of the common close association between notations and method, tools have been far 

below the level of general application necessary for user-control of notation or standard 

construction. Editors for each notation used have been programmed individually [T111, though this 

state of affairs is changing. 

The reviewed tools do not give sufficiently broad support for processing. Because they do not 

have appropriate theory to rely on [T21, tools offer little help with syntax design. Each system is 

developed on its own individual theory and implementation of notation structure. Fully generic 

notation processing tools [T3] need to be based on a sufficiently general characterization of 
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serniotic structure, so that innovations in semantics or syntax do not force ad hoc extensions to be 

made to the systems. 

Even the use of improved techniques such as graph grammars or constraint logic [T4] does not 

offer users an accessible way of modifying syntax. As a consequ9nce of the over-complexity of 

specification formalisms and lack of software support for manipulating them, it is difficult for users 

to alter the specification of a notation to suit special purposes. Recently developed systems still 

require expertise in logic and programming in order to design or modify notations. A coherent 

approach to notation design needs to be more than a graph grammar / constraint logic 

programming exercise. 

Tasks other than editing [T5] are neglected. Semantics of programming languages is only 

supported in a concrete operational sense by interpreters and compilers; neither formal 

denotations nor translation to other languages are normally supported. Expression layout [T6] 

may require a range of techniques that do not fit into grammar models. 

3.4.3.3 Difficulties of Editing and Editors 

El Editors cannot easily offer varying degrees of guidance suited to the individual user. 

E2 Editing an expression may involve complex operations not defined by grammar rules. 

E3 It is hard for grammar-based editing to accommodate sensitivity to semantics or context. 

E4 Unfinished expressions which are generated during 'permissive' editing are not easy to 

store. 

E5 There is a lack of awareness that different depths of structure-checking are needed. 

The need for editing with enough freedom and flexible guidance [EI] is hard to satisfy. Guidance 

should ideally range between recognising free hand drawn input and demanding fully syntax- 

directed selection. Which rules should restrain manipulations? Which rules should cause 

warnings before a requested change is confirmed? Which rules should be applied only as checks, 

on request? 

Guidance for editing must be derived from the syntactic specification. If syntax is defined by 

constraints, checking for well-formedness involves logical inference. If syntax is defined by a 

grammar, checking requires a search for derivations. It is not clear whether either method has a 

general advantage. When using a grammar, the operational nature of rewrite rules has an affinity 
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with certain editing processes, but editing is not simply a matter of applying compound rewrite 

rules, as some tools presume. Composing an expression [E2] may involve operations of splitting, 

joining or substituting of expressions. 

During the creating of an expression, the context in which it is enacted (e. g. integrated with a 

larger document) may not yet be determined. If the context of enacting the expression is known 

during editing, sensitivity to semantic and pragmatic compatibility becomes possible [E31, but only 

by logical inference or computation. 

Unfinished expressions [E41 often have no clear status; they are not made available as legitimate 

vague or partial representations. To allow for partial expressions, checking would need to be 

selective. Checking could be carried out according to which level of constraint [E5] the user wants 

applied (graphic, syntactic, semantic, pragmatic, stylistic). The computational models underlying 

editing should not interfere with these requirements for flexibility. 

3.4.4 Researching Notation in Software Development 

In view of the problems just discussed, and in order to clarify the choice of topics for research, we 

next consider some of the benefits that may result from formalization. We look at the assistance 

that it offers in the difficult areas of designing, utilizing and processing of notation. Possible 

approaches are suggested to solving the above listed problems. 

From the many detailed points noted in this section, two general points on formalization stand out: - 

W1 The weaknesses of current approaches stem from a scarceness of clear theory that is 

appropriate to notation specifically. 

W2 The various techniques and tools are too diverse or rely on unclear principles; 

they offer users little flexibility, and do not readily and reliably extend to new notations. 

This thesis offers a more uniform formalization as a way to address the problems. 

3.4.4.1 How Formalizing Graphical Notations can Help 

H1 Provision of a theoretical basis for graphic notation can lead to greater flexibility and 

expressiveness, and an increased confidence in precision. 

H2 An uniform specifying formalism can allow notations to be compared in structure and 

complexity. 

H3 A formal description can make room for informal variations and annotations. 
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H4 Formalization assists development of both mathematical logic and pictorial metaphors. 

H5 Rules of manipulation are established by formalizing the notation. 

H6 Formalization can provide modular specifications to help make designs flexible. 

H7 The programming of graphical notation tools is reported to be much simpler using 

specialized formalisms. 

H8 Graph grammars and constraints are each useful for controlling the operations of editing. 

H9 Translation between notations from different methods requires some common structural 
basis. 

In contrast to an informal approach, a formalized basis [1-11] opens the way for logical rigour in all 

styles of expression. Formalization provides an uniform framework [1-12] capable of specifying the 

different aspects of structure that can be found in notations, and which may be used to control the 

complexity of syntax. Within a formal framework, aesthetic or informal details of notation style 

[1-13] can be accommodated by heuristic rather than exact rules. 

Formalization applies especially to purposes of reasoning and calculation [1-14], where concise 

algebraic formulae are especially valued. Although the structure of such formulae is well 

understood, their semantics cannot easily be directly expressed in diagrammatic style. A formal 

understanding of semantic processes allows better use of metaphor and analogy, that is necessary 

in converting to formulae into diagrams. 

Tasks which insist upon rigour [1-15] may be made easier to grasp by the use of diagrams and 

computer-aided manipulation. Formalization admits automatic application of rules and assisted 

heuristic searches for solutions, although reasoning cannot be fully automated. Notations can then 

be given an instructive semantics which helps users to think and calculate, through applying 

explicit rules. 

Separating different Winds of structure [1-16] within a notation helps support flexibility of design - 

users can then change the more superficial syntactic characteristics of a notation without 

disturbing the semantics. There is a great need to allow variation of modality and all aspects of 

style. For example, the pictorial elements in a notation can act as metaphors, by suggesting some 

intended analogy. It is therefore helpful to allow the shape or spatial relations to be changed in 

order to select the best metaphor. Separating different kinds of structure within a notation also 

helps keep specifications simple and in principle allows more efficient implementation. 

103 



3: Review of Notation Support 

Formal specifications are essential in supporting editing [1-17]. Editing involves modifying a 

drawing, subject to constraints that define the notation. The specified syntax in effect determines 

the maximum structural constraint that can be applied during the task of composing an expression 

- outside of context. Several reports of recent research'show that progress is being made on 

more general and flexible support for building notation editors from specifications. The particular 

method of specification [1-18] can affect the process of editing. Broadly speaking, graph grammars 

are suited to directed editing, but constraints are better for permissive editing. Improved 

techniques of graph rewriting [H9] also make it possible to use graphs as a lingua franca for 

translation. 

3.4.4.2 Potential Methods of Implementing Notations 

M1 Logic and logic-based computing are valuable. 

M2 Graph rewriting techniques are important. 

M3 A hierarchy of expressive power in formalisms is valuable. 

M4 Processing should take advantage of spatial layout to optimize searches. 

The reports show where solutions may fruitfully be sought. The methods of specification that have 

found most favour are similar to those being applied in computational linguistics [Ml], which are 

allied to declarative programming, logic and type theory. Yet there still remains a theoretical gap 

between generative grammars and logical constraints. some sort of constructive or operational 

theory must govern the manipulation of notational structure in editing and translating. However 

the structure of expressions is framed [M2], rewrite rules may provide an apt formulation for 

operations of transforming and calculating, independent of programming languages. 

Efficiency should be promoted by graded complexity [M3], based on different kinds of syntactic 

structure. If this is not done, processing and reasoning will be no more tractable than in operating 

on general structures. Efficiency can be aided by the two dimensional layout [M4] that is a 

defining feature of notations. Just as the concatenated structure of text or spoken language is 

central to efficient parsing, in diagrams the 2D spatial structure can be used to help organize 

efficient searches during structural matching. 
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3.5 Selecting the Research Agenda 

Now that we have observed where the difficulties and challenges lie, and given the confines of a 

doctoral thesis, the task remains to make a selection of research goals that may be achievable. 

The choice is guided by the issues that have emerged in the primary literature that is reviewed 

above. In the course of the present work, the importance of these issues has been confirmed by 

the more recent of the reviews. 

A way forward is proposed, and the alms for this research into formalizing graphical notation are 

established. Finally, a list is given of some topics that must be excluded from our consideration in 

this thesis. 

3.5.1 A Proposed Way Forward 

As indicated in the above discussion, this work contends that formalization is a key to solving the 

problems of graphical notation. Here the reasons are summarized and a statement of aims and 

objectives is presented. 

3.5.1.1 Formalizing Graphical Notations 

Diagrammatic expression has a folklore of practical techniques and conventions, but until recently 

there has been little theory to explain why these notations work or even to describe them. By 

formall specifying the structure of pictorial notations, the ground may be prepared for establishing Y 

good design principles. A suitable research aim should address this task with an eye to 

constructing and applying as simple and appropriate a body of theory as may be found. 

Research should establish a uniform basis for notational design - one which takes into account 

serniotic principles, and which yields elegant ways of combining constraint logic with graph 

grammar techniques. The basis should be able to explain metaphors. Formalizations of notation 

structure that stand on this uniform base should then be expressed graphically, in several specially 

tailored specification meta-notations. 'This would make serniotic structure more explicit and easier 

to understand, thereby increasing awareness of design choices. 

The benefit in formalization lies in helping to improve the design of notation and to give 

practitioners - users of notation - more control. One way to do this is to provide generic 

notational-design tools, which could be used whenever a need for new notation arose. These 
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software tools would enable standard editors and semantic checkers to be built, without the need 

to use a programmer's language. Although inventing a notation 'from scratch' would still need 

special skill, the facility to make minor adjustments and extensions to existing notations would be 

within reach of many users. 

Computer-aided software development requires a system of notations for different purposes. 

Ideally, a notational-design tool would provide a facility for permitting incremental change to 

syntax and semantics for all the notations designed or adapted for use in the developer's method. 

3.5.1.2 Statement of Alms and Objectives 

In accordance with this analysis of the problems, this thesis aims to put forward a mathematical 

theory of serniotics for notation systems in order to describe notative techniques more formally. It 

will apply mathematics to the problems of designing effective notations, and of building interactive 

tools for notation processing. 

The intention is to lay down some stepping-stones towards a science of formal notations. 

The objectives of the research are to find: - 

1) a formal, uniform means of specifying the structure of graphical notation systems; 

2) a computational and mathematical foundation for designing graphical notations; 

3) a clear diagrammatic way to communicate syntax; 

4) a plan for developing a generic notation-processing tool, with a prototype implemented in 

Smalltalk. 

As this chapter has shown, during the period covered by this research many other researchers 

have begun to tackle related problems concerning visual language and diagrammatic reasoning. 

The lessons and gaps discernible (§3.4) in these parallel researches will be given further attention 

in succeeding chapters. 

3.5.2 Excluded Topics 

There are many interesting topics related to this study that will not be covered here - they are 

addressed by other authors. 

3.5.2.1 New Modes of Expression 

The computer is also a new medium with extra dimensions of representation (Colour, 3D effects, 
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3. Review of Notation Support 

Animation and Interaction) that increase possibilities for analogy. Software writing has already 

been simplified by the advent of Visual Programming, reducing the need for coding skills. 

Program Visualization, which seeks to represent the execution of a program, must rely on 

interaction with animated graphics. These aspects will not be treated In this thesis. 

3.5.2.2 Interaction and Dialogue 

A software development method makes use of a system of several notations and a project will 

generate documentation expressed in them. The documents "tell a story" of the development, 

which is open ended, always subject to modification. An exchange of diagrams can take place 

between person and software, as in 'query-response' with a database. The effect of enacting an 

expression in a document is to modify the context in some way - perhaps adding to a 

specification, or giving an instruction to a software application, or providing data to an active 

process. In return, a process might produce an expression, as if in dialogue or discourse. 

Another kind of discourse occurs in 'direct manipulation', where an expression on screen becomes 

a communication channel -a part of the context. Using gesture as a communicative act, a person 

creates a signal, to which the computer may respond by changing the expression. Interactive 

notation, by means of pointing, pressing and dragging, exploits haptic senses and follows 

kinematic and mechanical metaphors, that are neither linguistic nor visual. This may be ascribed 

to a dynamic syntax of interaction, that extends graphical syntax into the gestural medium of user 

interfaces. Study of these kinds of discourse will not be the focus of this work. 

3.5.2.3 Cognitive Principles 

Formality clarifies the details necessary to support computer-aided editing, interpretation and 

translation. Clarity of design may also lead to a better understanding of human factors, of how 

skills place limits on the size, detail and style of diagrams, depending on the context in which 

people meet with the expressions. The principles that make a notation easy to learn, or improve 

legibility of expressions, must however be informed by studies of cognitive and perceptual ability, 

which are outside the scope of this work. 
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Chapter 4 
An Exploration in Search of Notational Theory 

Abstract 

Here we find an exploration into the nature of graphical notations and possible formalizations, 

which seeks to resolve the problems noted in the previous chapter. First there is a clarification of 

boundaries for the topic of research, and an analysis of the roles that technical notations f ulf il. The 

exploration then ventures into elementary serniotic concepts, discussing these as they relate to 

notations. The discussion argues that notation draws upon many prior cognitive skills in order to 

motivate its connexions between signifier and signified, whether linguistic, pictorial or spatial. This 

posits 1conism, analogy and metaphor as initiating principles for signification, though the 

association of meanings can only be established by usage and agreement. A phenomenon of 

layering is noted in general codes, which may be attributed to economy in cognitive specialization. 

Ideas of computational linguistics are explored next, with reference to our main concern of 

defining notation structure. These ideas suggest that the logical relations between concept and 

percept are organized to make deduction of meaning feasible, and that the grammar rules act as a 

resource-sensitive deductive system. The question of structure is resolved by taking the form of 

expressions to be a certain 'graphoid' structure, in order to support rewriting and local 

computations. 

These arguments lead towards a theoretical framework; according to this proposal, notation is 

described by a formal theory divided into layers, with mappings between theories to define 

serniotic process. An expression is then a model of a syntactic theory, and grammars arise as 

implementations of proof-strategies. A continuum of inference connecting graphical elements to 

semantic concepts explains how both learned rules of manipulation and analogical mechanisms 

help the viewer of expressions to concretely verify their thinking. 

Thus the chapter points the way towards a formal understanding of notations as sign-systems, and 

lays a foundation for an uniform descriptive theory in accordance with the aim stated in the 

previous chapter. 
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Chapter 4. 
An Exploration in Search of Notational Theory 

"... the purpose of theory is to organize thought, not to drown it, to be 

constructive without being oracular. " - Vaughan Pratt (1988) 

The survey and review have directed our attention towards a general area of difficulty In 

describing and processing the notations needed for software design - an area in which better 

methods of formalization may be of some help. The purpose of this chapter is to investigate the 

nature of graphical notations and to look for appropriate ways of formalizing them and addressing 

the problems raised. 

The chapter determines more carefully the area that is to be researched and situates it within the 

wider territory of semiotics; an analysis of semiotic concepts Is undertaken to shed light on the 

mechanisms and structures found in various styles of notation. The central issue, of notation 

structure, is then explored in some detail, informed by the observations of computational 

linguistics. In the final section the argument leads towards a proposal for defining notational 

processes, thereby laying the foundations for a theoretical framework. 

4.1 Defining the Area of Research 

Our exploration starts with a consideration of the proper ground for research into formalizing 

notation. This section discusses the nature and origins of notation, continues with the notion of 

formality and then analyses in more detail the kinds of roles that notation plays in a technical 

environment. This will help us focus more clearly on specific problems of reaching a formal 

understanding of structure. 

4.1.1 The Nature of Graphical Notations 

To clarify the focus of study it is necessary to set some boundaries around the topic. We turn to 

the early history for clues about the commonly observed properties of graphical notations. We 

reflect on how notations differ from languages, in usage and attributes. 

4.1.1.1 What is a Graphical Notation? 

Graphical notations are limited, for the purposes of this thesis, to systematic formations of 
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expressions that are communicative and can in principle be drawn without computer support - 

ruling out spoken language, data-structures, images and patterns as such. Just as structural 

linguistic theory excludes acoustics and cultural knowledge from its remit, an examination of 

notations should also stop short of analysing graphical displays and computer science. 

Signification in notation is therefore based on codes that are constrained by human abilities to 

apprehend drawn configurations. Although often referred to as visual, there is no restriction to sight 

as the mode of perception; tactile sensing could also stimulate the relevant spatial cognition, along 

with linguistic and more general pattern comprehension - as noted in Stenning & Oberlander 

(1992). 

4.1.1.2 Text and Diagrams 

As we have seen in (§2.1.3), diagrams are generally regarded as very different from texts. What 

is the basis for the difference? For instance, (Gurr 1996) states: 

NThe two most notable differences between texts and diagrams are the relative difficulty of 

expressing abstraction in diagrams and the inherently one-dimensional nature of texts. " 

He relates this to the observation that textual representations are type-referential (identical tokens 

refer to the same object), while diagrams tend to be tokei7--referential (alike tokens refer to 

different objects). Barwise & Etchemendy (1995) point out that good diagrammatic 

representations always exploit features of the domain being represented, and so typically lack the 

representational expressiveness of language. 

Nevertheless, diagrams are not fundamentally different from text. Written words and pictures are 

both signs within systems; they have a common communicative purpose amongst those who use 

them. This thesis argues against the taking of too absolute a division between verbal and pictorial 

modalities, based on cognition. Sequential form is one of many possible graphical arrangements, 

and abstraction is a principle equally available to diagrams - either in the sense of reducing 

unwanted detail or of recursive coding. In placing the focus on notations, this work seeks to 

include both modalities on an equal footing. 

This thesis -prefers the neutral terms 'notations' and their 'expressione, acknowledging that 

diagrams and text are both graphical - drawn, stylized forms. A more important distinction to 

observe is that between the persistent physical status of expressions and the transient nature of 
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the spoken word, which makes different demands on mental mechanisms. Many cognitive 

mechanisms are surely at work in grammatical processes and in linguistic or pictorial metaphor. 

Although cognitive constraints must be taken into account and are worthy of study, this research 

primarily treats notations as 'culturaf entities. 

4.1.1.3 Origins and Usage 

In what ways do human cultures determine the form of notations as distinct from languages? Why 

do technical notations appear in two kinds, diagrams and formulae? Knowledge of the origins of 

notation would go some way towards answering such questions. It is not possible here to establish 

how notations originated, but we can at least consider how and for what purposes they have been 

used. 

Archaeological evidence suggests that the ability to draw pictures made possible the development 

of script styles from the spoken language codes that long preceded them. These written symbols, 

whether they had phonetic value or semantic sense, soon became stylized and detached from their 

earliest pictorial significance. It appears that writing was for a long time practised only by a minority 

selected for their particular intellectual skills. Although these skills are today more generally 

attained, writing in technical areas is still restricted to minorities with specialist training. In 

mathematics and the sciences, a formula is a shorthand for a sentence, replacing words by 

symbols, whereas a diagram is a stylized drawing. Just as with writing, these notated symbols, 

whether derived from alphabets or from pictograms, have become detached from their earliest 

context to achieve a newer, more precise meaning. 

These origins imply that, as with language, notations are a means of expressing, sharing and 

recording ideas. Early pursuits of Arithmetic and Geometry show notations specialized for 

structurally complex ideas that are not easy to capture concisely in speech. They offer precision, 

since usage is cleaner and less ambiguous than with language. As well as being a shared medium 

of communication, they assist reasoning and calculation. Diagrams help visualize structure, while 

symbols in formulae can be manipulated by rules. The ability to formulate rules for calculation is 

quite a recent development of human skill. 

The visual presentation, as with writing and pictures, has advantages over speech. Expressions 

persist, and can hold attention long enough for a story to be read. Viewers can point to them, 
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4.1.2 Formality and Formalization 

We continue by considering what it means to formalize a notation. What are the implications of 

such a procedure? 

4.1.2.1 Formality In Language 

In a computing context, formality is usually defined as the use of mathematics, though it is not in 

fact an essential part of applying mathematical techniques. The need for formality lies rather in the 

global spread of communication, where sharing of context and experience is limited. This is one 

reason why programming languages demand high standards of formality. It also explains why 

normal notational practice In mathematical investigation is informal. Formal work is reserved for 

checking and verifying calculations and proofs. 

An extreme case of a lack of shared experience occurs between human thought and mechanical 

computation. Formalizing a procedure is essential in order to enable automated calculation and 

reasoning. Computers can perform symbolic calculations efficiently, using concise programming 

codes that have low redundancy in an information-theoretic sense, but are therefore prone to error 

when in human hands. 

Informal language relies on the 'common sense' resulting from an ill-defined body of experiences 

shared in a community. Computers, on the other hand, are less well adapted to informal non- 

symbolic tasks, such as picture recognition and general problem-solving. They cannot resolve 

ambiguity in an expression by using unencoded common sense. Hence computing demands more 

formality in notations. 

4.1.2.2 Formalizing Notation Structure 

We find two senses of the word formaL The first is that of being constrained by some fairly stable 

or strict cultural code of behaviour. In the second sense, a formal behaviour is one that is explicit 

and precisely defined. These senses are related, in that presentation of an explicit definition of a 

code may lead to greater stability. 

This research is concerned with formalizing in the sense of describing rigorously how actual 

notations are structured, thereby making it possible for the activity of notating to be carried out 

formplly. It does not mean to prescribe that all pictorial communication should be strict and 

formal. A graphical notation may be intended for formal use, though it lacks any express 
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definition; conversely, a notation may be informal in style, yet we may still seek to describe it 

precisely. Precise description presumes that a code (whether stable or not) can be given a basis 

in some logical framework. Any mathematical model of natural phenomena must, however, be an 

idealized or simplified system - as a human artefact, a notation can never be precisely defined. 

The act of formal description thus inevitably prescribes some restrictions on any notational 

practices that rely on its support. 

For simplicity, the Idealization here will largely ignore questions and details of context. The usage 

of expressions involves method protocols, shared knowledge of the working context, and general 

knowledge relevant to the domain. To formalize this would require a model of the complex 

information processes of software development methods, as well as the cognition of the 

participants and the functions of the tools used to build software systems. 

A further simplification is to ignore historical processes. Ungulstics distinguishes two aspects in 

the study of a language (Saussure 1916): A synchronic approach looks at language structure as it 

exists at some point in time; a diachronic approach describes the processes of change and 

evolution which languages undergo. This thesis follows the linguistic tradition in treating notations 

synchronically, idealizing their instantaneous structure, and not attempting to understand how they 

develop over time, or how they are learned and used. 

4.1.2.3 Informality and Ambiguity 

The intended formalization will also disregard the possibility of informality. Notation is informal 

when its rules of interpretation are not fully agreed or understood -- which may lead to errors of 

interpretation that cannot be automatically checked or converted. Informality is pejoratively 

referred to as a source of ambiguity and vagueness. Against this, we learn from Design Theory 

(Lawson 1996) that these attributes, typical of natural language and rough sketches, have an 

important function in the early stages of a design project, not only because they defer decisions, 

but because they help the imagination to play its part in searching for resolutions. 

This suggests a need to support a refinement process that progressively removes ambiguity, 

allowing for transitions between informal and formal representations. Just as understanding of a 

software system must become more precise as design proceeds, informal expression must give 

way to formality at whatever level of abstraction may be required. Formal notations then provide 
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the bridges needed to connect the human domain of informal knowledge with the computational 

mechanisms of accurate reasoning. 

It may be possible to give a formal treatment of ambiguity, perhaps as a set of coherent 

interpretations of an ambiguous expression. Ambiguity is not the same as non-determinacy, 

hiding of detail or successive approximation, which are acceptable and formalizable ways to defer 

decisions. The criterion is that a viewer be unaware that an alternative or less exact interpretation 

exists. Ambiguity has the potential to stimulate many alternative meanings -a kind of implicit 

logical disjunction. 

I 
These observations suggest that the imperative for formality may lie in the prevention of 

ambiguity. It follows that formal visual symbols must be clearly recognizable and associated by 

mental habit to concepts within a stable cognitive model. If this model can be simulated by 

abstract symbol manipulations, it might be possible to specify an unique meaning for every well- 

formed expression. 

The existence of firm and explicit syntactic rules does not suffice to prevent ambiguity, which is a 

property of interpretation of syntactic form. On the other hand, avoidance of ambiguous 

expressions does not preclude representation of logical disjunctions, existential propositions, or 

even fuzzy predicates, all of which are matters of semantics. 

4.1.3 Notational Roles 

In order to keep in mind the uses of notations reported in the survey of Chapter 2, it will help to 

make a short analysis and classification of roles that they play. The discussion considers the ways 

that representational expressions serve in dealing with the structure of complex systems and other 

aspects of systems development. What do people do with notated expressions? 

4.1.3.1 Instructive and Engaging Notation 

Martin & McClure (1985 pl 09) describe diagrams as aids to clear thinking - if only one person is 

developing a system - and essential to communicating when several people collaborate. 

'A formal diagramming technique is needed to enable the developers to interchange ideas and to 

make their separate components fit together with precision! 

*A poor choice of diagramming technique can inhibit ... thinking" 
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A notation fills an instructive role when it is a tool for thinking: extending memory and aiding 

imagination. Such notation can be personal, invented as needed and informal at first, but the 

desire for rigour may lead to formality. The ability to support informal reasoning requires an 

accurate use of structural analogy, implying that pictorial expression can help. An instructive 

notation must be sufficiently formalizable in order to have interpretive rules that a user can learn. 

The notion of engagementl is useful here: an engaged viewer is absorbed with content of 

expressions, not their superficial form. Expressions are engaging if they are easily read and 

understood by a diverse group of users. Engaging styles reduce the amount of cognitive 

investment needed to acquire competence with a notation's syntax and rules of interpretation. 

Engagement is supported by using features familiar in another context -a different notation or 

general perceptual tasks - because the effort required to learn a notation depends on previous 

experience with similar graphic, syntactic and semantic structure. Direct features of diagrams and 

words help to draw viewers into the world described in a notation, as a result of general pictorial 

and verbal cognitive skills. Easy engagement in using a notation relies on firm habits of 

interpretation that lie below normal levels of awareness. 

The user becomes engaged in the notation only when the rules of interpretation are internalized; 

when learning a notation, the user is still partly absorbed by its syntax. Full interpretation is only 

possible when the user understands the subject domain for the notation. The degree of subject- 

understanding is an important criterion in choosing suitable notation. Experts in their subject can 

then engage with very complex notation; Novices in the domain may require a form of notation 

that is both engaging and instnictive in helping to learn and understand the subject. 

The expert user may wish to modify the syntax to make it more concise, or to better express new 

patterns in the subject domain. In exceptionally difficult work, the invention of new notation may 

be the first step in gaining insight into a problem, moving towards a more precise understanding 

that can be communicated rigorously. 

4.1.3.2 Formal Notation 

The need for rigour in representation favours compact notation over narrative text; concise 

notations can also serve as vehicles for computation. Where precision is important, a formal 

1 See Brenda Laurel (11991 a, b) for a discussion of this term as an application of dramatic theory to human-computer Interaction. 
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mode of expression is desired in order not be ambiguous. A notation has a formal role if its 

meaning is subordinate to its rules of manipulation. This possibility of reasoning by transforming 

symbols is opened up because expressions arre held in a persistent medium, giving aid to long- 

term and working memory. Expressions are in a code that may be processed by a machine or 

person as calculator, as in algebra and arithmetic. In computation, only formal operations are 

carried out on expressions. 

Formulae can be compact and easier to use formally, but people need considerable skill to 

manipulate them. Strict rules of syntax and semantics must exist, but need not be explicitly known 

by a (human) user. 

For example, programming languages are formal codes and tools for computation. Despite their 

formality, as Hoare (1986) observes, programmers are unaware of the laws that the codes obey. 

Though each language has its own community of users, they do not primarily use its code for 

general communication or instructing people. To overcome this, programming style encourages 

practices such as copious annotation in natural language text, and the use of familiar words as 

formal names. The predominance of individual use may be the reason for the wide variety of 

codes available. In mathematics, whenever formal expressions are also used as communications, 

there is much more uniformity. 

Programming is a difficult task that is not much helped by textual codes that imitate a restricted 

form of natural language and which force preciseness of form before accuracy of content. All 

established codes are practically formal, with strict syntax and implicit semantics by virtue of 

compilation and execution by machine. This operational formality is not explicit (beyond syntax), 

and hence not easily available to programmers, although it can be explicitly mathematically 

defined, using denotational semantics, as advocated by Hoare (1986). There are rarely any 

software tools available for semantic checking and processing, though some provide animated 

execution. 

A programming notation is instructive only insofar as it gives insight Into the nature of 

computation; it needs to be easy to engage with if novices are to be involved. Attempts to devise 

codes that are more 'natural', either with linguistic theory or with graphics, risk losing the formal 

precision, and do not necessarily make them more expressively accurate. The redesign of 
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programming languages along "structured" and "object-oriented* lines, sometimes guided by 

mathematical analysis, has improved their ability to instruct and communicate: attributes that are 

also found in the corresponding systems-diag ramming notations. 

4.1.3.3 Roles and Activities 

We can analyse roles according to activity, the agencies involved and knowledge needed for the 

activity or use of expressions. This is presented in a table2:. 

Role: Activity: Agency: Requirement: 

instructive Thinking individual own knowledge 

engaging Communicating community common experience 
formal Computation calculators simple, strict rules 

We see that notation is used for quite different purposes on different occasions, implying varied 

requirements on style and structure. Before questions on specific problems of style can be posed, 

the mechanisms that make expressions meaningful must be examined. 

4.2 Exploring Serniotic Theory 

We have gained clarity on the concepts of graphical notation and formalization and identified three 

roles that technical notations variously fulfil, which are related to activities performed with software 

design representations. We would like to build notations as reliable bridges from informal thought 

to precise reasoning. Can a mathematical theory of symbol systems provide the technology for 

this? 

In order to place technical notation within the wider background of sign systems, this short section 

outlines and comments upon basic notions and terminology of general semlotic theory as 

presented by Umberto Eco (1976). We follow Eco's division of the subject into a theory of codes 

which govern the behaviour of signs, and a theory of sign production, that concerns how a signs 

acquire meaning. The indented commentary points to notational examples of the concepts. 

4.2.1 Signs and a Theory of Codes 

Signs in general are governed by a theory of codes (Eco 1976 ch2), such as those that control the 

2We should not assume that Interaction with a computer counts as communication, nor that knowledge of context Is necessarily 

coded. 
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structure and functions of notations. We consider the composition and purpose of general codes. 

4.2.1.1 The Function and Content of Signs 

A sign3 is defined by its ability to stand for something else: its interpretation. The relation between 

its form and its meaning may be contrived or natural, but must not be an identity. It is important to 

remember that signs are defined by this relationship, not by any intrinsic structure of the objects 

that embody the sign. 

In notation, our concern with structured items is only in regard to their role in communicative or 

interpretive acts. Eco's serniotic theory does not address use of sign systems in thought, but we take it 

that serniosis should include thinking, where expressions stand for ideas. 

For example, an interpretation of program code can be the idea of what it does: its specification or its 

potential for execution by computer. Yet this code is mostly not'uttered'as a communication to other 

people. 

4.2.1.2 Signs and Codes 

A sign system consists of an expressive plane, correlated by convention to various content 

planes, including a primary content plane. The structure of a convention is known as a code. 

Codes define these correlations by means of a system of sign-functions, each of which 

establishes the correlation of a sign-vehicle (a signifier an abstract element of the expressive 

plane) with a sign-content (an abstract element of the content plane: a unit of meaning). 

A sign-content is known as an lnterpretant4. It is an abstract entity: a cultural unit, not a real 

object. Thus a particular culture 'owns' the code and the units of meaning in content planes. 

These units may be analysed by their types and features, which are further elementary cultural 

units, called semk attributes. 

The direct interpretation from expressive plane to primary content plane is determined by the 

primaty code, which is concerned with denotation. There may be a second code that correlates 

units in the primary plane with interpretations in a second content plane. This gives rise to an 

indirect interpretation of expressions in the second plane, known as connotation. 

We can infer that semiotic codes control kinds of tenuous logical connexion, which are temporarily 

3Terms In bold italic are those used by Eco. 

411: Is sometimes called a referent, though here we prefer to reserve this term for concrete items denoted In context. 
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and approximately maintained by cultural (and sometimes natural) agencies. Where there Is a 

system of notations and contexts, the connotative meanings can spread out into many domains. 

For example: the use of Ascii binary code sequences to denote a sequence of decimal digits which in 

turn denote a number, say; a number such as 2000 may denote a certain date, which may acquire the 

final 'connotation'of a millennial problem. 

A code establishes sign-vehicles from which concrete tokens are generated. Eco points out that 

replicability of tokens is important. Signs are manifest as physical objects or events, which are in 

some cases difficult to replicate, or even unique, like cultural events or works of art. Formal 

Graphic expressions lie at the other end of the scale, since they can be indefinitely replicated by 

printing or writing. The copying of symbols is aided by articulation into combinational units, which 

is a feature of notation in mathematics, and computer graphics. These units (e. g. screen pixels) 

need not be individually meaningful. 

Expressions (or terms) in a notation are sign-vehicles, and their manifestations in print or electronic 
form are tokens. 

4.2.1.3 Combinational Rules 

A sign-function can be defined in its own internal structure, and in relation to its combinational 

possibilities within a context. Combinational rules are grammatical properties of the sign-vehicle, 

independent of its function. They portray expectations of connectivity between types of symbol in 

an expression. 

Not all signs are articulable in this way. Spoken language has a characteristic Odouble articulation" 

of sentences, firstly into morphemes and secondly phonemes. The elements of the second 

articulation have no meaning in themselves; their forms have oppositional value, i. e. they have 

distinguishing perceptual features. 5 Morphemes sequence the phonemes into meaningful units. 

Similar structure is often found in textual notation. In other notations it can be unclear how to carry 

out such an analysis. Mathematical formulae are mostly singly articulated, with each character having 

meaning; diagrams may be resolved into textual forms, shapes, primitive graphic items (lines and 

circles), and perhaps pixels. 

4.2.1.4 Semantics and Pragmatics 

The semantic content plane is organized as a system of sememes (units of meaning), each 

5Could these features be seen as constituting a further lower level of articulation? 
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occupying a distinct place within a semantic 'space'. The sememe presents all coded denotations 

and connotations as a function of context, and is thus not itself an item in a content-plane. 

Whereas semantics treats abstract expressions, pragmatics deals with sign-tokens and signifying 

acts. The semiotic code also determines how expression usage depends on context, when this is 

analysed into its cultural units. This dependence on context is described by various types of 

presupposition: using an expression is said to presuppose certain properties of its context. 

Eco describes several kinds of presupposition, all of which can be found in notation. 

1) Referential - presence of a reference for each name used. 
2) Contextual - logical compatibility with neighbouring expressions. 
3) Circumstantial - what participants need to know about context. 
4) Semantic - metaphors or other temporary meanings in operation. 

In a software development context, (1) and (2) are required for checking acceptability of an expression 

being enacted. Circumstance (3) is more difficult to accommodate, since it requires keeping track of 

the discourse, and modelling participants' knowledge. Use of creative metaphor (4) is a feature of 

informal notations which might aid a discussion of requirements or design solutions, but cannot 

usefully be formalized. 

Pragmatics essentially defines a relation between expression and context that determines which symbols 

may occur and that restricts future actions, reactions or responses. Expressions can be effectively 

enacted only if their context supports it. This presumes that some of the complex context has been 

analysed and encoded by means of a formal approach such as Situation Theory (§3.1.2). When an 

expression is enacted, presuppositional checks can then be carried out, and any ambiguity may then be 

resolved by reference to this contextual structure. 

Contexts often take the form of a discourse between participants, or an extended exposition in a 

document. Discourse processes may allow new meanings to be attached to signs, symbols or 

parts of expressons. 

The structural rules of paragraphy that apply to documents also have this feature (e. g. the'definition 

before use' rule). 

Such extracoding pertains to creation of a new code, and lies both within a theory of codes and of 

sign production. 

4.2.2 Sign Production 

Sign production (ibid. Ch. 3) refers to processes which bring about new coding conventions, how 

signs and expressive structure come into being, grow and develop, how a code is established and 
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maintained; whether by natural or a formal process. The topic of sign production touches on 

diachronic issues which are relevant to the motivation and invention of new notations, or changes 

in style, syntax or semantics which may occur owing to change In skill of users or differing 

technical environments. 

4.2.2.1 Motivation for Signs 

The first concern is how signs and structure are motivated. To invent a content for a sign-vehicle, 

some motivation or stimulus must be present to adduce a correlation, which at length may be 

recognized as a new convention. The originator must elicit in the viewer perceptions 'equivalent' to 

those experienced in the actual idea. The three main methods of achieving this were identified by 

Peirce as: 

1) arbitrary symbolic associations made familiar by repeated use, 

2) associations motivated by metaphor or similarity, and 

3) temporary reference made by an action of pointing to an item in context. 

Peirce uses terms kon and Index to describe signs motivated by (2) and (3) respectively. Eco 

regards Icons and Indexes as practical devices to create a sign where there is no previous 

convention. We can regard (1) as motivation by past usage, a general principle that applies to all 

signs. 

A notational example of (1) is G6del's deliberate coding of logical formulae into natural numbers, 

constructed for his proof of the incompleteness of arithmetical theories. For (2), consider the Roman 

numeral IIII, resembling four tally marks, as opposed to the arbitrary numerals V, X etc. For (3), in 

elementary algebra, a variable Y which may "point" to a particular value in context; note that this 

relies on the existing arbitrary convention that x denotes the'unknown quantity'. 

In notations, especially diagrams, the signifier may be a graphical relation between other tokens (e. g. 
insideness); hence meaning of structure must also be motivated. Iconic forms are common in more 

pictorial notations, but less common in formal ones. 

Before meaning is motivated, pictorial combinations are potential signifiers: pseudosigns, not 

signs; their structure may challenge a viewer to find meaning. We find this for instance in 

connotation of stories. 

Pseudosigns are informally present in documents describing the overall purpose of a specified software 

system. They are also a familiar challenge in mathematics, where it is customary to create formal 

systems without indicating any meaning for them - Girard in (Girard et al. 1989). 
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4.2.2.2 Indexes 

The term 'index' means a sign such as the gesture of pointing. It can be seen as a form of 

temporary signification, where a referent is created 'on the spot' as the symbol is used. in 

notations an index is a name, tag or arrow that 'points at' or cross-references an element of the 

same or another diagram or elsewhere in the context. This delkis (pointing) is rarely literal, and 

often dependent on further convention or metaphor. e. g. letters on a geometry diagram, variable- 

names. 

Indexical methods include the use of an arrow to link two separate expressions, though in this case the 

arrow is also an icon for some notion of linkage. 

In formal language, definition is an important means of attaching meaning to an index. This must use 

an existing convention for defining, possibly in a different notation to that in which the -sign will occur. 

4.2.2.3 Icons and Structure 

An kon6 is a pictorial device that has metaphorical similarity to an intended semantic content. A 

notational example is a graphic arrow used to depict flow. Iconic signs are motivated by some 

analogy. Le. an existing mental procedure that enables transformation from form to content. 

Strictly, pure iconism should be independent of cultural association; perhaps exploiting natural 

visual experience. 

In practice, the similarity must be conventional: Euler's circles rely only on a convention or metaphor 

which (arbitrarily) draws the reader's attention to similarities between spatial containment and 

properties generally. Even in Euclidean geometry, diagrams are not pure icons, because a convention 

establishes which graphical properties are salient. In these two cases, analogy is evident in the 

arrangement of symbols, whether or not they are icons. 

Graphic arrows, and spatial succession, are examples of what Eco calls Vectorization, which we 

may treat as a structural kind of iconism: a feature that contributes to the composition of an 

expression. 

We note that 'natural' perception is not the only source of analogies. Cultural experience provides a rich 

source of prior mental habits that can provide motivating analogies. These may even be sen-dotic habits 

themselves; a new notation may borrow a symbol from another familiar notation and use it in an 

analogous sense, e. g. + as a binary commutative associative operator; whole words are often borrowed 

from natural language. A related phenomenon in programming languages is 'overloading' of a symbol 

to generalise its meaning. 

6Th1s usage should not be confused with the 'user InterfacW sense of an Ideogram or pictorial motif. 
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4.2.2.4 Strength of Coding 

Iconic signs are often weakly encoded, in the sense that there is little established structure or 

consistency of usage. In a representational drawing, for instance, the signal is continuous, without 

recognizable articulation; it cannot be reliably analysed Into signs or figurae with positional and 

oppositional value. Eco notes that its verbal equivalent is not a word but a whole story. Such weak 

codes are based on established example texts. In contrast, strong codes are based on grammar: 

known rules of combination. 

The notations we wish to consider are strongly coded: standardized and formalized to some degree. 

4.2.2.5 Expressive Principles In Notations 

To complete the commentary we can elucidate the mechanisms that produce coding in notations, 

in the light of this theory. What processes enable notated forms to be expressive? 

This enabling function can be divided Into three parts: signification must be motivated, defined and 

maintained. Motivation for signs is important in making notations easy to learn and use. Formal 

definition and the use of standard tools have should help to stabilize and strengthen the coding. 

Maintenance of signs happens by mental association and habit - regardless of how their invention 

was motivated. The success of notations then depends on how well their coding was originally 

motivated and defined, as much as how it is maintained. The ideas of Peirce and Eco suggest 

that the expressive principles can be summarized in three processes: - 

Iconic Process: invention by metaphor, borrowing sign or structure from another familiar 

notation or context, to exploit perceptual-graphical properties or even existing pictorial and 
linguistic conventions. 

Indexicall Process: the act of pointing a sign to other entities in its neighbourhood, 

establishing temporary meaning. The connexion between the index and its referent is 

newly made, but the fact that a sign is used as an index (a holder of temporary meaning), 

must itself be already established. 

Symbolic Process: the repeated usage of a sign, establishing permanent meaning 
through association. 

An index is a pointing function temporarily bound to context, whether this role is motivated by 

iconism or not. The definition given here regards a symbolic sign almost as a permanent kind of 
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index, which gains meaning by being repeatedly pointed at the same referent. 7 This is compatible 

with a definition of 'sign' as an object that metaphorically points to its Interpretant, i. e. its abstract 

referent. 

Each of the three processes has a particular task. lconism is vitally important in signification; the 

argument leads to the position that iconism in its various forms is the only design feature that need 

be considered as a motivating principle. Secondly, in an explicitly formalized notation, an 

indexical process Is used to define the meaning of signs. Thirdly, a symbolic process is a 

maintaining principle when the same potential vehicle is, in usage, always associated with the 

same interpretant. 

We have now arrived at a set of concepts and processes which can guide us in mapping the inner 

workings of various styles of expression. 

4.3 Aspects of Notation 

We are now in a position to use the semlotic framework as a means of clarifying the folklore that 

surrounds notations. This section thus investigates notative methods and discusses the structure 

they exhibit In terms of the concepts just introduced. It first concentrates on diagramming as the 

main mode of organization. Textual form is then shown to be a subsidiary aspect. The structure 

of notation is summarized as consisting of layers of syntactic patterning that are employed to 

encode meaning. In this way, the discussion establishes the determinants of structure in the 

notations that we wish to describe formally. 

4.3.1 Semlotic Characteristics of Diagrams 

Here we look at coding methods found in diagrams, or rather in expressions which are not 

constrained to sequential form. Diagramming comprises a set of techniques used to produce 

signification in graphical expressions. We address the following questions: 

7For example, the character /c/ may be used as a numeric variable representing the value of a speed that Is Indicated In context 

If we repeatedly use It to denote the speed of light, It loses its function as avarlable, and takes on a fixed meaning. 
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What is the expressive plane? 
How is the sign-vehicle constituted? 
What are the methods of coding? 
How is the code articulated? 
What are the content planes? 
What are the units and attributes of meaning? 

4.3.1.1 Elements of Code Structure 

First we look at the kinds of graphical properties that are employed In diagramming. The 

"expressive plane" of graphics is simply the arrangements of marks drawn on a geometric plane. 

How is coding achieved in such two dimensional sign-vehicles? 

Expressions are commonly viewed as being composed of drawn units of various sizes belonging 

to a hierarchy of constructed syntactic types. Expressions can be explained as arrangements of 

units, subject to attributive and locative relations. A whole expression is a unit of a certain type 

(e. g. 'sentence'). Expressions need not be homogeneous in style; they can be hybrids of different 

styles of sub-notation, each of which serves as a syntactic type. Thus diagrammatic notations 

mostly include textual components. 

The units are drawn and located in an expression. More generally, items that form expressions fall 

into three groups: 

(1) lexical units such as keywords, box shapes, links; 

(2) attributes of size, orientation, colour, texture; shape, symmetry, markings on single items; 

(3) instances of spatial relations such as near, above. touching, inside. 

Lexical items belong to a finite set of types - e. g. characters, character sequences (names and 

numerals) or pictograms. They are often used as what may be called pictive signifiers - items 

which use geometric shapes that are perceived as a pattern, requiring skills of recognition and 

discrimination. They need not be pictorial in the sense of directly resembling some other entity. 

Attributive relations may be used to create a hierarchy of subtypes, embodied as variants of lexical 

items. They may also appear as semantic modifiers, for example using crossing out to express 

negation, deletion or prohibition. Attributes give rise to a finite set of graphical features that units 

may possess. 

Locative relations are a major feature of diagrams; they usually involve some structural analogy. 
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The topological notions of nearness, continuity and connectedness help code the combinatoric 

properties of this structure. Spatial relations between shapes were noted as important for defining 

graphical syntax in the previous chapter (§3.1). Although such relations are frequently referred to 

as topological, this is not the full story; geometric cases such as collinearity and horizontal 

vertical orientation are also needed. 

A small number of 'qualitative' spatial properties appear to cover most kinds of diagram incidence. 

It is interesting that the Euclidean plane geometry of the page, the properties of length and angle, 

are little exploited analogically in the notations we have chosen to consider. Syntactic units may 

make extensive use of recursive constructions that could in principle generate expressions of 

arbitrary size and complexity. The coding restricts such recursive freedom so that cognitive 

limitations can be respected. We assume that the coding is discrete, so that we only need to 

consider finite expressions. The use of recursion is essential to a certain notion of syntactic 

abstraction that will be discussed shortly. 

This analysis should not, however, be taken as complete. There seems no certain limit on the 

types of pattern or relation that are used - creativity in notation may lead to others not yet 

invented. 

4.3.1.2 Diagramming Techniques: the Diagram Body 

What are the combinational rules found in coding of diagrammed notations? The various 

structural mechanisms employed in software development diagrams are described by Martin & 

McClure (1985) and Nickerson (1995). The latter offers a 'thorough survey' of the use of diagrams 

in computer science and identifies some underlying principles: visual conventions such as 

Adjoinment, Linking and Enclosure. Although we do not have the benefit of an exhaustive study of 

the many examples of diagrams, we can at least explore such mechanisms in more detail, from a 

general viewpoint. 

Here an analogy from the biological world may be helpful, in which we view a diagram as having a 

body. Diagrams often employ enclosure and linkage - forms of box and arrow - that function as a 

skeleton or frame to which labels in another notation are attached. These often serve as kinds of 

'shells and bones' enclosing and connecting portions of text: enclosures form an 'exoskeleton', 

while links form an 'endoskeleton'. These skeletons have connective or collective function; they 

130 



4: Exploration of Research Problems 

may either accept collections of items, or they may have fixed attachment areas which must (or 

may) each be filled by a single item. Some examples of enclosures are text bracket pairs and the 

schema boxes of Z, enclosures that allow overlap are found In Venn diagrams and Higraphs of 

(Harel 1987,1988). 

Framing defines an association of places (slots) to be filled by symbols, like the position before or 

after a character, or a space between separators In text. In formulae, super- and subscript 

positions are slots (and filling expressions are often reduced in size); numerator and denominator 

are slots in fractions. A slot may itself be filled by frames, leading to a hierarchical nested 

structure, as found in Entity-Relation diagrams and Nassi-Shneidermann charts. Slots may be 

organized geometrically: tables and matrices have their slots structured into rows and columns, 

exploiting the two dimensions. 

4.3.1.3 Expressive Mechanisms 

To summarize: Graphical construction employs several mechanisms including: - 

Pictive - sets of alike items, labelling 

Attributive - modifications, markings or colourings 
Locative - adjacence, apposition and sequence 
Collective -framing, enclosure 
Connective - polyvalent linking 

Quantitative - repetition, size and shape 

In notation design, the choice between these is related both to subject domain and practical 

constraints on size and complexity within the representing medium. The mechanisms are used to 

support many analogies, including the forms we have easily referred to as "structure": the building 

of expressions. Coding may also be motivated by metaphors with other domains of experience, 

cued by spatial or textural properties of the embedding in the 2D physical medium. 

For a wider view of graphical representation techniques, the reader might see the range of 

examples in (Bertin 1982,1983; Tufte 1990) - illustrating the full variety of visual information 

formats that people have devised. 

4.3.1.4 Semantic Structure 

The content plane for a notation may be some kind of design representation concerned with 

software systems. In designing a notation it would be necessary to consider the semantic domain 
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In detail. Here we only look at the motivation for diagram serniosis in general terms. How does 

diagram structure carry meaning? Analogy and abstraction are the key techniques here. 

4.3.1.5 Specificity and Quantity 

The Iconic quality of diagrams has been noted previously (§2.1.3). A good example of this is the 

way diagrams may represent quantity, in the senses of multiplicity or size, by a proportional 

mapping of lexical items to individuals. In this way, Histograms, Plecharts (and coordinate- 

geometry graphs) are used for coding numerical values, when the size of a line or region is 

proportional to the size of a set or space. In the discrete forms of diagram considered here, the 

one-to-one representation of quantity is sometimes useful. In contrast with decimal numerals, this 

analogical coding can be seen as a weak instance of specificity, a phenomenon that was described 

in (§2.1.3). 

The notion of specificity Is explained in (Lee et al. 1991): 

"[graphical representations] are limited to representing total mappings of identity and some spatial 

relations... This totality of mapping Is what allows efficient access by search mechanisms. ... The 

specificity hypothesis is that this property of totality, shared by images and the relevant components 

of working memory, is what gives graphical representations their special cognitive properties. ' 

Stenning & Tobin (1994) thus regard the property of specificity as the factor that yields tractability 

of inference in diagrams. They use specificity as a criterion to discriminate between diagrammatic 

presentation and languages, noting that most graphical systems employ more than one directly 

interpreted relation - though specificity is also found in 'degenerate" textual languages where 

concatenation is directly interpreted as temporal succession, for example. . 
An inherent 

disadvantage is that the diagram cannot hide the relations between individuals that are signified by 

spatial arrangement -a property that Stenning & Tobin call 'information enforcemenf. 

We can view specificity in diagrams as a principle of structural iconism, which motivates aspects 

of the code structure and so provides a stronger motivating principle than the simpler iconism of 

pictorial symbols. The main example of this is the use of one-for-one mapping between a set of 

similar lexical items and a represented collection of individuals. The diagram indicates not just the 

number of individuals, but usually also the connections between them. The cognitive advantage 

of specificity is lost when a set has too many members (e. g. graphs with many crossing edges, or 

spread over several pages). 
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4.3.1.6 Modularity and Abstraction 

According to (Lee et al. 1991), languages characteristically allow* abstraction in their coding, in 

contrast to the specificity found In diagrams. This abstractive power occurs at the expense of 

processibility. Despite this, we find that abstraction is also an important feature of diagrams in 

software development. 

The reason for loss of directness in notations lies in the complexity of software systems. When a 

diagram becomes complex, -the viewer investigates it in the manner one might explore the 

workings of a machine - some notations (e. g. electrical wiring diagrams) are not intended to break 

down into sentence-sized pieces. To avoid this kind of intractable layout, it is common to extend 

the notation syntax by using modularity (as in program text) or abstraction mechanisms. 

Modularity provides a way of "coveringn a large system by separate small expressions that are 

linked by common references. As a strategy for communicating complexity, it draws the attention 

of the viewer to facts and factors of the system in small 'packets', such as modules, sentences, 

statements, or diagrams. A collection of such packets describes a possible system only if it is 

consistent and coherent according to semantic rules. Each member of the collection may be 

implicitly linked to others by sharing of name-items that have a common referent. Simplicity is 

maintained because in any particular notation, only certain aspects of a system are revealed. 

Abstraction can be seen as a kind of modular technique, that involves replacing a complex subunit 

by a single name-symbol, whose definition appears as a separate expression. This creates a 

hierarchy of dependent definitions. In recursive definitions, the hierarchy is not well-founded - it 

contains cycles. This kind of recursive abstraction allows a finite expression to denote an infinite 

structure. The cost of this abstractness is clearly that some computation must be carried out in 

order to decode the expression. 

The cross-referencing needed to connect modules requires a many-to-one mapping from such 

abstract lexical items to their shared referent: a name occurring several times refers to the same 

individual. This 'type-referential' behaviour provides an alternative to links, and is therefore 

important in textual notations, where connecting lines cannot be used. 

4.3.1.7 Graphs of Many Types 

Graphs are structures that lend themselves to both abstract and direct forms of coding. In Chapter 
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3 it was found that diagrams are often regarded as drawings of graphs of some kind. This is 

implied by McWhirter (thesis: 1995), who observes that all graphs are abstract structures, whilst 

graphical notations of any kind are drawings which embody them. 

If the domain being represented has already been formalized as a class of graphs, a notation may 

be chosen to realize these graphs by pictorial shapes and features, which make up the skeletal 

structures referred to above. The incidence between parts may be realized in different ways. 

There is however a close correspondence between the constraints defining a graphs of the domain 

and the modes of graphical realization that are possible. Thus a structure of nested enclosures 

realizes an acyclic 'tree' digraph, and a planar graph may be drawn without crossing edges. 

These kinds of graph (referred to here as graphtypes) are distinguished by their permitted methods 

of connection. Thus edges may link ordered pairs of nodes (as in directed graphs) or tuples of 

nodes (hypergraphs) or unordered sets (as in webs); the number of edges connected to a common 

node may be limited or fixed; edges from a single node may be sequenced - for example, 

flowcharts may be described as hypergraphs in which boxes are edges between junctions of 

arrows. There may be different kinds of nodes (e. g. places and transitions of Petri nets), or of 

edges. Edges may link other edges, in a more general relational stnicture that goes beyond the 

usual graph paradigm, as found in Entity-Relation Diagrams. As well as these simple forms of 

incidence restriction, more complex logical constraints on graphtypes may be applied, such as 

connectedness, absence of cycles and planarity. 

4.3.2 Textual Form and Structure 

The familiar example of graphic text can help illustrate the concepts just discussed. This will be 

rather a matter of stating the obvious, in order to show how many 'diagrammatic' characteristics 

are already present in text. For concreteness, we consider the case of a textual message laid out 

in a rectangular region, and ask how the structure of such a'message notation' is constituted. 

Pure text has an easily described uniform visual structure which serves as a carrier for much more 

elaborate and varied syntactic patterns. It is structured as strings of elements of a set, called its 

alphabet, consisting of graphical shapes of similar size. These elements may themselves be 

discriminated by visible features of shape or structure (e. g. diacritics, underlining) - but in this 

case we exclude non-sequential mechanisms such as subscripting. 
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4.3.2.1 Graphical Structure 

A message is drawn as spatial sequences of shapes (called characters) in a particular orientation, 

spatially arranged in sequences parallel to the base of the rectangle. It is assumed that vertical 2D 

layout of characters is not significant, since a simple textual notation is intended, It is then 

possible to abstract this geometric aspect of the graphical layout, and concentrate on the nature of 

a message as a character string. 8 

Characters are stylizect, each is displayed by one of a range of perceptually equivalent close 

variants. In detail, elements have graphical forms characterised by features that allow perceptual 

discrimination between them. Thus ambiguity may occur if two distinct characters share all the 

same features. This could happen in three ways: - 

1) shape: /0/ confused with /0/, (similar features) 

2) visible structure: /m/ confused with Im/. (between an element and a compound) 
3) overloading: unary negative Nconfused with binary minus/-/ (identical characters). 

These kinds of geometric-perceptual ambiguity may be resolvable by syntactic rules, making use 

of the context of the characters within an expression. 

4.3.2.2 Articulation 

The alphabet is a small finite- set, not a recursively generated set of shapes. It forms the lowest 

layer of articulation: the smallest kind of unit. The alphabet usually contains different kinds of 

'pictive' elements such as letters and punctuators. 

The second layer of articulation is formed by composing character shapes into lexical units, e. g. 

letters into words. This concatenation is a simple recursive process, but only a finite set of lexical 

signs (a vocabulary) may be admitted in expressions. Perceptually, the lexical units are 

recognized as wholes rather than combinations of parts. Words may have graphical attributes, 

such as lower / upper case, boldness, choice of font. 

Letters are character shapes, mostly with no individual meaning. Letters are concatenated to form 

words, generally the smallest items that can be given individual meanings. Some single 

characters also serve as lexical units, and may also be distinguished by significant attributes, e. g. 

the negation mark on the inequality sign *. Some strings (names) may be extensions to the 

8Characters Include notlonal spaces, which are not elements of the alphabet. 
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vocabulary - newly defined by an Indexical process. Some strings (e. g. numerals) have an 

internal syntax and semantics determined by a sub-notation. 

Punctuators are syntagmatic items for linking and enclosing, e. g. the separators and brackets, 

which are involved in both articulatory layers, and form the 'skeleton' of the text. A bracket pair 

must then be regarded as a lexical unit, though not a word. 9 

If the messages consist of standard phrases, this would constitute a third articulatory layer. 

Special phrases that have more meaning than their internal syntax suggests, are examples of 

overcoding in Eco's terminology. 

4.3.2.3 Syntax 

Above these articulatory layers, the syntax (typically) becomes recursive in its complexity. 

Whereas the graphical and lexical layers are bounded In size, the syntagmatic layer creates 

(indefinitely) larger, complex units whose meaning is derived from its components, e. g. terms, 

phrases, clauses, sentences, and also paragraphic units such as blocks of statements. Here text 

differs from diagrams in having little skeletal structure to delimit the units. For example, in 

algebraic formulae there is a tendency to rely on implicit groupings where possible - such as infix 

operators. This can cause ambiguity. On the other hand, over-use of punctuators leads to 

awkwardness (e. g. the parentheses in LISP code). 

Syntactic conventions of text are broadly unaffected by semantic structure; their purpose is to 

overcome those restrictions of the medium that conflict with a more direct representation. In 

natural language text, syntax is mostly concerned with explaining syntactic groupings as arising 

from implicit lexical features, as is evident in categorial grammars and feature-based approaches 

(see §3.1.2 and §4.4.2). 

4.3.2.4 Semantics 

The top layer of structure is the most abstract form of syntax -a conceptual semantic structure 

that is effectively independent of graphical format; e. g. an algebraic formula can be represented 

by a directed graph. The semantic layer is a formalization of the structure of denoted objects in 

9Where brackets cannot be paired perceptually, they fail to constitute an effective le)dcal unit, and comprehension may break 

down. 
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the content domain of the notation. 

These upper two layers of structure cannot qualify as kinds of articulation, because the units that 

compose an expression are overlapped in a complex manner. A recursive syntax can admit an 

indefinite number of units, covering an unlimited range of meaning, though they belong to a finite 

set of types. 

4.3.2.5 Motivated Signs 

Various limited kinds of pictorial iconism can be found in text. A few character shapes, especially 

in formulaic text, have visual iconic features based on geometric shape or symmetry, e. g. /=/ and 

/</, or the brackets ()[], whose syntactic function is suggested by their shape. Some symbols 

such as digits and /+/ are borrowed, typically from arithmetic - the borrowed icon /--/ has an almost 

universal status. In programming texts, keywords are borrowed from natural languages, and 

fragments of natural interpretation are converted by metaphor to the more formal meanings that a 

programmer understands - as if a formal denotation corresponds to an informal connotation. 

Structural iconism (specificity) is present when the sequence or adjacence of substrings denotes 

(temporal or spatial) ordering of referents. 10 

We see from this brief description that text has available all the features found in diagrams, 

though within the restrictions of its sequential form. 

4.3.3 Modalities, Mechanisms and Layers 

We end this investigation of semiotic aspects of notation by considering the differences between 

modalities or styles of expression. These are characterized by reference to the mechanisms of 

pictorial, verbal, linguistic and spatial coding. To round off, a description is given of the various 

semiotic layers found in notation structure. 

4.3.3.1 Diagramming versus Text 

In what way do diagrammatic mechanisms differ from textual? 

Modality and style refer to characteristic types of coding and convention of use. Diagrams, text 

1OThis lconism of succession Is rather weakened by the graphical breaking of text Into lines, because It then relies on cultural 

conventions of readIng to determine sequence and direction. 
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and formulae are distinct in style. We look for some clearer criteria of classification for notation 

styles than those used in the Shu Triangle (§2.1.2) for visual language styles. 

The above inspection of text reveals four or more structural or general syntactic layers: 'graphical, 

lexical, syntagmatic arrangement, and at least one semantic layer. As remarked above, diagrams 

show a less strict separation of the layers. For example: 

Diagrams have a greater reliance on 'collective' lexical items that explicitly frame larger 

units. 

0 Operations such as type checking are treated as semantic in textual programming 

languages, but are part of connective syntax in visual languages. 

Diagrams use structural analogy and visual metaphor-cues to make the semantic concepts 

correspond directly to graphical processes. 

Text has a clearer articulation into layers owing to the linguistic processes that have evolved to 

overcome the restraints of sequence. 

There is also the the case of formulae. Formulaic (e. g. mathematical) styles are intermediate 

between text and diagrams in these respects. Comparing formulae with text, we find less reliance 

on sequence and more use of the vertical dimension, with larger graphical separators and frames 

(e. g. matrix brackets, fraction lines). The lexicon may be almost absent, since special (pictive) 

characters are often preferred to words. Formulae make no use of the long graphical linkages 

found in diagrams. 

4.3.3.2 A Method of Classification 

This suggests an approximate way to classify notational styles - according to the extent to which 

certain expressive mechanisms are used in the layers of serniotic construction. The method is 

based on two questions: Are the smallest significant units pictorial or verbal? Is the spatial 

arrangement of these units directly significant or indirect - abstractly interpreted by some 

recursive linguistic process? These questions suggest two average ratios, of verbalness and 

directness (specificity) in expressions, which can be used as dimensions. The chart below 

accordingly places various styles of notation in a rectangle. 
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From the chart we note that notations tend to lie on the diagonal joining the two 'natural forms' of 

narrative and pictures. It is less usual to find a spatial layout of isolated words; mathematical 

formulae are composed of shaped characters which are mostly not iconic. The use of words is a 

strong cue to expectations of linguistic syntax, whereas special characters in formulae give no 

cues to their structure for the non-mathematician. 

4.3.3.3 Layers of Syntactic Structure 

We now have an answer to the questions of (§4.3.1), on how expressive and content planes are 

connected. 

The coding of an expression is regarded here as a general syntactic stratum that may helpfully be 

divided into layers. These layers of articulation, recursion, denotation and connotation are seen to 

mediate between the 'ground' (physical reality) of expression tokens and the 'sky' (meaning) - the 

essence of their presumed effects in the world. Each layer has its own logical characteristics, 

which are related to cognitive processes and resource limitations. 

The two lower layers are articulatory. The graphical layer is a matter of simple perception - 

resolving a drawing into the spatial distribution of a finite set of identifiable shapes. The lexical 

layer consists of identifiable groupings of these; to be effective as communication, lexical items 

should be instantly familiar and recognizable. 

The next layer consists of overlapping and sometimes extensive arrangements of lexical units. 

Parsing this central syntagMatic layer requires a search for structural matches, but may not 

practically take more than a second. The recursive procedures which underlie syntactic processing 

must be within feasible bounds for expressions of reasonable size - which is why grammarians are 

not content with grammar formalisms that are Turing-complete (Carpenter 1995b). 
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Fewer computational limitations apply to upper semantic layers. The upper boundary for the 

syntactic stratum takes the form of a semantic conceptual structure that can feasibly be deduced 

from the layers below. Beyond this, semantics may involve the unbounded complexity that 

unfortunately can arise in the relationship between thought and action. The full meaning of an- 

expression may require complex logical inference; it may yield progressively more information 

over a long period. The full semantics of programming code, for instance, is a much more 

complex affair than its syntax, or even than its formal denotation. It concerns an understanding of 

what the program does. 11 

Semantic layering can reduce the logical burden; it occurs when metaphor is used to transfer 

familiar (perhaps literal) reasoning based on cues, into a more complex, less rehearsed arena of 

the actual subject domain. 

In this way, semiotic principles determine how the structure of notation syntax is built up in layers 

and connected by expressive mechanisms. 

4.4 The Problem of Defining Structure 

The previous discussion has led us to the impression that notations possess a kind of layered 

structure. We now wish to concentrate on the question of how this syntactic structure can most 

appropriately be described. To find an answer, this section examines various kinds of explicit 

syntactic rules employed in linguistics. These grammatical and logical methods are then compared 

with semantic treatments of graphical analogy. Analysis of the methods points to the need to 

consider the underlying question of how to define the basic form of expressions. This question is 

resolved by an argument based on the formal operations that will be performed on the description. 

4.4.1 Methods of Syntactic Definition 

We begin by taking a look at the structural description of syntax. In view of the discussion in the 

previous section (§4.3), the term 'syntax' is taken to include in the whole of the layered structure of 

coding - not just the matter of arrangement of lexical items. How might syntax best be defined? 

11 In this sense it may be undecidable. Also, the exact nature and behaviour of computer systems has demanded a deep logical 

analysis In computing science and cannot be said to be fully understood, especially If we Include parallelism In hardware and 

human factors. 
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4.4.1.1 The Nature of Syntactic Rules 

A syntactic description for a notation specifies an expression as a well-formed form (wff). The 

language (expression-class) determined by the syntactic rules is simply the class of wffs. 

Syntax can be taken to represent the viewer's mental moddI12 of an expression that is'divorced 

from any reference to its situation - as when taken out of context. A person's knowledge of syntax 

enables them to create or compose expressions. When an expression is received it also provides 

a starting point for the process of interpreting in order to respond. 

Two broad approaches to structural description of syntax were noted in the last chapter (§3.2), with 

two corresponding kinds of syntactic rules: -. 

1) Logical systems constrain a general structure to satisfy certain relations and properties. 

- Constraint rules provide axiomatic criteria for accepting or rejecting a (generated) form. 

They are declarative rules by which forms are judged. 

2) Production (rewriting) systems derive well-formed structures by a combinatoric method 

of freely applying local replacement operators to configurations of symbols; 

- Generative rules build fonns. They are executable rules which can convert a sequence 

of choices into an expression. During construction, forms are partial: incomplete or 
incoherent. 

In a logical system, expressions are treated as constrained forms; rules do not specify how forms 

are generated, but only the constraining properties that determine well-formedness. When 

creating an expression, it is necessary to find a form that satisfies all constraints and also fulfils 

semantic goals -a problem which may be undecidable. When interpreting a form, the checking of 

syntactic constraints should be a quick 'decision procedure', and the process of discovering 

meaning is deductive. Therefore the syntactic rules direct our attention to logical form and to 

corresponding deductive and constructive processes. What exactly is meant by a form? For the 

moment it is assumed that forms are combinatoric objects belonging to some class called a form- 

space. The class of forms must contain the expression-class of a notation, since every expression 

is a form. We return to this question in (§4.4.4). 

The form of an expression is not just a definition of its graphical appearance. It carries information 

on all syntactic layers - all aspects of form that are perceived, imagined and thought. Hence we 

12ThIs Is not to claim that the viewer actually'has! the model, but that they behave as If they might 
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may speak of graphical form and semantic form. Form-spaces are necessarily different for each 

notation. The graphical form and semantic form of an expression are connected by a signifying 

relation. 

In a production system, rewrite-rules generate wffs. The set of rewritings resulting in a wff builds a 

derivation for it; hence each wff has an associated non-empty class of possible derivations. 

When creating an expression, the writer is concerned with achieving a graphical form that matches 

an imagined semantics. In a grammar, rewrite-rules provide a way of navigating through form- 

space, which for restricted grammars will guarantee a well-formed terminus. Conversely, when 

interpreting a given graphical form, a search for derivations occurs; it may be undecidable whether 

the form is a well-formed - the search may fail. When the search succeeds, the constructed 

derivation is a representation of the meaning, from which it is possible to calculate a semantic 

form. 

4.4.1.2 Heterogeneous Notations 

We observed in (§3.3.1) that neither logical specification nor graph grammars have succeeded in 

providing a general and straightforward means of defining notation syntax. Why is this not as easy 

as the task of specifying formal textual syntax? This is because, as has been noted (§3.4.1), the 

graphical format of text is homogeneous: it remains much the same whatever the topology or 

topography of the domain being written about. In contrast, graphical notations have varied 

topography, which allows them to exploit spatial metaphors. How can we allow for the 

heterogeneous nature of notations? 

We could enforce a common graphical form -a standard underlying structure for the whole gamut 

of existing notations, acting as an invisible stratum that can accommodate all possible metaphors. 

This would allow grammars to use production systems that are uniform in all graphical contexts. 

Yet even if we could formulate a sufficiently general graphical theory, it would introduce 

unnecessary complexity into the descriptions. For this reason, graphical mechanisms in notation 

cannot be formalized adequately by a single kind of production system. We cannot get round this 

by taking different rule-methods for each syntactic layer, because the distinctions between 

articulatory levels in notation are not very clear. 

As was pointed out in (§3.1.1), the simplicity of textual syntax is illusory. If we admit formal syntax 
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that approximates the subtlety of natural language, structural description problems similar to those 

of graphics must be faced. 
. 
Although text Is graphically homogeneous, the semantic forms it 

contains can be as varied as for diagrammed notations. For this reason, there may be something 

to learn from linguistic approaches to syntax, which will therefore be explored below in greater 

depth. 

4.4.1.3 Formal Grammars 

If we look at simple formal grammars, we find that they do a more important job than just defining 

the class of expressions in a notation. 

A grammar is presented as a set of rewriting rules on an extended language of partial (unfinished) 

forms. These "Morms" contain extra symbols (non-tenninals') that stand for syntactic types within the 

notation. In context-free grammars an expression can be analysed into a hierarchy of phrases, each 

with an implicit type. Generation begins with a single non-terminal, treated as a Morm. It proceeds 
by rewriting subforms as allowed by some rule and ends when no further rule applies. The resulting 
form is then complete and well-formed. Syntagmatic structure is represented by a set of equivalent 
derivation 'trees' that track the replacement of subforms. This allows the possibility of syntactic 
ambiguity; a given expression may admit two possible derivations that are not classed as equivalent. 

The status of this process is somewhat mysterious, because it does not represent the human 

process of expression creation. Nor does a hidden derivation tree qualify as a direct semantic 

representation. This is not to say that notation grammars are unnecessary, but that their role 

needs clarifying. The main value in grammar is rather to provide operations that construct a 

consistent abstract syntagmatic layer'compatible with'a given lexical structure. 

4.4.1.4 Example: Binary Numerals 

It is easy to illustrate that grammars are not primarily about defining the right set of expressions, 

but about deducing a higher level of structure from lexical form. This can be seen by examining 

two phrase structure grammars that generate the full 'language' of strings on a finite alphabet A= 

(0,1) - the set called (0,1)*. In this case the lexicon is the alphabet. Thus all strings on A will be 

well-formed, and will be interpreted as natural numbers. 

Let S be a start-symbol for two grammars GI and G2 

GI has three rules for constructing strings by appending characters 
appO: (s s 01 append zero 
appl: CS s 1] append one 
nil: [sI delete'S' 
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The string /1010/ for example is derived as (appO (appl (appO (appl nil) )) 

- here encoded as a LISP s-expression. 

G2 includes a rule for connecting two strings: - 
puto: [S 01 place zero 
putl: CS 11 place one 
cat: CS S S] catenate'S' 
nil: [S I delete 'S' 

/1010/ is derived as (cat (cat putl putO) (cat putl putO) 

or in many other ways. 

These two grammars define the same language, but with quite different articulations. G1 admits 

only one derivation term for any of its strings, which are reminiscent of stack data-structures. G2 

admits ambiguity in strings as terms. If we treat all derivations of the same string as equivalent, 

G2 characterlses A* algebraically as a free monoid, the associative algebra of sequences 

generated from A by the operator that concatenates two strings. There are clearly many other 

possible context-free grammars, each of which imposes some kind of term-structure on sentences 

of A*, if we read the rules as constructor functions. 

The advantage of G1 is that it allows us to calculate the semantic value of the derivation, using 

the following arithmetic rules: - 

val[aPPO sl =2x val[s] where s: S is a string. 

val[appl s] =2X val[s] +I 

val[nil] =0 

In contrast, G2 does not allow such a calculation because concatenating two strings does not 

correspond to a simple arithmetic process. Thus G1 is useful as a grammar for binary numerals, 

but G2 is not - even though they generate the same 'language' or class of strings. 

It is instructive to examine the limitations of these grammars. The grammar G1 does not give the 

full interpretation into semantic form - the example does not define what the semantic 

representation of a number should be like. Neither does G1 specify the graphical form, as can be 

seen from the way these rules are notated. For example, the rule (appo) echoes the sequential 

structure of text. In the right-hand-side "s 0", the rule sequences the names V and Vto indicate 

the sequence in a generated string. The letter's' names the abstract syntactic type 'string', but the 

character'o' serves to name its own shape. Hence the rule-notation borrows the graphical form of 

the notation it describes. This is a circularity of definition, of the same kind as was noted in (§3.2). 
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Nevertheless it feels quite natural, since the rule Is also written In a textual notation. 

If we wish also to specify the sequential form, rather than take it for granted, we need to 

acknowledge relations of precedence which hold between places In a string - though not always In 

a literal graphical sense. This leads towards a re/ational grammar (§3.2.4), in which the characters 

in the alphabet become relations that link the nodes that correspond roughly to positions on the 

graphic form. The rules of G1 might then become: - 

app: [S(x, y) -4 S(x, z) Zero(z, y)] append zero 
app: (S (x, y) S (x, z) One (z, y) append one 
nil: [S(X, Y) X=Y] delete'S' 

where x, y, z are nodes, and 'S, Zero and One are dyadic relators. In the rule notation, equality'--' 

is a relator that identifies two nodes; the need for it emphasizes the fact that we are not rewriting 

graphically: nodes are not points on a line. These rules are in the form of a Prolog program, with 

interpretation that: 

s (x, y) means "node x is the start of a string that ends at node y". 

We see from this that the syntactic description can be expressed in a meta-notation that is not 

confused with the target notation (that being described). When this Is done, the formal grammar is 

recognizable as kind of proof-system which governs the formation of syntagmatic units from a set 

of connected lexical units. The formal connection between Prolog programs and hypergraph 

grammars is also examined in (Corradini et aL 1991). 

4.4.2 Linguistic Notions of Grammar 

What is the relationship between generative and constraining rules in syntax? Although we are not 

concerned with the issues of natural language, there is reason to believe that linguistic techniques 

may contain fruitful ideas for resolving this question. 

In (§3.1.2) the work of computational linguists was quoted on the subject of semantic grammars. 

Such work on natural language involves a quest for a combined computational and logical system 

that would cover the whole range of syntax - and pragmatics also. It is attractive to adopt this 

approach here in relation to notations. Following Morrill (1993), syntax can be treated as a theory 

relating graphics and semantics; grammars then take the role of "proof-theoretic meta-theory for 

the model theory or logic" of the operators on syntactic types. 

145 



4: Explorabon of Research Problems 

Our task is thus to investigate the relationship between grammar and logic, and the theme that 

grammar is concerned with implementing certain kinds of logical inference - the notion of 

grammar as logic program. In fact, the linguistic research gives evidence that processes of 

'natural' language are dependent upon tractable logical systems (D6rre et A 1994, Carpenter. 

1991). 

According to (K6nig 1995), grammars for natural languages differ from formal language grammars 

in that (1) the lexicon contains complex syntactic information, and (2) natural language exhibits 

non-local syntactic dependencies. It can be seen that diagrams are also similar to natural 

languages in these two aspects. Lexical items are governed by elaborate connectivity constraints 

and the arrangement of items is not necessarily determined by strict adjacency conditions. 

Some of the techniques of description discussed here were also seen in the last chapter as applied 

to graphical languages (§3.2). We briefly mention two restricted logical systems that have found 

favour in recent linguistic theories, in addition to Horn clause logic. These are feature structures 

and categorial grammars. 

4.4.2.1 Feature Structures 

Nalvely, features are a way of organizing properties that are appropriate to certain types of item, 

so that a property of an item is an attribute, presented as a feature-value pair. Features are found 

in linguistics as basic structured discriminations between items, such as Number, Gender and 

Person of lexical items. Morrill (1993) explains that features (on basic syntactic categories) 

simplify reasoning by effecting a universal quantifier as a type-constructor. Feature structures, like 

Horn clause logic, allow reasoning by unification - see surveys of (Knight 1989) and (Sheiber 

1986). 

Carpenter (1991) develops typed feature structures, viewed as an object-oriented generalization of 

first-order terms, with types arranged in a multiple inheritance hierarchy. In general they may be 

treated as a special form of constraint logic that can be applied in rule based approaches, as terms 

for definite-clause logic programming (Alft-Kacl & Nasr 1986). Each (semantic) type must specify 

the features for which it is appropriate, and the types of values these may take. Features can be 

ordered according to information content by extending the subsumption order on types, leading to 

morphisms over feature structures that play the role of substitutions for variables. Practically, 
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adding type information much reduces time spent on expensive structural unification and recursion 

by early failure detection and the precompilation of taxonomic reasoning. 

For D6rre et aL (1994), a general feature structure can be viewed as a graph whose edges are 

labelled with features and nodes carry sets of sort symbols, in which edges leaving the same node 

must have different labels. 

Definition: A feature structure on an alphabet F of features, and an alphabet P of sort symbols, consists 

of. - 
a) a non-empty set D of nodes; 
b) for each feature, a partial function on D, that assigns values; 

c) for each sort, a subset of A 

Some sorts correspond to unique mutually disjoint aton-dc structures. 
Traditional feature structures may be restricted: e. g. connected, rooted, finite, or acyclic. 

They can be given a semantics in FOL over a signature containing all the predicates, leading to 

feature constraint languages. Alternatively, propositional modal logic offers a more concise 

framework - feature tenn languages - where features are sentential operators and sorts are 

propositional variables. Feature terms are preferred over first-order terms because subterms are 

accessed by path-names and terms may be partial since subterms can be omitted (D6rre et-al. 

1994). 

4.4.2.2Categorial Grammar 

Categorial grammars are based on a calculus of string concatenation proposed by (Lambek 1958). 

D6rre et aL (1994) refer to the Lambek calculus as an intuitionistic, non-commutative variant of 

Linear Logic (Girard 1987). Parsing a sentence with the calculus means finding a proof for a goal 

(the start-symbol) from a database giving the syntactic type of each lexical item in the input string. 

Lambek (1961) presents a further non-associative version of the calculus. 

Multimodal Categorial Grammars (MCG) extend the Lambek calculus to deal with commutative 

forms and unary modes of combination, needed for other kinds of word-ordering, for encoding 

syntactic features and to permit copying of resources (Moortgat 1994, Carpenter 1995b). 

Carpenter provides a sequent-based proof-theoretic presentation of MCG, sufficiently general to 

accommodate all the various systems that have been proposed - including linear logic with its two 

modals ? and I that permit repeated use of premisses. 
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This proof system Is interesting to us because it generalizes the notion of a sequential grammar to 

admit other relational connectivities, of the kind that might be expected in graph grammars for 

diagrams. 

Feature-Based grammar logics combine feature-unification and categorial grammar and give 

them a model-theoretic semantics. D6rre et A (1994) apply fibred semantics (i. e. layered logics) 

to augment a Lambek Categorial Grammar (LCG) with Kasper-Rounds logic of feature 

descriptions (Rounds & Kasper 1986). The two logics are fibred together by allowing any formula 

in one logic (a feature term) to be an atomic formula (a syntactic type) in the other, either way 

around. A fibring function maps elements (or worlds) of the domain of one logic to elements of the 

other domain. The rules of both systems are admitted, and further interaction rules may be added. 

The combined proof-system can be more efficient than a general purpose prover. 

They justify the idea by considering Horn-Clause programs. If these are to represent formal 

grammars, derivations must be restricted: they require resource awareness, because all sub- 

expressions must be accounted for exactly once in a parse. This could be done by using a 

fragment of linear logic. Alternatively, control arguments be can added: Definite Clause 

Grammars (DCG) achieve this by encoding an n-place terminal as an (n+2)-place predicate to 

include start and end string positions. 

Lexicalized grammars also combine feature structures with categorial grammars; LexGram 

(K6nig 1995), described as an amalgam of LCG and Head Driven Phrase Structure Grammar 

(HPSG). HPSG (Pollard & Sag 1994) is based on typed feature terms with an inheritance 

mechanism. LexGrarn is derived from HPSG by lexicalizing its Phrase Structure principles and 

schemata. It extends LCG with the unification formalism CUF (D6rre & Doma 1993) for handling 

typed feature terms. HPSG is reduced to one single phrase structure schema which is equivalent 

to the commutative version of LCG. Word order is treated by adding directional operators. Each 

HPSG sign then corresponds to a sequent, which has phonetics in the antecedent, and the 

catego/yvalue as its succedent (goal). 

Parsing is efficiently restricted via the input word-sequence; top-down andbottorn-up parsing can 

be ideally joined. Modelling is simpler since the only syntactic viewpoint is from the lexemes. The 

lexicalist approach provides for a uniform view of grammar as a word class hierarchy. It benefits 
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from a typed-feature-based language: the signature (type system, CUF sorts) has to be defined 

before the rules, making grammars more transparent. Sorts can then serve as interfaces among 

grammar modules (K6n! g 1995). 

We see from these linguistic theories that economy In the logical systems leads to efficiency in 

parsing, which requires a resource-sensitive proof theory. The two systems can be combined in 

layers, and it is helpful to establish a signature (a syntactic type system) as a basis for 

grammatical rules. 

4.4.3 Semantic Definitions 

In (§3.1.1) it was noted that syntax and semantics overlap each other in linguistics. To complete 

our examination of syntactic description, we next consider semantic processes. What aspect of 

the syntactic structure can be called semantic? 

On the semantic level of syntax it is harder to fix upon a single notion of structure. Linguistics 

does not offer much help on this problem. According to Carpenter (1995a), computational 

linguistics has been "obsessed with the problem of finding the right sort of logical forms" in 

analysing sentences. He points out that this analysis is both "too hard", since people cannot 

retrieve all semantic information, and *too easy" because it does not take into account all the extra 

information that people actually take in. In notation we are in a better position, because it is easier 

to limit the notion of semantics on formal grounds. 

In (§4.1.1) the importance of metaphor was emphasized as a feature of linguistic semantics and 

also of diagrams. Here the connection is clarified and related to work that applies algebraic 

morphisms. 

4.4.3.1 Value in Context 

From a denotational perspective, the meaning of an expression is'abstracted as a value that 

interacts in some way with its environment. This semantic value has exactly enough structure to 

explain the effect of enacting the expression in an intended context. It might be seen as a 

transforming function, or an event in a finite state automaton. In Chapter 3, graph rewriting 

systems were reported as providing a way of integrating computation with syntactic notational 

processes (§3.1.3, §3.3.3). 
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Interpretation can be seen as a process of calculating a semantic value from a syntactic derivation. 

These calculations are supported by the syntactic code. Viewers of an expression, on the other 

hand, do not explicitly calculate meaning; their understanding is instead assisted by analogies - in 

which metaphor plays a part. 

4.4.3.2 Metaphoric and Iconic Processes 

Metaphor is a form of rhetoric in which certain words cue a subsidiary domain that is different from 

the subject domain, thereby forcing the words to take on (temporary) new meanings related to the 

subject. It is not primarily a graphical phenomenon. In linguistics, the topic of metaphor is not well 

understood: - 

"I think metaphor Is a very difficult problem to say anything concrete about. I do not see how to 

apply any of the techniques that we know about. " Carpenter (1 995a) 

Carpenter (1 995a) wishes to understand how to interpret prepositions like 'in' and 'on', which 

invoke a spatial analogy. We notice that these concerns have direct counterparts in interpreting 

spatial relations in diagrams. For example, a topological relation of insideness may act as a cue 

for the subsidiary domain of 2D space. The spatial relationships in a diagram are then iconically 

interpreted into the subject domain. 

These diagrammatic processes differ from linguistic metaphor in important ways. In diagrams, the 

cues need not be lexical items, and the induced structure need not be connotational. A graphical 

cue may suggest a syntagmatic process; in general, metaphors induce coding at some higher level 

of syntax. In formal notations, the interpretation induced by metaphor is a fixed part of the 

principal code, not a temporary meaning. 

It is evident that interpreting notation requires deductions to be made on the basis of graphical / 

spatial logic (by whatever cognitive process), but this in itself is not metaphor - it is just 

recognition and reading. Certainly in some cases diagrams do stimulate visual analysis and spatial 

thinking: in geometric diagrams and maps, the space on paper represents a different but 

analogous space. Usually though, the subsidiary domain lies beyond sight and space, in the great 

variety of experience of the world. 

In an explanation of Stenning & Oberlander (1992), Euler's circles denote mechanical linkages, by 

virtue of which they may connote propositions in syllogistic problems and provide methods of 
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solution. In such cases, the 'literal' meanings of visual cues are thus aids to learning the code and 

the required reasoning skills. The code structure supports certain concrete natural or familiar 

denotations, which by analogy support a formal semantic structure -for less understood aspects of 

the subject domain. By these means, metaphors facilitate reasoning by the specificity of their 

direct relationship between the subject domain and some subsidiary domain whose deductive 

chains are familiar. 

4.4.3.3 Analogies and Morphisms 

How can syntax rules accommodate direct analogies between graphics and semantics? 

We do have techniques for describing analogies. The algebraic methods of description reported In 

the last chapter (§3.2.3) make use of morphisms - mappings between algebras - in order to 

define semantics and metaphor in diagrams. For instance, Wang & Zeevat (1996) describe the 

analogy between picture and meaning as a partial signature morphism from the order-sorted 

signature of the picture to that of its 'meaning'. 

In a similar way, Gurr (1996) discusses analogical characteristics of notations in terms of 

homomorphisms and isomorphisms between world and representation. He calls the map from 

world to representation lucid if it is injective, and sound if it is surjective; the map from 

representation to world is called laconic if it is injective, and complete if it is surjective. Thus he 

notes that, in diagrams, poor abstraction causes a lack of soundness, while the sequential form of 

texts causes them to be non-laconic. In rigorously defined notations there is found a lack of 

flexibility, causing incompleteness; users may overcome this by means of secondary notations 

(e. g. informal use of spatial layout to convey information). 

How can we make these kinds of analogy uniform across all the expressions of a notation? The 

complexity of interwoven metaphor and comparative interpretations that holds together the layers 

of code makes for difficulties in giving a purely grammar-based analysis of graphical notation that 

can explain its semantics. How can analogy be incorporated into syntactically-based descriptions? 

The theory developed in the next section aims to answer these questions. 

4.4.3.4 An Argument for Logic 

The reported research directions in the field of computational linguistics provide an indication that 

logics and their implementations are at the root of the matter that concerns us. The argument 

151 



4: Exploration of Research Problems 

made here implies that a formally described notation is more that just a defined class of well- 

formed forms, since there must be also be a logical definition of its serniosis. Generative 

grammars then take on a role subsidiary to that of axiomatic definitions of structure. 

The technicalities of grammar tend to hide the fact that linguistic structure is a solution to the 

problem of rearranging a possibly multidimensional semantic form into a sequential code. This is a 

kind of combinatoric packing problem, of quite a different nature from the serniotic problem of 

finding a conceptual representation for an idea. A discovered derivation for an expression should 

discard this packing information and provide material for recognition of semantic constructs. The 

same applies to graphical expressions, except that the two-dimensional medium presents different 

possibilities and restrictions. 

It is proposed that notational packing and parsing aspects also be treated as proof-theoretic 

operations of some logical system. 

Suppose that we are considering a section of a notation that contains two layers, called graphic and 

semantic. 
An expression may be regarded as a form that is composed of both graphic and semantic items, 

and a wff is constrained to be both correct in graphics and semantics, and to satisfy the rules that 

coordinate them. By specifying a grammar, we are providing: 

(1) a guide for expressing any semantic form in the particular graphics, and 

(2) a means of (uniquely) inferring the semantic layer of any wff from its graphic layer alone. 

This method of integrating the structural levels calls for the flexibility of approach afforded within a 

general framework of descriptive logic. A grammatical rule-system furnishes proof-theoretics that 

can be seen as implementations for constructive fragments of the logic. For the most complex of 

the semantic or pragmatic levels, involving translation, reasoning and calculation, a 'grammar' is 

the same thing as an abstract program. 

Though there are many logical systems available for general purposes in mathematics, the 

problem remains to select the logic that best suits the whole domain of graphical notations. 

Restricted fragments of this logic would then be appropriate for different semiotic layers. The 

perspective argued for could be called metalogical, in that the logic chosen to describe semiosis 

would not be tied to any specific topic of computer science or theory of software development. 

Neither would it depend on the graphical (pictorial and spatial) properties of a particular notation. 
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4.4.4 The Form of Expressions 

To complete this section, we wish to attend to the problem of defining the underlying form that 

expressions of a notation exhibit. If all expressions of a notation belong to a wider class F of 

forms that can be manipulated in grammatical and other processes, how. can we characterize the 

whole of P? What kinds of internally structured object would qualify as a constructed form? 

Answering these questions will require recourse to the ideas and terminology of Category Theory, 

which however will not be explained at this point. The reader who does not have any familiarity 

with categories may want to re-read this passage after absorbing the next chapter. 

To pursue an informal argument about structure, operations on parts will here be used to derive a 

notion of forms as general 'graphoid' constructions. Since we wish to cover many cases in an 

uniform manner, this will be done by a process of generalizing and completing: i. e. filling in 

structured spaces by closing under all operations and admitting all provable properties. This 

method is preferred in mathematics because it leads to simple tidy structures. 13 

4.4.4.1 The Causes of Structure 

Why should expressions be regarded as structured? How does structure arise? The word 

@structure' means something that Is built. In order to build something, there must be parts and 

pieces to build it from, and building techniques or operations. This suggests a way to resolve the 

problem. 

Received wisdom [in computer science] holds that the structure of an object depends on how one 

intends to operate with it. Accordingly, we seek to define a form-space F as a class generated by 

constructive operations. Structure will therefore not be based on hypothesized mental models. 

If expressions were merely representations of abstract data, we could define their structure 

according to the operations used to construct them. An expres . slon might be resolved as a 

sequence of primitive drawing or editing events. This leads to a very cumbersome representation, 

since the event-sequences are unbounded, and we have to determine when two sequences are 

equivalent, Le. taken as building the same component. 

More flexibly, we might construct the expression from primitives in an hierarchical manner, so that 

13These structures are often Infinite. By contrast, In computing It Is more common to have partial operations, owing to resource 

limitations of many kinds. 

153 



4: Exploraflon of Research Problems 

at any stage a new part is composed from parts made in previous stages. The result can be seen 

as an algebraic term, by naming each constructor operator and defining its arity as a sequence of 

sorts of parts that it may combine. The term-data represent the expression as a tree-structure 

whose nodes are labelled by constructor-names and edges are labelled by sorts. This -tree may 

also be regarded as a hypergraph whose edges are constructors. Once again there will be many 

equivalent trees representing the same expression. 

String and term rewriting could be used to calculate equivalences - but if the constructors do not 

relate to syntactic processes, these methods only introduce irrelevant complexity. What we seek 

is a representation that deals with syntactic types more directly. 

4.4.4.2 Graph Representations 

Graphs offer a direct approach to representing structure, in which incidence relations specify how a 

few different kinds of elements connect. Current approaches to diagram syntax, as reviewed in 

the previous chapter, often describe expressions in terms of graphs or relational structures. 

Justification for this method is given (if at all) on the empirical grounds that the graphs were found 

to work for the cases considered. Unfortunately there is little agreement on what type of graph to 

employ. Although a wide variety of graphtypes exist, different types sometimes prove to be 

equivalent in structure. No particular class of graphs stands out as the best candidate for uniformly 

defining notation structure. 

The choice of type of graph may imply some corresponding cognitive basis for diagram structure. 

For example McWhirter (thesis: 1995) justifies his own use of relational structures as a modelling 

notion by an assumption (ibid. p29) that infants experience the world in terms of 'things and 

relationships', a world view which graphs formally reflect. He adduces no evidence for this 

hypothesis; it is hard to see how anyone could do so. We would prefer a sounder reason for the 

choice. 

4.4.4.3 Parts of a Whole 

This issue is resolved as follows. The source of much structure is the practice of analysing 

expressions into parts; it concerns the part-whole relationship, as can be observed in the particular 

example of text. The processing and interpretation of an expression is then establi shed upon this 

analysis. There is a desire to find smallest parts and largest parts, to have a way of building large 
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parts from small parts, and to allow rewriting: the replacement of a part in an expression with a 

new part, leaving other parts unchanged. 

We first observe some elementary properties of the part-whole relationship by reference to a 

textual example. This leads to the contention that forms belong to a category. 14 

Consider for instance, strings based on the Roman alphabet. Then the string abracadabra has 

parts 

a, b, c, d, r, ab, br, ra, abra, 

and many others. Some parts occur severally in different places. 

To cope with multiple occurrence, it is convenient to consider tokens rather than abstract parts in 

expressions. We may observe the following definitions and rules: - 

D 1) An occurrence is a relation p of containment between two tokens: 

P= part (p) whole (p) 

that is to say, P is copied as a part of Q. This is written: - 

p: P -4 Q 

RI) Every token P occurs as itself, we identify P with its self-occurrence: 

P: p -+ 

An important property of occurrence is that it is transitive: if P occurs in 0 and 0 occurs in R, then 

P occurs in R. 

D2) Two occurrences p, q are said to be compatible if whole(p) = part(q). 

112) If p, q are compatible occurrences, there exists a composed part p; q such that: 

whole(p; q) = whole(q) A part(p; q) = part(p). 

In symbols, this can be expressed: 

P: P -* Q q: Q -+ 

p; q: 
(R2) 

This structure is called a deductive system in (Larnbek & Scott 1986), because the occurrences 

behave like proofs of propositions, and the rules deduce proofs. We observe further, in the case 

of text, that certain compound parts may be equated: 

The operation of composition of occurrences has left and right identities, and is associative: - 

141t is unfortunate that the words 'categor/, 'categorial' and 'categodcar each have different technical meanings In linguistics, 

logic and mathematics - as well as Informal meanings. From here on, unless the context dictates otherwise, the mathematical 

usage may be assumed. ' 
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P; p =p=P; Q 

If p compatible with q and q compatible with r, then 

(p; q) ;r=p; (q; r) (E2) 

A structure with these properties is called a category. It follows that if we wish to refer to parts and 

wholes in the same manner as for text, we are obliged to treat tokens as objects in a category 

whose arrows are occurrences. In addition, by extending this category with more objects, arrows 

and properties, we can admit many ways of manipulating non-textual expressions. 

4.4.4.4Joining and Operating on Parts 

We may consider expressions as being built with the help of forms which need not satisfy the 

desired syntax - e. g. parts of expression-tokens. Maps can be seen as operations that send any 

part of one form P to a corresponding part of another, a, they show where P occurs as 'part' of 0 

in a more general sense, because maps need not be 1-to-1. Within this wider setting, simple parts 

are subforms, seen as 1-to-1 maps in which P is isomorphic to some part of a 

These considerations suggest a certain way of completing the category. Technically speaking, a 

general category F of forms can then be characterized from standard theory (MacLane 1971) as 

follows: - 

The objects in F are forms. Its arrows are general maps from a form P to a form Q that define how the 
(possibly overlapping) parts of P map onto the parts of Q. Ibis is achieved by allowing certain limits 

and colimits to be constructed: - 

To build an expression, we may wish for example to join forms together, or to find the largest part 

in which two subforms overlap. 

Joining requires the apparatus of finite colin-Lits (e. g. pushouts). 
We may need a notional empty form - an initial object in F. 

Subforms are the monic arrows in F. Finding overlap of subforms will require some finite limits 

(pullbacks). 

If we are generous enough to admit all such (limit and co-limit) constructions - which may not be 

necessary - the result will be a finitely bicomplete category. This will more than suffice for 

rewritings of forms based on the double-pushout approach of graph grammars mentioned in 

(§3.1.3). 

One aspect of this generosity is that we can construct a form which is the product of two forms P 
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and Q, say, in the following sense: a map to the form PxQ represents two maps, one to P and 

one to Q. A map from the product to R in effect assigns any pair (p, q) of parts to a part of R. For 

instance consider a discrete version of 2D Cartesian geometry, as might divide a rectangle into 

pixels. Take P and Q as sequential forms that model sections of the X-axis and Y-axis respectively. 

The form that holds the 2D space defined by these is the product PxQ of the two axes; a 

subform of this product would provide a representation of a simple drawn shape -a 'bitmap'. 

A map may also be seen as way of labelling or classifying parts. Taking the previous example, we 

might take a form C denoting a colour-space; a map p: PxQ -* c is a colouring of the 

rectangle. Cases like these show that there is some benefit from extending operation on forms 

beyond mere joining and deleting of parts of expressions, into much richer constructions. 

The result of this logical completion is that the range of admissible types of syntactic part has been 

extended to cover all combinations that can be 'imagined' or construed, rather than just those that 

are clearly indicated in some syntax. 

4.4.4.5 Representing Properties of Parts 

This argument does not take us much further. The next step is to build computational structure into 

our categories of forms, by introducing notions from Set Theory. This construction results in a kind 

of category known as a topos: a category that embodies an intuitionistic type theory, as fully 

described by Lambek & Scott (1986). Basing descriptions of notation processing on a topos F of 

forms allows us to define rewriting operations in abstract without recourse to encodings in set 

theory. By such means we. can for instance encode general rewrite-rules in the. manner of 

Bauderon (1996), who uses a method of labelling to classify which parts of a graph are to be 

deleted in a rewriting. 

Topos Theory gives us a notion of logic that does not rest on manipulations of formulae. 

In a topos, facts about parts are represented as equations between maps. Equations enable us to reason 

about forms without needing a syntactic encoding of them. This is done by constructing forms that 

represent arrangements of other forms, and regarding them as types. Maps are viewed as terms that 

denote operations on types - or indeed functional programs. Propositions are terms of a certain type. 

First we note that any complete category has an object that is an individual - which combines all its 

parts into a whole. 
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forms by arrows in the topos. 

Although we cannot justify the whole of topos structure as fully essential to our purposes, we would 

not gain anything by restricting Fto fewer constructions. This kind of structural description seems 

most economical because it is equivalent to a simple intuitionistic type theory. The claim is not 

that forms are in essence graphoid in shape, but that this approach to defining them Is adequate 

and not too general. 

4.5 Towards a Theory of Notation 

The remaining task of this chapter is to show how formal support can be given for a theory of 

notation. We consider how the structural notions arising from the above investigations can uphold 

the pragmatics of formal notation. As a first step to resolving the problems of notation description 

and usage, a formal theoretical foundation for serniosis is put forward. 

4.5.1 Serniosis in Notations 

The exploration of the previous section has concentrated upon the syntactic structure of notation.. 

Here the whole semlotic function is outlined, including the pragmatics of notation in a software 

development context. It is argued that every notation embodies a practical method of reasoning - 

an instructive logic. Together, notations provide grounding for the application of mathematics to a 

wealth of problem areas. Our focus in what follows is less upon description of a natural 

phenomenon, and more upon how we might support the design of notations to suit specific usage. 

4.5.1.1 Summary of Code Structure 

Graphical expressiveness is maintained by levels of structure that bridge the gap between physical 

medium and subject domain. Following a linguistic model, these can be diVided into four layers- 

Semantic - deduced conceptual structure 

Tagmatic - grammatical arrangements; simple recursion 
Lexic - pictograms, links, enclosures, frames 

Graphic - geometric elements, colour, texture, style 

The graphic and lexic layers are two articulatory levels, allowing complex shapes and relations to 

be built from elementary parts. The tagmaticI5 and semantic layers concern various 'linguistic' 

150r syntagmatic - from Greek rorffia: something arranged or ordered. 
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patterning or analogical devices that supporting denotation and connotation. The number of layers 

may vary, and the division is somewhat arbitrary. The logical complexity of each syntactic layer is 

limited by certain cognitive resource constraints, dependent upon the purpose of the notation and 

the skill required of users. It is these limitations that determine the character of the syntactic 

coding - analysed as constructive logical relations between serniotic layers. 

The structural parts of expressions will be called items', they generally belong in the 'semiotic 

hierarchy' defined by the layering. By layers, they may be termed graphemes, lexemes, 

tagmemes and sememes-, these correspond respectively to characters, words, phrases and 

meanings in narrative text. 

Each level has a combinatofic form: an underlying form that captures each expression as a 

'graphoid' configuration of items of various sorts. These abstract expression-forms are said to be 

embodied or realized (e. g. geometrically) in the medium, while they are interpreted in the subject 

domain, providing interfaces with both the physical world and the cultural world of shared ideas. 

Embodiment of graphics is concerned with universal spatial, perceptual and cognitive properties of 

the medium. Some formalization of these properties, independent of choice of notation, is needed 

to bind the graphical layer to the ground of physical nature. The system of interpretants of the 

signs in an expression form the semantic interpretation in the subject domain. Where there is a 

connotational semantics, the interpretants are themselves vehicles that signify in higher semantic 

levels (see §4.2.1 above). 

Why have layers? In the previous chapter (§3.4.2) it was suggested that design of notations gains 

flexibility from a separation into layers, for practical reasons that do not depend on their empirical 

psychological existence. The reasons are twofold: such a modular construction has the benefit of 

making syntax simpler to modify, and each layer (or module) may have different logical 

complexity, as has been discussed above. In addition, freedom to change the lower levels makes 

it possible to design in the visual or linguistic metaphors that help the user to learn and reason with 

the notation. 

4.5.1.2 From Graphics to Pragmatics 

We seek ways to accommodate these layers and to connect expressions within their intended 

environment. In pragmatic terms, when notations are used in a software development setting, 
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expressions of all kinds are displayed in some physical medium and enacted communicated to (or 

by) some computational system. A formal pragmatics is possible only when enactment occurs in 

definable situations that conform to specified presuppositional constraints. 

Whereas signs within expressions have an abstract interpretant, replicated tokens within displays may 
be associated with a specific referent: a concrete object or state that is to be found in the whole context 
that surrounds its display. Deictic tokens in an expression-occurrence must point to appropriate items 

in the situation, for example. 16 

This pragmatic 'interface' can thus be dealt with by formalizing the context, independently of the 

notation, as a complex of well-formed situations. Unlike denotational semantics, this abstracts the 

situation of expression-occurrence and its tokens along with the situations referred to by the 

expression. We are concerned with a situated expressiorr an expression embedded in a formal 

presupposed context. 

The expressive medium and its enclosing context can carry structures well beyond the size and 

complexity restrictions appropriate to Individual cognition. Computationally, this might be 

simulated by a constraint logic or rewriting system that co-ordinates the propagation of changes 

within the whole context. 

4.5.1.3 A Community of Notations in Context 

What kind of notational edifice for software development could we hope to build on the strength of 

a semiotic theory? In the survey (§2.2) of Chapter 2 we saw that a software development project 

is a complex 'animal' with many aspects, requiring many notations. For a realistic approach, we 

could define a community of notations as a set of related logical instruments within a common 

environment. In each notation, we then envisage a contextual'well-formed form as a situated 

expression - an expression augmented by some segment of the formal context, and bound by 

pragmatic constraints that determine what forms may occur in a particular kind of context, and 

how the environment might be expected to behave as a result. This would for instance cope with 

expressions within a system specification document, or to diagrams that propose a change to a 

system-design representation during development, or to diagrammatic commands issued by the 

1 r3The Hyperproof system -a computer program to help students learn to reason using both pictures and of first-order logic 

(Barwise & Etchemendy 1988,1994) - employs this kind of analysis. A displayed logical statement refers to a situation that Is 

pIctured on screen. 
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end-user to be executed by an application. 

A document can be treated broadly as an arrangement of expressions in several notations, 

referring to a specific context: a complex of situations. Documents are subject to modification by 

editing, translation and deduction. In dialogue and other discourse processes, 'changes occur in a 

document as a result of interactions with agents in the context. The propagation of change is 

subject to logical constraints defined on the document structure and each of its notations. 

The reviews in (§3.3) suggest that a notation-community might be based around a core structural 

plan of the project environment, a compound semantic domain, upon which each notation holds its 

own viewpoint. An expression Is a selected view of a possible context or single situation. The 

core project database is never notated in its totality, but provides a semantics for all internal 

checking, evaluation and proof, and a route for all translation. 

4.5.1.4 Notation as a Logical Instrument 

Another aspect of pragmatics is the understanding and skills of participants. The analysis of 

notational roles in (§4.1.3) found that participants use notations for thinking with or for 

communicating thoughts, more or less formally, in software development. It was asserted in 

(§4.1.1) that notations are a way of bringing mathematics and logic to bear on problems. Here we 

discuss how this occurs. 

A formalist viewpoint posits that all explicit mathematical concepts can be studied without going 

beyond the formal properties and transformations of their notations. 17 The fact that expressions 

are finite and never very large avoids any paradoxes connected with infinity, and the question of 

computational complexity becomes a matter of notational economy. This suggests a concept of 

semiotic mathematics, allied to the constructive theories that are motivated in computer science 

logic, where symbol manipulation is the only option available for problem-solving. Vaughan Pratt 

(1988) makes some interesting points in this regard. 

17 A personal realization of this perspecOve was the author's original Inspiration for this endeavour of pursuing notaflon research. 
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"... it is a tenet of faith that 'conventional' mathematical proofs can be expanded out to a purely set- 

theoretic argument, yet this Is almost never done. Moreover category theory has In recent years 

posed a challenge to set theory as an alternative and strikingly different foundation, Indicating the 

non-uniqueness of such expansions. The possibility then arises that no such foundation Is needed. 

Instead we may consider any given argument as being conducted In one or more relatively small 

and localized theories! 

"I propose that the proper notions of constructivity In a logic are its computational complexity and 

its human surveyability... This then speaks for computational tractability as an Important criterion 

for judging the merits of any theory. " 

We may surmise that notations are presentations of the'relatively small and localized' constructive 

theories referred to, made visible for human survey and formalized_for tractability. This position is 

supported by the cognitive theories advanced by other authors. Stenning (1994) notes the *strong 

vein" of graphical thinking in the development of logic and thus he refutes the assumption that 

logic is sentential - it is rather man abstract consequence relation which can be implemented in 

many mechanisms. ' The implementation should be made explicit. He sees diagrams as weakly 

expressive systems that are cognitively useful when their power is sufficient to the task at hand, 

where they offer inferential tractability, but that are pathological when abstraction is required. 

4.5.1.5 Tractable Reasoning with Notation 

Following the work of Levesque (1988), Stenning & Oberlander (1992) argue that FOL cannot 

provide a computationally tractable reasoning system. Levesque claims that the modifications to 

classical logic found necessary to ensure tractability are exactly the same as are necessary to 

make logic psychologically realistic; a primary reason for the appeal of visual information lies in 

what it cannot leave unsaid about the observed situation - its vividness. 

For a sentence in FOL to be vivid it can only contain ground, function-free atomic sentences; unique 

names; universal sentences over a closed world; and the axioms of equality... A vivid knowledge 

base "looks like its described subject mattero (Levesque 1988). 

Accordingly, Stenning & Oberlander take a model-theoretic perspective, and ask how many 

models correspond to an expression (when viewed as a proposition). To improve tractability, it is 

necessary to minimise the number of cases to be considered. Levesque suggests ways to 

increase expressiveness, such as the use of Horn clauses and semi-Horn forms to encode 

taxonomies, allowing some disjunctions to be hidden in subsuming predicates - or the use of 

unsound reasoning. He notes that "Observer-centred visually salient properties become defaults" 
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(e. g. apparent right angles in a geometric figure are assumed to be formally constrained unless 

otherwise marked). 

Stenning & Oberlander regard a proposition as a logical concept independent of any 

representation system. They therefore reject the well-known "Imagery debate" - on whether 

mental images are encoded analogically or propositionally - as being a source of confusion. To 

reduce the burden on working memory in such tasks, humans may exploit a set of special 

purpose cognitive mechanisms, developed for perceiving and reasoning about the spatial world, 

for reasoning about other domains. A reasoning task that can be done with a restricted logic can 

take advantage of an implementation that would be impossible for more general logics. 

In view of the discussion in (§4.4.3), we may surmise that reasoning is very dependent upon the 

skill of applying metaphors, which in mathematics and elsewhere are often standardized and 

encoded in notations. 

4.5.2 A Foundation: Notation TectonICS18 

The task of this work is not so much to formalize notations as explicitly implemented logical 

instruments, in the above sense. Rather, the intent is to lend support to this notion by making 

explicit the inherent logic of a layered serniosis. Here a basis is proposed that affords both model- 

theoretic and proof-theoretic stances, as suggested by (§4.4.3). 

4.5.2.1 A Metalogical Approach to Notation Specification 

We wish to defined formally the connectivity properties of the graphical form of expressions and 

relate them to the structure of the subject domain. We must formulate syntax in a way that is 

independent of any logical framework designed for the subject system, otherwise we would have 

to change descriptive techniques every time a new subject was chosen. In order for descriptions 

to cover a wide range of system structure uniformly, they must be based on a metalogic which can 

encompass theories about such semiotic structure. 

The proposed approach is to build theories of syntax for subject notations. Minas & Viehstaedt 

(1995) introduce the term diagram class to refer to a notation, or specifically its set of well-formed 

18 Tectonic: of building or construction. Tectonics: whole art of producing useful or beautiful buildings; structural features as a 

whole. (Conclse Oxford DicUonary). 
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diagrams. In our case this will be the class of models for a syntactic theory. Propositions In a 

theory act as constraint rules that can test whether a form is well-formed as an expression: Le. 

whether it is an acceptable model for the theory. Maps between theories give us ways to refer to 

the translating, encoding or instantiating of serniotic structure. 

The semantics of a notation is regarded as an abstraction of various situations within its subject 

context, defined by means of a logical theory. Spatial and cognitive constraints determine how 

such a logically defined structure can be notated as a drawing. A notation's coding builds a 

relationship between a theory S in the semantic domain and a iheory D of drawings. In the 

simplest case there is a coding of S in terms of D. 

Consider first a coding T: S -+ D that expresses a semantics S in a graphics A If p is a picture, i. e. 
a model of D, then T (P) is a model of S: a corresponding formal meaning. Expressions in the 

medium that are governed by D can then be interpreted uniquely in semantics, with all semantic 

properties determined from graphical ones. (Note that interpretation is in the opposite direction to the 

theory mapping. ) Two different pictures p and q have the same meaning under T when T (p) 
T (q). 

In order for this to work, the theory D must incorporate all of the conventions that determine the 

encoding. In practice we are likely to have a limited theory G that establishes the perceptual 

conventions of the medium, to which semiotic structure must be added. It must be stressed that G 

here is not intended as an absolute theory of drawings, but as an encoding of the natural and 

cultural expectations about drawings that are appropriate to the notation and circumstance. The 

arrow here can be taken as informally representing the cognitive effort involved in viewing and 

interpreting expressions, or some equivalent computational cost. 

4.5.2.2 Syntactic and Pragmatic Relations 

In the general case some pictorial forms will be without meaning, while some subject concepts will 

be inexpressible in the notations. To treat this case we consider the semiotic relation that 

determines which features of drawings are significant and what contextual features they stand for, 

as a pair of maps spanning the semantical and graphical theories. The first map determines the 

part of the subject domain that is represented, and the second selects the salient part of the 

expressive domain: the medium. (For the moment we do not specify the nature of these maps. ) 

Let theories G and S be related by a span -a theory R equipped with two maps: 

G 4-- R -4 S 
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such a logically defined structure can be notated as a drawing. A notation's coding builds a 

relationship between a theory S in the semantic domain and a iheory D of drawings. In the 

simplest case there is a coding of S in terms of D. 

Consider first a coding T: S -+ D that expresses a semantics S in a graphics D. If p is a picture, i. e. 

a model of D, then T (p) is a model of S: a corresponding formal meaning. Expressions in the 

medium that are governed by D can then be interpreted uniquely in semantics, with all semantic 

properties determined from graphical ones. (Note that interpretation is in the opposite direction to the 

theory mapping. ) Two different pictures p and q have the same meaning under T when T (p) 

T (q). 

In order for this to work, the theory D must incorporate all of the conventions that determine the 

encoding. In practice we are likely to have a limited theory G that establishes the perceptual 

conventions of the medium, to which semiotic structure must be added. It must be stressed that G 

here is not intended as an absolute theory of drawings, but as an encoding of the natural and 

cultural expectations about drawings that are appropriate to the notation and circumstance. The 

arrow here can be taken as informally representing the cognitive effort involved in viewing and 

interpreting expressions, or some equivalent computational cost. 

4.5.2.2 Syntactic and Pragmatic Relations 

In the general case some pictorial forms will be without meaning, while some subject concepts will 

be inexpressible in the notations. To treat this case we consider the serniotic relation that 

determines which features of drawings are significant and what contextual features they stand for, 

as a pair of maps spanning the semantical and graphical theories. The first map determines the 

part of the subject domain that is represented, and the second selects the salient part of the 

expressive domain: the medium. (For the moment we do not specify the nature of these maps. ) 

Let theories G and S be related by a span -a theory R equipped with two maps: 

G 4-- R -4 S 
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The map to G ignores items that do not contribute to meanings; it also serves to carry graphical 
constraints that become intrinsic to the syntax. These are mapped into corresponding constraints of S. 
Any properties of G that are ignored will become restrictions on expressiveness. 

The map to S adds constraints from the subject domain, which become part of the extrinsic syntax. 

Here the two maps also show to what extent the semantics is related to conventional graphical 

properties - the extent of analogy. Whether this analogy is graphical or syntactic depends on how 

complex or direct is the map to G. The properties of the medium may restrict the range of 

meanings that can be directly expressed, especially if the map to G is unwisely chosen. 

The process of interpreting a drawing (model of G) involves translation by analogy and syntax to 

an abstract expression (model of R), followed by the construction of a compatible semantic 

situation (model of S), if possible - Le. if the expression is well-formed. In a formal circumstance, 

we would want the map to S to have at least a partial inverse, so that an unambiguous meaning 

could be found for a subset of drawings. Otherwise the viewer's informal knowledge of specific 

context and what is feasible may help resolve any ambiguity. 

Within this paradigm we can also describe the pragmatics. The indirect relation between 

semantics and graphics can be defined by a situated theory that constrains the occurrence of an 

expression, within a context which will include the referred-to situation. This theory encompasses 

concepts of both semantics and graphics, while respecting the analogy. 

Theories G and S can combine within a situated theory K of expressions-in-context, which enriches 

them with further concepts and constraints. 

G --) K (-- S 

The advantage of this scheme is that we can go beyond a simple abstract comparison of drawing 

and meaning. In case a drawing contains deictic references, we are able to include in K concepts 

of drawings as physical objects in proximity to their referents. Here we can think of. the process of 

interpreting an ambiguous drawing as an attempt to construct a compatible context (model of hl, 

which is then translated to a semantic situation. This translation will ignore all aspects of the 

context not connected to the meaning of an expression. 
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Figure 4.1 Analogy as isomorphism 

Taking these serniotic relations together, we see that every concept In R has two corresponding 

items situated in K, one in a drawing and the other in the referred-to situation. These two images 

of R are isomorphic - which. is indicated by the diagram In [fig 4.1]. This then demonstrates a 

general framework that explains analogy in terms of a natural family of isomorphisms between 

drawings and meanings. 19 

Full expression of a subject will typically require several notations. A 'core structure' S for a 

diverse subject area can be covered by a community of notations: 

{i: IIG +- Ri -ý SI 

which represent different (overlapping) views of the domain S. 

4.5.2.3 Designing Layers of Structure 

We may now expand this to a layered framework that relates graphical, lexical, syntactic and 

semantic steps of a notation M, in [fig. 4.2]. 

Suppose we have selected for notating, a domain whose conceptual structure is represented by a 

theory Semantic which is a part (subtheory) of some larger subject domain. We wish to express 

its ideas in the medium of drawing, for which we have a standard theory (Medium). Given a well- 

formed drawing, we want to be able to interpret its meaning by a logical construction in Semantic. 

Each semantic part would be defined in terms of a part of a drawing. 

Ideally we want translations in M via the layers from Semanda. the theory for part of the subject 

domain, to Graphic. a theory of drawn forms in the medium: 

(medium) +- Graphic +-- Lexic +--- Tagmatic +-- Semantic +- (Subject) 

where the translation is the composition of three maps, which will usually not be total, between 

separate theories in M for each layer. This will be approached from the more general case, which 

describes a notation that is being designed, and is not yet complete - or perhaps is evolving. 

Graphic <-GrLx-* Lexic +-LxSn-ý Tagmatic +--SnSm-4 Semantic 

19 Informally, (fig 4.11 can be taken as a depiction of the compatibility between the cognitive association R of drawing to meaning 

and the pattern of occurrences K In different contexts. 
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TgSrn ---)Semantic 
I 

LxTg -->Tagmatic 
I 

GrLx -> Lexic 
I 

Graphic 

Figure 4.2 Steps between layers 

The spanning theories GrLx, LxSn and SnSm and their maps are steps connecting the layers, and 

indicate analogies which assist the interpretation. Upper steps normally involve more complex 

operations than lower. 

The steps in [fig 4.2] may admit superfluity, ambiguity and inexpressiveness at each step. To 

make the steps effective, each vertical arrow must select salient items and analogies from its 

lower layer to its upper, while the horizontal arrow of each step may add further constraints to the 

well-formedness criteria. The figure also allows for extraneous items to be added along each 

horizontal arrow, admitting vagueness: (the undesirable possibility of) unnotated determinants of 

meaning such as tacit context. 

TR LxTgSm TgSM Semantic 

--" I1 
-7 OrLxTg LxTg )Tagma SmTg 

II 

N/ 

I 

x Lexic > T9Lx SMTgLx 

LxGr --*gLxGr 

Figure 4.3 A fabric of layers 

Above the steps [fig. 4.31 we can construct the largest theory that connects graphics to semantics 

via analogies. Underneath these steps are formed the combined theory K, the smallest that 

contains all and only the items from all layers of M, and into which both Graphic and Semantic are 

mapped. Ambiguity is removed when the horizontal maps have partial inverses. 

The figure factorizes the simpler picture of [fig 4.1] with the proviso that R is maximal and K 

minimal. Then all chains of translations that join R to K are equivalent. 
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4.5.2.4 Theory Morphisms as Translators 

How can we formalize these maps? For this we again require Category Theory. Following the 

methods of Lawvere we will view theories as categories with extra closure properties that define 

what doctfine of logic is. to be used. Morphisms between theories (which may be called 

translators) are required to be functors that preserve these doctrinal properties. Models of theory 

Tare morphisms from a theory-category to a ground category Z- such as the category of Sets 

and functions. The. objects of a theory then become types of item in a model; the arrows of the 

theory become maps between types, Le. kinds of association. 

These translations are implemented somehow by methods of construction and deduction, of 

varying complexity. 

4.5.2.5 Interpreting Pictures 

Under this formulation, interpreting pictures becomes a matter of composing morphisms. Given a 

theory R spanning graphic and semantic theories, we have two translations: 

rg: R --ý Graphic 

rs: R -+ Semantic 

These morphisms describe the systematic analogy that holds between a drawing and its meaning. 

To find the meaning m for a picture p, we must find a model of R which is isomorphic to 

translations of both p and nr 

rg; p -= r =- rs; m 

Graphic < rjZ R rs > Semantic 

P 1= : =- M 

Sets 

Figure 4.4 Displaying and interpreting 

- as pictured in [fig 4.4]. The construction of the intermediate model r from p is a matter of 

deduction. However the discovery of a meaning m is not possible for all r. When it is, we may say 

that p is semantically well-formed. In general the translation rs yields a meaning that does not 

determine all aspects of the intended subject. 

For a simple instance suppose that rectangles are a salient feature of drawings, and that they 

represent 'processes' which are known in the subject domain. Now given some drawing (in the 
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form of a description of the arrangement of its primitive elements, such as line-segments) we can 

ascertain the set of all rectangles that it contains. Then R will contain a sort s that rg maps onto sort 

'rectangle' in the graphic theory, while rs maps s onto sort'process' in the semantic theory. 

Alternatively, for a pragmatic description, consider the task of issuing a token of a picture with its 

intended meaning in a suitable context. This is a matter of finding a context k that a picture p and 

its meaning m can be embedded into, via isomorphisms: - 

gk; k =-p and sk; k-=m 

Graphic gk > K< 
A 

Semantic 

pm 

Sets 

Figure 4.5 Expressions in context 

- as shown in [fig 4.5]. The theory K determines those situations in which a picture may be 

presented and accepted. If the picture's meaning is to be controlled by theory R, then the 

isomorphism 

rg; gk =- rs; sk 

(cf. [fig 4.1]) determines this constraint. 

In this way a rudimentary framework for notation serniotics is provided via standard mathematics. 

4.5.2.6 Serniotic Sorts and Graphoid Forms 

Returning to the view of expressions as models of a theory, we may now focus on the shape of the 

graphoid forms as defined above (§4.4.4) . Since this work alms to develop notations that present 

theories about such forms, a similar argument to that of (§4.4.4) about the operations needed for 

building theories, suggests that the theories themselves should be categories whose objects are 

sorts. The forms are models belonging to some topos. 

The kind of topos chosen to model graphoid forms is determined by the need to analyse 

expressions into a finite set of sorts of part. By our assumption of finiteness, we wish all 

expressions to be built from certain generating items. These items are maps from any of a finite set 

of simple forms - called syntactic, or more generally, semiotic sorts. If J is a sort and A is a form, 

maps i --> A are called J-iterns of A. Thus any form is a finite configuration of such items. 

Generally, maps between forms are called terms; any term f: A 7)ý B is said to be generated if it is 

determined by a map from items of A to items of B. Terms are built up from constructor functions that 
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are given in the extra structure of the category. Thus a binary product allows us to construct ordered 

pairs (p, q) of items, and thereby define terms for binary relations and operations. 

Noting that each sort corresponds to a set of items In a form, and that maps between sorts 

correspond to functions between sets of items, we see that graphoid forms are functors from T to a 

category of finite sets and functions. These considerations lead to the proposal that the forms be 

modelled as the topol that are functor categories from theories. 

A graphoid form is In fact a model of a theory Twithin a simple doctrine. Twill be some category 

with a finite set of objects (sorts), and whose arrows are generated from a finite set by 

composition. The doctrine admits any functor from T to Set as an acceptable model: a T-graphoid 

form. These forms cover a wide range of notions of structure, and provide an uniform basis for 

definition of notations within a variety of logical doctrines, according to the complexity of the 

syntax. Provided that a syntactic theory is generated from some finite category N, every IV- 

expression has such an underlying form, because every model determines a functor from N to Set 

- an N-graphoid. In other words we regard expressions as forms constrained by further properties 

- given as equalities forced to hold between constructed arrows - where the construction Is 

permitted by the doctrine. This will be illustrated in the next chapter. 

4.5.3 Coda 

These final comments look back on the achievements of the chapter, so that we can reflect on 

their importance and the strength of the arguments made. 

4.5.3.1 Summary 

The work of this chapter has set limits on the area of study for a thesis concerned with applying 

mathematics to serniotic problems. Graphical notations of interest here are defined as sign- 

systems whose expressions can be drawn or written and which belong to a technical culture of 

software development professionals. To formalize is to explicate the rules that define notations - 

which, in notation design, makes possible the removal of ambiguity. 

An exploration of the subject of semiotics has drawn attention to the structure of codes and the 

processes that motivate and maintain them. By adopting a semiotic perspective, it is found that 

expressions encode Information by means of a tenuous logical association between graphical 

structure and meaning. This association is characterized by layering phenomena, described in 
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terms of articulation and connotation. These phenomena are governed by limits on logical 

complexity due to general cognition and the skills common to the cultural group that favours the 

notation. 

This chapter has represented the form of expressions by means of a generalized type of graph or 

relational structure, sufficient to support rewriting and computation on parts of a whole. This 

graphoid structure is not so much a natural property of expressions as a consequence of the way 

we seek to operate on them. It should therefore be adequate in scope for describing all notations 

of interest - those that represent finite configurations, rather than those with continuous variation 

such as geographical maps, which would require topological operations. This is not, however, an 

absolute or dogma - if expressions were to be analysed from some other viewpoint, a different or 

more effective notion of structure could well emerge. 

4.5.3.2 Grammar as Proof Strategy 

As the approaches of computational linguistics suggest, both grammars and logical perspectives 

are encompassed by defining syntax as a theory in a logical language, and then introducing 

rewrite-rule schemes and constraint resolution as proof strategies. Parsing is a way of proving that 

a given graphical form is well-formed, by constructing from it a complete syntagmatic form. 

Interpretation proves the existence of a semantic form consistent with the syntagmatic form. By 

treating expressions as graphoid forms we fix on a type-theory within which to implement the logic 

and carry out these process efficiently. 

4.5.3.3 Thinking with Diagrams 

In (§4.5.1) it was suggested that diagrams, as much as formal narratives and formulae, are logical 

expressions that enable reasoning. The theoretical development here has concentrated on the 

logic of semlosis, on which this use of notation relies. In so doing it has postulated a continuum of 

inference through from graphical phenomena to semantic concepts, which goes some way to 

explaining how learned rules of manipulation can coexist with analogical graphical mechanisms, 

both helping the thinker to make their intuitions concretely verifiable. 

This premiss has made it possible to put forward a plan for formalization that treats the 

expressions in a given notation as logical models defined by a formal theory. 
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4.5.3.4 Tectonics 

A brief outline has indicated how a full notational theory may be built, around a theme of semlosis 

as a system of logical doctrines, theories, models and implementations. . The proposed 'tectonic' 

theory offers a foundation for describing notation systems In context, in order to support operations 

of generation, translation and interpretation of expressions. Structure is definable by a logical 

presentation of a syntactic theory whose models are expressions (or situated expressions, In the 

pragmatic case). The generation of expressions is seen as the building of a model, guided by the 

theory, but directed towards semantic goals of the producer. Category theory has supplied a 

mathematical basis. 

These ideas are stated in the widest generality. The following chapters are concerned with filling 

in some detail by studying specific cases and problems. They will show how to present the 

syntactic theories themselves as schematic expressions, and how to build theories for the purpose 

of designing or adapting notations. 
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Chapter 5 
A Strategy and Notation for Sketching Syntax 

Abstract 

Here we find described a practical method for specifying syntax, which is based on the theory 

proposed in the previous chapter and can be uniformly applied to any notation. The strategy 

offers a basic technique of description that Is intended to support the tasks of designing and 

processing notation. 

The method applies the mathematical notion of sketches, which are formal presentations of 

theories. Doctrines classify the power of theories, by determining which logical constructions and 

inferences are admitted. Varieties of category are then represented as sketches closed under 

logical operations; a formal theory is defined as a category: the closure of any sketch that presents 

it. A schematic notation is then devised for drawing the sketch of a syntactic theory. Schemas are 

introduced to explain and depict all constructions on sketches, and to show how the presentation of 

a theory is built up. After some simple examples of notational structure, schemas are given for the 

syntax of Jackson Structure Diagrams. 

This demonstrated method provides a formal graphical notation for syntax specification, which is 

equivalent in power to first-order logic. More importantly, it gives a way of controlling the 

complexity of the logical relations between segments and layers in syntax, and of defining direct 

structural analogy. It improves upon graph grammar approaches by making explicit the logical 

properties that remain hidden in the rules of a grammar. 

The formalism encourages a view of syntax in which perceived connectivity constraints in. an 

expression can be separated from the properties of a pictorial realization. The schematic notation 

is proposed as a research tool for analysis of notation, and is one of many possible. For practical 

purposes, some ways are suggested for extending and varying the notation according to 

circumstance. Alternative choices are considered. 

175 



Chapter 5. 
A Strategy and Notation for Sketching Syntax 

'The more that is left unsaid, the more possibilities are allowed by what is said. To 

determine what is entailed by what is said, all of these possibilities have to be covered 

one way or another. " (Levesque 1988, quoted in Stcnning & Obcrlander 1992) 

The investigations of the preceding chapter have shown that the structures of graphical syntax can 

be founded on established mathematics rather than on ad hoc technique or theory. We wish now 

to show how the suggested mathematical methods can be applied to produce clear definitions for 

syntax - of both textual and diagrammed notation - by depicting the precise logical connexions 

linking appearance, syntax and semantics. We saw in (§3.2.1) that other proposed formalisms for 

specifying syntactic constraints on diagrammed notations mostly use textual notations. In 

preference, this chapter demonstrates a graphical approach to formally describing notations, by 

means of the theory of Sketches. 

The specific technical notion of a sketch is introduced and its theoretical background in Category 

Theory is explained. Sketch Theory is elaborated to make a formal framework and method for 

treating any serniotic layer as a set of constraints on a structured form. The framework naturally 

gives rise to a schematic notation - called SIGN - for formally specifying notational syntax. Some 

simple examples illustrate the concepts and symbols of the notation SIGN. Further examples 

show the strategy employed in depicting syntax, leading to a detailed study in which a syntactic 

sketch is given for Jackson Structure Diagrams. The advantages and problems in the design of 

SIGN are discussed in the light of the experience gained in the example specification task. 

Why devise a graphical notation for specifying graphical notations? We have noted in (§4.3.1) 

that researches indicate an advantage in using diagramming to aid reasoning, provided the coding 

relies mainly on direct analogy. Suitable diagrams should thus be able to offer help in thinking 

about the structure of a notation being specified. Can we expect this reasoning to be within reach 

of an user's understanding? The arguments of (§4.4) show that the logic needed to define syntax 

is inherently tractable. Therefore there is good reason to believe that a graphical notation for 

syntax is appropriate. 

It does not follow, however, that description of syntax is an easy task. When an user is engaged in 

working with a notation, in the sense of (§4.1.3), syntax is something that would properly rest 
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below their threshold of awareness. We should not expect it to be a natural task to focus on 

syntax and make its details explicit. 

5.1 Theoretical Background 

This section introduces the ideas behind the proposed fonnal graphical notation for syntax, based 

upon the mathematical Theory of Sketches as originated by Ehresmann (Bastian! & Ehresmann 

1973) and developed in (Barr & Wells 1985, Gray 1989b). The concept of a sketch is also used 

below as a way to explain the structure of various kinds of category, which are viewed as closed 

forms of sketch. Whilst some categories are seen to be formal theories, others provide a home for 

models. 

5.1.1 Sketching the Syntax of Notations 

Throughout this chapter we have in mind a single 'syntactic' layer mediating between graphical 

and semantic aspects. As proposed in the preceding chapter (§4.4.1), the chosen approach seeks 

a description that specifies expressions as well-formed forms (wff) in their syntax, by stating 

constraints which restrict some class of combinatoric forms. Constraints are properties specified to 

hold on parts of any form that is an expression; they provide a decision procedure for well- 

formedness of a generated form: a means of checking whether it satisfies the required properties. 

5.1.1.1 Syntax as Theory, Presented by Sketches 

As suggested at the end of the previous chapter (§4.5.2), specific syntax can be regarded as a 

theory which names important sorts of syntactic item, and defines how these are related. The 

immediate difficulty here is that a theory is an ideal notion that allows for an infinite range of items 

and relations. To restrict ourselves to practical cases, we must presume that there is some finite 

set of primitive sorts of item and relation, from which the whole theory can be generated by 

procedures of logical deduction. This requires that we choose a finite presentation of the theory - 

which is the purpose of a sketch. Expressions are then definable as the models of a certain 

syntactic sketch. 

What is a sketch? Sketches began as a method of presenting and studying mathematical 

theories; they are fundamental and general in purpose, with pictorial possibilities that suit them to 

the task at hand. They have already been investigated in computer science as a way to specify 
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algebraic data types (Wells & Barr 1987, Gray 1989a). Being founded on the logic of Category 

Theory, they are mathematical objects which can be transformed, combined and reasoned about. 

Sketches are in effect 'drawings' of theoretical structure. They can be expressed pictorially since 

their basic form is similar to the familiar entity-relation approach to system description - but with 

all relations constrained to be maps for total functions. The network of entities and maps defines a 

combinatoric form which is presumed to underly all the expressions. Sketches also apply 

constraints to this network. - 

Given a diagram or expression, a graphical item is a recognized configuration of marks and 

attributes located within it. Such items are perceived to be combined by various spatial and 

pictorial relationships. In sketching a syntactic theory, sorts of item are presented as entities, and 

the relations are described by maps, with each map standing for a specific kind of relationship. In 

this approach, however, the actual pictorial formations which realize these entities and maps are 

not analysed. Syntactic structure is based upon combinatoric structure or connectivity 

apprehended by a viewer, rather than upon geometry - we are not be concerned with intrinsic or 

analogical structure at this point. Cognitive habits of visual perception and interpretation pick out 

further 'natural' patterns of connectivity (emergent structure), which are also captured as entities in 

a sketch. Because of this visualization, the theoretical concepts involved in sketches are easier to 

grasp than one might expect for such a general and abstract approach, entailed by a rather 

austere' logical system. 

5.1.1.2 Doctrinal Meta-Theory 

Sketches are of different kinds, known as doctrines, which can be placed in a complexity 

hierarchy. The kind most commonly applied in computer science is the doctrine of Finite Limit 

(FL)-sketches; these define theories that are called essentially algebraic. In an algebraic 

approach, we might use an FL-sketch to specify a whole class of structures as a single model - 

often using the initial model that is generated by iterating syntactic constructor operations. 

Contrary to the intention here, an algebraic technique deliberately hides the internal structure of 

the algebraic elements. Further, the well-formed classes that we encounter are not usually easy to 

1 The logic uses a very small number of operators, though a richer set could be made available at the cost of extra notation and 

rules. 
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construct in such a manner. 

In order to describe the internal structure of expressions, here will be adopted a broader doctrine 

whose sketches are called mixed or general in the literature. Within mixed sketches, the FL- 

structures are still important if we want to specify how part of a form can be generated by a series 

of operations. 

The method of sketches enjoys a particularly strong and flexible kind of formalization. Not only 

does it provide a way to define syntax as a formal theory, but it also furnishes a formal meta- 

theory which allows us to view the syntactic theory either as a 'Platonic' object or as a formal 

construct in the meta-theory. As indicated below, and in (§6.1.1), a doctrine may itself be defined 

by an FL-sketch whose models are categories of the required type for the class of sketches. This 

two-tiered formalization enables reasoning about expressions, notations, and syntactic complexity. 

The doctrine may be presented in many different ways, with each particular FL-presentation 

resulting in a specific structuring of sketches. It is this flexibility that allows us the freedom to 

design a schematic notation. 

5.1.2 Sketches 

The following short exposition of the notion of Sketches, as it is applied in this thesis, is adapted 

from full accounts which can be found in (Gray 1989b, Wells 1987,1994). (See also Coppey & 

Lair 1984,1988; Makkal & Par6 1990). For the rest of this section, technical terminology is printed 

in bold italic (also see footnotes), while the corresponding terms used later in this chapter are 

underlined. 

5.1.2.1 The Anatomy of Sketches 

A sketch is a symbolic structure intended to be interpreted in a founding category Z, the latter 

serving as a conceptual modelling medium or paradigm. Unless stated otherwise, Z will here refer 

to some category of finite sets and total functions, that is generated by items of many kinds, and 

all ways of associating one item with another. This is what is properly meant by saying that an 

on-fily denotes a set, and a maR a total function between two sets that are its domain and 

codomaln. 

180 



5: A Notdon for Sketching Syntax 

5.1.2.2 Signature and Constraints 

A sketch in any doctrine can be analysed as a pair, <signature, constraints>. The 

signature is a directed graph G of entities and maps that determines the underlying LQ[m of 

expressions. These entities and maps specify sets and relevant functions - or, in a computational 

view, sorts and operations. It is best to think of a map as a dependent variable over elements of 

its domain, or as a 'local element' of its codomain - local to its domain. The usual elements of a 

set (which are called global, Le. constant) are represented by maps from some singleton set (Barr 

& Wells 1985). Each entity is both domain and codomain for an unique Identify map, denoting 

the identity function on the set, which maps each element to itself. 

A constraint is a kind of proposition that "mentions" parts of G. It is specified by a diagram-shape 

- displaying a graph morphism into G- simply a graph whose entities and maps are copies of 

those in G, connected in a way that respects the incidence properties of G. Doctrines differ in the 

kinds of constraint that are admissible. 

5.1.2.3 The Doctrine of Mixed Sketches 

The most general sketches considered here belong to the mixed doctrine, which supports three 

kinds of constraint. The first kind presents equality of functions denoted by paths of maps 

mentioned in the diagram-shape. The second constrains certain maps from a chosen entity (a 

a", and the third constrains certain maps to an entity (a pi=W. These formal constraints, usually 

known as diagrams, cones and cocones, are each described below; simple examples of all the 

constraints will be encountered in the succeeding section. 

Equalities 

A path in a diagram-shape D is a sequence of maps; each path denotes the composition of the functions 

denoted by its maps. An equality on D (a diagram) expresses the constraint that the diagram 

commutes: 

A diagram D commutes when any parallel paths (i. e. having same start and same finish in D) 

denote equal functions. 

Without loss of generality we need only consider equalities between two paths. 

Parts and Pieces 

The dual notions of cones and cocones specify constructed sorts, denoting patterns within the 

expression. They respectively allow regular parts and whole pieces of an expression to be defined and 
their occurrence restricted. 
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Cones are diagram-shapes in which one entity - the apex - is connected by single maps - the sides - 
from the rest of the graph - the base. (This shape is perhaps more reminiscent of a pyramid on a shaped 
base). The apex represents a set of V= defined by the base in a natural manner; each side denotes an 

unique projection function from the apex set to a base set. In addition, each triangular face of the cone, 
formed from two sides and a base map, will be an equality diagram of the sketch. 

The apex of a cone denotes a set of instances of some simple fixed combination; in a sense the 'largest 
least redundant'or limiting set which satisfies the face equalities. Items of this set are a kind of part, 

whose fixed shape is laid out in the base. 

Cocones are similar diagram-shapes in which the sides connect the apex to the rest of the graph - the 
base. The apex represents a set of pi= defined by the base, with projection functions from the base 

set to each apex set. Each triangular face of the cocone will be an equality diagram of the sketch. The 

apex of a cocone denotes a set of separate components, in a sense the 'smallest / most detailed' or 

colimiting set which satisfies the face equalities. Items of this set are maximal connected pieces, which 
may be of varying size. 

Without loss of generality we need only consider certain simple bases for cones and cocones. 

5.1.2.4 A Hierarchy of Doctrines 

The nature of a doctrine is determined by which kinds of logical constraint are admitted in its 

sketches and which kinds of category are able to contain models of these sketches. Stronger 

doctrines admit more kinds of constraint. 

(Wells 1994) lists various kinds of sketch that have been found useful, all of which are weaker 

than mixed sketches. The simplest of these are trivial sketches, consisting solely of a signature 

graph. In this thesis the models of signatures are the structures that are generically termed 

graphoids. The remaining kinds are used to specify various algebraic structures. A linear or 

elementary sketch may have equality diagrams; its models are algebraic structures whose 

operations are all unary (sometimes called pre-sheaves). A finite product sketch has cones over 

finite discrete diagrams, with models that are multisorted universal algebras given by finite 

signatures and equations. A finite limit sketch has finite cones, but no cocones; this kind 

corresponds to (Freyd 1972) essentially algebrak structures, and includes all Horn theories (Barr 

1989). A finite sum sketch has finite cones and finite discrete cocones. Where necessary these 

kinds will be abbreviated to L-, FP-, FL- and FS-sketches. 

Formally, a doctrine E corresponds to a type of category definable essentially algebraically over the 

category of categories [Lawverel. Categories of this type may be called E-categories, and structure- 

preserving maps between them are called E-functors. An E-sketch then allows the specification of any 
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kind of construction that can be made in an E-category - if an E-sketch admits a certain kind of 
(co)cone, an E-category must have the corresponding kind of (co)limit. This is the same as saying that 

a doctrine may itself be sketched by an FL-theory, which opens up many avenues for generalizing the 

concept of sketch beyond Ehresmann's definition - see (Wells 1990) and further references in (Wells 
1994). 

5.1.2.5 Sketches as a System of Logic 

Sketches can be placed in a more general setting, within Goguen and Burstall's formalization of 

general logical systems as institutions - as described in detail by (Barr & Wells 1990). Briefly, in 

an institution, a theory is presented by a signature and a set of sentences in some language - in 

our case a sketch has a diagrammatic set of sentences. A relation of satisfaction holds between a 

model and a presentation if all the sentences are true for the model (Rydeheard & Burstall 1988; 

Goguen & Burstall 1984,1986,1992). 

In the previous chapter a need to control the complexity of logic was emphasized (§4.4.2,4.4.3). 

The finite mixed sketches (FM-sketches) that will be used here to specify syntax are more 

powerful than the algebraic systems (FL or FS) just described; Mixed Sketches are assessed as 

equivalent in expressive power to first-order logic (Makkai & Par6 1990)2. The necessary 

explanation of the categorial analysis of logic may be found in (Makkai & Reyes 1977, Pitts 1989). 

The sketches should therefore be powerful enough for any level of syntax, but too powerful for 

most purposes except semantics. 

5.1.3 Categories 

In (§4.4) and (§4.5), references were made to the theory of categolies. Taking an unusual but 

instructive viewpoint, categories are here treated as sketches closed under the rules of deduction 

specified in some doctrine. Instead of regarding a category as a structure with observable 

properties, we view it as a full collection of formal objects that express these propertieS. 3 This will 

allow the discussion of sketches, theories and larger categories in a common framework. For a 

thorough treatment of Category Theory the reader is referred to (Mact-ane 1971). 

21-lowever Wells (1994) notes that formal coequalizers are a litHe stronger than FOL the category of connected graphs cannot be 

specified In finite FOL formulas and terms. 

3Thus a category Is confused with Its Image under the underlying functor Cat -+ Sk from categories to sketches. 
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5.1.3.1 Categories as Completed Sketches 

A category is an algebraic structure, defined as indicated In the previous chapter (§4.4.4). The 

standard definition corresponds to an L-category C which is a sketch, with only signature and 

equalities, that supports construction of composed maps. It satisfies two closure properties: - 

(1) Closure under composition of maps: 

If m-apa f. A -4 B and g: B -+ C exist in C between the entities A, B, C, then there exists a map h: A 

-+ C and an equality h=f; g. 

All the maps which can be constructed by composing existing maps, must be included in C. 

(2) Closure under inferred equalities. 

All equalities which can be inferred within C must be included in C. These equalities follow from 

the associative property of composition and the existence of an identity map for each entity (see 

§4.4.4). Entities in a category are called objects, and maps are called arrows or morphisms. 

Normally the complete sketch would be called the underlying sketch of the category. 

Stronger closure properties are needed to define M-categories, where M is the doctrine of mixed 

sketches. In any category, a (co)Amit is an object constructed as the apex of a (co)cone. A 

category is complete if it satisfies: - 

(3) Closure under limits - every base graph definable on the signature must be the base of some cone in 

C. 

Similarly, a category is cocomplete if it satisfies: - 

(4) Closure under colimits. 

M-Categories are those that are b1complete- both complete and co-complete. 

The apex of a (co)cone is often called 'the' limit of its base; although there may be many limits on 

the same base, they are all isomorphic. Sometimes it is convenient to assume that in a category 

there is always a favoured apex that can be called the "canonical" (co)limit of the base, though this 

is not strictly in keeping with categorical methods. 

5.1.3.2 Large and Small Categories 

The particularly important category Set has all sets as entities, and all total functions as maps. In 

mathematics Set is used as a foundational 'semantic universe' in the sense that it is usual to 

explain all concepts in terms of sets and functions. Such categories are technically described as 
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large, which is to say that there is no consistent way to define the class of its objects as a set - 

owing to Russel's Paradox, the class of all sets cannot itself be a set. In usual terminology, even 

categories with an uncountable number of objects are called small. 

5.1.3.3 Categories of Sketches and Categories 

We can define a morphism between sketches as a map that sends entity onto entity and map onto 

map while preserving all formal constraints. It can be shown (Gray 1989b) that sketches then form 

a category Sk which is bicomplete, and also closed under further useful constructions. There is 

also a category Cat (seen as a subcategory of Sk) whose objects are small categories, and whose 

morphisms are called functors. 

5.1.3.4 Categories of Models In a Medium 

A model of a sketch S is a sketch-morphism from S to some category whose closure properties 

support the doctrine for S. The models of S form a category which will be described in the 

succeeding chapter (§6.1.2). We shall especially consider models in a category Z, possibly large, 

which will have the role of a Modelling Medium - an abstraction for all the possible situations 

considered and in any context we might be interested in. For the formal purposes of our 

application, we need not resort to large categories, instead preferring a countable (recursively 

generated) category for Z. 

In any case, because the medium is a category, it represents a mathematical idealization - an 

infinite completion. If we assume that we can obtain total information about any situation, we can 

take Z to be a suitably closed full subcategory of Set (i. e. some class of constructed sets with all its 

functions). Although this is the course taken in this thesis, it is a particular advantage of sketches 

that they apply equally to other philosophies, such as those that can cope with incomplete 

information (e. g. the category of topological spaces, or of computable sets). 

We must be careful to distinguish between the Intemal formal logic defined by the doctrine and 

the extemal logic -accidental' properties and further logical regularities - that Z might also obey 

outside of the doctrine. Set, for instance, obeys stronger doctrines than Mixed Sketches, and 

would justify more constructions and inferences than are formally permitted in M-categories. 
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5.1.3.5 Theory Categories 

Any sketch can be completed (by construction and inference) to form a small category known as 

its theory. The theories nevertheless have a countable infinity of objects, that might loosely be 

thought of as concepts, or types of pattern. Primitive concepts are those entities/maps given in the 

sketch; derived concepts are those that can be constructed or inferred. 

An E-sketch S generates a formal theory E<S> that is an E-category, in such a way that the sketch 

S has the 'same' models as its theory, and we can work with sketches rather than with the theories 

described at the end of the previous chapter. This procedure will be treated in more detail in the 

next chapter (§6.1.1). 

5.2 SIGN: A Schematic Syntax Notation 

Now that the theoretical groundwork is in place, we need to see how the foregoing ideas may be 

applied. The task of this section is to illustrate how sketches can serve as a method of syntactic 

description. For this purpose, a graphical notation (SIGN) is proposed, which draws mixed 

sketches as schemas. The proposal gives details of the method, using elementary examples to 

show how SIGN depicts sketch constituents. 

The examples which follow show how the schematic syntax notation (SIGN) is used to describe 

structure which commonly occurs in diagrams; these are chosen to introduce sketch-concepts and 

the range of SIGN symbols. Some standard terminology from Set Theory and Graph Theory are 

used to explain the concepts; the more general but less familiar terms of Category Theory are 

mostly relegated to footnotes. 

Many graphical notations contain, amongst others, structures recognizable as directed graphs. 

This notion of graph is a convenient starting point for explaining how to describe syntax. Following 

this, we are introduced to some common constructions which can be made on graphs. It turns out 

that directed graphs can serve as elementary units from which all the more complex structure of 

notations can be bUilt4; taking advantage of this fact helps keep the schema notation simple. 

4This is the consequence of some simple theorems in Category Theory: Any category that has finite (co-)products and all (co- 

)equalizers, has all finite (co-)Ilmlts. 
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5.2.1 Introducing SIGN 

The schematic notation is proposed as a means of drawing the signatures, constructions and 

constraints of a syntactic sketch. As just explained (§5.1.1), the sketch presents a theory that 

defines syntax; forms are well-formed precisely when thay satisfy this theory. Herewetake a first 

look at the basic structure of schemas, and at some sketches they can depict. 

5.2.1.1 Formalized Entity-Relation Schemas 

Following the above approach (§5.1.1), SIGN directly depicts entities and maps. It can be viewed 

as a kind of Entity-Relation notation in which relations (maps) are pictured with the usual *crow's 

foot* (many-to-1) connectors, between rounded boxes that depict entities. As in other Entity- 

Relation diagrams, extra markings and links on the connectors serve to signify constraints on the 

relations. For an expression of the described notation, an entity in a syntactic sketch corresponds 

to a recognizable sort of situation or pattern element, and a map usually amounts to a visual or 

mental tracking operation on an expression, such as following a line, or associating an element as 

part of some perceptual or linguistic gestalt. An equality between maps describes the case where 

two tracking operations always have the same outcome. 

5.2.1.2 A Simple Mixed Doctrine 

Schemas are based on a particular doctrine of mixed sketches. The doctrine allows for a rich 

variety of constraints, but for practical reasons only certain basic-cases are incorporated in the 

schema notation. The effect of this is to reduce the expressive flexibility, but without any loss of 

logical power. For instance, the only commuting diagrams used in schemas consist of a parallel 

pair of paths. One important case of parallel paths is an equality triangle, which can be used to 

construct a new map equal to the composition of two successive maps. 

The parts used in schemas are based on just five types of cone and corresponding cocone, 

defined on simple base shapes and named as follows: 

'Parts' used in schemas: - singleto12, product, Logg, pullback, iniection, 

Cone types: terminal, product, equalizer, pullback, monic. 

'Pieces'used in schemas: - zero, disjoint union, component, pushout, suriection, 
Cocone types: Initial, coproduct, coequalizer, pushout, epic. 

The basic cases are all illustrated below (§5.2.2). 
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5.2.1.3 Directed Graphs 

Our first example of a sketch defines diagrams that have a directed graph structure', requiring only 

a single schema. 

U' U' 
E: J >EJ 

1_ 1' >EJ 

E=l 

1= 

Figure 5.1 An example Directed Graph diagram 

Consider a diagram (for example [fig 5.1]) which presents a connective structure known as a directed 

(multi-) graph or "digraph". It is made out of two kinds of pictorial item: rectangles and arrows. The 

arrows are directed links, and they may be drawn without restriction between any pair of rectangles. It 

is assumed that the only significant information in the layout is the connective effects of the arrows. 

Each mW in a syntactic sketch generally corresponds to a set of pictorial items on a diagram; 

these items are tokens: often basic shapes or pattern elements that are seen in the diagram: - 

> source 
GD 

> target 
9D 

Figure 5.2 A Sketch for digraph syntax 

The sketch, depicted as a single schema [fig 5.2], shows sets of rectangles and arrows as the two 

entities labelled Node and Arc. These entities are visible in the sense that they are actual sets of marks 

on the diagram [fig 5.11, rather than abstract properties or hidden information known to the reader. 

We can refer to items on the diagram either by their syntactic roles (nodes and arcs), or 

equivalently by their depictions as rectangles and arrows. More generally, syntactic names are 

best regarded as describing situations which can be recognised from graphical configurations. In 

an actual notation, we could also refer to items by their semantic values, i. e. what they stand for. 

(E. g. a node might represents a system-unit, and an arc a channel that transmits control signals. ) 
I 

Naming thus reflects the layer of syntax that we have in mind. 

.p 
linking entities in a sketch signifies a total function between sets, implicit in the diagram Each Ma 

as a recognizable incidence relationship or association between items: - 

In the diagram [fig 5.11, each arrow is associated with the rectangle adjacent to its tail (simply by virtue 

of proximity); this property is shown in the sketch [fig 5.21 as a map called source - every arrow must 

have an unique source rectangle at its tail. In the same way, the map target denotes the association of 

each arrow with the rectangle at its tip. Maps source and target state the two roles that nodes may take 
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in association with arcs. 

The sketch [fig 5.2] is all that is necessary to capture the syntax for the whole class of digraph 

diagrams. 5 The two maps express connectivity. 

Two maps in a sketch which (like source and target in [fig 5.2]) share the same domain and the 

same codomain are called parallel. It Is this situation that characterizes the presence of a digraph 

structure. 

5.2.1.4 Decomposition and Labelling 

Because they express only connective properties of maps, sketches could be drawn entirely as 

unlabelled structures. In practice, large sketches easily become mcans of wormsm, when many 

connectors cross over each other. In order to avoid illegibility, ambiguity and error, it is more 

convenient to notate a sketch by decomposing it: drawing it as a set of separate schemas with 

labelled boxes and connectors. [Fig 5.21 shows a simple schema. The box labels stand for 

entities and the connector labels stand for maps, of the resulting sketch. 

Unlike (some uses of) entity relation diagrams however, labels carry no meaning, i. e. they hide no 

information, but are there only for ease of reference. Relabelling a set of schemas does not 

change the sketch they express, provided that the distinctness of labels is preserved. Verbal 

labelling carries the added advantage that constraints can be read off in natural language or 

formulae, if desired. An entity label is usually a noun which names a type of item; a map label is a 

noun which sometimes names a role for an item of its codomain. 

Each schema normally concerns some particular fragment of a syntactic signature, which is 

effectively a graph moiphism into that signature, as is made clear in the examples below. 

5.2.2 Canonical Constructions 

Graphs exhibit observable patterns which often have some significance in a given notation: for 

instance components, loops and node-pairs. In order to describe a pattern in a notation, a 

constniction is made on the sketch: a new entity representing instances of the pattern is added, 

together with more maps and a defining constraint. 

This next example shows how entities and maps can be constructed canonically (i. e. by "natural" 

51n passing, notice that this sketch is itself In the form of a directed graph. 
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rule) from neighbouring maps [fig 5.3]. The same example diagram will be used [fig 5.1], but with 

an enriched interpretation, by drawing attention to a pattern that a viewer may easily recognize 

and give meaning to. Such constructions extend the syntax, even though the appearance of the 

notation does not change. Our first constructions are Components and Loops, which are shown to 

be dual to each other. The notion of an equality between paths is also illustrated. 

5.2.2.1 Graph Components 

To define the components of a graph, the sketch requires a certain cocone. 

A component of a graph is defined as a maximal connected subgraph. It is easy to see the three 

components of [fig 5.1 ], and verify that every rectangle is part of some jLni-que component. (Tbis is the 
criterion for a totalfunction on sets. ) 

E> source piece ,l 
I> 

taraet 
CH) 

> 
EE5 

Figure 5.3 Tlle Component construction 

In the sketch [fig 5.31, the entity Component has been added. It also has a map piece from Node which 

associates every node of the graph to the component of which it is part. 

The graphical realization of this map is apart-of relationship. 

In the extended sketch, the new entity and map are constructed by a rule of logic from the simple 

sketch [fig 5.2], using a further symbol to express this canonical relationship. 6 

The double bar at the head of the connector denoting the map piece signifies that it and Component are 
defined canonically in terms of the parallel maps source and target, which define the connectedness of 

the graph, and hence fully determine the map piece. 7 

5.2.2.2 Paths: Compound Maps and Equalities 

A sketch specifies certain constraints as equalities of functions. The maps in a sketch frequently 

form sequences, known as paths, which are compound maps denoting compositions of functions. 

Just as there are parallel maps, there can be 'parallel' paths. The functions depicted by two parallel 

paths may be specified equal, and there is a special notation for this. 8 

6The Idea of construction Is an analogy Wth Euclid's methods, for example In geometrically constructing a perpendicular line and 

marking the rightangle. 

7The map plece Is called the coequalizer of source and target, In Category Theory, because of the equality in fig 3.4. 

8ThIs pictorial notation for equations is a very powerful feature of sketches. It Is a good visual aid to reasoning. 
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(ý 3ýý'target GED 

source piece 

LCOTponenjt >piece 

Figure 5.4 Two equal paths 

Equal paths 
Notice that each arc also belongs to a unique component, namely the component of its source node; this 

association is in the sketch as a compound map, source then piece. Equally, the same association can 
be found from the component of the arc's target node: the map resulting from the compound target then 

piece. This equality 
(source; piece = target; piece) is a canonical property of the map piece: a logical 

consequence of the component construction. It can (if desired) be expressed in a further schema [fig 

5.4], which shows the equality by enclosing an equal-sign between the two paths, separated by 

duplicating both the entity Node and map piece. 

The cocone construction places Component on the apex and takes the entities and maps of [fig 

5.2] as base. The triangle face equalities of the cocone result in the equality of [fig 5.4] - as . 
detailed below in (§5.3.1), [fig 5.23]. 

5.2.2.3 Graph Loops 

>1 1 arc > source 

E) > tamet 
E) 

Figure 5.5 The Loop construction 

To define the loops of a graph, the sketch requires a certain cone. 

In [fig 5.11 there are two arrows that curve back from a rectangle to itself. These are both examples of a 

loop: syntactically, that special kind of arc whose source is also its target. 

[Fig 5.5] extends the sketch [fig 5.21 with the entity Loop and a map arc which expresses the graphical 

inclusion of the set of looped arrows in the set of arrows (the subset relationship: every loop is an arc). 

The canonical map arc associates the loop (an instance of a property) with the arc that has this 

property9. The map arc is drawn in line with its defining parallel maps source and target and shown 

with a double bar at its foot in [fig 5.5]. The two compound maps arc; source and arc; target 

have the defining property that they equally attach a loop to its node; this equality: 

(arc; source = arc; target) is shown in [fig 5.6]. 

9The map arc Is called the equalizer of source and target 
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> 
arc 

arc target 

> source 

Figure 5.6 Ile loop equality 

The double-bar notation for the loop construction is the same as for component [fig 5.3], except at 

the opposite end of the relevant connector. The reason for this is to emphasise the following 

symmetric aspect of sketch logic. 

5.2.2.4 Duality 

The last two constructions, loop and component are dual to each other, i. e. they are carried out 

identically except that the corresponding maps are reversed. This can be seen from [fig 5.7], which 

arranges schema [fig 5.3] above a re-ordered equivalent of [fig 5.51, in order to show the 

correspondence. Labels are omitted because it is the structure that is being compared, not the 

references. [fig 5.41 and [fig 5.6] also correspond in this manner. 

L-j >ii 
> 

Figure 5.7 Duality of component and loop notions 

Every sketch construction has a dual. Note that dual situations are by no means similar in 

appearance (e. g. loops do not look like components). This logical symmetry of sketch notation is 

a bonus because all deductive or constructive rules come in similar pairs, effectively halving the 

complexity of the formalism. The schematic notation preserves this symmetry in its choice of 

symbols; a dual situation is obtained by graphical reversal of connectors. 

5.2.2.5 Cartesian Products 

ED 
first 

CPal D s- 
Figure 5.8 A Product 

The last example of a canonical construction is the Cartesian product, (in this example) of a set 

with itself. It constructs an entity for the set of all ordered pairs, together with the projection maps 
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that extract the first and second members of each pair. 

Node-pairs 

Consider all pairs of rectangles in the diagram [fig 5.11; a pair simply consists of any two rectangles, 
the first and the second (which may be the same). In the schema [fig 5.8], the entity Pair has 

projection mapsfirst and second which express these assignments of each node-pair to its nodes. The 

pair construction is expressed by linking the two connectors denoting projection maps at their feet. In a 

diagram, these maps are realized as'part-of relationships, in which each node is part-of many pairs. 

source 

first 
Arc > 

ends 
E) 

Node 

> 
target 

Figure 5.9 The pair at the arc's ends 

Constructions are essentially about seeing a structure in a new way. This particular construction 

allows a digraph to be seen as a single map, from arcs to pairs of nodes. 

Notice now that each arc is associated with the node-pair that it connects, i. e. that formed by its source 

and target; this is a canonical map ends, which is the unique map satisfying the two equalities 

expressed in [fig 5.91: thefirst end is the source, the second end is the target: 

(ends; f irst = source) and (ends; second = target). 

5.2.2.6 Syntactic Signature 

Every notation covered by the theory of Chapter 4 is assumed to be based on a form which is 

termed a graphoid in this thesis. We can now see how to separate out the underlying graphoid 

structure of a syntax from its constraints. 

In the example, we have arrived at a sketch that is depicted by four schemas [figs 5.3,5.5.5.8, 

5.9]. What is the form of expressions according to the data in this example sketch? The maps 

and entities of the sketch formed by bringing together all the four schemas and identifying items 

with the same label, comprise the signature of the syntactic sketch. Without the defined 

constraints, this signature is a trivial sketch (§5.1.2), which specifies the graphoid form. 

arc Arc 
> source 

> piece 
L!: j 

-, - taroet 
a) EE5 

econd 

ýý\ends 

rs 

\ 

11 

ED 

Figure 5.10 The Signature of the syntax 
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With the above constructions added, the syntax of diagrams like [fig 5.1] is based on the sketch [fig 
5.10]. This shows all the entities and maps without constraint; it is called the signature of the digraph 

notation being described, and is an extension of [fig 5.2]. The four schernas [figs 5.3,5.5,5.8,5.9] 

suffice to express the syntax, which logically consists of this signature together with all the depicted 

constraints. 

The four schemas each refer to a fragment of the signature, defined by a graph morphism. A 

morphism is drawn as a graph (the domain of the morphism), with the mapping indicated by 

names of entities and maps in the codomainIO - in this case the signature. 

5.2.3 Further Constructions 

Before leaving the digraph example, some further useful constructs are mentioned here, to give a 

full description of SIGN symbols. The first of these is dual to the Product, and gives yet another 

view of a digraph. The second allows one-to-one correspondence between items to be notated. 

Finally the construction for cardinal numbers zero and one completes the basis of sketch logic. 

5.2.3.1 Disjoint Union 

GD 
Ltitail /place 

Tip&Tail 

Figure 5.11 A disjoint union of tip and tail 

Given two sets of items, we can form their union. Each set is a subset of this union, and is 

represented explicitly as an inclusion map: an injective (one-to-one) function that serves to mark a 

subset of its codomain (the union, in this case). The disjoint union of two sets is formed by taking 

disjoint copies of the two sets; the union of copies is codomain for two inclusion functions that 

represent these copies as its subsets. In the following example, the two sets are identical, making 

it clear that subsets are represented by maps in a sketch, not by entities. 

Each arrow of a digraph has two extremities, referred to as tip and tail, which are found adjacent to 

rectangles. The disjoint union of Arc with itself is named Tip&Tail in [fig 5.111; it denotes the set of 

extremities, either tips or tails, each associated to a particular node, its place in the diagram. The 

existence of the map place, which now carries all the connectivity information, is a logical consequence 

1 OA schema Is In fact a drawing of a sketch-morphism, because constraints on maps in the schema also correspond to those In 

the sketch. 
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of the construction, the unique map which satisfies the equalities: 
(tip; place = source) Mid (tail; place ý target). (cl'. Ifig 5.91) 

The link symbol clenotes Disjoint Union, as in its clual construct Product, but at the opposite end ofthe 

connectors 11. 

This construct is useful for dividing a sort into partitions, or conversely, when separate sorts of 

item share common syntactic properties, to collects these into a recognized 'supersort'. 

5.2.3.2 Identity Maps 

Every entity has an identity map (meaning 'self'), which maps each item onto itself. 12 The name 

of the identity thus the same as its entity. When necessary, an identity map is drawn as a thick 

grey connector from the entity to itself, as in [fig 5.121. 

Tip Tail 

Tip CD 
back ED Tail 

front 

Figure 5.12 The bijection property 

5.2.3.3 Bijection 

The identity maps provide one way to define bijective correspondence between sets. Such 

bijections are found in diagrams whenever two graphical situations (pattern items) always occur 

together. The mathematical definition of bijective function translates into a pair of triangle 

equalities. 

Tip and Tail denote the two disjoint sets which are both 'copies' of the set of arrows (Arc), in the sense 

that they occur in the exact same situations in which arrows occur. 

The sketch [fig 5.121 represents tips and tails of arrows as two different entities. The bijection 

between them consists of two maps: front, which finds the tip joined to a tail; and back, which 

finds the tail joined to a tip. 

11 The dual of the product construction is normally called the coproduct in Category Theory. Here the term disjoint union is 

used to help the general reader's intuition - though the property of disjointness is not generally a formal consequence. Similar 

remarks apply to the use of 'injective' and 'surjective' where monic and epic would be preferable. 

121n fact an entity can be thought of as a 'degenerate' map; maps ("arrows") are the primary concept on which Category Theory 

is based. The depicted signature of a sketch leaves all identity maps implicit. 
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B ý: Z, ack S 

Figure 5.13 The bijection symbol 

The bijection property is presented by two equalities: 
(back; front = Tip) and (front; back = Tail). 

For convenience, a single symbol (a zigzag link) denotes this circumstance [fig 5.13]. 

Alternatively, a notion of isomorphism between sets denoted by Tip and Tail can be defined by 

constraining back to be the side of a cone whose base is the singleton graph having just the entity 

Tail - notated as a'product'of Tail alone (with a spot above the foot of the connector): 

S> back 9) 

This works equally if a co-cone is used instead (i. e. with the spot at the head). 

5.2.3.4 Cardinal Numbers 

Constructed entities can represent the cardinal numbers. The two basic'cases, 0 and 1, are empty 

sets and singletons, while larger numbers may be constructed arithmetically, using disjoint union 

for addition, and products for multiplication. The numbers are thus constructed as abstract sets. 

Equality of two numbers is represented by any bijection between the abstract cardinal sets that 

'depict'them. 

The abstract entity Zero is constructed as apex of a cocone whose base is empty. 

(ýD E) 
Figure 5.14 Cardinal Numbers 

A set which is empty represents zero. The symbol for this is to use a circular boundary for the entity, a 
'No Entry' sign that prohibits any item of this sort from occurring in the diagram. 

The empty set Zero has a defining property: - To any entity E, there is a canonical map from Zero, 

and it is the only one. This map is essentially empty; it is conventionally named " ? E". 

The abstract entity One is constructed as apex of a cone whose base is empty. Thus One is dual 

to Zero. 

A singleton set contains just one element. The symbol for this is to use a square-cornered boundary for 

the entity, having the effect of forcing there to be an unique item of this sort. 

[Fig 5.14 right] shows the addition 1+1+1, a disjoint union construction of the numberThree. 
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The singleton denoted by One has a defining property: - From any entity E, there is a canonical 

map to One, and it is the only one. This map sends each element of E to the only element of One; 

it is conventionally named "IE'. 

Sometimes a syntactic rule restricts the size of a set. Cardinal numbers can be used for size 

comparison, with the help of an injective map (as defined below). 

5.2.4 Some Derived Constructions 

The symbols introduced above form a logical basis for structural description. - As with other 

systems of logic, extra concepts can be built on this basis by methods of definition, as desired. To 

finish this section, four more constructs are defined which are frequently used and therefore 

warrant special symbols. 

5.2.4.1 Pullback and Pushout Constructions 

Included in SIGN are two useful (dual) constructionS13, which may be derived from those given 

above, in each case by viewing certain structures as digraphs. This derivation is given as a 

definition for the extra notation. 

The pu//back construction arises as the relation that holds between items of two sorts by virtue of 

items being arranged in clusters. 

Z 

IOA 
0, j OA, 

(ý > tri ci rc 

Figure 5.15 An example Cluster diagram Figure 5.16 A Sketch for'bi-clusters' 
I 

Bi-clusters 

In a diagram like [fig 5.151, Circles and Triangles are jointly 'clustered' into Groups. This is sketched 

in [fig 5.16]. The first step of the construction is to form the product Triangle X Circle, and to view its 

pairs as the'arcsof a digraph whose nodes are the groups [fig 5.15]. In each pair, the triangle is the 

tail of the 'arc', and the circle is its tip; the arc's body is invisible. Accordingly [fig 5.17 left], the 

product entity is called Arc, and the parallel maps of the digraph are defined by the equalities: 

(source = left; tri) and (target = right; circ). 

13 Pullback and pushout are used extensively In Category Theory. 
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Figure 5.17 A directed bi-cluster graph. Constructing a togetherness relation 

The next step forms a relation Together (tI, t2) that holds between any circle and square belonging to 

the same group; the relation is a'loop'entity on the discovered graph, shown in [fig 5.17 upper right]. 

The maps are defined by the equalities (not shown): 

(tl = arc; left) and (t: 2 = arc; right). 

7be chain of equalities shows formally that tI and t2 are in the same group: - 
tl; tri = arc; left; tri = arc; source 

= arc; target = arc; right; circ = t2; circ 

The symbol for this is the 'rightangle' sign shown in [fig 5.17 lower right], linking the projection maps 

tI and t2. The map tI is termed the map obtained by 'pulling back' circ along tri, and t2 is similarly the 

result of 'pulling back' tri along circ. 

Dual to this is the pushout construction. This is based on components of a bipartite graph 

structure, which shows connexions between two sorts of items. The method is to view any 

bipartite graph as a directed graph, by ignoring the distinction between the sorts of node. 

n 
Figure 5.18 A Bipartite Graph diagram 

Bipartite Graphs 

Gýý left (E > (ight (ý 

Figure 5.19 A Sketch for Bipartite Graphs 

Consider a diagram (for example [fig 5.181) of a graph with two sorts of node, squares and circles, and 

arrows which can only run from a square to a circle. Here squares are drawn on the left, and circles on 

the right. 

The sketch for a bipartite graph, which is dual to [fig 5.16], is depicted in [fig 5.19]. The required 

construction finds the components of the graph. This is done by forming the disjoint union of the two 

sorts (Node = Square + Circle), and constructing two new maps source and target [fig 5.20 left] 

defined by the equations: 

source = left; s and target = right; c. 

The components of this digraph are also the components of the bipartite graph. They can be described 

as in the construction above [rig 5.3]. 

The symbol used is the 'rightangle' sign shown in [fig 5.20 lower right) linking the two canonical 
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projection mapsfand g. The mapfis said to be obtaincd by 'pushing OLIC fi, ýIll 11011,1' /('ft, While 111-1p, q 
is obtained by pushing out left along i-ight. This entai IsI he equa I it y: right; g=I ef t; f. 

source 

left -s 
Arc 

> (Square) 
Node 

riaht 

target 

right 

CC 

Figure 5.20 Constructing a pushout via a directed graph 

The two maps can be determined from the mappiece in I fig 5.20 Upper right I by the equalities: 
f=s; piece and g=c; piece. 

5.2.4.2 Restricted Maps 

Injective and Surjective functions are represented by placing a single bar on the connector 

symbol. 14 These kinds of map can be derived by using the previous constructions as constraints. 

The two examples are taken from the digraph constructions (§5.2.2). 

(Ej) Eýýl arc CD &ýD 

Figure 5.21 Notation for injective and surjective inaps 

Above [fig 5.51 it was noted that Loop is a subset of Arc, or in other words tile map arc is injective. 

This consequence of the loop construction can be expressed by placing a single bar on the foot of the 

connector [fig 5.21 left]. The injective property can be defined in terms of a pullback construction 

which asserts that if two loops are assigned to the same arc, they must be the same loop [fig 5.221 left]. 

CLoop 
Loop' 

EH) 

Loop rc 

arc 

piece Component 

Component 

Figure 5.22 Defining injective and surjective maps 

The map piece which assigns nodes to components is surjective because components cannot be empty; 

surjection is expressed by putting a single bar at the head of the connector [fig 5.21 right]. The property 

can be defined by a pushout constraint which asserts that every component has some node assigned to it 

[fig 5.22 right]. 

14Strictly speaking, the constructions define the weaker notions of monic and epic maps in a general Category. 
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5.2.4.3 Subsets and Set Operations 

An injective map is often used to represent a subset of some pattern of occurrences that is 

recognized by a further syntactic or graphical property; it is an inclusion map that relates part to 

whole of a set. The intersection of two subsets is simply a pullback of their inclusion maps, while a 

pushout can then be used to construct the union. We note that set complements and differences 

cannot be constructed in this logic. 

5.3 Building Syntactic Descriptions 

The next step is to use the constructions that are depicted in SIGN schemas to build up a syntactic 

description. To explain how this is done, this section presents basic syntax for several structures 

that are familiar in many notations, such as trees and textual labels. Sketches for these standard 

sub-structures serve to demonstrate the strategy and the style of reasoning used, and to provide a 

prelude to a short study of Jackson Structure Diagrams. 

5.3.1 Reasoning about Syntax 

The task we consider is that of developing syntax from an informal description of some notation, 

together with a received corpus of expressions. For this purpose we need a strategy and a method 

of reasoning. 

5.3.1.1 The Strategy 

The task entails deciding which perceived patterns in expressions are needed to establish 

meaning, and which constraints are conventional, i. e. independent of semantic likeliness, 

pragmatic appropriateness or other accidental properties of the corpus. It is not necessary to 

define afi the patterns which could be perceived, nor assert all the constraints which are seen to 

hold, but only those that are conventional or pertinent to meaning. 

In defining syntax, the general strategy is to propose a signature of basic entities and maps, then 

to extend this with further entities and maps or constructed patterns (entities and maps that are 

defined by certain constraints), and then to state further constraints on all the maps. The extended 

signature encompasses a wide class of forms. The goal is to make the constraints define a certain 

subclass: those considered well-formed. 
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5.3.1.2 Deduction In Sketches 

This strategy requires an understanding of the properties of constructions and the consequences of 

applying constraints, and a way to reason about them. The rules of logic available for reasoning 

formally about syntactic structure are those intemal to the chosen doctrine. FM-sketches have 

effectively six kinds of deductive operation, which are classified here in outline as three 

constructions and three inferences. 

Constructions expand a sketch by adding new maps or entities that are implicit in all its models: 

Cl) A new map may be constructed by using an equality diagram to compose a path of maps-, 
C2) a new apex entity and connecting maps may be constructed on a suitable base; 

C3) canonical maps to or from a constrained apex may be constructed in certain circumstances; 

The inferences extend a sketch with equalities that must hold in all its models: 

EI) new equalities can be inferred on the faces of cones and co-cones; 

E2) new equalities can be inferred from the uniqueness properties of maps belonging to constraints; 

133) new equalities can be inferred from rules for extending equalities. 

An example of the rigorous use of these reasoning processes is demonstrated in Appendix C. 

ýýD 
source 

(ý > 
target 

(ED 

c2 C, c2 

Colour 

Arc 
ta et 

c cl p2 piece I c2 

ý> LCOLOUD 

Figure 5.23 Constructing a map from the apex of a colimiting cocone 

Several examples of construction of apices, sides and face equalities of (co-)cones have already 

been given in the preceding section. To give a further illustration, [fig 5.23] shows the cocone 

constructed as in [fig 5.3] (§5.2.2) to specify components of a graph, and a construction for a map 

that colours them. 

Following rule (E2) the cocone face equalities are: 

piece; source = p2 = piece; target (implying [fig 5.4]). The schema (left of [fig 

5.23]) shows the circumstance where arcs and nodes are coloured by elements of a set called Colour, 

via maps cl, c2. Two equalities depict the given constraints that all arcs shall have the same colour as 

their source and target nodes. From these constraints we can deduce that each component is uniform in 
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colour: The constructed map from the apex Component to Colour, shown in bold on the right of [fig 
5.231 then assigns the colour of each component. The existence and uniqueness of this map is assured 
by rule (0) of sketch logic. 

ED 

ED 
Figure 5.24 An example Forest of Trees 

5.3.2 Some Examples of the Strategy 

The strategy is illustrated by building a series of example specifications, from trees to alphabetic 

and textual labels. 

5.3.2.1 Trees In a Forest 

Our first example is a graph in the shape of a "forest", consisting of "trees" each with a single base 

node. A forest (e. g. [fig 5.241) is essentially a digraph (see schema [fig 5.2]) subject to extensions 

and restrictions, to be expressed by means of extra entities Tree and Forest, and maps tree, base 

and forest. 

There are three mtrees" in [fig 5.24]; each tree has a base which is a node (these are the rectangles 

at top left, top middle, middle left). There are various restrictions which apply to a digraph which is 

a forest, for example: - 

a) no node is target of more than one arc; 
b) every node is either target of some arc, or otherwise the base (root) of a tree. 

(ED source 

(EE) tree 

lorest 

Figure 5.25 A sketch for a Forest of Trees 

We can represent these properties indirectly. Evidently trees are the components of the graph 

(nodes in a tree are connected), so that we may start with a relabelling of [fig 5.3], and extend this 

into the schema [fig ý. 25]. We see that each node of a tree plays one of two roles. The map base 

is intended to select those nodes which are = the target of any arc. It is not canonical, and 
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therefore the sketch asserts its existence. The syntax describes a digraph, its components, and an 

association of each component with a base node. 

The schema [fig 5.25] shows the trees [Tree] defined as components. A node is either a base or a 
target, but not both. Thus the entity Node denotes the disjoint union of base-nodes and target-nodes, as 

expressed [fig 5.25] by linking the maps target and base at their heads. The map Tree denotes the 
identity function on the set of trees, conventionally named after its entity (§5.2.3). The equality: 
(Tree = base; tree) expresses the property that each base-node belongs to its own tree. 

The whole forest 

All the trees constitute a single forest, so a further constraint makes Forest denote a singleton set; this 

property is signified by rectangular comers on the entity-box. 

The forest formed by the trees is identified as an unique item. Generally, for any expression, the 

expression itself, regarded as a whole, is an example of a singleton; every item of any sort in the 

expression belongs to the whole. 

5.3.2.2 Sequence 

Next we look at a way to define a sequential arrangement of arcs and nodes. 

ý. 
_2haln \Chain 

base 

:, 
target 

> low Chain EE) 

source 

e)lnd Chain 

( 
oc 

Chaa7in--) 

Figure 5.26 A sketch for Chains 

The method of description here makes use of the symmetry inherent in sequence: that the 

reversal of all arcs preserves the sequential property. By contrast, an 'inverted' tree (i. e. with arcs 

reversed) is not normally still tree-shaped. 

Observing that source and target maps of a sequence must therefore be constrained in the same 

way, it is simple to add a further map to the sketch for tree and make the sketch symmetric. In this 

case the symmetry of structure can be translated into a symmetric layout for a schema. 

Chains 

A chain is a sequence of nodes, and can be seen as a tree which cannot branch. 'Applying the same 

constraint to the leaves of the tree as to its base yields the syntax for a chain [fig 5.26]. The base of a 

chain is its starting node. 
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Note that an empty chain consists of just a single node, its base, which is also its end. 

5.3.2.3 Alphabetic and Textual Labels 

Building on the above, we next investigate structural aspects of words, viewed as graphical 

expressions. The description does not concern the language in which the text is written, nor the 

layout on the page. It treats textual strings as sequential graphs whose arcs are alphabetic tokens. 

Although in many notations characters and text strings play a special role as lexical items (e. g. 

keywords), they can also appear as labels, for example in quantified formulae, in program code or 

on diagrams. In order to describe the structure of labels, we need to define equivalence classes 

and relations. 

5.3.2.4 Alphabetic Tokens 

Firstly an alphabet is defined as a set of distinguishable characters. Where the alphabet is a fixed 

set of significant shape-types, printed as a set of tokens, these token-sets can be represented as 

character entities in the syntax. 

As with all the items discussed so far, character tokens are shapes with a definite location on a 

diagram; thus each character has its own entity (TokenA, TokenB, etc. ) on the schema. The entity 

Alpha stands for all character tokens together, a disjoint union of all token-sets [fig 5.27 left]. 

In order to record when two tokens have the same shape, we must define an equivalence relation 

on them. This relation can be treated standardly as a digraph whose edges link related items - but 

we note that these links are perceptual, and not drawn. The relation can be constructed from the 

character-entities: - 

The schema [fig 5.27] expresses an alphabet of only four characters. The entity EqA represents a set of 

pairs of tokens, formed as an union of product sets: 
AA is TokenA X TokenA, etc.; because tokens are equivalent only if they belong to the same character- 

token set. 

S 
Alpha EqA 

Figure 5.27 Tokens and an equivalence relation 

Since all characters that are used as labels have much the same role in the syntax, this 
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description is somewhat repetitive. 

The relation allows us to define a set of shapes, but not an entity for the alphabet itself: - 

We can construct from Alpha the set Character of characters (shapes) in M, as the set of equivalence 
classes (of character-tokens) [fig 5.281. These are simply the components of the'graph'of the 
equivalence relation EqA. The maps a] and a2 are definable respectively from all the first and second 
projection maps from pairs to tokens, which are seen in the centre of [flg 5.28]. 

(ý class 11 (ý 

Figure 5.28 Constructing the equivalence classes 

It is also possible to "work backwards", by specifying an abstract entity, known to the users of the 

diagram, denoting a set of shapes. 15 This alphabet of character-types is not a 'concrete' set of 

items drawn on the diagram. When such abstractions are included in the sketch, the morphisms 

between expressions do not preserve individual characters - two isomorphic expressions might 

employ different alphabets. This might be appropriate when characters are variables, labels or 

other place-holders, but not when they have true lexical roles like the Ysign in formulae. 

Alphabetic Shapes 

Suppose the alphabet is represented on the sketch by an abstract entity Abc. A map shape in effect 

assigns a shape to each token. The entity EqA can then be constructed canonically as a set of pairs of 

tokens subject to the condition that the first (al) and second (a2) tokens of a pair have the same shape. 
In the schema [fig 5.29] this is notated with a right-angle symbol. 

ýB > shape GiD 
a2 sh e 

S-a al s 

Figure 5.29 Equivalence relation 

5.3.2.5 Equal Words 

We next turn our attention to the use of words as labels. Words on an alphabet can simply be 

specified as chains of spaces linked by tokens, each of these being assigned a shape from an 

alphabet (fig 5.30]. We assume that an expression contains a set of words. 

15 The advantage of this Is that the alphabet could be extendable (e. g. for other language scripts) without changing the 

specifying sketch. This Is also an Illustration of the way that semantic and Interpretive concepts In specification of a notation can 

easily be Integrated with the syntactic sketch. 
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Figure 5.30 Ile sketch for Words 

We consider the set of 'words' (word-tokens) in an expression, and the problem of finding when 

two words are the same label. It Is instructive to sketch a specification for equivalence of two 

strings, though this bears little relation to the human faculty for recognizing and discriminating 

words. The demonstrated solution applies the strategy of maximal matching of substrings. 

wL 
(ý 3ýý' 

wR 
Cýýj) 

wStart 
(ý 3ýýo 

wEnd 
CED 

sl al sl bl sl 
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Figure 5.31 Pairing equivalent words 

The equivalence relation EqA on the alphabet [fig 5.27] finds every pair (a], a2) of identical 

character-tokens ("alphas"); each must occur in a pair of words (possibly the same one). The next step 
is to "zip" together subwords along corresponding pairs of spaces. To do this, each of the links EqA 

given between identical alphas, is used to link the pair of spaces aL immediately to the left (in the two 

words) with the pair of spaces aR immediately to the right of both alphas [fig 5.31 left]. Space2 

denotes pairs of spaces, and the maps aL and aR are here uniquely defined (in the logic of sketches) 
from the other maps shown. 

Tle right side of [fig 5.3 11 finds, for any pair of words, the pair of spaces ss which start their names 

and the pair ee which end them. These end-points can then be used to find which pairs. of words have 

been fully zipped together. 

ss 
> bl 

aL ssz ww iS3; 
wl 

aR 
Space2 >I Word2 

ý w2 
Word >Iabeiii (Ea; 

ee > b2 

Figure 5.32 Zipping like words together, to give labels. 
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The parallel maps aL and aR, regarded as a graph, yield a set of components Zip which are the 

maximal matched subword pairs [fig 5.32 left] - because components of a graph are maximally 

connected. Then each word-pair in Word2 has a zip ssz which starts on ss and a zip eez which ends on 

ee; if these are the same zip, then the word-pair is fully matched. Hence equivalent pairs Eqw of words 

can now be constructed as loops in the'graph'ssz & eez. Each equivalence link attaches a word wl to a 

word w2 (sometimes the same word) (rig 5.32 right]. 

The equivalence graph wl & w2 on words has components which are all the labelsmaed in the 

expression. 

We see in this example that the schemas describe what amounts to an abstract computation 

within syntax. 

5.3.3 Jackson Structure Diagrams 

We now have enough groundwork to present a syntactic specification for Structure Diagrams of 

the Jackson (1983) method of software development. The schemas below are based upon 

Jackson's exposition, where restrictions on syntax are on the whole carefully stated; in some cases 

there is looseness in his description, necessitating reasonable assumptions to be made about to 

what is intended. 

Figure 5.33 An example Jackson Structure Diagram 

Structure diagrams are intended to express the analysis of a process as a sequence of actions 

generated by a regular grammar. Each diagram displays in effect a parse tree for a regular 

expression. Syntactically, each diagram (e. g. [fig 5.33]) is apparently a kind of ordered tree 

structure with labelled nodes; it is this structure which are now described. 
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Figure 5.34 A Tree structure 

Trees can be specified as in the preceding section [fig 5.24], with some name-changes. [Fig 5.34] 

allows for a diagram (or document) to contain several trees, together treated as a graph whose 

nodes are the (process- or action-) boxes, and arcs appear as lines joining boxes. Each line thus 

connects two boxes: up and down (sometimes called "parent and child"). Each box belongs to a 

tree that is a component of this graph. If a box is uppermost (i. e. not down), it is the base of its 

own tree. The schema depicts these facts. 

5.3.3.1 Ordered Trees 

stait 
X 

left 

dght jen ýd 

x 

Figure 5.35 A row of lines below a box 

The notion of Chain [fig 5.25] can now be borrowed to provide an ordering on the lines below a 

box. Schema [fig 5.35] defines a second graph structure in which lines join a series of gaps. 

empty regions beside a line or between neighbouring lines. Each component of the graph is a row 

(of gaps) corresponding to exactly one ('parent') box; in this case the construction acts as a 

constraint on the entities Line and Box that are in common with [fig 5.34]. 

The component property ensures that for each line, Ueft; row) and (right; row) arethesame 

box; in the diagram we see that this is also the 'parent' up, as depicted by the equality on the right side 

of [fig 5.36]. 
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Figure 5.36 Leaves and branches 

It is necessary to distinguish two kinds of boxes: leaves and branches, because they have different 

syntactic properties. By means of a third graph, the top left of the schema constructs leaves as 

boxes which have no children: each box is regarded as a connecting arc between two gaps, 

namely those which start and end its row of lines. If this row is empty, its start and end coincide, so 

that a leaf is a loop of this graph (see [fig 5.5]). 

A branch is any box which has lines below it: every branch is a parent of some line (this map is 

marked as a sudection). Box is then the disjoint union of branch and leaf either a box has 

children or it does not. Further, the map (parent; branch) identifies the 'parent' up from the 

line. 

5.3.3.2 Sequence, Choice and Iteration 

Branches (unlike leaves) are of three types, according to how their dependent boxes ("children*) 

are marked. They are Sequence, Choice, or Iterator, further, an iterated child must be an "only 

child". These three types are recognised by inspecting their children: Children are marked either 

Blank, Circle, or Star (though "blank" is actually the absence of a mark). Hence Line and Branch 

are both constrained as disjoint unions [fig 5.37]. The correspondence between types (of branch 

and line) is shown by "right-angle" links between sequence and norm, also choice and circ, this 

construction ensures for instance that sequence is derived by "pulling backo the map parent along 

seq, i. e. restricting parent to the subset Blank. Blank can be seen as a relation between lines and 

sequence-processes. 16 

161t Is Interesting that Jackson chooses to mark the row of dependent boxes to distinguish the three kinds of process, rather than 

the single parent boxes. 

209 



5: A Notation for Sketching Syntax 
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Figure 5.37 Three types of branch 

iter 

only iterator parent 

C 3tai star D 
Figure 5.38 An only star-child 

The entities Iterator and Star are isomorphic; the bijection between the sets they denote is formed from 

the maps iterator and only [fig 5.391, which express the fact that iterator processes have just a single 
starred child. 

Jackson states the further restriction that a choice process cannot have only one "alternative" 

(though a sequence may have only one child); though this is not notated here, it would present no 

problem to do so. Constraints of this kind, which are motivated by semantics, may be included in 

syntax or not as desired. 

5.3.3.3 Names 

This short study of Jackson's diagrams concludes by expressing restrictions on naming of boxes, 

which are not fully stated by Jackson. A name in a branching box refers to a process which is 

specified in the subtree that it subtends, whereas a name in a leaf box refers to some action of the 

system that the diagram describes. In order that a process does not receive two different 

specifications, a syntactic rule may be added to ensure that each process-name is used only once. 

Thus names for process (branch) boxes must be unique, though leaves may share names (both 

within and between trees). 

wStart x 

pa >word to Box 
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Figure 5.39 Words in boxes 
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Each box is constrained to correspond to a string of alphabet tokens from a set denoted by Alpha 

[fig 5.39 top]. Names can be specified as labels consisting of character-strings, as explored above 

(§5.3.2). By two schemas similar to those given there [figs 5.31,5.32], names may be constructed 

as classes of equivalent strings. 

Every box contains a name-token, which belongs to some equivalence class in Name. The lower right 

square of the schema [fig 5.40] indicates that the assignment of boxes to names must be unique when 
restricted to processes, and the upper right square constructs the set of action-names, which may not 

also be process-names. 

There is a special name for the null action, drawn as a dash. The null name can conveniently be 

identified with the empty word, which consists only of the space at its start and end [fig 5.39 

bottom]. 

Null denotes a set of identical dashes which are placed in boxes which do not contain a word. Only 
leaves can have the null name [fig 5.40]. The marks on the maps null and nullcirc signify injections: at 

most one dash may be written below a circle, and at most one dash may be written in a leaf-box. 

E Null >1 null leafaction D GD va'a ED 

nul circ nu x leaf action 

GED 
Clox > name 

circ do box Process 

A 

E Une Branch D D- 
Figure 5.40 Names 

Jackson states that a null process is not allowed in sequential or iterated leaves, while at most one 

null is permitted in a choice. This latter is not notated here. Also not considered here are cases 

where names have internal structure (with parenthesized arguments), that are found in some of 

Jackson's examples. 

5.4 Discussion of SIGN Design Issues 

After the work of explaining how SIGN, as a sketch-based formalism, can provide a graphical way 

of defining syntax, the last task of this chapter is to examine the design details of SIGN itself. This 

section describes and assesses the pictorial, syntactic and logical aspects of the notation, and 
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suggests extensions or alternatives that might improve its suitability or usefulness. To end with, a 

brief summary is given of the chapter's work. 

5.4.1 An Assessment of SIGN 

The version of SIGN demonstrated above is intended in the first instance as a vehicle for research 

rather than for general use; it alms at simplicity rather than sophistication. We first look at the 

features chosen to achieve this aim, and assess their adequacy in the context of SIGN's role as a 

vehicle for reasoning about the design of notation syntax. As was noted in Chapter 2, the mere 

use of a diagrammatic mode in a notation does not justify a claim that it is more beneficial than a 

textual version. According to the analysis of (§4.1.3), we need to assess how engaging, instructive 

and communicative it succeeds in being. 

5.4.1.1 Features of SIGN 

The design for SIGN has a clear origin; it is derived from entity-relation diagrams and category- 

theory diagrams, which are each known to be useful both informally and formally. In order to keep 

the rules for reasoning about syntax simple, SIGN is based on just a small number of primitive 

notions. 

Here four specific features and conventions are given that are expected to make SIGN simple and 

effective. By graphical means, these features help to reduce visual complexity without introducing 

ambiguity. 

1) The (indexical) use of textual names provides a cross-reference mechanism within and 

between schemas, which makes it possible to simplify layout and avoid overly long or 

confusing connectors. Names also offer an informal verbal interface with accompanying 

natural language narrative. 

2) Since schemas may then be drawn as plane graphs (i. e. without crossing connectors), the 

properties of plane geometry can be exploited. Thus the polygonal regions that are 

bounded by paths are helpful in making constraint-symbols concise; for instance, an 

equality-sign relates to the two 'parallel' paths that bound the immediate region that holds 

it. 

3) Geometric arrangements are used: e. g. loop (and component) constructions use 

geometrically parallel alignments of connectors in order to bind the syntactic construction 

together. 
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4) Some weak iconism is applied: the shape and placing of certain symbols Is chosen to help 

cue their logical properties. For example, the (unconventional) use of a bar as marker for 
both injective and surjective maps tells viewers that these restrictions are mutually dual; 

also, the single bar denotes a logically weaker constraint than that implied by the double- 
bars of 'loop' and 'component' maps (§5.2.4). 

5.4.1.2 Modularity of SIGN 

As a result of feature (1), flexibility is permitted in expressing sketches in a modular fashion. A 

schema can be thought of as a frame of reference or viewpoint that highlights certain formal 

relationships and hides others. It may correspond to either a sentence or a paragraph in natural 

language. A schema 'sentence' collects together entities that form some important substructure, 

such as the Tree of [fig 5.34], whereas a 'paragraph' may tell a story of how several substructures 

are combined, as in [fig 5.36]. 

In many ways, we see that schemas perform a similar function to schemas in Z notation - but with 

some important syntactic differences. In Z the signature and explicit predicates (i. e. constraints) 

are placed separately within a schema box, whereas SIGN mingles them. We see that SIGN 

employs much less abstraction than Z, SIGN schemas are not arranged in a decomposition 

hierarchy. For example in SIGN, a schema is not named, and thus cannot be referred to within 

another schema, as is possible in Z Also, SIGN has no mechanism for re-naming entities in a 

schema or for formally combining schemas. In the next chapter a further notation for depicting 

relations between sketches is suggested, which goes some way towards filling these gaps. 

5.4.1.3 Adequacy of SIGN: Conciseness and Richness 

SIGN is proposed as a working conceptual tool to assist precise design of notational syntax 

(whether for new or existing notation). How well would it fulfil this function? 

SIGN is not designed to be very concise. Generally we would expect diagrammatic depiction of 

syntax to take more space than any textual equivalent; also, formal description tends to be 

lengthy because it must make every detail explicit. Taking this into account, the schemas required 

for the example specification in this chapter are fairly economical, but this could be improved 

upon, with a more richly expressive syntax, as considered below. 

SIGN is deliberately not a rich notation; as it stands, it is too restricted from a practical point of 

view. The symbols introduced in (§5.2) notate only an elementary set of constructions - almost a 
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minimal logical basis for sketches - as a result of a particular compromise between convenience 

and logical generality. 

One problem with the reliance on such a small number of primitive notions is that it leads to less 

succinct schernas. Although the choice makes it feasible to notate constraints in situ upon 

schemas, this carries the disadvantage that names are required for unimportant intermediate 

maps. The task undertaken to produce the specification above has shown that choosing layout 

and naming requires care if schemas are to be clear and easy to understand. Each of the many 

maps must be named uniquely - for instance subsets are named as inclusion maps. Finding 

suitably intuitive names for the many entities and maps has proven to be an awkward task. 

5.4.1.4 Specificity 

Do schemas exhibit the property of specificity (§4.3.1) that is needed to help reasoning? Since 

specificity is determined by the directness of the relation between graphics and semantics, the 

answer to this depends on what we take to be the semantics for SIGN. Schemas denote sketches, 

but sketches denote classes of models. Further meanings involve the deductive dependencies 

revealed by schemas. 

If we regard sketch structure as a semantic level within SIGN's syntax, then there is a fairly direct 

relationship between items drawn in schemas and items of a sketch, though this is subject to the 

restrictions of feature (1) - several boxes with the same name refer to a single entity. 

At another semantic level, a depicted sketch denotes a definition of its models. Though the 

relationship between sketch and model is not direct, schemas, on the other hand, can be drawn to 

express models directly. This is achieved by using the syntactic signature as basis for a kind of 

proto-notation, equivalent to a directed graph labelled with names of entities and maps. This 

possibility arises by virtue of feature (1), which gives SIGN enough flexibility to 'explode' a schema 

into broadly the 'same shape' as a sample expression in the notation it describes -a technique 

that can be useful for analysing expression-instances during notation design. 

As illustration, we take a proto-notated version of the JSD diagram [fig 5.321 of (§5.3.3); this is 

derived from the tree schema [fig 5.33], by 'exploding' into schema [fig 5.4 1]- though note that some 

connectors are ornitted to avoid any cross-overs. 
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Figure 5.41 An Exploded Schema 

As far as semantics for reasoning with sketches is concerned, deductive relations within or 

between schemas are not depicted, but are only accessible via. formal logical rules. Though 

schemas cannot notate deduction, they are important as a visual aid in support of reasoning. The 

instructive use of SIGN for tractable reasoning about syntactic structure is aided by directness, but 

as we have just seen, this depends on the level (or fragment) of semantics which is the focus of 

reasoning. Either different variants of SIGN would be needed, or more flexibility could allow 

expressions to be tailored to a particular focus. 

5.4.2 Redesigning SIGN for General Work 

How can SIGN be extended to overcome the above problems? What changes are needed to 

SIGN to render it suitable for a non-specialist in notation, who wishes to see an instructive formal 

definition of a standard notation? We look next at ways that expressiveness and engaging 

qualities of SIGN might be improved - in order to create a more expressive working version 

without losing its basis in Sketch Theory. 

5.4.2.1 Improving Expressiveness of SIGN 

Methods of enriching syntax or semantics of SIGN could be applied, to adapt it to both context and 

practice of design. 
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In specification notations generally, it is desirable to be able to express as directly as possible 

those concepts that predominate in the subject domain. Directness is achievable by giving these 

concepts special symbols, denoting either primitive or derived elements of the logical formalism. 

Extending a notation with new symbols can therefore be done in two distinct ways: 

Syntactic extension introduces a symbol as a shorthand to replace an arranged group of symbols, 

without otherwise changing deductive rules. The new syntax can be concrete (replacing a specific 

group) or abstract (replacing a type of pattern). 

Semantic extension enriches a notation by enlarging the set of primitives, which entails the reframing 
of deductive rules, and may cause radical changes that require further mathematical analysis. 

Syntactic extension is similar to the technique of definition in a logical calculus. Rather than 

devising a logic with a rich set of primitives, a method of extending the logic with derived notions 

is preferable to the second option, because it does not require a complete reworking of the 

deductive rules. 

Concrete syntactic extension was employed in the definitions of SIGN symbols for bijection 

(§5.2.3) and pullback (§5.2.4). The definitional method takes some common sketch and represents 

it by a special symbol with its own syntax and derived rules of logic. The sketch binds together and 

constrains several maps and entities; it can be viewed as a compound construction, in which some 

of the maps may have an auxiliary function. Auxiliary maps appear only as supporting framework, 

and will be hidden when a symbol for the compound is defined. Thus in notating the compound 

construction pullback, SIGN hides one entity and three maps (Arc, arc, source, targeo that are 

auxiliary to its definition [fig 5.171. Without a symbol for the pullback, schemas like [fig 5.371 

would be far more complex, with many unimportant maps needing to be named. 

What is involved here is a compromise between concrete and abstract modes of expression. By 

adding extra defined symbols, schemas built from commonly occurring compounds can be 

simplified. Another way to make schemas more concise is to notate general kinds of 

construction17, to avoid an ever increasing symbol-set. Thus more general derived constructions 

could be notated, but this is achieved at the cost of increased abstraction and complexity. 

As a form of abstraction, we could include syntactic definitional mechanisms in SIGN itself. Such 

17This refers to sketch cones and cocones of any size, Le. general limits and colimits In categories. It is possible to go even 

further and notate left and right Kan Extensions, or Ends and Coends (MacLane 1971). 
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abstract syntactic extensions would involve more complex graphical reasoning patterns, 

increasing the requirement for professional expertise. 

5.4.2.2Ways to Improve Engagement 

What would make SIGN more engaging and communicative? One way is to provide more flexible 

ways of naming maps and entities. 

The conventions for naming of maps could be Improved. It may help to develop conventions 

where maps are given compound names, so that map-labels need not be unique. It should be 

easy to create a formulaic notation for naming, because categories and sketches determine an 

internal language in which maps are expressed by formulae (Lambek & Scott 1986). The syntax 

for these internal formulae can be constructed from the doctrinal rules, and manipulated through 

an 'essentially algebraic' (equational) reasoning process. An experimental method of naming 

paths is used in Appendix B. 18 

SIGN uses verbal text to label each syntactic entity (box). We could instead or in addition use 

pictorial cues taken from the target notation, to help the user identify the graphical pattern denoted 

by an entity in a schema. For instance, an entity named 'arrow'could be illustrated by drawing a 

typical arrow-icon in the entity-box. In serniotic terms (§4.3), this amounts to an iconic temporary 

extension to SIGN, specific to the particular target notation. This could be accommodated as an 

informal annotation, but is hard to see how it could be done formally. In practice, such annotation 

or extension to SIGN could only be made with the help of a versatile notation-development tool 

such as that proposed in Chapter 7. 

5.4.3 Alternatives to Sketch Theory 

SIGN attempts to achieve clarity and avoid ambiguity in its schemas through the support of formal 

logic, in the form of sketches. Here we consider changing the semantics of SIGN, by using other 

possible logical bases, and we ask how the method of sketches compares with other formal 

approaches. 

Is a categorical foundation is the most appropriate? The main alternative formal description 

18 A simple way to name maps Is to prefix a map-label by Its domain name, and to name an unlabelled map by default after its 

codomaln. 
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methods would be the general purpose languages of classical Predicate Calculus (first or second 

order) and Set Theory. Both satisfy criteria of good mathematical support, but reasoning in these 

systems is difficult even for experts. As with sketches, there is a hierarchy of strengths for 

classical logical formulae, that can be used to control the complexity of serniotic relations. Set 

theory might appeal to a wider mathematical audience than category theory, but neither it nor 

classical logic are commonly used by software developers. 

If having a graphically expressed formalism is important, then sketches are better placed than set 

theory, for which no such notation has been developed. However, an extension of sketches to 

accommodate Set Theory could be based on Topos Theory and higher-order logic (Lambek & 

Scott 1986). Peirce's existential graphs do provide classical logic with a graphical notation that is 

worthy of investigation. A pictorial first-order logic based on the work of C. S. Peirce (Hartshorne& 

Weiss 1933) is demonstrated in the conceptual graphs of (Sowa 1984) see (§2.1.1,2.2.2). 

We require evidence that reasoning by graphical constructions and equations in sketches will 

prove any easier to support than other formulations of logic. The arguments of Chapter 4 suggest 

that this will only be so if the sketches used are restricted in logical complexity, and if the schema 

notation is adapted to reflect the restrictions graphically. 

We have seen that sketches, through their connexion with category theory, provide for mappings 

between syntactic structures. This promises to be an especially fruitful aspect of the method, in 

that it allows analysis of analogy and metaphor, making it particularly suitable- for describing 

semlotic structure. Predicate Calculus does not easily allow such mappings (Roisin 1979). 

5.4.3.1 Expressing Properties and Relations 

Among the Predicate Calculus concepts that the sketches do not express directly, are the 

fundamental notions of property and relation. Many geometric and semantic connexions found in 

general notations seem relational rather than functional (e. g. 'near-to'). Sketches represent such 

relations indirectly as subsets (injective maps into product sets); hence SIGN lacks symbols for 

many-to-many relations and partial functions. From (§5.4.2) we see that symbols could easily be 

defined by syntactic extension, if necessary. A relation could be regarded as a 'loose' function that 

can yield ambiguous values or no value at all. 

The alternative would be to take relations as primitive. The concept of a total function must then 
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be derived as a restricted kind of relation, with the help of a special relation called 'equality', in the 

standard approach of predicate logic. A lengthy investigation of fundamentals would be needed to 

base a notion of sketch upon relations. A possible starting point is Peter Freyd & Andre Scedrov's 

work (1990) on Allegories (Broome & Lipton 1994). The foreseen generalizations of sketches 

(Bagchl & Wells 1994) referred to in the next chapter may suffice for this. 

5.4.4 Summary 

To finish the chapter, a short summary is given here of its achievements. 

In this chapter a graphical notation and formalism for specifying syntax has been described and 

illustrated with examples. This work has demonstrated that the proposed notation enjoys a 

mathematical basis, which is found in the Theory of Sketches and Category Theory. The 

formalism treats syntax as a set of perceived connectivity constraints which are definable without 

reliance upon the details of realization in a pictorial medium. 

An example specification for Jackson Structure Diagrams has been presented, to include the 

constructions and constraints for all the properties which Jackson documents, apart from some 

minor omissions that are indicated. The method establishes the principle that syntactic constraints 

can be diagrammed formally. 

The benefits and deficits of the proposed schematic formalism have been analysed according to 

the work of Chapter 4. As a result, ways of improving its notational design are suggested, with a 

view to providing more useful and practical developments of the formalism. 
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Chapter 6 
Support for Notation Design and Processing 

Abstract 

Here we find an investigation into how the proposed 'tectonic' framework can be applied to 

problems of computer-aided notation processing. Starting with 'a look at methods of formal 

deduction and proof within sketches, the discussion proceeds to define a set of notions based upon 

maps between sketches. These notions are particularly useful for describing reasoning about 

syntax and operations on expressions. The technique suggested for designing notation structure 

then involves building a syntactic sketch from a network of sub-sketches and maps. 

The theory indicates a method for diagramming the logical relations between sub-sketches by 

means of 'meta-schemas', which can be used in planning the computational strategies involved in 

interpretation of expressions. The question of defining the appearance of a drawn symbol is also 

addressed, recognizing the need for universal pictorial theories into which the syntax can be 

mapped. 

In order to discuss a range of operations on expressions, the tasks of editing are next analysed in 

detail. Editing is seen as the building of a model, guided by a syntactic theory and directed 

towards the user's semantic goals. In theoretical terms, creation of an expression is described as 

the instantiation of its syntactic sketch. In a graph grammar approach, guided editing allows an 

expression to be instantiated gradually, by inserting temporary symbols for syntactic items that will 

later be replaced by patterns of items. For this to work in general, it is shown that a separate 

editorial syntax is needed. 

We see how the framework of tectonic sketches constrains a flow of change within syntactic 

structure, resulting when a graphical expression is modified. Graph rewriting techniques offer an 

elementary way to implement this flow. These rewriting operations are analysed in relation to 

logical properties definable within the framework. 
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Support for Notation Design and Processing 

The previous two chapters have proposed a theoretical framework and indicated a method for 

specifying a layered syntactic structure. Our purpose now is to see how this 'tectonic' framework 

can support techniques for reasoning about structure and operating upon expressions. These 

techniques are directed both at the designing of effective notation and addressing particular 

problems of providing computer-assistance. Computer-aided editing is selected as an important 

topic to address, with a discussion to clarify, the processes involved in modifying expressions. A 

logical analysis is applied in order to resolve difficulties found in design of rewrite-rules for flexible 

editing methods. Without exploring too deeply, this chapter thus covers a number of areas that 

pertain to the building of a notation design tool, which will be the subject of the succeeding chapter. 

We wish to give assistance to people in several roles: to the technical designer of notations and to 

those who will employ notations, either as a viewer of expressions or as a notator who produces 

expressions. 

The activities that users are engaged in come under two headings: employing and editing. 

Employing expressions involves a range of cognitive actions, more or less tacitly: from creating 

ideas through to physically expressing them; from perceiving pictures through to impressing their 

content on the mental state (in readiness to respond). Editing involves some explicit actions which 

are reliant on this cognition: for instance the building, modifying, formatting and translating of 

expressions. 

There are three areas where the ideas of this thesis may lend support, and three kinds of support 

that are offered. Problems of specification have already been partly addressed; problems of design 

and processing are the focus here. Theoretical support provides the confidence that practical and 

computational support for all areas can be developed. Design of computer-assistance can then 

follow a policy of providing algorithmic processes that correspond to cognitive ones. 
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6.0.0.1 Operations 

How can we reason about operations? To operate or work upon an expression means to change it 

in a regulated manner. There are two aspects of this working that require our attention: the 

structural integrity to be maintained throughout any change, and the means by which the 

processes of change are to be controlled. As in computing, where these aspects arise as the 

declarative logic of system specification and interactive logic of program execution, our problem is 

how to unify them. 

The first aspect involves defining the deductive, serniological processes underlying all notational 

tasks. In the case of interpretation - the discovery of meaning - semantic facts are deduced from 

observed graphical properties of expressions. Conversely, in producing graphical forms to 

express facts in a situation, the task is one of selection or discovery of a display that has the 

intended interpretation. From an operational perspective, both of these entail constructive proofs- 

of-existence. As regards the second aspect, we have seen (§3.2,3.3,4.4) that the control of 

change is often achieved by means of rewrite rules. With a view to implementing notational 

processes, we must therefore examine techniques of graph rewriting in relation to the logical 

framework. 

How do the theories presented apply to parsing and interpretation of drawings, or production and 

display of expressions - when carried out by computer? This is answered below with the help of 

the concept of translators between syntactic theories, as introduced in (§4.5.2). Translators of 

theories would in principle be associated with programs that convert models of one form to those 

of another, as proposed in (§4.5.2). There it was suggested that interpretive processes encode 

information in an intermediate abstract form (theory R of [fig 4.4% from which meaning is derived. 

Here this abstract R-form will be regarded as conceptual data and could be called an idea. 

Display of semantic data starts by forming an idea. Production of a drawing that expresses it 

requires a search strategy that selects from a huge variety of solutions, applying informal criteria 

such as aesthetic heuristics to choose layout. 

6.1 Supporting Notation Design 

In order to support for the designing of notations, this work must offer help in the logical analysis of 

notation syntax. Further to the theory outlined in (§5.1), this section elaborates the descriptions of 
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semiotic structure given in Chapter 4 (§4.5) and proposes language and methods for structural 

design. The main device to be introduced below is a tectonic sketch for a theory of notations in 

their context. This overall sketch is resolved into a complex of named sketches connected by 

logical relationships, which are in turn depicted in meta-schemas. The mechanics of the 

relationship between graphics and semantics is discussed, and finally consideration is given to 

question of pictorial realization. 

6.1.0.1 Various Reasoning Processes 

As noted in Chapters 2 and 4, we can discriminate several kinds of reasoning associated with a 

notation. For the user, the most apparent thoughtful activities occur in the sub'ective semantic 

domain: employing an expression to think about possibilities expressed in the subject area 

(§2.1.2), and potentially complex processing such as the calculation of consequences (which are 

however outside the scope of this thesis). These activities rest upon transductive capability in 

interpreting or conversely producing expressions, alluded to in (§4.3). In one direction, interpretive 

thought extracts semantic properties of an expression from graphical facts; in the other, productive 

thought expresses semantic properties in graphical form. These capacities rely, in turn, upon an 

implicit understanding of the notation's structure, which users must develop. 

During the design of a notation, these understood processes need to be made explicit; not as 

cognitive functions, but as formal structure that is related to computational needs. In order to 

support all these processes, the notation designer must exercise deductive reasoning in deriving 

systematic properties of a notation from within its specification. 

Determining the effect of syntactic constraints involves construction of required maps and entities, 

and inferring new constraints which are implied by those already asserted. The reasoning method 

for the sketches is graphically assisted by the SIGN schemas, in an analogous manner to the 

practice of Euclidean geometry - whereby lines, points and arcs are constructed on a drawing, and 

new properties are deduced using explicit postulates and theorems. 

6.1.1 Theoretical Support for Deduction 

We begin with some further details of the theory behind deductive processes, which relies on the 

construction of a formal theory -a category that is the closure of a sketch - which was mentioned 

in (§5.1.3). The objects of study which a formal theory is intended to describe are approximated 
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by its formal models. 

Both sketches and theories declare the properties of models, but sketches additionally allow us to 

take some account of 'cognitive effort' in the interpretive processes, inasfar as these are mirrored 

by deduction on a sketch. By referring to an ideal notion of theory, mathematics abstracts away 

from (or avoids) such concerns. The intention here is to accommodate both of these perspectives 

on deduction, in a version of logic that is intuitionist rather than classical. 

S 

In 
h B> n 

z 

Figure 6.1 A Natural Transformation 

6.1.1.1 Formal models 

Theories and sketches describe models, in the sense that they identify the set of models that 

satisfy them, and they establish the systematic relations that hold between models. When a 

theory is presented by a sketch, we want the models of the sketch to be effectively the same as 

those of the theory, or of any other sketch that presents the same theory. The category of models 

of a sketch, referred to in (§5.1.3), will now be defined. 

Given a sketch S and a suitable category Z the sketch-morphisms from S to Z are known to form 

objects of a category Mod z (s) - the category of S-models in ZA morphism between these 

models [fig 6.11 is an example of a natural transformation: - 

If Z is a category, a model of S in Z is defined as a sketch-morphism from S to Z 

A natural transformation h between models m, n: S -4 Z is a family of arrows in Z, indexed by the 

entities in S, such that for all maps f: xy in S, 

m(f) ; hy = hx ; n(f) 

is an equality in Z. 

If Z is a category of sets and functions, the natural transformation is a family of functions, each of 

which maps each element of a given sort in m onto an element of the same sort in n, while 

preserving the connectivity. This formalizes the part-whole relation discussed in Chapter 4 (§4.3), 

and for example corresponds exactly to the usual definition of graph homomorphism. 
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It is usual in category theory to characterize a category by its arrows, and not by any supposed 

internal structure of its objects. In our case we are especially interested in models that are 

concrete object-representations - arrangements of items, with morphisms that are certain 

functions between item-sets. The morphisms in this case do not tell the whole story. In particular, 

we do not here pursue a notion of semantics in which morphisms between graphical models 

correspond to morphisms between semantic models (§3.2.3). 

6.1.1.2 Deduction 

In any logical system, deduction is an activity that allows us to develop a theory from a set of 

postulates. Deduction upon a sketch S leads to the extension of S into a sketch T by adding 

formally derived entities, maps and constraints - governed by some doctrine E. Viewed 

abstractly, this constitutes a sketch-morphism d: S --ý T, through which every model of S is also 

a model of T The theory generated by S is, in a sense, the largest such T On the other hand, 

the theory is a minimal E-category that includes S. It follows that stronger doctrines generate 

potentially larger theories. 

In the following exposition, the general framework for *graph-based logic" (GBL) described by 

Bagchi & Wells (1994) is the source of formal definitions for these notions. The general notion of 

a theoty in a doctrine E can be defined formally in two ways. The first definition yields a notion of 

loose theories: - 

(a) 

Figure 6.2 Unique factorization of model m via the generic model s. 

Loose theories 

If E is a doctrine, every E-sketch S has an E-theory E<S>, which is an E-category together with a 

sketch-morphism s, called the generic S-model for E: - 

s: S -4 E<S> 

such that for any E-category C and S-model in in C, there is a model M of E<S> in C, unique up to 

isomorphism, for which m=s; m. 

Every model of S is said to "factor uniquely" through the theory E<S>. 

This determines E<S> up to equivalence of categories. 
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The generic model s induces a natural equivalence between mod c (s) and the category of E- 

functors from E<S> to C. In this sense the sketch S has the 'same' models as its enclosing theory. 

The force of the phrase "up to equivalence" is that we do not specify how many isomorphic copies 

there are of each object of E<S> - i. e. each derived concept. A loose theory captures the notion 

of a definition that is not tied to a particular presentation S. 

For the purpose of defining formal deduction it is helpful to have a second way to understand a 

theory - as a model of a doctrinal FL-sketch. These strict theories are E-categories with 

designated E-limits and functors that preserve them) Bagchi & Wells give a set of rules of 

construction that produce the strict E-theory of a sketch as the initial algebra for the FL-sketch of 

E-categories with constants added describing the sketch (see also Wells 1990). 

Strict theories 

In the general case a doctrine is established by taking an FL-sketch E and generating its theory E (i. e. 
FL<E>), which is thought of as a constructor space. Then E-categories are just the models of E in Set. 

Each object in F, is a type of construction that can be carried out in any E-category; in a model of E, 

each object is mapped onto the set of all possible examples of that particular type. 

Technically, an E-sketch S is a constant in the limit vertex v of a certain diagram in E, which depicts 

the signature and constraints of S. When this constant S: 1 --> v is formally adjoined to E, it 

generates a loose theory F, [S] that forces the value of v in a model to contain the signature and 

constraints of S. Then the (strict) E-theory of S, E<S> is the initial model of E[S], a kind of 'deductive 

closure! of S. 

The details of this construction need not concern us too much. The effect of it is that an E-sketch 

S allows us to specify any kind of construction that can be made in an E-category such as the 

medium Z 

6.1.1.3 Proofs 

The GBIL framework also associates a sound and complete proof-theoretic structure with a sketch. 

In this framework, proof takes place in a workspace W in support of a claim C about an hypothesis 

H- all objects of JE, 
that are limits of diagrams in E. 

An assertion is presented as a potentialfactorization of a map h: H --ý W via a given map c: c -4 

w. It is valid if it does factorize in every model of E. The assertion is deducible if the claim is verified 

by existence of an actual factorization -a map d: H -* C, that makes the triangle 

(h = d; c) an equality in E. 

I The corresponding theory functor Is left-adjoInt to the monadic functor that treats an E-category as a sketch. 
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The resulting proof theory is suitable for computer Implementation since it makes explicit the full 

detail of the relationships between different parts of the structure. It has the advantage that proof 

under any doctrine is always an algebraic operation. For human manipulation, we require a more 

customary system of inference that is instantiated for the doctrine we are using, and which relies 

on pattern matching - such as that informally described in (§5.3.1). 

6.1.2 Languages for Notational Design 

We have seen in the preceding chapter how notation design can be supported by a schematic 

notation for syntax, which could also be adapted to finer layers of structure. It will now be helpful 

to invent some further language - appropriate terminology and ideas for new notation - to help 

apply this theoretical perspective. 

6.1.2.1 Translators, Codices and Expressions 

In the examples of the previous chapter, syntax was specified in the doctrine corresponding to 

finitely bicomplete categories (FIVI-categories) in which limits and colimits exist for all base graphs 

of finite size. We remain generally concerned with FIVI-sketches and FIVI-deduction within FIVI- 

Theories, but the prefix FIVI- will be usually be omitted. If S is an FIVI-sketch for a particular syntax, 

its FIVI-theory category FM<S> may be written simply . 6. 

In Chapter 4, translation between theories was described by morphisms (Li: an a) that respect . aL-tQr. a 

the doctrinal structure - in other words as FM-functors. These translators represent systematic 

ways of converting between models, but because theories are generated, translators subsume an 

arbitrarily large amount of symbolic computation. 

Morphisms between finite sketches are much simpler. In this context, finite sketch-morphisms will 

here be called codices in order to emphasize their role as illustrations or translations. A codex 

maps signature and constraints of a source sketch S coherently into signature and constraints of a 

target sketch T, and may be thought of as a vehicle for interpreting into concepts of S from those 

of T Applying a codex converts any T-model to an S-model by simple operations of selecting and 

copying, without any deductive computation. 

If Z is a category suitable for containing models, then any codex from a sketch S to Z is a model, 

regarded as an 6xpression with structure S within the medium Z (in short, an S-expression in 2). 
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Equivalently, expressions are models of the theory 
.6 

in Z (regarded as an FIVI-category), i. e. 

translators from S to Z 

6.1.2.2 Notated Language: a Category of Forms 

Each FM-sketch S has an underlying graph, its signature, denoted ISL Graphoid forms are models 

of these graphs, and thus are like abstract unconstrained expressions. Forms on a signature 

belong to a category US (a topos) that supports all the standard definitions of graph rewriting. The 

arrows between forms in L$j are transforms: natural transformations between models, as defined 

above. 

The language defined by S (in 2) is then the. category Mod Z(S), of S-expressions in Z with 

transforms as arrows. This will be simply written 2, when Z is understood from context. Although 

2 is a subcategory of LSJ, it need not share the same closure properties. The language 2 may be 

deficient in transforms between its expressions and it may even be empty of expressions - in 

general there is no guarantee that the constraints of S are satisfiable, especially when Z is 

restricted to finite sets. 

6.1.2.3 Media and Models 

For most purposes we take the medium Z to be some category of Liw-ijq sets, perhaps imagining 

sets in the given context, of geometric space, coloured pixel arrays, perceptual images, concepts 

and computer storage. If we restrict ourselves to formal reasoning, nothing is lost by regarding Z 

simply as an indefinitely rich theory category. If we wish to describe the nature of a specific 

medium more closely, this may be done by sketching a theory M of the medium, and factorising 

an expression in Z into a codex to M, composed with some M-model in Z. 

Let S be a syntactic sketch and e: S -ý Z be an expression. 

Let M be a theory and m: M -* za model - i. e. a concrete medium. 

Then e can be expressed in the medium m provided it can be factorized via m: 

3p: S -4 M-e=p; m 

Expressions in Zare called concrete in contrast with abstract expressions in 

For the constructions demanded in Chapter 5, Z must have uniquely designated finite (co)limits, 

whose apex objects are referred to as canonical constructions. Thus, for example, the product of 

two sets in Z is a specific set that represents all the ordered pairs. 
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Since we rarely have cause to discriminate between isomorphic models, for computational 

purposes we could choose as medium a skeleton category N of natural numbers. This has a 

single representative for each size of set; each number is the set of its predecessors, and the 

arrows are all functions between the sets. 

6.1.2.4 Meta-Schernas 

In order to discuss the design of notation structure, we will need a new form of diagram to express 

relationships between sketches. These *meta-schemas" will be drawings of a more elaborate kind 

of sketch - one whose models are not in the medium of sets, but in a category of FIVI-sketches. 

Sketches and codices are the 'objects' and 'arrows' of the category of Sketches, Sk. Since this 

category Sk is known to be bicomplete, it provides a suitable medium for mixed sketches; in other 

words we can use sketches with models in Sk to sketch the relationships between certain codices 

and sketches. This implies that a variant of the schema notation of the previous chapter can also 

serve to denote such a "meta-sketch". 

The notation provided by meta-schemas could distinguish different kinds of sketch and codex in 

the richer structure of Sk. For instance Sk has a subcategory Th of theories and translators. 

Furthermore, a second level of arrows is needed to depict the transforms - arrows between 

parallel codices to a category2 as in [fig 6.11]. 

The syntax of meta-schemas would therefore be based upon that of schemas, but extended to 

express transforms between codices and to distinguish different kinds of codices. In particular we 

may want to distinguish deductive codices that merely deduce extra structure, or to indicate the 

strength of the deduction - whether limits or colimits are involved. Details of such a notation will 

not be presented at this point, but informal graphical structure will be devised and explained when 

needed. 

6.1.2.5 Notating Formal Proofs 

In the formal design of a notation, there will be a practical need to establish logical dependencies 

between the facts formalized in a sketch. SIGN schemas can support structural reasoning by 

2Th has the further structure of a 2-category, but Sk does not. Given two sketches S and T, we might consider what structure 

can be found In the set of codices (S -+ T), where the target T Is not a category. Although transforms can be defined in this case, 

they do not form a category because the map formed by composing two compatible transforms may not itself be a transform. 
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depicting all the items and constraints involved in a chain of inference, but they are not designed 

to notate the deduction itself as a formal proof. Meta-schemas could be adapted to depict 

deductive stages between parts of a sketch in broader terms. 

Though proof documentation is likely only to be of academic interest, the outcome of a proof is an 

important data-structure -a network of dependencies between sketch-items, useful in controlling 

computations on expressions. The dependencies could be diagrammed along with the schemas 

that visually motivate the deductive steps, but further special notation is not proposed here. 

6.1.3 Specifying Serniotic Structure 

We now turn our attention to considering what a full notation specification would look like. In 

Chapter 3 (§3.4.2) we observed that reported methods of specification take little account of 

semiotic properties such as layering. It is thus proposed to define the layered structure in a 

tectonic sketch that incorporates the syntactic sketch described in the previous chapter. By 

combining structure from all layers together with pragmatic items, this sketch could in principle 

specify some of the interaction between expressions and situations that was envisaged in (§4.5). 

We here examine its primary purpose, which is to guide interpretation and display of expressions. 

6.1.3.1 An Outline of a Tectonic Sketch 

To design a notation, the plan is to build a tectonic sketch that specifies all of its associated 

entities and maps, as are necessary for interpretation, display, translation or other processing. 

The flow of information, from graphical facts about an expression to properties of the referred-to 

situations, is to be carried in its network of maps and constraints and controlled by the 

dependencies between them. The tectonic sketch K for one notation might take the shape roughly 

illustrated in [fig 6.3]; the diagram shows a notation with four separated layers of syntax. 
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Figure 6.3 A rough picture of a tectonic sketch of syntactic structure. 

This picture does not show any of the pragmatic constraints on how and when an expression may 

be used, necessary in a full serniotic sketch. Pragmatic items may connect at all levels - 

coordinating style and context, dealing with presuppositions, anaphora etc. These further 

contextual entities would supply referents for unbound names, and - in a programming context - 

might for example hold the structure of an automaton that executes expressed instructions. 

The sketch could be extended to a community of notations with a common focus, so that different 

views of a complex system wo. uld be coordinated by the constraints. Within this global sketch 

would lie all the logical connexions. Its constraints would determine a dependency network for 

controlling information flow between representations and situations. This opens the possibility of 

constraint logic approaches for processing expressions - as suggested by some researchers in 

(§3.2). 

6.1.3.2 Meta-Schernas for Tectonic Design 

To facilitate the design, the tectonic sketch K would be built up from smaller modules, each 

defining a component of the formal structure. Meta-schemas provide a way to show the overall 

logical design, depicting the layers and deductive or analogical relations between them. This 

constitutes a second level of description, in which each sketch-name relates to a document of 

schemas that define it. 

We can separate out the layers by means of four codices into K. Each codex embeds the sketch 
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for its layer in the abstract context K, as depicted in the meta-sherna (fig 6.4]. 

Q sm > e--N 

s tR 

G) Ix K 

Q gr > 

Figure 6.4 Layered sketches 

Here the sketch Gr presents a limited theory of graphics that is appropriate to the notation 

concerned. This would be supported by a more complex general theory of the graphical medium, 

that is not properly part of the notational structure. Likewise Sm is only a small part of the 

semantic ramifications of the subject domain. This arrangement allows for overlap between the 

different layers, and also for some parts of Kto be unrepresented in any layer. A K-expression k: 

K -) z contains items of all layers in K; it is correct in syntax, semantics and the rules that 

coordinate them, and is appropriate in context. It denotes a type of situation containing a drawing 

gr; k (a Gr-expression) with meaning sm; k (an Sm-expression). In this way the layers refer to 

different aspects of a situated expression. 

If we were specifying a textual notation, the graphic layer might describe an expression as a two- 

dimensional array of characters; the lexic layer might define which sequences of characters are 

keywords, and classify other sequences as variable-names or numerals; the "tagmaticm layer might 

identify phrase-types and an underlying tree-structure, with cross-reference links between names; 

the semantic layer might determine the logical-types of subtrees. 

Q sm 
K 

gr 
U 

Figure 6.5 Direct graphical analogy 

Further codices may be added to define analogies between layers, following (§4.5.2). For 

example, a direct analogy between some part of the semantic aspect and a part of the graphic 

would be described by a span -a pair of codices from a relator sketch R: 

Gr (-- R -+ Sm 
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In this case R indicates graphic items that are in 1-tol correspondence with semantic items [fig 

6.5]. The constraints of R will be satisfied correspondingly in Sm and Gr. More generally, a 

network of analogies of various strengths can be specified. 

6.1.3.3 Relating Graphics to Semantics 

The relation between graphic and semantic layers is not a balanced one. Design aims at an 

unambiguous interpretation for expressions, but conversely, the displayed expression need not be 

uniquely determined from semantics. It is usually preferable to have many ways of expressing the 

same statement. 

In order to prevent ambiguity, it is necessary to ensure that the syntactic sketch expresses enough 

properties to determine semantic facts without the need for extraneous information. The strongest 

way to achieve this is to make the facts formally deducible. In such deductions, not all entities and 

maps in K are relevant; some take no part in interpretation, although their existence acts as a 

constraint upon the syntax. 

A simple example of this occurs when two sorts (A and B) of item are constrained so that there may be 

no fewer of sort B than sort A. To achieve this we can specify (in K) an injective map from A to B. 
Note, however, that this map describes only the operation of comparing sizes of the sets - it will not 
become part of the semantics Sm, nor need it be depicted graphically via Gr. 

Thus in a suitably 'well-behaved' sketch K, internal logic would allow exact deduction (from a Gr- 

form) of all the maps in Kthat were salient to Sm. In such a case, each layer constrains all layers 

below it; hence not every Gr-expression would give rise to a well-formed Sm-form. Rather, every 

K-model would 'contain' a Gr-expression and its exact Sm-interpretation. Cognitive interpretation 

and production relies upon the deductive structure of K- thus the design must ensure enough 

logical dependency within Kto support known operations and tasks. 

6.1.3.4 Interpretation 

Whereas the designer is concerned with deduction on sketches, the user has skills that operate 

constructively on models. In the case of an informal notation the interpretive procedure may be 

pictured roughly as follows. 

On being offered a visual expression, the reader favorably assumes that an interpretation of it exists. 
Where possible, she interprets new entities and maps from those present in the visible structure, by a 

variety of cognitive mechanisms. For those semantic maps that cannot be found by following deductive 
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semiotic rules, she has to derive their values by searching for a meaning consistent with background 

knowledge. 

The purpose of formal syntax is to avoid the need for this kind of search by providing a deductive 

strategy for exact interpretation. Given a graphical expression, we can observe the values of sets 

A, B, C, and maps a, b, c, etc. of the graphic layer illustrated in [fig 6.31. By obeying the 

constraints of K, it may be possible to calculate first the lexical sets and functions, then those of 

the syntactic layer, and finally the sets S, T, U and maps s, t, u, etc. of the semantics. Provided all 

the semantic entities and maps can be formally FM-deduced via intermediate structure, 

interpreting an expression becomes possible by direct calculation. If K does not support this direct 

unambiguous interpretation, it is necessary to search for sets and functions that resolve the 

constraints, given the graphical data. 

Exact interpretation is to be ensured by relating Sm to some deductive extension of Gr Models of 

Gr then have unique interpretations as models of Sm, as was established above. The procedure 

follows the codices: 

Gr +- GrO =* Grl +- Sml -4 Sm 

- where GrO is a salient part of Gr, deductively extended to GR1 (where '==>' means a deductive 

codex); the codices from Sml select the salient derived graphical aspects, and apply further 

constraints. In the same vein, the interpretive process passes through each intervening tectonic 

layer. For instance, this might be described by a sequence of codices: 

Gr +- GrO =* Grl +- LxO -ý LX =* Lx1 +- TgO -4 Tg =ý Tg1 +- SmI -4 Sm 

There are many variations on this theme; the important point is that such structuring can be 

described in some detail by a network of codices of different kinds. 

The semantic sketch is likely to have constraints that are not a consequence of syntax, which can 

cause failure in interpreting some expressions. Such failure signals that the expression is 

syntactically correct, but inappropriate in the current (and perhaps any) circumstance. By tracing a 

sequence of deductions starting from facts of Sm, it may be possible to prove some properties that 

restrict lower layers. This will allow failure to be detected earlier in the interpretive process. 

An example of interpretation is found in the task of assembling a syntactic sketch from a selection 

of SIGN schemas as mentioned in (§5.4.1). 

236 



6: Design and Processing Support 

What this description of the interpretive process implies is that a small number of simple cognitive 

steps separate graphic structure from semantics; moreover, these steps can be simply simulated 

in formal logic. The amount of effort needed for a construction in a model Is apparently of the 

order of the size of the set of items involved - at least in a literal implementation in which each 

item occupies a storage location. 3 For this reason, the syntactic doctrine of the previous chapter 

excludes constructions which create entities for huge setS4 on grounds that they might fail to be 

cognitively feasible. Were we to apply the suggested methods to the semantics and translation of 

expressions, a more powerful doctrine such as higher-order logic might be preferred. 

6.1.3.5 Production 

The reverse process, of graphically expressing a semantic idea, is not normally a direct 

calculation, but requires a search and selection of a pleasing layout. If it is hard to find any layout 

that works, the notation is impractical. To implement the passage from Sm to Gr efficiently, such 

searches could be guided by informal rules - for instance, extra constructions on Sm that specify 

favoured arrangements of items in lower layers. Further consideration of computational methods 

and their efficiency is outside our scope. 

6.1.4 The Pictorial Design of Notation 

So far this research has given very little attention to the pictorial nature of expressions, except 

rather abstractly in the notion of a graphic layer of syntax (§4.5.1). The discussion of this last 

aspect of design purposes to clarify the notion of a drawn symbol, and to observe what kind of 

formal descriptions are called for. How can we specify the appearance of a drawn expression? 

Let us for a moment picture a notation as a 'semiotic house' bounded above and below by roof and 

foundation. The tectonic sketch then describes the interior, while the roof is the subject domain 

and the ground is the physical nature of the chosen graphical medium. These two boundaries 

touch the outer world, where description is independent of the notation. 

We look briefly here at some questions about the lower boundary or 'ground' - regarding the 

3- subject to a proper analysis of complexity, which has not been carried out In this work. 

41n a higher-order doctrine, an aKponendal rule, for example, could construct the set of all subsets of a set or the set of all 

functions between two sets. 
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designing of a pictorial realization for syntax. We ask how visual analogies can map explicit 

syntactic patterns into the implicit combinatoric geometry of the medium, as in spatial sequences 

and hierarchies. We seek adequate theories to support design of drawings, covering three 

different domains, two of which lie beyond semiotic bounds. For formally specifying the pictorial 

appearance of expressions we must know how drawings may be perceived and recognized. In 

order to produce or read drawings automatically, we need to know how they can be represented 

geometrically and computationally. 

6.1.4.1 Embodying Syntax in Drawings 

The contention here is that syntax is realized in an interaction between chosen properties of the 

pictorial medium plus further structural constraints applied to drawings. Descriptions of this 

interaction are essential for any claim that a drawing can become a precise portrayal. Ideally a 

designer should be able to prove absence of pictorial ambiguity, guaranteeing that viewers cannot 

be misled into deducing unintended properties - as in the failure of Euclidean geometric diagrams 

to support formal proofs. 

F-I 

Figure 6.6 Two other ways of drawing a forest 

There are many ways to endow a syntactic structure with a picture as body. Consider for example 

'tree-like' structures (ignoring labelling of nodes) as in JSD. These can be drawn as node-and- 

branch arrangements such as [fig 5.24] in (§5.3.2), nested enclosures, or indented horizontal lines 

[fig 6.6]. Suppose for instance a diagram consists of a set of drawn rectangles that by convention 

may not overlap. The geometric relation of inclusion then enforces the syntactic relation of a 

branching hierarchy; thus the syntax is embodied by means of a conventional explicit constraint 

defined in the graphical layer of semiosis, together with constraints that are implicit in all drawings. 

The drawn form of the expression also satisfies many stylistic constraints that have no bearing on 

syntax. In the example, any non-intersecting closed curve would serve; rectangles are chosen 

since they are visually simple. 
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This kind of geometric analogy leads to economies in the notation, reducing the need for drawn 

linkages and expediting the learning of its significant features. In (§4.3) the structural analogy in 

the embodiment of semantics was referred to as a form of iconic mechanism. This is only the 

case when the salient graphical properties are easily recognized, owing to habits of perception or 

prior experience. The appropriate analogy may be indicated by a familiar cue -a visual 

metaphor. 

6.1.4.2 Pictorial Theories 

We saw in Chapter 4 (§4.3) that diagrams can call upon a wide range of principle of visual 

distinctions and oppositions in their expressive mechanisms. The design of these mechanisms 

requires an understanding of diagrams as pictures; for practical and computational purposes, it is 

necessary to formalize the pictorial properties. This study lies outside of the notational sign- 

system, but rather belongs to a general scientific perspective, whose laws are not restricted to 

simple logical doctrines. Inasmuch as diagrams are physical and cognitive objects, they can only 

approximately conform to any given theoretical design. 

Some disagreement was noted in Chapter 3 (§3.2.2) about how much pictorial structure should be 

included in syntactic description. Several attempts at using spatial theories were found to suffer 

from a lack of grounding in both geometric and perceptual laws. Oliver Lemon (1996) reasoned 

for the requirement that a proper spatial theory should not admit models that cannot be embedded 

in a plane. Although this is a valid concern, it is not clear how careful we need to be in our 

axiornatization. Failure of planarity may be no worse than failure to fit the screen, but the logic 

would become over-complex if we insisted that only drawings within a given size and resolution be 

accepted. 

Owing to the restrictions of the display medium (resolution and size of page), it is not easy to 

determine the class of syntactic-expressions which can in fact be drawn. Production of 

expressions entails a packing problem -a potentially complex search for a configuration that 

satisfies many geometric constraints. With theory we can reduce but not eliminate the need for 

trial and error. 

Accordingly it is here proposed to divide the problem of pictorial theorization into several parts. 

Firstly there is the theory Gr that is specific to a notation - this is intended to rest upon the lower 
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boundary of the serniotic system. Below this lies a general theory of drawings as perceived 

objects. Then for processing we also need a theory of drawings as computational objects - and 

strictly, a theory of computer displays. None of these areas are well enough understood to yield an 

established standard theory, and they will not be examined here beyond the following brief 

comments. 

6.1.4.3The Graphical Theory 

The lowest semlotic layer of a given notation is described by a sketch such as Grin [fig 6.4], that 

specifies the most basic 'graphical' items and direct relations that make up expressions - e. g. the 

parts out of which lexemes are built. To fulfil this, Gr must encode relevant geometric properties, 

but without recourse to complex quantitative notions and topology. For example, a rectangular 

'box' might be defined in terms of the incidences of its horizontal and vertical sides, and an arrow 

may consist of a constrained chain of straight segments joining head to tail. 

Arbitrary models of Gr are abstract pictures in the style of notated expressions; they need not 

contain any significant patterns. Those models that are syntactically well-formed will be drawings 

of arrangements of lexical items. Different models of Gr that correspond to the same lexical 

combination should be recognizable as the 'same' expression. 

6.1.4.4 Specifying Drawings as Perceived Objects 

A model of Grcan hardly be called a drawing. In order for the design of a notation to take account 

of perceptual, cognitive and ergonomic criteria in its layout, we would need a psycho-physical 

theory of pictures in terms of universal items, valid for all notations. For a theory that can 

adequately explain visual analogy, we would need a general sketch of the pictorial medium, which 

could highlight analogies by matching of subsketches or derived subsketches. Building a theory of 

drawings is unfortunately a difficult problem. 

An elementary theory of drawings might be devised by considering the normal capacities of 

human vision and perceptual gestaft-formation. This theory should be compatible with classical 

geometry, perhaps based on a qualitative approach, with concepts of association between 

elements derived from gestalt theories of perception (Palmer 1992). The appropriate description 

of the geometry should be determined from perceptual cognition and actions such as the control of 

focal attention. Viewers can follow the connectivity of lines and closure of curves, and establish 
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separation of regions - but only for a restricted range of shapes. They can match recognized 

shapes occurring at different locations, as with known words in a text - which Is a good criterion to 

determine whether an item can function as a lexeme. 

Perceived geometry is not simply Euclidean 21), since the eye/brain responds strongly to depth 

and motion cues - as evidenced by many optical illusions (Kellman & Shipley 1991). Some 

notations exploit 3D notions that are constructed by the perceptual mechanisms; examples of this 

are the use of perspective transformations and the overlapping of items, with transparent or 

opaque features. Other salient geometrical features of shapes are: symmetry (see Appendix A), 

orientation, size and scale. 

Geometry is only part of the problem. Although the shape of a character or other individual or 

discriminated mark may be definable via plane geometry, other attributes such as Colour, Texture, 

Pattern and Style take the variations outside of the domain of simple geometric theory. An 

understanding of the actions of drawing might also contribute to pi6torial theory; the viewer of an 

expression may take account of how it was drawn, as well as what the result looks like. 

6.1.4.5 Drawings as Computational Objects 

For purposes of implementing graphical operations in a computer, we need to define an ideal data 

structure based on plane geometric concepts such as Points, Line-Segments and Regions. A 

geometric embedding of Gr must define its entities and maps as geometrical shapes, attributes of 

shapes and adjacency relations, etc. Standardization in computer graphics makes this a much 

more manageable task than the previous. 

One way in which a computer-gene rated expression differs from a hand-drawing is that layout of 

elements can be modified by direct manipulation instead of re-drawing. If a viewer can re-format 

expressions, there may be the further benefit of reducing perceptual conflicts and ambiguities that 

might arise through poor layout. 

Direct manipulation can be supported by a dynamic view of graphical geometry, following an 

analogy with mechanical linkage. A system of points and lines can be treated as a linked structure 

whose freedom of movement (and deformation) is restricted by arithmetical constraints. This is a 

practical solution which will be applied in the next chapter. 
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6.2 Computer-Aided Editing 

In the light of the above methods, we now look in more detail at notational operations, taking the 

broad requirements of an editor system as motivation. The section discusses editing functions 

and the making of changes in theoretical terms. After exploring the properties of rewrite-rules on 

syntactic forms, the discussion points to the problems of applying rewriting techniques to editing, 

and suggests solutions. For several reasons, we discover a need for extra 'editorial' syntactic 

structure in order to make this feasible. 

Although editing is not the only activity that calls for notation processing, it covers a wide range of 

operations of interest to us. Other important global operations such as translation and layout 

algorithms lie outside of the remit of this research. 

6.2.1 The Demands of Editing 

The practical tasks of editing have been mentioned in Chapter 3 (§3.3.1). The investigation here 

begins with an attempt to clarify the nature of the tasks and to find what processing is entailed. 

The analysis classifies the kinds of change that occur during editing of an expression and 

considers ways of managing both overt change and its hidden effects. 

6.2.1.1 Making Changes 

Editing involves changing the data of a displayed expression somehow; under this heading we can 

include tasks of creating, modifying, formatting and also translating expressions. Each task 

requires the control of changes to be carried out on expressions, whether directed by programs or 

by user actions. The conventional way of carrying out these tasks would be by drawing and re- 

drawing; in a computer-aided setting the system might automatically check or interpret the 

resulting drawings. With computer support much more is normally expected. An user can 

manipulate not just the graphical layer, but also the higher levels of structure which change the 

display less directly. In this case the computer takes on part of the task of producing the 

expression, as well as part of the interpreting. Editing is thus a collaboration between user and 

system, with the aim of regulating changes to information expressed. 

Regulated changes can be divided into two kinds: those that can affect (formal) meaning, and 

those intended to preserve it. Creating and modifying cause changes of the first kind - they do not 
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necessarily maintain well-formedness at all levels. Translation and-formatting changes are of the 

second - they affect lower layers of structure while leaving certain upper layers invariant. 

0 Creating an expression involves a supply of information, moving from an Incomplete form 
to a fully well-formed form. 

Modifying a complete expression may require both removal and supply of information, or 
the joining of incomplete parts. 

Formatting involves the adjustment of graphical layout without affecting upper syntactic 
layers or formal meaning - either carried out for aesthetic purposes or to express further 
informal information, such as emphasis. Adjusting layout may also help a viewer to 

comprehend a displayed expression. 

TransWion is an automated process in which an expression supplied in another notation is 

converted to the one being edited. 

In each of these four tasks we would like to understand what the user is doing and how the 

computer system ideally responds. 

In creating an expression, the focus is upon helping the user express ideas both formally and 

informally, by providing ways to add information. The user may be enabled to draw graphical 

marks directly, to select and place lexemes, or to choose syntactic arrangements ("tagmemes"). 

In each case the changes made are partially interpreted (by the system) into higher levels and also 

expressed in lower levels - and displayed on screen. A computer system would therefore need to 

store and coordinate data for all layers. 

In other editing tasks, changes can be grouped according to the structural level that remains 

invariant -a flexible notation design will allow changes that are limited to a given layer and those 

below. Thus manipulation of graphical format will make no difference to lexical, syntactic and 

semantic data. Replacement of a lexeme by a synonym will not affect syntax and semantics. 

Rearranging a syntagmatic construction need not alter the meaning. These constrained editing 

options are supported by structuring the notation design into explicit layers. 

Computed interpretation of a drawing takes place in (nominally) three steps. There is recognition 

of lexemes, parsing of syntagmatic patterns, and computing an abstract data-structure. Each step 

involves finding possible compound entities implied by the combination of items already found, 

and testing of the results against goal constraints. Where the test fails, 'backtracking' occurs - 

different groupings are tried until the goal can satisfied. If this search fails, the user may be 
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informed. A strategy for this search may be specified by a grammar. In designing a notation it is 

thus advantageous to rely more on constraining lower layers, by "moving" the semantic constraints 

down to the graphical layer, so that anomalous forms are rejected as early as possible in the 

interpretive process. 

6.2.1.2 Methods of Managing Change 

Making changes to an expression can therefore be a complex affair. We take it that a graphical 

editor system should help the user to control changes in content, form and layout of created 

expressions. In Chapter 3 (§3.3.1,3.4.3) we noted two issues that are often raised in this respect: 

provision of syntax-guidance and direct manipulation of visible items. There we envisaged many 

ways of incorporating such facilities, ranging from direct manipulation of syntax (via a menu of 

transformation rules), to pen-based editing (e. g. free-drawing of changes over the displayed 

expression). 

Free drawing would entail recognition as well as parsing computations. Operating on lexical and 

tagmatic patterns could avoid parsing problems and guarantee that applying rules would preserve 

syntactic correctness. It would, however, be dependent on establishing a complete and useful set 

of rules. We have seen that the strategy of specifying rewrite-rules to guarantee that syntax 

remain correct (if possible) is generally too restrictive. 

Here we aim to negotiate a path between the extremes of freedom and restraint in editing. The 

model-theoretic method proposes to allow rewrite-rules to be flexibly devised and co-ordinated 

with the given syntactic constraints. These constraints can be seen as goals to be achieved - as 

in a text editor that accepts any entered text, relying on the user's knowledge of the language, 

while offering spelling and grammar checks at certain stages. The maintaining of syntactic 

correctness is then a matter of re-satisfying constraints that have been disturbed as a result of 

some local change made to the expression. A very lax approach to editing would permit the user 

to add, delete and rearrange items from any layer. 

Immediate visual feedback is an important guide. Geometric properties may restrict change or at 

least act as a cue to the required constraints - such kinematic metaphors were remarked upon in 

Chapters 2 and 4 (§2.1.3,4.4.2). Where syntax is not simply related to geometry, an offered 

repertoire of rewrite-rules may give welcome guidance for a less expert user. 
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6.2.1.3 Hidden Layers 

Arguably, it is the lexical layer that often dominates the notator's attention during editing - in the 

same way that writers may concern themselves mostly with finding the right words. From the 

writer's perspective, syntagmatic and semantic data are, as it were, hidden above the visible 

drawing. On the other hand, the primitive graphical items on display are hidden below the lexical 

items recognized. Writers often do not consciously control the flow of meaning and syntax, nor 

are they usually paying attention to the detailed shape of words and type-faces used in printing. 

They are likely to be 'searching for a way of saying it' rather than searching for a meaning to 

express, or a grammatical way of generating an expression, or a geometric way to draw it. 

Continuing this analogy, we see that when words are changed, the 'overhead' syntax and meaning 

as understood by the writer must follow suit; whilst the direct 'underlying' activity of shaping the 

new words is either habitual or mechanized. Typewriting and handwriting suggest two means of 

aiding the drawing of expressions. Either the editor system supplies ready-made lexical 

primitives, or it enables mark-making, in the case where the notator possesses specific drawing 

skills. If a lexical change is made, perhaps as permitted by an implicit rule, the other hidden layers 

of the expression are filled in by a transductive process - which will succeed when all constraints 

can be satisfied. In this way the user's attention is only diverted to another level when induced 

structure fails to meet some constraint. 

6.2.1.4 Problems of Part-Formed Forms 

During editing we thus expect some syntactic constraints to be broken. If the changes to an 

expression preserve full semantic well-formedness, the edited expression may successively 

approach the intended meaning. If they are only part-formed, the intermediate forms may acquire 

ill-defined meanings. Semantically, the goal becomes the achievement of a coherent meaning, 

being the one that was intended. 5 

Naive operations that simply delete or add a single lexemic or graphemic symbol are likely to 

break incidence properties as well - e. g. leaving 'dangling' arcs on a graph when a node is 

deleted. We should at least ensure that the changes preserve the more visible bonds. The 

51n some cases, incoherence may be Interpretable as less-definite meanings. This may provide an opportunity to develop an 

extended semantics that allows a certain vagueness and ambiguity. 
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propagation of a change may cause temporary breaking of hidden bonds, but restorative action 

should be automatic. An editor system must check the result of a change for conformance to 

(hidden) syntax, and report any failure to restore conformity. 

6.2.1.5 Semantic Input 

Where several notations are in use, we could allow for input in other modalities - an expression in 

a different syntax or medium (e. g. gesture), or information from unexpressed context. The editor 

system would then translate the inserted input and incorporate it into the layout. 

6.2.2 Editing in a Sketched Syntax 

We now explore how the theoretical framework of tectonic sketches can explain processes of 

change that occur as a result of edit-actions. In considering how one might design a versatile 

editor, we examine goals of editing, maintenance of constraints on expressions, instantiation of 

sketches to make models, and the role of grammars. 

6.2.2.1 Some Suggestions on Control of Editing 

The above arguments suggest the following summarized account of the processes underlying an 

editing session. 

(1) Goals: The procedure of editing is one of building and rebuilding a partial expression, with the 

goal of obtaining a model that satisfies all required constraints. The response of an editor to a 

local change prompted by the user causes new information to be propagated upwards and 

downwards through the layers, as specified in the network of maps and constraints. Where 

constraints are broken, all maps dependent upon them will become uncertain. One formal 

goal of the session is to repair all such 'damage'; there are also informal goals. The output 

from a completed editing session is a well-formed form: an expression well-defined in all 

tectonic layers. 

(2) Context: If the session is conditioned by pragmatic structure, the resulting form may be further 

constrained by a specification of the context which will contain the expression. This may be 

either a type of situation or details of an actual instance of this type - such as an existing 

document. 

(3) Focus: The editorial protocol should enable the user to initiate changes on different levels of 
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structure, although only the lowest graphical level is visible in a direct sense. It should mostly 

engage the user in emplacing and arranging lexical items. The focus for formatting is 

graphical. 

(4) Fixed substructure: An instantiated area of the sketch may be "held constant* in order to 

restrict the editing session - protecting information encoded in certain layers. For example, 

formatting preserves data of upper tectonic layers; documentary context may be fixed, as in 

(2). 

(5) Translated Input: To translate an input expression, the system must interpret it and re- 

produce it into the target-notation's form. The input need only be partially interpreted to some 

least abstract (semantic) level in order to make the conversion. In a known (instantiated) 

context, a similar operation may serve to give a change of view on a situation. In this case, 

the change may Introduce extra contextual information. 

(6) Layout criteria: When the computer system is required to produce expressions, it must apply 

chosen criteria for automatic layout. This can be user-assisted via the formatting protocol. 

(7) Prompting change: Rewrite rules are one possible means of effecting a local change as 

directed by the user. The rules available to users have several purposes. Some are chosen 

to preserve certain constraints - 'strict' rules preserve more, 'lax' rules fewer. Others are 

designed to restore constraints that are commonly broken. 

(8) Editorial syntax: Editing may necessitate the use of supplementary syntax - acting as a 

supportive frame for drawing incomplete expressions. 

6.2.2.2 Maintaining Syntactic Conformity 

The critical principle for control of editing is to decide which kinds of structural restriction are to be 

maintained during changes. We gain assistance in this from the items that make up a sketch, 

which fall into three different strengths. The strongest structural sketch-items are the maps which 

denote bonds of incidence. Next come the equalities that constrain the maps, and finally the 

cocones and cones that specify pieces and parts of expressions by their universal properties. 

The proposat is to protect incidence bonding as defined in a signature, but pay less respect to the 

specified syntactic constraints. It appears that this policy can only apply to a chosen segment of 
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syntax that is the user's focus of manipulation. The rest of the syntax then acts as a body of 

hidden restrictions - which have the force of existential quantifiers. We are especially interested 

in the restrictive effect of layers that lie above the editorial segment, and how this effect is 

conveyed in the protocol. Lower layers only cause problems when layout algorithms are 

unsuccessful - when no acceptable drawing can be found. 

Once the editorial segment has been chosen, it remains to determine which of its constraints will 

be respected by the changes that the notator may make - and by each rule governing these 

changes. 

6.2.2.3 Full Expression 

Given a tectonic sketch K, we see that the goal of an editing session is to create a full expression 

(K-model). The starting point will either be "from scratch" or there may be an existing fragment to 

be modified. Creating an expression is thus the process of making a model. In the general case, 

where the context is partly known, editing is a matter of extending an existing model that denotes 

the situations upon which the expression will impinge. A full expression is both interpreted and 

produced. 

The notator accomplishes the making of this K-model by means of a directly manipulable editorial 

syntax that deductively supports the editorial segment (a codex into K). At any stage, the 

manipulated editorial form is a fragmentary expression that is produced and displayed, and may 

be extended by interpretation into a part-formed K-model. To produce an expression, the existing 

abstract editorial encoding of information is rendered into graphical form according to lower layers 

of syntax. 

6.2.2.4The Manufacture of Models 

The problem to be addressed is that of model-making within the editorial syntax, which is assumed 

specified by a sketch Ed. Manufacture can be seen as a progressive instantiation of the full 

syntactic sketch K, with the intention to satisfy formal and informal goals. If m is the resulting Ed- 

expression, we require that it extends to some K-form k that is produced (made visible) and fully 

interpreted in K. Here we consider how m is created. 

Instead of finding rn as an object that satisfies Ed, we can extend Edwith structure that refines the 

definition until all its models are isomorphic to m 
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A model (of Ed in Z) consists of an arranged set of items of various sorts, as defined in the entities of 
Ed. We can treat an item as a global element of its entity -a map from a canonical singleton entity 
One - which may be added to Ed. An item is arranged in an expression by selecting its relations to 
other items as defined by maps in Ed. I'liese relations can be treated as equalities added to Ed, that 
involve the global elements. 6 An entity becomes fully instantiated when it is defined as a disjoint union 
of its global elements. 

There are two ways of going about this instantiation. The first method is the familiar one of 

modifying expressions by adding and removing items. 

The procedure can be illustrated by the simple case in which a notator creates a form by 

successively adding single items. The protocol for these additions can be ascertained from the 

signature of Ed. As the examples of Chapter 5 have shown, all items in an expression serve 

either as nodes or as polyadic 'links' - rather like verbs that relate subject and possibly several 

objects holding different roles. 

In the sketch Ed, each outgoing map from a link-item is a'limb' of the link, denoting a role that 
attaches to a specific sort of item. Nodal items are non-links, having no limbs; a monadic item is 

effectively a member of a set associated with its 'subject! item; a dyadic item is an arc that links a 
'subject'item to an'object'item of specified sorts; and so on. 

Generally, no item may be placed in an expression until holders for each of its roles have been 

selected by the user. For example, on a directed graph, an arc may only be drawn if its source 

and target nodes are known. An isolated node may be added at any point - needing no role- 

holders. Thus an arc may not be drawn until a node is present. 

Adding an item 

The drawing of a graph may start by placing two nodes p and q (say). 

- In the sketch [rig 6.7], this adds distinct maps p, q: One -ý Node. 

To partly instantiate Arc, the notator draws an arc r from node p to node q. 

- This adds a map r: one -+ Arc 

withequalities (r; source = p) and (r; target = q). 

To complete this simple graph of two nodes and one arc, two constraints are added to the sketch. 
Node is forced to be the disjoint sum (one + one) with projections p and q, while Arc is forced to 

be isomorphic to One via map r. 7 

6This construction assumes that our notion of category Is also defined upon Z- its sets (of objects and arrows) are taken to be 

Z-objects. 

7This defines the graph as a data-object giving the cardinal number of items for each entity (two nodes and one arc) and all 

canonical projections. 
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Figure 6.7 

In general, the adding of items follows the hierarchy in the signature of Ed -a pre-order on entities 

- where entity A is "higher" than entity B if there exisits a path from A to B. If there are cycles 

within the signature, there will be different entities that are equivalent in this order, satisfying A :5 

B and B _-ý A (say). It follows that items of A and B must be introduced together. The problems 

of cycles are fu rther discussed below. 

6.2.2.5 Refinement by Grammars 

In the second method of instantiation, Ed is regarded as a maximally vague definition for an 

intended Ed-model m. Hence we refine Ed = Ed(O) via a sequence of sketches Ed(i), by adding 

special maps and equalities that gradually define the intended model. The process ends with a 

sketch Ed(n) = M, that presents all the properties of a particular Ed-model m- from which the 

editor system must build a consistent full K-expression. The sketches Ed(i) are viewed as 

approximate (partly known) models, in which some entities and maps are not fully instantiated. 

Since each Ed(i) is a sketch, it is not notated within K, and therefore the process requires extra 

notation to make the steps visible. This idea leads to the notion of an editorial grammar that 

generates Ed-expressions, using an extended syntax in which non-terminal items denote 

uninstantiated syntactic patterns. Forward rewrite-rules govern how each non-terminal may be 

replaced by a more specific pattern of items. 

We can picture this editorial sequence as a river flowing from a single source, selecting one of 

many possible courses, resulting in a particular destination. As the river spreads, there is less 

certainty about the movement of a particular body of water within it. Whether by'spreading and 

narrowing, or by selecting and meandering, it reaches its destination. Manufacture is not, 

however, a monotonic process; items and information can be removed as well as added. The 

river flows sometimes nearer to, sometimes further from the source, but always downhill, following 

its intentions. 
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6.2.2.6 Sketching a Generative Grammar 

Following this train of thought, we consider how a sketched syntax can act as a grammar, to 

generate or parse an expression in some "visible segment" V of syntax. We observe two ways of 

sketching a grammar. The first is to specify its generated result -a well-formed derivation 

structure that incorporates a visible expression. The second way is to specify its parsing process - 

a whole search for derivations, including the set of successful ones. 

The first way is compatible with that suggested in (§6.1.3). In this case a sketch Dv of a derivation 

corresponds to the upper layers, including V, of a tectonic syntax K. An ambiguous grammar 

would allow many derivations for a given well-formed V-expression. The second way is interesting 

because parsing Is unique even in cases of ambiguity; it makes a sketch Ps for all (partial) 

interpretations of any part-formed V-form being edited. The advantage of this method is that the 

interpreting of a Worm is encoded in Ps as a gene rate-and-f ilter process which can accommodate 

ambiguity and failure. The disadvantage is that the model generated may diverge and generate an 

impractical mass of possibilities. In the general case, parsing may not terminate. 

To obtain a result Dv from a parse-process Ps, it is necessary to instantiate Ps under the 

constraints that force all visible items to be generated by some single derivation of the grammar. 

An example of these methods, applied to a string grammar, is worked out in Appendix B. 

By instantiating a sketch Ps in a top-down direction, it is possible to mimic the effect of simple 

rewritings in the grammar. Working from the bottom up, starting with V instantiated (a drawn V- 

form), the constraints of Ps propagate upwards to give, all possible (partial) derivations. In 

principle, these methods could extend to attribute grammars that are capable of interpreting visible 

expressions. 

6.2.2.7 Propagation of change 

We conclude that changes to a model of Ed initiate a process of change within K-a flow of 

instantiation. Transductive rules can be used to spread the changes from the editorial segment 

Eds to other layers of K. The rules are also strategic, directed towards the goal of finding a full K- 

expression. They separate into two autonomous rule-sets - an upward set of interpretive rules, 

and a downward set of productive rules. Assuming unambiguous syntax, the interpretive rules 

amend a network of canonical extensions to Eds. The productive rules are responsible for making 
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the edited change visible. 

The rules for propagating change are internal to the system and hidden from the user. They 

implement a form of constraint logic programming; executing the program instantiates a computer- 

assisted proof that a model exists to satisfy the current constraints. The methods of applying a 

grammar amount to ways of organizing such proofs, as proposed in Chapter 4 (§4.5.3). The whole 

system of editorial rules implements a kind of collaborative constraint logic engine. 

6.2.3 Rewriting in a Sketched Syntax 

The preceding argument indicates that control of incremental change to a model leads to the idea 

of rewriting. Since general rewriting systems can effect arbitrary computations - as was noted in 

(§3.1.3) - they offer a means of implementing sketch logic, and in principle the various processes 

described in (§6.2.1). Here the theory of such rule-systems is analysed, to investigate how 

rewriting techniques may be encompassed by the proposed logical framework and used to 

implement simple manipulation of forms. 

We see that editing involves a dynamic of structure-breaking and structure-restoring, which must 

be managed somehow. The problem raised is that of organizing local changes to a structure. 

Being just a matter of general computation, we can apply standard techniques and theories. An 

approach such as conventional programming, however, does not promise to shed light on the 

procedures of editing that have been discussed. The object of using a rewriting notion is to get an 

abstract view that is better suited to these processes, while still forming the basis for an 

implementation. 

6.2.3.1 Theoretical Rewriting Processes 

Rewriting systems offer a means of describing systematic change within expressions as the 

parallel application of local replacement operators called rewrite-rules. We take a standard 

definition that is general enough for our purposes. 

The general notion describes 'local' change to objects of some category F. Change is defined by a 

span G <-- D ---> H, where object G changes to H, whilst D indicates the context: the (main) part 

that remains constant. The two F-morphisms are injective. This change is controlled by rewrite- 

rules; each rule is a span that acts as a template for a local change. Applying a rule results in a 
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small change according to the template. 

The following definition is specialized to notational forms, where the morphisms are transforms 

(§6.1.2): - 

0 CD > (3 

Figure 6.8 A double pushout 

A rewrite rule takes the form of a span L +- C -+ R, where L, C and R are structural forms, and 

the arrows denote maps (transforms) that preserve the structure specified in some syntactic signature. 
The form L specifies a pattern which may be replaced wherever it occurs; R specifies its replacement; 

the interface C maintains attachments to the context. The patterns involved are concretely specified. 

A (DPO) rewriting operation causes a change denoted by G +- D -ý H, where form G becomes 

form H, with a constant context of form D. This change is afforded by the above rule whenever the 

double-pushout diagram [fig 6.8] is satisfied; it states that G is formed by joining L to D at the interface 

C, while His formed byjoiningR toD at C. Usually there is a further requirement that certain maps 

are injective - otherwise the rule may permit fusing and splitting of items. 

Executing a rule on an expression involves several steps; the operation is a deletion coordinated 

with an addition. Firstly, a search is made in the expression for an instance of the pattern detailed 

in L, that is connected to its context as defined by the map C to L Secondly, those items in the 

instance that are not maintained by C are deleted. Thirdly, a new pattern of shape R is attached 

via Q as detailed in the map C to R. 

A change resulting from several successive local changes is also local. Thus we can compose 

changes, and thereby build a compound rule from the result of several successive applications of 

rules. Richard Banach's (1996) analysis of DPO rewriting on graphs, mentioned in (§3.1.3), could 

equally be applied to the graphoid forms assumed here: - 

Rewriting system behaviour 

Abstract rewritings take place on a skeletal category of graphs - i. e. one in which isomorphic graphs 

are considered as the same. Rewriting generates a category whose arrows are sequences of canonical 

rewritings; they allow a natural abstract explanation of a rewriting system's behaviour, via event 

structures with conflict (Winskel 1988). The construction of this category is somewhat awkward; in 

certain circumstances, automorphisms on graphs may force apparently independent rewrite-events to 

become causally dependent. 
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6.2.3.2 Sketches of Rewriting 

Both the Span and DPO diagrams are in fact sketches, whose models are in the medium F that is 

some category of forms. In general: - 

A category 5 of expressions defined as codices (S --> Z) can - by cartesian closure of A- be 

represented as a sketch ZAS . Given a sketch D, its models in medium S comprise a category of 

codices D -4 (ZAS) which is then isomorphic to the category of codices DXS --- ý Z. 
In other words, D-models in S are equivalent to (D x S)-expressions. 

It is thus easy to encode both a change and a DPO rule as expressions in medium Z If the 

category F of forms consists of models of a sketch S (S-expressions), then a local change is a 

model of (Span x S), and a rewriting is a model of (DPO x S). A calculation of products of 

sketches thus allows us to represent in diagrams the changes, rules and rewritings on a given 

syntax - in a natural way. Properties of changes and rewriting can be investigated by making 

deductions on these product sketches. (An approach similar to this is used in Appendix C). 

IC IR 
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Figure 6.9 Adding an arc to a graph 

6.2.3.3Aftaching an item 

To illustrate, we look at the simple case of a rule that adds a single item to an expression - for 

example, adding an arc to a directed graph. Here the context is the whole graph G; the single 

pushout on the right is all that need be specified. The graph R will be the arc to be added, which 

must be accompanied by its source and target nodes. These two nodes are not added - they are 

the interface C which selects the location in G for the arc. 

In category-theoretic terms, the item (an arc) is being represented by a graph (R) and a morphism. that 

selects the location of an arc in the result H. This is a case of the Yoneda construction; it allows any 
item of a form H to be represented by some morphism to H- which was part of the motivation for 

choosing graphoid structure for forms in (§4.4.3). 
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The diagram [fig 6.9] shows the operation. The nodes of C are labelled '1' and 7 to define the 

map (graph homomorphism) from C to R. The other maps are clear from the context. 

6.2.3.4 The Problem of Cycles 

Although we can always write rules for adding and deleting items, there Is a difficulty with the 

DPO approach: there are many instances where adding a single item requires an infinite rule. 

For example, let us take the case of a looped signature: (f :N -ý N) - there is just one entity N 

and one map f. The loop in this sketch leads to cycles in its models. A form on this signature 

might for instance be a cycle diagram 0 of *nodes" (N-items), each mapped by f onto its clockwise 

neighbour. A form M representing a node is found (by the Yoneda construction) to be a semi- 

infinite chain of nodes; the morphism that selects a node in the cycle 0 will, in effect, wrap the 

chain M around 0 ad infiniturn. 

Even if we somehow accept such infinite rules, the simple operation of adding items does not 

suffice to generate all forms. When adding a new node to 0, it will attach outside the cycle. The 

pushout rule that adds a single node is of no use for enlarging a cycle. It seems we require an 

infinite set of rules, one for each size of cycle. 

6.2.3.5Transductive Rewriting 

We wish to support the tasks of interpretation, production, translation, and the propagation of 

information which entail change from a form in one signature to a form in another. However, rules 

for changing forms by rewriting apply only within the same signature. Although in principle these 

facilities might also be implemented by means of a rewrite-system, its rules would manipulate a 

data structure more basic than that of the syntax - such as the labelled directed graph 'proto- 

notation' of (§5.4.1). In encoding rules as sketches and implementing sketches by rules, we fall 

prey to infinite regression. Accordingly, these questions will not be investigated here. 

6.2.4 Editing by Rewriting 

This final subsection synthesizes the ideas presented and explores a method of devising 

supportive structure for editing some target-notation. 
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6.2.4.1 Designing Rewrite-Rules for Editors 

Although the behaviour of general rewriting systems is complex, we fortunately need only 

consider kinds of rule and rule-system that are appropriate to the tasks at hand. The preceding 

discussion in this section leads us to the following methods. 

To apply rewriting to a notation editor, we must choose a workspace: a suitable category of 

rewritable finite forms - within the bounds of a logical specification of invariant properties and 

attainable goals. This must be a concrete category in which sufficient pushouts exist to apply the 

rules. The category need not be co-complete, nor have all pushouts, nor even all those that are 

mentioned in a rule-set. Because the rules refer to fragments of expressions, the workspace will 

contain forms that are part-formed from the viewpoint of the full notation syntax. 

According to the previous reasoning, we need to select a syntactic focus for editing: a segment 

Eds -ý K of the full tectonic syntax K. Rewrite-rules are devised for a specially designed 

editorial syntax Ed, from which Eds is derived via codiceS Ed +- Edd =* Eds. The sketch Edd 

excludes any Ed items that are not salient to the notation. Edited Ed-forms may introduce 

temporary items purely for construction purposes - visible place-holders waiting to be filled by 

more detailed information - in the same way as non-terminal symbols are treated in grammars. 

Editing has a goal of removing these items, which must be absent from a complete expression. 

We may choose to edit by rewriting on lEdl, the category of graphoid Ed-forms. This category has 

all the pushouts needed, but only protects incidence bonds and may be too lax to serve as a good 

workspace. In between LEdl and its constrained subcategory Ed lie a range of partly-constrained 

categories. To design rules for editing, it is pertinent to discover what pushouts exist for these 

potential workspaces. Category Theory gives some general results on this - for instance, if we 

enforce only the equalities of the sketch Ed, all pushouts will still be found. 

We want a generative rule-set to be complete with respect to a notation - capable of generating 

every Ed-expression; this can be achieved by means of add- and delete-rules for each sort of 

item. The rule-set need not be sound, in the sense that not all generated forms need be well- 

formed in Ed- and not all Ed-expressions need give rise to consistent K-expressions. Should we 

wish to preserve some stricter part of Ed-syntax during rewriting, we could seek rules in which a 

well-formed G would always give rise to a well-formed H (referring to [fig 6.8]). For instance, in a 

string grammar, string rewrites preserve the string-structure, even though the interface C for any 
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rule is not a string: it is typically a pair of nodes between which the substituted string sits. 

6.2.4.2 Adding Branches to Trees 

As a small example we can analyse rewriting on trees, following the definitions in (§5.3.2). 

Let the schema [fig 5.251 specify a sketch FForest for a forest of trees. The underlying directed graph 

of a forest will suffice as both editorial segment and syntax, with the sketch Graph defined as in schema 
[fig 5.2] . Ile embedding codex Graph -4 FForest then has two effects; it allows the set of trees to be 

constructed from the arrangement of nodes and arcs, and it also constrains the graphs to be well-formed 

trees. 

Informally, it can be seen that if we start with an empty graph, two rules will generate all finite 

graphs: - 

R I: add an isolated node 
R2: link two nodes with an arc 

We seek a set of rules that will only 'grow' forests. A third rule can provide a safe way of growing 

a branch on a tree: - 

R3: add to some node a "branch" consisting of an arc and a new target node 

Now all three rules are pushout rules over the category of graphs, and R1 and R3 preserve the 

properties of forests. 8 

Let G be a forest -a model of FForest. Then applying RI to G will simply add another tree - or rather 

plant a seed for one. Clearly R2 may result in a graph that is not a forest, when applied to G, but R3 

will always result in a forest. 

The logic of adding branches to trees is worked out in Appendix C.. We would also wish to prove 

that R1 and R3 can generate all finite forests from an empty forest. 

Since the reverse of each rule serves to carry out the corresponding deletions, we can in this way 

provide a simple rule-set capable of editing forests, with a subset that maintains syntactic 

correctness. 

6.2.4.3 Applying a Rewrite-Rule 

When a rule is applied during editing, the search may be carried out by the user, with computer 

assistance in finding and indicating instances of the pattern L of [fig 6.8]. Since they are defined 

8AII the graphs in the pushouts are forests, but the graph-morphisms need not be forest morphisms. The latter must preserve 

trees and base nodes. 
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on the signature lEdl, rewritings preserve editorial incidence, but may not always take note of Ed- 

constraints. Each rule may be designed to maintain certain constraints, while treating others as 

goals to be achieved. The constraints to be preserved should include those that-are consonant 

with the pictorial realization, otherwise it may not always be possible to display the result in the 

notation's graphics. 

A rewrite-application makes a change to certain functions denoted by maps in the syntactic sketch 

K. When these changes are propagated up through the layers of K, the system might warn the 

user of any constraint-breaking that results 7 indicating areas where further modification could 

achieve correct syntax. These procedures raise issues of editorial protocol which are not of 

concern here. 

6.2.4.4 Removing Cycles 

We saw above that problems in defining rewrite-rules can arise if the signature lEdsl has cycles, 

as is common. This circumstance is remedied by devising Ed so as to avoid the cycles, by 

relaxing certain incidence bonds into universal constraints. An example shows that cycles can be 

removed with little trouble. 

We take the example of a looped sketch, that was considered in the preceding subsection. 

--> ->-->7 

Q 
Figure 6.10 Function on states of a system 

[Fig 6.10] shows a diagram D, whose arcs represent states of a system which is subject to a function. 

7be diagram represents a set of states and their accessibility by the function; it also shows that there are 

two fixpoints where the state is unchanged by the function, and three subsets of states that indicate 

invariant properties under the function (Jay 1991). The sketch for this semantics is based upon a singe 

entity State with a single looping map move: State -+ State. 

We can represent the semantics Sm by a schema: 
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(ý 3ý1 ! fix (ý State E) > Inv ii E) 

which shows how the fixpoints and invariants are constructed. 

The diagram [fig 6.10] suggests a syntax in which states are represented by the arrows of D. In 

order to manipulate these arrows individually, we need to find a diagram Arr that corresponds to 

an arrow, which we can map into D. We can then select any arrow with some morphism a: Arr 

D. As was noted above, Arris the semi-infinite diagram: - 

Inspecting D, we see that any arrow and its successors take the shape of a tail of length m followed by a 

cycle length n. In order to be able to delete any arrow in D, we are forced to have an infinite supply of 

diagrams Arr(m, n) to cope with every possible size of cycle and tail. 

The solution is to choose as editorial syntax a directed graph whose nodes are the feet of the arcs. 

We take the schema for Ed to be as in [fig 5.2]. 

The schema [fig 6.11] relates Ed to Sm. The constraints specify an isomorphism between arcs and 

states, and state that the function move corresponds to the target map of the graph, via the source map. 
This source is constrained so that each node is a source, of at most one arc. This ensures that there is a 
bijection between arcs and nodes (in all models); source has an inverse that can be constructed by 

internal logic. 

tate 
State ! ýZ 

, move 

:> tarqet 

source 

move 

source 

target 

Figure 6.11 Semantic-editorial sketch for function diagrams 

The isomorphism between Arc and State is easily maintained during editing, by permitting no arc 

to be added without its accompanying node. Only two rules are needed to allow any (Sm-)well- 

formed graph to be generated. 

6.2.4.5 An Editorial Framework 

It follows that support for editing requires the design of an hierarchical (acyclic) sketch - defining a 

more flexible, partial notation with a relaxed and extended syntax that is amenable to edit 

operations - whose expressions can be transduced into the target-notation. This editorial syntax 

should ensure that full expressions can be built up in a simple manner by means of rewritings and 

constraint goals. 
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6.3 Summaries 

Here we recall the themes that have surfaced in this chapter, and end with an account of the 

approach to editing. 

6.3.1 Themes and Topics 

This chapter has explored various ways of developing the proposed tectonic theory, in support of 

notational design and computer-assisted editing. Three themes have been followed: - 

a An encoding of serniological structure underlies all processing of expressions in a 
designed notation. 

The producing and the interpreting of expressions requires a "transductive" capability, to 

convert information between semantic and graphic forms. 

Mechanisms for reasoning about syntax also offer support for regulating change to 

expressions. 

6.3.1.1 Deduction and Interpretation 

Logical support needed for these processes has been supplied in terms of doctrines, sketches, 

theories and models. On this basis, notions of a codex between sketches, and a transform 

between expressions have been defined. Exact interpretation relates notation semantics to a 

deductive extension of its graphics. The effort needed to interpret an expression is related to the 

power of the logical doctrine defining the deduction. 

A mathematical "graph-based logic" has been applied that defines a notion of formal 

theory, independent of any particular presentation, in which deduction follows algebraic 

procedures. 

0 Deduction on sketches broadly simulates the 'cognitive effort' in an interpretive process. 

6.3.1.2Tectonic Design 

A method of notation design has been outlined. This is achieved by building a tectonic sketch, 

whether for a single notation or for a community of notations with a common focus. A further 

meta-schematic notation helps depict deduction, analogy and embedding between segments and 

layers: - 

0A tectonic sketch is a modular system of sketches defining a layered syntax for each 

notation, which may include semantic and pragmatic constraints. 

0 Meta-schemas are diagrams for the logical design of codices and sketches in tectonics. 
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6.3.1.3 Drawings and Pictures 

The graphical layer of expression syntax represents only an abstract notion of a picture, that must 

be embodied in a physical medium. The chapter has noted a need for two general pictorial 

theories. One would provide a computational data structure based on plane geometric concepts, 

to support direct manipulation of a visual display. The other would be a psycho-physical theory of 

drawings, to provide a basis for defining spatial and other graphical analogies. 

" The pictorial realm of a notation involves an interaction between chosen salient properties 

of drawings and added conventions of syntactic constraint. 

" Spatial analogy leads to economies in the notation, with fewer conventions needed. 

" The salience of graphical properties is affected by perceptual and conceptual habits, and 
is not purely a matter of geometry. 

A theory of drawings could test for pictorial ambiguity and solve "packing problems" in 

expression layout. 

6.3.1.4 Editing 

The support needed for editing tasks has been explored, with a view to letting the user decide the 

degree of freedom and restraint in an editing session. A theoretical view of the editing process, 

as model-making within a sketched editorial syntax, has been suggested. : - 

0 Editing involves changing the stored data that results in a displayed graphical form, 

including forms that only partially obey the intended syntax. 

Editing allows the supply and removal of items, with the goal of obtaining a well-formed 

form: one satisfying all the syntactic constraints required of an expression. 

Editing involves the breaking and restoring of structural constraints. Selected structural 

restrictions may be maintained during changes. 

Information of a change may propagate upwards and downwards through the syntactic 

layers, to update both interpretation and display. 

Formatting allows graphical adjustment in search of a desired layout. 

Creating an expression can be viewed as the procedure of Instantiating a sketch; editing modifies 

an instantiation. In this view, a sketch is itself regarded as an unformed pre-expression. During 

editing, the sketch is extended and refined by instantiation, adding constants to represent items, 

and equalities to bind them together. 
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6.3.1.5 Rewriting 

Rewrite-rule systems have been examined as ways of controlling editing. Editorial rewriting 

requires to be carried out in a specialized syntax separate from that of the notation, so that 

rewriting can cover sufficiently general operations on the part-formed forms. 

0 Sketches allow us to diagram the changes, rules and rewritings on a given syntax. 

0 An editorial sketch can act as a grammar for generating and parsing, by specifying a 

gene rate-and-fi Iter process - thereby accommodating ambiguity and failure. 

To edit by rewriting requires the design of an editorial syntax defined by an hierarchical 

sketch. Editorial syntax should be consonant with the notation's pictorial realization. The 

rule-set must be complete: able to generate all well-formed forms. 

6.3.1.6 Propagation 

Editorial actions initiate a flow of change within the whole instantiated tectonic sketch. 

Rewriting has been examined as a way of implementing deduction in sketches. Interpretive and 

generative grammars are understood as providing proof-search strategies. In order to propagate 

editorial changes efficiently, incremental rewriting is suggested: - 

Rewriting can describe 'local' incremental change to objects of a category. A rewriting 

system's behaviour permits concurrent propagation of change. 

Propagative rules implement a kind of collaborative constraint logic engine. Rules attempt 
to re-satisfy constraints disturbed as a result of local change, by rewriting the basic data 

structure of syntactic sketches. 

6.3.2 Summary of the Editorial Process 

With this chapter we come to the end of the theoretical part of the thesis. The above discussion 

and examples of the second section indicate a certain method of supporting editing, which is 

summarized here in preparation for the next chapter, where development of an editor is discussed. 

6.3.2.1 Editorial Rewriting 

In the envisaged editing method, the editor system affords control by means of an expandable set 

of rewriting rules. These editorial rules govern direct changes to a particular segment of the 

syntactic structure that is 'graphically accessible' - its items are easy for an user to locate and 

manipulate. This segment is defined by an 'editorial syntax', acting as a supportive frame, that is 

tied into the tectonics at several levels and which extends the notation to permit part-formed forms 
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(Pff). 

These part-formed expressions are commonly focused on the lexical layer of notation syntax, but 

may extend to upper layers in a more grammatical or semantic approach, or to lower layers in a 

graphical approach. Rules that govern rewriting may be combined or reconstructed without 

affecting the notation. A single rule controls a very limited kind of change - it defines the exact 

pattern of items involved. 

The editorial syntax is constructed to have an hierarchical signature, which is needed to enable 

rewriting. The frame belongs to the computational context; it makes building easier, but is 

removed when work reaches completion. It may involve extra graphical structure, since the frame 

may have its own ('non-terminal') drawn items. 

Editing is carried out by rewriting expressions in the editorial syntax. Editorial rewrite-rules must 

include constructor and destructor rules that enable any expression to be generated and 

consumed. The starting point for generation must be some minimal form in the signature, typically 

with entities instantiated as empty or singleton sets. The constructor rules do not constitute a 

grammar for parsing an expression -the history of an editing process need carry no significance. 

Although the editorial rules are simple, they can cover very general operations on the part-formed 

forms being modified, because their effects are extended by transduction into the whole of the 

notation's semiosis. This is done by employing autonomous rule-sets which propagate syntactic 

change to other parts of the tectonic structure. A rule can remove, for instance, a whole 

connected component of a graph - if the component is a defined syntactic construction. 
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Chapter 7 

A System to Aid the Design of Notations and Editors 

Abstract 

Here we find a description of a software system to aid notation design, the plan of which follows 

the principles in the previous chapter. Details are given of the system's purpose, its component 

parts and how it operates. A basic prototype is developed and partly implemented within an 

object-oriented environment, In order to demonstrate how the theoretical framework and principles 

apply in practice. The methods of development and the actual process of implementation are 

explained, with indications of where this activity has added substance to the theory. 

The planned system is proposed as a research tool to explore the design tasks of specifying 

syntax and generating syntax-guided editors. A full system would allow a practitioner to build and 

formally document the design of notations for a known task, addressing all aspects of structure 

and helping develop editors. 

The prototype offers more limited functions, as a generic editor for a notation whose syntax is 

specified by sketches, and whose pictorial realization is defined using a geometric theory. It 

contains an editor for the syntactic schemas, which it can interpret as parts to be compiled into a 

sketch. 

An editor for a designed notation is defined by an editorial sketch and a set of basic rewrite-rules 

calculated from this sketch, which may be augmented by further combined rules. Direct 

manipulation for formatting is derived from geometric definitions. The prototype system does not 

yet incorporate facilities for deductive reasoning about syntax and properties of rewrite-rules. The 

working implementation currently supports generic editing and editing of syntactic schemas. 
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A System to Aid the Design of Notations and Editors 

"Given the short horizons of researchfunding in the current climate, it 

is incumbent upon visual language researchers to demonstrate that their 

workisusefut" (Wittenburg&Weitzmannl996) 

We have now reached a point where theory should give way to consideration of testing. How 

might the theoretical work developed here be applied in practice? To address the question, this 

chapter puts forward a plan for a software application (AGENDA) for computer-aided development 

of graphical notations. 

The AGENDA system (A Generic Editor and Notation Design Assistant) Is proposed as a research 

tool for exploring the practical utility of the syntactic specification techniques described in the 

previous two chapters. It offers help in designing and specifying any notation's syntax, and also in 

generating simple syntax-guided editors. With this plan in view, details are given of a more basic 

prototype that has been partially implemented for the purpose of demonstrating the principles. 

Implementation and development methods are explained, and a narrative describes the actual 

process of building the prototype during the course of the research. To end with, we consider what 

has been discovered through this activity and what contribution it has made to the proposed 

theory. 

7.1 Outline of the AGENDA System 

We begin with an outline of the principles on which the system is established, and the functions to 

be provided. A short narrative suggests how the system would be used, and describes its 

components. 

7.1.1 Principles and Functions 

Here we look at what the system is for and what it can do to help build notations and editors. 

7.1.1.1 Purpose 

The AGENDA system is intended to help in designing or modifying a 'community' of notations in 

some common context. In essence, AGENDA is a generic expression editor with a meta-editor 
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that allows the user to modify both the syntax of each specified notation and also the editor's own 

rules. For developing each notation, the system will allow its structure to be sketched. Precise 

design of notational syntax is accomplished through using SIGN as a conceptual too[ to help build 

a sketch. 

Taking the sketch as a specification, an editor for the notation can be built, by defining a set of 

rules and protocols for guided editing. Since the focus of this research is not upon the complex 

matter of editor design, the plan concentrates on supporting basic flexibility, and not on elaborate 

interaction protocols. 

Notation Design is a technical activity that requires specialist skill and knowledge of the structural 

properties of many existing notations. It may be compared to programming language design. 

Designing a new notation (referred to below as a target-notation) involves several tasks: specifying 

its syntax, defining the shape and behaviour of the pictorial components that make up graphical 

expressions, providing editing operations, and establishing semantic and pragmatic connexions to 

its discourse context. 

In order to check that a sketch does define the intended syntax, assistance in thinking about 

structure will be necessary. The system must provide some support for reasoning, though not 

necessarily for documented formal theorem-proving. 

7.1.1.2 Principles for a Notation Design System 

The principles of the design are derived from the previous chapter. As indicated in (§6.1), 

specifying a notation principally involves the development of a syntactic sketch, which typically 

divides into tectonic layers. This specification is to be achieved by means of the graphical notation 

SIGN, as described in Chapter 5. Semantic processing for SIGN can then interpret a composed 

schema in the context of the growing sketch, which seeks to define a target-syntax. In practice, 

several variants of SIGN would be available for depicting the different levels of serniotic structure. 

To give full support to a notation-user, the System should help build editors, with interpreters that 

can check semantic properties and convert expressions to computational data-structures or other 

forms of representation for further external processing. It should be able to express external data 

in target notations, and translate between these notations where appropriate. It should check 

compatibility of an expression with other expressions in the context, perhaps in other notations. 
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These demands for operation on expressions may be satisfied in the ways discussed in the 

previous chapter. 

As well as the essential syntax for the target notation, an editorial syntax must be created, with the 

intention of ensuring that expressions can be built up In a simple manner by means of rewritings. 

This special weakened syntax normally has an hierarchical signature, and may introduce extra 

non-terminal symbols, as explained in (§6.2). The technique of designing the editorial syntax 

involves the removal of cycles by the method shown in (§6.2.4). This approach provides freedom 

in editing by relaxing syntactic constraints. Constraints that are goals during editing may for 

instance force the replacement of any non-terminal items that were inserted to aid construction. 

In coordination with the syntactic sketches, the pictorial appearance of both the target notation and 

its editorial extension is settled by drafting geometric realizations for lower level entities and maps. 

Lastly an editor is assembled as a weak grammar composed of generalized graph-rewriting rules, 

with editing constrained or guided by the defined syntax. 

7.1.1.3 Principles for a Generic Editor 

The tasks and processes of editing were explored in (§6.2.1,6.2.2). An editor lets the user build 

and modify expressions in a particular notation. A generic editor behaves as an editor for a 

chosen notation when it is supplied with the data which specifies syntax and editorial protocol for 

that notation. 

Editing actions are governed by constraints in syntax, which are either seen as properties to be 

maintained or as goals to be achieved. The system can help in producing expressions in several 

ways: - 

Guidance protocols 
Available editing actions may be filtered in order to maintain certain constraints, 

unsatisfied constraints may be highlighted on the display, 

requesting an action may result in warnings about constraints that will be broken, 

effected actions may result in notices about constraints that have been broken, 

certain constraints may be checked only on request. 

By applying rewrite rules on displayed forms, the user may generate any configuration of lexical 

items according to their own knowledge of the notation. Constraint-checking in software can signal 

any discovered irregularities to the user, who may use this feedback to help arrive at a well-formed 
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result. Layout Is adjusted in a separate manner. 

Many notations are flexible in allowing much variation in layout without affecting syntax. For 

adjusting layout, the system would afford basic direct manipulation of the notation's graphical 

items, while respecting the connectivity expressed by the signature and graphical details. Such an 

ability to maintain geometrical connections is a familiar attribute of constraint-based graphical 

systems. 

Formatting is controlled by means of a defined protocol, which determines how the incidence 

constraints are applied. A lexical items can be a compound of simpler parts which are sometimes 

modified individually. When one part is handled, other connected parts must adapt to the change 

according to connectivity rules: a set of geometric constraints and protocols. The constraints assert 

properties which the token must possess before and after any change, while the protocol 

determines how changes to parameters are propagated) 

7.1.1.4 Functions to Aid Notation Design 

Essential functions deal with the pictorial definition as well as syntax, reasoning of various kinds, 

and interpretation of sketches must be supported. The use of meta-schemas and methods for 

design of analogies (§6.1.3) is not described here. 

Realizing a graphical expression as a picture can be seen as a task of translation from abstract 

syntactic representation to concrete display data. Shapes of lexical items are composed of 

graphical elements that may be constant, or variable in size (or orientation, etc. ) according to 

context; hence the translation may not be simply determined by positioning of lexical items. 

To allow expressions to be drawn, such items must be given distinctive features such as shape 

and position. As discussed in (§6.1.4), this is best done by embodying the syntax S in a general, 

near-universal pictorial theory of drawings. At some level of syntax the form is decomposed into 

pictorial elements, which are treated as data for display algorithms to process. 

As described in (§6.1.4), the representation of pictorial data is non-semiotic - independent of the 

target notation. Calculations of geometric constraints can therefore be built into the System, and 

I Some kinds of geometric constraint, such as collision avoidance or global symmetry, would require warnings or automatic layout 

heuristics after a formatting operation - these are not considered here. 
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will not have to be changed for each new notation under consideration. For diagrammatic 

notations, we would expect a graphical layer of target-notation syntax to specify the smallest 

drawn elements of the diagram. 

In order to offer assistance in designing, the System should possess some theorem-proving 

capacity. It should be able to track logical dependencies between constraints and use pattern 

matching on the sketch to apply inferences, following the logic doctrine, as discussed in (§6.1.3). 

The network of dependencies within the syntactic sketch is important because it determines how 

the interpretation of an expression is calculated. 

Technical work on syntactic logic needs to be supplemented with reasoning by cases: the testing 

of sample expressions against the proposed sketch. This necessitates a way of displaying samples 

- even before the pictorial appearance of items has been decided upon. For this purpose, the 

syntactic signature defines a 'default' appearance (§5.4.1) - equivalent to a directed graph labelled 

with names of entities and maps in the sketch - that can serve as an intermediate proto-notation, 

as illustrated in [fig 5.41]. 

By an interpretive process, the system can assemble a syntactic sketch from the SIGN schemas 

chosen to express it. Further interpretation of the information in the sketch would result in a 

dependency network linking the constraints of the sketch. This network would be used as a basis 

for processing during editing in the target-notation. Each sketch known to the System can be 

referred to by name in a meta-schema. 

7.1.2 A Narrative of Facilities Proposed 

By way of illustration, a short narrative on the proposed AGENDA system is given here. It 

includes an outline of the subsystems and their functions. 

7.1.2.1 Using the System 

On opening the System, the user is offered a choice of working contexts. Each context offers a 

choice of appropriate notations, and also documents that have been drawn up in that context. The 

user may open a document and edit an expression for insertion into it, by running an editor for 

one of its notations. The System is capable of building a community of notations, described in a 

specification document. 
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Changes of meaning expressed may be made by general editing, controlled in various ways, e. g. -- 

free-drawing (making gestures that are tracked and recognized as drawing acts), 
guided graphics (adding or deleting graphical elements), 
lexic rewriting, (entering shaped items and characters as a whole), 
tagmatic rewriting (rearranging structure), 
translation from another notation (via a translato6. 

The meaning of the expression being edited can be held constant, during: - 

formatting, in which only layout may be changed, or 

rephrasing, by selecting permitted syntagmatic variations. 

Edit changes may be guided by syntax and documentary context; they can be checked while an 

edit action is in progress or after completion. The completed expression stands as a message that 

can be sent to the document in order to eff ect changes to it. 

If available, a (partial) Interpreter may be run to calculate and check the semantic 

structure of the expression in the context of the document. 

A translator runs a translation routine that partly interprets an expression, and then re- 
expresses it into another notation in the common context. The re-expression is 

constrained by the situation in which it is requested. In so doing it may express 
information implicit in the situation, for example by replacing a variable with its calculated 
value. 

A semantic analyser assists the writing of interpreters which implement deduction or calculation 

by means of graph-rewrite systems. The analyser may also provide an interface with standard 

programming languages, for tasks that are fully computational and lie outside of the semiotic 

system of the target-notation. 

From the editor the user may gain access to the meta-editor that enables changes to be made to 

the notation specification. In the meta-editor, the user can edit any schema belonging to the 

specification document. The schemas are drawn in standard variants of SIGN notation, suited to 

graphic, lexic, tagmatic, or semantic structural description. Editing is checked for conformance 

with the rest of the document. In addition to the normal editing functions, the meta-editor 

develops rewrite rules and constraint checks which make up an editor. It is accompanied by 

several assistants: - 
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A sketch-compiler is provided to process the semantics of the schemas. It compiles a 
new schema into the document, incorporating it in an Interpreted sketch. It derives a 
network of dependencies In the sketch, and searches for internal conflicts and possible 
sources of inconsistency. 

A reasoner is a'deduction engine'that assists in logical construction and inference. The 

notation-designer can switch between editing a sample form and amending the schemas 
for its notation, using the reasoner to highlight consequences of a change. 

A drafter enables shape and behaviour of graphical elements to be edited by direct 

manipulation, in conjunction with the Information In graphic-schemas. 

An auto-formatter helps design heuristics for automatic layout of compute r-gene rated 
expressions, such as outputs from translation. These rules become part of an editor. 

A rule-maker helps build rewrite-rules when designing the notation's editor, after the 
editorial syntax has been sketched. 

There are also libraries of standard syntactic constructs and pictorial components such as 
boxes and arrows. 

7.2 Developing a Prototype 

This section describes work in progress on a prototype notation design tool, developed in order to 

make the proposed theory clear and concrete. Notes about the implementation give some of the 

details, and a narrative explains the structure of the software as it was constructed from the 

original ideas. The section ends with a summary. 

7.2.1 Description of the Development 

Here the development environment is described and the functions of the prototype are outlined. 

7.2.1.1 An Object-Oriented Prototype 

A prototype generic diagram editor is being built to explore and test the methods presented in the 

previous chapter. The software is written in the Smalltalk programming language and 

development environment2. Smalltalk is based on the object-oriented approach to programming, 

and supports the familiar 'desk-top' metaphors of interaction. It was one of the original languages 

to take this approach, and therefore has a relatively coherent structure in which every data item 

2Smalltalk/V version 2.0 vAthin Microsoft WINDOWS user Interface, on an IBM PC (486). 
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(an integer, for example) is treated as an ObjeCt3 that responds to Messages. The control 

structure of the language is imperative, though expressed by means of functional (lambda-) 

abstraction. Smalltalk was chosen in order to simplify the programming process and take 

advantage of a built-in library of graphical interface functions. Speed and compactness were not a 

prime objective of the exercise. 

Smalltalk encourages development of software by building in new functions one by one on top of 

its own skeleton of graphical user-interface software. Development begins with a proposed Class 

hierarchy, which can be modified or enlarged later. Once the hierarchy is established, "Methods" 

(routines associated with a Class) can be added in any convenient order. These are compiled and 

incorporated automatically, without leaving the development environment. 

7.2.1.2 Functions of the Prototype 

The prototype system offers a more limited set of functions than the AGENDA proposal; for 

practical reasons, only a few essential operations are provided. It supports syntactic design using 

sketches and it has facilities for generic development of editors. The prototype includes an 

Schema Editor for SIGN, enabling the user to build and/or modify schemas, which contribute to a 

sketch for the target-notation. Pictorial design is carried out with a Shape Editor. A Sketch 

Compiler maintains consistency of a suite of schemas, which together can be interpreted as a 

partial or complete sketch of target-syntax. 

A Meta-Editor assists the user in building an editor a data-object that contains all the information 

needed to run an editor for expressions in the target-notation. Simple rewrite-rules defined on the 

sketch signature provide the main method of creating and editing expressions. A Rule-Maker 

helps develop the rewrite rules and constraint checks which make up an editor. 

The prototype is limited to working with the design of a notation in isolation - not part of a 

community. Deduction and proofs of syntactic properties are not implemented. Semantic and 

pragmatic processing, such as interpretation and translation of target-notations, are also not 

implemented in the general case. For simplicity, graphical shapes are limited to line drawings plus 

ellipses and rectangles. 

3This term and others used In object-odented programming are capitalized In order that they may not be confused with other 

usage. 

274 



7: An Aid for Notation Design 

7.2.2 Implementation Details 

Next some notes are given on how the prototype is programmed, with a definition of terms that the 

program uses. The implementation takes a naive approach, following as simply as possible the 

theory and principles; it is not intended to adapt or improve upon other implementations. The 

implemented facilities for direct manipulation of graphical shapes during formatting illustrate one 

method of manoeuvering the layout of expressions. 

7.2.2.1 Data Structures for Expressions 

The sketch of a notation's syntax provides a direct way to represent an expression as a set of 

stored items. These items are held in a single family of several named sets - the sorts which 

make up its syntax, with one sort corresponding to each entity in the sketch. Items may belong to 

any of the tectonic layers, e. g. lexical sorts such as boxes and arrows, or semantic sorts such as 

statements. The connectivity of the figure is stored locally, in the items themselves. 

Each stored item represents a syntactic token in the expression, and its incidence with other items is 

encoded as an array of links (i. e. pointers). There are various types of item, distinguished by their 

behaviour outside of the serniotic layers. Graphical items may be drawn (and displayed), and semantic 
items may be treated as data or operations by the system. 

Expressions are stored for display as figures. A figure is a collection of syntactic and pictorial 

items arranged to satisfy constraints of syntax and geometry. The sets of primitive pictorial items 

that make up the displayed -figure are constructed from shape definitions. The sketch for a 

notation defines its full syntax; the forma contains further data to define its pictorial form. 

The embodiment of a form is an interpretation of syntactic sorts and maps of the sketch S in terms of 

pictorial concepts such as geometric shape, graphical attributes, adjacency and enclosure. The syntactic 

sketch together with details of this pictorial realization is termed theforma for the target-notation. A 

figure is a model of the forma for S. i. e. an S-form, with data for drawing it. An embodied expression is 

thus represented as a data-object formed of the syntactic sketch and the associated shape definitions. 

Editing is carried out on a figure displayed in a screen window, with commands available from pull- 

down menus in the usual way. The constraints in the sketch give rise to simple routines that check 

an edited expression for well-formedness, using linear searches and tracking of links. When 

expressions are small in size, these operations do not require complex algorithms. 

7.2.2.2 Glyphs 

During editing, some drawn items can be directly manipulated on screen. These graphical or 
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S4 II lexical items, which have distinctive shapes, are referred to as gyph The gyphs suppy a 

pictorial grounding for the target notation. 

A glyph is a type of shape which can be recognized and discriminated from others. Its identity is 

invariant under specified transformations and spatial deformations. A locatable glyph is invariant 

under translation; sometimes rotation and enlargement are also allowed. Afixed glyph is in an 

absolute or reference position, e. g. the rectangular boundary of an expression. A glyph may be 

composed of parts which transform separately. 

A glyph consists of a sequence of vertices (or pins) upon which stand primitive pictorial elements: 

lines, rectangles, ellipses and curves. The locations of these vertices define the actual stance in 

which the glyph is placed on the diagram, which may be adjusted during formatting. A glyph is 

constructed from certain vertices called pegs, which behave as controlling parameters for the 

shape. 

The shape of a glyph is specified by primitive geometric relations between vertices, which 

constrain or restrain them. A restraint may for example force a vertex to remain on one side of a 

given line joining two other vertices. A constraint fixes the position of a vertex dependent upon 

other vertices. 

A glyph contains a sequence of parts which are drawings, and a sequence of parts which are 

frame shapes that may be scaled or rotated, or are sites for linkage. Attachment of one glyph to 

another is achieved by restraining vertices of the one to lie in a site of the other. These sites may 

be circular, linear or polygonal regions, for instance. 

The behaviour of a glyph is the protocol required for varying its shape or position during 

formatting. A peg may serve as a handle for adjusting the glyph. When a peg is moved, the new 

stance of a glyph is determined by calculating each vertex in sequence, provided each vertex 

depends only on its predecessors. 

Here are some examples: - 

Boxes 

A box is characterized by the thickness, shape and symmetries of its quadrilateral boundary, and 

sometimes by the colour and texture of boundary and interior. The boundary normally consists of 

straight edges and may have rounded comers. A box may be resized along two axes, but not rotated. 

Resizing does not usually affect the rounding on corners. 

4(literally, carved items) 
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Arrows 

Simple arrows consist of a straight shaft, with a head and tail on the ends, for instance, or a'flight' in 

the middle. An arrow may be rotated as a whole. A flight may be moved along the shaft, but its 

orientation remains fixed relative to the shaft, and its size is also fixed. Compound arrows have 

polygonal shafts, in which each junction can be moved independently. 

Curves 

Curves, which show continuous variation in direction, present special difficulties in characterizing 

shape and style and finding a natural protocol for adjusting shape. They can be regarded as polygons 

with many sides, that are defined to appear smooth on screen. Curves may be constrained to be below a 

maximum curvature at all places, or to be convex, or closed. Any point of the curve may be adjusted, 

causing a local region of the curve to change within its constraints. 

7.2.2.3 Shape and Behaviour Editing 

To support formatting, a Shape Editor (drafter) is required for defining glyphs. The editor provides 

for drawing and designing their shape and appearance, and specifying their linkage properties 

during formatting. It allows the geometric incidence between glyphs to be realized in concordance 

with syntactic incidence. The Shape Editor should be supplied with a library of standard glyphs 

such as boxes and arrows. 

When designing the graphical realization of an item, the user can place vertices, join them with 

drawn lines, and constrain them geometrically. Each kind of constraint and restraint is symbolized 

as a drawn connector between vertices. The editor allows drawing and specification of handles for 

format operations. The user can test that constraints operate as intended, by using the handles to 

re-format the glyph. 

7.2.2.4 Formatting Protocol 

A formatter allows the user to move and modify glyphs in a figure without affecting syntactic form. 

This is achieved by providing handles on each item, thereby affording variation of the item's 

parameters (position, size, etc. ) when the user selects and drags the handle. Adjustment of layout 

is permitted so long as all restraints can remain satisfied. 

The technique of handling allows the figure to be treated as a program for exhibiting itself as an 

interactive display. By using a selected peg as a handle, the position or stance of a glyph can be 

directly adjusted on screen. Moving a glyph-site constrains movement of those glyphs linked to it 

so that they remain correctly attached. 
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During formatting, any glyph can be selected for modification by pointing to its body. The selected 

('live') token then displays handles (e. g. small black squares) on its parts. In any formatting 

operation, the coordinates of the handle position directly control the value of one or two 

parameters, which may vary within limits. The protocol maintains various principles: - 

"A physical analogy is used to help the user understand the operation. 

" The cursor is always free to move, but invalid positions are signalled. 

" The values of changed parameters depend only upon the cursor position and the old values. 

" To tell the user when parameter values are restricted, the path of the dragged handle is constrained. 

" 77he body of a token is treated as a handle when moving it as a rigid whole. 

" For visual feedback, a'ghost'is displayed during drag operations, to help the user achieve accuracy. 

The protocol can be expressed as a rule-set, in which each handle indicates a choice of rule and a 
I 

site of application. The implementation manages the propagation of constraints and the 

computation of displayed shape. 

7.2.3 Implementing the Prototype 

Next we look at the implementation work, which involved developing a SIGN editor and a generic 

editor. A narrative of the process of creating the program is followed by a summary of the 

program structure. 

7.2.3.1 Phases of Development 

The prototype has been developed incrementally, by applying the theoretical framework to 

progressively more general tasks. The ordering of tasks is broadly as follows: 

1. Groundwork for editing of schemas and generic editing: 

a) Developing a working editor for a simple version of SIGN schemas 

b) Generalizing this towards a generic editor, supplied with the formal syntax of SIGN 

c) Defining geometric primitives and using these to build lexical items for SIGN 

2. Developing the Figure Editor 

a) Choosing a method for sequential encoding of figures for disk file storage 

b) Developing a shape editor for design of graphical realizations for lexical items 

c) Providing routines for checking syntactic constraints 
d) Providing routines for applying general rewrite-rules 

3. Developing the Meta-Editor as an extension to the figure-editor: 
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a) Generalizing the figure-editor with methods for modifying menus 
b) Developing a Compiler for interpreting a schema within a sketch 
c) Developing a Rule Maker for building general rewrite-rules 

The current version implements 1 (a, b, c), 2(a, b) and 3(a). 

7.2.3.2 Implementing the Schema Editor 

Task 1 (a) was the writing of an editor (SchemaEdito4 to enable creation of schemas in SIGN. 

Because the syntax of SIGN has not yet been formally fixed, this task gave Insight into the 

difficulties of editing graphical syntax. It was immediately necessary to fix on the shape of the 

lexical items and decide how they were to be linked geometrically. It proved to be a difficult task 

to reduce the geometry to a small number of primitive relationships. Resolving these geometrical 

issues was an important step towards the development of a formatter. 

The notional syntax for SIGN was adapted from that implied in Chapter 5, to provide an editorial 

vehicle and to simplify the initial development. The syntactic items naturally follow a loose 

hierarchy (a preorder), the lowest items being boxes and the highest being the angles and ties 

which connect arrows. For simplicity, ties were only allowed to connect a pair of arrows. No extra 

graphical items were introduced into the syntax. 

The lexical items of a schema are named boxes, arrows, labels, marks, angles, ties, equals. Each of 
these has a shape, and it was convenient at first to make this shape a separate Class (subclasses of 

Shape). Each such class holds the Methods for drawing a shape and testing the position of the cursor 

relative to its body (for selection purposes). The items themselves were represented by subclasses of 

Item: - Box, Arrow, Angle, and so on. Each subclass holds methods for initializing the shape and 

forming syntactic links. 

The Class Schema holds all the Methods for searching patterns in the syntax (as preconditions for 

rules), for adding items, deleting items (and rewriting generally) and for displaying a schema. 

It became apparent that the main problems of editor-design lay in the protocols for simple rewriting 

of lexical items. Adding an item, for instance, involves using the cursor to select the size, shape 

and exact points of connexion of the new item. Other problems arose from the lack of a syntactic 

specification for SIGN: - 

In SIGN syntax, certain connexions are indicated by geometric relations: e. g. an equal-sign must be 

placed in a closed region bounded by a pair of arrow-paths which both originate from some box A and 

terminate at some other box B. Such a pair of "parallel" arrow-paths can be constructed syntactically, 
but the property that they form a simple region empty of other arrows is a geometric constraint. To 
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simplify the prototype, the syntax of regions was ignored, so that the attachment of an equality to its 

two paths was not checked. As a consequence, some of the syntactic relations stored in the syntactic 

representation were not forced properties of the schema displayed. 

A computation of geometric facts is then needed during each editing action. This problem of 

specifying this calculation was deferred until the relationship between geometry and syntax could 

be investigated in detail. 

A schema is a plane graph whose edges, nodes and regions may have markings; the edges attached to a 

node have a cyclic order which is featured in syntax. 

The first draft of the editor was thus specifically programmed, with every operation programmed 

individually. This enabled the basic structure of the user-interface for the editor to be developed. 

In the process, a lot was learned about editorial protocol and pictorial definitions. 

7.2.3.3 Abstracting the SIGN editor 

Task 1(b): The next stage involved progressively modifying the program by generalizing all 

syntactic concepts, so that the editor would take on the appearance of being a generic diagram 

editor specialized to SIGN syntax. Methods for the generic FigureEditor could then be written. This 

process of generalizing or abstracting the program made the code more compact and flexible. 

The first step was to modify class Schema so that it became a special case of Figure supplied with 

the details of an editorial sketch for SIGN. This was straightforward for the syntactic data, but 

issues of geometric (pictorial) representation had to be decided in order to store all the data of a 

figure. The pictorial data was also be needed to support the formatting operations on schemas. 

The final step of abstraction required a standard technique for the user to apply rewrite rules, and 

a standard representation of these rules. Only addition and deletion of simple items was 

supported; even this raised the difficulty of setting a protocol to allow the user to position a new 

item in accordance with geometric constraints. 

Task 1 (c): Defining geometric primitives 

Tackling the problem of building lexical items for SIGN gave rise to the notion Of 'glyph' described 

above. The implementation copes with geometric constraint-solving in a simple manner; cyclic 

constraints are avoided by giving each sort of item a priority based on its hierarchy in the syntax. 

The geometric components of a glyph are universal pictorial items. 
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As just noted, difficulties arise In regard to geometric properties of regions, which have to be 

calculated when checking syntactic conformity of SIGN expressions. Although it was clear how to 

program this in the particular case, it Is not obvious how to establish a set of primitive geometric 

constraints with any confidence that they would be universally adequate. 

7.2.3.4 Developing the Figure Editor 

Task 2(a): Choosing a method for textual encoding of figures for disk file storage 

Each schema-figure was required to be stored on'disk, most conveniently as a text file. This 

presented no problems. 

Task 2(b) Developing a shape editor for design of graphical realizations for lexical items 

Glyphs are supported by Methods for drawing shapes and testing when the cursor touches a shape 

(for selection purposes). A glyph is drawn by displaying all of its drawings; the positions of vertices 

are taken as arguments to primitive graphic functions which draw lines, boxes and curves. For 

speed of calculation, it is best to store the whole array of vertices which fix the stance, and not just 

the pegs which define it. The shape editor is treated as a diagram editor, by giving a graphical 

notation for the components of a glyph, namely vertices, pegs, sites, restraints and constraints. 

7.2.4 Summary and Discussion 

To finish, the content of the chapter is summarized, and we consider what has been learnt in the 

tasks and processes described. 

7.2.4.1 Summary 

This chapter has proposed a plan and prototype for a system (AGENDA) to aid notation design, 

based on the principles in the previous chapter. The AGENDA system would offer means of 

exploring and formally documenting the design and development of notations in a specified 

context, addressing all structural layers. The chapter does not describe a working system or a 

completed design for the AGENDA concept, and only a partial prototype is developed. The 

purpose of the prototype is to demonstrate practical application of the theory that has been 

presented in preceding chapters. Currently the prototype, implemented within an object-oriented 

(Smalltalk) environment, supports only generic editing and editing of syntactic schemas. 
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7.2.4.2 Processing and Graph Rewriting 

The computational questions of how syntactic conformity is checked and how interpretation is 

carried out are not covered in this chapter. It is taken for granted in the previous chapter that 

algorithms exist for categorial construction of limits and colimits. General purpose algorithms can 

for example be found in (Rydeheard & Burstall 1988) in the medium of ML. Rydeheard & Burstall 

derive their algorithms from constructive proofs in category theory; in this way they show how to 

compute pushouts in general categories and also how to carry out term unification. The methods 

are easily applicable to graphold rewriting, though they cannot provide an algorithm for graph 

unification. Since most of the constructions needed in our case are carried out on finite sets, there 

Is no need for such a general method; we require only a simple algorithm for coequalizers. 

In the prototype we have less need for these total algorithms, but more need for incremental 

algorithms that propagate syntactic constraints when a change is made. Grammars have a role in 

organizing this efficiently, which is why other work on grammar-based techniques is important. 

It should be made clear that rewriting used to implement interpretive operations is not the same as 

editorial rules that are chosen in generating an expression, but the distinction is blurred when 

syntax-directed rules are used in editing. 

7.2.4.3 Lessons Learned 

The plan for the AGENDA system has provided a vehicle for addressing practical problems and 

discussing solutions. Since the practical exploration of the prototype development was interleaved 

with theoretical research, it was possible for practice to inform theory at several stages. 

Successful implementation gave confidence in applying the framework, whereas difficulties 

encountered were useful in clarifying and tackling a number of problems. For example, the 

problems encountered in pictorial definition and interpretive processes prompted the investigations 

recorded in the previous chapter. 

The difficulties found in developing an editor for SIGN were caused not by inadequacies in the 

theory, but in aspects of the program that lie outside of the theory. Wherever aspects of syntax 

could be defined in a sketch, matters were easily resolved. Problems occurred in areas not 

effectively treated by sketches - such as the arithmetical operations of geometry. The attempt 

indicates many areas that require further research. 
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Conclusions 

Abstract 

Here we find a full review and evaluation of the work in the thesis. We refer back to the literature 

review and the research objectives in order to assess the achievements in terms of the problems 

listed there. Most of these problems have been explored and the four objectives have largely 

been met. 

A critique of the work discusses how it compares with other approaches and assesses what 

contribution each chapter makes to published researches in the same area. Problems that have 

not been treated or have not reached a satisfactory resolution are noted. The thesis is shown to 

offer attractive openings for further research into notation and analysis of sign-systems generally; 

this is emphasized by briefly exploring some possible future directions. 

The evaluation points to the originality of the work in offering a new application of mathematics to 

questions of signification which have not in the past received much attention. The research 

expounds a precise diagrammatic method of specifying syntax, and charts the way to a formal 

serniotic theory of notation. Though much work remains to be done in this area, the theoretical 

framework developed in the thesis is seen to provide a firm basis for improved practical and 

computational support of notation in a technical context. 
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Conclusions 

In this final chapter we review the work reported in the thesis, reflecting on the problems that have 

been addressed and evaluating the solutions proposed. At this point it is appropriate to ask how 

far the work has brought us towards an understanding of formal description and processing of 

notation, and to consider what further research is called for. 

8.1 Summary of Research 

The summary gives an overview of the research presented and lists the achievements. 

8.1.1 Overview 

First we review the thesis as a whole and then take each of its chapters individually. 

8.1.1.1 The Thesis 

Graphical notations were chosen as the topic for research because of their important role in 

technical work of many kinds. The focus of this thesis has been on notations in software 

development, which are often diagrammatic, but can also be as complex as the formal languages 

of mathematics and programming. Literature reviews have, revealed that although a rigorous 

approach to notations is required, there is no standard formal technique for specifying their 

structure, and support has suffered from a related lack of adaptable tools for manipulating them. 

Research in this area is however increasing, and several diverse approaches are being tried. 

In an attempt to encompass the diversity, this thesis has proposed a formal serniotic theory of 

'notation tectonics', which treats notations as sign-systems and advocates a layered logical 

analysis. By applying the categorical Theory of Sketches as an uniform method, a schematic 

notation (SIGN) has been developed for specifying notation syntax formally - by means of 

diagrams - which can be extended to depict all aspects of serniotic structure. The method employs 

logical constraints, and supports graph rewriting as an operational technique. As well as providing 

a specification formalism, the mathematical 'sketches' may be compared and combined, making 

them suitable for a discussion of systematic metaphor and analogy in the design of a notation. 

The thesis has described a new approach to building a tool for aiding the task of designing and 
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specifying notations. The AGENDA system allows notations to be specified and processed without 

recourse to a fixed graph grammar or spatial logic system. Such a tool promises a powerful 

method for the expert development of new graphical notations; it also offers the ability to help 

practitioners modify or adapt notations for specific circumstances - thereby granting them more 

control over their working aids. A prototype has been partly implemented to inform the research 

and test its practicality. 

To a large extent, the research has thereby succeeded in its objectives. Many further avenues for 

investigation have also been opened up. Two of these are particularly important, as evidenced by 

other continuing work in the field: firstly the study of perceptual theories of graphics, which has a 

bearing on questions regarding ease of use, and secondly the study of deductive logic in relation 

to graph grammars, which pertains to the problem of grading the logical complexity of different 

descriptive formalisms. 

8.1.1.2 Motivation and Methods 

In Chapter I the reasons were given for researching the formalization of graphical notations, and a 

research method was proposed. The motivation rests upon the needs of software development 

practitioners to employ flexible notational techniques in all aspects of their work. Computer aids 

for notation processing are essential for a rigorous approach. The research objectives of formal 

specification for syntax and practical support for notation design were to be met by the methods of 

applied mathematics, starting from an informal discussion of the topic. 

8.1.1.3 Reviewing the Area 

Surveys and reviews gave attention to some of the practical and theoretical needs acknowledged 

in this area. In Chapter 2a survey of the literature considered the few existing studies of notation, 

both early writings on mathematical logic and recent writings prompted by computer applications. 

A survey of writings on notations in software development revealed that they have become an 

important feature of methodology, but that no coherent body of theory exists to support graphical 

notation design. Practical problems with notation include difficulties for the learner, lack of 

explanation or justification of design, lack of formal definitions of structure and interpretation. The 

chapter suggested several avenues of research, the primary need being for mathematical and 

computational support. 
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in Chapter 3 an extensive review of related research considered formal descriptive techniques and 

tools to process notations. The review showed that there are no established techniques of 

syntactic description, though a disparate variety of approaches are currently being investigated. 

Many techniques follow methods used in linguistics, with various kinds of grammar; logical 

specification is also common, with some methods based on spatial relations. 

The review of tools concentrated on editors and visual programming environments. In the past, 

tools to process notations have mostly been based on general programming methods, leading to 

inflexibility. Notations available in CASE tools are often closely bound to specific development 

methods. Although research into visual languages has begun to address the need for generic 

editors and universal syntactic formulations, users still have no easy way to Influence notation 

design and usage. The chapter listed the many problems and avenues for solutions, and stated 

limited alms and objectives for the thesis. 

8.1.1.4 Defining Problems and Solutions 

Chapter 4 opened by establishing the boundaries of the research, examining the nature of 

notations and the roles that they play. An exploration of semlotic theory led to a discussion of how 

the meaning of symbols and structures is motivated and maintained, with a notation seen as 

embodying a stable relation between graphics and semantics. Signs In diagrams rely on metaphor 

and iconism in all levels structure, not just in the shape of lexical symbols. It was noted that 

motivation for signs, although important in justifying design decisions and giving help to learners, 

does not affect formal notation structure. 

Semiosis was described as a (culturally local) network of temporary logical connexions amongst 

symbol configurations and their contexts, motivated by past patterns of experience and maintained 

by habit. Thus the logic is implemented through a variety of cognitive skills. No firm fundamental 

differences could be discerned between the various layers of structural description, though the 

relationship between higher layers becomes more complex. We observed that the structure of 

diagrammatic notation can be closely allied to the logical basis of its semantics, through graphical 

analogy. This reliance on analogy could render generative grammars inappropriate as a 

descriptive tool, despite their usefulness in implementation and for syntax of sequential text. 

Based on research in the field of computational linguistics, an argument was made that tractable 
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logical systems are inherent in semlosis. The view was advanced that graph grammars are best 

treated as resource-sensitive logic systems, useful in constructing forms that satisfy specified 

constraints; they offer a model of limited-resource computation that is compatible with notational 

methods. 

A theory of notation tectonics was outlined as a model-theoretic approach to an uniform 

foundation. Maps between formal theories were used to explicate the notions of analogy and 

translation. The aim of this very general theory - not based on an empirical study - was to 

provide a foundation for such a study of actual notations. Therefore important practical issues 

such as computational and cognitive complexity were only touched upon. 

8.1.1.5 Sketches and the Schematic Notation 

In Chapter 5 the logical basis for syntactic description was taken from Category Theory and the 

notion of a Sketch of a theory was explained. Through its analysis of logic, Category Theory 

appears to be the mathematical field best able to describe the workings of serniotic processes at a 

suitable level of abstraction. The structure of categorial logic lends itself to expression in a style 

similar to Entity-Relation Diagrams. This style was developed into a schematic notation for 

syntactic sketches, which was described and applied in a case study. The formalism puts the 

definition of structure on a firm mathematical footing, in which both notated expressions and 

syntax specifications are formal objects. Practical design of the schematic notation was 

discussed. 

8.1.1.6 Questions of Notation Processing 

In Chapter 6 the proposed methods were extended to the areas of semantics and graphics in a 

discussion of support for notation design and processing. Further theory covered processes of 

reasoning needed for design of syntactic layers and for interpretive and generative operations. 

Based on this, an outline was given of a method for building the tectonic sketch of a notation, and 

thus for expressing its syntactic and pragmatic design. The problem of embodying syntax in a 

pictorial medium was also considered. 

The practice of editing expressions was analysed to discover what processes must be supported. 

The theory was shown to support generalized graph-rewriting for elementary editing operations, 

which are treated as steps in building a model of a syntactic theory. This investigation revealed 
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that a simplified or weakened adjunct syntax would often be needed In order to support flexible 

editing in this way. 

8.1.1.7 A Notation Design System 

Following the principles of this analysis, Chapter 7 presented a plan for a system to aid notation 

design, with the principal roles of specifying notation syntax and building notation editors. The 

object-oriented development of a simpler prototype system was described, followed by details of a 

partial implementation. Some problems were encountered in putting it into practice; formatting 

and layout problems were resolved by treating a diagram as a dynamic structure obeying a simple 

form of geometric constraint logic. The exercise was found useful in testing the basic notions of 

the theory and suggesting points for further research. 

8.1.2 Achievements 

In recording what has been achieved, we refer back to find which problems were successfully 

solved, and how this was accomplished. 

By supplying a theoretical framework, the thesis offers a sound basis for practical and 

computational support of notation. The problems that were listed In (§3.4) have mostly been 

investigated: - 

Difficulties in design methods DI-D4 have been addressed in Chapter 4. 

Specification issues SII-S8 have been discussed and analysed in Chapters 4 to 6. 

Problems of syntax formalisms F1-F5 and F8 have been addressed in Chapters 5 and 6. 

Limitations of processing tools T2-T5 have been addressed in Chapter 6. 

Difficulties of editors EI-E5 have been addressed in Chapter 6. 

Chapter 6 has shown that formalization is helpful in ways H1-H4, H6, H8 and H9. 

With regard to the objectives (§3.5.1), the following list indicates how they have been met. 

1) The thesis provides an uniform framework for specifying notations, that: 

a) rests on established mathematics, 

b) supports reasoning about structure, 

c) does not rely on graph grammars and parsing operations. 

2) The thesis provides a computational and mathematical foundation for design of notations. 

The method: 
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a) supports re-use and combination of specifications, 
d) allows analogies to be described. 

c) supports the use of rewrite-rules to operate on formal structure, 
d) Is compatible with constraint-logic approaches. 

3) The schematic notation SIGN provides a clear diagrammatic way to communicate syntax. 

a) SIGN has expressions similar in style to entity-relation diagrams; 

b) it derives from diagrams used in category theory; 

c) it enjoys full theoretical grounding in the framework. 

4) The plan for developing a generic notation-processing tool is partly implemented with a 

prototype in Smalitalk. The development is made easier because the framework: 

a) uses constructive logic that assists in implementation, 

b) makes possible a detailed analysis of generic editing, 

c) offers full formal support for the activity of notation design. 

d) encourages a modular method of design. 

8.2 Critique 

Here we take a look at relationships between this research and other work; this is followed by a 

discussion of ways in which the work has failed to address or resolve important problems. 

8.2.1 Comparison with Other Work 

We wish to consider how the thesis improves upon, adds to, or contributes to other work on the 

topic. The following brief commentary recalls the approaches reviewed in Chapter 3 and 

considers how the methods proposed in the thesis relates to these other studies. 

8.2.1.1 Other Approaches and Formalisms for Specifying Syntax 

Many approaches are based on grammar techniques (§3.2.4, §3.3), of which the most general 

employ relations and constraints. Other researchers who start with a logical formulation are 

motivated by the computational convenience of unification as opposed to graph rewriting. In fact, 

declarative logic specifications can be regarded as a context-free grammars in view of the 

equivalence shown in (Corradini et aL 1991). Unification (Goguen 1988) is also important in 

equational logic, which supports executable algebraic specifications of syntax and semantics, via 

the linguistic notion of feature structures. 

Some formalisms are intended to be purely descriptive, and are free to use logics that do not 
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guarantee a computable proof theory. In order to treat the graphical properties of notations, a few 

researchers explore spatial logic formulations; though those reviewed In (§3.2.2) are only applied 

to specific notations. 

Amongst the grammar-based approaches reviewed, techniques adopt various graph grammars 

as a basis for defining structure; in order to overcome limitations, many go outside of the grammar 

paradigm, requiring constraint logic or programmed operations as well as rewriting. 

Work on relational grammars (Wittenburg & Weitzmann 1996, Feruccl et at 1996) Is applied by 

some researchers. MOller & Lehrenfeldt (1994) use a version of Ferrucl's context-free relational 

grammar, in which each rule rewrites a single symbol as a multiset of symbols, subject to a set of 

topological constraints between sequences of terminal symbols (which are graphical objects). 

Adjacency Grammars (Jorge & Glinert 1995) are related to Wittenburg's unification-based 

approach, with parsing controlled by associating constraints with productions; each adjacency 

constraint is associated with a function that finds the set of neighbours of a given lexical token. 

Constraint Set Grammars (Helm & Marriott 1991) is an approach based upon Constraint Logic 

Programming. Constraint Multiset Grammars (Marriott & Meyer 1996) combine both relational 

grammar and constraint logic (§3.2.4), making it possible to define a generalized 'Chomsky 

hierarchy'of visual languages. 

Some approaches use declarative logic as a basis for parsing, via unification algorithms (§3.2.1). 

These are able to cover a wider layer of syntactic structure by incorporating some spatial 

reasoning. Since specifications can be executed, the techniques are particularly suitable for 

defining visual programming languages. 

The valuable work of (Haarslev 1995,1996a) proposes a formal framework to unify grammars, 

semantic approaches and visual (spatial and temporal) reasoning. Description Logics -a 

declarative knowledge representation system based on inheritance networks and a term-rewriting 

language. The spatial logic describes qualitative relations between points, lines or convex regions. 

Picture Logic (Meyer 1992) provides an executable declarative specification that is itself 

expressed in a visual language. A picture language consists of a set of spatial object types and a 

set of relation types. The work embeds Picture Logic in standard logic programming by 

implementing a new non-deterministic unification algorithm for picture terms. Though the result is 
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complex, less expressive Picture Grammars can be derived. Clauses in a specification are 

presented pictorially by borrowing shapes from the lexicon of the target notation. 

Other logic-based specification methods and formalisms reported in (§3.2.1) rely on first-order 

logic and set theory. GDL (Welland et aL 1990) is an expressive textual language for specifying 

diagrams composed of typed nodes and links, by means of first-order logic constraints. PSN 

(Hekmatpour & Woodman 1987), developed for formal specification of graphical notation, admits 

first-order logic formulae, set-theoretic notation, function definition and a query notation for binary 

relations. VCT (Serrano & Welland 1997) is a textual formalism for specifying syntax and 

semantics of diagrammed modelling techniques; it is based on set theory, and uses predicate logic 

to express semantic constraints. Z notation can also be used (David Gee 1995). 

The generality of these techniques allows them to specify all layers of semiotic structure, which are 

often not clearly discriminated. Spatial logic is treated on its own in (Lemon 1996), which presents 

a complete axiomatization of 2D space in a modal logic of connected regions. 

Algebraic and semantics-based approaches include VODL and VSDF (Oskodadi & Dinesh 1995a, 

b) treat graphical and higher layers separately. VODL is a constraint-based declarative formalism 

for pictures; it describes the visual tokens and spatial relations that comprise lexical syntax. VSDF 

provide a visual formalism for specifying the syntax and semantics of visual languages. The syntax 

specifies a context-free term language, which is provided with an algebraic semantics. 

Sorted logics are commonly applied in semantics. Region Connection Calculus (Gooday & Cohn 

1996a) allows the specification, parsing and execution of expressions to be defined in a common 

language by means of the order-sorted logic LLAMX A sorted logic (inL) is applied to semantic 

representation in (Klein 1987), which uses Kamp's Discourse Representation Theory: a version of 

first-order logic with a novel treatment of quantifiers, pronouns and anaphora. Order-sorted algebra 

is applied in (Wang & Zeevat 1996) to define a metaphor between expression and meaning as a 

partial mapping from a graphical signature to an application signature. A pictorial language would 

be characterized as a set of picture algebras. The nature of analogy is further explored in (Gurr 

1996) in terms of homomorphisms between worlds of objects and relations. 

8.2.1.2 The Value of this Thesis in Relation to Other Formalisms 

The thesis brings together elements from many related studies, such as diagrammatic reasoning, 
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visual (programming) languages, mathematical logic, serniotics, computational linguistics, 

category theory, logic programming and graph rewriting. These threads are woven Into a fabric 

whose strength is not dependent on any one particular study. This Is an improvement on the many 

recent studies which are based on trials of some chosen technique; such approaches are restricted 

to a narrower focus, and are thus less credible as a candidates for an unified standard theory of 

graphical notation. 

The approach adopted in this thesis is not based on coverage of a certain set of example 

notations, but justifies its choices with a theoretical analysis of semlotic structure. This policy for a 

general theory is less vulnerable to change when new examples arrive, and thus improves on 

those attempts that choose a specific definition of grammar in the hope that it will be sufficiently 

broad to cover the required range of cases of notation. 

The research is not aimed specifically at extending any of the current approaches to supporting 

diagrammatic syntax and generic notation processing; nor Is it intended to replace or to compete 

with work that investigates particular difficulties of syntax description and computational support. 

The research rather provides a framework which can encompass the approaches, making it easier 

to clarify their strengths and reveal the relationships between them. The thesis offers a 

mathematical method and a graphical notation which make this possible. 

The relationship between different formalisms is, in general, a complicated matter that requires 

separate study. This work does not obviate the need to study spatial logic and the complexity of 

different grammars. The study of relative power of grammars in (Marriott & Meyer 1996) thus 

complements the thesis, which instead seeks to define a hierarchy in the complexity of constraints 

expressed in sketches. 

The broad base of this research reveals that tractability is a central issue in notations, whigh is 

inherent in semiotic systems and is not just a consequence of a general concern for computational 

efficiency. Over-complex formalisms are thus inappropriate unless they offer a clear analysis of 

deductive effort. Over-simplified formalisms are only appropriate for kinds of notation that are 

known to fall within a limited range. 

8.2.1.3 Using Sketches 

How do the proposals of Chapter 5 compare with other logic-based formalisms? The idea of 
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'sketching syntax' is a radical departure from the predominantly grammar-based approaches 

currently being explored. The control of complexity in sketches is better understood than in 

grammars, because sketches benefit from a long history of research into logical systems, whereas 

graph rewriting systems are relatively new and difficult to analyse. 

As a logical language, sketches are theoretically simpler and cleaner than those based on first- 

order logic and set theory with extensions. Sketches embody an elementary logical system and 

are also not complicated by any assumptions about graphical primitives (as is VODQ or syntactic 

structure (as are grammar approaches). In contrast to the approaches that are committed to a 

certain type of grammar, the approach in this thesis is to organize structure in a logical theory from 

the start, with syntactic sorts and logical constraints, and then to treat rewrite rules as a separate 

process of implementation. 

Although the thesis does not demonstrate that all the various grammar and logic formalisms can 

be encoded in sketches, there is ample evidence that this should indeed be possible. For 

grammars, sketches can specify a derivation structure for the given grammar, as in the example 

of Appendix B. Implementing the logic entails a search for a grammatical derivation of an 

expression, which cannot in general be encoded in the sketches of Chapter 5, since the recursive 

operations required are only available in a stronger doctrine. The thesis does not explain how 

declarative logic can be expressed in sketches, though it is known that FL-sketches can encode 

Horn clauses. In (Goguen 1988) it is noted that cones of a sketch can be treated as generalized 

equations, embodying a set of constraints, for which a most-general-solution is simply a limit of the 

cone. 

The use of a (subsumption) ordering on syntactic sorts or types is notable in several approaches, 

suggesting an indirect relationship with the feature-based grammars in computational linguistics 

(§4.4.1) which allow multiple inheritance. The definition (D6rre 1994) of a general feature 

structure is also similar to the notion of syntactic signature employed here, though syntactic sorts 

are not ordered in our case. Ordering of sorts would require an extension to the notion of sketch, 

but still lies within the general framework described in (§6.1.1), and should more naturally 

accommodate the linguistic aspects of notations. 

Sketched syntax also rests upon an encoding of graphical properties. Spatial logics are not 
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addressed in the thesis, though they are relevant to the graphical and pictorial theories requested 

in (§6.1.4). The separation of abstract syntactic structure from pictorial properties helps keep the 

proposed formalism simple and general. 

8.2.11AThe Schematic Notation 

How does SIGN compare with other specification notations? The other methods reported have 

mostly given little attention to how specifications are presented and made available to users. 

Previous notations for describing diagram syntax are either informal or choose a technical textual 

coding. Those whose aim is to express syntax pictorially (§3.2.1), borrow most of their graphical 

aspects from shapes in the notation being specified. Specifications in SIGN are made more 

accessible by taking a schematic form; the schemas are rigorous, being both formal and 

graphically independent of the target notation. 

8.2.1.5 Other Methods of Formalizing Semlotics 

The methods that the thesis offers can be applied far more widely than the special topic of 

notation, though they do not directly address the general problem of how to formalize semiotic 

theory. Although there is increasing interest in semiotics as a field for computational research, 

with applications in a number of disciplines, the only other comparable formalization available is 

that very recently developed by Goguen (1997). 

There are many similarities between Goguen's mathematical approach and that presented in 

Chapters 5 and 6 here. Goguen espouses Category Theory; he works with sorted logic, and 

develops a notion of hidden algebras (Goguen & Malcolm 1996), in which hidden sorts fulfil a role 

resembling that of hidden parts in (tectonic) syntactic signatures of Chapter 6. His work differs in 

that he pursues an algebraic approach, so that specifications are (for the most part) executable by 

means of term-rewriting in OBJ. The language OBJ also places an ordering on sorts. Goguen & 

Malcolm's hidden agenda (op. cit. ) , concerns one theme that has arisen in this thesis - that of 

combining different paradigms of logic implementation; it is especially motivated by the object- 

oriented paradigm, but it does not include graph rewriting. 

It has been argued in this thesis that specification of notations should not be tied too closely to 

implementations, since this must lead to greater complexity in the descriptions. Sketched syntax 

can separate specification from implementation because the model-theoretic approach 
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distinguishes between internally provable and externally observed properties of expressions. This 

is more intuitive than standard algebraic approaches, in which the notion of an expression is 

identified with the class of all equivalent ways of generating it. 

8.2.1.6 Other Work on Notation Design and Generic Editing 

None of the works reviewed in Chapter 3 consider the task of designing notations in any depth, 

though the generic editors of (§3.3.2) have limited uses for this purpose. How can we assess 

claims that it is easy to build an editor with such systems? The AGENDA concept as proposed in 

Chapter 7 goes beyond the notion of a generic editor for diagrams, which assists design only in 

certain limited syntactic and graphical features. 

As noted in (§3.4.3), researchers who have built generic notation editors have been generally 

concerned with gaining practical success on supporting a range of trial notations. They have not 

established an adequately broad definition of what constitutes a notation or an editing operation, a 

problem which this thesis addresses. 

Grammar-based editing rests upon a set of rewrite-rules, whereas this thesis gives rewriting a 

different status: 

In the graph grammar approaches (§3.3,4.4.2), expression structure is defined as a derivation, via 

rewritings that follow some fixed rule-set. These fixed rules do not on their own constitute editing 

operations. In contrast, in editorial rewriting proposed in (§6.2), the history of deriving an expression 

can be discarded - since interpretation is carried out only on the result, effectively by a parsing 

operation. Information on how an expression is drawn may give help in automatic interpretation. If 

the editorial syntax adds non-terminal symbols that denote 'hidden' syntactic items, information in 

rewritings need not be discarded because it reduces the effort of parsing. 

The experience with graph-grammar-based systems such as DiaGen (reported in §3.3.2) has 

shown the need to define transformations on the derivation, which are propagated to the visible 

structure. This is in accord with the idea that flexibility in an editor can be achieved only by means 

of manipulation in an unrevealed accompanying structure. For Diagen, this was discovered by 

testing a prototype, and not through prior theoretical analysis of editing processes. The use of a 

syntactic specification in AGENDA avoids the need for a fixed type of graph grammar. 

The small amount of system development outlined in Chapter 7 cannot, of course, compete in 

practical terms with large projects such as PROGRES (SchOrr et al. 1995). The AGENDA system 
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would not go as far as the PROGRES system in offering complete notational support integrated 

with software, development. Methods employed in PROGRES follow a layered approach to 

graphical parsing (§3.3.3), which is in sympathy with the reasons for layering advocated here. 

Whereas specifying notations in PROGRES requires the engineering or programming of graph 

grammars, AGENDA would see the task as one of building up a specification from re-usable parts, 

supported by reasoning. 

AGENDA is not aimed at the design of user interfaces to applications, as in Escalante (McWhirter 

1995). In principle, AGENDA is closer to a constraint-logic system, though not explicitly 

implemented as such. GenEd (Haarslev & Wessel 1996) and VisualGen (Chok & Marriott 1995) 

are similar in philosophy, though not in methods; GenEd alms to support reasoning; VisualGen 

allows flexible hand-drawn editing. 

8.2.2 Unresolved Problems 

The next task is to provide a critical summary of the work, assessi. ng what has been overlooked, 

what remains unresolved, and how the solutions could be improved. 

Is this a suitable topic for a PhD thesis? The amount of published interest in diagrams and visual 

languages has increased considerably during the course of the research, showing that the topic 

lies within a broad problem area that is perceived as important. The specific topic of notation in 

software development is less usual, and more manageable, but still raises difficult problems. 

8.2.2.1 Survey and Review 

Much of the literature in the survey (Chapter 2) is written from a software developer's perspective 

and tends to be prescriptive in approach. If the purpose is to ascertain how notations are used and 

what is needed to support them, we would do better to consult studies of the tasks of software 

design process for a more objective viewpoint. Ideally we would need models of the activities in 

software development in order to explain the problems with notations, but this is another difficult 

area worthy of further research. 

There may be a bias towards an overly formal approach in the quotations chosen; design theory 

suggests that informal notations are at least as important in practice. It is hard to establish what 

are the needs for formal graphical notation design, since this has up to now not been a feasible 
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task. 

The review of techniques and tools covers sufficient examples of the relevant approaches and 

difficulties. As pointed out in (§3.4.3), a more comprehensive review would look at CASE tools or 

data visualization applications, which could give more definitive information on how notations are 

used. 

8.2.2.2 Balance of the Approach 

Is there too much theory? There Is a danger In developing a theoretical approach without backing 

it up with concrete examination of an extensive body of data. Despite the arguments made in 

Chapter 4, it may turn out that important difficulties have been missed. The value of the work lies 

in the conceptual framework that it provides, which can now be used for the detailed analysis of 

particular notations. 

The work deliberately avoids the known practical problems of finding effective and efficient 

grammars, upon which other researchers have concentrated. It also avoids the difficult questions 

of pictorial perception and inference. The strength of the approach would be improved if these 

other concerns could be shown to be addressable within the framework presented. It would then 

be possible to evaluate and compare the varied methods reviewed in Chapter 3. 

8.2.2.3Tectonic Notation Theory 

To validate the notion of a layered structure in notation, we require further evidence from 

cognitive analyses of perception and interpretation of diagrams or formulae. Study of evolutionary 

mechanisms could help explain how such cognitive abilities arose. Otherwise we should regard 

'tectonics' simply as a convenient modular method for developing a formalized notation. 

8.2.2.4 Choice of Mathematical Method 

Is Category Theory appropriate? Despite being an established tool in theoretical computer 

science, Category Theory is unfortunately a difficult theory for the layperson to apply. It remains 

to be seen whether its mathematical intuitions can be conveyed well enough for the practical 

purposes intended here. There is no obvious alternative that would be as versatile. 

The level of category theory applied is purposely naTive and elementary. More sophisticated 

categorial methods should provide a more powerful analysis of the processes described, and a 
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source for general theorems on syntactic structures. 

8.2.2.5 Usefulness of SIGN 

The schematic syntax notation offers only modest help with reasoning; it Is hard to be aware of both 

the syntactic theory and its models at the same time. Elementary reasoning of the kind used in 

sketches is too difficult without computer aids, but the situation is better than other kinds of formal 

proof theory that have no diagrammatic help. 

The current version of SIGN requires development into practical versions that limit the amount of 

reasoning expected. This task is of course exacty the kind that the AGENDA system is intended to 

help. 

8.2.2.6 Feasibility of Notation Design 

Would the ideas for notation design in Chapter 6 work? The research looks forward to notation 

design, but more detail is required before we will be able to judge whether the methods suggested 

would be workable. Full case studies of notations, especially in a software engineering context, are 

nee ded. It is not clear how practical it would be to design notation at this level of formality, and 

sophisticated support for reasoning would certainly be necessary. In any case, full notation design 

is expected to be a specialist task. There is no forseeable way to make this an easy task 

At the outset of the research it was hoped that an approach to formal description of syntax would 

suffice to support notation design. It is evident that this cannot be accomplished without a universal 

theory of drawings, in the same way that linguistics is grounded in the study of phonetics and 

phonology. A theory of drawings would mainly concern the perception of space and recognition of 

shapes. 

There is a long way to go before generic notation can be integrated with CASE methods. 

integration would require standard data-formats for expressions, syntactic sketches and editor 

specifications. It would also require formal semantics for each notational role. Some important 

problems, such as translation, have been hardly touched upon. 

8.2.2.7 Processing and Complexity 

The question of how the syntactic specification gives rise to rules for interpreting drawings is an 

important one that is not fully addressed in the thesis. Part of the work of designing a notation is 
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to ensure that interpretation can be computed. We have seen in Chapter 4 that this is a matter of 

controlling the complexity of each layer in the tectonics (in terms of the size of sets constructed), but 

the details of how this might be done have not been given. The complexity of different kinds of 

sketch has not been related to the hierarchies that have been defined for grammars. 

8.2.2.8 The Prototype 

Is the AGENDA system feasible? The prototype development remains incomplete because certain 

theoretical problems (discussed in Chapter 6) were beyond the scope of the research effort. 

Exploring the prototype was effective in raising further areas for research, but the task of 

implementing a notation design tool was premature. Many questions are not addressed in the 

AGENDA system as described - the use of meta-schemas to define codices, for example, and 

making constructions on sketches to help with design of analogies. 

How does the prototype reflect the research? The implementation follows the theoretical 

perspective as directly as possible. Where programming encountered difficulties, further theory 

was pursued to overcome them; often the solution was to express more of the structure as 

sketches. 

What was the benefit of having the theoretical framework? Without a theory to work to, it would 

have been difficult to make any progress at all. The initial attempt to develop an editor for SIGN 

showed that an object-oriented programming system is suitable for this task, but requires a lot of 

work. As soon as the editor was rewritten to take account of the theory, the programming became 

more compact, and it was clear that the same techniques would suffice for any other notation - 

without claiming it to be the best approach in all cases. 

8.2.3 Repeating the Attempt 

How might the research be done on a second attempt? One surprise of the research was that the 

solutions found demanded such a deep appreciation of logic. It would be interesting to start from 

this direction, with a study of the development of practical systems of logic - especially intuitionist or 

constructivist logics and labelled deduction systems. 

A better balance of theory and practice could be achieved by restricting the study to notations for a 

particular purpose, such as formal specification, or diagramming of functional programs. This would 

also provide more opportunity to investigate formal semantics. 
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Because of the importance of contributions from different disciplines, it would be best to pursue the 

research in a collaborative project involving cognitive psychologists, cognitive scientists, 

computational linguisticians, logicians, software developers and category theorists. 

8.3 Further Work 

The assessments in this chapter show that the thesis provides ample opportunities for further 

studies of notation and related areas. A list of possible future directions is commented upon below. 

8.3.1 Practical Opportunities 

Research consequent upon this thesis could attempt some of the following practical tasks :- 

RI specifying a wide selection of notations by these methods in order to refine the theory 

R2 developing graphical theories suitable for particular classes of notations 
R3 re-design of the syntax formalism (SIGN) and variants In the light of practical experience 

R4 specifying standard notational mechanisms to build up a library resource 
R5 developing software for a notation design assistant 
R6 providing support for reasoning about syntax and calculating interpretations 

A straightforward option [1111 would be a thesis devoted to specifying a variety of notations, while 

looking for cases that could cause difficulties, in order to refine the theory and method. 

A thesis could investigate graphical theories for existing notations [R2] with a view to specifying the 

geometric elements that make up certain classes of diagrams. 

Another option would be to explore whether the specification formalism could be improved, as 

Chapter 5 suggests, by creating variants of SIGN more suitable for practical use [113] - or for 

different participants in software development Applying the'bootstrap' prindiple, variants could be 

designed by means of the techniques proposed in this thesis. 

On a larger scale, a funded project could establish specifications and properties of familiar 

notational mechanisms [R4], which could become a resource for development of new practical 

notations and a medium for standards in graphical notation. 

The larger project of building a full version of AGENDA is a natural successor to this research [R51- 

This would need to follow up a number of strands made apparent by the encleavour of building 
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building the prototype in Chapter 7. For example, work is needed to Investigate the relationship 

between geometry and syntax, In order to find suitable computational theories for drawings. 

Another concern Is the question of how reasoning about syntax [R6] can be supported in practice. 

Other areas for practical research concern the problems of designing and supporting flexible 

protocols for editing, and the need for ways of offering easy routes for users to modify syntax. 

8.3.2 Theoretical Opportunities 

On the theoretical side, further research could address the following needs: - 
R7 detailed study of how other approaches can be accommodated in this framework 
R8 exploring fully the relationship between logical deduction and graph rewriting 
R9 developing a universal pictorial theory that formalizes perception of drawings 
RIO investigating the methodology of notation design 
R11 analysing the mechanisms of metaphor in graphics 
R12 extending the theory to cover ambiguity, approximation and vagueness in notations 

We have noted a need for studying how the theoretical framework can accommodate the other 

approaches described in Chapter 3 [117]. In this regard, the sketch formalism could be generalized 

to incorporate an ordering of syntactic sortsl, in line with the techniques of computational 

linguistics and object-oriented notions of class-hierarchy and inheritance. Unifying all the 

approaches is a major task that would entail fundamental research on the relation between graph 

rewriting, unification, constraint logic, type theories and model theory [118]. The aim would be to 

study how logics are implemented, in the sense of how reasoning is carried out within a calculus of 

limited resources. Such a project would necessarily rely on a collaboration of experts in the topics 

listed. The question of the hierarchy of complexity in logics and calculi could then be addressed, 

beyond the confines of grammar. 

Theoretical methods are needed for im lementing interpretive reasonIng2 by means of graph .p 

rewriting or other techniques. 

Interpretation is treated as incremental deduction of a semantic layer. Graph grammars are an 

attractive means of organizing this, because they implement a linear form of logic in which patterns of 

graphical items are premisses that are consumed when an inverse rule is applied, replacing the pattern 

'This was also suggested In a communication from Prof. He JI-Feng of Programming Research Group, Oxford University. 

2- Le. computational Interpretation, which Is different from cognitIve Interpretation In which there Is always a synthesis of what Is 

perceived and what is expected. 
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by a higher syntactic item. This linearity is lost if we treat deduction as the inference of semantic 

properties from graphical ones, since each graphical property can be used many times in a proof. One 

of the features of linear deduction is the case of ambiguity between resources, which is not the same as 

the offering of alternatives or conjoint resources. Signification appears as a kind of linear implication. 

The graphical theories of [R2] may help with a more difficult project, suggested in Chapter 6, of 

finding a formal theory of pictorial structure as perceived and understood by people [R91. 

Qualitative topological theories are reported in (§3.2.2), but there is scope for many more notions. 

One mathematical topic that might find application is the theory of matrolds (Welsh 1976, Oxley 

1992). Matrolds are 'pre-geometric' structures: abstract systems that have a concept of 

dependency, in the same sense as found in vector spaces. 

71bere are several reasons why this topic is attractive. Combinatoric structures such as graphs qualify as 

matroids, by defining an independent set of edges as one that contains no circuits (in a certain sense). 

The multidimensional variation found in formattable diagrams, with geometric constraints, can be 

described by matroids. One of the problems of diagrammatic design is in finding ways to express many 

dimensions of connectivity within a 2D graphical medium. In the semantics of expressions, notions of 

logical dependency occur; representing these in some kind of graphical dependency would appear to be 

an ideal way to assist reasoning in the subject domain. 

The thesis invites a more general investigation [1110] of possible techniques and methods of 

notation design. This would include the quest for an understanding of the mechanisms of 

metaphor in the design of notations [R1 1], which is outlined in Appendix E. Research should study 

this approach in the light of the wide literature that exists on the subject of metaphor generally. 

Such a project would be more realistic if designed notations were tested with a suitable group of 

users. 

Since this work has been arbitrarily restricted to notations whose coding is discrete, its application 

could be extended to include cases where continuous quantities are approximately represented 

[R12], such as geographical maps and architectural drawings. This could be approached within 

the same framework by using a medium such as topological spaces rather than sets. For the 

theory to treat ambiguity and vagueness in notations, it may be necessary to not only to consider 

other media, but to use a more general formulation of sketches. Although this is forseen in the 

sketch literature cited in Chapter 6, there would be less established support available. The work of 

(Goguen 1997) should also be taken into account. 
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8.4 Evaluation 

In this last section we consider In what ways this research makes an original contribution to 

knowledge. 

8.4.1 Originality and Usefulness 

The originality of this work lies in newly applying mathematical concepts to address problems in a 

somewhat neglected area. This is the first study of notations to put forward clear mechanisms by 

which signification may take place. The study takes large steps towards formalizing serniotics and 

deriving a general theory of notation. 

By providing a mathematical basis for notation structure, this work enables standard specifications 

of current software development notations to be constructed. The specifications do not rely on 

particular notions of grammar or spatial structure, as do other approaches. The formalism used is 

expressed in a new formal, graphical meta-notation based on the Theory of Sketches. As one of 

the few formalisms able to present specifications in diagrams, it is the first in which appearance of 

the specifying expressions is independent of that of the notation being defined. * Sketches are 

shown to offer a hierarchy of logical strengths. 

Although not a focus of the work, the theory makes possible a systematic analysis of analogy and 

metaphor in sign systems. These advances open up the possibility of giving full formal support to 

notation design, where support hardly exists at present. The work illustrates a novel approach to 

the development of generic editors. 

8.4.1.1 Importance 

How significant is this research? The thesis represents not only a step towards formalizing 

notations, but the beginning of a strategy for justifying notation design and finding new designs 

that will better serve the various purposes in software engineering - to help in thinking about 

system design problems and to communicate design decisions or proposals. For theorists, design 

of one's own notations is an important avenue for creative thought, especially in exploration of new 

topics. 

The work draws attention to the nature of semlosis as a process that relies on varieties of tractable 

logic. This Insight has repercussions throughout the subject of software development, since the 
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design of computer systems depends upon structures that can be understood and communicated 

by people, and Is therefore a serniotic field. The ultimate benefit of formal approaches to notation 

will be seen as improved accuracy and effectiveness of software. 

8.4.2 Conclusion 

This thesis has demonstrated a coherent approach to formalizing graphical notations. It has 

shown that it is possible to assist the design of notations by means of diagrammatic expressions of 

syntax, with computational support. As a result, the work has uncovered a rich vein for future 

research, which has the potential to help in all activities of software engineering where notation 

plays a part. 
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Appendix A. 
A Note on Syntactic Symmetry 

This short note discusses and illustrates the notion of symmetry In forms and sketches, which 

relates to the concept of geometric shape either In a graphical or more abstract sense. 

A. 1 Syntactic Symmetry and Abstract Geometry 

Abstract ideas of shape can be described by algebraic operations in geometry. We examine the 

case where the items or expressions of a notation are symmetric In some way. 

In the language of algebra, a. morphism from an entity to itself Is called an endornorphisar, If It Is 

an isomorphism, it is called an automorphism. The associative composition of morphisms 

provides a total binary operation on the generated set of endomorphisms on an entity, comprising 

the identity morphism and all composites, which means that the set carries an algebraic structure 

known as a monoid. The subset of automorphisms is closed under composition, and has an 

inverse for each member, which makes it a group. 

Forms that are invariant under a group of operations are said to possess the global property of 

symmetry. Symmetries of this kind may be evident at any level of syntax, but are especially 

noticeable in graphical properties. Automorphisms within a sketch show where symmetries can be 

drawn into the graphics. 

A Symmetric Relation 

C'ý% 
Figure A. 1 A web 

For example, a non-directed graph (or web) [fig A. 11 may be used to denote a symmetric binary 

relation. We consider the sketch for a 'nearness' relation, which describes a subset of ordered 

pairs: - 

@iD (ý A pair (E first 

Figure A. 2 A sketch for a relation on nodes 

327 



Appendix A 

In this sketch, it is Intended that a web is ambiguous as to which end of any arc is first and which is 

second. The map invert associates each near-arc of a graph with an arc in the opposite direction, 

by virtue of the equality: - 
ED > 

pair 
> 

second 

Invert Node 

GD > DaIr >first 
LJ 

Figure A. 3 An equality of arc-inversion 

From the sketch, 

invert: Near -4 Near 

invert; invert = Near 

invert; pair; first = pair; second 

Hence 

invert; invert; pair; first = invert; pair; second 

pair; first = invert; pair; second 

This abstract symmetry can then be realized through geometric symmetry. The pictorial link-items 

that express nearness of two nodes may be symmetric, with invert corresponding to rotation 

through 180". 

A. 2 Symmetric Sketches 

Symmetries may also exist within sketches (e. g. chains in [fig 5.26] of §5.3.2.2). We may define-- 

An endo-codex is a codex from a sketch to itself; it is an auto-codex if it is an isomorphism. 

The set of endo-codices generated by composition of endo-codices on a sketch has the structure of a 

monoid. The subset of autocodices is a group. 

Since a codex re-interprets one sketch in another, we can follow a geometric metaphor and regard 

the group of auto-codices as giving all viewpoints on any expression. If all expressions are 

symmetric under a group of auto-codices, then viewpoints in the group have no effect on meaning. 

(ý ý> tamet 

Let Di be the sketch for directed graphs: source 

There is an auto-codex on this sketch which swaps the roles of its two maps, and thus has the effect of 

reversing the arcs of a graph. This codex (reverse) is self-inverse, as depicted in the meta-schema: 
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(B a 
If g is a formal digraph (a model of Di), then reverse; g is the'same'graph but with arcs reversed. 
A graph g is symmetric under reversal iff reverse; g =- g. 

As with the digraph, the nearness sketch above also exhibits symmetry between the maps first and 

second. The autocodex that swaps these maps represents the semantic operation of Inverting the 

relation. In the case of such a self-dual graph, this global reversal cannot affect meaning. 
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An Example Sketch for a BNF Grammar 

This example explores how a conventional BNF syntax can be specified in SIGN. This may be 

compared with the general case of sketches for context-free grammars given in (Wells & Barr 

1988), in which the initial algebra for a suitable sketch is the set of derivation trees for a context- 

free language. 

B. 1 Sketches for a Syntax of Boolean Expressions 

The syntactic fragment covers expressions such as: 

- (TV (-, (FAT))) 

in which there is one unary and two binary operators, and two constants. 

The 'tagmatic' syntax may be defined by the BNF rules: 

Bool :: = Sent I Value 

Char:: = Value I Op I Not I Brac I Ket 

Sent:: = Dyad I Neg 

Dyad:: = Part Op Part 

Neg :: = Not Part 

Part:: = Value I Sub 

Value:: = True I False 

Sub:: = Brac Sent Ket 

Op :: =And I Or 

- where Bool is the type of a complete formula and Char is the type of a character in the formula. 

Note that the characters themselves, which are terminal symbols, are here represented by the 

names: 

Not And Or Brac Ket True False. 

This avoids extending the BNF formalism with extraneous literal characters, and emphasizes the 

fact that character-shapes are not formally specified. 

The schemas below are intended to define the lexical and tagmatic layers of syntax - neither 

stating how the characters are drawn, nor interpreting the expression into a normal form or 

evaluation. The schemas may define the abstract shape of expressions as strings of characters, 

which is taken for granted in BNF. Strings are defined as certain connected directed graphs 
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whose arcs are characters, each linking a node on the left to one on the right, as described in 

Chapter 5. 

If we depict the BNF rules directly, we get schemas such as the following: - 

(Char 

(Value 

LAný) CHD 

CýH) (ED F- Sub Gii) 

Dyad > Sub > -1-< 
CN 

g right 
EH) 

left right left right oft 

left ight r 

left DIL DR right left right E-D, 
r\ight left 

7/ 

Part I OP Part Ket 
I\ 

ft 
ýýhl 

oft 

lig\ht 

left rigý\ /11/eP t le 

Node 

Figure B. I Schemas for generative Boolean syntax 

Apart from Node, every entity is a type of substring between a left node and a right node. The 

substrings are defined as limits - for example Neg is a pullback: the apex of a coneon base: 

(Not --> Node +- Part) 

that denotes a Not-character preceding a Patt-phrase. 

In the case of Dyad, three pullbacks are used to construct a cone on base: 

(Part --) Node +- Op -4 Node +- Part) . 

B. 1.1 A Notation for Map-Labelling 

In this example the maps are given structured names rather than the unique labels of SIGN in 

Chapter 5. Map labels in the schemas here need not be unique, but maps with the same label and 

same domain entity must be equal. Where no name is shown, the map takes the default name of 

its target-entity, but uncapitalized. Thus the map from Value to Char is called "cha? '. 
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To avoid ambiguity, paths are given unique names, built as follows: 

<name of start entity> followed by a list of <map-label>, separated by stops. 

- if two paths have the same name, they are equal. 

E. g. the left-node for a value is identified by the pathname value. char. lef t, 

the r ight-node for a left-bracket (Brac) is identified by the pathname Brac. char. right , and 
the left-node for a right-bracket (Ket) is identified by the pathname Ke t. char. 1eft. 

A map can then be uniquely named by its singleton path, e. g. value. char , and an identity map 

on an entity is named (as before) by its entity name, which also denotes an empty path. 

The equalities shown in [fig B. I] can then be written: - 

Dyad. left = Dyad. dl. part. left 

Dyad. right = Dyad. dl. part. right 

E. g. the first of these equalities has the effect of constructing Dyad. left as the composite: 

Dyad. dl; DL. part; Part. left 

of functions denoted by the maps. 

By exploiting the algebraic definition of theory-categories, derived maps can generally be named 

by textual expressions. For example, we can calculate the bounding nodes of a formula in Bool as 

follows: 

Bool. left = Value. char. left v Sent. left 

- which constructs the unique map from Bool, which is the apex of cocone on base (Value Seno. 

The symbol /v/ signifies choice between disjoint cases. (To avoid ambiguity it may sometimes be 

necessary to label the cones and co-cones of the sketch. ) 

Using this notation, the rest of the calculation for bounding nodes of a formula in Bool is as 

follows: 

Sent. left = Dyad. left v Neg. left 

Neg. left = Neg. not. char. left 

Dyad. left = Dyad. dl. part. left 

Part. left = Value. char. left v Sub. sl. brac. char. left 

Op. left = And. char. left v or. char. left 
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Similarly, 

Bool. right = Value. char. right v Sent. right 

Sent. right = Dyad. right v Neg. right 

Neg. right = Neg. part. right 

Dyad. right = Dyad. dr. part. right 

Part. right = Value. char. right v Sub. sr. ket. char. right 

op. right = And. char. right v or. char. right 

[Some of these equalities are omitted from the above schema, for brevity. ] 

The full sketch describes the steps in parsing any string of characters in search of substrings of 

type Bool. It specifies constraints on the search, but does not lead to a direct construction of the 

maps Bool. lef t and Bool. right - owing to cyclic dependencies in the constraints. 

B. 1.2 When is a string well-formed? 

If we wish to specify that an expression must consist solely of a set of boolean formulas, it is 

necessary to add several more constraints. 

It is clear that the following isomorphisms hold: 

Dyad -= DL =- DR -= Op 

Sub -= SL =- SR =- Brac =- Ket 

Neg =- Not 

We need to constrain every string of characters to be an item with property Bool, though we note 

that substrings may also be of type BooL This makes it possible to simplify the sketch, along the 

lines of [fig B. 2], with further constraints to ensure every string defines a formula of Bool. 
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Figure B. 2 Constraints on Boolean formulae 

The challenge (not taken up here) is to describe in a sketch the full computation of parsing. 

Apparently in this case the recursion in the context-free grammar has a polynomial bound, and we 

should be able to carry out the recursion diagrammatically by means of limits and colimits, within 

the logic of FIVI-sketches. 
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A Logical Proof Concerning a Simple Rewrite Rule 

This proof illustrates how sketches can be used for rigorous reasoning about the effects of 

rewriting operations. We consider the example of generative rewriting given in (§6.2.4.2), of 

adding branches to trees. 

CA Two Rules that Generate a Forest 

A simple example of generating an expression is found in the case of trees in a forest, in the sense 

of (§5.3.2.1). It is easy to see that the two simple rewrite-rules R1 and R3 of (§6.2.4.2) suffice to 

generate a forest of trees - where R1 adds an isolated node as the base of a new tree, and R3 

selects any node of a tree and adds a new branch consisting of a new node attached by a new arc, 

as for example in [fig C. 11]. 

Figure C. IA single new branch on a lone tree 

The soundness of the rules is evidently expressed in the following fact: 

Starting with an empty expression, the application of rules R1 and R3 always results in a 

syntactic forest. 

In the sketch doctrine FM we can prove this assertion and also the property that applying rule R3 

leaves the set of trees unchanged. In order to prove completeness - that the two rules can 

generate every finite forest - we would need to represent an inductive argument, which is not 

considered here. 

C. 1.1 Proving the Effect of Adding Branches 

For purposes of illustration, the proof presented below treats only the properties of R3. It is 

demonstrated in a diagram-assisted outline that could be expanded into a fully formal 

presentation. The method analyses the effect of multiple application of rule R3 in parallel - adding 

a set of branches to the nodes of a set of trees. 
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Figure C. 2 Sketch FF+ of a forest with added branches 

The operation of adding branches requires a translator from the theory EE of a forest If ig 5.251 to 

the theory EE+ of forest-with-added-branches (fig C. 2]. This may be carded out by constructing 

suitable codices between the sketches that present the theories needed. 

E) .> (D <-. E) (D 
cc ff ff* 

\Y \Y N/ 
(ýBj (2j7+ aa S 

Figure C. 3 A meta-sketch of adding branches 

The meta-schema [fig C. 3] is drawn to depict the constituents of a derived sketch AA which Is 

constructed In the proof in order to define the application of the rule. The codex aa Is a deductive 

extension of FF+, and therefore AA Is a part of the theory EE+. 

In If ig C. 3 left), BB is the sketch consists of two entities connected by one map - corresponding to 

the relation between Node and Branch In FF+. The codex bb Is the subsketch of FF4: 

(Ej) 
node 

GjjD whose shape is that of BB . The codex ff embeds FF as a subsketch of 

FF+. 

The image bb Is joined to ff (using a pushout construction on sketches) to give the sketch FF4' for 

a forest-and-new-branches (fig C. 2]. The two Images ft, bb share the entity Node, to which 

branches are joined. The sharings are depicted with the help of the sketch EE which consists 

simply of a single entity, with both nn and cc being the subsketch either of FF or BB 

respectively. 

In [fig C. 3 right], the Images ff, ft* share the entity Tree - denoting the set of trees of the forest. 
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The codex H is the subsketch (Ej) within FF The sketch AA contains two images (f f; aa and 

ff *) of the sketch FF for a forest, and an image bb of a sketch BB for the new branches. The 

image (f f; aa) specifies the forest beforehand, and ft* yields the forest after the branches have 

been added. The new forest-schema [fig CA] for ff is shown with derived entities and maps 

named with an added asterisk. This is just a renaming of FF. 

ý Tree E) 

alse* b =9 

source. 

ta ýet* ý7- (N=ode* >Ire"ej CTrje: ) 

Figure CA A new forest 

The correspondence between the old and new tree of the instance [fig C. 11 is depicted using the 

proto-notation described in (§5.4.3.4); in the proto-schema [fig C. 51, the tree on the left has a new 

'branch' marked, and the resulting new tree copies the old tree and translates the branch into a 

new arc whose target is a new node. (The branch-attaching map node from Branch to Node is 

omitted for tidiness). 

( Tres 
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Itree 
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(ý > oldNode 
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Figure C. 5 Relating signatures of old trees, branches and new trees 

C. 2 The Proof 

The proof proceeds in stages. The first step is to construct the new entities and maps of the new 

forest fl* of [fig CA], which expresses the assertions to be proved. Schema [fig C. 6] depicts this 

construction. In order to confirm that the constructions still satisfy the syntax of a forest (fig CAJ 

339 



Appendix C 

we must justify three assertions: The base of a new tree belongs to that tree itself; targer and 

base* form a disjoint union; trees are the components of the digraph (source, targer). 

The schemas supporting the proof depict construction and inferences; derived items are shown in 

bold, and equalities are numbered for ease of reference. 

C. 2.1 Constructing the New Forest 

To construct the new entities and maps which constitute the new forest, we add new members to 

the sets of arcs and nodes. 

C -D252-< 
( Branch >-ý (Ei) 

426 Brdnch be 9 ldýode - -TArc - ne4ode -a 

base* tree* 
newArc newNode 

> (E) 

>jArc 

r, \- 
oldiode rc miode 

Itree 

(H) 
oldArcRD 

1ýýIdýNode 

el source 
_: §Mý (Nods 

Figure C. 6 Stages in interpreting the new trees 

New entities Arc* and Node* are defined by adding in a newArc and a newNode for each branch, by 

means of disjoint-union constructions. 

The base* of any Tree remains as the oldIVode at its base. [E81 

From Arc*, a map source* is defined by cases: 
the source* of a newArc is the oldNode at the branching node; [E4] 

the source* of an oldArc is the oldNode at its source. [ES] 

From Arc*, a map farget* is definedly cases': 

the target* of a newArc is a newNode; [E2] 

the target* of an oldArc is the target of an oldNode. [E3] 

From Node*, a map tree* is defined by cases: 

the tree* of a newNode is the tree of the branching node; [E61 

the tree* of an oldNode is just its tree. [E7] 

Schemas [fig 5.25], [fig C. 4] and [fig C. 6] together show the sketch AA referred to in [fig C. 3]. 

C. 2.2 Finding the Bases of New Trees 

To show that the new base of a tree belongs to that tree itself we need only simple composition of 

equalities [fig C. 7]. 
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Figure C. 7 Proof of (base*; tree* = Tree) 

To show that base*; tree* = Tree. [E9]: - 

base*; tree* = base; oldNode; tree* = base; tree = Tree 

[ES E7 EI =* E9]. 

To show that targer and base* form a disjoint union, we require to find an unique map h from 

Node*, under the circumstances depicted in [fig C. 8]. 
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The colimit property required of Node* holds if, given any entity X and maps f, g such that: 

f: Arc* -4 X and g: Tree -4 

then there is an unique map to X that converts target* tof and base* to g, i. e.: - 

3! h: Node* --> X- target*; h =f^ base*; h =g [EI5 EI81 

We can show this by constructing a map h as follows, with the help of a map k, and then showing it to 
be unique: - 
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Because Node is a disjoint-union, and oldArc; f: Arc -4 X, we can define unique k: Node 

-4 

3! k: Node -+ X- target; k = oldArc; f A base; k =g [Ell E12] 

Because Node* is a disjoint-union, we can define h by cases: 

Let newNode; h := newArc; f and oldNode; h :=k [E13 E14] 

Then base*; h = base; oldNode; h = base; k =g [E8 E14 E12=*EI5] 

And by cases, 

newArc; target*; h= newNode; h = newArc; f [E2 E13=ýEI6] 

oldArc; target*; h = target; oldNode; h = target; k = oldArc; f 

[E13 E14 Ell=: > E17] 

Hence, target*; h = f. [E16 E17=ýEI81 

so that h has the required properties [E 15 and E 181. 

Tree rc 3ý'newkc 

2 
g 

4se 

bTse* 

T 

n4e 

>PldNod >P ux Node* 

+3 
t+t* 

18,18, 

> oldArc - ( Are 

Tree >newArc 

12' 13' 
Nf 

4le T9 

ne 

T 

ode 

T 

Eýe >PldNod (ý > F, ux (ýe >p (X 

4 
d 

let 
ol 

te 

(ý > oldArc (Are 77) ( Node 

Figure C. 9 Proving uniqueness: p=h 

For uniqueness of h, let p satisfy target*; p =f and base*; p = g. [E18'AE15'] 

Then base; oldNode; p = base*; p = g[E8 1315'=ý]312'] 

And target; oldNode; p = oldArc; target*; p= oldArc; f [E3 E18'=ýEIFI 

By definition of k, it follows that oldNode; p = k[E12' Ell'=. >E14,1 

Since newNode; p = newArc; target*; p= newArc; f [122 E18'=: >EI3'1 

By definition of h, it follows that p=h. [EITA E14'=* p=h] 
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C. 2.2 The New Trees are the Old Trees 

To show that no extra trees are created nor existing trees removed, we need to show that trees are 

the components of the new digraph (sourc6*, target*). 
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Figure C. 10 Proof of E21 

To show tree*: Node* -+ Tree finds components of the graph, we show first that it satisfies the 

equality: source*; tree* = target*; tree*[E211 

Proof by cases [fig C. 10]: 

newArc; source*; tree* = node; oldNode; tree* = node; tree 

= newNode; tree* = newArc; target*; tree* [E4ME6E2=ýE19] 

oldArc; source*; tree* = source; oldNode; tree* = source; tree 

= target; tree = target; oldNode; tree* = oldArc; target*; tree* 

[E5 E7 EO E7 E3 =eý E201 

And it follows that [EI 9 E20 =* E21 ] (not depicted). 
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Figure C. 11 Proving colimit properties of tree*. 
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Secondly [fig C. I I], we show that for any entity Y and map y satisfying the same property, y factorizes 

through tree*. 

Let y: Node* -+ Y 

satisfy source*; y = target*; y[E22] 

Show that there exists q: Tree -+ Y suchthat tree*; q = y(E26] 

Now, 

o1dArc; source*; y= source; oldNode; y [135] 

o1dArc; target*; y= target; oldNode; y [1331 

So we define q uniquely by tree; q = oldNode; y [defof tree] [E23] 

Then oldNode; tree*; q tree; q = oldNode; y[ME23=ý1324] 

And newNode; tree*; q node; tree; q = node; oldNode; y 

= newArc; source*; y newArc; target*; y= newNode; y [E6E23E4E22E2=>E25j 

Hence we have the factorization tree*; q y [E24E25=*E26] 

Thirdly we show that q is unique: 

Letting tree*; r= y[E26'], we show r q. 

Immediately, oldNode; y = oldNode; tree*; r = tree; r [E7 E26'=: > E23'] 

Hence by uniqueness of qin [E23], we have r=q. 

This completes the proof 

C. 3 Remarks 

Simple theorems of this kind can be proved more easily as instances of general theorems - in this 

case concerning colimits in categories. The proof above demonstrates an elementary style of 

formal reasoning determined by the rules of the doctrine. What is needed is an automated proof- 

assistant to carry out the mechanics of the process of applying deductive rules and help in 

searching for a proof. 
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A Short Glossary of Terms 

For convenience the definitions of new or adapted terminology are listed below, together with 

reference to the place where each term is introduced. 

Codex: A codex is a sketch-morphism -a map between sketches that preserves connective 

signature and constraints. (§6.1.2) 

A codex can extend a sketch with extra entities, maps and constraints. 
A deductive codex: extends a sketch within the same theory; all extra entities and maps 

are constructions on the sketch, and all extra constraints are deductions. 

Community of notations: a set of related logical instruments that assist visual presentation, 

reasoning and communication (regarding system designs) within a common environment. 
(§4.5.1) 

Embody: To embody an abstract expression-form is to realize it in some physical medium. 
(§4.5.1) 

Expression: a model of a syntactic sketch. 
Concrete expressions are syntactic models in a medium, a category of finite sets. 

Abstract expressions are codices to some theory-category. 

Form: an underlying combinatoric structure for an expression as defined by a syntactic 

signature for the notation. Forms are graphoid, i. e. graph-like. (§4.4) 

The category of forms formalizes the part-whole relation on expressions (§4.4.4). 

A well-formed form (wff) is a whole expression. (§4.4.1) 

The form-space is the category of forms (including all those that are not well-formed). 

Interpret: To interpret an expression in the subject domain is to recognize it as an action 

within the cultural world of shared ideas. (§4.5.1) 

Interpretant: a semantic entity that corresponds to a graphical sign in an expression. (§4.5.1) 

Language: The 'language' of a notation is the category of models of its syntactic sketch. 

Medium: a category of (finite) sets and functions in which expressions are modelled. 

Meta-sketch: a sketch that is interpreted in the category Sk of sketches itself. (§6.1.2) 

Meta-schema: a schema that depicts (part of) a meta-sketch. 

Model: a codex to a category, or sometimes a functor from a theory to a category. 

Referent: A referent of a (graphical) token is an actual object or state that is to be found in the 

whole context that surrounds a displayed expression containing the token. (§4.5.1) 

Semlosis: A notation's semiosis is its character and structure as a sign-system. (§4.2) 
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Situated: An expression is situated when it is embedded in a formal presupposed context - 
i. e. a context where it would be appropriate. 

Syntax: The syntax of a notation is the layered coding structure that defines the relation 
between graphical and semantic forms. 

Tagmatic: a layer of syntax in which the entities are types of syntagmatic arrangement of 
lexical items. (§4.5.1) 

Tectonics: The tectonics of a notation is the layered theory that defines its semlosis. 

Theory: A formal syntactic theory is a deductively complete class of entities, maps and 

constraints, generated from a sketch (that presents the theory) by the logical rules of a 
doctrine. (§6.1.1) 

Transform: A transform between models is a family of functions on arranged sets of items. 

(§6.1.2) 

Translator: afunctor between theory-categories. (§6.1.2) 

A translator from theory A to theory 5- translates 13-expressions as A-expressions. 
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A Note on the Sketching of Metaphor Structure 

There is enough substance in the theory of Chapter 4 to help understand the mechanisms of 

metaphor. We consider how this might proceed, by taking the example of data flow. 

A Treatment of Metaphor 

Let A and S denote formal theories that define a familiar and an unfamiliar domain respectively. 

An analogy between the domains A and S may be represented by a span from some theory M, 

which contains conceptual structures common to both domains. 

A f- N -4 S 

In the example, A refers to fluid flow, and S to data flow. We seek a way of notating S that 

suggests to the viewer the familiar domain A in order to motivate understanding of S. This is done 

by providing a visual cue C for the familiar domain. The cue is a visual aspect of the domain A, 

such as the linear shape of a duct or pipe. The occurrence of a line on the diagram indicates the 

route for data to flow. The theory C conceptualizes the visual notion of pipe or line (and therefore 

not the invisible fluid or data that flows in it). 

When we notate S in syntax G via analogy R, we enforce semantic well-formedness constraints 

(from S) onto drawings. There are thus two analogies operating on & 

A-M -4 S f- R-G 

The cue C carries graphical properties that are true in S by analogy - the shape of a line reflects 

the attributes of a data channel. The cue also shares these properties with M, the metaphorical 

image of domain A- where the shape of a pipe must be that of a duct for fluid. 

We wish the cue to be present graphically, which we achieve by extending C into a syntactic 

relation R that spans S and G. As a result, C becomes a span between M and R. 

M-C -* R 

A simple equality of paths specifies that C describes the same structures in the metaphoric 

analogy with S and in the graphically expressed part of S. 

Let C define a visual part of A that serves as a cue. 

= C-4R-4S 
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In order to qualify as a metaphor, the maps from C must identify cues in G that suggest the 

familiar domain A to the viewer, who must guess at the extent and precision of the map into A in 

order to transfer knowledge of A to meanings in S. Thus the viewer must guess which attributes of 

pipes are salient in a discussion of data channels, but also whether other symbols in a diagram 

bear a similarity of meaning to reservoirs, pumps and desalination units known about in A but not 

in C. 

Here M covers a part of the intended subject domain S. If we design the notation with lconism as 

a guiding principle, we may wish to cover the whole of S with overlapping metaphors. 

This brief analysis offers a way of structuring and exploring possible analogies and metaphors that 

may help motivate a new notation. 
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S 
1% 

malltalk Classes from the Prototype Implementation 

Here is a summary of the prototype as so far constructed. In view of the object-oriented approach, 

the system is described in terms of its main Classes of Object. 

Structure of the Implementation 

The principal Object in the application is a FigureEditor that allows editing of expressions In any 

formally specified notation. The editor is applied to a Figure that is the expression being edited, 

displayed in a window called a FigurePane, which may be drawn upon by a Pencil A figure 

consists of a set of items of various sorts (in a Class ltemSort). Each Item is linked to other items 

according to the data on sorts for the notation as specified in its Sketch. Graphical depiction of 

these syntactic items is defined in a Forma, and details for editing the sketched notation are held 

in an Editorfor the forma. 

The main Classes and subclasses are: - 

FigureEditor (SchemaEditor MetaEditor) 

Figure (Schema) 

Item (Drawn (Textual) Frame Glyph Peg Site Restraint (Constraint) 

Sketch (Forma (Editor) ) 

FigurePane 

Pencil 

FigureEditor 

FigureEditor is a subclass of the Smalltalk system's Class ViewManager. A View-Manager 

maintains an application window and controls user interaction, menu management, opening and 

closing an editing session. Data for a Figure-Editor record the status during the editing session. 

These are the pane (window) upon which a figure can be drawn, the pen or drawing implement 

being used, the figure being edited, and the editorthat is being used. In the act of editing, there will 

be the mode of operation in force, the rule being applied, and the actual details of a rewrite in 

progress. FigureEditor has Methods for accessing this status information, and for signalling the 

operation mode: whether adding/removing an item, adding/removing an annotation, editing, 

formatting, or applying a rule. 

MetaEditor is a subclass of FigureEditor. MetaEditor has Methods for opening a window for 
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editing schemas of a target-notation, and for opening figure-editors. It enables the definition of 

rewrite rules, and the building and modifying of menus. 

Figure 

A figure is stored as a set of items of various sorts and a forma that specifies syntax and graphics. 

Figure has Methods for adding and deleting items, for finding an item's attachments, for 

determining specific sets of formatting items, and for saving and retrieving figures stored on disk. 

Schema is a subclass of Figure, specialized for syntactic SIGN schemas. A schema has 

Methods for finding subsets of items and for connectivity information special to schemas. 

suite of completed schemas is interpreted as a sketch. 

Item 

An item is an element of a figure, stored as a name identifying what sort of item it is, with a 

sequence of links to other items. Item Methods give access to these data, and allow paths of 

connectivity to be calculated; items may be encoded for saving on file. its subclasses are for 

graphical or other items that have associated actions in the system. 

Drawnitem is a subclass of Item. A drawn-item is a primitive graphical shape such as a line 

or circle. It has Methods for drawing itself on screen or on a printer, and for testing if a 

selected point on screen lies upon itself. 

Textual Is a subclass of Drawn1tem, with Methods for editing and printing characters and 

strings, and for calculating their sizes. 

Restraint is a subclass of Item. A restraint is a primitive geometric restriction on a vertex, for 

example restraining it to remain on one side of a given line. It has Methods for checking each 

kind of restraint and temporarily drawing itself as a link - for use when designing the graphical 

realization of an item. 

Constraint is a subclass of Restraint. A geometric constraint determines how the position 

of a vertex is calculated from a set of vertices that it depends on. Constraint Methods 

control the activation of constraints and calculate the effects of movement. * 

Sketch 

A sketch stores names of entities and maps, a definition of its connectivity as a directed graph, 

and its set of formal constraints on the graph. Sketch Methods provide access to these data, and 
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to allow a sketch to be built by combining compatible sketches. It has basic facilities to support 

reasoning. 

Forma is a subclass of Sketch. A forma stores also the graphical information needed for 

drawing models of the sketch as adjustable figures in a figure-pane. Its Methods give access 

to the graphical sorts, maps and constraints [not yet implemented]. 

Editor Is a subclass of Forma. An editor stores definitions of all rewrite-rules to be made 

available during editing expression in the specified notation. It also defines how the rules 

are offered to the user on visual menus [or via other protocols]. It has Methods for 

accessing and modifying both the rule-definitions and the menu structure offered. 

FigurePane 

FigurePane is a subclass of the standard Smalltalk Class GraphicsMedium. A figure-pane is a 

medium (a window) on which a figure is drawn under the direction of a figure-editor. FigurePane 

has Methods for locating the mouse and identifying items selected by the user, and for drawing, 

hiding, and showing selections, by recolouring highlighted items. It manages format operations, 

calculating and storing the constraints, restraints, and marks that are affected in formatting. It also 

controls the retrieving and saving of figures on disk. 

Pencil 

Pencil is a subclass of GraphicsTool, a standard Smalltalk Class. A pencil can draw any item on 

its pane, by giving control to the item. It has Methods for changing its effect on the pane (e. g. 

mode or colour), for handling construction lines (rubber bands) -and for drawing all graphical 

primitives. 
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