
Open Research Online
The Open University’s repository of research publications
and other research outputs

Formalizing graphical notations
Thesis
How to cite:

Godwin, William Henry (1998). Formalizing graphical notations. PhD thesis The Open University.

For guidance on citations see FAQs.

c© 1998 The Author

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html

31 0223234 X

rmalizing Graphical Notations

Submitted by:

William Godwin, MA (Cantab.), Dip. Lingu., Cert. Ed.

to the Open University

as a thesis for the degree of Doctor of Philosophy

in the discipline of Computing Science

Date of submission:

2 &L January 1998

I certify that the work and ideas presented in this thesis are wholly my own, and all

other sources are clearly referenced in the text.

fy)704ý157(2ý2
CN* ZO ICICIT NTE
7 -JQýý 1019C6

ALL MISSING

PAGES ARE

BLANK

IN

ORIGINAL

To my parents Ida and Edgar, my brother Jim and my wife Jennifer

Contents
Acknowledgments .. 1

Abstract .. 3

1. Introduction ... 5

The Study of Notations ... 7

1.1.1 Aims and Objectives ... 7

1.1.2 Perspective .. 8

Motivation .. 8

1.1.4 Application of this Thesis .. 9

1.2 Method of Research .. 9

1.3 Relation to Other Work ... 10

1.4 Overview of the Thesis ... 11

0 Survey of Problems ... 13

2.1 The Study of Notation Systems ... 15

2.1.1 Historical Material ... 15

2.1.2 Recent Studies ... 19

2.1.3 Visual Reasoning .. 23

2.2 Notational Practice in Software Development ... 25

2.2.1 A Preliminary Classification of Notation Use ... 25

2.2.2 Activities and their Notations .. 27

2.2.3 Reviews of Notations ... 35

2.2.4 Formalization of Notations ... 36

2.3 Analysis and Discussion .. 37

2.3.1 Analysis of Notational Issues .. 37

2.3.2 Conclusions .. 41

3. Review of Notation Support in Software Engineering 47
3.1 Formal Techniques for Describing Notations ... 49

3.1.1 Formalizing Language Syntax ..
50

3.1.2 Formalizing Semantics
...

53

3.1.3 Graphs and Graph Grammars ..
58

3.2 Formalisms for Graphic Notations
...

61

3.2.1 Specification Languages for Notations .. 62

3.2.2 Spatial Logic Approaches ...
66

3.2.3 Algebraic Semantics ...
69

3.2.4 Grammars for Notations ...
70

3.3 Software Tool Support for Notations ..
77

3.3.1 Requirements for Tools ..
77

3.3.2 Reviews of Notation Editors ... 82

3.3.3 Visual Programming Tools ... 87

3.4 Discussion of Problems and Issues
...

92

3.4.1 Problems of Notation Design ..
92

3.4.2 Problems in Specifying Notations ...
95

3.4.3 Limitations of Notation Processing Tools ..
99

3.4.4 Researching Notation in Software Development ...
102

3.5 Selecti ng the Research Agenda ..
105

3.5.1 A Proposed Way Forward ..
105

3.5.2 Excluded Topics
...

106

4. An Exploration In Search of Notational Theory .. 109

4.1 Defining the Area of Research ..
111

4.1.1 The Nature of Graphical Notations ... 111

4.1.2 Formality and Formalization ... 116

4.1.3 Notational Roles ...
118

4.2 Exploring Semiotic Theory ..
121

4.2.1 Signs and a Theory of Codes ... 121

4.2.2 Sign Production ..
124

4.3 Aspects of Notation ...
128

4.3.1 Serniotic Characteristics of Diagrams ... 128

4.3.2 Textual Form and Structure .. 134

4.3.3 Modalities, Mechanisms and Layers .. 137

4.4 The Problem of Defining Structure ..
140

4.4.1 Methods of Syntactic Definition ..
140

4.4.2 Linguistic Notions of Grammar ...
145

4.4.3 Semantic Definitions ..
149

4.4.4 The Form of Expressions' ...
153

4.5 Towards a Theory of Notation ...
159

4.5.1 Serniosis in Notations ...
159

4.5.2 A Foundation: Notation Tectonics
...

164

4.5.3 Coda ..
171

S. A Strategy and Notation for Sketching Syntax ...
175

5.1 Theoretical Background ..
178

5.1.1 Sketching the Syntax of Notations ..
178

5.1.2 Sketches ..
180

5.1.3 Categories ..
183

5.2 SIGN: A Schematic Syntax Notation ...
186

5.2.1 Introducing SIGN ...
187

5.2.2 Canonical Constructions ...
189

iv

5.2.3 Further Constructions
...

194

5.2.4 Some Derived Constructions ..
197

5.3 Building Syntactic Descriptions ...
200

5.3.1 Reasoning about Syntax ...
200

5.3.2 Some Examples of the Strategy
...

202

5.3.3 Jackson Structure Diagrams
...

207

5.4 Discussion of SIGN Design Issues ...
212

5.4.1 An Assessment of SIGN
...

212

5.4.2 Redesigning SIGN for General Work ..
215

5.4.3 Alternatives to Sketch Theory
...

217

5.4.4 Summary .. 219

6. Support for Notation Design and Processing ... 221

6.1 Supporting Notation Design .. . 224

6.1.1 Theoretical Support for Deduction 225

6.1.2 Languages for Notational Design 229

6.1.3 Specifying Semiotic Structure .. . 232

6.1.4 The Pictorial Design of Notation .. . 237

6.2 Computer-Aided Editing .. . 242

6.2.1 The Demands of Editing .. . 242

6.2.2 Editing in a Sketched Syntax .. 246

6.2.3 Rewriting in a Sketched Syntax .. 252

6.2.4 Editing by Rewriting .. 255

6.3 Summaries ... 260

6.3.1 Themes and Topics .. 260

6.3.2 Summary of the Editorial Process ... 262

7. A System to Aid the Design of Notations and Editors .. 265

7.1 Outline of the AGENDA System .. 267

7.1.1 Principles and Functions ... 267

7.1.2 A Narrative of Facilities Proposed .. 271

7.2 Developing a Prototype ... 273

7.2.1 Description of the Development z ... 273

7.2.2 Implementation Details ...
275

7.2.3 Implementing the Prototype ..
278

7.2.4 Summary and Discussion ...
281

8. Conclusions ..
283

8.1 Summary of Research ..
285

8.1.1 Overview ..
285

8.1.2 Achievements ...
289

8.2 Critique ...
290

V

8.2.1 Comparison with Other Work ... 290
8.2.2 Unresolved Problems ... 297
8.2.3 Repeating the Attempt ... 300

8.3 Further Work .. 301
8.3.1 Practical Opportunities ... 301
8.3.2 Theoretical Opportunities ... 302

8.4 Evaluation .. 304

8.4.1 Originality and Usefulness .. 304

8.4.2 Conclusion ... 305

Bibliography ... ; 307

Papers and Reports ... 309
Books and Proceedings ... 321

Appendices .. 325

AA Note on Syntactic Symmetry ... 327
BA Sketch for a BNF Grammar ... 331
C A. Proof Concerning a Simple Rewrite Rule ... 337
DA Short Glossary .. 345
EA Note on Sketching Metaphors .. 347
F Smalltalk Classes of the Prototype Implementation ... 349

vi

Acknowledgments

The development of ideas in this thesis has been achieved without expert assistance in the

specialist areas covered. This research has been carried out without benefit of financial

assistance or external funding.

I would like to thank my supervisors Professor Darrel Ince and Dr. Sohrab Saaclat for their

consistent encouragement and advice, and all those who have read and commented on my work,

in particular Dr. Stella Mills.

I would also like to thank the Cheltenham and Gloucester College of Higher Education for

circumstancial support for the duration of the work, which has made the research possible. I am

indebted to the libraries of Bath University and the Science and Engineering library at Bristol

University, whose facilities I have regularly consulted.

Finally I would like to thank my wife Jennifer, without whose immense patience, encouragement

and practical support this thesis would not have reached fruition.

I

Thesis Abstract

The thesis describes research into graphical notations for software engineering, with a principal

interest in ways of formalizing them. The research seeks to provi de a theoretical basis that will

help in designing both notations and the software tools that process them.

The work starts from a survey of literature on notation, followed by a review of techniques for

formal description and for computational handling of notations. The survey concentrates on

collecting views of the benefits and the problems attending notation use in software development;

the review covers picture description languages, grammars and tools such as generic editors and

visual programming environments. The main problem of notation is found to be a lack of any

coherent, rigorous description methods. The current approaches to this problem are analysed as

lacking in consensus on syntax specification and also lacking a clear focus on a defined concept of

notated expression.

To address these deficiencies, the thesis embarks upon an exploration of serniotic, linguistic and

logical theory; this culminates in a proposed formalization of serniosis in notations, using

categorial model theory as a mathematical foundation. An argument about the structure of sign-

systems leads to an analysis of notation into a layered system of tractable theories, spanning the

gap between expressive pictorial medium and subject domain. This notion of 'tectonic' theory

aims to treat both diagrams and formulae together.

The research gives details of how syntactic structure can be sketched in a mathematical sense,

with examples applying to software development diagrams, offering a new solution to the problem

of notation specification. Based on these methods, the thesis discusses directions for resolving

the harder problems of supporting notation design, processing and computer-aided generic editing.

A number of future research areas are thereby opened up. For practical trial of the ideas, the work

proceeds to the development and partial implementation of a system to aid the design of notations

and editors. Finally the thesis is evaluated as a contribution to theory in an area which has not

attracted a standard approach.

3

Chapter 1

Introduction

Abstract

Here we find the reasons for this research effort in the chosen topic of formalizing graphical

notations. The research is motivated by a perceived need for flexible notational techniques in all

aspects of software development. For a rigorous approach to development, notation processing

must also be computer-aided. The objectives of the research therefore focus on formal

specification for syntax and practical support for designing and using notation.

The proposed method of research is described as an applied mathematical study, starting from an

informal discussion, that is inspired by a semiotic view of human processes of idea-sharing and

problem-solving. The research is related to other work on visual language, diagrammatic

reasoning and computational linguistics, but intends a fresh and fundamental approach.

Finally we find an overview of a thesis that applies and combines notions from a range of

disciplines, in order to address the problems of describing, designing and processing formal

graphical notations, particularly in relation to the tasks of developing computer systems.

5

Chapter 1.

Introduction

By relieving the mind of all unnecessary work a good notation sets itfree to

concentrate on more advanced problems, and in effect increases the mental

power of the race. - Alfred North Whitehead (1948)

This opening chapter invites the reader to place themselves in the position of someone whose

main interest lies in graphical expressions and diagrams that occur as technical notation within a

design discipline such as software engineering. The text indicates the area of study, discusses

methods of research, places the area in the context of other work and finally advertizes the

content of the remaining chapters.

1.1 The Study of Notations

The first task is to introduce the subject area, to state broadly what aims and objectives the

research is to pursue, and to outline reasons why the research is being undertaken.

This work, then, is a thesis about notations - or, to be more specific, systems of graphical symbols

that are used fairly formally in mathematics, the sciences and technology. In particular, the study

focuses on kinds of diagram common in the practices of software engineering, where problems of

notation are often observed. Research into such technical notations tries to understand how the

techniques and mechanisms available in the graphical medium make it possible for drawn

expressions to carry information.

1.1.1 Aims and Objectives

The work aims to provide theoretical support for both the design and use of notations. It aims to

give the designers of a notation a way to describe and depict its structure, and thereby help in

constructing generic editing and processing tools for diagrams in software development. This will

offer better computer assistance to notation users, allowing the procedures of editing to be guided

by the 'pictorial-syntactic' structure of a notation.

The main objectives are firstly to establish an effective formal way for specifying the syntax of

graphical expressions, and secondly to test the method practically, by building a prototype notation

design tool. It is intended that the designed syntax specification itself be notated graphically.

7

1: Introduction

1.1.2 Perspective

How should we regard expressions and notations? Drawn expressions are in one sense cognitive

objects, and in another, physical objects; a notation belongs, however, to the group of people that

uses it and may be regarded as a cultural object, whose manifestations have cognitive and

physical attributes.

Software development is after all a 'cultural' process, which is subject to structures of social

convention within a community of practitioners. It is thereby a field in which sign-systems play a

large role; being a technical activity, we might expect such semidtic processes to be within reach of

mathematical analysis.

Such a formal analysis would also offer support in modelling human interaction with computers.

Users ought to be able to engage with software (Laurel 1991), to feel involved as a participant in the

domain of activity it represents to them. This they can do by internalizing its semiosis - learning the

unconscious cognition needed to extract the Meanings of images and interactions - provided that

the developer has designed into the software a suitable 'semiotic capacity' to make this feasible.

Developers themselves use computer aids in order to help create application systems. Whether

notations are for developers or for end-users, they must have their'rules of engagemenV, which this

work endeavours to study.

1.1.3 Motivation

How will it be helpful, to formalize notations in software engineering? We find that diagramming

methods have evolved informally in the software industry. By being adapted to the skills of current

personnel, they provide flexible thinking tools that can represent structure in a variety of ways.

Unfortunately notations are in the main not precisely defined and not rigorously usable in the

development process; exactness is only enforced at the implementation stage, by the formality of

program codes. By opening the way for computer-aided reasoning, formalized notation could help

trap errors that may occur early in design and which can become costly if not discovered until the

testing phase.

With regard to this difficulty, Formal Methods notations have been devised to support rigorous

methods of software development; they are concise, unambiguous and they enable logical checking

throughout development. They are, however, neither pictorial nor familiar to personnel, who

8

1: Introducton

who perceive them to be difficult to learn and use. In this case the research might make it feasible

to pictorialize and thereby simplify any work with formal notations.

The formalization of graphical notations promises a way to integrate the flexibility and familiarity of

informal design practices with the rigorous standards of expression essential for verifiable and re-

usable software. This research does not, however, seek to prescribe any particular form or

method of using notations, but to find techniques for describing and supporting those forms that

exist, even where these make no claim regarding formality.

Computer-aided tools for software development are generally designed for a restricted range of

graphical notations, depending on the individual choices and programming techniques adopted by

the tool maker. Few of them support mixing of notations from different methods. By way of

contrast, in compiler design, -systematic techniques apply across a range of textual languages,

resting on mathematical syntactic theory. We might aim to make the same possible for

diagrammatic syntax.

1.1.4 Application of this Thesis

Who will benefit? This work is intended to be applied in providing a standard for formal definition

of notational structure, in building general-purpose tools for, practitioners using software

engineering notations, and in improving design of notation within a computer system interface, for

novices and experts in any field. In recent years, the increased availability of graphical user

interfaces, and the popular appeal of visual methods and programming tools are evidence for

growing opportunities to apply this research.

1.2 Method of Research

How is the research to be conducted? Different disciplines practise different methods of

researching; what is appropriate here?

For example in science the practice is to formulate hypotheses about certain phenomena and

tests these by experiment or observation. In order to explain clusters of co-occurring phenomena,

statements must be precise and logically consistent, though they may refer to entities that are not

known to exist.

9

1: Introduction

In the humanities, establishing a hypothesis requires the reaching of agreement on the explanatory

usefulness of its concepts. The discussion of hypotheses helps to clarify intuition in an area where

consensus is lacking. Without an agreed conceptual framework, scientifically testable hypotheses

cannot be framed.

In pure mathematics, we can discuss any concept in a very precise manner, without regard to

external validity. Mathematics justifies its constructed theories by their elegance, as well as

relevance to other internal problems. In applied mathematics, we aim to develop an elegant theory

and to form an analogy between its terms and the concepts of some external problem. Practical

problems can present a considerable challenge to the seeker of elegant theories.

This thesis is conceived as a study in applied mathematics. The subject is the use of notations in

software development. Its inspiration comes from a serniotic perspective on the human processes

of problem-solving in developing computer systems. These ideas will be discussed informally,

following the tradition in the humanities; from this discussion, concepts will be selected for more

precise treatment. The mathematics will allow concepts to be developed formally, so that

theoretical and experimental science can in the future make use of them.

1.3 Relation to Other Work

What other researches are relevant? Most work related to this topic is of very recent origin and is

motivated by use of computers. Notational concerns are discussed in relation to specific software

design methods, and sometimes more generally. Research into visual programming languages is

an important new development. Many projects are concerned with building effective general

support tools such as syntactic diagram editors, or compilers for visual languages. Cognitive and

logical issues are the subject of active projects researching into diagrammatic reasoning and other

aspects of knowledge representation. Techniques of graph rewriting have become an important

area of study that is applied to generalized notions of grammar. Of less direct relevance are work

on qualitative spatial theories and systems of constructive logic - which are applied to notation

description and processing. More broadly, the thesis relates to the problem of formalizing

semidtics, which has arisen out of philosophical logic traditions.

This variety of work is mostly not directed strictly at notation itself, but at concerns that overlap the

topic in some way.

10

1: Intrcducton

1.4 Overview of the Thesis

This thesis draws together notions in linguistics, logic, category theory and computing, and applies

them to the description, design and processing of formal graphical notations for computer systems

development.

Chapter 2 surveys the notation issues described in the literature, starting with a search for theories

about notational design. It attempts to discover the roles that notations play and the factors that

affect their design, especially in regard to formality and pictorial properties. It investigates the

problems and weaknesses that are reported, and how these have been addressed.

The more formal approaches that have been tried are the subject of Chapter 3, which collects

views on techniques and tools available for work with notations in the software development

context. It reports on methods of formal representation that have been used in linguistics and

applied with varying success to graphical language, and it reviews research into systems that offer

editing or other processing of notation. The techniques and approaches are evaluated and their

difficulties are analysed in order to formulate specific aims for this research.

Chapter 4 defines the chosen area of research and explores the problems identified, starting from

the viewpoint of serniotic theory. The particular characteristics of notations as symbol systems are

discussed, and an examination of linguistic researches gives evidence for a logic-based approach.

The challenge is to provide a uniform method of description for notations as layered logical

structures -a method that can support varied operations on notations. To meet this, an outline for

a 'tectonic' theory of notation systems is presented.

The topic of pictorial syntax is the focus for Chapter S. It describes a schematic notation (SIGN)

proposed for syntax definition, based on the Theory of Sketches as a logical institution; these

'sketches' are mathematical objects that are presentations of theories. As the name implies,

sketches lend themselves to graphical expression, which is in the manner of diagrams often used

by category theorists. The method of definition with SIGN is explained and demonstrated in detail

and applied to the case of Jackson's Structure Diagrams.

Other structural layers are dealt with in Chapter 6, with a view to supporting the use of SIGN in

constructing generic diagram editors. The chapter suggests possible ways of applying the tectonic

theory in depth, and addresses several topics which offer directions for further research.

11

1: Introdudon

Interpretive processes are considered and treated as systems of logical deduction; theories

needed for geometric and graphical aspects of expressions are discussed. To support editing,

mechanisms of rewriting are examined as ways of effecting changes to expressions.

Chapter 7 proposes designs for a Notation Design Assistant (AGENDA) based on the principles of

chapter 6. It then presents a more limited prototype generic tool for development of notations and

diagram editors, and discusses implementation choices. It reports on the work of partially

implementing the prototype, highlighting what has been learned in its construction. To assist in

designing a notation, the prototype allows a user to build the syntax, to assign pictorial-geometric

realizations, and to develop a simple editor.

Chapter 8 concludes by summarizing and evaluating what has been achieved in relation to the

objectives, the problems addressed and in comparison with other work. It looks forward to further

developments of the approach.

A pendix A gives examples to show how symmetry in expressions may be formally described. pI.

Appendix B treats an example of re-formulating a BNF grammar as a sketch.

Appendix C illustrates reasoning with sketches, and shows a strategy for displaying formal proofs,

with a proof about logical properties of a simple rewrite rule.

Appendlx D lists definitions of new or unfamiliar terms and concepts used in the thesis.

Appendix E briefly outlines an approach to formalizing graphical metaphors.

Appendix F lists selected Smalltalk classes and methods developed in the prototype tool, to

illustrate the design.

12

Chapter 2

Survey of Problems

Abstract

We here find a survey of views and researches into notation usage. From a historical perspective,

the survey shows that little explicit analysis of the topic exists before the advent of computers.

Early writings by mathematicians link notational concerns to the development of formal logic,

which includes the origins of the subject of serniotics. More recent attention is reported to the

study of visual languages in computing and the use of diagrams as tools for logical reasoning.

Software engineering activities and respective notations are then classified, and the survey

consults many views on notational needs and some assessments of performance. Analysis of

reported problems and weaknesses of the notations shows that the varied needs have been

satisfied in a piecemeal manner. Thus programming codes are formal but overly restricted;

requirements analysis and systems analysis are served by informal diagramming techniques,

unsupported by any clear formulation of the development process; formal specification and

refinement methods have adopted much of the style of mathematical formulae, with little concern

for ease of comprehension.

Overall there is seen to be little awareness of any theoretical principles governing notations. This

general lack of support for notation design is a cause for concern - continuing development and

invention of notations is called for in software engineering, because of changes brought about by

new technologies and applications.

A summary of issues and difficulties raised by authors yields evidence that matters of notation

design could be improved by formalization. Formal descriptions, it is argued, would bring

precision to the many stages of software development and simplify the building of computer aids

for notation. Suitable theory and science for notation structure would result in more reliable design

principles and thus better decisions about styles and characteristics of notations used. Some

possible programmes for research are suggested.

13

Chapter 2.
Survey of Problems

Confucius is often quoted as saying that a picture is worth ten thousand words -
so please never draw one that isn't. - C. A. R. Hoare (1986)

This chapter is devoted to a survey of the literature relating to notation and its place in software

development. Its purpose is to collect and analyse commentaries on the properties required of

notations. The survey starts from an historical perspective, with reports on notation problems that

originate in relevant topics of mathematics. An overview of our chosen context is then provided,

briefly classifying software engineering activities and their notations - after which the survey

consults many views on how notations perform in the practice of system development. The writers

selected have reported on problems and weaknesses recognized, and on how these have been (or

could be) addressed.

In all this material we seek to discover how important notations are, what roles they play, and what

are the factors that affect their design. We look for stated principles of design, In particular

opinions on formality and pictorial form. From these reports, we can analyse the issues raised and

summarize the problems and concerns. What kinds of problem do people encounter when

designing or using graphical notations?

2.1 The Study of Notation Systems

It is remarkable that there is no tradition of theoretical study dedicated to the specific subject of

technical notations. In view of this lack, we instead take note of the reported views of early

researchers in mathematical logic. In addition, we note that there is current of theoretical interest,

in areas such as the use of diagrams as tools for logical reasoning.

This material provides us with a suitable perspective from which to appreciate the notational needs

in the chosen context of software development.

2.1.1 Historical Material

It is appropriate to begin with a rare commentary on the concerns of past mathematicians who

wished to notate formal logic - important as a pre-cursor of computing - in a tradition that holds

15

2: Survey of Problems

the origins of the subject of semiotics.

2.1.1.1 Mathematical Notations

One of the few writers on the subject of notation is Florian Cajori (1929), who devoted two

volumes to reporting their history. Cajorl was surprised to find only one previous book on the

subject, and suggested the reason for lack of studies might lie in social context: that the

mathematician could not depend on commercial enterprises to exert a mcompelling influence"

towards uniformity, as they had in science and technology. 1 This historical work is a source of

quotations that are reminiscent of some present day concerns and complaints which are reported

later in the chapter. In the following extracts, we hear the voices of those early mathematicians

who expressed their own aims and principles in constructing notations. All were pioneers in logic

and many had experimented with graphical notations.

Cajori draws our attention to LeibniZ, 2 who in 1677 advocated the search for a universal calculus

of logic: a medium of notation to act as a guide for solving problems, just as the laws of arithmetic

support calculation and line drawings aid the work of geometry. Leibniz' vision was not realised

until the twentieth century.

In the nineteenth century, notation for logic became an important issue. Augustus De Morgan was

concerned about the way that notation had developed without proper consideration, and observed

that resemblance, analogy and abbreviation were involved. He preferred simple pictorial notation

where possible, and proposed some principles for its design3: it should preserve familiar

associations, but be free from unnecessary distinctions and ambiguity, so that difference in

1 'rho mathematician cannot depend on Immense commercial enterprises involving large capital to exert a compelling Influence

such as brought about the creation and adoption of a world system of electric and magnetic units. 0 (Cajori 1929 p348 §749)

2"The true method should furnish us with an Arladne's thread, that Is to say, with a certain sensible and palpable medium, which

will guide the mind as do the lines drawn In geometry and the formulas for operations, which are laid down for the learner of -

arithmetic. ' (Cajorl 1929 p283) (Philosophischo Schriften von Leibniz, VII; C. I. Gerhardt, Berlin 1890 p22]

3"DIsfinctions must be such only as are necessary, and they must be sufficient ... The simplicity of notative distinctions must bear

some proportion to that of the real differences they are meant to represent... Pictorial or descriptive notation Is preferable to any

other, when It can be obtained by simple symbols... Legitimate associations which have become permanent must not be

destroyed, even to gain an advantage .. 0 (Cajorl 1929 p327 §713)

16

2: Survey of Problems

symbols would match difference in referents. Alexander Macfarlane (1879)4, however, criticized

the notations (of Boole and De Morgan) for a lack of computational rigour, and blamed the failings

of formal logic on its dependence on pictorial notation unsupported by any investigation of the

nature of pictorial symbols and laws of manipulation.

At the end of the century, Gottlob Frege originated the earliest formulation of Predicate Calculus,

inventing his own pictorial notations, which were entirely Individual and unfamiliar. He was aware

of the dangers of his ustrange-looking formulas". Cajori comments that early neglect of this work

had been attributed to its "repulsive symboliSM05.

Cajori's conclusion was that the problem of creating efficient and uniform notation was serious for

mathematicians. He regarded symbolic logic as the major approach to a uniform and universal

language in mathematics, but noted that workers in the field had tended to be individualistic: -

*A question - No topic which we have discussed approaches closer to the problem of a uniform and
universal language in mathematics than does the topic of symbolic logic. The problem of efficient

and uniform notations is perhaps the most serious one facing the mathematical public. No group of

workers has been more active in the endeavour to find a solution of that problem than those who
have busied themselves with symbolic logic - Leibniz, Lambert, Do Morgan, Boole, C. S. Peirce,

Schroeder, Peano, E. H. Moore, Whitehead, Russell. Excepting Leibniz their mode of procedure has

been in the main individualistic. Each proposed a list of symbols, with the hope, no doubt, that

mathematicians in general would adopt them. That expectation has not been realized. What other

mode of procedure Is open for the attainment of the and which all desire? " (Cajorl 1929 p314 §699)

Since Cajori's day, there have been changes: Commercial pressure's have arisen for improvement

and standardization of notations - in the software industry. Owing to computers, much obscure

notation in mathematical logic has emerged into the industrial daylight. Mathematics itself has

gained two candidates for a universal foundation, in the shape of Set Theory and more recently

Category Theory, but their notation is far from standard. Yet much has remained the same to the

4[commenting on George Boole (Laws of Thought 1854) and Do Morgan (Formal Logic)): 'rho reason why Formal Logic has so
long been unable to cope Wth the subtlety of nature Is that too much attention has been given to pictorial notations. Formal Logic

cannot be developed On these crudely expressed notations] because the nature of the symbols has not been Investigated, and

laws of manipulation derived from their general properties! (Alexander Macfarlane, Principles of the Algebra of Logic, Edinburgh

1879 p32] (Cajod 1929 p291)

SFrege admits: 'Even the first Impression must frighten people away: unknown signs, pages of nothing but strange-looking

formulas. It Is for that reason that I turned at times toward other subjects. 0 [Fundamental Laws of Arithmetic; Monist XXV;

Chicago 1915; p491) (Calod 1929 p295)

17

2: Survey of Problems

present day. Theoretical work on logic (for computation) is a source of notational innovation as it

continues to push at the boundaries of the subject, while those practitioners of software

development who find most need for notation still largely approach the problem as if they were the

first to do so - as we shall see below (§2.2.2).

2.1.1.2 Diagrams, Logical Reasoning and Semlotics

Diagrams have a long history In mathematics. In ancient Greece, Reviel Netz informs us, the

word Ataypagl. La means 'proposition' or 'proof' (Netz 1996); the drawing of diagrams was the

central practice in mathematical reasoning. The greeks, he considers, did not develop symbolic

expression; rather their formulaic language was based on an oral tradition, of arguing in the

context of a diagram. The diagram had the role of an "inter-subjective object" supporting

communication: NThe one fixed, solid object in Greek Mathematics is not the word, but the

picture. '

Closer to our own era, but long before logic was codified, Leonard Euler (1707-1783) developed

graphs and circle diagrams as aids to reasoning. The better known Venn diagrams extend Euler's

circles into a more expressive form - as recently analysed by Shin Sun-Joo (1994,1996) and In

(Hammer & Danner 1996).

It was not until late in the nineteenth century that full expression of first-order logic (FOL) became

possible, through the work not only of Frege, but of an important pioneer of mathematical logic,

the philosopher Charles Sanders Pelrce6. Unlike the now established predicate calculus notation

in mathematics, both are pictorial.

Peirce superimposes a hierarchy of nested "contexts", denoted by closed boundaries, on a relational

network whose nodes denote individuals (Hartshorne & Weiss 1933 vol. 4 book 2; Roberts 1973). The

regions in between the nested curves change between negative and positive each time a boundary is

crossed, encoding the alternate existential and universal quantification of the enclosed individuals.

Frege's conceptual notation (Frege 1972) displays a binary tree of implications, with variables bound to

edges as universal quantifiers.

Peirce's Existential Graphs are the subject of a book by Roberts (1973), and papers on Peirce's

logic can be found in (Houser et aL 1997); also see (Hammer 1996). Annual Peirce workshops

6pronounced purse, according to J. F. Sowa.

18

2: Survey of Problems

have been held in association with the International Conference on Conceptual Structures7 (Ellis

et at 1992, Levinson et al. 1993, Ellis et at 1994)

Peirce was a prolific innovator. He also developed a calculus of binary relations, recently studied

and extended by Vaughan Pratt (1993) in connection with the logic of concurrency. We find

generally that such systems continue to be the basis for many modern notative methods in

mathematics and computing, perhaps because computer technology has grown out of the

mathematical progress in understanding of logic and calculation. Nevertheless, experts in these

fields often prefer formulae to diagrams. 8

Peirce is regarded as the originator of the subject of Semiotics: the study of sign systems

generally. He took a specific interest in the practical problems of mathematical notation (see

Hartshorne & Weiss 1933; Hardwick 1977; Peirce 1984). Despite this, most writings on serniotics

arise in the Humanities, and take an informal approach that avoids technical detail (e. g. Saussure

1916; Barthes 1967). Serniotic concepts have no agreed formal definitions or mathematical

models, 9 and Peirce's work has not been followed up with a full treatment of complex systems of

present day mathematical language.

2.1.2 Recent Studies

Although apparently so little current work is expressly dedicated to the topic of notation, there is an

increasing interest in its different aspects, and especially in cognitive studies. Here a variety of

research directions are reported.

2.1.2.1 Laws of Form

In a similar spirit to Peirce's explorations, an innovative approach to propositional logic notation is

adopted by George Spencer Brown (1969). Stemming from his work, some researchers have

espoused a 'minimalist' philosophy of mathematical notation, known as "boundary mathematics"

7The proceedings of these workshops are electronically available. The author Is Indebted to J. F. Sowa (by electronic mail) for

supplying this Information.

8Evidence for the latter can be found In any advanced text on these subjects. Some writers are explicit about this, e. g. Hoare

(1986).

9- If we exclude the approach via systems theory, which Is not relevant to this thesis. Note, however, that recently published work

by Goguen (1997) remedies tNs; see (§8.2.1).

19

2: Survey of Problems

(Bricken & Gullischen 1989, Kauffman 1988, James 1993). Although of tangential interest to us

here, these systems have found application in the study of biological serniotics by Francisco

Varela (Varela 1975,1979).

2.1.2.2Wriften Mathematics

A few authors have begun to pay attention to how mathematics is written. Edwin Coleman

(1990)10 associates the "certainty and independent veracity" of mathematics with its use of

notation, and he advocates the consideration of cognitive requirements and consequences of

notation and diagram within mathematical prose, which he feels has never been treated seriously

in philosophy. Bagchi & Wells (1994) have analysed prose styles; (Wells 1994) contains detailed

proposals for making mathematics text more communicative. These pieces of work do not have

much to say about diagramming.

2.1.2.3 Higraphs

Graphical notation has been addressed by David Harel (1988). In his work on diagrams for system

development, Harel extends the ideas of Euler and Venn. He points out that Euler's circles, which

represented logical propositions, rely on the (more recent) Jordan curve theorem - which states

that every simple closed curve in a plane- divides it into an inside and an outsidell. The

overlapping circles can convey set-theoretic notions, as applied by Venn. Harel proposes

diagrams that he calls Higraphs to be used for various descriptive purposes, such as for

databases, knowledge representation, and for the behaviour of complex concurrent systems using

Statecharts (Harel et aL 1990).

Higraphs modify and extend graphs and circles to systems of closed curves connected with multiple
links, enabling the Cartesian products of sets to be represented, for instance. In activity charts the

enclosures represent functions and subfunctions; edges denote dataflow.

1 O'In the philosophy of mathematics, discourse In english, the epistemological significance of diagrams, of the difference

between speech and writing, and of the difference between Word and Notation are all quite generally dismissed Me

objectivity of mathematics, like its certainty, Is largely bound up with the use of [notation and diagrams) ... Its veracity Is

Independent of the reader's opinion ... If we can understand better why these effects are necessary and how they work, we can

put mathematics In Its proper place. " (Coleman 1990)

1 1This theorem Is more subtle than It seems; it states more than Is needed for the very smooth curves with few changes of sign

In curvature that are involved in practical notations.

20

2: Survey of Problems

Statecharts are intended to answer the known problem of representing specification and design of

large complex reactive systems. Harel acknowledges they are unable to represent easily both set

inclusion and set membership, except by means of special edges, since two different kinds of

insideness are required.

Harel's motivation lies in the observation that the systems to be represented are complex - being

composed of many sets that are related in nontrivial set-theoretic ways. His declared interest is in

non-quantitative, structural, set-theoretical and relational information, notated by "topovisual*

means in which geometric shapes, locations, distances have no significance. He claims that a few

simple diagrammatic topological notions provide an effective means of representing systems.

From this perspective he discusses notational principles in Entity Relationship Diagrams,

Semantic and Associative Networks and Data-Flow Diagrams, noting that graphs are used

extensively in computer science. He judges that hypergraphs are less common because they are

hard to draw.

Although he has a particular target, Harel remains one of the few researchers to take a broad look

at notational problems in a software context, in order to justify his proposals. We would hope for

some more theoretical and empirical evidence. Despite the interpretation of diagrams in set

theory, Harel does not otherwise attempt to formalize his notative techniques; this task, however,

is taken on by Hammer (1993).

2.1.2.4 Visual Language Research

The recent popularity of so-called "visual programming*12 and visual language in computer

interfaces generally (Chang 1994), has led to increased theoretical and practical interest in

construction of graphical notation. Tim Menzies (1995) makes an exploration of this "emerging

field". His paper presents two overview frameworks: theoretical and evaluative, covering cognitive

approaches and empirical studies of language use. It discusses in detail the kinds of expression,

purpose and design of visual programming systems - in which scripting is not required. Such

systems are held to require a semantic base, a syntactic base, and a set of basic constructs.

Menzies emphasizes a connection between data-flow models and production rules.

12Whilst 'visual language' clearly contrasts with "spoken language", It Is hard to see why 'visual programming' should be

opposed to textual (verbal) programming, which Is also conducted visually.

21

2: Survey of Problems

He quotes the results of (Goel 1992) who tests the use of "ill-structured diagramso in solving poorly

structured problems found in early system-design stages. Other empirical researches (Green et aL

1991, Moher et aL 1993) reach similar conclusions, namely that different diagramming techniques

are useful for different stages of the design process. Menzies quotes: -

"Not only Is no single representation best for all kinds of program, no single representation is ...
best for all tasks involving the same program. 0 (Moher etaL 1993)

Menzies (1995) quotes some empirical studies by Kindfield (1992), into use of diagrams in biology,

which support the view that:

"[diagrams) serve as an external storage device that frees working memory, allowing for the

performance of additional cognitive tasks during the pause when the problem solver is looking or

touching the diagram.

Many of the visual systems that Menzies discusses are not based upon notations in the sense of

this thesis. He applies two criteria: (1) A visual programming system uses at least two dimensions

to represent its constructs, which must be executable. (2) The specification of the program must

be modifiable. "A very useful feature of a visual programming system is direct manipulation".

Menzies discusses ways of analysing visual systems. He describes the work of Shu (1986), who

defines a Triangle on three criteria:

visual extent (the Intricacy of the visual modality employed),

language level (high if more effective abstract instructions are offered)

scope (generality, absolute limitations on expression abstraction)

Though Menzies finds these useful, experience with students leads him to conclude that it is

unwise to compare the scope of systems with a different semantic base, and that languagelevel

should be measured using subjects who have already been trained.

The range of structures treated in this thesis is more restricted than "visual language" generally.

We draw a distinction between visualization of structure encoded in a computer, to help viewers'

comprehension, and graphical notation used by a person to express ideas. Notations must control

size, layout and complexity of symbols, so that they may be hand-drawn during a design task.

Vinod Goel (11992) is one of the few researchers to introduce an awareness of the design process

into the discussion on software notations. In another context of design studies, the author (Godwin

et aL 1997) has analysed the reasons for varying needs of representation at different stages of

22

2: Survey of Problems

design practice. In this thesis, however, we shall put praxeological13 concerns to one side.

2.1.3 Visual Reasoning

There is now an active area of research into human ability to reason with diagrams (e. g. Glasgow

et aL 1995; Hammer 1996; Allwein & Barwise 1996). This has partly been prompted by the

software industry's problems with human factors in the design of computer system interfaces,

where complex information must be displayed. It is also the result of success in using computers

to help visualize information (Barwise and Etchemendy 1996).

2.1.3.1 Diagrammatic Reasoning

Zenon Kulpa, in his extensive survey of diagrammatic knowledge representation and reasoning

(Kulpa 1994), regards this as "one of the most rapidly growing areas of research in artificial

intelligence, O - though surprisingly late on the scene. Kulpa emphasises the distinction between

diagrams as analogical and text as propositional representations. He describes the traditional

view: -

OMathematics has been generally ruled by an implicit dogma stating that propositional reasoning

using logic is the ultimate tool of precise and formal thinking. Many mathematicians tend to use

diagrams ... as heuristics to prompt certain trains of inference, but mostly only as Informal aids to

understanding for uninitiated... some of them explicitly stated that the diagram has no proper place

in the proof as such. 0

Taking a cognitive focus, Kulpa summarizes the advantages of diagrams, based upon papers of

Larkin & Simon (1987) and Koedinger (1992)

Locality aids knowledge and problem search

There is less necessity for symbolic labels

Diagrams allow easy realization of perceptual inferences

Certain inferences are already present in a diagram [as emergent properties].

We notice that this survey places the study of diagrams fully within the domain of cognitive

science. A number of researchers choose the same perspective. Work by Keith Stenning (1994)

and others has established a way of evaluating diagrammatic reasoning methods which tries to

address cognitive constraints. One aspect of these studies is the analysis of differences between

textual language and diagrams, in order to establish why and when diagrams assist reasoning

131.8. the theory of practice (of using notations In software design).

23

2: Survey of Problems

(Stenning & Obedander 1992).

2.1.3.2 Media and Modalities

Stenning & Tobin (1994) define media as the physical / perceptual aspects of representation

systems, and modalities as kinds of interpretation function. Hence text and diagrams are in the

graphical medium, though they differ in modality; braille and text are different media but the same

modality. Their paper aims to give a general account of the cognitive effects of assigning

information to different modalities. With the advent of new media, they regard this as an important

practical problem; research will be useful if it helps avoid poor designs or speeds up the process of

presenting information.

2.1.3.3 Specificity: Direct Analogy In Diagrams

For Stenning & Oberlander (1992), the crucial feature distinguishing graphica114 and linguistic

representations is specificity: graphical representations compel the specifying of certain classes of

information. The specificity found in diagrams results from the exploitation of homomorphisms

(structure-preserving maps) - which Goodman (1968) placed the at the centre of his theory of

graphical semantics. Specificity is also employed in natural language discourse conventions, but is

not a feature of logical languages. Visual languages that are based on semantic networks also

appear to enforce few specificities. Their report contends that diagrams are easy to process

because they limit abstraction - hence their widespread use.

Related research (Lee et al. 1991) asks what combination of graphics and language is optimal for

particular information processing tasks. The paper finds that many features of natural language

discourse can be seen as intermediate between logic and graphics (Klein 1987, Oberlander &

Stenning 1990). It notes the view (expressed in Tennant 1986) that pictures and diagrams are

little more than expository aids, having no place in fully formal treatments of mathematics and

logic - which Barwise & Etchemendy (1990a, b) challenge on the grounds that diagrams are

sometimes a major aid to theorem proving. The paper draws attention to the "total mappings of

identity" that occur in graphical representations, instead of the abstraction favoured in text. It

14We note that their theory avoids emphasis on the particularly visual; it applies equally to blind reasoners using embossed

diagrams (e. g. tactile Venn diagrams have been used). This contrasts favourably with the imprecise use of the term 'visual* that

we have found elsewhere.

24

2: Survey of Problems

relates this specificity of diagrams to the properties of cognitive images and the components of

working memory.

Stenning & Oberlander (1992) have undertaken a study of Euler Circles. Based on the analogy of

spatial containment, in reasoning these are distinctive in exploiting constraints on movement. This

kind of continuity introduces temporal specificity: the Nmechanical" constraints on discs in a plane

helps navigate around the space of models. They refer to the work of Hinton (1979,1980) who

argues that such continuity underlies our ability to solve visualization problems. The later paper

(Stenning & Tobin 1994) extends this work on Euler's techniques. By comparing several

alternative representation systems for syllogisms in detail, the paper explains that the advantage

of Eulees Circles lies in their lack of expressiveness. Accordingly, they seek to define a distinction

between language and graphics, based on the analogical directness of the representation (see

Stenning, Neilson & Inder 1993).

In a similar vein, other researchers find that logical approaches to these cognitive concerns are

useful. By considering homomorphic mappings in representation systems, Gurr (11996) is able to

provide a precise definition of the kinds of similarity that occur between the structure of

expressions and the domain they represent.

These interesting avenues of research provide important insights into notation usage, that we will

come back to in Chapter 4.

2.2 Notational Practice in Software Development

This section collects reports of the many views on notations in the practice of software

engineering, in order to find out how the attributes of notations may be related to their

circumstances of application. Our interest is in interplay of various factors - the participants, their

subject domains, and the notations in various styles that play certain roles in their activities - and

in the problems that occur. We will then be in a position to analyse where research in notation

may be able to help.

2.2.1 A Preliminary Classification of Notation Use

In the absence of theory about software notations, our objective here is to classify simply the tasks

of software development where notations arise, and correlate these with the kinds of notation and

25

2: Survey of Problems

subject areas. This classification does not claim to be complete or definitive, but it will help in

giving shape to the succeeding collection of reports, and in setting the scene for the ensuing

investigation.

2.2.1.1 Notation for System Design and Software Development

We do not here concern ourselves with questioning the nature of the software design process,

which is traditionally described as a sequence of problem-solVing phases.

We start by listing the notational needs associated with each phase. The first phase is the capture

of requirements, which may employ knowledge representation notations - or a 'soft systems'

approach which encourages rich pictures for discussion of issues in the physical and social

environment (Checkland 1981). Next comes system specification, the activity of logically defining

required properties, that may involve formal specification languages, or a variety of less formal

representations. The body of design and development activities often then rely on structural

diagramming notations. Where appropriate, *formal methodsm of development may be applied;

they call for the notating of proofs, refinement of specifications and program transformation. At

the detailed end of software construction, programming languages can represent data structure

and all operations upon data.

Peripheral to these activities, there are two more areas of application. The end-users may need a

developed system to incorporate their own notations - e. g. specialist professional notations, or

visual schematic notations incidental to an operative interface. Lastly, the organization and

management of large software projects may be assisted by operational charts or other notation to

express progress and version control.

These uses are summarized in the table: -

Area Kind of notation Subjects

Requirements Knowledge Representation General

Specification Formal Description Techniques System properties and functions

Development Structural Diagrams System structure
Formal Methods Logical Calculi Refinement and program transformation

Implementation Programming languages Data structures and operations
User Interface Users'graphic notations Users' specialisms, System context

ff Project Management Operational charts Organizational structure

26

2: Survey of Problems

2.2.1.2A Classification of Software Engineering Notations.

Below is devised a short list of some notations used in software development, this time in an order

that approximately reflects the history of growth in the industry. We shall not attempt to review

these notations, of which there are hundreds, in specific detail. Also outside our brief lie the

specialisms of end-users and, marginally, hardware design notations.
Hardware Design: Logic Circuits, Timing Diagrams

Programming Codes:

Assembly codes
Textual Programming Languages

Visual Programming Languages

4GLs, Visual Basic, ...
Programming Aids:

Decision Tables

Flowcharts (PFCs)

Nassi-Shneidermann Diagrams (NSD)

Structure Aids:

Entity-Relation Diagrams (ERDs)

Dataflow Diagrams (DFDs)

State Transition Diagrams (STDs)

Petri Nets (PNs)

Statecharts; (SC)

Methodologies:

SSADM

Jackson Method:

Structure diagrams (JSD)

System Specification

System Implementation

HOS: Control Maps, Dynamics Graphs

MASCOT System Diagrams

Object-Oriented: HOOD, MOON, UML

Databases: Query Languages

Knowledge Representation: Semantic Nets, Conceptual Graphs

Formal specification: Z, VDM; OBJ;...

Concurrent Formalisms: CSP, CCS, LOTOS,

This list furnishes us with a simple guide for the following reports.

2.2.2 Activities and their Notations

The comments collected here are chosen to reflect areas of concern within the varied tasks and

27

2: Survey of Problems

situations of software engineering practice. They comprise reports upon requirements for

notations and practical assessments of languages employed. The reports are arranged in the

historical order in which development activities have become important, as a result of the

increasing size and complexity of systems.

2.2.2.1 Languages for Programming

Programming languages are a large, well-established and well understood class of notations

adapted to purpose. Jean Sammet (1991) reflects that there is relatively little documented history

of the thousand or more that have been created. They satisfy varied "functional needs" such as:

specialized application areas, different capabilities of user (novice or expert), interactive uses,

compatibility with other systems, and demand for a large or small number of features - but the

main cause of this diversity15 is judged to be "the personal needs and interests of people".

We find here that arguments about appropriateness of different languages tend to focus on

semantics rather than syntactic style. General issues of expressiveness ("ontology") have for

instance been studied informally by Harland (1984,1986). It is however not usual for

programmers to know about the formal semantics of a language. Even so, textual programming

language design has benefitted from extensive theoretical study of syntax and semantics. This

will not be detailed here, but is touched upon in the next chapter (§3.1).

2.2.2.2 Visual Programming

Though most programming languages are textual in style, graphical forms of -notation such as

Flowcharts have long been used as less formal ways of expressing program structure. Nassl-

Shneiderman diagrams provide one of the first examples of a graphically supported programming

notation (Nassi & Shneiderman 1973). Nowadays the almost universal use of graphical interfaces,

makes possible many "Visual Programming Languages" that involve interactive techniques rather

than simply notations.

Cook & Masnav! (1988), in considering how to make the behaviour of. software more accessible to

end users, propose graphical methods in programming as a design appropriate for non-

programmers. These are suited to programming User Interfaces, where specification of dialogue

1 5"... the subject of language design Is often a matter of intense debate; In my judgment the bottom line is still that personal

opinion plays a much stronger role than any other factor In language design and development* (Sammet 1991)

28

2: Survey of Problems

In a textual language is "an inconvenient and time-consuming task even for experienced

programmers".

Brad Myers (1988) classifies programming systems which use graphical representation, and

identifies several difficulties: -

(a) Large programs or data could not be easily displayed or viewed, owing to a lack of abstraction

mechanisms.

(b) Absence of formal specification might be remedied by some form of graphical grammar.
(c) There was no evidence of worth, in terms of ease and efficiency of use.
(d) Representations were poor, with graphical code hard to understand and edit.
(e) Automation of layout was needed.

He offers the conclusion that for general-purpose programming Py professional programmers,

textual languages are more appropriate.

According to Menzies (1995), evaluation of visual programming systems is an open issue. He

notes a tendency to claim superiority for visual systems (superlativist claims In the sense of Green

1991), but finds that although studies suggest there is some inherent utility in visual expressions,

experimental evidence yields numerous contradictory results. He judges that for some of these

discrepancies the crucial factor determining the value of a representation Is not its superficial

appearance, but its relevance to the task at hand. OskOdarli & Dinesh (1 995a) note that there are

significant concerns regarding success of visual languages, which by consensus are best suited to

special purposes within applications.

2.2.2.3 Diagrams in Structured System Design methods

The process of designing programs has often been informal and individual16, according to Martin

& McClure (1985), whose book is something of a manifesto for structured methods and graphical

notation. Structured design is intended as a more rigorous approach to software development,

which concentrates on describing how a system operates, functions or behaves at various levels of

abstraction and detail. As well providing help to programmers, the approach aims to improve

accuracy of requirements by greater involvement of users.

The "traditional" structured techniques are associated with the names Constantine, Yourdon, De

16'There tends, however, to be less formality In programming, perhaps because It Is a young discipline full of brilliant people who

want to make up there own rules. " (ibid. ch9 pl 10)

29

2: Survey of Problems

Marco, Jackson and Warnier-Orr. They are described (ibid. ch. 1) as a remedy for unsatisfactory

results with early programming languages, especially for large programs. In applying the

techniques, computers are to be employed at every stage of development, replacing the craft of

programming by code-generating tools, with the goal of automatically verified design. There are

four basic principles in a structured approach: -

Abstraction, to simplify general form by omitting detail;

Founality, by a rigorous methodical approach;
Divide-and-Conquer, to treat Independent subproblems; and
Hierarchy, to introduce more detail at each level of development.

Development is driven by diagrams, depicting overview systems analysis, program architecture,

program detail, data structures, database models and file structures. Principles of good

diagramming technique are listed: -

They are easily manipulated on screen;
End users can read and draw them;

They are printable on normal paper, or hand-drawn less elaborately;
They avoid mnemonics and unexplained symbols;
Complex diagrams can be analysed into easy modules;
Overview and detail diagrams are similar in structure.

The book (ibid. part 111) discusses informally many diagramming techniques and their problems,

giving a practical guide to achieving good communication. Rigorous use of diagrams is the

proposed way to remedy the poor communication that is seen as a major cause of errors and

expense in software design (ibid. ch9). Fully involving the end-user is Nvitally important", hence

notation must begin with "user-friendly sketches that the users can draw and argue about. " (ibid.

ch2), so that the notation fulfils an instructive role: *The users should be taught to think about

systems with clear diagrams. *

Development proceeds by steadily refining these sketches into rigorous designs in a natural

manner with computer assistance, but without using a fundamentally different representation or

programming text, until code can be generated. Formality is to be provided in malhematical and

automated support for diagramming notations, which are seen as a step towards formalization of

the development process. The use of formulae that permit axiomatic verification are "not

necessarily user-friendly" and therefore not a part of the methods described.

30

2: Survey of Problems

Although the book emphasizes diagramming, we find that it does not completely avoid text.

Labelled tree-structures are shown to be most conveniently notated as indented text, and the

proposed Action Diagrams apparently amount to little more than graphical annotation of program

text. Despite its stress on rigour, the book gives no formal syntax or semantics for any of the

notations it describes.

2.2.2.4 Requirements Specification Notations

The need to introduce rigour early in the life-cycle and reduce the errors in defining end-users'

requirements has led to an interest in specification languages. The argument in this area has

been about the need to use formal notation rather than natural language. Gehani (1985) notes the

inadequacies of informal specifications of systems, which "while easy to read, tend to be

ambiguous, incomplete, imprecise and overspecific. "

Zave & Yeh (1985) describe the specification document as the major channel of communication

for development. It "synthesises a collective understanding" of the problem to be solved, forming

the basis of a contract. It should therefore be: "precise, unambiguous, internally consistent,

sufficiently complete, ... not over constrained", in language that is understandable and modifiable

with support of integrated tools for synthesis and analysis, that may assist formal manipulation for

verification, and testing for acceptance. Jones (1990 p46) emphasizes that specification

expresses what the system is intended to achieve: maintaining relationships while obeying

constraints.

Balzer & Goldman (1985) require Specification Languages to provide means to represent a

dynamic model of the system's environment, that expresses data uniformly as relations among

objects, independent of their representation, and with facility for descriptive reference.

Techniques are to allow specifying by extending analogous concepts. They do not consider syntax

needed to achieve this.

Tse & Pong (1991) describe the features of specification in natural, formal and graphical

languages that are desired by other authors. They write that notations should enable one to

Panalyse and manipulate a model abstracted from the real world, " in order to produce a solution.

This abstraction must be easily understood by all concerned; the use of familiar language would

also help reduce staff or management resistance. They admit that natural language text improves

31

2: Survey of Problems

user understanding, as it gives better persuasive power and freedom of expression in the initial

phases where there is uncertainty; however ambiguities are caused, and there are unsolved

problems in' manipulating it. Thus in engineering, diagrams and mathematics are used because

they are more easily manipulated than verbal descriptions; and diagrams may be converted to

equations. The need to transform one representation into another prompts them to prefer formal or

mathematical text, which is to be explained through natural language. Formal correspondence

between the various syntaxes of both formal and informal versions must be maintained.

They see graphical language as more comprehensible because its two dimensions help express

hierarchy and parallelism, and graphics can be read selectively rather than in sequence. Provided

there are not too many symbols, the reader can focus on overall structure before inspecting

details. They therefore propose hybrid notations that combine graphical languages best for

overviews, with formal text preferred for detailed description.

They claim that complexity is the main barrier to understanding, and propose to overcome this

with the following structural norms, which aim to improve conceptual clarity: -

Separation of concerns, essential versus physical;

multi-level abstraction, hierarchical 'top-down'visualisation;

structuring requirements into parts that are easy to modify;

language to allow a natural and logically verifiable process of refining systems Into subsystems;

self-contained Subsystems with minimal Interfaces between them.

In order to support the necessarily different models, depending on environment, emphasis and

stage of development, several very different notations are usually required. Hence they propose

the ability to transform between styles/ notations with respect to their mathematical semantics, but

without exposing untrained users to unusual symbols and jargon. These conclusions are echoed

by the views of Cohen et A (1989), who write: -

"Debates are held on such topics as graphics versus text, readability, ease of use, ease of learning

and compatibility with existing tools. However little consideration seems to be given to the roles of

such languages in the design process or to the relationships among the descriptions of systems

expressed in them. '

Guttag & Horning (1985) report on their own experience of creating a specification, which was

facilitated by inventing notational shorthands. As designers they found this compactness in

notation greatly helpful, but it was a hindrance for uninitiated readers, who were therefore offered

32

2: Survey of Problems

an easier yet semantically equivalent style in their paper. They infer a need to "maintain

semantically consistent, but notationally distinct versions of the same specification. " Also Zave

(1985) highlights the need for different styles of notation to suit non-technical participants, and

looks forward to tools which derive simpler reports and diagrams automatically.

These various reports reflect a desire for rigour to cope with complexity, but they focus upon

system design requirements rather than syntactic requirements.

2.2.2.5 Formal Methods

In opposition to the popular emphasis on diagramming, Hoare (1986) proposes a professional

engineering approach based on explicit mathematical laws. He does not approve of the use of

pictures such as flow charts, because they "inhibit the use of mathematics in programming".

Hoare views a specification as an abstract program, that will be refined formally into a concrete

implementation. This abstract program (which may well not be executable) delimits the set of

alternative acceptable systems, and requires Othe full range of concepts and notations of

mathematics*. We infer that specifying is a more complex task than describing behaviour of a

single system.

Cohen et aL (1989) likewise observe the need for 'sound scientifically based formal methods" to

transform software development from its 'craft' status into a true engineering discipline. For this

purpose, they propose that languages must "possess the primitives and constructors necessary

for the expression of complex models, together with semantic definitions, calculi and proof rules

which permit the properties of such models to be deduced. "

Goguen (1985) prescribes that a specification language have a formal definition in terms of "some

underlying logical language having a precise mathematical semantics and a set of inference rules

which is consistent and complete", if it is to serve in formal verification.

Notation for methods based on mathematical logic is rarely graphical; we find few diagrams used

in standard books on formal development (e. g. Jones 1990; Dijkstra 1990; Potter et aL 1991)

where they are mostly confined to informal illustration. Many formal specification notations make

little use of diagrammatic features, with the minor exception of schema-boxes in Z specification.

Formal diagrams have found more of a role in describing concurrent and communicating systems:

for example Petri Nets, which rely on graph theoretic formalisms.

33

2: Survey of Problems

As with the previous, these writers express the need for underlying logical formulation, but only

formalize the notations in a limited way, that disregards its graphical characteristics.

2.2.2.6 Knowledge Representation

Formalizing the requirements specification may be seen as a problem of Knowledge

Representation. This topic is studied in the context of databases with inference mechanisms, and

construction of query languages (Brodie et aL 1984). They identify three approaches: semantic

networks, production systems and logical schemes. Mylopoulos & Levesque (1984) report that

methods of representation suffer the drawback of lack of formal semantics and standard

terminology.

2.2.2.7 Conceptual Graphs

We have noted above (§2.1.1) some of the early attempts to find a graphical notation that can

serve as a logical language. These techniques have in recent years been further investigated and

extended, by John F. Sowa and others - with the aim of allowing requirements to be formalized in

logical propositions and expressed in diagrams. Sowa (1984) uses ideas of C. S. Peirce and

semantic nets (Sowa 1991) to design a pictorial language which he claims to be formalizable.

Conceptual Graphs are a typed (sorted) version of Peirce's existential graphs; they provide a basis

for organization of knowledge, formal and informal logical inference and computation. He draws on

research in cognitive psychology to support his method, and invokes Hintikka (1969) to extend

Peirce's techniques to modern logics. Sowa recognizes the need for lambda-abstraction in his

notation, but does not give a pictodal expression for this.

Sowa provides a clear indication of an equivalent textual form for his Graphs. We do not find a

formal treatment of his notations, though elsewhere he alludes to graph grammars as a possible

formalization (Sowa 1979). Sowa encodes negation as a property, rather than a modifier, of a

sentence; although this works in practice, it seems less elegant than Peirce's version.

Loucopoulos & Champion (1990) apply Conceptual Graphs to the early requirements analysis,

which must tolerate informality of expression. They find that the Graphs provide an unifying

representation formalism for the user's concepts, and avoid confusion with the semantics of the

development method. Application of Conceptual Structures has also been the subject of several

conferences (Tepfenhart et al. 1994; Ellis et aL 1995).

34

2: Survey of Problems

The system of Conceptual Graphs is a rare example of how formulae In predicate logic can be

diagrammed. It is a complex notation, however, with hierarchical enclosure of sub-graphs used for

modal statements and negation. Interestingly, the graphs have topology not unlike Harel's, despite

a very different semantics. Whereas Harel uses them for a variety of specific semantic purposes,

Conceptual Graphs have uniform underlying logic, in which the depth of nesting shows the logical

complexity of the expression.

Most of the authors quoted above have given consideration to the suitability of notation for a

particular type of task, without proposing any integrated approach to notational problems - other

than increased rigour and more use of graphics.

2.2.3 Reviews of Notations

In addition to these general views, there are a few studies of the adequacy of particular notations.

Alan Davis (1988) compares specification techniques and commends the simplicity, applicability

and elegance of some of Harel's notational techniques in Statecharts, which are expressive and

compact. Even so, he concludes that the more sophisticated rigorous graphical notations such as

Petri nets, PAISley and Statecharts are much more difficult to comprehend for non-professionals.

Harel (1988) himself expresses enthusiasm for the future of visualization, predicting that daily

technical language will be Inherently diagrammatic, perhaps also three-dimensional and animated,

to encourage both old and new visual modes of thinking when tackling systems of ever-increasing

complexity.

Tse & Pong review (1991) several languages in computer-aided software development (PSL,

SADT, EDDA, SAMM, HOS, RSQ, which they mostly find to satisfy the list of structural criteria

quoted above (§2.2.2). Many languages resulted from studies in formalism, however, which they

saw as causing a psychological barrier to end-users. They felt that the main user-interface should

avoid formalism, via an interface with popular tools such as structured methods.

Hull et al. (1991) compare four real-time applications development methods (MOON, HOOD, JSD,

MASCOT) that feature graphical notation. Their criteria for evaluation are:

35

2: Survey of Problems

ease of use and understanding; use of diagrams;

ability to express requirements and constraints;

ability to express concepts of the subject domain;

simplicity and compactness of syntax;

structural features: modularity, hierarchy, viewpoints;

formality: unambiguous, consistent, implementable;

support for methods: phases of development.

None of the four are found to satisfy all criteria; they suffer from lack of abstraction mechanisms,

inappropriate styles, lack of rigour, over-complexity, and inability to express requirements and

constraints. At lower levels the authors find diagrams cumbersome for sequential actions - text

was preferred. Otherwise, effective notational techniques are evident between the four: good

abstraction mechanisms, support for concurrency, rigour, hiding of detail, and appropriate

semantic range.

These reviews, though helpful as a guide to concerns, are based on subjective assessments. We

might ask what kind of theoretical study could support a more objective test of notation adequacy.

2.2.4 Formalization of Notations

We have seen that a desire for rigour in notation is common to many of these reports. This

section ends with some further collected views on the issue.

Martin & McClure (1985 p17) remark that formality enables the study of programs as mathematical

objects, the clear communication of ideas and instructions unambiguously in a computable form,

and a way to focus creativity, thereby blending the craft and engineering aspects of programming.

But this formalization is not to be expressed by formulae; methods (such as HOS) are preferred

which constrain the design process to be correct.

A detailed case for formalization of specification and design language is given by Cohen et aL

(1989 p99), in criticism of common informal approaches which do not meet the objective of re-

usability. They propose that languages be formalized in order to express and deduce properties of

complex models; they should have a tractable syntax and well-defined semantics. Ad hoc

notational extensions are rejected in favour of providing soundly based semantic and syntactic

flexibility by means of embedded extension mechanisms (capacity for definitions). In the work

cited they also observe that formalization must also relate different notations needed for different

36

2: Survey of Problems

aspects of behaviour.

Tse & Pong (1991) claim that notation formalism helps to reduce misunderstanding between

designers and enables automated consistency and completeness checking. A unified

mathematical framework must be present in a specification language: verification relies on relating

the development to such a theory. They note that frequently the theoretical background adequate

for rigour is absent.

Spivey (1988 p7) discusses the applied mathematician's disregard for formal semantics, and gives

practical reasons for taking a different attitude in the case of the specification language Z He finds

that explicit formalization is necessary to explain Zs unusual modular structure, and to enable

reasoning about specifications. It also provides a means of comparing specification techniques

and language constructs.

2.2.4.1 Need for explicit formality

We note a variation in these comments regarding the strength of the term 'formal'. Formality in a

weak sense may amount only to an implicit enforcement of conformity between representations,

by computer-aided (CASE) tools. Explicit formalization is a. stronger notion, relying on

mathematical models of linguistic and graphic syntax, related to semantic models for each subject

domain - which is rarely available. Only for some programming codes and formal methods

notations are strongly formal. The Views quoted suggest an awareness of need for weak formality,

but only in a few cases do we find requests for the stronger, explicit formality.

2.3 Analysis and Discussion

From the comments in these reports, we wish to assess in what ways notations are succeeding or

failing to f ulf il the roles allotted to them, in order to identify where research is needed. To help in

the assessment, this section analyses and summarizes the issues and difficulties that have been

noted, and considers their causes. The discussion concludes with an evaluation of the state of

affairs and some suggestions for a programme of work in this area..

2.3.1 Analysis of Notational Issues

The reports of the previous section are mostly situated in the professional context of software

37

2: Survey of Problems

engineering, and cannot be regarded as grounded in empirical objectivity. Because of this, an

analysis of the opinions presented tends to take on an ethnographic flavour. Rather than taking at

face value the views found, we hope to bring out the issues that require deeper investigation.

Considering the force of the views surveyed, the difficulties and their causes, we arrive at the

position that formalization is a necessary step in improving the design of notations.

2.3.1.1 The Need for Visible Formality

The first issue to notice is that of increasing formality in the use of language and notation. If we

follow the historical sequence from elementary mathematical logic to computer-aided software

engineering, we find a trend towards greater dgour and formality, associated with widespread use,

mechanisation and increasing complexity of problems tackled. This has brought about a conflicting

need to communicate widely Mld technically. Standard diagrams are desired for communication

with both end-users and developers, while the less accessible notations of mathematical formulae

are selected to provide a source of rigour and accuracy, through deductive method.

Though both coded programs and supporting proofs are therefore hidden from general view, the

unambiguous specifications of requirements and description of developed solutions must

somehow be made appropriately visible to all participants. Thus Cohen et at (1989) stress the

importance of differing roles of languages in the design process and the need to understand

relationships among the varied descriptions of systems. In the views collated below, we see that

mathematical and computational support are called for in order to manage these relationships.

2.3.1.2 Tabulated Views

We can analyse many of the views into claims, wishes, problems and fears about language

needed for design representations. In this analysis, comments on language and notation are

extracted from the reported views and organized into four tables. The specific role taken by the

representing language is mostly filtered out, in order to highlight general Issues. To begin with, we

find references to the advantages and disadvantages of natural language (in the form of text).

For natural language: -
Claims Problems

better persuasive power and Incomplete, Imprecise, overspecific
freedom of expression ambiguities are caused (twice)

I I less easily manipulated

38

2: Survey of Problems

Replacement of informal writing by formal textual language carries a different set of concerns. It

raises a worry about communications, and a desire for translation.

For text / formula: -
Claims Wishes Fears

can transform one explained through formulae in axiomatic verification may not be friendly.
representation
into another

formally corresponding
natural language exposing untrained users to unusual symbols and jargon

There are a number of general views about notation, which point to the conflict of needs: for

simple expression of technically complex subjects. Here the worry is about precision and

comprehension, with mathematics and logic needed for support.

General concerns: -
Wishes Problems

must have primitives and constructors to express complexity is the main barrier to understanding
complex models Specifying requires the full range of concepts
separates conceptual from concrete and notations of mathematics

precise, unambiguous, intemally consistent, sufficiently those resulting from formalisms, cause a
complete, not over constrained psychological barrier to end-users
understandable and modifiable
integrated tools for synthesis and analysis

allow logical refinement into submodules

automatic verification;
formal manipulation for verification and testing

with semantics, calculi and proof rules; knowledge representations lack formal
precise mathematical semantics, Inference rules semantics and standard terminology

ability to transforrn between styles/ notations; programming notation diversity results mainly
maintain notationally distinct versions of a specification from personal needs and interests

a hybrid of graphical and formal notation

abstraction, hierarchy, modularity

The latter two wishes are for an integration of diagrams and formulae, with structuring facilities

that are found in natural language narrative. Diagrams on their own only partially solve the

concerns; contradictory views are found on their efficacy, reflecting varied success over the

difficulty of dealing with complexity.

39

2: Survey of Problems

For diagrams: -
Claims Wishes Problems

a remedy for poor users learn to think about no evidence of ease and efficiency in use
communication systems hard to understand
more comprehensible

over-complexity
users can draw and
argue about

inappropriate styles

inability to express requirements

can be read selectively automatic layout Large programs or data not easily

user can focus on overall abstraction, hide detail
displayed

structure
modular, hierarchical.

hard to edit

2D helps express lack of abstraction mechanisms (twice)
hierarchy and parallelism

cumbersome for sequential actions

may be converted to rigorous, methodical rigorous diagrams harder to comprehend
equations formality proAded in

for non-professionals

mathematical and automated lack rigour
support

use of pictures inhibits the use of
generate code from diagrams mathematics

In summary, although graphical notations are held out as an aid to clear thinking and a better

means of communication, the concern about rigour brings out a need for formalization. The

rigorous diagramming methods adopted in some CASE tools may fail to be communicative,

however, and are not as compact as the formulaic text which skilled users still value - even if

rules for formal reasoning are not known explicitly.

Researchers in Visual Programming for example now consider it unhelpful to make a blanket

comparison as to which is best, text or graphics, since the two modes are suited to differing

purposes. We also find no clear justification for a theoretical separation between modes, given

the visual quality of text, and the fact that they are in practice mixed together. The evidence noted

in (§2.1.2) suggests rather that we view notation comprehension as a collaboration between two

specialized cognitive abilities - distinguished as linguistic and spatial (amongst others).

2.3.1.3 Causes of Difficulty

The above analysis brings to light several points of difficulty. It is seen that notations must cope

with a wide range of kinds of system, and express different aspects of behaviour. Because they

must be used in different ways by different participants to serve different purposes, we find many

conflicting features and styles of expression. Design of notation is difficult, and requires

development of both mathematical logic and pictorial metaphors. In order to cope with the

complexity of large software systems, notations become abstract and hence hard to reason with.

Systems can be described using mathematical or computational language, but this kind of

40

2: Survey of Problems

formality reaches only a small audience.

What can be done? In order to reconcile the conflict between differing needs of participants in

software development, computational support will be needed for all styles of notation (formulae,

text, diagram). An explicit means of defining notational semiosis could offer users a more

adaptable access to varieties of notation which better suit their cognitive abilities and prior

knowledge. If we wish to have an objective test of notation adequacy, then an analysis of

cognition is surely important, though it is not a prerequisite for formalization of functional structure.

The difficulties noted go against the view that graphical notations should only be used informally -

for explanation to users or for illustration in the development task. If instead we could supply a

logical basis and computer support for notations, we could make possible a more flexible style of

expression in standard notations, thus aiding both human reasoning and mechanical calculation.

By formalizing, diagrams could be given precise meaning, to enable accurate communication with

users, but without prohibiting the use of informal variations and annotations. Tasks which insist

upon rigour may be made easier to grasp by the use of computer-aided manipulation of diagrams,

made possible by formalization.

2.3.2 Conclusions

To round off the discussion, the weaknesses identified in the survey are summarized, and seen to

result from a lack of support for notation design. It is argued that changing circumstances

necessitate continuous development and invention of notations. In view of these considerations,

possible directions for useful research are suggested.

2.3.2.1 Weaknesses and Concerns

The survey reveals that there is a lack of serious studies of notation, and little general theory

which might support empirical investigation. Scientific observation of usage and study of cognitive

aspects has lagged behind practical work on language design. Recognition of the need for

rigorous semantic definitions has been belated, when It is acknowledged at all.

There are reports of practical assessments of particular languages, and of requirements for

notations fulfilling some role in the software lifecycle, but these references make little separation

between notation and method. They suggest that the main difficulty with notation lies in

41

2: Survey of Problems

adaptation to the preferred styles of users or to the range of problems to which they are applied.

Expressive principles uniform across different notations have not been established, which makes it

hard to extend syntax and semantics when changes are called for.

From the reports received we learn that users and designers of notation wish to avoid ambiguity

and vagueness of meaning. As well as precision, there are practical concerns about training

needs, effectiveness and compatibility with methods. Though there is a consensus on need for

simplicity, accessibility, familiarity and expressiveness, there are no agreed principles for

evaluating designs in these terms.

2.3.2.2The Need for Notation Design

Why is the designing of notation a cause for concern? What is its importance?

We observe that notations arise to fill people's need to express and share ideas about technical

problems; they support storage, communication and re-use of ideas, and are important as an aid

to formal and Informal reasoning and calculation. Within software engineering, no tations provide

means of thinking about a wide class of problems. Despite this, choices made in notation design

have not been justified theoretically or empirically. The pattern has been for individual

practitioners or groups of researchers to propose notational innovations and build languages based

on them in an ad hoc manner. The chosen techniques have been assessed informally by

popularity and usage of the languages.

The pertinent question is not to decide between formulae and graphics, mathematics and intuition;

it is how best to combine effective pictorial and linguistic metaphors within a formal basis - even if

a notation is to be used informally. In computing there is no fully established "universal calculusm

(as desired by Leibniz for mathematics) but there may be some hope for a universal thread

connecting the known notational techniques.

Notations are not only a means of talking to other members of the profession. Unlike the situation

in mathematics, software engineering notation must sometimes be effective In communicating

with non-professionals. In the interests of safety and effectiveness, we would wish to design

notations that can express complex systems accurately in forms helpful to the understanding of

the various participants In computer system development. It would surely be unwise to develop a

software system so complex that it was humanly impossible to describe. New notation can be

42

2: Survey of Problems

powerful when expressing what was formerly too difficult. Notation design is then not just about

convenience, it Is about understanding the subject domain.

2.3.2.3 Pressure for Change

Why should there be a need for design at this time? We can point to several factors. Firstly,

visual languages are under development in many areas of application, aimed at many different

end-users. The number of alternative notations and variants which exist, the lack of standards and

tools, the arguments about comparative merits, all indicate that notations will continue to change

and develop with increasing use. There is need for flexibility and adaptability in work with

notations.

Secondly, from the cognitive approaches in (§2.1.2) it appears that for a diagram to be effective,

its visual structure must be linked by analogy to aspects of its subject domain. It follows that new

understandings of subject areas, growing out of improved metaphors or better logical

characterizations, bring about semantic change that will require improved notations.

The third factor is that new theories of software behaviour are certain to arise. A semantics for

concurrent interaction of communicating systems Is still a matter of debate. Computer systems

are increasingly complex and frameworks for rigorous project development methods are still being

sought. We can therefore expect invention of notations of all kinds, in order to cope with the

resulting difficulties of expression.

A final reason is that the developing skills and experience of the many users of notation may also

have an effect on syntax preferences, even when semantics remains relatively stable.

2.3.2.4 Some Research Avenues

There are several directions that research could take in order to improve matters. Our

understanding of the problems would be greatly improved by: -

0a comprehensive examination of many software engineering notations

0 an investigation of cognitive properties of diagrams, text and formulae

0 an empirical study of actual usage of notations in software development

By such means, from existing examples, we might learn which attributes of notation contribute to

fitness and success, and in this way establish design principles. Each of these means, however,

43

2: Survey of Problems

requires a clearer theoretical foundation than has yet been developed. Therefore we might make: -

0 an attempt to improve upon current methods of describing notation structure

0 an attempt to improve upon current tools to process notation

The difficulty here is that most of the relevant work in these directions is being carried out in

parallel with research for this thesis. In the next chapter we shall review the diversity of

approaches to techniques and tools. In any case, the principal research need that has been

identified in this chapter is for: -

0 mathematical and computational support for notation design and processing.

The detailed research agenda chosen for this thesis will be presented at the end of the next

chapter.

2.3.2.5 Summary

We have found in this chapter that the use of notations is bound up with logic and reasoning and

has a long history, though most theoretical interest in how they work is very recent. Hardware

design has perhaps more of a technical tradition of notation, crafted from practice with earlier

electronic devices. In the subsequent historical growth of software development practice, we have

identified many notational concerns: -

The primary requirement for programming 'languages' has been addressed in a

piecemeal fashion, though the problems engendered have lead to an awareness of the

need to understand linguistic structure and to provide formal semantics.

Systems analysis has been served in the main by informal diagramming techniques,

based on no clear formulation of the development process, and lacking any notational
theory.

0 Requirements analysis suffers lack of support for precise means to communicate with

users.

0 Formal specification and development techniques have adopted much of the style of

mathematical formulae, with little concern for ease of comprehension.

Pictorial expression of programs has recently become popular, stimulating

considerable interest in the usefulness of diagrams, but able to claim no definite

empirical advantage.

0 End-users of systems have their own notational needs, which have not been

systematically studied.

44

2: Survey of Problems

An argument has been made for formalizing the description of notation in all its different uses,

based on the need for computer-assistance, and the specific need for precision in many stages of

software development. It has been proposed that the activity of notation design must be

supported if the practice of software development is to be flexible enough to keep pace with

changes in power and areas of application of its technologies.

We are led to infer that an uniform theory of notation structure is needed before it will be possible

to offer versatile support. Without appropriate theory and science, no clear design principles can

be relied upon to recognize and resolve problems. Only theory will allow us to frame the right

questions about choice of modality and language for the many aspects of the software

development process.

45

Chapter 3

Review of Notation Support in Software Engineering

Abstract

Here we find a review of techniques for definition of syntax and tools for developing notation

editors. A compilation of reported problems and solutions leads to a statement of the research

agenda for the thesis.

First the review looks at theoretical techniques for formalizing syntax and semantics of languages,

using mathematical or computational approaches, that could also apply to notational description.

It then looks at formalisms that attempt to specify notations and visual language. The review

shows that only during the later phase of this research have reasonably general methods of

definition become available. These methods are based on a variety of theoretical principles,

which are hard to compare or combine; the main trends are to apply specification logics, spatial

theories, or graph grammars. Semantics is treated operationally, though algebraic methods are

used to explain visual analogy. Grammar-based approaches are common, but graphs cause

difficulties that are not found in string or term rewriting, and grammars must be augmented with

spatial constraints. Some attempts are reported to place grammars within a general hierarchy

according to expressive power.

The review reports on the capabilities and limitations of the available aids for notation-processing.

Reports of generic editors show that the task of developing an editor for a notation can be speeded

by methods of graphical and syntactic specification such as graph-grammars. Theory has not,

however, kept up with practice, and it is not clear how a designer of notations could reason about

the syntax that is built up. Only the simpler grammars can easily be parsed, and it is not known

how widely these can apply.

These methods leave us with a jigsaw puzzle, whose pieces can yield only a patchy picture of

several related scenes. The proposed way forward is to treat a notation as a sign-system; this

function, rather than pictorial appearance or semantics, should determine its formal structure. The

aim of this work is then to establish an uniform descriptive theory that can offer practical help with

design and processing of notation.

47

Chapter 3.

Review of Notation Support in Software Engineering

This chapter reviews research on compute r-assistance for the uses of graphical notation in system

specification and development. The review selects contributions that may resolve the problems

observed in the previous chapter (§2.3), where we have seen that notation has very little in the

way of design science. We therefore hope to find standard techniques for formal description and

tools that can cope with the complexity and diversity of notational needs, easily allowing

combination of diagrammatic, formulaic and textual expression.

The review first looks at theoretical techniques, from mathematical and computing fields, whose

aim is to formalize language and notations. It then considers what is required of tools that aid in

processing notations, and reports on the capabilities and limitations of those that are available.

Reports on current research directions strengthen the argument in favour of developing a uniform

basis for notational design. The consequent discussion of potential and problems in the material

reviewed leads to a statement of the research agenda for the thesis.

3.1 Formal Techniques for Describing Notations

The purpose of this section is to review all the important published approaches to the problem of

defining the structure of graphical notations.

3.1.0.1 Inadequate Methods of Description

The material in the previous chapter indicates that there is no tradition of rigorous description.

instead, one of the more careful approaches is to relate graphical syntax directly to a textual

language in an informal way, and rely on a formal syntax for the text - as is done in the MASCOT

handbook (1987), using Wirth syntax diagrams and Backus Naur form (BNF). Inevitably the

textual syntax does not cover the many connectivity constraints observed in the System Diagrams,

since they translate to restrictions on naming of variables in the same syntactic category, that are

generally not expressible in BNF. Nor does this method make formal reference to the spatial

nature of the notation.

Those authors who adopt formal or mathematical techniques, also mostly refer to syntax of

49

3: Review of Notation Support

diagrams entirely informally. For example, Tse & Pong (1989) prescribe a formalization of Data

Flow Diagrams via the algebra of Petri nets - which necessitates extending both of the notations

they treat. They insist on graphical expression and formal method, with clear use of mathematics

for semantics, but they omit to describe how the diagram syntax is to be formally manipulated.

Less formal still, are the presentations usual in standard texts on software development such as

(Jackson 1983; Martin & McClure 1985). Diagrams are described directly in terms of the concepts

represented, with the aid of natural language and examples.

In practice, for existing notations, we thus find the formality required is often lacking. * Without this,

tools must employ a variety of programming languages to embody syntax, as we see later

(§3.3.2). The infrequency of proper formal techniques has been criticized by other authors.

Rekers & SchOrr (1995b) find it regrettable that new users can only guess the syntax from

provided examples. They believe it would be very beneficial to agree upon a single syntax

definition formalism - as long as it is highly expressive, unambiguous, with specifications that are

easy to read and develop.

3.1.0.2 Theoretical Remedies

Since the methods of description in textbooks are not found to suffice as a basis for notation

processing, we turn to theoretical studies of this problem. Largely the recent theoretical

approaches have taken their cue from various means of formally defining how verbal languages

work. We therefore first take note of the background work on study of grammar and semantics of

language generally; the problems and methods of structural linguistic description are considered

relevant to an understanding of the similarities and differences between 'natural' language and the

more artificial world of notation. These methods are extended to the case of graphical notation

with the help of a notion of 'graph', which is intermediate between linguistic and geometric

structure. In the next section (§3.2), we find that this kind of work forms the basis of many

reported methods for defining notational structure.

3.1 .1 Formalizing Language Syntax

We begin with an outline of the standard theory of formal grammars, in preparation for

investigating below how theory has been generalized to graphical notations.

50

3: Review of Notation Support

3.1.1.1 Formal Textual Languages and Generative Grammars.

In his seminal work on the problems of natural language description, Noam Chomsky studied

various mathematical idealizations of language, which feature a strict separation between

syntactic and semantic aspects of structure. These formalizations have proved to be of value in

their own right, forming the basis of design for artificial languages, notably for programming.

A Formal Language is defined as a set of sequences ('strings') of symbols from a finite set, called its

alphabet. Its syntax gives a way of specifying which sequences belong to the set, and may be presented
by a generative grammar.

In generative grammars, expressions are constructed by applying rewtite-rules (also known as

productions). The adequacy of formal grammars is assessed in terms of how large or complex a

class of languages can be specified by a certain kind of grammar.

Different kinds of grammar give rise to four major families of languages generated, which form the

NChomsky hierarchy" (van Leeuwen 1990 p109) from type 0 to type 3. Each language L of the

most general family (type 0: recursively enumerable) can be generated by applying a finite set

G(L) of literal substring replacement (rewriting) rules. The pattern of replacements culminating in

a given expression is called a derivation of the expression (in the grammar G); before the

expression can be interpreted, this valid derivation structure must be discovered by a process

called Parsing, which is thus a first stage to any semantic processing of the language. The

importance of the types of grammar is then evident, for they determine the complexity of

automatic parsing; tyl2e 0 languages are in general impossible to parse, and are therefore too

complex for practical languages.

The preferred choice for artificial programming languages is context-free grammars (CFG) (van

Leeuwen 1990 ch2), which define any tMe-2 language, and are commonly written in BNF. A CFG

grammar consists of rules for rewriting single meta-symbols ('nonterminals', which stand for phrase

types, and augment the language's alphabet). The generative process starts with a nonterminal

(typically 'S' or '<sentence>') and is completed when the rewritten string contains only symbols

from the 'terminal' alphabet. Parsing discovers a hierarchical decomposition of expression

structure, a derivation that can be drawn as a labelled oriented tree, whose leaves constitute the

sentence. Syntax rules that constrain the type of an item, however, often require a language of

type 1, and context-sensitive grammars are needed (van Leeuwen 1990 p372), which set

51

3: Review of Notation Support

conditions on when a symbol may be rewritten.

3.1.1.2 Syntax for Natural and Artificial Language

Although useful, these notions of grammar cannot capture the subtlety of structure found in

Natural language, either in getting the 'right set of sentences, or the 'right' derivation structure.

Chomsky (1965) proposed to remedy this by means of transformations on the derivation tree, as a

second phase of production. An example from English is the formation of a passive sentence

from a corresponding active one. Unfortunately such Transformational Grammars can in principle

generate any recursively enumerable language, which is not justified empirically (Skousen 1975).

The power of such formal approaches suggests that general syntactic structure is a complex

matter. This is apparent in the various interesting formalizations proposed; for instance, Arc Pair

Grammar of Johnson & Postal (11980), involves an elaborate graphical notation that is backed up

by predicate logic. According to Carpenter (1995b) however, no formalism has even come close

to providing a universal system in which all and only natural language grammars can be

expressed. Nor have grammars for particular languages come close to covering a naturally

occurring range of data in a theoretically clean fashion.

Some of this difficulty in defining the 'right' syntax arises from attempting to separate syntax from

semantics, or rather from trying to include too many semantic factors. According to Chomsky

(1965), "any attempt to delimit the boundary [between syntax and semantics] must be tentative".

Hintikka (1979) also disputes whether syntax can be completely independent of semantics.

Montague (in Thomason 1974 p210) states that the construction of syntax and semantics must

Rproceed hand in hand", as in syntax there are too many irrelevant ways to generate sentences.

3.1.1.3 Design of Grammar

Chomsky (1965 p62) advises his readers to seek the simplest theory of grammar which is

empirically adequate. Since our requirements, in formalizing notations, are more limited than

those of natural language, we should likewise avoid adopting too complex a view of language from

its natural examples. Johnson & Postal (1980) maintain that such subtleties are unneeded in

mathematical language where form directly relates to its logic. Yet their own notation for predicate

52

3: Review of Notation Support

logic demonstrates counter-examples' to this statement. Whereas Montague (In Thomason 1974

ch6 and p216) disputed that any important theoretical difference exists between formal and natural

languages, he also held that if a language is to avoid ambiguity, or is to fit within a first order

framework, then its theory of descriptions should not try to mirror English closely, but be influenced

by simplicity.

It has been the practice in programming languages to use grammars which are simple to parse,

but retain some syntactic flexibility. This indicates the balance that must be struck between

simplicity and flexibility in any kind of notation; it calls for a sufficiently general theory of grammar,

but one that still allows efficient and unambiguous interpretation of expressions. There is

continuing interest in making it easier for users to engage with the newer languages, which may be

helped by a more sophisticated model of grammatical structure than has been customary in formal

textual notation.

3.1.2 Formalizing Semantics

We next look briefly at studies of formal semantics of natural and artificial language (following

Richard Montague and others) that use symbolic logic and model theory, that are equally available

for treating diagram semantics. In the reports, their authors take various approaches to the

analysis of meaning. The reason for this variety of views on semantics may relate to the different

operations that are required on linguistic expressions - from type-checking to translation, logical

deduction and computation. An appreciation of the context of use of expressions is properly the

concern of pragmatics.

There are evidently two distinct aspects to semantics as it affects notation processing. (1) The

formulation of rules of acceptability: whereby an expression may be rejected if in all feasible

situations it would appear anomalous, and (2) a formal interpretation of the meaning of

expressions: in particular, their denotation.

litiscommontowrite a, b<N afthough there Is no such object as 'a, b"; It Is certainly not the ordered pair (a, b).

Johnson & Postal themselves Innovate the notation of first order logic by writing P(x&y) for Px&Py, afamillardevicein

natural language; but no such object x&y logically has the property P.

other examples of a subtle connection between syntax and semantics can be found In differential calculus; the sign dy/dx Is

syntactically but not literally a fraction, and it also hides the functional dependency of y on x. which easily leads to ambiguity.

53

3: Review of Notation Support

In regard to (1) we have observed that in linguistics a clear boundary cannot necessarily be drawn

between syntactic rules and semantic rules. For formal languages, there is however a substantial

difference between the rule-systems used for grammars and those used to determine logical

validity, in proving semantic properties.

In (2) several points of view can be found. Frege distinguished the denotation from the sense of

an expression, as a collection of instructions (as discussed in Girard et al, 1989, ch. 1); the

denotation is a kind of ideal result of these instructions. This is a distinction that Montague found

useful (only) in certain artificial languages (Thomason 1974, p217). Galton (1988) suggests that if

denotations are themselves notated, formal semantics may be reduced to a case of translation.

Joseph Goguen remarks that semantics is a quotient of syntax; i. e. the expressions of a language

divide into equivalence classes of those having the same meaning. There is also the formalist

philosophy that does not acknowledge the need for semantics, but expects meaning to reside

entirely in formal rules for manipulating expressions -a view expounded by Hilbert2.

Accordingly, we note here some common systems of symbolic logic, followed by denotational

methods, and then the semantic grammars that have found favour in computational linguistics,

ending with pragmatics in the form of Situation Theory.

3.1.2.1 Symbolic Logic

Logical systems generally can be viewed as ways of formalizing semantics, since they provide

formal languages designed to capture the meaning of natural language sentences. Below are

summarized those standard systems that are most commonly referred to in the reports in the next

section (§3.2): Predicate Logic, Algebra, Higher-Order Logic, Set Theory, and Category Theory.

Predicate Logic allows for a hierarchy of entities: individuals, first-order predicates (which denote

relations on individuals), second-order predicates (for relations on first-order predicates), and so

on. Individuals and predicates may be variables, and expressions involving variables may be

bound by the application of the quantifiers 'for all' and 'for some'. First-order logic with equality

and functions (FOL) is widely used as a descriptive tool in mathematics; it permits no higher-order

predicates, but is enriched with a special equality predicate and a set of function symbols. The

use of second-order logics is not uncommon, but third-order systems are seldom mentioned.

quoted by GrIes In (Dijkstra 1990 p229-236).

54

3: Review of Notation Support

Modal logics enhance this framework with operators that express notions such as possibility and

necessity.

There are doubts that FOL is appropriate for natural language structures. Israel & Brachman

(1984) criticize reliance on FOL: "no significant fragment of any natural language has ever been

semantically analyzed by way of a systematic translation into a standard first-order language".

They favour Montague's (1974) approach, and see quantification as a particular source of

difficulty. Hintikka's (1979) reflections doubt the usefulness of quantifiers in first-order semantics.

His game theoretic approach to semantics of FOL and natural language (in Saarinen 1979)

reveals that sentences with nested quantifiers are hard to interpret because they involve planning

several moves ahead in a game. Despite the resulting difficulty in feasible computation with FOL,

to a certain extent its theories can be converted into logic programs - PROLOG is based on Horn

Clause Logic, a restriction of FOL that avoids explicit quantifiers.

An Algebra is a language of equations between terms that are constructed from function symbols

and constants. Algebraic terms have tree-like structure and use equational logic which is easy to

manipulate. As a logical language this is much less expressive than FOL, but has the advantage

that it can be used as an executable specification language (e. g. 013,13 - Goguen & Meseguer

1989).

Higher-Order Logic (Combinatory Logic and Lambda Calculus) can be regarded as a restricted

form of equational logic, that has long been used as a meta-language for general computation. It

is based on functions and functional abstraction, and gives rise to the Functional Programming

paradigm. Israel and Brachman (1984) consider lambda abstraction3 to be an essential technique

in semantics.

Set Theory accommodates all these forms of expression. It has been the foundational language of

mathematics this century, and is a clear candidate for formalizing general systems, as applied in

specification languages such as Z and VDM. Its relationship with FOL is circular: it is normally

3Abstracton mechanisms are widely used to avoid (or at least hide) logical complexity. In computational terms, functional

abstraction works by notating a game-winning strategy In place of mere assertion of winnability.

Lambda abstraction enables compound predicates to be formed. For example, Pa & 0a could be written Ra

where R=(Ix. Px&Clx). A similar construction exists in Set Notation:

ae PA ar= Q can become a r: R, where Rz (xI x rE PAX6 Q); Le. R=P r-i 0.

55

3: Review of Notation Support

presented as a theory in FOL, based on the 'membership' predicate (e); the standard semantics

for FOL is based (in turn) within set theory.

Category Theory (to be explored in Chapter 5) is an abstract foundational form of logic that

provides a semantic approach to formal theories as categories, avoiding much of the tedious

reasoning based on their internal syntax. One application is in studying algebraic theories; another

is Topos Theory, which provides computational generalizations of set theory and a semantics for

Lambda Calculus.

3.1.2.2 Denotationall Semantics

A denotational approach to semantics interprets expressions into mathematical objects in a

domain; techniques for this have been pioneered for programming languages (Milner & Strachey

1976, Gordon 1979). These domains may be complicated structures - e. g. directed-complete

partial orders (dcpo) (Vickers 1989 ch1O) coherence spaces (Girard et aL 1989 ch8) and Chu

Spaces (Pratt 1995) - defined to resolve foundational issues in computing. This kind of

interpretation is not necessarily a translation, because mathematical objects may be specified by

their external behaviour, not how they are represented - as advocated in Wells (1994). It seems

that in all these cases there is a postulated Nspace" that these denotations, or abstract classes of

manipulations, belong to, and semantic analysis determines the place of each expression in this

space.

A paper by Caswell (1997) compares three formalisms for programming language semantics.

Denotational Semantics is shown to be equivalent to Action Semantics (Watt 1991) and Structural

Operational Semantics (Plotkin 1981), for a particular target language. Caswell notes four uses of

formal semantics: for language description, for checking compiler and interpreter correctness, for

user reference manuals, and for reasoning about programs.

3.1.2.3 Pragmatics and Categorial Grammars

The idea that semantic aspects of language can be understood by logical analysis of its use in the

intended context, i. e. pragmatics, was exploited by Montague (Thomason 1974). His work gave

rise to unification grammars (Shleber 1986; Goguen 1988), which were developed in

computational linguistics to interpret natural language into logic - the unification procedure is

essentially a pattern-matching on algebraic terms, also used for example in execution of PROLOG

56

3: Review of Notation Support

programs, and for function definitions in Functional Programming languages (Bird & Wadler 1988).

Development of these methods is currently an active area of research, with recent work on feature

structures (Pollard & Sag 1994), and Categorial Grammar (Moortgat 1988, Wood 1993, Morrill

1994, Carpenter 1996), which derives from an elegant semantic calculus proposed by Lambek

(1958). The intention (Carpenter 1995) is to create a general notion of grammar as constraints -a

computational and logical system that integrates conditional constraints from all levels,

phonological to pragmatic. Although these systems are idealizations of human language

processing, he claims they have some affinity with psychological observations.

Glyn Morrill (1993) approaches language as an association between prosodic and semantic

properties, linkings of form and meaning, where form is a bundle of properties; this derives from

the semiotic tradition of Saussure, Carnap, Tarski, and Montague. The resulting linguistic

programme attempts to specify language models for fragments of natural language. He describes

the intuitions behind Categorial Grammar, which could provide a high-level logic of signs, a

general framework allowing new fragments to be formalized and integrated.

Morrill reflects that empirical concerns have caused a trend towards 'lexicalism': the encoding of

idiosyncratic information in the lexicon as the best way to formulate generalizations. Categorial

Grammar has no syntactic component; it does not need to manipulate feature structures: just

projection of lexical properties according to the interpretation of categorial operators. The syntax

here is not in the data, but in the theory relating prosodics and semantics; in fact for categorial

logic, it is the proof-theoretic meta-theory for the model theory or logic of the categorial operators.

3.1.2.4 Situations

An analysis of the pragmatics of language is provided by Situation Theory (Barwise & Perry 1981).

Following this approach, Devlin (1991) has explored the possibility of basing a full theory of

communicative acts on an abstract notions of situation and infons (items of information).

Barwise & Etchemendy (1988) consider reasoning to be the manipulation not of symbols, but of

multimodal information. They argue for accommodating the complex features of real reasoning

tasks (incomplete information, uncertain relevance, unknown conclusion), for which purpose they

have developed an integrated approach to human reasoning with text and graphics combined, that

directly addresses the situation in which an expression is 'uttered'. This is demonstrated in their

57

3: Review of Notation Support

system (Hyperproof Barwise & Etchemendy 1994), which is designed to help students learn to

reason using both diagrams and the language of FOL. Hyperproof embodies a mathematical

framework that considers models and propositions together; it formally describes both the syntactic

and semantic domains in the same symbolism. It employs a situational calculus that has two

binary predicates: a syntactic relation that a situation supports an infon, and a semantic relation

that a situation carries an infon.

The topic of reasoning with text and diagrams is researched further in (Barwise 1993, Barwise &

Hammer 1994).

3.1.3 Graphs and Graph Grammars

We next observe how graph rewriting has provided an important group of techniques, through a

generalization of methods well known in linguistics.

3.1.3.1 Graphs, Attributes and Constraints

Graphs are a family of mathematical combinatoric structures, i. e. a graph is a configuration of

objects such as 'nodes' and 'edges' (or relations). The family contains digraphs, webs, hypergraphs

and many other types, though terminology for these is not fully standard. Graphs can be seen as a

generalization of the notion of string that underlies formal textual languages. This leads to a

common way of modelling a graphical notation as a formal graph language. a set of expressions

that are instances of a specific type of graph.

For graph languages, Courcelle (1987a, b; 1990,1994,1996) has made extensive and detailed

studies of specification by first- and (monadic) second-order logical constraint, and algebraic graph

expressions (1987a, 1996), though his focus is not on graphical notation. From our point of view,

his approach via Universal Algebra (Courcelle 1987a, 1996) has some relevance to editing of

graphs, since it describes the process of generation by applying operations.

In operational treatments, graphs are often augmented with attfibutes, which amount to linkages

between objects and value-spaces (e. g. number). Since these spaces are often infinite and highly

structured, the mathematics involved is no longer confined to combinatorics. Constraints on

attribute-values must be expressed in some logical language.

Nagl (1987) describes a software development environment which employs graphs as a meta-

58

3: Review of Notation Support

notation for all structures, providing a uniform model for all problem areas. Graphs act as

knowledge bases (one per document), and the graphs for a given class of documents belong to a

certain type, whose structure reflects the requirements for processing those documents. He uses

attributed directed graphs with labels oil nodes (to describe the class of item), and edge labels to

specify the specific relation which holds between two items. Attributes represent values which are

determined at certain nodes or edges.

3.1.3.2 Grammars and Rewriting

Corresponding to textual grammars, graph grammars have been studied extensively since 1970,

and several international workshops have been held (Claus et aL 1979; Ehrig et aL 1983,1987,

1991,1995). SchOrr (1 994a) defines a graph grammar as:

Na system of productions that generates [from a start graph] a certain language of terminal graphs

and produces nonterminal graphs as intermediate results. A graph rewriting system is a set of rules
that transforms one instance of a given class of graphs into another instance of the same class.,

As with textual grammars, generative graph grammars provide support for syntax-directed editing

operations in the form of rewrite rules. They are able to express both context-free and context-

sensitive grammatical constra ints.

Graph rewriting generalizes both string rewriting and algebraic term-rewriting. Often, studies of

rewriting are restricted to one particular graph type; in order to accommodate greater generality,

many authors have resorted to the powerfully abstract language of Category Theory. In (Claus et

aL 1979) and the tutorial (Ehrig, Korff & Lowe 1991), Ehrig formulates rewrite rules elegantly and

generally, as double pushouts (DPO) in any suitable category of expressions (as will be described

in Chapter 6). Most notations of interest fit well with Ehrig's notion, as do specifications of abstract

data-types (Ehrich & Lohberger 1979).

Carradini & Montanari (1991) show how a hypergraph grammar of this kind can be converted into

a term-rewriting system. Richard Banach (1996) has formally characterised graph grammars by

forming categories whose morphisms are DPO rewrifte-sequences. Bauderon (1995,1996) is

researching a general pullback method that encompasses DPO and other approaches, by

describing parallel application of rewriting rules -a deterministic graph grammar can be

described by a single rule that he calls a'P-grammae.

59

3: Review of Notation Support

Implementation of rules entails a pattern-matching search, of a more general nature than the

unification algorithms used in term-rewriting - and often much less efficient. Rules may be

applied in parallel if they do not interfere, since their effects are local. The rewriting paradigm is

also important as a candidate for modelling true concurrency in systems, and can be seen as a

generalization of Petri-Nets (Corradini 1995).

The literature describes applications of graph grammars to software specification (Nagl et at 1983;

Engels et at 1987), development (Nagl 1987), programming-language semantics (Pratt 1983) and

diagram editing (G6ttler 1983,1987), for which practical prototype tools have been constructed for

specific types of graph.

3.1.3.3 Attribute Grammars

Attribute Grammars (Deransart et aL 1988) are one approach to interpretation of formal languages

- in particular those generated by context-free grammars, as first used by (Knuth 1968). These

generalise to graph languages (G6ttler 1983); the technique attaches values to nodes, and rewrite

rules (attributed graph productions) specify how these values are to be updated, by means of

formulas describing the evaluation rules for the attributes of its nodes. Thus the parsing operation

is combined with computing the denotation of an expression. Attributes can also express layout

features (G6ttler 1987).

3.1.3.4 Computation by Rewriting Systems

Rewriting systems of any kind are known to provide general computing paradigms. In (van

Leeuwen 1990 ch3), string rewrite rules are shown to give an effective system of (Church-Turing)

computation. More generally, rewriting of terms and graphs has found application in design of

practical computational languages.

A Term Rewrite System (TRS) is a set of rules which replace subtrees in tree-structured algebraic

terms (Jouannaud 1985; Lescanne 1987; Dershowitz 1989; van Leeuwen 1990 ch6). Term

rewriting has been studied in connexion with equational logic programming, for example OBJ.

Peyton Jones (1987) uses a graph rewriting technique, "graph reduction", for implementing pure

functional programming languages. Graph Rewriting Systems (GRS) generally are the subject of

60

3: RevIew of Notation Support

research by the European collaborative reseach project GETGRATS4 (General Theory of Graph

Transformation Systems), which aims to compare, combine and unify the various approaches to

graph rewriting, and classify their expressive power. The related projects PROGRES (Scharr

1990, SchOrr et aL 1995) and GRAS (Kiesel et al: 1995) successfully employ GRS as a core

technique in a full software engineering support environment, as reviewed below (§3.3.3).

3.2 Formalisms for Graphic Notations

Having noted the basic theoretical approaches that we would expect to find applied to notational

description, we now investigate some specific attempts at formalization.

Descriptive methods have mainly been devised for the purpose of providing a foundation for

diagram processing tools. For instance, G6ttler (11987) addresses the task as analogous to that of

building a compiler for a new programming language, where standard definitions of syntax and

operational semantics are necessary inputs to a compiler generating tool. For Rekers & SchOrr

(1995b), syntax definition serves to specify syntax-directed editing, can generate a graphical

parser, and is a necessary precondition for semantics definition. Minas & Viehstaedt (1995) hold

that diagram notations should be described by a formal model, to support an editor that can guide

users in syntactic correctness of diagrams.

A variety of formalisms for defining graphical syntax of notations are reported in the literature; they

may be divided into two main groups. The first group is based on systems of logic, and comprises

specification languages, methods that focus on spatial properties, and algebraic semantics. The

second group employs techniques of graph rewiffing to define grammars and operations on

notational structures.

Each subsection below ends by considering to what extent the reported formalizing methods are

adequate, as regards our concerns here. We remark that most of these descriptive approaches

have been developed in parallel with research for this thesis.

4GETGRATS Is a research network funded by the European Community. The coordinator Is Andrea Corradini at the

Dipartimento di Informatica, Unlversit& di Pisa, Italy.

61

3: Review of Notation Support

3.2.1 Specification Languages for Notations

We first review logical specification methods. Specification languages adapt more general logical

systems to tfie specific problem of diagram definition. We find four textual languages (GDL, PSN,

VCT and VODL) and a single example of a pictorial language for executable specification, which

are described here.

3.2.1.1 Graph Definition Language

Expressions in GDL (Welland et al. 1990) are used by a tool to instantiate an appropriate diagram

editor and checker. GDL is a textual language that includes hypergraph and enclosure notions,

and first-order logic constraints. Despite this power, it in fact restricts the class of notations that

can be defined. Its designers have avoided allowing a hierarchy of diagrams, which was felt to be

outside notational syntax. They had to extend the language to cope with some of the notations

they tried to specify.

3.2.1.2 Picture Specification Notation

PSN is a meta-language developed for formal specification of graphical notation (Hekmatpour &

Woodman 1987), as a medium for driving graphics editors. It is a rich language admitting first-

order logic formulae, set-theoretic notation, function definition and a query notation for binary

relations, in a mathematical style.

It is thus broader than GDL in expressive power, and it enables specification of a refinement

hierarchy of diagrams, regarded as an important feature. Its designers report that it succeeds in

overcoming dificulties previously experienced with grammar formalisms. PSN is supported by a

LISP-like symbol manipulation system called Kernel (Hekmatpour), coded in V. The use of

Hekmatpour's system Templa Graphica (1990) has been reported by Nickerson (1995).

3.2.1.3 Visual Concepts: VCT

A paper by Serrano & Welland (1997) describes the language VCT, a textual formalism for

specifying syntax and semantics of diagrammed modelling techniques such data-flow and entity-

relation - the authors note that software companies choose to tailor such diagrams to their own

applications. The formalism is aimed at the automatic generation of software design tools, and is

specific in scope so that its specifications may be concise, clear and readable. Indeed, it is not

expressive enough to capture spatial inclusion, abstraction and specialization. The language is

62

3: Review of Notabon Support

based on set theory, and uses predicate logic to express semantic constraints. A specification of

Data-flow diagrams (DFD), with some simplifications, is given as an example.

The paper also reviews GDL and PSN; GDL is regarded as too expressive, and PSN does not

clearly separate geometrical relationships from syntax.

3.2.11AVisuall Object Definition Language

More recently, OskOdadi & Dinesh (1995a, (&b)) discuss how to create a visual specification

formalism and an environment for specifying the syntax and sema6tics of visual languages. They

describe the language VODL, for use in generating visual editors -a constraint-based,

declarative picture specification language influenced by (Helm & Marriott 1991) and (Wang 1995).

The intent is to support only a visual Algebraic Specification approach to programming, however,

and not diagrams in general. Even so, VODL has a large and complex signature, with many list-

ordered and polyadic operations.

VODL describes the visual tokens (lexicals) and spatial relations that comprise 'lexical syntax.

VODL specifies visual elements (pictures) via units called visual object definitions (vods), built

from:

primitive vods (Point, Line, Circle, Text, Polygon; and Collection-of-vocls),

vod-operations (overlap, difference) that recognize emergent objects, and

standard graphical operations over all vods (e. g. add a geometric constraint, set an attribute value).

This approach is extended to create a visual formalism for specifying the syntax and semantics of

visual languages. The work attempts to extend algebraic specification formalism ASF+SDF

(Bergstra, Heering & Klint 1989) which is successful for textual languages. The specified lexicals

are incorporated in the visual syntax definition formalism (VSDF) via a mapping that associates

syntactic constructs with lexicals (CJskOdadi 1995). The syntax specifies a context-free textual

language, which is provided with an algebraic semantics in ASF. This has the advantage that

algebraic specifications are easy to define and comprehend, and can be executed by orienting

them as rewriting rules. Tools such as compilers, type-checkers, editors can be generated

automatically.

A simple context-free notation for set algebra is used to illustrate this. Definitions are stated in a

textual algebraic syntax, which is specified like a context-free grammar; non-terminals are sorts,

63

3: Review of Notation Support

rules are functions. The authors observe that their choice of algebraic meta-level leads to an

underlying tree representation, and that it would be interesting to consider a meta-language that

handles general graph rewriting.

3.2.1.5 Picture Logic

Bernd Meyer (1992) aims to provide visual languages with an executable specification that is itself

expressed in a visual language - with the long term goal of building visual compiler development

environments. He believes that declarative specifications, while having a formally defined

semantics, should display 'an intuitive correspondence between description and object", and be

flexible enough to support complex diagram languages.

To achieve this he develops a Picture Logic for reasoning about visual structures which is derived

from Horn clauses, augmented to specify spatial arrangements. Spatial properties can be

expressed with abstract example pictures. Picture Logic uses visual terms instead of facts to

capture the spatial structure of described expressions.

A picture term is a directed acyclic bipartite graph. A picture language consists of a set of spatial

object types and a set of relation types. Non-ground terms contain four flavours of variables:

object, group, background and frame. Group variables are untyped, and can be bound to any

connected cluster of objects. A term may contain a single background variable and a single frame

variable. Unification of picture terms is similar to finding the maximal join of conceptual graphs in

(Sowa 1984). During unification, only those objects are bound to the background that cannot be

bound to some object or group variable, and only those spatial relations are bound to the frame in

which objects participate that have been bound to different variables.

To provide an operational semantics he embeds the logic in standard logic programming by

implementing a new unification algorithm, but this is non-deterministic and so introduces a new

level of backtracking. He notes that the inherent non-determinism of picture matching causes

problems in parsing. For more efficient parsing, less expressive Picture Grammars can be

derived in the same manner as Definite Clause Grammars in Prolog (Clocksin & Mellish 1987).

As for textual grammars, regular, context-free and -sensitive classes can be distinguished.

3.2.1.6 Other Approaches

General purpose specification languages can clearly be applied to the problem, and some

64

3: Review of Notation Support

examples are found. Ince & Woodman (1986) have proposed to formalize the graphical aspects

of development methods by using semantic nets. David Gee (1995) uses Z notation to specify

syntax of Yourdon data-flow diagrams, Jackson structure diagrams.

An approach by Helm & Marriott (1991), Constraint Set Grammars, is mentioned above; their

approach is based upon Constraint Logic Programming. Other Logic-based approaches can be

found in (Marriott & Meyer 1996; Haarslev 1995), which are described later in this section.

3.2.1.7Adequacy of Logical Specification Methods

These reports show considerable disagreement on which notions of syntax or semantics they

choose to focus upon. The power, spatial concepts and specification notations can also be called

into question.

The textual specification languages GDL and PSN are more powerful than is warranted for

syntactic definition. Both attempt to accommodate a practical range of graphical forms,

apparently with the result that their logic is powerful enough to express not only syntactic

constraints but also semantic and stylistic constraints. VCT correctly aims at simplicity, but its

scope is too restricted for notations in general - even though it employs powerful logical

languages.

VODL/VSDF is too restricted by the choice of an algebraic formalism. Picture Logic is interesting

as a synthesis of grammar and logic-based techniques, but requires something more powerful than

Prolog programming to formulate a definition. The VODUVSDF approach is interesting, though,

in that it separates the formalisms for pictorial, syntactic and semantic structures; this is also

intended in VCT.

The specification languages intended for defining graphical notations are themselves

predominantly textual. GDL, PSN, VCT and VODL do not provide a diagrammatic representation

of their rules. Picture Logic advertises a pictorial form, but this is largely copied from the notation

being defined, augmented with some abstractions. The resulting logical circularity is only resolved

by the underlying term-based representation. The pictorial form is merely a convenient

visualization of terms, which can only be interpreted by someone familiar with the notation being

defined. The visualization in VSDF is of the same kind.

None of these are based on any particular theory of diagrammatic structure, but are rather

65

3: Review of Notation Support

experiments with certain styles of description.

3.2.2 Spatial Logic Approaches

Some authors argue the need for notation formalisms to be founded on the logical properties of

space - approaches such as (Citrin et aL 1994) that are not based on graphical elements are seen

as limited by (Haarslev 1996a). The next two formalisms do not simply refer to spatial relations,

but incorporate properties of space in their logical bases. A third report attempts to be more

precisely spatial.

3.2.2.1 Description Logics

Haarslev (1995) refers to the three main areas - formal models (grammars), semantics (e. g.

declarative and logical), visual reasoning (spatial and temporal) - which are Identified by Chang

(1994). He proposes a new formal framework to unify these, based on description logics (DLs);

these are subsets of FOL that exhibit structured inheritance (Brachman & Schmolze 1985).

Haarslev's paper features spatial logic for describing qualitative relations between elements:

points, lines or convex regions. Pictorial Janus (PJ), a visual language for concurrent programs

(Kahn & Saraswat 1990), is successfully used to illustrate the method -which is to be fully detailed

in Haarslev (1996b). [PJ is also treated by Gooday & Cohn (1996a), and (Moller & Lehrenfeldt

1994); see next and §3.2.4 below].

The framework, described in (Haarslev 1996a), uses a spatial logic for semantics of notations,

based on research into reasoning with diagrammatic representations and spatial databases; it

combines DLs with:

(1) topology based on (Egenhofer 1991), with interior, closure and complement as

primitive operators on point-sets (objects), that are used to define a complete basis of five

binary relations on objects.

(2) spatial relations based on (Randell & Cohn 1992), using the single binary relation is-

connected-with, and a convex-hull operator.

A Description Logic is a declarative knowledge representation system based on inheritance

networks; it amounts to a term-rewriting language that rewrites single unique term names. It is

specified by a set of concept terms, a set of roles (binary relations between individuals of

concepts), a set of disjointness assertions among concepts and roles, a set of concept

66

3: Review of Notation Support

membership assertions for individuals, and a terminology to map names to specifications of

concepts and roles. Concepts may be primitive (specified by necessary conditions) or defined (by

sufficient conditions). He claims the notation is much more suitable for human or mechanical

inspection than FOL; defined concepts are preferred to Prolog clauses that can only-express

sufficient conditions. It supports both parsing and constructing examples from specifications. DL

systems automatically detect cycles in semantic specifications, which are known to cause

problems (Haarslev 1995).

Haarslev takes elementary lexical tokens as primitives, forming the roots of a taxonomy (a

specialization hierarchy) of defined concepts topped by semantic categories. Assertions and

queries are used to state and retrieve spatial information about individuals. This taxonomy is

claimed to help reasoning via subsumption relationships; it is more expressive than type-theoretic

frameworks (e. g. Wang et aL 1995). It can deal with ambiguous grammars by computing every

model satisfying the specifications - though algorithms can be NP-complete or even undecidable.

He proposes that DLs be combined with concrete domains, to enable algebraic definition of

concepts and take advantage of constraint logic programming.

He emphasises that different notations will require different. definitions for objects and

relationships. A generic editor GenEd for visual notations has been developed from this theory

(Haarslev & Wessel 1996).

3.2.2.2 Region Connection Calculus

Gooday & Cohn (1996a) apply a Region Connection Calculus (RCC), originally developed for

qualitative reasoning about physical systems, to the syntactic and semantic specification of visual

languages for implementation and verification. They blame the difficulty found in traditional

formalisms such as attribute grammars on the absence of a spatial vocabulary.

RCC is expressed in the order-sorted logic LLAMA, using a formulaic notation (Cohn 1987). The

primitive C (x, y) holds when the closures of regions x and y share at least one point. From C,

eight exhaustive and disjoint dyadic'base relations'are defined. The paper takes as example PJ,

which it claims is very naturally specified in RCC (details in Gooday & Cohn 1996b). PJ is made

up of Strings, Lines, Directedl-ines, ClosedCurves, their enclosing Regions, and

PrimitivePicture Elements that may be superimposed at the same region. The parsing of a picture

67

3: Review of Notaton Support

into primitive elements is not addressed.

The authors plan to formalize the execution-semantics of PJ by means of assertions and

retractions of spatial relationships stored in a database. RCC expresses specification, parsing and

execution in a common language, "breaking free from the need to use any non-spatial language";

this is contrasted with Haarslev's approach of translating to textual Janus.

3.2.2.3 A Complete Spatial Logic

Oliver Lemon (1996) highlights the importance of a deeper understanding of the formal semantics

of spatial logics. He reviews several logics, and assesses them against an adequacy criterion:

A logic is spatial only if it is equipped with classical or intended spatial interpretation(s) with respect
to which it is complete.

He shows that many fail to satisfy, since they are incomplete - consistent sets of formulae have no

models of the intended sort. These include RCC (Randell et aL 1992, Gotts et aL 1996, Bennett

1994,1995), which aims to model qualitative spatial relations between regions of R3 in FOL.

Lemon notes that Modal Logics are known to be limited to capturing only positional constraints

imposed by spatial structure; they cannot capture irreflexivity and intransitivity. By using the

extended modal system of (de Rijke 1992), he provides a complete axiornatization of 2D space,

presenting a modal logic of connected regions that obey the Kuratowski (1930) planarity

conditions. The logic enlarges upon it has a modal operator Op meaning 'connects with a region

where p holds'. The connection relation is taken to be symmetric, and all regions are distinct; Ou

means 'anywhere'. Isomorphic graphs are dealt with using iterated modalities.

3.2.2.4 Adequacy of Spatial Logics

The argument for using spatial logic contrasts with the linguistic tradition; we do not find acoustic

or phonic logic employed in describing spoken language syntax. Is the difference due to the

importance of graphical analogy?

Haarslev's work manages to bring together graphical, syntactic and semantic description, by a

deeper analysis of diagram structure; in so doing it does not avoid complexity problems. Despite

Lemon's criticism, there seems no clear benefit in imposing complete 2D spatial constraints on a

syntactic structure that only makes partial use of them. The paper by Lemon is, however,

important in considering the question of how properties such as planarity may be represented in

68

3: Review of Notation Support

syntactic definitions.

3.2.3 Algebraic Semantics

Algebraic methods emphasize the analogical semantics of diagrams, Also included here are some

methods of treating diagrams in a linguistic framework.

3.2.3.1 Order-Sorted Algebra

Wang & Zeevat (1996) criticise the picture specification language approach as not based on an

understanding of cognitive use of pictures to give a better grasp of the application domain. They

address cognitive issues of the analogy between picture and meaning by a notion of matching in a

semantics based on order-sorted algebra (Goguen & Meseguer 1989). Both pictures and the

application domain are described in an order-sorted signature. A match is enforced by a signature

morphism, following the work of (Indurkhya 1992) on metaphor, and (Pineda 1990).

A picture description language consists of a graphical signature to provide symbols and a graphical

theory to give geometrical meanings to them, in an algebraic institution (Goguen & Burstall 1984).

The signature has a partially ordered set of sorts, a set of function symbols and a set of relation

symbols. Functions are either natural (representing emergent graphical objects, e. g. overlap) or

artificial (generating a new object in the picture), or attributes (e. g. length, colour). Wang & Zeevat

assume that graphical inference is axiornatizable by a geometrical theory expressible over the

signature; similar assumptions are made about the application domain.

An interpretation by metaphor is described as a partial mapping from graphical signature (G) to

application signature (A): a signature morphism from a subsignature of G to A. This approach

gives a semantics only for a single expression. A pictorial language will then be characterized as

a set of picture algebras - items in an expression are constants in a picture signature. The paper

does not make it very clear how this works. Deterministic FSMs are used as an example, but little

detail is given.

3.2.3.2 Homornorphisms

Likewise, Gurr (1996) notes the common belief that specific representations share a similarity of

structure with what they represent; he attempts to define such similarity precisely by means of

homomorphisms and isomorphisms, generalized from their algebraic usage.

69

3: Review of Notation Support

He models each of diagram and meaning as an cc -worlct a set of objects (domain) and a set of

relations between these objects (relation-seo -a definition that "echoes or subsumes other

descriptions" of situations and their representations. The mapping between two worlds - the

representing and represented - is regarded as bi-directional. Again, a representation system will

be a set of such maps, one for each representation-world pair.

Gurr distinguishes between intrinsic isomorphism (illustrated by an use of the spatial 'left-of'

relation to represent integer ordering) and extrinsic properties commonly enforced upon a

representational system [as syntax] - (see §4.4.3).

3.2.3.3 A Linguistic Approach

Treatment of diagramming as having truly linguistic content is attempted by only a few authors,

who have an interest in diagrammatic reasoning. Pineda et al, (1988) describe an interactive

interface (GRAFLOG), that treats drawings as a linguistic extension of text, using Montague

semantics to interpret interactions (Pineda 1990). Ewan Klein (1987) describes a project to

develop (in Prolog) a system to integrate natural language with graphics in knowledge base query

and update, via common meaning structures. Klein alms to find whether drawings can be

analysed like expressions of a language, with syntax and semanti cs. He identifies the basic

syntactic constituents of drawings by reference to the communicative context (textual annotations

and dialogue history), rather than by formal structure alone. This work uses Kamp's Discourse

Representation Theory, a version of first-order logic with a novel treatment of quantifiers,

pronouns and anaphora (Kamp 1981). Klein develops and applies a sorted logic (inL) for semantic

representation.

3.2.3.4 Adequacy of Algebraic and Linguistic Methods

What is lacking in both the algebraic studies is an appreciation of analogy as a systematic process

within a notation as a whole. Without this, there is little we can do to untangle the the problem of

how expressions are understood and used to aid thinking. The algebraic approach of Wang &

Zeevat brings the graphical structure into relationship with its semantics, but ignores the need for a

systematic syntax.

Klein's and Pineda's work moves into a broader area of analysing diagrams in a linguistic context;

although this is attractive, it takes us beyond the scope of this thesis.

70

3: Review of Notation Support

3.2.4 Grammars for Notations

We would hope that the generalized grammar-based approaches above (§3.1.3) would smoothly

accommodate description of graphical language. Unfortunately, the reports show that this is not

so. Graphs introduce problems that, are not found in string or term rewriting. Once again the

representation of spatial properties appears as a concern. A grammar for translation is reviewed,

followed by some research that alms to locate grammars within a general hierarchy according to

expressive power.

3.2.4.1 Difficulties In Grammars

Woodman et aL (1986) have examined the feasibility of using three types of grammar for

specifying software engineering notations. Tree and web grammars were dismissed in view of

complexity and parsing problems; plex grammars were found more successful, but still not

sufficiently general. They proposed a grammar based on EBNF production rules, augmented by a

set of relational axioms to specify which kinds of node may participate in which relations. They

conclude in (Hekmatpour & Woodman 1987) that formal grammars have inherent difficulties with

expressiveness, parsing, and dealing with incomplete diagrams.

G6ttler (1987) uses programmed grammars that allow one user-action to be modelled by a

program of productions, which are themselves drawn as diagrams. He reports the problem of their

inability to express mutual constraints on attributes, as found in certain aesthetic requirements

though satisfying them is algorithmically NP-hard.

Courcelle observes (1990) that graph grammars are worse-behaved than string grammars, and

they support no good notion of graph automaton, Le. finite machine that decides whether a graph

belongs to a given graph language. Other difficulties and limitations of various grammar

approaches are described in (Wittenburg 1993). According to Scharr (1994a), the common belief

that graph rewriting systems lead to inherently inefficient implementations, since many graph

algorithms are NP-complete, is no longer well-founded. ' He considers that the situation is

gradually improving.

3.2.4.2 Embedding

A central difficulty in defining graph rewriting is known as the embedding problem, described by

Rekers & SchOrr (1 995b): -

71,

3: Review of Notation Support

When a nonterminal is replaced, how does the production establish relationships between its

context elements and the elements of its replacement?

They analyse three approaches:

1) Implicit embedding. Picture Layout Grammars (Golin 1991b) and Constraint Multiset Grammars

(Marriott 1994) do not distinguish between vertex and relation objects. They thus have to constrain

attributes in order to express relationships between objects; the embedding rules are a side effect

of attribute assignments. The users may not be aware of these effects, and parsing is complex.

2) Extended context. The most readable solution is to embed new objects by extending left and

right sides of a production with explicit context. In this case it is difficult to rewrite symbols that

participate in a variable number of relationships.

3) Embedding Rules. A more powerful and convenient method uses separate rules that redirect a

set of relations to their new context - as in some graph grammar techniques (precedence graph

grammar: Kaul 1982), (Rozenberg & Welzl 1986, Ferruccl et aL 1994). Not only are these hard to

understand, but all known parsing algorithms are very inefficient, unless production sides are

severely restricted.

With regard to these issues, they tabulate the properties of eight approaches, and find all of them

to be inadequate for defining the language of process flow diagrams. Their own approach (see

§3.3.3 below) succeeds because it can handle context-sensitive productions that replace more

than one non-terminal.

3.2.4.3 Relation-Based Grammars

A general notion of grammar need not be based explicitly on graphs. Grammars based on

relations have been studied and applied by several authors (Wittenburg & Weitzmann 1996,

Fe rucci et aL 19 96).

Wittenburg & Weitzmann's Relational Grammar formalism was first proposed as an extension to

unification grammars of computational linguistics, for the purpose of efficient parsing. Grammars

generate expressions of the following kind:

An indexed multidimensional multiset consists of an indexed multiset of symbols (for graphical items),

and a sequence of relations on these symbols (relations refer to items and their attributes).

The paper defends the choice of context-free syntax, despite the fact that it may not be powerful

72

3: Review of Notation Support

enough to represent many visual languages. The work shows that such restricted grammar

frameworks "can play useful roles in interfaces without having to represent the visual language in its

entirety. "

"if we cannot demonstrate that a weaker formalism Is useful in applications within its power, then
how can we possibly be convinced that more powerful formalisms are of practical value given their

known computational complexity? " Wiftenburg & Weitzmann (1996)

We note that a relational grammar is presented in a formal textual syntax, with a clear but informally

presented graphical equivalent, which borrows the graphical items of the language being defined.

A paper by (Ferrucci, Tortora et aL 1996) discusses features of visual language generation and

recognition, and the goal of an uniform framework, from the viewpoint of another kind of Relation

Grammar. The model provides a high-level description of an expression as a set of symbol

occurrences (s-items) and a set of relational items (r-items) over s-items. An uniform mechanism is

defined to rewrite both r-items and s-items by means of context-free production rules. The model

aims to specify relationships among symbols at a level of abstraction that is less dependent on the

underlying implementation of a graphical interface. The authors believe that an accurate analysis of

the expressive power of visual grammars is necessary to fully exploit the capabilities of such a

formal model.

The paper points out both analogies and differences with respect to other existing models; the main

difference with the Wittenburg & Weitzmann approach is that r-productions can define constraints

over composite objects in terms of relations between their components. In a further paper

(Ferrucci, Pacini et aL 1996), relation grammars are compared with generative graph rewriting

formalisms, and some equivalences between classes of grammars are established.

3.2.4.4Spatial-Relation Grammars

Moller & Lehrenfeldt (1994) provide a case study on the language Pictorial Janus, using a version

of Ferrucci's context-free relational grammar, which they claim is more readable and simpler than

other constraint-attribute grammars. Each rule rewrites a single symbol as a multiset of symbols,

subject to a set of topological constraints between sequences of terminal symbols (which are

graphical objects). The authors also wish to investigate free-hand recognition (Zhao 1993).

73

3: Re%dew of Notation Support

We can analyse the formal structure created by such a grammar as a hypergraph whose edges

join two sequences of nodes. In their example, they use three binary constraints (external-

touching, inside, internal-touching), and one multi-ary (for spatial separateness of a set of nodes).

This last requires hyper-edges - rules would be cumbersome if the formalism allowed only simple

two-ended edges (only pairwise separateness).

Adjacency Grammars (AG) are used by Jorge & Glinert (1995) who extend them as a foundation

for interactive parsing and handling partial input. Their work is related to Wittenburg's unification-

based approach (Wittenburg et al. 1991, Weitzmann & Wittenburg 1994). Complexity is

considered for distance-bounded adjacency languages, showing how spatial enumeration data-

structures support efficient parsing.

The authors observe that associating constraints with productions provides a general control

mechanism for parsing, enhancing the power of declarative semantics. They review two

approaches to parsing of visual sentences that focus on spatial relations as a main component in

syntax analysis. Golin (1991a) shows that parsing arbitrary attribute multiset grammars is NP-

complete. Using dynamic programming he has developed an O(N9) off-line parsing algorithm for

a subset called Picture Layout grammars (PLG). Marriott's CMG approach (11994) addresses the

role of spatial queries, but precise complexity bounds are not given.

AGs extend PI-Gs with Adjacency and unbound productions (that establish logical aggregation).

An adjacency relation is a constraint with an associated query function returning the neighbour set

of a given visual symbol -a way of strongly grouping elements in a production. They achieve

efficient parsing, refining Golin's (1991 a) spatial operators to enable fast retrieval of candidates.

Adjacency is a upowerful and intuitive concept". There are three main types:

Algebraic: A adjacent to B "if there is nothing in between";

Spatial: indicated by geometric distance; (closeness);

Logical: non-spatial, indicated by same-labels, or recursively formed lists.

Each production rewrites a non-terminal N, conditional upon an adjacency constraint over the

attributes of the produced symbols, and synthesizes attributes of N. The parse result is a rooted

directed acyclic graph (RDAG).

Directed graphs are used as example. By using contextual symbols they are able to parse graph

structures without separate explicit constraints on nodes as arc endpoints - this leads to "non-tree

74

3: Review of Notation Support

branches", as in PI-Gs and CMGs. At the top of their grammar, productions occur that are

unbound by geometric constraints - e. g. those that generate a set of separate nodes.

The advantages claimed are a simple algorithm with easily specified visual grammars and easy

parsing. They describe in detail an efficient on-line parse algorithm based on dynamic

programming, alternating top-down / bottom-up operation; its near-linear complexity improves over

purely syntactic methods that are quadratic.

3.2.4.5 Graph Grammars and Translation

SchOrr (1 994b) addresses the problem of using graph rewriting in translating graphs of one type

into graphs of a different type, e. g. program syntax trees into control-flow diagrams. He argues

against embedding source, target languages and the intermediate correspondences in a common

superstructure, because this entails extending directed graphs with second-order relations; and

needlessly preserving fine grain correspondences. He finds it more appropriate to use a pair of

morphisms from correspondence graphs to source and target graphs.

A Triple Graph Grammar (TGG) is a purely declarative specification of translation, that can

accommodate Context-Sensitive productions and many-to-many relationships. Their

correspondence graphs and rules record information about the transformation process needed to

propagate incremental change. These derive from Pair Graph Grammars (Pratt 1971) that

translate strings to graphs, but are restricted to context-free productions and 1-to-1

correspondences between elements of data structures.

The notion is presented simply for unlabelled directed graphs, with notes on how to extend it to

more practical cases. Each triple production depicts how the correspondence between source and

target is maintained during a rewrite. In translating, it is necessary to parse a given graph L to

yield a left derivation sequence and then apply the related sequence of right-productions to a start

graph to give result R in the target language. To simplify, SchOrr considers only monotonic

productions, specified with a single pushout, so that a graph contains its own derivation history.

For this case he develops a terminating translation algorithm; the result of a rewrite is proved to be

unique (soundness), but completeness requires backtracking to find all left-derivations.

3.2.4.6 New Hierarchies

We have seen above that Ferrucci is concerned with comparing the expressive power of different

75

3: Review of Notation Support

formalisms. Jorge & Glinert (1995) believe there can be hierarchies of formal visual languages

according to the expressive power of spatial and logic constraints. Haarslev (11 996a) also intends

to build a complexity hierarchy of visual languages in future work.

Marrioft & Meyer (1996) attempt to define a'Chomsky hierarchy'of languages based on Constraint

Multiset Grammars (Marriott 1994). These are chosen not only because of their generality, but for

their close links with constraint logic programs. The authors have shown that certain other

formalisms can be mapped to CMGs: Positional Grammars, Relational Grammars and Unification

Grammars.

CMGs rewrite multisets of typed attribute symbols, and form a computationally adequate system if

simple arithmetic on attributes is permitted. In order to reduce their power, the authors restrict

attribute manipulation to copying, resulting in "copy-restricted" or CCMGs. Marriott & Meyer

examine the hierarchy of expressiveness formed by analogy with type 0,1,2,3 string grammars.

The power of CCMGs can also depend, however, on the complexity of first-order logic (FOL)

formulae used to state constraints; this leads to a taxonomy of nine types. Parsing of these types

is investigated and found to be expensive in complexity.

3.2.4.7Adequacy of Graph Grammar Methods

We note that most of these descriptive techniques fall in between the difficulty of either being too

powerful and impossible to parse, or feasible in parsing but too weak to cover all the notations

desired. Marriott & Meyer (1996) find that the graph grammar approach is generally deficient in

arithmetical or deductive treatment of spatial relations and their interdependencies. This is

overcome by means of logical constraints to control productions.

Efficiency is then an inevitable concern, given the difficulty of parsing powerful grammars.

Although researchers have attempted to improve matters, many do not make the connection that

this can ultimately only be achieved by reducing the power of the grammar to a minimum. The

paper (Wittenburg & Weitzmann 1996) confronts this most clearly by suggesting that a simple

grammar can usefully deal with part of a visual language syntax. The above attempts at

organization into a hierarchy of strengths are thus a very welcome (recent) development. A

hierarchy provides a way to reduce or at least control the parsing problem; by dividing into

partitions, each with different power in the hierarchy, the part of the syntax that requires a more

76

3: ReAew of Notation Support

complex grammar may be minimized. No authors, however, include In a hierarchy the logical

specification methods reviewed earlier in this section.

We ascertain that Adjacency Grammars (Jorge & Glinert 1995) make a helpful contribution to

efficiency, since the techniqu e of mspatial enumeration" exploits advantages of 2D layout,

corresponding to cognitive factors (ease of visual search) that are believed to be important in

diagrams. There is no reason to believe that parsing should in general be feasible if such

graphical constraints are ignored.

The reports do not pay much attention to how the grammatical specifications are notated, being

more concerned with their properties. Although the graph grammars are not specific to pictorial

structure, their rules often invite a diagrammatic form of expression, based on the standard ways

of drawing graphs. The pictorial forms of graphical elements can be incorporated into expression

of rewrite rules, for the purpose of illustration. It is less clear how relational grammars or

constraints within grammars might be diagrammed.

3.3 Software Tool Support for Notations

The various kinds of notation processing needs in software development methods are served by a

range of computer aids or tools. This section remarks upon the notational functions required of

tools, and gathers reports of several that employ formal techniques such as those outlined above.

In the reports, several authors have assessed the tools available or have described their own

developments. We now wish to discover how successful and versatile these aids are in their

capability for processing notation in general. In this instance our principal concern lies with the

suitability of any theory that underlies the tools, rather than their overall performance.

3.3.1 Requirements for Tools

We start by examining the capabilities that tools must possess in order to support notation in

software engineering. The previous chapter (§2.2.1) mentioned many roles for notations, e. g.

knowledge representation, formal specification, structural diagrams, logical calculi, programming

codes, users' specialisms and project management. Here the kinds of processing required to

assist the main roles are noted, and in particular the properties of notation editors are looked at in

some detail.

77

3: Review of Notation Support

3.3.1.1 Notation Processing Requirements

We find two views of the place of notation in the software development context. In the first,

expressiofis are seen as part of a growing documentation that records the current state of the

project, and at least consists of a partially determined system description. Documents contain a

set of views; when complete, all relevant knowledge of the system's behaviour may be deduced.

Tools for browsing and understanding a notated document may need to translate into styles and

views that suit the viewer.

The second is an interactive view: for instance in (Ince & Woodman 1986) project knowledge is

recorded in a database that expresses replies to queries using required notations. These replies

are not simply extracts, views or translated forms from a static document, but are actively

constructed by logical inference. The approach of Goguen & Meseguer (1987) is to regard a

specification as an inefficient program; when a logical query is made about the system specified, it

is answered by means of a deductive process. In the same way, executing a program effectively

answers the precise "query" as to what output the system will give on receiving a given input.

More generally, in (Cohen et at 1989), project documents and data would afford access by a

pattern-matching, browsing mechanism, with general heuristic reasoning mechanisms to support

inference. Knowledge is expected to be encoded in different logics, whose rules must therefore be

available as parameters to the access process.

In any case, notation tools support an User Interface to the documentation, enabling a participant

to assimilate or extend the information in the system description. Queries could be answered in a

notational style chosen by the user. There are two sides to this communication: output expressions

must be automatically produced and presented; input expressions must be interactively composed

and edited. Ince & Woodman (1986) have developed software ("Toolbuild") that is designed to

support textual notations in this manner. They determine that tools must have facilities for storing

and retrieving information in a project knowledge base, indicating a need to display structures

pictorially, with editing assistance. Editing should involve checking syntactic correctness in terms

of a formal definition, and performing some semantic checking. These facilities must be versatile

enough to interface with existing and future tools.

Such tools require a high level of abstraction. A requirement for some metalogical means for

relating different notations is noted by Black et aL (1987) who have developed a unified semantic

78

3: Review of Notation Support

model using a frame-based representation, in order to integrate the many contemporary

development methods.

Cohen et A (1989) consider automated aids for operating on specifications: - they require

composition and editing of expressions, directed by syntax and semantics; and the ability to

perform symbolic manipulations on system descriptions, such as theorem proving, simulation and

execution. To fulfil these they envisage generic techniques for processing notations, or metatools:

various symbolic manipulators, parametrized by the syntax and semantics of the languages.

3.3.1.2 Editors

Amongst these needs, we focus upon editors, that are clearly essential. What should we expect of

a tool that facilitates the editing of expressions?

We have some expectations owing to the familiar processes of editing and interpreting in respect

of textual programming languages. In any graphical notation, creating expressions is a matter of

making marks on a screen, mediated by software that both enables changes and restricts freedom.

Text, for example, allows only shapes from a fixed character set to be displayed. The system's

interpretation of the marks can play a part in guiding the usees input towards an acceptable

expression.

The early text editors used for programming provided no help with syntax; errors were detected

and indicated by a separate parser during a subsequent compilation stage. Syntax-directed

approaches avoid parsing by using a generative grammar to support insert/delete operations

directly - but grammars do not enable copying of subexpressions nor deletions from lists, for

example (Gruzlewski & Weiss 1991). These operations require a'derivation structure'to be stored

and subjected to transformational rules.

A paper by Kent Wittenburg & Louis Weitzman gives a useful discussion of the problems of

generic editors for visual languages:

"It is naive to think that satisfactory visual language Interfaces can be implemented using generic

graphical editors combined with an analog of YACC to interpret graphics. Unlike generic text

editors, visual language editors must be specialized to the graphical language at hand. "

(Wittenburg & Weitzmann 1996)

Thus Visual Language Interface toolkits cannot afford to ignore the relationship between the

79

3: Review of Notation Support

language of user gestures and underlying representations of graphical objects and relationships.

The authors consider approaches to the question of what ordering an user might follow when

constructing an expression; one answer is to define mappings from the underlying grammatically-

based descriptions to procedurally-defined editors for creating these descriptions (Backlund et aL

1990).

Wittenburg & Weitzmann's reported experience with some users of their editor indicated that the

enforcement of a strictly hierarchical visual syntax was a matter of controversy. Some users

"wanted to be able to informally sketch process diagrams, particularly at early stages of a project

... " - requiring a language of general directed graphs that is not context-free.

3.3.1.3 Flexibility and Guidance In Editing

The question of how much guidance to give in editing is mentioned by several authors. Some

(Coomber & Childs 1990, Gruzlewski & Weiss 1991) stress checking and maintaining semantic

correctness during editing. Gruzlewski & Weiss address the problem of structural editing of

program texts. Normal semantic checking is criticised as insufficient in that corrections may

introduce new errors. They develop a syntax-driven editor using reversible grammar rules, that

works directly on the derivation tree of an expression, in order to hold semantic correctness as an

invariant. The prohibition of incompatible or inconsistent expressions, however, is likely to conflict

with the need to store partial diagrams, that is noted by Hekmatpour & Woodman (1987).

A syntax-directed editor prohibits the drawing of syntactically incorrect diagrams (G6ftler 1987).

In contrast, Welland et aL (11990) feel that users should be offered a choice of how permissive or

directed this syntactic control of editing is to be; and McWhirter (1995) says that syntax-directed

editors may overly constrain how a user interacts with the application. Rekers (1994) notes the

inadequacy of a pure syntax-directed approach, and asserts the necessity of offering users

freedom in how they develop diagrams, with structured support on demand.

3.3.1.4 Specific and Generic Tools

Some tools are intended only for supporting a specified few notations. Specific notations are

supported within the context of a particular methodology: CASE tools that have facilities for

processing graphical notations exist for methods such as Yourdon Structured Design (Yourdon &

Constantine 1978), JSD (Jackson 1983), SSADM (Gane & Sarson 1977), HOOD, HOS (Martin &

80

3: Review of Notation Supporl

McClure 1985 ch38), MASCOT (MASCOT 1987).

Generic tools can support a certain range of notations, when provided with suitable specifications

for them. Such tools vary in restriction on freedom that users are offered in their choice of syntax.

In a project to provide syntactic support for graphical notation tools, Hekmatpour et aL (1988)

report experimental evidence that users sometimes require maximum flexibility in syntactic style

and layout, preferring to modify syntax to suit their own conventions. This would require users to

understand and modify notation specifications, or to indicate their preferences somehow by

interacting with the tool.

Both editorial guidance and the division between generic and specific operation are observed by

Welland etaL (1990), who characterize tools according to three or four oppositions:

stand-alone / integrated (within the development method)

method-specific / configurable (for user's notations)

syntax-driven / permissive;

Checking may be: - off-line (global)/ Interactive (incremental).

A configurable tool can be modified for a choice of diagram syntaxes; it is generic.

They describe two of the better tools then available for generating and editing diagrams. Firstly,

the method-specific tool Analyst is assessed. It uses a permissive-interactive style of editing, with

checking coded as Prolog rules. Since diagram syntax is coded in PASCAL, it cannot be easily

modified. Secondly, they assess MacCadct a configurable stand-alone tool with an interactive

editor, that expresses syntax rules in Prolog, though the choice of syntax is very restricted - there

is a fixed vocabulary of symbols. They comment that Prolog is. unsuitable for integrating into

design method software.

3.3.1.5 Assessing Editors

The extent of liberty and guidance offerable by an editor depends on the depth of interpretation

undertaken by software during the editing process. This in turn depends on the extent of the

formalization of notation structure on which it is based. We may ask:

Does the formalism cover geometric and semantic details as well as abstract syntax?

If a tool is well constructed, there is a separation of various concerns, to allow flexibility. We may,

for instance, ask:

81

3: Review of Notation Support

Can the changes to editing style be made independently of the choice of notation?
Can the notation syntax be changed independently of the development method?

The power of the specification formalism determines how complex the syntax is allowed to

become.

How easy is it to make changes to syntax?

3.3.2 Reviews of Notation Editors

We seek to discover whether graphical tools are general and flexible enough to be easily

integrated into any given software development method. Though we are mostly interested in

designs for generic editors and other tools, -we begin with mention of a few tools for specific

notations. The review here looks at the representations used for expressions, syntax specification

and editor specification.

The design of such tools is a cause for concern. Minas & Viehstaedt (1995) find that some tools

support simple kinds of diagram, but only very few systems for generating a diagram editor are

based on a formal model.

3.3.2.1 Some Specific Graphical Tools

Coomber & Childs (1990) have an object oriented editor & simulator (in Smalltalk) for graphical

prototyping of Real Time Systems, specific to Transformation Schemas (Ward 1986). It verifies

syntax, assists in proving semantic correctness. Editing consists of placing nodes and connectors;

before a connexion is made it is checked for allowability, using menus to present available

choices.

Jensen (1991) discusses properties of editors for coloured Petri Nets as a language for system

design. Standard ML was used for formal underpinning.

I-Pigs is an interactive graphical environment for concurrent programming, developed by (Pong

1991). It guarantees that the graphic program is syntactically and semantically correct, and can

display execution.

Ludwig2 is a general purpose event-driven visual programming language (Pfeiffer 1995). It uses

three modes of expression: graph manipulation, arithmetic and user interaction, but is based on a

common processing model of algebraic graph grammars; program and data are represented as

82

3: Review of Notation Support

hypergraphs (i. e. arcs may link subgraphs as well as nodes).

Citrin et aL (1995) describe a Visual Lambda Calculus VEX that is designed to be easier to

understand than the textual calculus; it is a component of the object-oriented VIPR language.

3.3.2.2 Some Generic Editors

McWhirter (1995) reviews some extensible graph editors, which "provide support for a narrow

domain of languages and Interfaces ... typically have a set of predefined language constructs (e. g.

node, edge and graph)". -

Garden (Reiss 1987) contains a tool GELO that allows definition of graphical representations of

sets of typed objects, with a greater range than the others mentioned; it allows for text and tiling as

well as graph layout.

EDGE (Newberry & Tichy 1988) is a generic graph editor with focus on automatic layout, graph

abstraction and extensibility. 'Subgraph abstraction' groups a set of nodes within a parent node
(visual containment). 'Edge-concentration' groups sets of edges with common source and target,

via a special node. Extensibility is provided by an object-oriented approach, but this is limited.

PRONET(Sylva et aL 1991) is a generic graph editor for development of graphical network

modelling, based on GNMS, a general descriptive mechanism for structural aspects.

LOGG/E(Bolognesi etaL1991) uses attribute grammars. Editing commands take the form of

complex derivation functions applied to the abstract syntax tree that represents an expression.

Each node of the tree can have any number of graphical representations, called aspects;

constraints can determine how a child node is placed with respect to its parent node, and nodes in

the tree may be linked by garlands.

Pallette (Golin et aL 1992), based on a picture layout grammar, uses a picture parsing approach

that is criticized by McWhirter as providing support only for graphic constructs, not language

constructs, thus creating a semantic gap.

Two papers (Welland et al. 1990, Beer & Welland 1987) introduce a general purpose tool,

ECLIPSE, which can be integrated with a project support environment to handle all its graphical

notations. Its design aims for a configurable, permissive-interactive tool that accommodates to

syntactic and semantic checking specified by the user. ECLIPSE uses the specification formalism

GDL referred to in the previous section (§3.2.1). McWhirter (1995) assesses this tool as less

restricted than most - it provides a graphical editor to define the basic representations of the graph

objects.

One of the earliest attempts is by G6ttler (1987,1990); he describes the process of eliciting

83

3: Review of Notation Support

diagram knowledge from a user, and designing a Programmed Attribute Graph Grammar (PAGG)

interface for syntax-directed editing, implemented in LISP. Design was found to be fast compared

to ad hoc programming of an editor. Minas & Viehstaedt (1995) find, however, that the PAGG

layout of diagrams is troublesome and editing is inconvenient.

Clement et at (1990) describe CENTAUR, a generic interactive programming environment

parametrized by syntax and semantics of programming languages. Tools generate a structure

editor and an interpreter / debugger within a uniform graphical interface. Their software separates

graphics from behaviour: Geometric graphical objects are treated as reactive systems that change

state in response to input events and generate output events; their behaviour is written in the Real

Time language ESTEREL.

Ballance et aL (1990) present Pan: a language-based editor for integrating development

environments, based on a context-free Logical Constraint Grammar (LCG) -a grammar that

annotates its symbols and productions with goals expressed in Prolog. These specify constraints

on the language generated by the grammar. LCGs were successful in solving problems of scoped

variables, but the authors found that modifications were needed to the Prolog model to make them

practical.

Garnet (Myers et al. 1990) explores the use of constraints for graphical user interfaces. The

structure of valid diagrams is more or less hidden, however, and must be maintained by the

programmer - according to Minas & Viehstaedt (1995).

Rekers (1994) proposes to implement graphical editors that allow both structured and free editing

by parsing diagrams in two phases, corresponding to graphical structure described by a spatial

relations graph and syntactic structure described by an abstract syntax graph. He considers this

distinction to be very useful. Parsing makes use of the graph grammar formalism PROGRES

(SchOrr 1990,1994a). Although the results were positive for the very simple graphical language

considered, he concludes that it is unclear whether more complicated graph grammars can be

treated as easily.

Haarslev & Wessel (1996) are developing GenEd -a generic semantic editor for formal reasoning

about visual notations (see §3.2.1 above).

Further reviews of research on syntax-directed editing of text and diagrams, and visual language
I

84

3: Review of Notation Support

parsers, can be found in the thesis of Viehstaedt (1995).

3.3.2.2 Guided Editing of Visual Objects

Serrano (1995) purports to show why current tools supporting diagramming notations are not

satisfactory. He aims to provide non-obtrusive guidance and allow flexibility in editing through the

management of partially constructed expressions, an approach that he outlines but does not

formalize. Entity-relation diagrams are used as an example, with constraints expressed in natural

language. In acknowledging the need for a formal approach, he proposes constraints in FOL,

executable by Prolog.

He notes two extreme approaches to the question of guidance: (1) the editor offers none - when

there is a separate phase for semantic evaluation (normally the diagram is translated into a textual

version and then parsed), or (2) the editor "shepherds" the user through the editing process -

evaluation is carried out during drawing and inconsistency is forbidden.

The solution that Serrano proposes is to embed all the semantic constraints in the editor, so as to

allow automatic diagram validation without limiting the user's freedom. A diagram is composed of

Visual Objects (VO) that have a logical part and a physical part, and are either icons or

connections. 'Semantics', which he defines as VO behaviour during the editing task, is expressed

by constraints. A VO has three possible states: Complete, Accepted or Disconnected according to

its degree of incorporation into the parsed structure. Diagrams may be Valid, Inconsistent or

Wrong - Inconsistent diagrams are merely incomplete, but Wrong ones require backtracking to

correct. The constraints enforced on a VO depend upon its state as well as its spatial relations.

The four steps for editor design are (1) Identify VOs, (2) express their behaviour in terms of

constraints, (3) Identify those constraint violations that would cause a diagram to enter a wrong

state, and (4) Define any compound commands needed - as design options that enhance

usability.

3.3.2.3 VisualGen

Chok & Marriott (1995) describes a parser generator (VisualGen) and a graphics editor which

generate a sophisticated user interface from a CMG. It features quick incremental parsing with

geometric error correction via a metric space. The editor allows manipulation of diagram

components - maintaining constraints to preserve 'semantics' [i. e. syntax].

85

3: Review of Notation Support

Unlike attributed multiset grammars or relational grammars, CMGs allow negative constraints and

thus enable deterministic parsing. The graphics editor is not syntax based, but is appropriate for a

hand drawn approach. Constraints are generated automatically during parsing - diagrams can be

drawn in any order.

3.3.2.4 DIaGen

Minas & Viehstaedt (1995) have recently addressed much the same problem area as this thesis.

They describe a generator (DJaGen) for diagram editors that is supported by a formal method:

hypergraph grammars, which they claim to be simpler than graph- or constraint- grammars.

DaGen is a fully functional system that has been tested with large specifications.

A hypergraph grammar describes the structure of diagrams (e. g. as Harel 1987 uses for

Statecharts) in a "much more intuitive and advantageous model for diagram representation" that

permits direct representation of multidimensional relationships, as needed for layout. Context-free

hypergraph grammars rewrite edges, initiated by a starting graph. The total system is a "highly

flexible method" of diagram representation.

The user sees only valid diagrams, mapped to the screen from terminal hyperedges of an internal.

derivation hypergraph. A terminal symbol image is composed of primitive elements (lines, text,

etc.) -a hyperedge connects (visits) a fixed number of nodes, which stand for points, fixing its

position. Both edges and nodes carry attributes, and node attributes apply to all visiting edges; as

a result, hypergraphs require few constraints. Editing is carried out by direct manipulation of

diagram parts, to avoid concerning the user with grammar rules; an incremental algorithm adjusts

layout. Layout conditions are attached to productions as multidirectional constraints, which may

be linear inequalities.

The examples given, NSD & Flowcharts, are found to have similar specifications, differing only in

terminal-edge mapping and constraints. (Productions are shown graphically, with corresponding

nodes labelled by letters.) The authors are contemplating the use of context-sensitive grammars,

needed for other examples.

Edit modifications are specified by transformations - compound transitions from one set of

diagrams to another, that operate on the derivation tree. This method also supports animation

(execution) of diagrams. In practice, transformation specifications are the major part of the work.

86

3: Review of Notation Support

In order to avoid this need and extend MaGen to allow arbitrary manipulations, they are

constructing a parser that can efficiently identify maximal syntax-trees, find inconsistent or invalid

parts, and suggest completions. A designer should then be able to create an editor in a few hours

- ideally having 'drawing-tool' behaviour interpreted by a parser.

3.3.3 Visual Programming Tools

Lastly we look at attempts to support visual programming, an area which suffers from a lack of

tools (OskOdadi & Dinesh 1995a). Together with the complexity of language representation and

structure, this lack has prompted considerable work on generating visual programming

environments (VPE). Rekers & SchOrr (11 995b), comment on the lack of tools that have efficiently

working parsing algorithms.

3.3.3.1 An Algebraic VPE Generator

OskOdarli & Dinesh (1995a) propose a VPE generator environment which they have not yet

implemented. Their paper discusses generation of visual editors and VPE generation based upon

visual language specification in the picture definition language VODL and syntax formalism VSDF,

reviewed above (§3.2.1). The editor-generator yields a tool for the construction and execution of

visual programs (OskOdarli 1994), within an algebraic framework; programs are executed by term-

rewriting.

3.3.3.2 PROGRES

SchOrr et aL (1995a) report on the multi-paradigm language PROGRES, mainly used for

specifying abstract data types. It has the flavour of a visual database programming language with

powerful pattern matching, replacing facilities, and recursion - claiming to be the first rule-

oriented visual language which has a well-defined type-concept. The system provides an

integrated set of language-specific tools to support intertwined editing, analyzing, browsing and

debugging of specifications as well as generating prototypes. It is descended from a whole family

of (programmed) graph rewriting languages. The underlying nonstandard database system is

GRAS (described below).

PROGRES has context-free syntax, and dynamic semantics - though not especially tailored to

parsing diagrams. Its advantages over other VPEs are its strong typing, and provision of data

87

3: Review of Notation Support

definition sub-languages (not just manipulation of data structures).

The paper discusses the syntax-directed editor and its incremental type-checker, with the running

example of control flow diagrams, and recognizing the absence of 'go-to. The recognition

algorithm involves sequential non-deterministic application of rules, with backtracking to test all

derivation sequences. (This is claimed as novel.) The editor is syntax-directed for graphics, and

free for text (for flexibility); all graphical constructs have an equivalent textual form - diagrams are

modelled as directed node and edge labelled graphs with attributes on nodes. Editing modifies the

underlying logical document's abstract syntax tree skeleton, which is 'unparsed' to modify all

current views of the document. The editor code is generated by their IPSEN meta-environment,

from EBNF specification plus text and graphic unparsing annotations.

SchOrr et aL (1 995b) describe PROGRES Graph Grammar Engineering as aiming to establish a

new specification and programming paradigm. They conclude that the approach is not restricted

to the abstract syntax graphs used in CASE tools, but can develop very general complex data

structures. In order to develop large systems, they require that efficiency of graph rewriting must

be improved, flat graphs must be replaced by hierarchical graphs (with inter-graph edges), and a

module concept introduced. The formal semantics is given in (SchOrr 1994c).

GRAS (Kiesel et aL 1995) provides basic operations such as creation / deletion of nodes and

edges, manipulation and incremental computation of attributes, according to a graph scheme

defined in PROGRES. The paper describes techniques used to promote efficiency, such as

attribute dependency graphs (for lazy evaluation) and the clustering of stored data according to

usage.

Structures are described by graph schemes (notated textually, but with an equivalent entity-

relation diagram form). Graphs are labelled digraphs with attributed nodes that denote objects;

each node has a type, and each node-type belongs to a node class. Edges denote binary relations,

without attributes. Edge types represent intrinsic relations between nodes of certain classes or

types. Paths (specified by path expressions) represent derived relations that are calculated from

edges and node properties.

Rekers & SchOrr (1995b) present a graphical parser that supports free editing of drawn diagrams,

88

3: Review of Notation Support

to be implemented as part of the PROGRES environment. It uses a directed graph model. There

are four stages: Pictorial elements of a drawing are fed to a Graphical Scanner that yields a spatial

relations graph; Low-Level Parsing deduces an abstract relations graph; High-Level Parsing uses a

grammar to create a syntax derivation graph. A proof of correctness is to be found in (Rekers &

SchOrr 1995a).

The output of the process may be a yes/no reply or a sequence of production instances, or a full

derivation graph with all non-terminals - or the YACC approach of attaching an action to every

production, yielding an action sequence that can generate a data-structure.

Efficiency is achieved by recording the dependencies of all candidate rewritings as above and

exclude relations - analysed from bottom-up. Starting from an empty graph, the top-down phase

builds a derivation from the dependencies. Each rule-rhs must be connected, and is equipped with

a search plan that determines the order In which the match must be constructed. The grammar

must be acyclic to avoid non-termination. Ambiguity is admitted when distinct derivations are

found, but distinct derivations may sometimes be equivalent, leading to duplication of effort.

Rekers & SchOrr propose history relations to avoid this problem, improving upon Marriott (11994)

and Golin (1991 b) who use cover checks, which restrict the context elements to be terminals.

3.3.3.3 Escallante

McWhirter's Thesis (1995) addresses some generic problems of tool support for general visual

languages, and describes the solutions embodied in a system called Escalante. He notes that

interface development environments have provided very little support for defining the application

model and its representations, and interaction tasks. His modelling places primary emphasis on

the meaning of a visual language, with mode of representation a secondary concern. Escalante

contains a language specification environment (GrandView) that supports refinement and

generation. Grand is itself a visual language. An object-oriented approach allows structuring of

both the external representation and the internal semantics of the visual language. Automatic

graph layout is not covered.

McWhirter claims that the system enables applications to be developed in days or hours, and that

it can support a much wider range of visual languages than the other systems he reviews. To do

this it uses a characterization framework that serves as a conceptual meta-language for 'the

89

3: Review of Notation Support

underlying structure' of graph-based languages. The graph characterization is used as a lingua

franca for constructing applications. Examples given are Petri Nets, Bar Charts, Tables. The

framework is intended to be powerful in its scope, in order to describe abstract relations that are

implicit in diagram structure; it is not intended for, and does not easily apply to, complex fine

grained geographical information.

A visual expression is formulated as a set E of attribute-tuples, partitioned into binary relations R and

entities N. The attributes are those required to specify syntactic and semantics. The framework

addresses the propagation of changes to attribute values. Each tuple has a type (e. g. circle, arrow) based

on its sequence of attribute tags. Relations are the domain of [polymorphic] functions head and tail,

which take values in E. thus giving a higher order relational structure [not just a directed graph].

Behaviour (operational semantics) is addressed by a set of mechanisms that act on the graph

constructs to define a subset of their syntax and semantics. An event (e. g. during editing) is

treated as an operator, it is applied to an element, propagated to the incident relations and

connected elements of the element, by means of a specified set of event maps associated with a

relation. Cyclic propagation is disallowed. An event may not change the structure of the graph -

deletions are carried out by marking followed by a global clean-up. An attribute propagation

mechanism is specified by a set of attribute maps associated with a relation. This includes a filter

function that defines changes to values, and a constraint function that constrains values.

3.3.3.4 Some Others

McWhirter (1995) reviews GLIDE (Kleyn & Browne 1993). GLIDE is a formal language for

describing graph based languages and environments, by means of a structure grammar, view

queries and transition predicates. The latter are of three types, for editing, execution (for dynamic

semantics) and animation (for mappings between the state of a language element and its

graphical representation). The proposed usage is to compile a language specification onto a pre-

existing visual language substrate such as EDGE.

Jorge & Glinert (1995), whose use of adjacency grammars is described above (see §3.1.5), have

produced a visual compiler-compiler that generates C++ code.

3.3.3.5 Adequacy of Notation Tools

It is evident that a considerable amount of research is being pursued into development of tools

which can process graphical notation. The reports here show that much headway has been made

90

3: Review of Notation Support

in recent years, in practical terms. It is only appropriate here to criticize these tools in respect of

the way they deal with notations, rather than their full function. Just a few tools come near to

being satisfactory as generic notation editors, in that they have sufficient generality of application

and are based on formal specification of notations.

The most interesting of these tools is DiaGen, because of its claimed versatility. The hypergraph

formalism employed is a close generalization of textual grammars. PROGRES is important

because of its breadth of scope in kinds of processing and its methods to improve efficiency of

parsing. The uniform use of graph grammar techniques is combined with the separation of spatial

relations and abstract syntax as proposed by Rekers (1994). The approach of OskOdadi & Dinesh

also provides formalisms for both graphical and abstract syntax, but without a common basis, and

the term rewriting approach seems too restrictive by comparison with graphs. Escalante is a good

example of an approach that uses a complex ad-hoc formalism in order to satisfy computational

goals, but without justifying the power of the techniques in terms of notation properties. In

common with other VPEs, there is no separation between formal semantics of the language and

operational behaviour of expressions; no meaning can be attributed to an expression without

executing it in a context.

Several methods use variants of Prolog to encode grammatical representations and parsing

procedures. This makes the specification of a notation into a programming exercise; the user

must be able to predict the interactions between rules. Prolog is attractive over non-logical

procedural languages, because it hides many implementation decisions relating to searches.

Prolog is an executable formalism, however, and not purely a declarative language.

Describing syntax is intrinsically simpler if the user is only required to declare properties, and not

plan the execution of parsing. Checking for executability is then the job of a tool for constructing

editors from syntax specifications. When a specification is compiled to generate a parser, the

compiler must test whether it can be implemented efficiently.

3.4 Discussion of Problems and Issues

Following the survey on notation in the previous chapter and the reviews of techniques,

formalisms and processing tools in this chapter, we are now in a position to highlight the issues

raised and to summarize the strengths and weaknesses in the approaches covered. The purpose

91

3: Review of Notation Support

of this section is to bring out the main challenges that must be met by research efforts. The

discussion is divided into three areas: notation design, mathematical description and tool support.

For each topic in an area, important points are organized into a numbered list and explained in a

short commentary.

3.4.1 Problems of Notation Design

Based on the literature surveyed in Chapter 2, a summary can be presented of notational needs in

a software development context. From the analysis (§2.3.1), several points of difficulty are to be

found in the requirements that notations must satisfy. Further points of difficulty describe the

current lack of knowledge of practical methods for design of notations.

3.4.1.1 Difficult Conditions and Demands

NI Coping with the complexity and size of software systems is problematic.

N2 Software is non-material and hard to understand without using representations.

N3 Notations must cope with a wide range of kinds of system, and express different aspects

of behaviour.

N4 Notations are used in different ways that demand conflicting features.

N5 The need for rigour increasingly places formal demands upon notation.

N6 The ne6d for reasoning and computation can lead to technical formality that conflicts both

with ease of use and flexibility.

N7 All aspects of notation use need to be supported by computer aids.

The survey of Chapter 2 indicates two main reasons why software development needs notations,

and why the needs are difficult to satisfy. Firstly, software systems are often large and complex

objects [N1]. With large systems, notation can depict an abstract analysis into a hierarchy of

named units. As a result, the notation may then lose some directness of expression, making

reasoning less easy. Secondly, unlike many other artefacts, software is not directly appreciated by

the senses [N2]; design must therefore go through several stages of abstract graphical

representation before models and prototypes can be built. These stages require notations that can

fulfil the many differing roles found within the development process.

The wide variety of purposes [N3] warrants using a whole system of notations in many styles,

suited to different participants, different methods and different application areas [N4]. The style

92

3: Revlew of Notation Support

tends to be diagrammatic and informal in the early stages of requirements analysis and design of

overall system structure, but textual and formal in later stages that produce program code. The

supposed advantages of pictures over text conflict with the need for rigour and formality in

notation. Diagrams, for instance, are rarely logically expressive enough for general use in

specifying requirements, and they are not sufficiently concise for recording a mass of detail.

With the introduction of formal specification and refinement techniques [N5], we find that notations

are increasingly subject to formal demands, owing to the need for accuracy and reasoning, and the

re-use of abstract structures. The practise of Formal Methods, for instance, imposes a formulaic

style of logical expression in all stages. Since expression is generally not just a personal matter to

assist individual problem-solving, documents must be precise and clear, and their meaning widely

accessible to technical personnel. Program code and logical formulae are precise and formal

[N6], but adhere to an inflexible, restricted syntax. In the practice of reasoning and calculation, a

more flexible style of expression is normally preferred, owing to the confidence that results from

the presence of a formal semantic basis. Such universal standard forms of notation require a firm

logical basis so that their style can become less strict.

Some authors see graphical notations as intrinsically desirable. Although textual notation may be

preferred for formal work because of conciseness and ease of manipulation, patterns of reasoning

may be better motivated by graphical analogy. For accurate calculation, paper and pencil give

way to computer assistance [N7]; there is a similar need for flexible computational support in

working with diagrams, and all styles must somehow be formally related.

What determines choices of style in notation design? Many formulaic, notations, such as the logic

languages of mathematics, attempt to accommodate varied semantic constructs in a common graphical

and syntactic format. This makes it possible to express systems of arbitrary structure and complexity in

a simple manner. 5 It can also be desirable, though, to link syntactic form closely to structure

represented - even though this does tie the complexity of an expression to the complexity of the

subsystem being expressed. This alliance between syntactic form and semantics is an aid to reasoning,

as reported above (§2.1.3)-, diagrams commonly depict directly the operational units (functions,

modules, objects, procedures or whatever) that are found in a software system under consideration.

Thus practical concerns in software development raise issues of notation design and how it is

SAs Stenning & Tobin (11994) put it: 0 In text, a single representing relation (concatenation) Is heterogeneously semantically

Interpreted".

93

3: Review of Notation Support

supported.

3.4.1.2 Difficulties In Design Methods for Notation

D1 There are no established principles to support design of notation, and little formal aftention
has been given to diýgrammatic design.

D2 There is little discussion of the way notations carry meaning; the structure and function of

metaphor is poorly understood.

D3 Central to the activity of notation lie some fundamental logical issues.

D4 Text and graphics are treated as opposing alternatives of expressive technique.

D5 It is hard to design formal notations to support informal discussions.

The demands on notations are hard to fulfil [D11 because diagramming technique has evolved in

an haphazard manner and there is a lack of design science for notation to help in these application

areas. In the main, notational choices are not designed; they are arbitrarily adapted from past

practice. Rarely are notation designs justified in the literature except by personal experience of

their use. Although mathematics has been applied to specific cases (usually to explain semantics)

in a piecemeal way, no coherent body of "notative conceptsm or structures has been recognized as

deserving study.

The starting point for design is the requirement to carry meaning and aid reasoning. Meaning and

denotation are, however, rarely formally defined [D2]; outside of textual programming languages,

denotational semantics is not used. In order to assist reasoning, it is essential to incorporate

spatial, kinematic and other metaphors into the graphical design of diagramming. Though analogy

has been studied within some important investigations into diagrammatic reasoning, software

engineering notations have not yet been treated. The design of diagram syntax needs to start

from the logical structure of the subject domain, which must be explained or depicted by

analogical means. A formal notation of any kind then embodies a logical system [D3], which may

not have been fully studied either by the notation designer or elsewhere.

Once logical issues are settled, design can attend to the more concrete aspects of syntax.

Notation design needs to exploit the different advantages of both text and graphics [D4],

combining formulaic and diagrammatic features to best effect. For flexibility, there must be an

adjustable balance between abstraction and specificity (directness), allowing choice of which

configurations are abstracted. The hiding of detail made possible by abstraction opens up a way

94

3: Review of Notation Support

to offer a more vague mode of expression [D5], which may be appropriate at the early stages of a

software design process, when ideas are often diffusely represented. The preciseness of notation

cannot be controlled until the concepts of ambiguity and vagueness are clearly defined.

3.4.2 Problems in Specifying Notations

Next we consider how notation is specified, taking note of several issues and openings for

research, and highlighting some points on the lack of clarity over the subject of study (artificial

notations), the problems of description and the choice of suitable formalisms.

3.4.2.1 General Issues of Specification

S1 The techniques and tools present us with a jigsaw puzzle of varied and disparate

approaches.

S2 There are no theories that define what constitutes an artificial notation, as opposed to a

system of representation, or a spoken language.

S3 Informal definition of syntax may obscure the underlying properties of the subject domain.

S4 Mathematical formalizations help the specialist, but cannot be controlled by most users.

S5 Disagreement exists on the underlying type of logical structure presumed in syntax.

S6 Spatial relations and theories are important, especially in regard to analogy.

S7 Descriptions of syntax involve a mix of logical constraints and structural rewrite-rules.

S8 An operationa/ semantics for a notation can be given only if the context is formalized.

We would hope for an uniform theory on which to base descriptions, but this is not what we find.

The pieces of the jisaw [Sl] - qualitative spatial logic, grammars, algebraic semantics, declarative

programming systems, analogical inference, graph rewriting and constraint logic - must somehow

fit together to form a coherent picture. This predicament is acknowledged in recent work. Marriott

& Meyer (1996) observe that progress in visual language specification has resulted in a wide range

of formalisms that are hard to compare owing to diversity in underlying assumptions. They

conclude that a common basis for specification is indispensible to gain clarity. Haarslev (1995)

observes that there is "still a strong need for an adequate theoretical foundation of visual

languages. 0 On the evidence collected in this chapter, a convincing common basis is yet to

emerge.

Another problem is the uncertainty of scope. We do not find clear definitions of what counts as a

95

3: Review of Notation Support

notation or visual language [S2]. This causes difficulties, because the limits of a descriptive

method must be determined from the range of phenomena to be described. Approaches differ in

their treatment of syntax and semantics; for example, many notations we wish to support do not

have the clear operational semantics required in the specialized area of visual programming. We

must allow that the reported formal notions of graphical notation may not be defining the same

thing -the pieces of the jigsaw may not all belong to the same puzzle.

Many aspects of representation in computing are not notational. For instance, data and program

structures are not in themselves notations, though they may be visualized. In this thesis we

require notated expressions to be designed for people to view or read, but it is unclear what is in

common between graphical language and spoken language. The linguistic theories in (§3.1.1)

show that natural language is complex and rich in structure. For diagrams, it may not be possible

to formalize all the notative mechanisms which may arise or evolve naturally, owing to the

indefinite number of pictorial metaphors that could be created. If we restrict our aspirations to

notations that are artifacts, formally devised for particular purposes, some simplification is

essential. To base an analysis of notation structure on theories of natural language would build in

unjustified complexity. Neither can it be assumed that graphical language adopts the same

structural tactics as are found in spoken language.

The thesis argues against the view that graphical notations should only be used as an informal aid

in the development task, or in explanations to users. Diagrams with no precise meaning cannot be

acceptable for accurate communication with users. There is then a need for appropriate methods

of definition. If syntax definition is informal [S31, the true behaviour or semantics of expressions

may differ from the user's intuitive understanding of the analogies embodied in the notation. This

informality cannot assist a rigorous approach to software development. Mathematical techniques

can support syntax definition [S4], but are also hard for most users to read and comprehend.

Specialized methods each rely on a particular notion of structure. Research must establish what

kinds of structure are suitable.

The stnicture of expressions [S5] underlies any definition of syntax; it is a data-structure, normally

some kind of graph or tree, upon which computations can be performed. Such structure is not

essentially spatial- to become so it requires the help of an analogy [S6]. Much of the recent work

has emphasized the spatial properties of diagrams, in terms of qualitative topology rather than the

96

3: Revlew of Notatlon Support

mathematician's usual formulations. Suitable 'theories of place' are needed if software is to

recognize hand-drawn forms or analyse perception; their relevance to syntax and semantics is

more a matter of defining the analogical relationships between the data-structure and pictorial

structure.

Several different kinds of rules are proposed for syntax and semantics. Syntactic rules [S7] can

be grouped into those that generate expressions and those that constrain them to be well-formed;

constraints may apply either to the results or to the process of rewrit. ing. Both grammatical parsing

and constraint-checking rely on pattern-matching algorithms, but the connection between these

two kinds of rule is not well understood. There is thus a spectrum of specification techniques that

ranges from wholly constraint-based techniques to those that use only rewriting. At one end of the

range, computation relies on constraint-solving; at the other, defined structure is specified as that

which can be generated by some grammar. The techniques vary in how much information on

implementation is supplied in specifications. For semantics, some operational approaches [S8]

are applied in the case of visual programming environments (§3.3.3). The notation processing

requirements reported above (§3.3.1) suggest that operational rules may be usefully formulated

wherever the usage of expressions within a context is sufficiently well-defined.

3.4.2.2 Problems of Syntax Description Formalisms

F1 Specification techniques are too powerful and general.

F2 Formalisms do not embody specific theories of notation syntax (see S2 above).

F3 Formalisms do not clearly separate different kinds of structure.

R The grounds for using graph grammars to describe syntax are not clear.

F5 There are no clear guidelines for determining which type of graph to use (see S5 above).

F6 Implementation of general rewriting rules is a non-trivial task, and parsing is complex.

F7 Graph grammars do not easily treat spatial reasoning and global constraints.

F8 In most techniques, specifications for graphical notations are expressed in textual format.

From the varied methods reviewed in this chapter, we can infer that necessary flexibility is only to

be achieved by a highly abstract approach to structural representation. Where the difficulties lie is

in how the expressive power of formalisms is managed [F11. Greater power has been introduced

in order to ensure coverage of a wide enough range of notation structures. Programming

languages, logical languages and graph grammars are technical tools that have great generality of

97

3: Review of Notation Support

application; it is thus not surprizing that they are useful for defining various diagramming methods.

It is certainly valuable to specify notations using a specification language such as Z but such

general purpose formalisms fail to shed light on the simplicity of notation structure

Attempts to devise formalisms especially for specifying notations have not yet uncovered the

appropriate limits on expressiveness; properties peculiar to notations have not been taken into

account [F21. If the general principles of graphical mechanisms were better understood it would be

clearer how to provide a sufficiently simple theory - rather than rely on general methods of

specification that have been developed in relation to computation. Formalisms therefore need to

be adapted to the specific area of notation design.

Methods of formalization address different aspects or kinds of notation structure. A

comprehensive method [F3] must be capable of separating different structural processes -

whether graphical, syntactic, semantic or pragmatic - which may be present. It is harder to design

or modify a notation if the formalization allows boundaries between layers of structure to be

unclear. Some recent researches separate pictorial structure from syntax - e. g. VODUVSDF

(§3.2.1) and PROGRES (§3.3.3).

Grammar formalisms are popular; these approaches use graph theory or relational structures to

generalize the better known grammars of artificial textual languages, which In turn originate as

simplified methods from linguistic theory. We need evidence [F4] that such grammars are in fact

relevant to graphical notation. The grounds for choice of graph-type [F5] need to be explained; in

the reviewed approaches, we find a full range from simple directed graphs to higher-order

relational structures.

Having fixed and formally specified the type of graph, in grammar formalisms the checking of

syntactic correctness requires a complex search [176]. The complexity of computation is too great

unless the expressive power of the formalism (and the range of notations covered) is restricted.

Reports indicate that incremental graphical parsers are now capable of efficient operation for

suitably restricted grammars.

Spatial concepts [F7] are usually dealt with by means of attributes on elements, and constraints on

these attributes during rewriting. The logical complexity of these constraints is then an issue. The

use, of attributes in grammars allows local graphical constraints to be accommodated, but does not

98

3: Review of Notation Support

easily manage global aspects of style.

Although many authors emphasize the benefits of graphical expression for comprehension [178],

these benefits are often forgotten when it comes to the specification formalism itself. Whether

based on grammars or logical constraints, formal approaches rarely express their rules graphically;

this may be because of a presumption that a professional programmer or other specialist will be

the end-user. The approaches concentrate on facilitating the programmer's job (of building an

editor, say). Certain grammar formalisms do have the advantage of being able to express rules

graphically, though they borrow some pictorial items and spatial relations from the notation itself.

3.4.3 Limitations of Notation Processing Tools

We have seen that formal definitions of notations are a prerequisite in constructing tools to assist

processing. Taking into account the scope of this chapter, we here consider problems of

processing expressions, in particular the deficiencies of graphical editing tools that other

researchers have described.

3.4.3.1 The Scope of the Review

The review presented in this chapter does not claim to cover every kind of processing support.

Individual computer-aided software engineering (CASE) tools that support 'notations as an integral

feature of a development method have not been reviewed. We have not considered how well

CASE tools are able to extract and present requested information in notation suited to the user.

Nor have we covered systems that assist human reasoning with diagrams or those that undertake

general symbolic computation, calculating or querying knowledge-bases. These are regarded more

as problems with visualization of data or computation, going beyond the notational issues that are

the focus of this thesis. For our purposes, notation processing does not concern symbolic

structures that are too large for display or coherent perception.

The review has not covered the full range of activities that may be supported by tools. Less

attention has been devoted to certain semi-automated operations that require little human

intervention:

99

3: Review of Notation Support

checking pragmatics: consistency with context,
interpreting (especially the immediate interpretation that is needed in a graphical
dialogue),

translating and changing of viewpoint (hiding detail, revealing consequences),

automatic or assisted layout control. I

The tools considered are predominantly those that support operations that help people in the task

of producing expressions:

creating (drawing and composing),

generating (by grammatical rule),

editing (with syntactic & semantic checks).

In addressing needs for notations, we seek tools which can provide help with their specification

and design. Generic editors are the only available systems that might serve this purpose.

3.4.3.2 Problems and Limitations of Processing Tools

TI Building of notation-interfaces for software engineering tools has resulted in fragmented

effort.

T2 The lack of coherent notational design principles makes tools unsuitable for developing

new notations. (see D1 above)

T3 Current generic tools are limited in the features and structures which they can accept in a

newly designed notation.

T4 The notation-user is mostly excluded from the process of shaping notation, with little

opportunity to create, amend or reason about the specification.

T5 Current tools are limited in the processing they implement - principally editing and

compiling, with little support for translating between notations or offering variant views.

T6 Automatic layout satisfying global stylistic constraints is inherently complex. -

Because of the common close association between notations and method, tools have been far

below the level of general application necessary for user-control of notation or standard

construction. Editors for each notation used have been programmed individually [T111, though this

state of affairs is changing.

The reviewed tools do not give sufficiently broad support for processing. Because they do not

have appropriate theory to rely on [T21, tools offer little help with syntax design. Each system is

developed on its own individual theory and implementation of notation structure. Fully generic

notation processing tools [T3] need to be based on a sufficiently general characterization of

100

3: Review of Notation Support

serniotic structure, so that innovations in semantics or syntax do not force ad hoc extensions to be

made to the systems.

Even the use of improved techniques such as graph grammars or constraint logic [T4] does not

offer users an accessible way of modifying syntax. As a consequ9nce of the over-complexity of

specification formalisms and lack of software support for manipulating them, it is difficult for users

to alter the specification of a notation to suit special purposes. Recently developed systems still

require expertise in logic and programming in order to design or modify notations. A coherent

approach to notation design needs to be more than a graph grammar / constraint logic

programming exercise.

Tasks other than editing [T5] are neglected. Semantics of programming languages is only

supported in a concrete operational sense by interpreters and compilers; neither formal

denotations nor translation to other languages are normally supported. Expression layout [T6]

may require a range of techniques that do not fit into grammar models.

3.4.3.3 Difficulties of Editing and Editors

El Editors cannot easily offer varying degrees of guidance suited to the individual user.

E2 Editing an expression may involve complex operations not defined by grammar rules.

E3 It is hard for grammar-based editing to accommodate sensitivity to semantics or context.

E4 Unfinished expressions which are generated during 'permissive' editing are not easy to

store.

E5 There is a lack of awareness that different depths of structure-checking are needed.

The need for editing with enough freedom and flexible guidance [EI] is hard to satisfy. Guidance

should ideally range between recognising free hand drawn input and demanding fully syntax-

directed selection. Which rules should restrain manipulations? Which rules should cause

warnings before a requested change is confirmed? Which rules should be applied only as checks,

on request?

Guidance for editing must be derived from the syntactic specification. If syntax is defined by

constraints, checking for well-formedness involves logical inference. If syntax is defined by a

grammar, checking requires a search for derivations. It is not clear whether either method has a

general advantage. When using a grammar, the operational nature of rewrite rules has an affinity

101

3: Review of Notation Support

with certain editing processes, but editing is not simply a matter of applying compound rewrite

rules, as some tools presume. Composing an expression [E2] may involve operations of splitting,

joining or substituting of expressions.

During the creating of an expression, the context in which it is enacted (e. g. integrated with a

larger document) may not yet be determined. If the context of enacting the expression is known

during editing, sensitivity to semantic and pragmatic compatibility becomes possible [E31, but only

by logical inference or computation.

Unfinished expressions [E41 often have no clear status; they are not made available as legitimate

vague or partial representations. To allow for partial expressions, checking would need to be

selective. Checking could be carried out according to which level of constraint [E5] the user wants

applied (graphic, syntactic, semantic, pragmatic, stylistic). The computational models underlying

editing should not interfere with these requirements for flexibility.

3.4.4 Researching Notation in Software Development

In view of the problems just discussed, and in order to clarify the choice of topics for research, we

next consider some of the benefits that may result from formalization. We look at the assistance

that it offers in the difficult areas of designing, utilizing and processing of notation. Possible

approaches are suggested to solving the above listed problems.

From the many detailed points noted in this section, two general points on formalization stand out: -

W1 The weaknesses of current approaches stem from a scarceness of clear theory that is

appropriate to notation specifically.

W2 The various techniques and tools are too diverse or rely on unclear principles;

they offer users little flexibility, and do not readily and reliably extend to new notations.

This thesis offers a more uniform formalization as a way to address the problems.

3.4.4.1 How Formalizing Graphical Notations can Help

H1 Provision of a theoretical basis for graphic notation can lead to greater flexibility and

expressiveness, and an increased confidence in precision.

H2 An uniform specifying formalism can allow notations to be compared in structure and

complexity.

H3 A formal description can make room for informal variations and annotations.

102

3: Review of Notation Support

H4 Formalization assists development of both mathematical logic and pictorial metaphors.

H5 Rules of manipulation are established by formalizing the notation.

H6 Formalization can provide modular specifications to help make designs flexible.

H7 The programming of graphical notation tools is reported to be much simpler using

specialized formalisms.

H8 Graph grammars and constraints are each useful for controlling the operations of editing.

H9 Translation between notations from different methods requires some common structural
basis.

In contrast to an informal approach, a formalized basis [1-11] opens the way for logical rigour in all

styles of expression. Formalization provides an uniform framework [1-12] capable of specifying the

different aspects of structure that can be found in notations, and which may be used to control the

complexity of syntax. Within a formal framework, aesthetic or informal details of notation style

[1-13] can be accommodated by heuristic rather than exact rules.

Formalization applies especially to purposes of reasoning and calculation [1-14], where concise

algebraic formulae are especially valued. Although the structure of such formulae is well

understood, their semantics cannot easily be directly expressed in diagrammatic style. A formal

understanding of semantic processes allows better use of metaphor and analogy, that is necessary

in converting to formulae into diagrams.

Tasks which insist upon rigour [1-15] may be made easier to grasp by the use of diagrams and

computer-aided manipulation. Formalization admits automatic application of rules and assisted

heuristic searches for solutions, although reasoning cannot be fully automated. Notations can then

be given an instructive semantics which helps users to think and calculate, through applying

explicit rules.

Separating different Winds of structure [1-16] within a notation helps support flexibility of design -

users can then change the more superficial syntactic characteristics of a notation without

disturbing the semantics. There is a great need to allow variation of modality and all aspects of

style. For example, the pictorial elements in a notation can act as metaphors, by suggesting some

intended analogy. It is therefore helpful to allow the shape or spatial relations to be changed in

order to select the best metaphor. Separating different kinds of structure within a notation also

helps keep specifications simple and in principle allows more efficient implementation.

103

3: Review of Notation Support

Formal specifications are essential in supporting editing [1-17]. Editing involves modifying a

drawing, subject to constraints that define the notation. The specified syntax in effect determines

the maximum structural constraint that can be applied during the task of composing an expression

- outside of context. Several reports of recent research'show that progress is being made on

more general and flexible support for building notation editors from specifications. The particular

method of specification [1-18] can affect the process of editing. Broadly speaking, graph grammars

are suited to directed editing, but constraints are better for permissive editing. Improved

techniques of graph rewriting [H9] also make it possible to use graphs as a lingua franca for

translation.

3.4.4.2 Potential Methods of Implementing Notations

M1 Logic and logic-based computing are valuable.

M2 Graph rewriting techniques are important.

M3 A hierarchy of expressive power in formalisms is valuable.

M4 Processing should take advantage of spatial layout to optimize searches.

The reports show where solutions may fruitfully be sought. The methods of specification that have

found most favour are similar to those being applied in computational linguistics [Ml], which are

allied to declarative programming, logic and type theory. Yet there still remains a theoretical gap

between generative grammars and logical constraints. some sort of constructive or operational

theory must govern the manipulation of notational structure in editing and translating. However

the structure of expressions is framed [M2], rewrite rules may provide an apt formulation for

operations of transforming and calculating, independent of programming languages.

Efficiency should be promoted by graded complexity [M3], based on different kinds of syntactic

structure. If this is not done, processing and reasoning will be no more tractable than in operating

on general structures. Efficiency can be aided by the two dimensional layout [M4] that is a

defining feature of notations. Just as the concatenated structure of text or spoken language is

central to efficient parsing, in diagrams the 2D spatial structure can be used to help organize

efficient searches during structural matching.

104

3: Review of Notation Support

3.5 Selecting the Research Agenda

Now that we have observed where the difficulties and challenges lie, and given the confines of a

doctoral thesis, the task remains to make a selection of research goals that may be achievable.

The choice is guided by the issues that have emerged in the primary literature that is reviewed

above. In the course of the present work, the importance of these issues has been confirmed by

the more recent of the reviews.

A way forward is proposed, and the alms for this research into formalizing graphical notation are

established. Finally, a list is given of some topics that must be excluded from our consideration in

this thesis.

3.5.1 A Proposed Way Forward

As indicated in the above discussion, this work contends that formalization is a key to solving the

problems of graphical notation. Here the reasons are summarized and a statement of aims and

objectives is presented.

3.5.1.1 Formalizing Graphical Notations

Diagrammatic expression has a folklore of practical techniques and conventions, but until recently

there has been little theory to explain why these notations work or even to describe them. By

formall specifying the structure of pictorial notations, the ground may be prepared for establishing Y

good design principles. A suitable research aim should address this task with an eye to

constructing and applying as simple and appropriate a body of theory as may be found.

Research should establish a uniform basis for notational design - one which takes into account

serniotic principles, and which yields elegant ways of combining constraint logic with graph

grammar techniques. The basis should be able to explain metaphors. Formalizations of notation

structure that stand on this uniform base should then be expressed graphically, in several specially

tailored specification meta-notations. 'This would make serniotic structure more explicit and easier

to understand, thereby increasing awareness of design choices.

The benefit in formalization lies in helping to improve the design of notation and to give

practitioners - users of notation - more control. One way to do this is to provide generic

notational-design tools, which could be used whenever a need for new notation arose. These

105

3: Review of Notation Support

software tools would enable standard editors and semantic checkers to be built, without the need

to use a programmer's language. Although inventing a notation 'from scratch' would still need

special skill, the facility to make minor adjustments and extensions to existing notations would be

within reach of many users.

Computer-aided software development requires a system of notations for different purposes.

Ideally, a notational-design tool would provide a facility for permitting incremental change to

syntax and semantics for all the notations designed or adapted for use in the developer's method.

3.5.1.2 Statement of Alms and Objectives

In accordance with this analysis of the problems, this thesis aims to put forward a mathematical

theory of serniotics for notation systems in order to describe notative techniques more formally. It

will apply mathematics to the problems of designing effective notations, and of building interactive

tools for notation processing.

The intention is to lay down some stepping-stones towards a science of formal notations.

The objectives of the research are to find: -

1) a formal, uniform means of specifying the structure of graphical notation systems;

2) a computational and mathematical foundation for designing graphical notations;

3) a clear diagrammatic way to communicate syntax;

4) a plan for developing a generic notation-processing tool, with a prototype implemented in

Smalltalk.

As this chapter has shown, during the period covered by this research many other researchers

have begun to tackle related problems concerning visual language and diagrammatic reasoning.

The lessons and gaps discernible (§3.4) in these parallel researches will be given further attention

in succeeding chapters.

3.5.2 Excluded Topics

There are many interesting topics related to this study that will not be covered here - they are

addressed by other authors.

3.5.2.1 New Modes of Expression

The computer is also a new medium with extra dimensions of representation (Colour, 3D effects,

106

3. Review of Notation Support

Animation and Interaction) that increase possibilities for analogy. Software writing has already

been simplified by the advent of Visual Programming, reducing the need for coding skills.

Program Visualization, which seeks to represent the execution of a program, must rely on

interaction with animated graphics. These aspects will not be treated In this thesis.

3.5.2.2 Interaction and Dialogue

A software development method makes use of a system of several notations and a project will

generate documentation expressed in them. The documents "tell a story" of the development,

which is open ended, always subject to modification. An exchange of diagrams can take place

between person and software, as in 'query-response' with a database. The effect of enacting an

expression in a document is to modify the context in some way - perhaps adding to a

specification, or giving an instruction to a software application, or providing data to an active

process. In return, a process might produce an expression, as if in dialogue or discourse.

Another kind of discourse occurs in 'direct manipulation', where an expression on screen becomes

a communication channel -a part of the context. Using gesture as a communicative act, a person

creates a signal, to which the computer may respond by changing the expression. Interactive

notation, by means of pointing, pressing and dragging, exploits haptic senses and follows

kinematic and mechanical metaphors, that are neither linguistic nor visual. This may be ascribed

to a dynamic syntax of interaction, that extends graphical syntax into the gestural medium of user

interfaces. Study of these kinds of discourse will not be the focus of this work.

3.5.2.3 Cognitive Principles

Formality clarifies the details necessary to support computer-aided editing, interpretation and

translation. Clarity of design may also lead to a better understanding of human factors, of how

skills place limits on the size, detail and style of diagrams, depending on the context in which

people meet with the expressions. The principles that make a notation easy to learn, or improve

legibility of expressions, must however be informed by studies of cognitive and perceptual ability,

which are outside the scope of this work.

107

Chapter 4
An Exploration in Search of Notational Theory

Abstract

Here we find an exploration into the nature of graphical notations and possible formalizations,

which seeks to resolve the problems noted in the previous chapter. First there is a clarification of

boundaries for the topic of research, and an analysis of the roles that technical notations f ulf il. The

exploration then ventures into elementary serniotic concepts, discussing these as they relate to

notations. The discussion argues that notation draws upon many prior cognitive skills in order to

motivate its connexions between signifier and signified, whether linguistic, pictorial or spatial. This

posits 1conism, analogy and metaphor as initiating principles for signification, though the

association of meanings can only be established by usage and agreement. A phenomenon of

layering is noted in general codes, which may be attributed to economy in cognitive specialization.

Ideas of computational linguistics are explored next, with reference to our main concern of

defining notation structure. These ideas suggest that the logical relations between concept and

percept are organized to make deduction of meaning feasible, and that the grammar rules act as a

resource-sensitive deductive system. The question of structure is resolved by taking the form of

expressions to be a certain 'graphoid' structure, in order to support rewriting and local

computations.

These arguments lead towards a theoretical framework; according to this proposal, notation is

described by a formal theory divided into layers, with mappings between theories to define

serniotic process. An expression is then a model of a syntactic theory, and grammars arise as

implementations of proof-strategies. A continuum of inference connecting graphical elements to

semantic concepts explains how both learned rules of manipulation and analogical mechanisms

help the viewer of expressions to concretely verify their thinking.

Thus the chapter points the way towards a formal understanding of notations as sign-systems, and

lays a foundation for an uniform descriptive theory in accordance with the aim stated in the

previous chapter.

109

Chapter 4.
An Exploration in Search of Notational Theory

"... the purpose of theory is to organize thought, not to drown it, to be

constructive without being oracular. " - Vaughan Pratt (1988)

The survey and review have directed our attention towards a general area of difficulty In

describing and processing the notations needed for software design - an area in which better

methods of formalization may be of some help. The purpose of this chapter is to investigate the

nature of graphical notations and to look for appropriate ways of formalizing them and addressing

the problems raised.

The chapter determines more carefully the area that is to be researched and situates it within the

wider territory of semiotics; an analysis of semiotic concepts Is undertaken to shed light on the

mechanisms and structures found in various styles of notation. The central issue, of notation

structure, is then explored in some detail, informed by the observations of computational

linguistics. In the final section the argument leads towards a proposal for defining notational

processes, thereby laying the foundations for a theoretical framework.

4.1 Defining the Area of Research

Our exploration starts with a consideration of the proper ground for research into formalizing

notation. This section discusses the nature and origins of notation, continues with the notion of

formality and then analyses in more detail the kinds of roles that notation plays in a technical

environment. This will help us focus more clearly on specific problems of reaching a formal

understanding of structure.

4.1.1 The Nature of Graphical Notations

To clarify the focus of study it is necessary to set some boundaries around the topic. We turn to

the early history for clues about the commonly observed properties of graphical notations. We

reflect on how notations differ from languages, in usage and attributes.

4.1.1.1 What is a Graphical Notation?

Graphical notations are limited, for the purposes of this thesis, to systematic formations of

ill

4: Exploration of Research Problems

expressions that are communicative and can in principle be drawn without computer support -

ruling out spoken language, data-structures, images and patterns as such. Just as structural

linguistic theory excludes acoustics and cultural knowledge from its remit, an examination of

notations should also stop short of analysing graphical displays and computer science.

Signification in notation is therefore based on codes that are constrained by human abilities to

apprehend drawn configurations. Although often referred to as visual, there is no restriction to sight

as the mode of perception; tactile sensing could also stimulate the relevant spatial cognition, along

with linguistic and more general pattern comprehension - as noted in Stenning & Oberlander

(1992).

4.1.1.2 Text and Diagrams

As we have seen in (§2.1.3), diagrams are generally regarded as very different from texts. What

is the basis for the difference? For instance, (Gurr 1996) states:

NThe two most notable differences between texts and diagrams are the relative difficulty of

expressing abstraction in diagrams and the inherently one-dimensional nature of texts. "

He relates this to the observation that textual representations are type-referential (identical tokens

refer to the same object), while diagrams tend to be tokei7--referential (alike tokens refer to

different objects). Barwise & Etchemendy (1995) point out that good diagrammatic

representations always exploit features of the domain being represented, and so typically lack the

representational expressiveness of language.

Nevertheless, diagrams are not fundamentally different from text. Written words and pictures are

both signs within systems; they have a common communicative purpose amongst those who use

them. This thesis argues against the taking of too absolute a division between verbal and pictorial

modalities, based on cognition. Sequential form is one of many possible graphical arrangements,

and abstraction is a principle equally available to diagrams - either in the sense of reducing

unwanted detail or of recursive coding. In placing the focus on notations, this work seeks to

include both modalities on an equal footing.

This thesis -prefers the neutral terms 'notations' and their 'expressione, acknowledging that

diagrams and text are both graphical - drawn, stylized forms. A more important distinction to

observe is that between the persistent physical status of expressions and the transient nature of

112

4: Exploration of Research Problems

the spoken word, which makes different demands on mental mechanisms. Many cognitive

mechanisms are surely at work in grammatical processes and in linguistic or pictorial metaphor.

Although cognitive constraints must be taken into account and are worthy of study, this research

primarily treats notations as 'culturaf entities.

4.1.1.3 Origins and Usage

In what ways do human cultures determine the form of notations as distinct from languages? Why

do technical notations appear in two kinds, diagrams and formulae? Knowledge of the origins of

notation would go some way towards answering such questions. It is not possible here to establish

how notations originated, but we can at least consider how and for what purposes they have been

used.

Archaeological evidence suggests that the ability to draw pictures made possible the development

of script styles from the spoken language codes that long preceded them. These written symbols,

whether they had phonetic value or semantic sense, soon became stylized and detached from their

earliest pictorial significance. It appears that writing was for a long time practised only by a minority

selected for their particular intellectual skills. Although these skills are today more generally

attained, writing in technical areas is still restricted to minorities with specialist training. In

mathematics and the sciences, a formula is a shorthand for a sentence, replacing words by

symbols, whereas a diagram is a stylized drawing. Just as with writing, these notated symbols,

whether derived from alphabets or from pictograms, have become detached from their earliest

context to achieve a newer, more precise meaning.

These origins imply that, as with language, notations are a means of expressing, sharing and

recording ideas. Early pursuits of Arithmetic and Geometry show notations specialized for

structurally complex ideas that are not easy to capture concisely in speech. They offer precision,

since usage is cleaner and less ambiguous than with language. As well as being a shared medium

of communication, they assist reasoning and calculation. Diagrams help visualize structure, while

symbols in formulae can be manipulated by rules. The ability to formulate rules for calculation is

quite a recent development of human skill.

The visual presentation, as with writing and pictures, has advantages over speech. Expressions

persist, and can hold attention long enough for a story to be read. Viewers can point to them,

113

4: Exploralion of Research Problems

4.1.2 Formality and Formalization

We continue by considering what it means to formalize a notation. What are the implications of

such a procedure?

4.1.2.1 Formality In Language

In a computing context, formality is usually defined as the use of mathematics, though it is not in

fact an essential part of applying mathematical techniques. The need for formality lies rather in the

global spread of communication, where sharing of context and experience is limited. This is one

reason why programming languages demand high standards of formality. It also explains why

normal notational practice In mathematical investigation is informal. Formal work is reserved for

checking and verifying calculations and proofs.

An extreme case of a lack of shared experience occurs between human thought and mechanical

computation. Formalizing a procedure is essential in order to enable automated calculation and

reasoning. Computers can perform symbolic calculations efficiently, using concise programming

codes that have low redundancy in an information-theoretic sense, but are therefore prone to error

when in human hands.

Informal language relies on the 'common sense' resulting from an ill-defined body of experiences

shared in a community. Computers, on the other hand, are less well adapted to informal non-

symbolic tasks, such as picture recognition and general problem-solving. They cannot resolve

ambiguity in an expression by using unencoded common sense. Hence computing demands more

formality in notations.

4.1.2.2 Formalizing Notation Structure

We find two senses of the word formaL The first is that of being constrained by some fairly stable

or strict cultural code of behaviour. In the second sense, a formal behaviour is one that is explicit

and precisely defined. These senses are related, in that presentation of an explicit definition of a

code may lead to greater stability.

This research is concerned with formalizing in the sense of describing rigorously how actual

notations are structured, thereby making it possible for the activity of notating to be carried out

formplly. It does not mean to prescribe that all pictorial communication should be strict and

formal. A graphical notation may be intended for formal use, though it lacks any express

116

4: Exploratlon of Research Problems

definition; conversely, a notation may be informal in style, yet we may still seek to describe it

precisely. Precise description presumes that a code (whether stable or not) can be given a basis

in some logical framework. Any mathematical model of natural phenomena must, however, be an

idealized or simplified system - as a human artefact, a notation can never be precisely defined.

The act of formal description thus inevitably prescribes some restrictions on any notational

practices that rely on its support.

For simplicity, the Idealization here will largely ignore questions and details of context. The usage

of expressions involves method protocols, shared knowledge of the working context, and general

knowledge relevant to the domain. To formalize this would require a model of the complex

information processes of software development methods, as well as the cognition of the

participants and the functions of the tools used to build software systems.

A further simplification is to ignore historical processes. Ungulstics distinguishes two aspects in

the study of a language (Saussure 1916): A synchronic approach looks at language structure as it

exists at some point in time; a diachronic approach describes the processes of change and

evolution which languages undergo. This thesis follows the linguistic tradition in treating notations

synchronically, idealizing their instantaneous structure, and not attempting to understand how they

develop over time, or how they are learned and used.

4.1.2.3 Informality and Ambiguity

The intended formalization will also disregard the possibility of informality. Notation is informal

when its rules of interpretation are not fully agreed or understood -- which may lead to errors of

interpretation that cannot be automatically checked or converted. Informality is pejoratively

referred to as a source of ambiguity and vagueness. Against this, we learn from Design Theory

(Lawson 1996) that these attributes, typical of natural language and rough sketches, have an

important function in the early stages of a design project, not only because they defer decisions,

but because they help the imagination to play its part in searching for resolutions.

This suggests a need to support a refinement process that progressively removes ambiguity,

allowing for transitions between informal and formal representations. Just as understanding of a

software system must become more precise as design proceeds, informal expression must give

way to formality at whatever level of abstraction may be required. Formal notations then provide

117

4: Explorabon of Research Problems

the bridges needed to connect the human domain of informal knowledge with the computational

mechanisms of accurate reasoning.

It may be possible to give a formal treatment of ambiguity, perhaps as a set of coherent

interpretations of an ambiguous expression. Ambiguity is not the same as non-determinacy,

hiding of detail or successive approximation, which are acceptable and formalizable ways to defer

decisions. The criterion is that a viewer be unaware that an alternative or less exact interpretation

exists. Ambiguity has the potential to stimulate many alternative meanings -a kind of implicit

logical disjunction.

I
These observations suggest that the imperative for formality may lie in the prevention of

ambiguity. It follows that formal visual symbols must be clearly recognizable and associated by

mental habit to concepts within a stable cognitive model. If this model can be simulated by

abstract symbol manipulations, it might be possible to specify an unique meaning for every well-

formed expression.

The existence of firm and explicit syntactic rules does not suffice to prevent ambiguity, which is a

property of interpretation of syntactic form. On the other hand, avoidance of ambiguous

expressions does not preclude representation of logical disjunctions, existential propositions, or

even fuzzy predicates, all of which are matters of semantics.

4.1.3 Notational Roles

In order to keep in mind the uses of notations reported in the survey of Chapter 2, it will help to

make a short analysis and classification of roles that they play. The discussion considers the ways

that representational expressions serve in dealing with the structure of complex systems and other

aspects of systems development. What do people do with notated expressions?

4.1.3.1 Instructive and Engaging Notation

Martin & McClure (1985 pl 09) describe diagrams as aids to clear thinking - if only one person is

developing a system - and essential to communicating when several people collaborate.

'A formal diagramming technique is needed to enable the developers to interchange ideas and to

make their separate components fit together with precision!

*A poor choice of diagramming technique can inhibit ... thinking"

lis

4: Exploration of Research Problems

A notation fills an instructive role when it is a tool for thinking: extending memory and aiding

imagination. Such notation can be personal, invented as needed and informal at first, but the

desire for rigour may lead to formality. The ability to support informal reasoning requires an

accurate use of structural analogy, implying that pictorial expression can help. An instructive

notation must be sufficiently formalizable in order to have interpretive rules that a user can learn.

The notion of engagementl is useful here: an engaged viewer is absorbed with content of

expressions, not their superficial form. Expressions are engaging if they are easily read and

understood by a diverse group of users. Engaging styles reduce the amount of cognitive

investment needed to acquire competence with a notation's syntax and rules of interpretation.

Engagement is supported by using features familiar in another context -a different notation or

general perceptual tasks - because the effort required to learn a notation depends on previous

experience with similar graphic, syntactic and semantic structure. Direct features of diagrams and

words help to draw viewers into the world described in a notation, as a result of general pictorial

and verbal cognitive skills. Easy engagement in using a notation relies on firm habits of

interpretation that lie below normal levels of awareness.

The user becomes engaged in the notation only when the rules of interpretation are internalized;

when learning a notation, the user is still partly absorbed by its syntax. Full interpretation is only

possible when the user understands the subject domain for the notation. The degree of subject-

understanding is an important criterion in choosing suitable notation. Experts in their subject can

then engage with very complex notation; Novices in the domain may require a form of notation

that is both engaging and instnictive in helping to learn and understand the subject.

The expert user may wish to modify the syntax to make it more concise, or to better express new

patterns in the subject domain. In exceptionally difficult work, the invention of new notation may

be the first step in gaining insight into a problem, moving towards a more precise understanding

that can be communicated rigorously.

4.1.3.2 Formal Notation

The need for rigour in representation favours compact notation over narrative text; concise

notations can also serve as vehicles for computation. Where precision is important, a formal

1 See Brenda Laurel (11991 a, b) for a discussion of this term as an application of dramatic theory to human-computer Interaction.

119

4: Explorafion of Research Problems

mode of expression is desired in order not be ambiguous. A notation has a formal role if its

meaning is subordinate to its rules of manipulation. This possibility of reasoning by transforming

symbols is opened up because expressions arre held in a persistent medium, giving aid to long-

term and working memory. Expressions are in a code that may be processed by a machine or

person as calculator, as in algebra and arithmetic. In computation, only formal operations are

carried out on expressions.

Formulae can be compact and easier to use formally, but people need considerable skill to

manipulate them. Strict rules of syntax and semantics must exist, but need not be explicitly known

by a (human) user.

For example, programming languages are formal codes and tools for computation. Despite their

formality, as Hoare (1986) observes, programmers are unaware of the laws that the codes obey.

Though each language has its own community of users, they do not primarily use its code for

general communication or instructing people. To overcome this, programming style encourages

practices such as copious annotation in natural language text, and the use of familiar words as

formal names. The predominance of individual use may be the reason for the wide variety of

codes available. In mathematics, whenever formal expressions are also used as communications,

there is much more uniformity.

Programming is a difficult task that is not much helped by textual codes that imitate a restricted

form of natural language and which force preciseness of form before accuracy of content. All

established codes are practically formal, with strict syntax and implicit semantics by virtue of

compilation and execution by machine. This operational formality is not explicit (beyond syntax),

and hence not easily available to programmers, although it can be explicitly mathematically

defined, using denotational semantics, as advocated by Hoare (1986). There are rarely any

software tools available for semantic checking and processing, though some provide animated

execution.

A programming notation is instructive only insofar as it gives insight Into the nature of

computation; it needs to be easy to engage with if novices are to be involved. Attempts to devise

codes that are more 'natural', either with linguistic theory or with graphics, risk losing the formal

precision, and do not necessarily make them more expressively accurate. The redesign of

120

4: Exploration of Research Problems

programming languages along "structured" and "object-oriented* lines, sometimes guided by

mathematical analysis, has improved their ability to instruct and communicate: attributes that are

also found in the corresponding systems-diag ramming notations.

4.1.3.3 Roles and Activities

We can analyse roles according to activity, the agencies involved and knowledge needed for the

activity or use of expressions. This is presented in a table2:.

Role: Activity: Agency: Requirement:

instructive Thinking individual own knowledge

engaging Communicating community common experience
formal Computation calculators simple, strict rules

We see that notation is used for quite different purposes on different occasions, implying varied

requirements on style and structure. Before questions on specific problems of style can be posed,

the mechanisms that make expressions meaningful must be examined.

4.2 Exploring Serniotic Theory

We have gained clarity on the concepts of graphical notation and formalization and identified three

roles that technical notations variously fulfil, which are related to activities performed with software

design representations. We would like to build notations as reliable bridges from informal thought

to precise reasoning. Can a mathematical theory of symbol systems provide the technology for

this?

In order to place technical notation within the wider background of sign systems, this short section

outlines and comments upon basic notions and terminology of general semlotic theory as

presented by Umberto Eco (1976). We follow Eco's division of the subject into a theory of codes

which govern the behaviour of signs, and a theory of sign production, that concerns how a signs

acquire meaning. The indented commentary points to notational examples of the concepts.

4.2.1 Signs and a Theory of Codes

Signs in general are governed by a theory of codes (Eco 1976 ch2), such as those that control the

2We should not assume that Interaction with a computer counts as communication, nor that knowledge of context Is necessarily

coded.

121

4: Exploratlon of Research Problems

structure and functions of notations. We consider the composition and purpose of general codes.

4.2.1.1 The Function and Content of Signs

A sign3 is defined by its ability to stand for something else: its interpretation. The relation between

its form and its meaning may be contrived or natural, but must not be an identity. It is important to

remember that signs are defined by this relationship, not by any intrinsic structure of the objects

that embody the sign.

In notation, our concern with structured items is only in regard to their role in communicative or

interpretive acts. Eco's serniotic theory does not address use of sign systems in thought, but we take it

that serniosis should include thinking, where expressions stand for ideas.

For example, an interpretation of program code can be the idea of what it does: its specification or its

potential for execution by computer. Yet this code is mostly not'uttered'as a communication to other

people.

4.2.1.2 Signs and Codes

A sign system consists of an expressive plane, correlated by convention to various content

planes, including a primary content plane. The structure of a convention is known as a code.

Codes define these correlations by means of a system of sign-functions, each of which

establishes the correlation of a sign-vehicle (a signifier an abstract element of the expressive

plane) with a sign-content (an abstract element of the content plane: a unit of meaning).

A sign-content is known as an lnterpretant4. It is an abstract entity: a cultural unit, not a real

object. Thus a particular culture 'owns' the code and the units of meaning in content planes.

These units may be analysed by their types and features, which are further elementary cultural

units, called semk attributes.

The direct interpretation from expressive plane to primary content plane is determined by the

primaty code, which is concerned with denotation. There may be a second code that correlates

units in the primary plane with interpretations in a second content plane. This gives rise to an

indirect interpretation of expressions in the second plane, known as connotation.

We can infer that semiotic codes control kinds of tenuous logical connexion, which are temporarily

3Terms In bold italic are those used by Eco.

411: Is sometimes called a referent, though here we prefer to reserve this term for concrete items denoted In context.

122

4: Exploration of Research Problems

and approximately maintained by cultural (and sometimes natural) agencies. Where there Is a

system of notations and contexts, the connotative meanings can spread out into many domains.

For example: the use of Ascii binary code sequences to denote a sequence of decimal digits which in

turn denote a number, say; a number such as 2000 may denote a certain date, which may acquire the

final 'connotation'of a millennial problem.

A code establishes sign-vehicles from which concrete tokens are generated. Eco points out that

replicability of tokens is important. Signs are manifest as physical objects or events, which are in

some cases difficult to replicate, or even unique, like cultural events or works of art. Formal

Graphic expressions lie at the other end of the scale, since they can be indefinitely replicated by

printing or writing. The copying of symbols is aided by articulation into combinational units, which

is a feature of notation in mathematics, and computer graphics. These units (e. g. screen pixels)

need not be individually meaningful.

Expressions (or terms) in a notation are sign-vehicles, and their manifestations in print or electronic
form are tokens.

4.2.1.3 Combinational Rules

A sign-function can be defined in its own internal structure, and in relation to its combinational

possibilities within a context. Combinational rules are grammatical properties of the sign-vehicle,

independent of its function. They portray expectations of connectivity between types of symbol in

an expression.

Not all signs are articulable in this way. Spoken language has a characteristic Odouble articulation"

of sentences, firstly into morphemes and secondly phonemes. The elements of the second

articulation have no meaning in themselves; their forms have oppositional value, i. e. they have

distinguishing perceptual features. 5 Morphemes sequence the phonemes into meaningful units.

Similar structure is often found in textual notation. In other notations it can be unclear how to carry

out such an analysis. Mathematical formulae are mostly singly articulated, with each character having

meaning; diagrams may be resolved into textual forms, shapes, primitive graphic items (lines and

circles), and perhaps pixels.

4.2.1.4 Semantics and Pragmatics

The semantic content plane is organized as a system of sememes (units of meaning), each

5Could these features be seen as constituting a further lower level of articulation?

123

4: Exploration of Research Problems

occupying a distinct place within a semantic 'space'. The sememe presents all coded denotations

and connotations as a function of context, and is thus not itself an item in a content-plane.

Whereas semantics treats abstract expressions, pragmatics deals with sign-tokens and signifying

acts. The semiotic code also determines how expression usage depends on context, when this is

analysed into its cultural units. This dependence on context is described by various types of

presupposition: using an expression is said to presuppose certain properties of its context.

Eco describes several kinds of presupposition, all of which can be found in notation.

1) Referential - presence of a reference for each name used.
2) Contextual - logical compatibility with neighbouring expressions.
3) Circumstantial - what participants need to know about context.
4) Semantic - metaphors or other temporary meanings in operation.

In a software development context, (1) and (2) are required for checking acceptability of an expression

being enacted. Circumstance (3) is more difficult to accommodate, since it requires keeping track of

the discourse, and modelling participants' knowledge. Use of creative metaphor (4) is a feature of

informal notations which might aid a discussion of requirements or design solutions, but cannot

usefully be formalized.

Pragmatics essentially defines a relation between expression and context that determines which symbols

may occur and that restricts future actions, reactions or responses. Expressions can be effectively

enacted only if their context supports it. This presumes that some of the complex context has been

analysed and encoded by means of a formal approach such as Situation Theory (§3.1.2). When an

expression is enacted, presuppositional checks can then be carried out, and any ambiguity may then be

resolved by reference to this contextual structure.

Contexts often take the form of a discourse between participants, or an extended exposition in a

document. Discourse processes may allow new meanings to be attached to signs, symbols or

parts of expressons.

The structural rules of paragraphy that apply to documents also have this feature (e. g. the'definition

before use' rule).

Such extracoding pertains to creation of a new code, and lies both within a theory of codes and of

sign production.

4.2.2 Sign Production

Sign production (ibid. Ch. 3) refers to processes which bring about new coding conventions, how

signs and expressive structure come into being, grow and develop, how a code is established and

124

4: Exploration of Research Problems

maintained; whether by natural or a formal process. The topic of sign production touches on

diachronic issues which are relevant to the motivation and invention of new notations, or changes

in style, syntax or semantics which may occur owing to change In skill of users or differing

technical environments.

4.2.2.1 Motivation for Signs

The first concern is how signs and structure are motivated. To invent a content for a sign-vehicle,

some motivation or stimulus must be present to adduce a correlation, which at length may be

recognized as a new convention. The originator must elicit in the viewer perceptions 'equivalent' to

those experienced in the actual idea. The three main methods of achieving this were identified by

Peirce as:

1) arbitrary symbolic associations made familiar by repeated use,

2) associations motivated by metaphor or similarity, and

3) temporary reference made by an action of pointing to an item in context.

Peirce uses terms kon and Index to describe signs motivated by (2) and (3) respectively. Eco

regards Icons and Indexes as practical devices to create a sign where there is no previous

convention. We can regard (1) as motivation by past usage, a general principle that applies to all

signs.

A notational example of (1) is G6del's deliberate coding of logical formulae into natural numbers,

constructed for his proof of the incompleteness of arithmetical theories. For (2), consider the Roman

numeral IIII, resembling four tally marks, as opposed to the arbitrary numerals V, X etc. For (3), in

elementary algebra, a variable Y which may "point" to a particular value in context; note that this

relies on the existing arbitrary convention that x denotes the'unknown quantity'.

In notations, especially diagrams, the signifier may be a graphical relation between other tokens (e. g.
insideness); hence meaning of structure must also be motivated. Iconic forms are common in more

pictorial notations, but less common in formal ones.

Before meaning is motivated, pictorial combinations are potential signifiers: pseudosigns, not

signs; their structure may challenge a viewer to find meaning. We find this for instance in

connotation of stories.

Pseudosigns are informally present in documents describing the overall purpose of a specified software

system. They are also a familiar challenge in mathematics, where it is customary to create formal

systems without indicating any meaning for them - Girard in (Girard et al. 1989).

125

4: Exploration of Research Problems

4.2.2.2 Indexes

The term 'index' means a sign such as the gesture of pointing. It can be seen as a form of

temporary signification, where a referent is created 'on the spot' as the symbol is used. in

notations an index is a name, tag or arrow that 'points at' or cross-references an element of the

same or another diagram or elsewhere in the context. This delkis (pointing) is rarely literal, and

often dependent on further convention or metaphor. e. g. letters on a geometry diagram, variable-

names.

Indexical methods include the use of an arrow to link two separate expressions, though in this case the

arrow is also an icon for some notion of linkage.

In formal language, definition is an important means of attaching meaning to an index. This must use

an existing convention for defining, possibly in a different notation to that in which the -sign will occur.

4.2.2.3 Icons and Structure

An kon6 is a pictorial device that has metaphorical similarity to an intended semantic content. A

notational example is a graphic arrow used to depict flow. Iconic signs are motivated by some

analogy. Le. an existing mental procedure that enables transformation from form to content.

Strictly, pure iconism should be independent of cultural association; perhaps exploiting natural

visual experience.

In practice, the similarity must be conventional: Euler's circles rely only on a convention or metaphor

which (arbitrarily) draws the reader's attention to similarities between spatial containment and

properties generally. Even in Euclidean geometry, diagrams are not pure icons, because a convention

establishes which graphical properties are salient. In these two cases, analogy is evident in the

arrangement of symbols, whether or not they are icons.

Graphic arrows, and spatial succession, are examples of what Eco calls Vectorization, which we

may treat as a structural kind of iconism: a feature that contributes to the composition of an

expression.

We note that 'natural' perception is not the only source of analogies. Cultural experience provides a rich

source of prior mental habits that can provide motivating analogies. These may even be sen-dotic habits

themselves; a new notation may borrow a symbol from another familiar notation and use it in an

analogous sense, e. g. + as a binary commutative associative operator; whole words are often borrowed

from natural language. A related phenomenon in programming languages is 'overloading' of a symbol

to generalise its meaning.

6Th1s usage should not be confused with the 'user InterfacW sense of an Ideogram or pictorial motif.

126

4: Explorabon of Research Problems

4.2.2.4 Strength of Coding

Iconic signs are often weakly encoded, in the sense that there is little established structure or

consistency of usage. In a representational drawing, for instance, the signal is continuous, without

recognizable articulation; it cannot be reliably analysed Into signs or figurae with positional and

oppositional value. Eco notes that its verbal equivalent is not a word but a whole story. Such weak

codes are based on established example texts. In contrast, strong codes are based on grammar:

known rules of combination.

The notations we wish to consider are strongly coded: standardized and formalized to some degree.

4.2.2.5 Expressive Principles In Notations

To complete the commentary we can elucidate the mechanisms that produce coding in notations,

in the light of this theory. What processes enable notated forms to be expressive?

This enabling function can be divided Into three parts: signification must be motivated, defined and

maintained. Motivation for signs is important in making notations easy to learn and use. Formal

definition and the use of standard tools have should help to stabilize and strengthen the coding.

Maintenance of signs happens by mental association and habit - regardless of how their invention

was motivated. The success of notations then depends on how well their coding was originally

motivated and defined, as much as how it is maintained. The ideas of Peirce and Eco suggest

that the expressive principles can be summarized in three processes: -

Iconic Process: invention by metaphor, borrowing sign or structure from another familiar

notation or context, to exploit perceptual-graphical properties or even existing pictorial and
linguistic conventions.

Indexicall Process: the act of pointing a sign to other entities in its neighbourhood,

establishing temporary meaning. The connexion between the index and its referent is

newly made, but the fact that a sign is used as an index (a holder of temporary meaning),

must itself be already established.

Symbolic Process: the repeated usage of a sign, establishing permanent meaning
through association.

An index is a pointing function temporarily bound to context, whether this role is motivated by

iconism or not. The definition given here regards a symbolic sign almost as a permanent kind of

127

4: Exploration of Research Problems

index, which gains meaning by being repeatedly pointed at the same referent. 7 This is compatible

with a definition of 'sign' as an object that metaphorically points to its Interpretant, i. e. its abstract

referent.

Each of the three processes has a particular task. lconism is vitally important in signification; the

argument leads to the position that iconism in its various forms is the only design feature that need

be considered as a motivating principle. Secondly, in an explicitly formalized notation, an

indexical process Is used to define the meaning of signs. Thirdly, a symbolic process is a

maintaining principle when the same potential vehicle is, in usage, always associated with the

same interpretant.

We have now arrived at a set of concepts and processes which can guide us in mapping the inner

workings of various styles of expression.

4.3 Aspects of Notation

We are now in a position to use the semlotic framework as a means of clarifying the folklore that

surrounds notations. This section thus investigates notative methods and discusses the structure

they exhibit In terms of the concepts just introduced. It first concentrates on diagramming as the

main mode of organization. Textual form is then shown to be a subsidiary aspect. The structure

of notation is summarized as consisting of layers of syntactic patterning that are employed to

encode meaning. In this way, the discussion establishes the determinants of structure in the

notations that we wish to describe formally.

4.3.1 Semlotic Characteristics of Diagrams

Here we look at coding methods found in diagrams, or rather in expressions which are not

constrained to sequential form. Diagramming comprises a set of techniques used to produce

signification in graphical expressions. We address the following questions:

7For example, the character /c/ may be used as a numeric variable representing the value of a speed that Is Indicated In context

If we repeatedly use It to denote the speed of light, It loses its function as avarlable, and takes on a fixed meaning.

128

4: Explorabon of Research Problems

What is the expressive plane?
How is the sign-vehicle constituted?
What are the methods of coding?
How is the code articulated?
What are the content planes?
What are the units and attributes of meaning?

4.3.1.1 Elements of Code Structure

First we look at the kinds of graphical properties that are employed In diagramming. The

"expressive plane" of graphics is simply the arrangements of marks drawn on a geometric plane.

How is coding achieved in such two dimensional sign-vehicles?

Expressions are commonly viewed as being composed of drawn units of various sizes belonging

to a hierarchy of constructed syntactic types. Expressions can be explained as arrangements of

units, subject to attributive and locative relations. A whole expression is a unit of a certain type

(e. g. 'sentence'). Expressions need not be homogeneous in style; they can be hybrids of different

styles of sub-notation, each of which serves as a syntactic type. Thus diagrammatic notations

mostly include textual components.

The units are drawn and located in an expression. More generally, items that form expressions fall

into three groups:

(1) lexical units such as keywords, box shapes, links;

(2) attributes of size, orientation, colour, texture; shape, symmetry, markings on single items;

(3) instances of spatial relations such as near, above. touching, inside.

Lexical items belong to a finite set of types - e. g. characters, character sequences (names and

numerals) or pictograms. They are often used as what may be called pictive signifiers - items

which use geometric shapes that are perceived as a pattern, requiring skills of recognition and

discrimination. They need not be pictorial in the sense of directly resembling some other entity.

Attributive relations may be used to create a hierarchy of subtypes, embodied as variants of lexical

items. They may also appear as semantic modifiers, for example using crossing out to express

negation, deletion or prohibition. Attributes give rise to a finite set of graphical features that units

may possess.

Locative relations are a major feature of diagrams; they usually involve some structural analogy.

129

4: Explorabon of Research Problems

The topological notions of nearness, continuity and connectedness help code the combinatoric

properties of this structure. Spatial relations between shapes were noted as important for defining

graphical syntax in the previous chapter (§3.1). Although such relations are frequently referred to

as topological, this is not the full story; geometric cases such as collinearity and horizontal

vertical orientation are also needed.

A small number of 'qualitative' spatial properties appear to cover most kinds of diagram incidence.

It is interesting that the Euclidean plane geometry of the page, the properties of length and angle,

are little exploited analogically in the notations we have chosen to consider. Syntactic units may

make extensive use of recursive constructions that could in principle generate expressions of

arbitrary size and complexity. The coding restricts such recursive freedom so that cognitive

limitations can be respected. We assume that the coding is discrete, so that we only need to

consider finite expressions. The use of recursion is essential to a certain notion of syntactic

abstraction that will be discussed shortly.

This analysis should not, however, be taken as complete. There seems no certain limit on the

types of pattern or relation that are used - creativity in notation may lead to others not yet

invented.

4.3.1.2 Diagramming Techniques: the Diagram Body

What are the combinational rules found in coding of diagrammed notations? The various

structural mechanisms employed in software development diagrams are described by Martin &

McClure (1985) and Nickerson (1995). The latter offers a 'thorough survey' of the use of diagrams

in computer science and identifies some underlying principles: visual conventions such as

Adjoinment, Linking and Enclosure. Although we do not have the benefit of an exhaustive study of

the many examples of diagrams, we can at least explore such mechanisms in more detail, from a

general viewpoint.

Here an analogy from the biological world may be helpful, in which we view a diagram as having a

body. Diagrams often employ enclosure and linkage - forms of box and arrow - that function as a

skeleton or frame to which labels in another notation are attached. These often serve as kinds of

'shells and bones' enclosing and connecting portions of text: enclosures form an 'exoskeleton',

while links form an 'endoskeleton'. These skeletons have connective or collective function; they

130

4: Exploration of Research Problems

may either accept collections of items, or they may have fixed attachment areas which must (or

may) each be filled by a single item. Some examples of enclosures are text bracket pairs and the

schema boxes of Z, enclosures that allow overlap are found In Venn diagrams and Higraphs of

(Harel 1987,1988).

Framing defines an association of places (slots) to be filled by symbols, like the position before or

after a character, or a space between separators In text. In formulae, super- and subscript

positions are slots (and filling expressions are often reduced in size); numerator and denominator

are slots in fractions. A slot may itself be filled by frames, leading to a hierarchical nested

structure, as found in Entity-Relation diagrams and Nassi-Shneidermann charts. Slots may be

organized geometrically: tables and matrices have their slots structured into rows and columns,

exploiting the two dimensions.

4.3.1.3 Expressive Mechanisms

To summarize: Graphical construction employs several mechanisms including: -

Pictive - sets of alike items, labelling

Attributive - modifications, markings or colourings
Locative - adjacence, apposition and sequence
Collective -framing, enclosure
Connective - polyvalent linking

Quantitative - repetition, size and shape

In notation design, the choice between these is related both to subject domain and practical

constraints on size and complexity within the representing medium. The mechanisms are used to

support many analogies, including the forms we have easily referred to as "structure": the building

of expressions. Coding may also be motivated by metaphors with other domains of experience,

cued by spatial or textural properties of the embedding in the 2D physical medium.

For a wider view of graphical representation techniques, the reader might see the range of

examples in (Bertin 1982,1983; Tufte 1990) - illustrating the full variety of visual information

formats that people have devised.

4.3.1.4 Semantic Structure

The content plane for a notation may be some kind of design representation concerned with

software systems. In designing a notation it would be necessary to consider the semantic domain

131

4: Exploraflon of Research Problems

In detail. Here we only look at the motivation for diagram serniosis in general terms. How does

diagram structure carry meaning? Analogy and abstraction are the key techniques here.

4.3.1.5 Specificity and Quantity

The Iconic quality of diagrams has been noted previously (§2.1.3). A good example of this is the

way diagrams may represent quantity, in the senses of multiplicity or size, by a proportional

mapping of lexical items to individuals. In this way, Histograms, Plecharts (and coordinate-

geometry graphs) are used for coding numerical values, when the size of a line or region is

proportional to the size of a set or space. In the discrete forms of diagram considered here, the

one-to-one representation of quantity is sometimes useful. In contrast with decimal numerals, this

analogical coding can be seen as a weak instance of specificity, a phenomenon that was described

in (§2.1.3).

The notion of specificity Is explained in (Lee et al. 1991):

"[graphical representations] are limited to representing total mappings of identity and some spatial

relations... This totality of mapping Is what allows efficient access by search mechanisms. ... The

specificity hypothesis is that this property of totality, shared by images and the relevant components

of working memory, is what gives graphical representations their special cognitive properties. '

Stenning & Tobin (1994) thus regard the property of specificity as the factor that yields tractability

of inference in diagrams. They use specificity as a criterion to discriminate between diagrammatic

presentation and languages, noting that most graphical systems employ more than one directly

interpreted relation - though specificity is also found in 'degenerate" textual languages where

concatenation is directly interpreted as temporal succession, for example. .
An inherent

disadvantage is that the diagram cannot hide the relations between individuals that are signified by

spatial arrangement -a property that Stenning & Tobin call 'information enforcemenf.

We can view specificity in diagrams as a principle of structural iconism, which motivates aspects

of the code structure and so provides a stronger motivating principle than the simpler iconism of

pictorial symbols. The main example of this is the use of one-for-one mapping between a set of

similar lexical items and a represented collection of individuals. The diagram indicates not just the

number of individuals, but usually also the connections between them. The cognitive advantage

of specificity is lost when a set has too many members (e. g. graphs with many crossing edges, or

spread over several pages).

132

4: Exploration of Research Problems

4.3.1.6 Modularity and Abstraction

According to (Lee et al. 1991), languages characteristically allow* abstraction in their coding, in

contrast to the specificity found In diagrams. This abstractive power occurs at the expense of

processibility. Despite this, we find that abstraction is also an important feature of diagrams in

software development.

The reason for loss of directness in notations lies in the complexity of software systems. When a

diagram becomes complex, -the viewer investigates it in the manner one might explore the

workings of a machine - some notations (e. g. electrical wiring diagrams) are not intended to break

down into sentence-sized pieces. To avoid this kind of intractable layout, it is common to extend

the notation syntax by using modularity (as in program text) or abstraction mechanisms.

Modularity provides a way of "coveringn a large system by separate small expressions that are

linked by common references. As a strategy for communicating complexity, it draws the attention

of the viewer to facts and factors of the system in small 'packets', such as modules, sentences,

statements, or diagrams. A collection of such packets describes a possible system only if it is

consistent and coherent according to semantic rules. Each member of the collection may be

implicitly linked to others by sharing of name-items that have a common referent. Simplicity is

maintained because in any particular notation, only certain aspects of a system are revealed.

Abstraction can be seen as a kind of modular technique, that involves replacing a complex subunit

by a single name-symbol, whose definition appears as a separate expression. This creates a

hierarchy of dependent definitions. In recursive definitions, the hierarchy is not well-founded - it

contains cycles. This kind of recursive abstraction allows a finite expression to denote an infinite

structure. The cost of this abstractness is clearly that some computation must be carried out in

order to decode the expression.

The cross-referencing needed to connect modules requires a many-to-one mapping from such

abstract lexical items to their shared referent: a name occurring several times refers to the same

individual. This 'type-referential' behaviour provides an alternative to links, and is therefore

important in textual notations, where connecting lines cannot be used.

4.3.1.7 Graphs of Many Types

Graphs are structures that lend themselves to both abstract and direct forms of coding. In Chapter

133

4: Exploration of Research Problems

3 it was found that diagrams are often regarded as drawings of graphs of some kind. This is

implied by McWhirter (thesis: 1995), who observes that all graphs are abstract structures, whilst

graphical notations of any kind are drawings which embody them.

If the domain being represented has already been formalized as a class of graphs, a notation may

be chosen to realize these graphs by pictorial shapes and features, which make up the skeletal

structures referred to above. The incidence between parts may be realized in different ways.

There is however a close correspondence between the constraints defining a graphs of the domain

and the modes of graphical realization that are possible. Thus a structure of nested enclosures

realizes an acyclic 'tree' digraph, and a planar graph may be drawn without crossing edges.

These kinds of graph (referred to here as graphtypes) are distinguished by their permitted methods

of connection. Thus edges may link ordered pairs of nodes (as in directed graphs) or tuples of

nodes (hypergraphs) or unordered sets (as in webs); the number of edges connected to a common

node may be limited or fixed; edges from a single node may be sequenced - for example,

flowcharts may be described as hypergraphs in which boxes are edges between junctions of

arrows. There may be different kinds of nodes (e. g. places and transitions of Petri nets), or of

edges. Edges may link other edges, in a more general relational stnicture that goes beyond the

usual graph paradigm, as found in Entity-Relation Diagrams. As well as these simple forms of

incidence restriction, more complex logical constraints on graphtypes may be applied, such as

connectedness, absence of cycles and planarity.

4.3.2 Textual Form and Structure

The familiar example of graphic text can help illustrate the concepts just discussed. This will be

rather a matter of stating the obvious, in order to show how many 'diagrammatic' characteristics

are already present in text. For concreteness, we consider the case of a textual message laid out

in a rectangular region, and ask how the structure of such a'message notation' is constituted.

Pure text has an easily described uniform visual structure which serves as a carrier for much more

elaborate and varied syntactic patterns. It is structured as strings of elements of a set, called its

alphabet, consisting of graphical shapes of similar size. These elements may themselves be

discriminated by visible features of shape or structure (e. g. diacritics, underlining) - but in this

case we exclude non-sequential mechanisms such as subscripting.

134

4: Exploratlon of Research Problems

4.3.2.1 Graphical Structure

A message is drawn as spatial sequences of shapes (called characters) in a particular orientation,

spatially arranged in sequences parallel to the base of the rectangle. It is assumed that vertical 2D

layout of characters is not significant, since a simple textual notation is intended, It is then

possible to abstract this geometric aspect of the graphical layout, and concentrate on the nature of

a message as a character string. 8

Characters are stylizect, each is displayed by one of a range of perceptually equivalent close

variants. In detail, elements have graphical forms characterised by features that allow perceptual

discrimination between them. Thus ambiguity may occur if two distinct characters share all the

same features. This could happen in three ways: -

1) shape: /0/ confused with /0/, (similar features)

2) visible structure: /m/ confused with Im/. (between an element and a compound)
3) overloading: unary negative Nconfused with binary minus/-/ (identical characters).

These kinds of geometric-perceptual ambiguity may be resolvable by syntactic rules, making use

of the context of the characters within an expression.

4.3.2.2 Articulation

The alphabet is a small finite- set, not a recursively generated set of shapes. It forms the lowest

layer of articulation: the smallest kind of unit. The alphabet usually contains different kinds of

'pictive' elements such as letters and punctuators.

The second layer of articulation is formed by composing character shapes into lexical units, e. g.

letters into words. This concatenation is a simple recursive process, but only a finite set of lexical

signs (a vocabulary) may be admitted in expressions. Perceptually, the lexical units are

recognized as wholes rather than combinations of parts. Words may have graphical attributes,

such as lower / upper case, boldness, choice of font.

Letters are character shapes, mostly with no individual meaning. Letters are concatenated to form

words, generally the smallest items that can be given individual meanings. Some single

characters also serve as lexical units, and may also be distinguished by significant attributes, e. g.

the negation mark on the inequality sign *. Some strings (names) may be extensions to the

8Characters Include notlonal spaces, which are not elements of the alphabet.

135

4: Explorallon of Research Problems

vocabulary - newly defined by an Indexical process. Some strings (e. g. numerals) have an

internal syntax and semantics determined by a sub-notation.

Punctuators are syntagmatic items for linking and enclosing, e. g. the separators and brackets,

which are involved in both articulatory layers, and form the 'skeleton' of the text. A bracket pair

must then be regarded as a lexical unit, though not a word. 9

If the messages consist of standard phrases, this would constitute a third articulatory layer.

Special phrases that have more meaning than their internal syntax suggests, are examples of

overcoding in Eco's terminology.

4.3.2.3 Syntax

Above these articulatory layers, the syntax (typically) becomes recursive in its complexity.

Whereas the graphical and lexical layers are bounded In size, the syntagmatic layer creates

(indefinitely) larger, complex units whose meaning is derived from its components, e. g. terms,

phrases, clauses, sentences, and also paragraphic units such as blocks of statements. Here text

differs from diagrams in having little skeletal structure to delimit the units. For example, in

algebraic formulae there is a tendency to rely on implicit groupings where possible - such as infix

operators. This can cause ambiguity. On the other hand, over-use of punctuators leads to

awkwardness (e. g. the parentheses in LISP code).

Syntactic conventions of text are broadly unaffected by semantic structure; their purpose is to

overcome those restrictions of the medium that conflict with a more direct representation. In

natural language text, syntax is mostly concerned with explaining syntactic groupings as arising

from implicit lexical features, as is evident in categorial grammars and feature-based approaches

(see §3.1.2 and §4.4.2).

4.3.2.4 Semantics

The top layer of structure is the most abstract form of syntax -a conceptual semantic structure

that is effectively independent of graphical format; e. g. an algebraic formula can be represented

by a directed graph. The semantic layer is a formalization of the structure of denoted objects in

9Where brackets cannot be paired perceptually, they fail to constitute an effective le)dcal unit, and comprehension may break

down.

136

4: Exploration of Research Problems

the content domain of the notation.

These upper two layers of structure cannot qualify as kinds of articulation, because the units that

compose an expression are overlapped in a complex manner. A recursive syntax can admit an

indefinite number of units, covering an unlimited range of meaning, though they belong to a finite

set of types.

4.3.2.5 Motivated Signs

Various limited kinds of pictorial iconism can be found in text. A few character shapes, especially

in formulaic text, have visual iconic features based on geometric shape or symmetry, e. g. /=/ and

/</, or the brackets ()[], whose syntactic function is suggested by their shape. Some symbols

such as digits and /+/ are borrowed, typically from arithmetic - the borrowed icon /--/ has an almost

universal status. In programming texts, keywords are borrowed from natural languages, and

fragments of natural interpretation are converted by metaphor to the more formal meanings that a

programmer understands - as if a formal denotation corresponds to an informal connotation.

Structural iconism (specificity) is present when the sequence or adjacence of substrings denotes

(temporal or spatial) ordering of referents. 10

We see from this brief description that text has available all the features found in diagrams,

though within the restrictions of its sequential form.

4.3.3 Modalities, Mechanisms and Layers

We end this investigation of semiotic aspects of notation by considering the differences between

modalities or styles of expression. These are characterized by reference to the mechanisms of

pictorial, verbal, linguistic and spatial coding. To round off, a description is given of the various

semiotic layers found in notation structure.

4.3.3.1 Diagramming versus Text

In what way do diagrammatic mechanisms differ from textual?

Modality and style refer to characteristic types of coding and convention of use. Diagrams, text

1OThis lconism of succession Is rather weakened by the graphical breaking of text Into lines, because It then relies on cultural

conventions of readIng to determine sequence and direction.

137

4: ExploraUon of Research Problems

and formulae are distinct in style. We look for some clearer criteria of classification for notation

styles than those used in the Shu Triangle (§2.1.2) for visual language styles.

The above inspection of text reveals four or more structural or general syntactic layers: 'graphical,

lexical, syntagmatic arrangement, and at least one semantic layer. As remarked above, diagrams

show a less strict separation of the layers. For example:

Diagrams have a greater reliance on 'collective' lexical items that explicitly frame larger

units.

0 Operations such as type checking are treated as semantic in textual programming

languages, but are part of connective syntax in visual languages.

Diagrams use structural analogy and visual metaphor-cues to make the semantic concepts

correspond directly to graphical processes.

Text has a clearer articulation into layers owing to the linguistic processes that have evolved to

overcome the restraints of sequence.

There is also the the case of formulae. Formulaic (e. g. mathematical) styles are intermediate

between text and diagrams in these respects. Comparing formulae with text, we find less reliance

on sequence and more use of the vertical dimension, with larger graphical separators and frames

(e. g. matrix brackets, fraction lines). The lexicon may be almost absent, since special (pictive)

characters are often preferred to words. Formulae make no use of the long graphical linkages

found in diagrams.

4.3.3.2 A Method of Classification

This suggests an approximate way to classify notational styles - according to the extent to which

certain expressive mechanisms are used in the layers of serniotic construction. The method is

based on two questions: Are the smallest significant units pictorial or verbal? Is the spatial

arrangement of these units directly significant or indirect - abstractly interpreted by some

recursive linguistic process? These questions suggest two average ratios, of verbalness and

directness (specificity) in expressions, which can be used as dimensions. The chart below

accordingly places various styles of notation in a rectangle.

138

verbal

units

shaped

4: Exploration of Research Problems

C
tabulated

Dtteexxtt

prc
t .1

diagrams

pictures

narrative textl

code

c-

direct indirect

spatial interpretation

From the chart we note that notations tend to lie on the diagonal joining the two 'natural forms' of

narrative and pictures. It is less usual to find a spatial layout of isolated words; mathematical

formulae are composed of shaped characters which are mostly not iconic. The use of words is a

strong cue to expectations of linguistic syntax, whereas special characters in formulae give no

cues to their structure for the non-mathematician.

4.3.3.3 Layers of Syntactic Structure

We now have an answer to the questions of (§4.3.1), on how expressive and content planes are

connected.

The coding of an expression is regarded here as a general syntactic stratum that may helpfully be

divided into layers. These layers of articulation, recursion, denotation and connotation are seen to

mediate between the 'ground' (physical reality) of expression tokens and the 'sky' (meaning) - the

essence of their presumed effects in the world. Each layer has its own logical characteristics,

which are related to cognitive processes and resource limitations.

The two lower layers are articulatory. The graphical layer is a matter of simple perception -

resolving a drawing into the spatial distribution of a finite set of identifiable shapes. The lexical

layer consists of identifiable groupings of these; to be effective as communication, lexical items

should be instantly familiar and recognizable.

The next layer consists of overlapping and sometimes extensive arrangements of lexical units.

Parsing this central syntagMatic layer requires a search for structural matches, but may not

practically take more than a second. The recursive procedures which underlie syntactic processing

must be within feasible bounds for expressions of reasonable size - which is why grammarians are

not content with grammar formalisms that are Turing-complete (Carpenter 1995b).

139 -

4: Exploration of Research Problems

Fewer computational limitations apply to upper semantic layers. The upper boundary for the

syntactic stratum takes the form of a semantic conceptual structure that can feasibly be deduced

from the layers below. Beyond this, semantics may involve the unbounded complexity that

unfortunately can arise in the relationship between thought and action. The full meaning of an-

expression may require complex logical inference; it may yield progressively more information

over a long period. The full semantics of programming code, for instance, is a much more

complex affair than its syntax, or even than its formal denotation. It concerns an understanding of

what the program does. 11

Semantic layering can reduce the logical burden; it occurs when metaphor is used to transfer

familiar (perhaps literal) reasoning based on cues, into a more complex, less rehearsed arena of

the actual subject domain.

In this way, semiotic principles determine how the structure of notation syntax is built up in layers

and connected by expressive mechanisms.

4.4 The Problem of Defining Structure

The previous discussion has led us to the impression that notations possess a kind of layered

structure. We now wish to concentrate on the question of how this syntactic structure can most

appropriately be described. To find an answer, this section examines various kinds of explicit

syntactic rules employed in linguistics. These grammatical and logical methods are then compared

with semantic treatments of graphical analogy. Analysis of the methods points to the need to

consider the underlying question of how to define the basic form of expressions. This question is

resolved by an argument based on the formal operations that will be performed on the description.

4.4.1 Methods of Syntactic Definition

We begin by taking a look at the structural description of syntax. In view of the discussion in the

previous section (§4.3), the term 'syntax' is taken to include in the whole of the layered structure of

coding - not just the matter of arrangement of lexical items. How might syntax best be defined?

11 In this sense it may be undecidable. Also, the exact nature and behaviour of computer systems has demanded a deep logical

analysis In computing science and cannot be said to be fully understood, especially If we Include parallelism In hardware and

human factors.

140

4: Exploraflon of Research Problems

4.4.1.1 The Nature of Syntactic Rules

A syntactic description for a notation specifies an expression as a well-formed form (wff). The

language (expression-class) determined by the syntactic rules is simply the class of wffs.

Syntax can be taken to represent the viewer's mental moddI12 of an expression that is'divorced

from any reference to its situation - as when taken out of context. A person's knowledge of syntax

enables them to create or compose expressions. When an expression is received it also provides

a starting point for the process of interpreting in order to respond.

Two broad approaches to structural description of syntax were noted in the last chapter (§3.2), with

two corresponding kinds of syntactic rules: -.

1) Logical systems constrain a general structure to satisfy certain relations and properties.

- Constraint rules provide axiomatic criteria for accepting or rejecting a (generated) form.

They are declarative rules by which forms are judged.

2) Production (rewriting) systems derive well-formed structures by a combinatoric method

of freely applying local replacement operators to configurations of symbols;

- Generative rules build fonns. They are executable rules which can convert a sequence

of choices into an expression. During construction, forms are partial: incomplete or
incoherent.

In a logical system, expressions are treated as constrained forms; rules do not specify how forms

are generated, but only the constraining properties that determine well-formedness. When

creating an expression, it is necessary to find a form that satisfies all constraints and also fulfils

semantic goals -a problem which may be undecidable. When interpreting a form, the checking of

syntactic constraints should be a quick 'decision procedure', and the process of discovering

meaning is deductive. Therefore the syntactic rules direct our attention to logical form and to

corresponding deductive and constructive processes. What exactly is meant by a form? For the

moment it is assumed that forms are combinatoric objects belonging to some class called a form-

space. The class of forms must contain the expression-class of a notation, since every expression

is a form. We return to this question in (§4.4.4).

The form of an expression is not just a definition of its graphical appearance. It carries information

on all syntactic layers - all aspects of form that are perceived, imagined and thought. Hence we

12ThIs Is not to claim that the viewer actually'has! the model, but that they behave as If they might

141

4: Exploraflon of Research Problems

may speak of graphical form and semantic form. Form-spaces are necessarily different for each

notation. The graphical form and semantic form of an expression are connected by a signifying

relation.

In a production system, rewrite-rules generate wffs. The set of rewritings resulting in a wff builds a

derivation for it; hence each wff has an associated non-empty class of possible derivations.

When creating an expression, the writer is concerned with achieving a graphical form that matches

an imagined semantics. In a grammar, rewrite-rules provide a way of navigating through form-

space, which for restricted grammars will guarantee a well-formed terminus. Conversely, when

interpreting a given graphical form, a search for derivations occurs; it may be undecidable whether

the form is a well-formed - the search may fail. When the search succeeds, the constructed

derivation is a representation of the meaning, from which it is possible to calculate a semantic

form.

4.4.1.2 Heterogeneous Notations

We observed in (§3.3.1) that neither logical specification nor graph grammars have succeeded in

providing a general and straightforward means of defining notation syntax. Why is this not as easy

as the task of specifying formal textual syntax? This is because, as has been noted (§3.4.1), the

graphical format of text is homogeneous: it remains much the same whatever the topology or

topography of the domain being written about. In contrast, graphical notations have varied

topography, which allows them to exploit spatial metaphors. How can we allow for the

heterogeneous nature of notations?

We could enforce a common graphical form -a standard underlying structure for the whole gamut

of existing notations, acting as an invisible stratum that can accommodate all possible metaphors.

This would allow grammars to use production systems that are uniform in all graphical contexts.

Yet even if we could formulate a sufficiently general graphical theory, it would introduce

unnecessary complexity into the descriptions. For this reason, graphical mechanisms in notation

cannot be formalized adequately by a single kind of production system. We cannot get round this

by taking different rule-methods for each syntactic layer, because the distinctions between

articulatory levels in notation are not very clear.

As was pointed out in (§3.1.1), the simplicity of textual syntax is illusory. If we admit formal syntax

142

4: Exploration of Research Problems

that approximates the subtlety of natural language, structural description problems similar to those

of graphics must be faced.
.
Although text Is graphically homogeneous, the semantic forms it

contains can be as varied as for diagrammed notations. For this reason, there may be something

to learn from linguistic approaches to syntax, which will therefore be explored below in greater

depth.

4.4.1.3 Formal Grammars

If we look at simple formal grammars, we find that they do a more important job than just defining

the class of expressions in a notation.

A grammar is presented as a set of rewriting rules on an extended language of partial (unfinished)

forms. These "Morms" contain extra symbols (non-tenninals') that stand for syntactic types within the

notation. In context-free grammars an expression can be analysed into a hierarchy of phrases, each

with an implicit type. Generation begins with a single non-terminal, treated as a Morm. It proceeds
by rewriting subforms as allowed by some rule and ends when no further rule applies. The resulting
form is then complete and well-formed. Syntagmatic structure is represented by a set of equivalent
derivation 'trees' that track the replacement of subforms. This allows the possibility of syntactic
ambiguity; a given expression may admit two possible derivations that are not classed as equivalent.

The status of this process is somewhat mysterious, because it does not represent the human

process of expression creation. Nor does a hidden derivation tree qualify as a direct semantic

representation. This is not to say that notation grammars are unnecessary, but that their role

needs clarifying. The main value in grammar is rather to provide operations that construct a

consistent abstract syntagmatic layer'compatible with'a given lexical structure.

4.4.1.4 Example: Binary Numerals

It is easy to illustrate that grammars are not primarily about defining the right set of expressions,

but about deducing a higher level of structure from lexical form. This can be seen by examining

two phrase structure grammars that generate the full 'language' of strings on a finite alphabet A=

(0,1) - the set called (0,1)*. In this case the lexicon is the alphabet. Thus all strings on A will be

well-formed, and will be interpreted as natural numbers.

Let S be a start-symbol for two grammars GI and G2

GI has three rules for constructing strings by appending characters
appO: (s s 01 append zero
appl: CS s 1] append one
nil: [sI delete'S'

143

4: Exploration of Research Problems

The string /1010/ for example is derived as (appO (appl (appO (appl nil)))

- here encoded as a LISP s-expression.

G2 includes a rule for connecting two strings: -
puto: [S 01 place zero
putl: CS 11 place one
cat: CS S S] catenate'S'
nil: [S I delete 'S'

/1010/ is derived as (cat (cat putl putO) (cat putl putO)

or in many other ways.

These two grammars define the same language, but with quite different articulations. G1 admits

only one derivation term for any of its strings, which are reminiscent of stack data-structures. G2

admits ambiguity in strings as terms. If we treat all derivations of the same string as equivalent,

G2 characterlses A* algebraically as a free monoid, the associative algebra of sequences

generated from A by the operator that concatenates two strings. There are clearly many other

possible context-free grammars, each of which imposes some kind of term-structure on sentences

of A*, if we read the rules as constructor functions.

The advantage of G1 is that it allows us to calculate the semantic value of the derivation, using

the following arithmetic rules: -

val[aPPO sl =2x val[s] where s: S is a string.

val[appl s] =2X val[s] +I

val[nil] =0

In contrast, G2 does not allow such a calculation because concatenating two strings does not

correspond to a simple arithmetic process. Thus G1 is useful as a grammar for binary numerals,

but G2 is not - even though they generate the same 'language' or class of strings.

It is instructive to examine the limitations of these grammars. The grammar G1 does not give the

full interpretation into semantic form - the example does not define what the semantic

representation of a number should be like. Neither does G1 specify the graphical form, as can be

seen from the way these rules are notated. For example, the rule (appo) echoes the sequential

structure of text. In the right-hand-side "s 0", the rule sequences the names V and Vto indicate

the sequence in a generated string. The letter's' names the abstract syntactic type 'string', but the

character'o' serves to name its own shape. Hence the rule-notation borrows the graphical form of

the notation it describes. This is a circularity of definition, of the same kind as was noted in (§3.2).

144

4: Explorabon of Research Problems

Nevertheless it feels quite natural, since the rule Is also written In a textual notation.

If we wish also to specify the sequential form, rather than take it for granted, we need to

acknowledge relations of precedence which hold between places In a string - though not always In

a literal graphical sense. This leads towards a re/ational grammar (§3.2.4), in which the characters

in the alphabet become relations that link the nodes that correspond roughly to positions on the

graphic form. The rules of G1 might then become: -

app: [S(x, y) -4 S(x, z) Zero(z, y)] append zero
app: (S (x, y) S (x, z) One (z, y) append one
nil: [S(X, Y) X=Y] delete'S'

where x, y, z are nodes, and 'S, Zero and One are dyadic relators. In the rule notation, equality'--'

is a relator that identifies two nodes; the need for it emphasizes the fact that we are not rewriting

graphically: nodes are not points on a line. These rules are in the form of a Prolog program, with

interpretation that:

s (x, y) means "node x is the start of a string that ends at node y".

We see from this that the syntactic description can be expressed in a meta-notation that is not

confused with the target notation (that being described). When this Is done, the formal grammar is

recognizable as kind of proof-system which governs the formation of syntagmatic units from a set

of connected lexical units. The formal connection between Prolog programs and hypergraph

grammars is also examined in (Corradini et aL 1991).

4.4.2 Linguistic Notions of Grammar

What is the relationship between generative and constraining rules in syntax? Although we are not

concerned with the issues of natural language, there is reason to believe that linguistic techniques

may contain fruitful ideas for resolving this question.

In (§3.1.2) the work of computational linguists was quoted on the subject of semantic grammars.

Such work on natural language involves a quest for a combined computational and logical system

that would cover the whole range of syntax - and pragmatics also. It is attractive to adopt this

approach here in relation to notations. Following Morrill (1993), syntax can be treated as a theory

relating graphics and semantics; grammars then take the role of "proof-theoretic meta-theory for

the model theory or logic" of the operators on syntactic types.

145

4: Explorabon of Research Problems

Our task is thus to investigate the relationship between grammar and logic, and the theme that

grammar is concerned with implementing certain kinds of logical inference - the notion of

grammar as logic program. In fact, the linguistic research gives evidence that processes of

'natural' language are dependent upon tractable logical systems (D6rre et A 1994, Carpenter.

1991).

According to (K6nig 1995), grammars for natural languages differ from formal language grammars

in that (1) the lexicon contains complex syntactic information, and (2) natural language exhibits

non-local syntactic dependencies. It can be seen that diagrams are also similar to natural

languages in these two aspects. Lexical items are governed by elaborate connectivity constraints

and the arrangement of items is not necessarily determined by strict adjacency conditions.

Some of the techniques of description discussed here were also seen in the last chapter as applied

to graphical languages (§3.2). We briefly mention two restricted logical systems that have found

favour in recent linguistic theories, in addition to Horn clause logic. These are feature structures

and categorial grammars.

4.4.2.1 Feature Structures

Nalvely, features are a way of organizing properties that are appropriate to certain types of item,

so that a property of an item is an attribute, presented as a feature-value pair. Features are found

in linguistics as basic structured discriminations between items, such as Number, Gender and

Person of lexical items. Morrill (1993) explains that features (on basic syntactic categories)

simplify reasoning by effecting a universal quantifier as a type-constructor. Feature structures, like

Horn clause logic, allow reasoning by unification - see surveys of (Knight 1989) and (Sheiber

1986).

Carpenter (1991) develops typed feature structures, viewed as an object-oriented generalization of

first-order terms, with types arranged in a multiple inheritance hierarchy. In general they may be

treated as a special form of constraint logic that can be applied in rule based approaches, as terms

for definite-clause logic programming (Alft-Kacl & Nasr 1986). Each (semantic) type must specify

the features for which it is appropriate, and the types of values these may take. Features can be

ordered according to information content by extending the subsumption order on types, leading to

morphisms over feature structures that play the role of substitutions for variables. Practically,

146

4: Explorabon of Research Problems

adding type information much reduces time spent on expensive structural unification and recursion

by early failure detection and the precompilation of taxonomic reasoning.

For D6rre et aL (1994), a general feature structure can be viewed as a graph whose edges are

labelled with features and nodes carry sets of sort symbols, in which edges leaving the same node

must have different labels.

Definition: A feature structure on an alphabet F of features, and an alphabet P of sort symbols, consists

of. -
a) a non-empty set D of nodes;
b) for each feature, a partial function on D, that assigns values;

c) for each sort, a subset of A

Some sorts correspond to unique mutually disjoint aton-dc structures.
Traditional feature structures may be restricted: e. g. connected, rooted, finite, or acyclic.

They can be given a semantics in FOL over a signature containing all the predicates, leading to

feature constraint languages. Alternatively, propositional modal logic offers a more concise

framework - feature tenn languages - where features are sentential operators and sorts are

propositional variables. Feature terms are preferred over first-order terms because subterms are

accessed by path-names and terms may be partial since subterms can be omitted (D6rre et-al.

1994).

4.4.2.2Categorial Grammar

Categorial grammars are based on a calculus of string concatenation proposed by (Lambek 1958).

D6rre et aL (1994) refer to the Lambek calculus as an intuitionistic, non-commutative variant of

Linear Logic (Girard 1987). Parsing a sentence with the calculus means finding a proof for a goal

(the start-symbol) from a database giving the syntactic type of each lexical item in the input string.

Lambek (1961) presents a further non-associative version of the calculus.

Multimodal Categorial Grammars (MCG) extend the Lambek calculus to deal with commutative

forms and unary modes of combination, needed for other kinds of word-ordering, for encoding

syntactic features and to permit copying of resources (Moortgat 1994, Carpenter 1995b).

Carpenter provides a sequent-based proof-theoretic presentation of MCG, sufficiently general to

accommodate all the various systems that have been proposed - including linear logic with its two

modals ? and I that permit repeated use of premisses.

147

4: Exploration of Research Problems

This proof system Is interesting to us because it generalizes the notion of a sequential grammar to

admit other relational connectivities, of the kind that might be expected in graph grammars for

diagrams.

Feature-Based grammar logics combine feature-unification and categorial grammar and give

them a model-theoretic semantics. D6rre et A (1994) apply fibred semantics (i. e. layered logics)

to augment a Lambek Categorial Grammar (LCG) with Kasper-Rounds logic of feature

descriptions (Rounds & Kasper 1986). The two logics are fibred together by allowing any formula

in one logic (a feature term) to be an atomic formula (a syntactic type) in the other, either way

around. A fibring function maps elements (or worlds) of the domain of one logic to elements of the

other domain. The rules of both systems are admitted, and further interaction rules may be added.

The combined proof-system can be more efficient than a general purpose prover.

They justify the idea by considering Horn-Clause programs. If these are to represent formal

grammars, derivations must be restricted: they require resource awareness, because all sub-

expressions must be accounted for exactly once in a parse. This could be done by using a

fragment of linear logic. Alternatively, control arguments be can added: Definite Clause

Grammars (DCG) achieve this by encoding an n-place terminal as an (n+2)-place predicate to

include start and end string positions.

Lexicalized grammars also combine feature structures with categorial grammars; LexGram

(K6nig 1995), described as an amalgam of LCG and Head Driven Phrase Structure Grammar

(HPSG). HPSG (Pollard & Sag 1994) is based on typed feature terms with an inheritance

mechanism. LexGrarn is derived from HPSG by lexicalizing its Phrase Structure principles and

schemata. It extends LCG with the unification formalism CUF (D6rre & Doma 1993) for handling

typed feature terms. HPSG is reduced to one single phrase structure schema which is equivalent

to the commutative version of LCG. Word order is treated by adding directional operators. Each

HPSG sign then corresponds to a sequent, which has phonetics in the antecedent, and the

catego/yvalue as its succedent (goal).

Parsing is efficiently restricted via the input word-sequence; top-down andbottorn-up parsing can

be ideally joined. Modelling is simpler since the only syntactic viewpoint is from the lexemes. The

lexicalist approach provides for a uniform view of grammar as a word class hierarchy. It benefits

148

4: Exploraflon of Research Problems

from a typed-feature-based language: the signature (type system, CUF sorts) has to be defined

before the rules, making grammars more transparent. Sorts can then serve as interfaces among

grammar modules (K6n! g 1995).

We see from these linguistic theories that economy In the logical systems leads to efficiency in

parsing, which requires a resource-sensitive proof theory. The two systems can be combined in

layers, and it is helpful to establish a signature (a syntactic type system) as a basis for

grammatical rules.

4.4.3 Semantic Definitions

In (§3.1.1) it was noted that syntax and semantics overlap each other in linguistics. To complete

our examination of syntactic description, we next consider semantic processes. What aspect of

the syntactic structure can be called semantic?

On the semantic level of syntax it is harder to fix upon a single notion of structure. Linguistics

does not offer much help on this problem. According to Carpenter (1995a), computational

linguistics has been "obsessed with the problem of finding the right sort of logical forms" in

analysing sentences. He points out that this analysis is both "too hard", since people cannot

retrieve all semantic information, and *too easy" because it does not take into account all the extra

information that people actually take in. In notation we are in a better position, because it is easier

to limit the notion of semantics on formal grounds.

In (§4.1.1) the importance of metaphor was emphasized as a feature of linguistic semantics and

also of diagrams. Here the connection is clarified and related to work that applies algebraic

morphisms.

4.4.3.1 Value in Context

From a denotational perspective, the meaning of an expression is'abstracted as a value that

interacts in some way with its environment. This semantic value has exactly enough structure to

explain the effect of enacting the expression in an intended context. It might be seen as a

transforming function, or an event in a finite state automaton. In Chapter 3, graph rewriting

systems were reported as providing a way of integrating computation with syntactic notational

processes (§3.1.3, §3.3.3).

149

4: Exploration of Research Problems

Interpretation can be seen as a process of calculating a semantic value from a syntactic derivation.

These calculations are supported by the syntactic code. Viewers of an expression, on the other

hand, do not explicitly calculate meaning; their understanding is instead assisted by analogies - in

which metaphor plays a part.

4.4.3.2 Metaphoric and Iconic Processes

Metaphor is a form of rhetoric in which certain words cue a subsidiary domain that is different from

the subject domain, thereby forcing the words to take on (temporary) new meanings related to the

subject. It is not primarily a graphical phenomenon. In linguistics, the topic of metaphor is not well

understood: -

"I think metaphor Is a very difficult problem to say anything concrete about. I do not see how to

apply any of the techniques that we know about. " Carpenter (1 995a)

Carpenter (1 995a) wishes to understand how to interpret prepositions like 'in' and 'on', which

invoke a spatial analogy. We notice that these concerns have direct counterparts in interpreting

spatial relations in diagrams. For example, a topological relation of insideness may act as a cue

for the subsidiary domain of 2D space. The spatial relationships in a diagram are then iconically

interpreted into the subject domain.

These diagrammatic processes differ from linguistic metaphor in important ways. In diagrams, the

cues need not be lexical items, and the induced structure need not be connotational. A graphical

cue may suggest a syntagmatic process; in general, metaphors induce coding at some higher level

of syntax. In formal notations, the interpretation induced by metaphor is a fixed part of the

principal code, not a temporary meaning.

It is evident that interpreting notation requires deductions to be made on the basis of graphical /

spatial logic (by whatever cognitive process), but this in itself is not metaphor - it is just

recognition and reading. Certainly in some cases diagrams do stimulate visual analysis and spatial

thinking: in geometric diagrams and maps, the space on paper represents a different but

analogous space. Usually though, the subsidiary domain lies beyond sight and space, in the great

variety of experience of the world.

In an explanation of Stenning & Oberlander (1992), Euler's circles denote mechanical linkages, by

virtue of which they may connote propositions in syllogistic problems and provide methods of

150

4: Exploration of Research Problems

solution. In such cases, the 'literal' meanings of visual cues are thus aids to learning the code and

the required reasoning skills. The code structure supports certain concrete natural or familiar

denotations, which by analogy support a formal semantic structure -for less understood aspects of

the subject domain. By these means, metaphors facilitate reasoning by the specificity of their

direct relationship between the subject domain and some subsidiary domain whose deductive

chains are familiar.

4.4.3.3 Analogies and Morphisms

How can syntax rules accommodate direct analogies between graphics and semantics?

We do have techniques for describing analogies. The algebraic methods of description reported In

the last chapter (§3.2.3) make use of morphisms - mappings between algebras - in order to

define semantics and metaphor in diagrams. For instance, Wang & Zeevat (1996) describe the

analogy between picture and meaning as a partial signature morphism from the order-sorted

signature of the picture to that of its 'meaning'.

In a similar way, Gurr (1996) discusses analogical characteristics of notations in terms of

homomorphisms and isomorphisms between world and representation. He calls the map from

world to representation lucid if it is injective, and sound if it is surjective; the map from

representation to world is called laconic if it is injective, and complete if it is surjective. Thus he

notes that, in diagrams, poor abstraction causes a lack of soundness, while the sequential form of

texts causes them to be non-laconic. In rigorously defined notations there is found a lack of

flexibility, causing incompleteness; users may overcome this by means of secondary notations

(e. g. informal use of spatial layout to convey information).

How can we make these kinds of analogy uniform across all the expressions of a notation? The

complexity of interwoven metaphor and comparative interpretations that holds together the layers

of code makes for difficulties in giving a purely grammar-based analysis of graphical notation that

can explain its semantics. How can analogy be incorporated into syntactically-based descriptions?

The theory developed in the next section aims to answer these questions.

4.4.3.4 An Argument for Logic

The reported research directions in the field of computational linguistics provide an indication that

logics and their implementations are at the root of the matter that concerns us. The argument

151

4: Exploration of Research Problems

made here implies that a formally described notation is more that just a defined class of well-

formed forms, since there must be also be a logical definition of its serniosis. Generative

grammars then take on a role subsidiary to that of axiomatic definitions of structure.

The technicalities of grammar tend to hide the fact that linguistic structure is a solution to the

problem of rearranging a possibly multidimensional semantic form into a sequential code. This is a

kind of combinatoric packing problem, of quite a different nature from the serniotic problem of

finding a conceptual representation for an idea. A discovered derivation for an expression should

discard this packing information and provide material for recognition of semantic constructs. The

same applies to graphical expressions, except that the two-dimensional medium presents different

possibilities and restrictions.

It is proposed that notational packing and parsing aspects also be treated as proof-theoretic

operations of some logical system.

Suppose that we are considering a section of a notation that contains two layers, called graphic and

semantic.
An expression may be regarded as a form that is composed of both graphic and semantic items,

and a wff is constrained to be both correct in graphics and semantics, and to satisfy the rules that

coordinate them. By specifying a grammar, we are providing:

(1) a guide for expressing any semantic form in the particular graphics, and

(2) a means of (uniquely) inferring the semantic layer of any wff from its graphic layer alone.

This method of integrating the structural levels calls for the flexibility of approach afforded within a

general framework of descriptive logic. A grammatical rule-system furnishes proof-theoretics that

can be seen as implementations for constructive fragments of the logic. For the most complex of

the semantic or pragmatic levels, involving translation, reasoning and calculation, a 'grammar' is

the same thing as an abstract program.

Though there are many logical systems available for general purposes in mathematics, the

problem remains to select the logic that best suits the whole domain of graphical notations.

Restricted fragments of this logic would then be appropriate for different semiotic layers. The

perspective argued for could be called metalogical, in that the logic chosen to describe semiosis

would not be tied to any specific topic of computer science or theory of software development.

Neither would it depend on the graphical (pictorial and spatial) properties of a particular notation.

152

4: Exploration of Research Problems

4.4.4 The Form of Expressions

To complete this section, we wish to attend to the problem of defining the underlying form that

expressions of a notation exhibit. If all expressions of a notation belong to a wider class F of

forms that can be manipulated in grammatical and other processes, how. can we characterize the

whole of P? What kinds of internally structured object would qualify as a constructed form?

Answering these questions will require recourse to the ideas and terminology of Category Theory,

which however will not be explained at this point. The reader who does not have any familiarity

with categories may want to re-read this passage after absorbing the next chapter.

To pursue an informal argument about structure, operations on parts will here be used to derive a

notion of forms as general 'graphoid' constructions. Since we wish to cover many cases in an

uniform manner, this will be done by a process of generalizing and completing: i. e. filling in

structured spaces by closing under all operations and admitting all provable properties. This

method is preferred in mathematics because it leads to simple tidy structures. 13

4.4.4.1 The Causes of Structure

Why should expressions be regarded as structured? How does structure arise? The word

@structure' means something that Is built. In order to build something, there must be parts and

pieces to build it from, and building techniques or operations. This suggests a way to resolve the

problem.

Received wisdom [in computer science] holds that the structure of an object depends on how one

intends to operate with it. Accordingly, we seek to define a form-space F as a class generated by

constructive operations. Structure will therefore not be based on hypothesized mental models.

If expressions were merely representations of abstract data, we could define their structure

according to the operations used to construct them. An expres . slon might be resolved as a

sequence of primitive drawing or editing events. This leads to a very cumbersome representation,

since the event-sequences are unbounded, and we have to determine when two sequences are

equivalent, Le. taken as building the same component.

More flexibly, we might construct the expression from primitives in an hierarchical manner, so that

13These structures are often Infinite. By contrast, In computing It Is more common to have partial operations, owing to resource

limitations of many kinds.

153

4: Exploraflon of Research Problems

at any stage a new part is composed from parts made in previous stages. The result can be seen

as an algebraic term, by naming each constructor operator and defining its arity as a sequence of

sorts of parts that it may combine. The term-data represent the expression as a tree-structure

whose nodes are labelled by constructor-names and edges are labelled by sorts. This -tree may

also be regarded as a hypergraph whose edges are constructors. Once again there will be many

equivalent trees representing the same expression.

String and term rewriting could be used to calculate equivalences - but if the constructors do not

relate to syntactic processes, these methods only introduce irrelevant complexity. What we seek

is a representation that deals with syntactic types more directly.

4.4.4.2 Graph Representations

Graphs offer a direct approach to representing structure, in which incidence relations specify how a

few different kinds of elements connect. Current approaches to diagram syntax, as reviewed in

the previous chapter, often describe expressions in terms of graphs or relational structures.

Justification for this method is given (if at all) on the empirical grounds that the graphs were found

to work for the cases considered. Unfortunately there is little agreement on what type of graph to

employ. Although a wide variety of graphtypes exist, different types sometimes prove to be

equivalent in structure. No particular class of graphs stands out as the best candidate for uniformly

defining notation structure.

The choice of type of graph may imply some corresponding cognitive basis for diagram structure.

For example McWhirter (thesis: 1995) justifies his own use of relational structures as a modelling

notion by an assumption (ibid. p29) that infants experience the world in terms of 'things and

relationships', a world view which graphs formally reflect. He adduces no evidence for this

hypothesis; it is hard to see how anyone could do so. We would prefer a sounder reason for the

choice.

4.4.4.3 Parts of a Whole

This issue is resolved as follows. The source of much structure is the practice of analysing

expressions into parts; it concerns the part-whole relationship, as can be observed in the particular

example of text. The processing and interpretation of an expression is then establi shed upon this

analysis. There is a desire to find smallest parts and largest parts, to have a way of building large

154

4: Exploration of Research Problems

parts from small parts, and to allow rewriting: the replacement of a part in an expression with a

new part, leaving other parts unchanged.

We first observe some elementary properties of the part-whole relationship by reference to a

textual example. This leads to the contention that forms belong to a category. 14

Consider for instance, strings based on the Roman alphabet. Then the string abracadabra has

parts

a, b, c, d, r, ab, br, ra, abra,

and many others. Some parts occur severally in different places.

To cope with multiple occurrence, it is convenient to consider tokens rather than abstract parts in

expressions. We may observe the following definitions and rules: -

D 1) An occurrence is a relation p of containment between two tokens:

P= part (p) whole (p)

that is to say, P is copied as a part of Q. This is written: -

p: P -4 Q

RI) Every token P occurs as itself, we identify P with its self-occurrence:

P: p -+

An important property of occurrence is that it is transitive: if P occurs in 0 and 0 occurs in R, then

P occurs in R.

D2) Two occurrences p, q are said to be compatible if whole(p) = part(q).

112) If p, q are compatible occurrences, there exists a composed part p; q such that:

whole(p; q) = whole(q) A part(p; q) = part(p).

In symbols, this can be expressed:

P: P -* Q q: Q -+

p; q:
(R2)

This structure is called a deductive system in (Larnbek & Scott 1986), because the occurrences

behave like proofs of propositions, and the rules deduce proofs. We observe further, in the case

of text, that certain compound parts may be equated:

The operation of composition of occurrences has left and right identities, and is associative: -

141t is unfortunate that the words 'categor/, 'categorial' and 'categodcar each have different technical meanings In linguistics,

logic and mathematics - as well as Informal meanings. From here on, unless the context dictates otherwise, the mathematical

usage may be assumed. '

155

4: Exploration of Research Problems

P; p =p=P; Q

If p compatible with q and q compatible with r, then

(p; q) ;r=p; (q; r) (E2)

A structure with these properties is called a category. It follows that if we wish to refer to parts and

wholes in the same manner as for text, we are obliged to treat tokens as objects in a category

whose arrows are occurrences. In addition, by extending this category with more objects, arrows

and properties, we can admit many ways of manipulating non-textual expressions.

4.4.4.4Joining and Operating on Parts

We may consider expressions as being built with the help of forms which need not satisfy the

desired syntax - e. g. parts of expression-tokens. Maps can be seen as operations that send any

part of one form P to a corresponding part of another, a, they show where P occurs as 'part' of 0

in a more general sense, because maps need not be 1-to-1. Within this wider setting, simple parts

are subforms, seen as 1-to-1 maps in which P is isomorphic to some part of a

These considerations suggest a certain way of completing the category. Technically speaking, a

general category F of forms can then be characterized from standard theory (MacLane 1971) as

follows: -

The objects in F are forms. Its arrows are general maps from a form P to a form Q that define how the
(possibly overlapping) parts of P map onto the parts of Q. Ibis is achieved by allowing certain limits

and colimits to be constructed: -

To build an expression, we may wish for example to join forms together, or to find the largest part

in which two subforms overlap.

Joining requires the apparatus of finite colin-Lits (e. g. pushouts).
We may need a notional empty form - an initial object in F.

Subforms are the monic arrows in F. Finding overlap of subforms will require some finite limits

(pullbacks).

If we are generous enough to admit all such (limit and co-limit) constructions - which may not be

necessary - the result will be a finitely bicomplete category. This will more than suffice for

rewritings of forms based on the double-pushout approach of graph grammars mentioned in

(§3.1.3).

One aspect of this generosity is that we can construct a form which is the product of two forms P

156

4: Exploration of Research Problems

and Q, say, in the following sense: a map to the form PxQ represents two maps, one to P and

one to Q. A map from the product to R in effect assigns any pair (p, q) of parts to a part of R. For

instance consider a discrete version of 2D Cartesian geometry, as might divide a rectangle into

pixels. Take P and Q as sequential forms that model sections of the X-axis and Y-axis respectively.

The form that holds the 2D space defined by these is the product PxQ of the two axes; a

subform of this product would provide a representation of a simple drawn shape -a 'bitmap'.

A map may also be seen as way of labelling or classifying parts. Taking the previous example, we

might take a form C denoting a colour-space; a map p: PxQ -* c is a colouring of the

rectangle. Cases like these show that there is some benefit from extending operation on forms

beyond mere joining and deleting of parts of expressions, into much richer constructions.

The result of this logical completion is that the range of admissible types of syntactic part has been

extended to cover all combinations that can be 'imagined' or construed, rather than just those that

are clearly indicated in some syntax.

4.4.4.5 Representing Properties of Parts

This argument does not take us much further. The next step is to build computational structure into

our categories of forms, by introducing notions from Set Theory. This construction results in a kind

of category known as a topos: a category that embodies an intuitionistic type theory, as fully

described by Lambek & Scott (1986). Basing descriptions of notation processing on a topos F of

forms allows us to define rewriting operations in abstract without recourse to encodings in set

theory. By such means we. can for instance encode general rewrite-rules in the. manner of

Bauderon (1996), who uses a method of labelling to classify which parts of a graph are to be

deleted in a rewriting.

Topos Theory gives us a notion of logic that does not rest on manipulations of formulae.

In a topos, facts about parts are represented as equations between maps. Equations enable us to reason

about forms without needing a syntactic encoding of them. This is done by constructing forms that

represent arrangements of other forms, and regarding them as types. Maps are viewed as terms that

denote operations on types - or indeed functional programs. Propositions are terms of a certain type.

First we note that any complete category has an object that is an individual - which combines all its

parts into a whole.

157

Bibliography

Engels, G.; Lewerentz, C.; Schaeffer, W. (1987) Graph Grammar Engineering: A Software Specification

Method; in (Ehrig et al. 1987) LNCS 291 p 186-201.

Ferrucci, F.; Tortora, G.; Tucci, M. & Vidello, G. (1994) A Predictive Parser for Visual Languages

Specified by Relation Grammars. IEEE Symposium on Visual Languages, 1994 p245-252.
Ferrucci, F.; Tortora, G.; Tucci, M. & Vitiello, G. (1996) On the Generation and Recognition of Visual

Languages: Relation Granunars; and Related Approaches. In: TVL: 96: International Workshop on the
Tbeory of Visual Languages, Gubbio, Italy, May 1996.

Ferrucci, E; Pacini, G.; Satta, G.; Sessa, M.; Tortora, G.; Tucci, M.; & Vitiello, G. (1996), Symbol-

Relation Grammars: A Formalism for Graphical Languages. Subn-dtted for publication.
Freyd, Peter (1972) Aspects of Topoi. Bulletin of the Australian Mathematical Society 7. p1 -72.
Galton, A. (1988) Formal Semantics: Is it Relevant to Artificial Intelligence; Al Reviews 2(3) 1988

Gee, David M. (1995) Dept. of Computing, University of Nothumbria, at Newcastle.

Gehani, Narain (1985) Specifications: Formal and Informal -- A Case Study; in (Gehani & McGettrick
1985) p173.

Girard, J. -Y. (1987) Linear Logic. Theoretical Computer Science 50, pl-102.
Godwin, W. H. (199 1) Some Proposals Towards a Theory of Notation in Software Engineering. In De

Neuman, Bernard et al. eds. (1991) Mathematical Structures for Software Engineering; IMA Conf

series 27, Oxford University Press, p53-82.
Goel, Vinod. (1992) "III-Structured Diagrams" for III-Structured Problems. In Proc. AAAI Symposium on

Diagrammatic Reasoning, Stanford University, March 1992 p66-71.
Goguen, Joseph A. (1985) More Thoughts on Specification and Verification; in (Gehani & McGettrick

1985) p47.

Goguen, J. A. (1988) What is Unification?; Report SRI-CSL-88-2R2. Also in Nivat, M. & Ait-Kaci, H.

(eds.) (1989) Resolution of Equations in Algebraic Structures, Vol. 1: Algebraic techniques. London:

Academic Press, p217-261.
Goguen, LA. (1997) Semiotic Morphisms. (Draft paper) Dept. of Computer Science and Engineering,

University of California at San Diego.

Goguen, J. A & Burstall, R. M. (1984) Introducing Institutions. LNCS 164, Springer, Berlin.

Goguen, Joseph A. & Burstall, R. M. (1986) A Study in the Foundations of Progranu-ning Methodology:

Specifications, Institutions, Charters and Parchments. In (Pitt et al. 1986) LNCS 240 p313-333.

Goguen, J. A & Burstall, R. M. (1992) Institutions: Abstract Model Theory for specification and

programming. Journal of ACM 39(l) p95-146.

Goguen, J. A. & Malcolm, G. (1997) A Hidden Agenda. Technical Report CS97-538, Dept. of Computer

Science and Engineering, UCSD.

Goguen, J. A. & Meseguer, J. (1987) Models and Equality for Logic Programming. In Ehrig, H.; Kowalski,

R. et al. eds (1987) Tapsoft'87 vol2, LNCS 250; Springer, pl-21.

Goguen, J. & Meseguer, J. (1989) Order-Sorted Algebra 1: Equational Deduction for Multiple Inheritance,

Polymorphism, Overloading and Partial Operations. Tech. Report SRI-CSL-89-10, SRI International.

Goldblatt, R. (1986) Topoi: Categorical Analysis of Logic; Studies in Logic and Foundations of

Mathematics 98, North Holland 1979 (2nd Edn. 1986).

312

4: Exploration of Research Problems

forms by arrows in the topos.

Although we cannot justify the whole of topos structure as fully essential to our purposes, we would

not gain anything by restricting Fto fewer constructions. This kind of structural description seems

most economical because it is equivalent to a simple intuitionistic type theory. The claim is not

that forms are in essence graphoid in shape, but that this approach to defining them Is adequate

and not too general.

4.5 Towards a Theory of Notation

The remaining task of this chapter is to show how formal support can be given for a theory of

notation. We consider how the structural notions arising from the above investigations can uphold

the pragmatics of formal notation. As a first step to resolving the problems of notation description

and usage, a formal theoretical foundation for serniosis is put forward.

4.5.1 Serniosis in Notations

The exploration of the previous section has concentrated upon the syntactic structure of notation..

Here the whole semlotic function is outlined, including the pragmatics of notation in a software

development context. It is argued that every notation embodies a practical method of reasoning -

an instructive logic. Together, notations provide grounding for the application of mathematics to a

wealth of problem areas. Our focus in what follows is less upon description of a natural

phenomenon, and more upon how we might support the design of notations to suit specific usage.

4.5.1.1 Summary of Code Structure

Graphical expressiveness is maintained by levels of structure that bridge the gap between physical

medium and subject domain. Following a linguistic model, these can be diVided into four layers-

Semantic - deduced conceptual structure

Tagmatic - grammatical arrangements; simple recursion
Lexic - pictograms, links, enclosures, frames

Graphic - geometric elements, colour, texture, style

The graphic and lexic layers are two articulatory levels, allowing complex shapes and relations to

be built from elementary parts. The tagmaticI5 and semantic layers concern various 'linguistic'

150r syntagmatic - from Greek rorffia: something arranged or ordered.

159

4: Exploraflon of Research Problems

patterning or analogical devices that supporting denotation and connotation. The number of layers

may vary, and the division is somewhat arbitrary. The logical complexity of each syntactic layer is

limited by certain cognitive resource constraints, dependent upon the purpose of the notation and

the skill required of users. It is these limitations that determine the character of the syntactic

coding - analysed as constructive logical relations between serniotic layers.

The structural parts of expressions will be called items', they generally belong in the 'semiotic

hierarchy' defined by the layering. By layers, they may be termed graphemes, lexemes,

tagmemes and sememes-, these correspond respectively to characters, words, phrases and

meanings in narrative text.

Each level has a combinatofic form: an underlying form that captures each expression as a

'graphoid' configuration of items of various sorts. These abstract expression-forms are said to be

embodied or realized (e. g. geometrically) in the medium, while they are interpreted in the subject

domain, providing interfaces with both the physical world and the cultural world of shared ideas.

Embodiment of graphics is concerned with universal spatial, perceptual and cognitive properties of

the medium. Some formalization of these properties, independent of choice of notation, is needed

to bind the graphical layer to the ground of physical nature. The system of interpretants of the

signs in an expression form the semantic interpretation in the subject domain. Where there is a

connotational semantics, the interpretants are themselves vehicles that signify in higher semantic

levels (see §4.2.1 above).

Why have layers? In the previous chapter (§3.4.2) it was suggested that design of notations gains

flexibility from a separation into layers, for practical reasons that do not depend on their empirical

psychological existence. The reasons are twofold: such a modular construction has the benefit of

making syntax simpler to modify, and each layer (or module) may have different logical

complexity, as has been discussed above. In addition, freedom to change the lower levels makes

it possible to design in the visual or linguistic metaphors that help the user to learn and reason with

the notation.

4.5.1.2 From Graphics to Pragmatics

We seek ways to accommodate these layers and to connect expressions within their intended

environment. In pragmatic terms, when notations are used in a software development setting,

160

4: Exploration of Research Problems

expressions of all kinds are displayed in some physical medium and enacted communicated to (or

by) some computational system. A formal pragmatics is possible only when enactment occurs in

definable situations that conform to specified presuppositional constraints.

Whereas signs within expressions have an abstract interpretant, replicated tokens within displays may
be associated with a specific referent: a concrete object or state that is to be found in the whole context
that surrounds its display. Deictic tokens in an expression-occurrence must point to appropriate items

in the situation, for example. 16

This pragmatic 'interface' can thus be dealt with by formalizing the context, independently of the

notation, as a complex of well-formed situations. Unlike denotational semantics, this abstracts the

situation of expression-occurrence and its tokens along with the situations referred to by the

expression. We are concerned with a situated expressiorr an expression embedded in a formal

presupposed context.

The expressive medium and its enclosing context can carry structures well beyond the size and

complexity restrictions appropriate to Individual cognition. Computationally, this might be

simulated by a constraint logic or rewriting system that co-ordinates the propagation of changes

within the whole context.

4.5.1.3 A Community of Notations in Context

What kind of notational edifice for software development could we hope to build on the strength of

a semiotic theory? In the survey (§2.2) of Chapter 2 we saw that a software development project

is a complex 'animal' with many aspects, requiring many notations. For a realistic approach, we

could define a community of notations as a set of related logical instruments within a common

environment. In each notation, we then envisage a contextual'well-formed form as a situated

expression - an expression augmented by some segment of the formal context, and bound by

pragmatic constraints that determine what forms may occur in a particular kind of context, and

how the environment might be expected to behave as a result. This would for instance cope with

expressions within a system specification document, or to diagrams that propose a change to a

system-design representation during development, or to diagrammatic commands issued by the

1 r3The Hyperproof system -a computer program to help students learn to reason using both pictures and of first-order logic

(Barwise & Etchemendy 1988,1994) - employs this kind of analysis. A displayed logical statement refers to a situation that Is

pIctured on screen.

161

4: Exploration of Research Problems

end-user to be executed by an application.

A document can be treated broadly as an arrangement of expressions in several notations,

referring to a specific context: a complex of situations. Documents are subject to modification by

editing, translation and deduction. In dialogue and other discourse processes, 'changes occur in a

document as a result of interactions with agents in the context. The propagation of change is

subject to logical constraints defined on the document structure and each of its notations.

The reviews in (§3.3) suggest that a notation-community might be based around a core structural

plan of the project environment, a compound semantic domain, upon which each notation holds its

own viewpoint. An expression Is a selected view of a possible context or single situation. The

core project database is never notated in its totality, but provides a semantics for all internal

checking, evaluation and proof, and a route for all translation.

4.5.1.4 Notation as a Logical Instrument

Another aspect of pragmatics is the understanding and skills of participants. The analysis of

notational roles in (§4.1.3) found that participants use notations for thinking with or for

communicating thoughts, more or less formally, in software development. It was asserted in

(§4.1.1) that notations are a way of bringing mathematics and logic to bear on problems. Here we

discuss how this occurs.

A formalist viewpoint posits that all explicit mathematical concepts can be studied without going

beyond the formal properties and transformations of their notations. 17 The fact that expressions

are finite and never very large avoids any paradoxes connected with infinity, and the question of

computational complexity becomes a matter of notational economy. This suggests a concept of

semiotic mathematics, allied to the constructive theories that are motivated in computer science

logic, where symbol manipulation is the only option available for problem-solving. Vaughan Pratt

(1988) makes some interesting points in this regard.

17 A personal realization of this perspecOve was the author's original Inspiration for this endeavour of pursuing notaflon research.

162

4: Exploration of Research Problems

"... it is a tenet of faith that 'conventional' mathematical proofs can be expanded out to a purely set-

theoretic argument, yet this Is almost never done. Moreover category theory has In recent years

posed a challenge to set theory as an alternative and strikingly different foundation, Indicating the

non-uniqueness of such expansions. The possibility then arises that no such foundation Is needed.

Instead we may consider any given argument as being conducted In one or more relatively small

and localized theories!

"I propose that the proper notions of constructivity In a logic are its computational complexity and

its human surveyability... This then speaks for computational tractability as an Important criterion

for judging the merits of any theory. "

We may surmise that notations are presentations of the'relatively small and localized' constructive

theories referred to, made visible for human survey and formalized_for tractability. This position is

supported by the cognitive theories advanced by other authors. Stenning (1994) notes the *strong

vein" of graphical thinking in the development of logic and thus he refutes the assumption that

logic is sentential - it is rather man abstract consequence relation which can be implemented in

many mechanisms. ' The implementation should be made explicit. He sees diagrams as weakly

expressive systems that are cognitively useful when their power is sufficient to the task at hand,

where they offer inferential tractability, but that are pathological when abstraction is required.

4.5.1.5 Tractable Reasoning with Notation

Following the work of Levesque (1988), Stenning & Oberlander (1992) argue that FOL cannot

provide a computationally tractable reasoning system. Levesque claims that the modifications to

classical logic found necessary to ensure tractability are exactly the same as are necessary to

make logic psychologically realistic; a primary reason for the appeal of visual information lies in

what it cannot leave unsaid about the observed situation - its vividness.

For a sentence in FOL to be vivid it can only contain ground, function-free atomic sentences; unique

names; universal sentences over a closed world; and the axioms of equality... A vivid knowledge

base "looks like its described subject mattero (Levesque 1988).

Accordingly, Stenning & Oberlander take a model-theoretic perspective, and ask how many

models correspond to an expression (when viewed as a proposition). To improve tractability, it is

necessary to minimise the number of cases to be considered. Levesque suggests ways to

increase expressiveness, such as the use of Horn clauses and semi-Horn forms to encode

taxonomies, allowing some disjunctions to be hidden in subsuming predicates - or the use of

unsound reasoning. He notes that "Observer-centred visually salient properties become defaults"

163

4: Exploration of Research Problems

0... it is a tenet of faith that 'conventional' mathematical proofs can be expanded out to a purely set-

theoretic argument, yet this Is almost never done. Moreover category theory has in recent years

posed a challenge to set theory as an alternative and strikingly different foundation, Indicating the

non-uniqueness of such expansions. The possibility then arises that no such foundation Is needed.

Instead we may consider any given argument as being conducted In one or more relatively small

and localized theodes. 6

"I propose that the proper notions of constructivity In a logic are its computational complexity and

its human surveyability... This then speaks for computational tractability as an important criterion

for judging the merits of any theory. n

We may surmise that notations are presentations of the'relatively small and localized' constructive

theories referred to, made visible for human survey and formalized for tractability. This position is

supported by the cognitive theories advanced by other authors. Stenning (1994) notes the *strong

vein" of graphical thinking in the development of logic and thus he refutes the assumption that

logic is sentential - it is rather man abstract consequence relation which can be Implemented in

many mechanisms. m The implementation should be made explicit. He sees diagrams as weakly

expressive systems that are cognitively useful when their power is sufficient to the task at hand,

where they offer inferential tractabifil)4 but that are pathological when abstraction is required.

4.5.1.5 Tractable Reasoning with Notation

Following the work of Levesque (1988), Stenning & Oberlander (1992) argue that FOL cannot

provide a computationally tractable reasoning system. Levesque claims that the modifications to

classical logic found necessary to ensure tractability are exactly the same as are necessary to

make logic psychologically realistic; a primary reason for the appeal of visual information lies in

what it cannot leave unsaid about the observed situation - its vividness.

For a sentence in FOL to be vivid it can only contain ground, function-free atomic sentences; unique

names; universal sentences over a closed world; and the axioms of equality... A vivid knowledge

base Olooks like its described subject matter* (Levesque 1988).

Accordingly, Stenning & Oberlander take a model-theoretic perspective, and ask how many

models correspond to an expression (when viewed as a proposition). To improve tractability, it is

necessary to minimise the number of cases to be considered. Levesque suggests ways to

increase expressiveness, such as the use of Horn clauses and semi-Horn forms to encode

taxonomies, allowing some disjunctions to be hidden in subsuming predicates - or the use of

unsound reasoning. He notes that "Observer-centred visually salient properties become defaults"

163

4: Exploration of Research Problems

(e. g. apparent right angles in a geometric figure are assumed to be formally constrained unless

otherwise marked).

Stenning & Oberlander regard a proposition as a logical concept independent of any

representation system. They therefore reject the well-known "Imagery debate" - on whether

mental images are encoded analogically or propositionally - as being a source of confusion. To

reduce the burden on working memory in such tasks, humans may exploit a set of special

purpose cognitive mechanisms, developed for perceiving and reasoning about the spatial world,

for reasoning about other domains. A reasoning task that can be done with a restricted logic can

take advantage of an implementation that would be impossible for more general logics.

In view of the discussion in (§4.4.3), we may surmise that reasoning is very dependent upon the

skill of applying metaphors, which in mathematics and elsewhere are often standardized and

encoded in notations.

4.5.2 A Foundation: Notation TectonICS18

The task of this work is not so much to formalize notations as explicitly implemented logical

instruments, in the above sense. Rather, the intent is to lend support to this notion by making

explicit the inherent logic of a layered serniosis. Here a basis is proposed that affords both model-

theoretic and proof-theoretic stances, as suggested by (§4.4.3).

4.5.2.1 A Metalogical Approach to Notation Specification

We wish to defined formally the connectivity properties of the graphical form of expressions and

relate them to the structure of the subject domain. We must formulate syntax in a way that is

independent of any logical framework designed for the subject system, otherwise we would have

to change descriptive techniques every time a new subject was chosen. In order for descriptions

to cover a wide range of system structure uniformly, they must be based on a metalogic which can

encompass theories about such semiotic structure.

The proposed approach is to build theories of syntax for subject notations. Minas & Viehstaedt

(1995) introduce the term diagram class to refer to a notation, or specifically its set of well-formed

18 Tectonic: of building or construction. Tectonics: whole art of producing useful or beautiful buildings; structural features as a

whole. (Conclse Oxford DicUonary).

164

4: Exploration of Research Problems

diagrams. In our case this will be the class of models for a syntactic theory. Propositions In a

theory act as constraint rules that can test whether a form is well-formed as an expression: Le.

whether it is an acceptable model for the theory. Maps between theories give us ways to refer to

the translating, encoding or instantiating of serniotic structure.

The semantics of a notation is regarded as an abstraction of various situations within its subject

context, defined by means of a logical theory. Spatial and cognitive constraints determine how

such a logically defined structure can be notated as a drawing. A notation's coding builds a

relationship between a theory S in the semantic domain and a iheory D of drawings. In the

simplest case there is a coding of S in terms of D.

Consider first a coding T: S -+ D that expresses a semantics S in a graphics A If p is a picture, i. e.
a model of D, then T (P) is a model of S: a corresponding formal meaning. Expressions in the

medium that are governed by D can then be interpreted uniquely in semantics, with all semantic

properties determined from graphical ones. (Note that interpretation is in the opposite direction to the

theory mapping.) Two different pictures p and q have the same meaning under T when T (p)
T (q).

In order for this to work, the theory D must incorporate all of the conventions that determine the

encoding. In practice we are likely to have a limited theory G that establishes the perceptual

conventions of the medium, to which semiotic structure must be added. It must be stressed that G

here is not intended as an absolute theory of drawings, but as an encoding of the natural and

cultural expectations about drawings that are appropriate to the notation and circumstance. The

arrow here can be taken as informally representing the cognitive effort involved in viewing and

interpreting expressions, or some equivalent computational cost.

4.5.2.2 Syntactic and Pragmatic Relations

In the general case some pictorial forms will be without meaning, while some subject concepts will

be inexpressible in the notations. To treat this case we consider the semiotic relation that

determines which features of drawings are significant and what contextual features they stand for,

as a pair of maps spanning the semantical and graphical theories. The first map determines the

part of the subject domain that is represented, and the second selects the salient part of the

expressive domain: the medium. (For the moment we do not specify the nature of these maps.)

Let theories G and S be related by a span -a theory R equipped with two maps:

G 4-- R -4 S

165

4: EVIorallon of Research Problems

diagrams. In our case this will be the class of models for a syntactic theory. Propositions in a

theory act as constraint rules that can test whether a form is well-formed as an expression: Le.

whether it is an acceptable model for the theory. Maps between theories give us ways to refer to

the translating, encoding or instantiating of serniotic structure.

The semantics of a notation is regarded as an abstraction of various situations within its subject

context, defined by means of a logical theory. Spatial and cognitive constraints determine how

such a logically defined structure can be notated as a drawing. A notation's coding builds a

relationship between a theory S in the semantic domain and a iheory D of drawings. In the

simplest case there is a coding of S in terms of D.

Consider first a coding T: S -+ D that expresses a semantics S in a graphics D. If p is a picture, i. e.

a model of D, then T (p) is a model of S: a corresponding formal meaning. Expressions in the

medium that are governed by D can then be interpreted uniquely in semantics, with all semantic

properties determined from graphical ones. (Note that interpretation is in the opposite direction to the

theory mapping.) Two different pictures p and q have the same meaning under T when T (p)

T (q).

In order for this to work, the theory D must incorporate all of the conventions that determine the

encoding. In practice we are likely to have a limited theory G that establishes the perceptual

conventions of the medium, to which semiotic structure must be added. It must be stressed that G

here is not intended as an absolute theory of drawings, but as an encoding of the natural and

cultural expectations about drawings that are appropriate to the notation and circumstance. The

arrow here can be taken as informally representing the cognitive effort involved in viewing and

interpreting expressions, or some equivalent computational cost.

4.5.2.2 Syntactic and Pragmatic Relations

In the general case some pictorial forms will be without meaning, while some subject concepts will

be inexpressible in the notations. To treat this case we consider the serniotic relation that

determines which features of drawings are significant and what contextual features they stand for,

as a pair of maps spanning the semantical and graphical theories. The first map determines the

part of the subject domain that is represented, and the second selects the salient part of the

expressive domain: the medium. (For the moment we do not specify the nature of these maps.)

Let theories G and S be related by a span -a theory R equipped with two maps:

G 4-- R -4 S

165

4: Explorafion of Research Problems

The map to G ignores items that do not contribute to meanings; it also serves to carry graphical
constraints that become intrinsic to the syntax. These are mapped into corresponding constraints of S.
Any properties of G that are ignored will become restrictions on expressiveness.

The map to S adds constraints from the subject domain, which become part of the extrinsic syntax.

Here the two maps also show to what extent the semantics is related to conventional graphical

properties - the extent of analogy. Whether this analogy is graphical or syntactic depends on how

complex or direct is the map to G. The properties of the medium may restrict the range of

meanings that can be directly expressed, especially if the map to G is unwisely chosen.

The process of interpreting a drawing (model of G) involves translation by analogy and syntax to

an abstract expression (model of R), followed by the construction of a compatible semantic

situation (model of S), if possible - Le. if the expression is well-formed. In a formal circumstance,

we would want the map to S to have at least a partial inverse, so that an unambiguous meaning

could be found for a subset of drawings. Otherwise the viewer's informal knowledge of specific

context and what is feasible may help resolve any ambiguity.

Within this paradigm we can also describe the pragmatics. The indirect relation between

semantics and graphics can be defined by a situated theory that constrains the occurrence of an

expression, within a context which will include the referred-to situation. This theory encompasses

concepts of both semantics and graphics, while respecting the analogy.

Theories G and S can combine within a situated theory K of expressions-in-context, which enriches

them with further concepts and constraints.

G --) K (-- S

The advantage of this scheme is that we can go beyond a simple abstract comparison of drawing

and meaning. In case a drawing contains deictic references, we are able to include in K concepts

of drawings as physical objects in proximity to their referents. Here we can think of. the process of

interpreting an ambiguous drawing as an attempt to construct a compatible context (model of hl,

which is then translated to a semantic situation. This translation will ignore all aspects of the

context not connected to the meaning of an expression.

166

4: Exploration of Research Problems

Figure 4.1 Analogy as isomorphism

Taking these serniotic relations together, we see that every concept In R has two corresponding

items situated in K, one in a drawing and the other in the referred-to situation. These two images

of R are isomorphic - which. is indicated by the diagram In [fig 4.1]. This then demonstrates a

general framework that explains analogy in terms of a natural family of isomorphisms between

drawings and meanings. 19

Full expression of a subject will typically require several notations. A 'core structure' S for a

diverse subject area can be covered by a community of notations:

{i: IIG +- Ri -ý SI

which represent different (overlapping) views of the domain S.

4.5.2.3 Designing Layers of Structure

We may now expand this to a layered framework that relates graphical, lexical, syntactic and

semantic steps of a notation M, in [fig. 4.2].

Suppose we have selected for notating, a domain whose conceptual structure is represented by a

theory Semantic which is a part (subtheory) of some larger subject domain. We wish to express

its ideas in the medium of drawing, for which we have a standard theory (Medium). Given a well-

formed drawing, we want to be able to interpret its meaning by a logical construction in Semantic.

Each semantic part would be defined in terms of a part of a drawing.

Ideally we want translations in M via the layers from Semanda. the theory for part of the subject

domain, to Graphic. a theory of drawn forms in the medium:

(medium) +- Graphic +-- Lexic +--- Tagmatic +-- Semantic +- (Subject)

where the translation is the composition of three maps, which will usually not be total, between

separate theories in M for each layer. This will be approached from the more general case, which

describes a notation that is being designed, and is not yet complete - or perhaps is evolving.

Graphic <-GrLx-* Lexic +-LxSn-ý Tagmatic +--SnSm-4 Semantic

19 Informally, (fig 4.11 can be taken as a depiction of the compatibility between the cognitive association R of drawing to meaning

and the pattern of occurrences K In different contexts.

167

4: Exploration of Research Problems

TgSrn ---)Semantic
I

LxTg -->Tagmatic
I

GrLx -> Lexic
I

Graphic

Figure 4.2 Steps between layers

The spanning theories GrLx, LxSn and SnSm and their maps are steps connecting the layers, and

indicate analogies which assist the interpretation. Upper steps normally involve more complex

operations than lower.

The steps in [fig 4.2] may admit superfluity, ambiguity and inexpressiveness at each step. To

make the steps effective, each vertical arrow must select salient items and analogies from its

lower layer to its upper, while the horizontal arrow of each step may add further constraints to the

well-formedness criteria. The figure also allows for extraneous items to be added along each

horizontal arrow, admitting vagueness: (the undesirable possibility of) unnotated determinants of

meaning such as tacit context.

TR LxTgSm TgSM Semantic

--" I1
-7 OrLxTg LxTg)Tagma SmTg

II

N/

I

x Lexic > T9Lx SMTgLx

LxGr --*gLxGr

Figure 4.3 A fabric of layers

Above the steps [fig. 4.31 we can construct the largest theory that connects graphics to semantics

via analogies. Underneath these steps are formed the combined theory K, the smallest that

contains all and only the items from all layers of M, and into which both Graphic and Semantic are

mapped. Ambiguity is removed when the horizontal maps have partial inverses.

The figure factorizes the simpler picture of [fig 4.1] with the proviso that R is maximal and K

minimal. Then all chains of translations that join R to K are equivalent.

168

4: Exploraton of Research Problems

4.5.2.4 Theory Morphisms as Translators

How can we formalize these maps? For this we again require Category Theory. Following the

methods of Lawvere we will view theories as categories with extra closure properties that define

what doctfine of logic is. to be used. Morphisms between theories (which may be called

translators) are required to be functors that preserve these doctrinal properties. Models of theory

Tare morphisms from a theory-category to a ground category Z- such as the category of Sets

and functions. The. objects of a theory then become types of item in a model; the arrows of the

theory become maps between types, Le. kinds of association.

These translations are implemented somehow by methods of construction and deduction, of

varying complexity.

4.5.2.5 Interpreting Pictures

Under this formulation, interpreting pictures becomes a matter of composing morphisms. Given a

theory R spanning graphic and semantic theories, we have two translations:

rg: R --ý Graphic

rs: R -+ Semantic

These morphisms describe the systematic analogy that holds between a drawing and its meaning.

To find the meaning m for a picture p, we must find a model of R which is isomorphic to

translations of both p and nr

rg; p -= r =- rs; m

Graphic < rjZ R rs > Semantic

P 1= : =- M

Sets

Figure 4.4 Displaying and interpreting

- as pictured in [fig 4.4]. The construction of the intermediate model r from p is a matter of

deduction. However the discovery of a meaning m is not possible for all r. When it is, we may say

that p is semantically well-formed. In general the translation rs yields a meaning that does not

determine all aspects of the intended subject.

For a simple instance suppose that rectangles are a salient feature of drawings, and that they

represent 'processes' which are known in the subject domain. Now given some drawing (in the

169

4: Exploration of Research Problems

form of a description of the arrangement of its primitive elements, such as line-segments) we can

ascertain the set of all rectangles that it contains. Then R will contain a sort s that rg maps onto sort

'rectangle' in the graphic theory, while rs maps s onto sort'process' in the semantic theory.

Alternatively, for a pragmatic description, consider the task of issuing a token of a picture with its

intended meaning in a suitable context. This is a matter of finding a context k that a picture p and

its meaning m can be embedded into, via isomorphisms: -

gk; k =-p and sk; k-=m

Graphic gk > K<
A

Semantic

pm

Sets

Figure 4.5 Expressions in context

- as shown in [fig 4.5]. The theory K determines those situations in which a picture may be

presented and accepted. If the picture's meaning is to be controlled by theory R, then the

isomorphism

rg; gk =- rs; sk

(cf. [fig 4.1]) determines this constraint.

In this way a rudimentary framework for notation serniotics is provided via standard mathematics.

4.5.2.6 Serniotic Sorts and Graphoid Forms

Returning to the view of expressions as models of a theory, we may now focus on the shape of the

graphoid forms as defined above (§4.4.4) . Since this work alms to develop notations that present

theories about such forms, a similar argument to that of (§4.4.4) about the operations needed for

building theories, suggests that the theories themselves should be categories whose objects are

sorts. The forms are models belonging to some topos.

The kind of topos chosen to model graphoid forms is determined by the need to analyse

expressions into a finite set of sorts of part. By our assumption of finiteness, we wish all

expressions to be built from certain generating items. These items are maps from any of a finite set

of simple forms - called syntactic, or more generally, semiotic sorts. If J is a sort and A is a form,

maps i --> A are called J-iterns of A. Thus any form is a finite configuration of such items.

Generally, maps between forms are called terms; any term f: A 7)ý B is said to be generated if it is

determined by a map from items of A to items of B. Terms are built up from constructor functions that

170

4., Exploration of Research Problems

are given in the extra structure of the category. Thus a binary product allows us to construct ordered

pairs (p, q) of items, and thereby define terms for binary relations and operations.

Noting that each sort corresponds to a set of items In a form, and that maps between sorts

correspond to functions between sets of items, we see that graphoid forms are functors from T to a

category of finite sets and functions. These considerations lead to the proposal that the forms be

modelled as the topol that are functor categories from theories.

A graphoid form is In fact a model of a theory Twithin a simple doctrine. Twill be some category

with a finite set of objects (sorts), and whose arrows are generated from a finite set by

composition. The doctrine admits any functor from T to Set as an acceptable model: a T-graphoid

form. These forms cover a wide range of notions of structure, and provide an uniform basis for

definition of notations within a variety of logical doctrines, according to the complexity of the

syntax. Provided that a syntactic theory is generated from some finite category N, every IV-

expression has such an underlying form, because every model determines a functor from N to Set

- an N-graphoid. In other words we regard expressions as forms constrained by further properties

- given as equalities forced to hold between constructed arrows - where the construction Is

permitted by the doctrine. This will be illustrated in the next chapter.

4.5.3 Coda

These final comments look back on the achievements of the chapter, so that we can reflect on

their importance and the strength of the arguments made.

4.5.3.1 Summary

The work of this chapter has set limits on the area of study for a thesis concerned with applying

mathematics to serniotic problems. Graphical notations of interest here are defined as sign-

systems whose expressions can be drawn or written and which belong to a technical culture of

software development professionals. To formalize is to explicate the rules that define notations -

which, in notation design, makes possible the removal of ambiguity.

An exploration of the subject of semiotics has drawn attention to the structure of codes and the

processes that motivate and maintain them. By adopting a semiotic perspective, it is found that

expressions encode Information by means of a tenuous logical association between graphical

structure and meaning. This association is characterized by layering phenomena, described in

171

4: Explorallon of Research Problems

terms of articulation and connotation. These phenomena are governed by limits on logical

complexity due to general cognition and the skills common to the cultural group that favours the

notation.

This chapter has represented the form of expressions by means of a generalized type of graph or

relational structure, sufficient to support rewriting and computation on parts of a whole. This

graphoid structure is not so much a natural property of expressions as a consequence of the way

we seek to operate on them. It should therefore be adequate in scope for describing all notations

of interest - those that represent finite configurations, rather than those with continuous variation

such as geographical maps, which would require topological operations. This is not, however, an

absolute or dogma - if expressions were to be analysed from some other viewpoint, a different or

more effective notion of structure could well emerge.

4.5.3.2 Grammar as Proof Strategy

As the approaches of computational linguistics suggest, both grammars and logical perspectives

are encompassed by defining syntax as a theory in a logical language, and then introducing

rewrite-rule schemes and constraint resolution as proof strategies. Parsing is a way of proving that

a given graphical form is well-formed, by constructing from it a complete syntagmatic form.

Interpretation proves the existence of a semantic form consistent with the syntagmatic form. By

treating expressions as graphoid forms we fix on a type-theory within which to implement the logic

and carry out these process efficiently.

4.5.3.3 Thinking with Diagrams

In (§4.5.1) it was suggested that diagrams, as much as formal narratives and formulae, are logical

expressions that enable reasoning. The theoretical development here has concentrated on the

logic of semlosis, on which this use of notation relies. In so doing it has postulated a continuum of

inference through from graphical phenomena to semantic concepts, which goes some way to

explaining how learned rules of manipulation can coexist with analogical graphical mechanisms,

both helping the thinker to make their intuitions concretely verifiable.

This premiss has made it possible to put forward a plan for formalization that treats the

expressions in a given notation as logical models defined by a formal theory.

172

4: Exploration of Research Problems

4.5.3.4 Tectonics

A brief outline has indicated how a full notational theory may be built, around a theme of semlosis

as a system of logical doctrines, theories, models and implementations. . The proposed 'tectonic'

theory offers a foundation for describing notation systems In context, in order to support operations

of generation, translation and interpretation of expressions. Structure is definable by a logical

presentation of a syntactic theory whose models are expressions (or situated expressions, In the

pragmatic case). The generation of expressions is seen as the building of a model, guided by the

theory, but directed towards semantic goals of the producer. Category theory has supplied a

mathematical basis.

These ideas are stated in the widest generality. The following chapters are concerned with filling

in some detail by studying specific cases and problems. They will show how to present the

syntactic theories themselves as schematic expressions, and how to build theories for the purpose

of designing or adapting notations.

173

Chapter 5
A Strategy and Notation for Sketching Syntax

Abstract

Here we find described a practical method for specifying syntax, which is based on the theory

proposed in the previous chapter and can be uniformly applied to any notation. The strategy

offers a basic technique of description that Is intended to support the tasks of designing and

processing notation.

The method applies the mathematical notion of sketches, which are formal presentations of

theories. Doctrines classify the power of theories, by determining which logical constructions and

inferences are admitted. Varieties of category are then represented as sketches closed under

logical operations; a formal theory is defined as a category: the closure of any sketch that presents

it. A schematic notation is then devised for drawing the sketch of a syntactic theory. Schemas are

introduced to explain and depict all constructions on sketches, and to show how the presentation of

a theory is built up. After some simple examples of notational structure, schemas are given for the

syntax of Jackson Structure Diagrams.

This demonstrated method provides a formal graphical notation for syntax specification, which is

equivalent in power to first-order logic. More importantly, it gives a way of controlling the

complexity of the logical relations between segments and layers in syntax, and of defining direct

structural analogy. It improves upon graph grammar approaches by making explicit the logical

properties that remain hidden in the rules of a grammar.

The formalism encourages a view of syntax in which perceived connectivity constraints in. an

expression can be separated from the properties of a pictorial realization. The schematic notation

is proposed as a research tool for analysis of notation, and is one of many possible. For practical

purposes, some ways are suggested for extending and varying the notation according to

circumstance. Alternative choices are considered.

175

Chapter 5.
A Strategy and Notation for Sketching Syntax

'The more that is left unsaid, the more possibilities are allowed by what is said. To

determine what is entailed by what is said, all of these possibilities have to be covered

one way or another. " (Levesque 1988, quoted in Stcnning & Obcrlander 1992)

The investigations of the preceding chapter have shown that the structures of graphical syntax can

be founded on established mathematics rather than on ad hoc technique or theory. We wish now

to show how the suggested mathematical methods can be applied to produce clear definitions for

syntax - of both textual and diagrammed notation - by depicting the precise logical connexions

linking appearance, syntax and semantics. We saw in (§3.2.1) that other proposed formalisms for

specifying syntactic constraints on diagrammed notations mostly use textual notations. In

preference, this chapter demonstrates a graphical approach to formally describing notations, by

means of the theory of Sketches.

The specific technical notion of a sketch is introduced and its theoretical background in Category

Theory is explained. Sketch Theory is elaborated to make a formal framework and method for

treating any serniotic layer as a set of constraints on a structured form. The framework naturally

gives rise to a schematic notation - called SIGN - for formally specifying notational syntax. Some

simple examples illustrate the concepts and symbols of the notation SIGN. Further examples

show the strategy employed in depicting syntax, leading to a detailed study in which a syntactic

sketch is given for Jackson Structure Diagrams. The advantages and problems in the design of

SIGN are discussed in the light of the experience gained in the example specification task.

Why devise a graphical notation for specifying graphical notations? We have noted in (§4.3.1)

that researches indicate an advantage in using diagramming to aid reasoning, provided the coding

relies mainly on direct analogy. Suitable diagrams should thus be able to offer help in thinking

about the structure of a notation being specified. Can we expect this reasoning to be within reach

of an user's understanding? The arguments of (§4.4) show that the logic needed to define syntax

is inherently tractable. Therefore there is good reason to believe that a graphical notation for

syntax is appropriate.

It does not follow, however, that description of syntax is an easy task. When an user is engaged in

working with a notation, in the sense of (§4.1.3), syntax is something that would properly rest

177

5: A Notabon for Sketching Syntax

below their threshold of awareness. We should not expect it to be a natural task to focus on

syntax and make its details explicit.

5.1 Theoretical Background

This section introduces the ideas behind the proposed fonnal graphical notation for syntax, based

upon the mathematical Theory of Sketches as originated by Ehresmann (Bastian! & Ehresmann

1973) and developed in (Barr & Wells 1985, Gray 1989b). The concept of a sketch is also used

below as a way to explain the structure of various kinds of category, which are viewed as closed

forms of sketch. Whilst some categories are seen to be formal theories, others provide a home for

models.

5.1.1 Sketching the Syntax of Notations

Throughout this chapter we have in mind a single 'syntactic' layer mediating between graphical

and semantic aspects. As proposed in the preceding chapter (§4.4.1), the chosen approach seeks

a description that specifies expressions as well-formed forms (wff) in their syntax, by stating

constraints which restrict some class of combinatoric forms. Constraints are properties specified to

hold on parts of any form that is an expression; they provide a decision procedure for well-

formedness of a generated form: a means of checking whether it satisfies the required properties.

5.1.1.1 Syntax as Theory, Presented by Sketches

As suggested at the end of the previous chapter (§4.5.2), specific syntax can be regarded as a

theory which names important sorts of syntactic item, and defines how these are related. The

immediate difficulty here is that a theory is an ideal notion that allows for an infinite range of items

and relations. To restrict ourselves to practical cases, we must presume that there is some finite

set of primitive sorts of item and relation, from which the whole theory can be generated by

procedures of logical deduction. This requires that we choose a finite presentation of the theory -

which is the purpose of a sketch. Expressions are then definable as the models of a certain

syntactic sketch.

What is a sketch? Sketches began as a method of presenting and studying mathematical

theories; they are fundamental and general in purpose, with pictorial possibilities that suit them to

the task at hand. They have already been investigated in computer science as a way to specify

178

5: A Notatlon for Sketching Syntax

algebraic data types (Wells & Barr 1987, Gray 1989a). Being founded on the logic of Category

Theory, they are mathematical objects which can be transformed, combined and reasoned about.

Sketches are in effect 'drawings' of theoretical structure. They can be expressed pictorially since

their basic form is similar to the familiar entity-relation approach to system description - but with

all relations constrained to be maps for total functions. The network of entities and maps defines a

combinatoric form which is presumed to underly all the expressions. Sketches also apply

constraints to this network. -

Given a diagram or expression, a graphical item is a recognized configuration of marks and

attributes located within it. Such items are perceived to be combined by various spatial and

pictorial relationships. In sketching a syntactic theory, sorts of item are presented as entities, and

the relations are described by maps, with each map standing for a specific kind of relationship. In

this approach, however, the actual pictorial formations which realize these entities and maps are

not analysed. Syntactic structure is based upon combinatoric structure or connectivity

apprehended by a viewer, rather than upon geometry - we are not be concerned with intrinsic or

analogical structure at this point. Cognitive habits of visual perception and interpretation pick out

further 'natural' patterns of connectivity (emergent structure), which are also captured as entities in

a sketch. Because of this visualization, the theoretical concepts involved in sketches are easier to

grasp than one might expect for such a general and abstract approach, entailed by a rather

austere' logical system.

5.1.1.2 Doctrinal Meta-Theory

Sketches are of different kinds, known as doctrines, which can be placed in a complexity

hierarchy. The kind most commonly applied in computer science is the doctrine of Finite Limit

(FL)-sketches; these define theories that are called essentially algebraic. In an algebraic

approach, we might use an FL-sketch to specify a whole class of structures as a single model -

often using the initial model that is generated by iterating syntactic constructor operations.

Contrary to the intention here, an algebraic technique deliberately hides the internal structure of

the algebraic elements. Further, the well-formed classes that we encounter are not usually easy to

1 The logic uses a very small number of operators, though a richer set could be made available at the cost of extra notation and

rules.

179

5: A NotaVon for Sketching Syntax

construct in such a manner.

In order to describe the internal structure of expressions, here will be adopted a broader doctrine

whose sketches are called mixed or general in the literature. Within mixed sketches, the FL-

structures are still important if we want to specify how part of a form can be generated by a series

of operations.

The method of sketches enjoys a particularly strong and flexible kind of formalization. Not only

does it provide a way to define syntax as a formal theory, but it also furnishes a formal meta-

theory which allows us to view the syntactic theory either as a 'Platonic' object or as a formal

construct in the meta-theory. As indicated below, and in (§6.1.1), a doctrine may itself be defined

by an FL-sketch whose models are categories of the required type for the class of sketches. This

two-tiered formalization enables reasoning about expressions, notations, and syntactic complexity.

The doctrine may be presented in many different ways, with each particular FL-presentation

resulting in a specific structuring of sketches. It is this flexibility that allows us the freedom to

design a schematic notation.

5.1.2 Sketches

The following short exposition of the notion of Sketches, as it is applied in this thesis, is adapted

from full accounts which can be found in (Gray 1989b, Wells 1987,1994). (See also Coppey &

Lair 1984,1988; Makkal & Par6 1990). For the rest of this section, technical terminology is printed

in bold italic (also see footnotes), while the corresponding terms used later in this chapter are

underlined.

5.1.2.1 The Anatomy of Sketches

A sketch is a symbolic structure intended to be interpreted in a founding category Z, the latter

serving as a conceptual modelling medium or paradigm. Unless stated otherwise, Z will here refer

to some category of finite sets and total functions, that is generated by items of many kinds, and

all ways of associating one item with another. This is what is properly meant by saying that an

on-fily denotes a set, and a maR a total function between two sets that are its domain and

codomaln.

180

5: A Notdon for Sketching Syntax

5.1.2.2 Signature and Constraints

A sketch in any doctrine can be analysed as a pair, <signature, constraints>. The

signature is a directed graph G of entities and maps that determines the underlying LQ[m of

expressions. These entities and maps specify sets and relevant functions - or, in a computational

view, sorts and operations. It is best to think of a map as a dependent variable over elements of

its domain, or as a 'local element' of its codomain - local to its domain. The usual elements of a

set (which are called global, Le. constant) are represented by maps from some singleton set (Barr

& Wells 1985). Each entity is both domain and codomain for an unique Identify map, denoting

the identity function on the set, which maps each element to itself.

A constraint is a kind of proposition that "mentions" parts of G. It is specified by a diagram-shape

- displaying a graph morphism into G- simply a graph whose entities and maps are copies of

those in G, connected in a way that respects the incidence properties of G. Doctrines differ in the

kinds of constraint that are admissible.

5.1.2.3 The Doctrine of Mixed Sketches

The most general sketches considered here belong to the mixed doctrine, which supports three

kinds of constraint. The first kind presents equality of functions denoted by paths of maps

mentioned in the diagram-shape. The second constrains certain maps from a chosen entity (a

a", and the third constrains certain maps to an entity (a pi=W. These formal constraints, usually

known as diagrams, cones and cocones, are each described below; simple examples of all the

constraints will be encountered in the succeeding section.

Equalities

A path in a diagram-shape D is a sequence of maps; each path denotes the composition of the functions

denoted by its maps. An equality on D (a diagram) expresses the constraint that the diagram

commutes:

A diagram D commutes when any parallel paths (i. e. having same start and same finish in D)

denote equal functions.

Without loss of generality we need only consider equalities between two paths.

Parts and Pieces

The dual notions of cones and cocones specify constructed sorts, denoting patterns within the

expression. They respectively allow regular parts and whole pieces of an expression to be defined and
their occurrence restricted.

181

5: A Notation fbr Sketching Syntax

Cones are diagram-shapes in which one entity - the apex - is connected by single maps - the sides -
from the rest of the graph - the base. (This shape is perhaps more reminiscent of a pyramid on a shaped
base). The apex represents a set of V= defined by the base in a natural manner; each side denotes an

unique projection function from the apex set to a base set. In addition, each triangular face of the cone,
formed from two sides and a base map, will be an equality diagram of the sketch.

The apex of a cone denotes a set of instances of some simple fixed combination; in a sense the 'largest
least redundant'or limiting set which satisfies the face equalities. Items of this set are a kind of part,

whose fixed shape is laid out in the base.

Cocones are similar diagram-shapes in which the sides connect the apex to the rest of the graph - the
base. The apex represents a set of pi= defined by the base, with projection functions from the base

set to each apex set. Each triangular face of the cocone will be an equality diagram of the sketch. The

apex of a cocone denotes a set of separate components, in a sense the 'smallest / most detailed' or

colimiting set which satisfies the face equalities. Items of this set are maximal connected pieces, which
may be of varying size.

Without loss of generality we need only consider certain simple bases for cones and cocones.

5.1.2.4 A Hierarchy of Doctrines

The nature of a doctrine is determined by which kinds of logical constraint are admitted in its

sketches and which kinds of category are able to contain models of these sketches. Stronger

doctrines admit more kinds of constraint.

(Wells 1994) lists various kinds of sketch that have been found useful, all of which are weaker

than mixed sketches. The simplest of these are trivial sketches, consisting solely of a signature

graph. In this thesis the models of signatures are the structures that are generically termed

graphoids. The remaining kinds are used to specify various algebraic structures. A linear or

elementary sketch may have equality diagrams; its models are algebraic structures whose

operations are all unary (sometimes called pre-sheaves). A finite product sketch has cones over

finite discrete diagrams, with models that are multisorted universal algebras given by finite

signatures and equations. A finite limit sketch has finite cones, but no cocones; this kind

corresponds to (Freyd 1972) essentially algebrak structures, and includes all Horn theories (Barr

1989). A finite sum sketch has finite cones and finite discrete cocones. Where necessary these

kinds will be abbreviated to L-, FP-, FL- and FS-sketches.

Formally, a doctrine E corresponds to a type of category definable essentially algebraically over the

category of categories [Lawverel. Categories of this type may be called E-categories, and structure-

preserving maps between them are called E-functors. An E-sketch then allows the specification of any

182

5: A Notatlon for Sketching Syntax

kind of construction that can be made in an E-category - if an E-sketch admits a certain kind of
(co)cone, an E-category must have the corresponding kind of (co)limit. This is the same as saying that

a doctrine may itself be sketched by an FL-theory, which opens up many avenues for generalizing the

concept of sketch beyond Ehresmann's definition - see (Wells 1990) and further references in (Wells
1994).

5.1.2.5 Sketches as a System of Logic

Sketches can be placed in a more general setting, within Goguen and Burstall's formalization of

general logical systems as institutions - as described in detail by (Barr & Wells 1990). Briefly, in

an institution, a theory is presented by a signature and a set of sentences in some language - in

our case a sketch has a diagrammatic set of sentences. A relation of satisfaction holds between a

model and a presentation if all the sentences are true for the model (Rydeheard & Burstall 1988;

Goguen & Burstall 1984,1986,1992).

In the previous chapter a need to control the complexity of logic was emphasized (§4.4.2,4.4.3).

The finite mixed sketches (FM-sketches) that will be used here to specify syntax are more

powerful than the algebraic systems (FL or FS) just described; Mixed Sketches are assessed as

equivalent in expressive power to first-order logic (Makkai & Par6 1990)2. The necessary

explanation of the categorial analysis of logic may be found in (Makkai & Reyes 1977, Pitts 1989).

The sketches should therefore be powerful enough for any level of syntax, but too powerful for

most purposes except semantics.

5.1.3 Categories

In (§4.4) and (§4.5), references were made to the theory of categolies. Taking an unusual but

instructive viewpoint, categories are here treated as sketches closed under the rules of deduction

specified in some doctrine. Instead of regarding a category as a structure with observable

properties, we view it as a full collection of formal objects that express these propertieS. 3 This will

allow the discussion of sketches, theories and larger categories in a common framework. For a

thorough treatment of Category Theory the reader is referred to (Mact-ane 1971).

21-lowever Wells (1994) notes that formal coequalizers are a litHe stronger than FOL the category of connected graphs cannot be

specified In finite FOL formulas and terms.

3Thus a category Is confused with Its Image under the underlying functor Cat -+ Sk from categories to sketches.

183

5: A Notation for SketchIng Syntax

5.1.3.1 Categories as Completed Sketches

A category is an algebraic structure, defined as indicated In the previous chapter (§4.4.4). The

standard definition corresponds to an L-category C which is a sketch, with only signature and

equalities, that supports construction of composed maps. It satisfies two closure properties: -

(1) Closure under composition of maps:

If m-apa f. A -4 B and g: B -+ C exist in C between the entities A, B, C, then there exists a map h: A

-+ C and an equality h=f; g.

All the maps which can be constructed by composing existing maps, must be included in C.

(2) Closure under inferred equalities.

All equalities which can be inferred within C must be included in C. These equalities follow from

the associative property of composition and the existence of an identity map for each entity (see

§4.4.4). Entities in a category are called objects, and maps are called arrows or morphisms.

Normally the complete sketch would be called the underlying sketch of the category.

Stronger closure properties are needed to define M-categories, where M is the doctrine of mixed

sketches. In any category, a (co)Amit is an object constructed as the apex of a (co)cone. A

category is complete if it satisfies: -

(3) Closure under limits - every base graph definable on the signature must be the base of some cone in

C.

Similarly, a category is cocomplete if it satisfies: -

(4) Closure under colimits.

M-Categories are those that are b1complete- both complete and co-complete.

The apex of a (co)cone is often called 'the' limit of its base; although there may be many limits on

the same base, they are all isomorphic. Sometimes it is convenient to assume that in a category

there is always a favoured apex that can be called the "canonical" (co)limit of the base, though this

is not strictly in keeping with categorical methods.

5.1.3.2 Large and Small Categories

The particularly important category Set has all sets as entities, and all total functions as maps. In

mathematics Set is used as a foundational 'semantic universe' in the sense that it is usual to

explain all concepts in terms of sets and functions. Such categories are technically described as

184

5: A Notatlon for Sketching Syntax

large, which is to say that there is no consistent way to define the class of its objects as a set -

owing to Russel's Paradox, the class of all sets cannot itself be a set. In usual terminology, even

categories with an uncountable number of objects are called small.

5.1.3.3 Categories of Sketches and Categories

We can define a morphism between sketches as a map that sends entity onto entity and map onto

map while preserving all formal constraints. It can be shown (Gray 1989b) that sketches then form

a category Sk which is bicomplete, and also closed under further useful constructions. There is

also a category Cat (seen as a subcategory of Sk) whose objects are small categories, and whose

morphisms are called functors.

5.1.3.4 Categories of Models In a Medium

A model of a sketch S is a sketch-morphism from S to some category whose closure properties

support the doctrine for S. The models of S form a category which will be described in the

succeeding chapter (§6.1.2). We shall especially consider models in a category Z, possibly large,

which will have the role of a Modelling Medium - an abstraction for all the possible situations

considered and in any context we might be interested in. For the formal purposes of our

application, we need not resort to large categories, instead preferring a countable (recursively

generated) category for Z.

In any case, because the medium is a category, it represents a mathematical idealization - an

infinite completion. If we assume that we can obtain total information about any situation, we can

take Z to be a suitably closed full subcategory of Set (i. e. some class of constructed sets with all its

functions). Although this is the course taken in this thesis, it is a particular advantage of sketches

that they apply equally to other philosophies, such as those that can cope with incomplete

information (e. g. the category of topological spaces, or of computable sets).

We must be careful to distinguish between the Intemal formal logic defined by the doctrine and

the extemal logic -accidental' properties and further logical regularities - that Z might also obey

outside of the doctrine. Set, for instance, obeys stronger doctrines than Mixed Sketches, and

would justify more constructions and inferences than are formally permitted in M-categories.

185

5: A Notation for SketchIng Syntax

5.1.3.5 Theory Categories

Any sketch can be completed (by construction and inference) to form a small category known as

its theory. The theories nevertheless have a countable infinity of objects, that might loosely be

thought of as concepts, or types of pattern. Primitive concepts are those entities/maps given in the

sketch; derived concepts are those that can be constructed or inferred.

An E-sketch S generates a formal theory E<S> that is an E-category, in such a way that the sketch

S has the 'same' models as its theory, and we can work with sketches rather than with the theories

described at the end of the previous chapter. This procedure will be treated in more detail in the

next chapter (§6.1.1).

5.2 SIGN: A Schematic Syntax Notation

Now that the theoretical groundwork is in place, we need to see how the foregoing ideas may be

applied. The task of this section is to illustrate how sketches can serve as a method of syntactic

description. For this purpose, a graphical notation (SIGN) is proposed, which draws mixed

sketches as schemas. The proposal gives details of the method, using elementary examples to

show how SIGN depicts sketch constituents.

The examples which follow show how the schematic syntax notation (SIGN) is used to describe

structure which commonly occurs in diagrams; these are chosen to introduce sketch-concepts and

the range of SIGN symbols. Some standard terminology from Set Theory and Graph Theory are

used to explain the concepts; the more general but less familiar terms of Category Theory are

mostly relegated to footnotes.

Many graphical notations contain, amongst others, structures recognizable as directed graphs.

This notion of graph is a convenient starting point for explaining how to describe syntax. Following

this, we are introduced to some common constructions which can be made on graphs. It turns out

that directed graphs can serve as elementary units from which all the more complex structure of

notations can be bUilt4; taking advantage of this fact helps keep the schema notation simple.

4This is the consequence of some simple theorems in Category Theory: Any category that has finite (co-)products and all (co-

)equalizers, has all finite (co-)Ilmlts.

186

5: A Notatlon for Sketching Syntax

5.2.1 Introducing SIGN

The schematic notation is proposed as a means of drawing the signatures, constructions and

constraints of a syntactic sketch. As just explained (§5.1.1), the sketch presents a theory that

defines syntax; forms are well-formed precisely when thay satisfy this theory. Herewetake a first

look at the basic structure of schemas, and at some sketches they can depict.

5.2.1.1 Formalized Entity-Relation Schemas

Following the above approach (§5.1.1), SIGN directly depicts entities and maps. It can be viewed

as a kind of Entity-Relation notation in which relations (maps) are pictured with the usual *crow's

foot* (many-to-1) connectors, between rounded boxes that depict entities. As in other Entity-

Relation diagrams, extra markings and links on the connectors serve to signify constraints on the

relations. For an expression of the described notation, an entity in a syntactic sketch corresponds

to a recognizable sort of situation or pattern element, and a map usually amounts to a visual or

mental tracking operation on an expression, such as following a line, or associating an element as

part of some perceptual or linguistic gestalt. An equality between maps describes the case where

two tracking operations always have the same outcome.

5.2.1.2 A Simple Mixed Doctrine

Schemas are based on a particular doctrine of mixed sketches. The doctrine allows for a rich

variety of constraints, but for practical reasons only certain basic-cases are incorporated in the

schema notation. The effect of this is to reduce the expressive flexibility, but without any loss of

logical power. For instance, the only commuting diagrams used in schemas consist of a parallel

pair of paths. One important case of parallel paths is an equality triangle, which can be used to

construct a new map equal to the composition of two successive maps.

The parts used in schemas are based on just five types of cone and corresponding cocone,

defined on simple base shapes and named as follows:

'Parts' used in schemas: - singleto12, product, Logg, pullback, iniection,

Cone types: terminal, product, equalizer, pullback, monic.

'Pieces'used in schemas: - zero, disjoint union, component, pushout, suriection,
Cocone types: Initial, coproduct, coequalizer, pushout, epic.

The basic cases are all illustrated below (§5.2.2).

187

5: A Notafion for Sketching Syntax

5.2.1.3 Directed Graphs

Our first example of a sketch defines diagrams that have a directed graph structure', requiring only

a single schema.

U' U'
E: J >EJ

1_ 1' >EJ

E=l

1=

Figure 5.1 An example Directed Graph diagram

Consider a diagram (for example [fig 5.1]) which presents a connective structure known as a directed

(multi-) graph or "digraph". It is made out of two kinds of pictorial item: rectangles and arrows. The

arrows are directed links, and they may be drawn without restriction between any pair of rectangles. It

is assumed that the only significant information in the layout is the connective effects of the arrows.

Each mW in a syntactic sketch generally corresponds to a set of pictorial items on a diagram;

these items are tokens: often basic shapes or pattern elements that are seen in the diagram: -

> source
GD

> target
9D

Figure 5.2 A Sketch for digraph syntax

The sketch, depicted as a single schema [fig 5.2], shows sets of rectangles and arrows as the two

entities labelled Node and Arc. These entities are visible in the sense that they are actual sets of marks

on the diagram [fig 5.11, rather than abstract properties or hidden information known to the reader.

We can refer to items on the diagram either by their syntactic roles (nodes and arcs), or

equivalently by their depictions as rectangles and arrows. More generally, syntactic names are

best regarded as describing situations which can be recognised from graphical configurations. In

an actual notation, we could also refer to items by their semantic values, i. e. what they stand for.

(E. g. a node might represents a system-unit, and an arc a channel that transmits control signals.)
I

Naming thus reflects the layer of syntax that we have in mind.

.p
linking entities in a sketch signifies a total function between sets, implicit in the diagram Each Ma

as a recognizable incidence relationship or association between items: -

In the diagram [fig 5.11, each arrow is associated with the rectangle adjacent to its tail (simply by virtue

of proximity); this property is shown in the sketch [fig 5.21 as a map called source - every arrow must

have an unique source rectangle at its tail. In the same way, the map target denotes the association of

each arrow with the rectangle at its tip. Maps source and target state the two roles that nodes may take

188

5: A Notation fbr SketchIng Syntax

in association with arcs.

The sketch [fig 5.2] is all that is necessary to capture the syntax for the whole class of digraph

diagrams. 5 The two maps express connectivity.

Two maps in a sketch which (like source and target in [fig 5.2]) share the same domain and the

same codomain are called parallel. It Is this situation that characterizes the presence of a digraph

structure.

5.2.1.4 Decomposition and Labelling

Because they express only connective properties of maps, sketches could be drawn entirely as

unlabelled structures. In practice, large sketches easily become mcans of wormsm, when many

connectors cross over each other. In order to avoid illegibility, ambiguity and error, it is more

convenient to notate a sketch by decomposing it: drawing it as a set of separate schemas with

labelled boxes and connectors. [Fig 5.21 shows a simple schema. The box labels stand for

entities and the connector labels stand for maps, of the resulting sketch.

Unlike (some uses of) entity relation diagrams however, labels carry no meaning, i. e. they hide no

information, but are there only for ease of reference. Relabelling a set of schemas does not

change the sketch they express, provided that the distinctness of labels is preserved. Verbal

labelling carries the added advantage that constraints can be read off in natural language or

formulae, if desired. An entity label is usually a noun which names a type of item; a map label is a

noun which sometimes names a role for an item of its codomain.

Each schema normally concerns some particular fragment of a syntactic signature, which is

effectively a graph moiphism into that signature, as is made clear in the examples below.

5.2.2 Canonical Constructions

Graphs exhibit observable patterns which often have some significance in a given notation: for

instance components, loops and node-pairs. In order to describe a pattern in a notation, a

constniction is made on the sketch: a new entity representing instances of the pattern is added,

together with more maps and a defining constraint.

This next example shows how entities and maps can be constructed canonically (i. e. by "natural"

51n passing, notice that this sketch is itself In the form of a directed graph.

189

5: A Notatlon for Sketching Syntax

rule) from neighbouring maps [fig 5.3]. The same example diagram will be used [fig 5.1], but with

an enriched interpretation, by drawing attention to a pattern that a viewer may easily recognize

and give meaning to. Such constructions extend the syntax, even though the appearance of the

notation does not change. Our first constructions are Components and Loops, which are shown to

be dual to each other. The notion of an equality between paths is also illustrated.

5.2.2.1 Graph Components

To define the components of a graph, the sketch requires a certain cocone.

A component of a graph is defined as a maximal connected subgraph. It is easy to see the three

components of [fig 5.1], and verify that every rectangle is part of some jLni-que component. (Tbis is the
criterion for a totalfunction on sets.)

E> source piece ,l
I>

taraet
CH)

>
EE5

Figure 5.3 Tlle Component construction

In the sketch [fig 5.31, the entity Component has been added. It also has a map piece from Node which

associates every node of the graph to the component of which it is part.

The graphical realization of this map is apart-of relationship.

In the extended sketch, the new entity and map are constructed by a rule of logic from the simple

sketch [fig 5.2], using a further symbol to express this canonical relationship. 6

The double bar at the head of the connector denoting the map piece signifies that it and Component are
defined canonically in terms of the parallel maps source and target, which define the connectedness of

the graph, and hence fully determine the map piece. 7

5.2.2.2 Paths: Compound Maps and Equalities

A sketch specifies certain constraints as equalities of functions. The maps in a sketch frequently

form sequences, known as paths, which are compound maps denoting compositions of functions.

Just as there are parallel maps, there can be 'parallel' paths. The functions depicted by two parallel

paths may be specified equal, and there is a special notation for this. 8

6The Idea of construction Is an analogy Wth Euclid's methods, for example In geometrically constructing a perpendicular line and

marking the rightangle.

7The map plece Is called the coequalizer of source and target, In Category Theory, because of the equality in fig 3.4.

8ThIs pictorial notation for equations is a very powerful feature of sketches. It Is a good visual aid to reasoning.

190

5: A Notation for Sketching Syntax

(ý 3ýý'target GED

source piece

LCOTponenjt >piece

Figure 5.4 Two equal paths

Equal paths
Notice that each arc also belongs to a unique component, namely the component of its source node; this

association is in the sketch as a compound map, source then piece. Equally, the same association can
be found from the component of the arc's target node: the map resulting from the compound target then

piece. This equality
(source; piece = target; piece) is a canonical property of the map piece: a logical

consequence of the component construction. It can (if desired) be expressed in a further schema [fig

5.4], which shows the equality by enclosing an equal-sign between the two paths, separated by

duplicating both the entity Node and map piece.

The cocone construction places Component on the apex and takes the entities and maps of [fig

5.2] as base. The triangle face equalities of the cocone result in the equality of [fig 5.4] - as .
detailed below in (§5.3.1), [fig 5.23].

5.2.2.3 Graph Loops

>1 1 arc > source

E) > tamet
E)

Figure 5.5 The Loop construction

To define the loops of a graph, the sketch requires a certain cone.

In [fig 5.11 there are two arrows that curve back from a rectangle to itself. These are both examples of a

loop: syntactically, that special kind of arc whose source is also its target.

[Fig 5.5] extends the sketch [fig 5.21 with the entity Loop and a map arc which expresses the graphical

inclusion of the set of looped arrows in the set of arrows (the subset relationship: every loop is an arc).

The canonical map arc associates the loop (an instance of a property) with the arc that has this

property9. The map arc is drawn in line with its defining parallel maps source and target and shown

with a double bar at its foot in [fig 5.5]. The two compound maps arc; source and arc; target

have the defining property that they equally attach a loop to its node; this equality:

(arc; source = arc; target) is shown in [fig 5.6].

9The map arc Is called the equalizer of source and target

191

5: A Notation for SketchIng Syntax

>
arc

arc target

> source

Figure 5.6 Ile loop equality

The double-bar notation for the loop construction is the same as for component [fig 5.3], except at

the opposite end of the relevant connector. The reason for this is to emphasise the following

symmetric aspect of sketch logic.

5.2.2.4 Duality

The last two constructions, loop and component are dual to each other, i. e. they are carried out

identically except that the corresponding maps are reversed. This can be seen from [fig 5.7], which

arranges schema [fig 5.3] above a re-ordered equivalent of [fig 5.51, in order to show the

correspondence. Labels are omitted because it is the structure that is being compared, not the

references. [fig 5.41 and [fig 5.6] also correspond in this manner.

L-j >ii
>

Figure 5.7 Duality of component and loop notions

Every sketch construction has a dual. Note that dual situations are by no means similar in

appearance (e. g. loops do not look like components). This logical symmetry of sketch notation is

a bonus because all deductive or constructive rules come in similar pairs, effectively halving the

complexity of the formalism. The schematic notation preserves this symmetry in its choice of

symbols; a dual situation is obtained by graphical reversal of connectors.

5.2.2.5 Cartesian Products

ED
first

CPal D s-
Figure 5.8 A Product

The last example of a canonical construction is the Cartesian product, (in this example) of a set

with itself. It constructs an entity for the set of all ordered pairs, together with the projection maps

192

5: A Notation for SkelMlng Syntax

that extract the first and second members of each pair.

Node-pairs

Consider all pairs of rectangles in the diagram [fig 5.11; a pair simply consists of any two rectangles,
the first and the second (which may be the same). In the schema [fig 5.8], the entity Pair has

projection mapsfirst and second which express these assignments of each node-pair to its nodes. The

pair construction is expressed by linking the two connectors denoting projection maps at their feet. In a

diagram, these maps are realized as'part-of relationships, in which each node is part-of many pairs.

source

first
Arc >

ends
E)

Node

>
target

Figure 5.9 The pair at the arc's ends

Constructions are essentially about seeing a structure in a new way. This particular construction

allows a digraph to be seen as a single map, from arcs to pairs of nodes.

Notice now that each arc is associated with the node-pair that it connects, i. e. that formed by its source

and target; this is a canonical map ends, which is the unique map satisfying the two equalities

expressed in [fig 5.91: thefirst end is the source, the second end is the target:

(ends; f irst = source) and (ends; second = target).

5.2.2.6 Syntactic Signature

Every notation covered by the theory of Chapter 4 is assumed to be based on a form which is

termed a graphoid in this thesis. We can now see how to separate out the underlying graphoid

structure of a syntax from its constraints.

In the example, we have arrived at a sketch that is depicted by four schemas [figs 5.3,5.5.5.8,

5.9]. What is the form of expressions according to the data in this example sketch? The maps

and entities of the sketch formed by bringing together all the four schemas and identifying items

with the same label, comprise the signature of the syntactic sketch. Without the defined

constraints, this signature is a trivial sketch (§5.1.2), which specifies the graphoid form.

arc Arc
> source

> piece
L!: j

-, - taroet
a) EE5

econd

ýý\ends

rs

\

11

ED

Figure 5.10 The Signature of the syntax

193

5: A Notatlon for Sketching Syntax

With the above constructions added, the syntax of diagrams like [fig 5.1] is based on the sketch [fig
5.10]. This shows all the entities and maps without constraint; it is called the signature of the digraph

notation being described, and is an extension of [fig 5.2]. The four schernas [figs 5.3,5.5,5.8,5.9]

suffice to express the syntax, which logically consists of this signature together with all the depicted

constraints.

The four schemas each refer to a fragment of the signature, defined by a graph morphism. A

morphism is drawn as a graph (the domain of the morphism), with the mapping indicated by

names of entities and maps in the codomainIO - in this case the signature.

5.2.3 Further Constructions

Before leaving the digraph example, some further useful constructs are mentioned here, to give a

full description of SIGN symbols. The first of these is dual to the Product, and gives yet another

view of a digraph. The second allows one-to-one correspondence between items to be notated.

Finally the construction for cardinal numbers zero and one completes the basis of sketch logic.

5.2.3.1 Disjoint Union

GD
Ltitail /place

Tip&Tail

Figure 5.11 A disjoint union of tip and tail

Given two sets of items, we can form their union. Each set is a subset of this union, and is

represented explicitly as an inclusion map: an injective (one-to-one) function that serves to mark a

subset of its codomain (the union, in this case). The disjoint union of two sets is formed by taking

disjoint copies of the two sets; the union of copies is codomain for two inclusion functions that

represent these copies as its subsets. In the following example, the two sets are identical, making

it clear that subsets are represented by maps in a sketch, not by entities.

Each arrow of a digraph has two extremities, referred to as tip and tail, which are found adjacent to

rectangles. The disjoint union of Arc with itself is named Tip&Tail in [fig 5.111; it denotes the set of

extremities, either tips or tails, each associated to a particular node, its place in the diagram. The

existence of the map place, which now carries all the connectivity information, is a logical consequence

1 OA schema Is In fact a drawing of a sketch-morphism, because constraints on maps in the schema also correspond to those In

the sketch.

194

5: A Notation for Sketching Syntax

of the construction, the unique map which satisfies the equalities:
(tip; place = source) Mid (tail; place ý target). (cl'. Ifig 5.91)

The link symbol clenotes Disjoint Union, as in its clual construct Product, but at the opposite end ofthe

connectors 11.

This construct is useful for dividing a sort into partitions, or conversely, when separate sorts of

item share common syntactic properties, to collects these into a recognized 'supersort'.

5.2.3.2 Identity Maps

Every entity has an identity map (meaning 'self'), which maps each item onto itself. 12 The name

of the identity thus the same as its entity. When necessary, an identity map is drawn as a thick

grey connector from the entity to itself, as in [fig 5.121.

Tip Tail

Tip CD
back ED Tail

front

Figure 5.12 The bijection property

5.2.3.3 Bijection

The identity maps provide one way to define bijective correspondence between sets. Such

bijections are found in diagrams whenever two graphical situations (pattern items) always occur

together. The mathematical definition of bijective function translates into a pair of triangle

equalities.

Tip and Tail denote the two disjoint sets which are both 'copies' of the set of arrows (Arc), in the sense

that they occur in the exact same situations in which arrows occur.

The sketch [fig 5.121 represents tips and tails of arrows as two different entities. The bijection

between them consists of two maps: front, which finds the tip joined to a tail; and back, which

finds the tail joined to a tip.

11 The dual of the product construction is normally called the coproduct in Category Theory. Here the term disjoint union is

used to help the general reader's intuition - though the property of disjointness is not generally a formal consequence. Similar

remarks apply to the use of 'injective' and 'surjective' where monic and epic would be preferable.

121n fact an entity can be thought of as a 'degenerate' map; maps ("arrows") are the primary concept on which Category Theory

is based. The depicted signature of a sketch leaves all identity maps implicit.

195

5: A Notabon for Sketching Syntax

B ý: Z, ack S

Figure 5.13 The bijection symbol

The bijection property is presented by two equalities:
(back; front = Tip) and (front; back = Tail).

For convenience, a single symbol (a zigzag link) denotes this circumstance [fig 5.13].

Alternatively, a notion of isomorphism between sets denoted by Tip and Tail can be defined by

constraining back to be the side of a cone whose base is the singleton graph having just the entity

Tail - notated as a'product'of Tail alone (with a spot above the foot of the connector):

S> back 9)

This works equally if a co-cone is used instead (i. e. with the spot at the head).

5.2.3.4 Cardinal Numbers

Constructed entities can represent the cardinal numbers. The two basic'cases, 0 and 1, are empty

sets and singletons, while larger numbers may be constructed arithmetically, using disjoint union

for addition, and products for multiplication. The numbers are thus constructed as abstract sets.

Equality of two numbers is represented by any bijection between the abstract cardinal sets that

'depict'them.

The abstract entity Zero is constructed as apex of a cocone whose base is empty.

(ýD E)
Figure 5.14 Cardinal Numbers

A set which is empty represents zero. The symbol for this is to use a circular boundary for the entity, a
'No Entry' sign that prohibits any item of this sort from occurring in the diagram.

The empty set Zero has a defining property: - To any entity E, there is a canonical map from Zero,

and it is the only one. This map is essentially empty; it is conventionally named " ? E".

The abstract entity One is constructed as apex of a cone whose base is empty. Thus One is dual

to Zero.

A singleton set contains just one element. The symbol for this is to use a square-cornered boundary for

the entity, having the effect of forcing there to be an unique item of this sort.

[Fig 5.14 right] shows the addition 1+1+1, a disjoint union construction of the numberThree.

196

5: A Notation for Sketching Syntax

The singleton denoted by One has a defining property: - From any entity E, there is a canonical

map to One, and it is the only one. This map sends each element of E to the only element of One;

it is conventionally named "IE'.

Sometimes a syntactic rule restricts the size of a set. Cardinal numbers can be used for size

comparison, with the help of an injective map (as defined below).

5.2.4 Some Derived Constructions

The symbols introduced above form a logical basis for structural description. - As with other

systems of logic, extra concepts can be built on this basis by methods of definition, as desired. To

finish this section, four more constructs are defined which are frequently used and therefore

warrant special symbols.

5.2.4.1 Pullback and Pushout Constructions

Included in SIGN are two useful (dual) constructionS13, which may be derived from those given

above, in each case by viewing certain structures as digraphs. This derivation is given as a

definition for the extra notation.

The pu//back construction arises as the relation that holds between items of two sorts by virtue of

items being arranged in clusters.

Z

IOA
0, j OA,

(ý > tri ci rc

Figure 5.15 An example Cluster diagram Figure 5.16 A Sketch for'bi-clusters'
I

Bi-clusters

In a diagram like [fig 5.151, Circles and Triangles are jointly 'clustered' into Groups. This is sketched

in [fig 5.16]. The first step of the construction is to form the product Triangle X Circle, and to view its

pairs as the'arcsof a digraph whose nodes are the groups [fig 5.15]. In each pair, the triangle is the

tail of the 'arc', and the circle is its tip; the arc's body is invisible. Accordingly [fig 5.17 left], the

product entity is called Arc, and the parallel maps of the digraph are defined by the equalities:

(source = left; tri) and (target = right; circ).

13 Pullback and pushout are used extensively In Category Theory.

197

5: A Notatlon for Sketching Syntax

e-- > source

left CT -da -ng I tri Arc > Group

> circ

>
target

i arc S ED

ti
EEi9

t2 tri

,p
circ

ýýUj

Figure 5.17 A directed bi-cluster graph. Constructing a togetherness relation

The next step forms a relation Together (tI, t2) that holds between any circle and square belonging to

the same group; the relation is a'loop'entity on the discovered graph, shown in [fig 5.17 upper right].

The maps are defined by the equalities (not shown):

(tl = arc; left) and (t: 2 = arc; right).

7be chain of equalities shows formally that tI and t2 are in the same group: -
tl; tri = arc; left; tri = arc; source

= arc; target = arc; right; circ = t2; circ

The symbol for this is the 'rightangle' sign shown in [fig 5.17 lower right], linking the projection maps

tI and t2. The map tI is termed the map obtained by 'pulling back' circ along tri, and t2 is similarly the

result of 'pulling back' tri along circ.

Dual to this is the pushout construction. This is based on components of a bipartite graph

structure, which shows connexions between two sorts of items. The method is to view any

bipartite graph as a directed graph, by ignoring the distinction between the sorts of node.

n
Figure 5.18 A Bipartite Graph diagram

Bipartite Graphs

Gýý left (E > (ight (ý

Figure 5.19 A Sketch for Bipartite Graphs

Consider a diagram (for example [fig 5.181) of a graph with two sorts of node, squares and circles, and

arrows which can only run from a square to a circle. Here squares are drawn on the left, and circles on

the right.

The sketch for a bipartite graph, which is dual to [fig 5.16], is depicted in [fig 5.19]. The required

construction finds the components of the graph. This is done by forming the disjoint union of the two

sorts (Node = Square + Circle), and constructing two new maps source and target [fig 5.20 left]

defined by the equations:

source = left; s and target = right; c.

The components of this digraph are also the components of the bipartite graph. They can be described

as in the construction above [rig 5.3].

The symbol used is the 'rightangle' sign shown in [fig 5.20 lower right) linking the two canonical

198

5: A Notation tor Sketching Syntax

projection mapsfand g. The mapfis said to be obtaincd by 'pushing OLIC fi, ýIll 11011,1' /('ft, While 111-1p, q
is obtained by pushing out left along i-ight. This entai IsI he equa I it y: right; g=I ef t; f.

source

left -s
Arc

> (Square)
Node

riaht

target

right

CC

Figure 5.20 Constructing a pushout via a directed graph

The two maps can be determined from the mappiece in I fig 5.20 Upper right I by the equalities:
f=s; piece and g=c; piece.

5.2.4.2 Restricted Maps

Injective and Surjective functions are represented by placing a single bar on the connector

symbol. 14 These kinds of map can be derived by using the previous constructions as constraints.

The two examples are taken from the digraph constructions (§5.2.2).

(Ej) Eýýl arc CD &ýD

Figure 5.21 Notation for injective and surjective inaps

Above [fig 5.51 it was noted that Loop is a subset of Arc, or in other words tile map arc is injective.

This consequence of the loop construction can be expressed by placing a single bar on the foot of the

connector [fig 5.21 left]. The injective property can be defined in terms of a pullback construction

which asserts that if two loops are assigned to the same arc, they must be the same loop [fig 5.221 left].

CLoop
Loop'

EH)

Loop rc

arc

piece Component

Component

Figure 5.22 Defining injective and surjective maps

The map piece which assigns nodes to components is surjective because components cannot be empty;

surjection is expressed by putting a single bar at the head of the connector [fig 5.21 right]. The property

can be defined by a pushout constraint which asserts that every component has some node assigned to it

[fig 5.22 right].

14Strictly speaking, the constructions define the weaker notions of monic and epic maps in a general Category.

199

5: A Notation for Sketching Syntax

5.2.4.3 Subsets and Set Operations

An injective map is often used to represent a subset of some pattern of occurrences that is

recognized by a further syntactic or graphical property; it is an inclusion map that relates part to

whole of a set. The intersection of two subsets is simply a pullback of their inclusion maps, while a

pushout can then be used to construct the union. We note that set complements and differences

cannot be constructed in this logic.

5.3 Building Syntactic Descriptions

The next step is to use the constructions that are depicted in SIGN schemas to build up a syntactic

description. To explain how this is done, this section presents basic syntax for several structures

that are familiar in many notations, such as trees and textual labels. Sketches for these standard

sub-structures serve to demonstrate the strategy and the style of reasoning used, and to provide a

prelude to a short study of Jackson Structure Diagrams.

5.3.1 Reasoning about Syntax

The task we consider is that of developing syntax from an informal description of some notation,

together with a received corpus of expressions. For this purpose we need a strategy and a method

of reasoning.

5.3.1.1 The Strategy

The task entails deciding which perceived patterns in expressions are needed to establish

meaning, and which constraints are conventional, i. e. independent of semantic likeliness,

pragmatic appropriateness or other accidental properties of the corpus. It is not necessary to

define afi the patterns which could be perceived, nor assert all the constraints which are seen to

hold, but only those that are conventional or pertinent to meaning.

In defining syntax, the general strategy is to propose a signature of basic entities and maps, then

to extend this with further entities and maps or constructed patterns (entities and maps that are

defined by certain constraints), and then to state further constraints on all the maps. The extended

signature encompasses a wide class of forms. The goal is to make the constraints define a certain

subclass: those considered well-formed.

200

5: A Notation for SketchIng Syntax

5.3.1.2 Deduction In Sketches

This strategy requires an understanding of the properties of constructions and the consequences of

applying constraints, and a way to reason about them. The rules of logic available for reasoning

formally about syntactic structure are those intemal to the chosen doctrine. FM-sketches have

effectively six kinds of deductive operation, which are classified here in outline as three

constructions and three inferences.

Constructions expand a sketch by adding new maps or entities that are implicit in all its models:

Cl) A new map may be constructed by using an equality diagram to compose a path of maps-,
C2) a new apex entity and connecting maps may be constructed on a suitable base;

C3) canonical maps to or from a constrained apex may be constructed in certain circumstances;

The inferences extend a sketch with equalities that must hold in all its models:

EI) new equalities can be inferred on the faces of cones and co-cones;

E2) new equalities can be inferred from the uniqueness properties of maps belonging to constraints;

133) new equalities can be inferred from rules for extending equalities.

An example of the rigorous use of these reasoning processes is demonstrated in Appendix C.

ýýD
source

(ý >
target

(ED

c2 C, c2

Colour

Arc
ta et

c cl p2 piece I c2

ý> LCOLOUD

Figure 5.23 Constructing a map from the apex of a colimiting cocone

Several examples of construction of apices, sides and face equalities of (co-)cones have already

been given in the preceding section. To give a further illustration, [fig 5.23] shows the cocone

constructed as in [fig 5.3] (§5.2.2) to specify components of a graph, and a construction for a map

that colours them.

Following rule (E2) the cocone face equalities are:

piece; source = p2 = piece; target (implying [fig 5.4]). The schema (left of [fig

5.23]) shows the circumstance where arcs and nodes are coloured by elements of a set called Colour,

via maps cl, c2. Two equalities depict the given constraints that all arcs shall have the same colour as

their source and target nodes. From these constraints we can deduce that each component is uniform in

201

5: A Notation for SkelMing Syntax

colour: The constructed map from the apex Component to Colour, shown in bold on the right of [fig
5.231 then assigns the colour of each component. The existence and uniqueness of this map is assured
by rule (0) of sketch logic.

ED

ED
Figure 5.24 An example Forest of Trees

5.3.2 Some Examples of the Strategy

The strategy is illustrated by building a series of example specifications, from trees to alphabetic

and textual labels.

5.3.2.1 Trees In a Forest

Our first example is a graph in the shape of a "forest", consisting of "trees" each with a single base

node. A forest (e. g. [fig 5.241) is essentially a digraph (see schema [fig 5.2]) subject to extensions

and restrictions, to be expressed by means of extra entities Tree and Forest, and maps tree, base

and forest.

There are three mtrees" in [fig 5.24]; each tree has a base which is a node (these are the rectangles

at top left, top middle, middle left). There are various restrictions which apply to a digraph which is

a forest, for example: -

a) no node is target of more than one arc;
b) every node is either target of some arc, or otherwise the base (root) of a tree.

(ED source

(EE) tree

lorest

Figure 5.25 A sketch for a Forest of Trees

We can represent these properties indirectly. Evidently trees are the components of the graph

(nodes in a tree are connected), so that we may start with a relabelling of [fig 5.3], and extend this

into the schema [fig ý. 25]. We see that each node of a tree plays one of two roles. The map base

is intended to select those nodes which are = the target of any arc. It is not canonical, and

202

5: A Notation for Sketching Syntax

therefore the sketch asserts its existence. The syntax describes a digraph, its components, and an

association of each component with a base node.

The schema [fig 5.25] shows the trees [Tree] defined as components. A node is either a base or a
target, but not both. Thus the entity Node denotes the disjoint union of base-nodes and target-nodes, as

expressed [fig 5.25] by linking the maps target and base at their heads. The map Tree denotes the
identity function on the set of trees, conventionally named after its entity (§5.2.3). The equality:
(Tree = base; tree) expresses the property that each base-node belongs to its own tree.

The whole forest

All the trees constitute a single forest, so a further constraint makes Forest denote a singleton set; this

property is signified by rectangular comers on the entity-box.

The forest formed by the trees is identified as an unique item. Generally, for any expression, the

expression itself, regarded as a whole, is an example of a singleton; every item of any sort in the

expression belongs to the whole.

5.3.2.2 Sequence

Next we look at a way to define a sequential arrangement of arcs and nodes.

ý.
_2haln \Chain

base

:,
target

> low Chain EE)

source

e)lnd Chain

(
oc

Chaa7in--)

Figure 5.26 A sketch for Chains

The method of description here makes use of the symmetry inherent in sequence: that the

reversal of all arcs preserves the sequential property. By contrast, an 'inverted' tree (i. e. with arcs

reversed) is not normally still tree-shaped.

Observing that source and target maps of a sequence must therefore be constrained in the same

way, it is simple to add a further map to the sketch for tree and make the sketch symmetric. In this

case the symmetry of structure can be translated into a symmetric layout for a schema.

Chains

A chain is a sequence of nodes, and can be seen as a tree which cannot branch. 'Applying the same

constraint to the leaves of the tree as to its base yields the syntax for a chain [fig 5.26]. The base of a

chain is its starting node.

203

5: A Notation for SketchIng Syntax

Note that an empty chain consists of just a single node, its base, which is also its end.

5.3.2.3 Alphabetic and Textual Labels

Building on the above, we next investigate structural aspects of words, viewed as graphical

expressions. The description does not concern the language in which the text is written, nor the

layout on the page. It treats textual strings as sequential graphs whose arcs are alphabetic tokens.

Although in many notations characters and text strings play a special role as lexical items (e. g.

keywords), they can also appear as labels, for example in quantified formulae, in program code or

on diagrams. In order to describe the structure of labels, we need to define equivalence classes

and relations.

5.3.2.4 Alphabetic Tokens

Firstly an alphabet is defined as a set of distinguishable characters. Where the alphabet is a fixed

set of significant shape-types, printed as a set of tokens, these token-sets can be represented as

character entities in the syntax.

As with all the items discussed so far, character tokens are shapes with a definite location on a

diagram; thus each character has its own entity (TokenA, TokenB, etc.) on the schema. The entity

Alpha stands for all character tokens together, a disjoint union of all token-sets [fig 5.27 left].

In order to record when two tokens have the same shape, we must define an equivalence relation

on them. This relation can be treated standardly as a digraph whose edges link related items - but

we note that these links are perceptual, and not drawn. The relation can be constructed from the

character-entities: -

The schema [fig 5.27] expresses an alphabet of only four characters. The entity EqA represents a set of

pairs of tokens, formed as an union of product sets:
AA is TokenA X TokenA, etc.; because tokens are equivalent only if they belong to the same character-

token set.

S
Alpha EqA

Figure 5.27 Tokens and an equivalence relation

Since all characters that are used as labels have much the same role in the syntax, this

204

5: A Notatlon for Sketching Syntax

description is somewhat repetitive.

The relation allows us to define a set of shapes, but not an entity for the alphabet itself: -

We can construct from Alpha the set Character of characters (shapes) in M, as the set of equivalence
classes (of character-tokens) [fig 5.281. These are simply the components of the'graph'of the
equivalence relation EqA. The maps a] and a2 are definable respectively from all the first and second
projection maps from pairs to tokens, which are seen in the centre of [flg 5.28].

(ý class 11 (ý

Figure 5.28 Constructing the equivalence classes

It is also possible to "work backwards", by specifying an abstract entity, known to the users of the

diagram, denoting a set of shapes. 15 This alphabet of character-types is not a 'concrete' set of

items drawn on the diagram. When such abstractions are included in the sketch, the morphisms

between expressions do not preserve individual characters - two isomorphic expressions might

employ different alphabets. This might be appropriate when characters are variables, labels or

other place-holders, but not when they have true lexical roles like the Ysign in formulae.

Alphabetic Shapes

Suppose the alphabet is represented on the sketch by an abstract entity Abc. A map shape in effect

assigns a shape to each token. The entity EqA can then be constructed canonically as a set of pairs of

tokens subject to the condition that the first (al) and second (a2) tokens of a pair have the same shape.
In the schema [fig 5.29] this is notated with a right-angle symbol.

ýB > shape GiD
a2 sh e

S-a al s

Figure 5.29 Equivalence relation

5.3.2.5 Equal Words

We next turn our attention to the use of words as labels. Words on an alphabet can simply be

specified as chains of spaces linked by tokens, each of these being assigned a shape from an

alphabet (fig 5.30]. We assume that an expression contains a set of words.

15 The advantage of this Is that the alphabet could be extendable (e. g. for other language scripts) without changing the

specifying sketch. This Is also an Illustration of the way that semantic and Interpretive concepts In specification of a notation can

easily be Integrated with the syntactic sketch.

205

5: A Notation for SketchIng Syntax

Word

shape

NWord

start

target r- row Node >
source

end Word

Figure 5.30 Ile sketch for Words

We consider the set of 'words' (word-tokens) in an expression, and the problem of finding when

two words are the same label. It Is instructive to sketch a specification for equivalence of two

strings, though this bears little relation to the human faculty for recognizing and discriminating

words. The demonstrated solution applies the strategy of maximal matching of substrings.

wL
(ý 3ýý'

wR
Cýýj)

wStart
(ý 3ýýo

wEnd
CED

sl al sl bl sl

ac aL > aR ss ((lord ee (ýp >

J!

e
E_

2 b2 2
,2

(Spac, > wR > wEnd
_--!

) WL GED wSta rt (ED

Figure 5.31 Pairing equivalent words

The equivalence relation EqA on the alphabet [fig 5.27] finds every pair (a], a2) of identical

character-tokens ("alphas"); each must occur in a pair of words (possibly the same one). The next step
is to "zip" together subwords along corresponding pairs of spaces. To do this, each of the links EqA

given between identical alphas, is used to link the pair of spaces aL immediately to the left (in the two

words) with the pair of spaces aR immediately to the right of both alphas [fig 5.31 left]. Space2

denotes pairs of spaces, and the maps aL and aR are here uniquely defined (in the logic of sketches)
from the other maps shown.

Tle right side of [fig 5.3 11 finds, for any pair of words, the pair of spaces ss which start their names

and the pair ee which end them. These end-points can then be used to find which pairs. of words have

been fully zipped together.

ss
> bl

aL ssz ww iS3;
wl

aR
Space2 >I Word2

ý w2
Word >Iabeiii (Ea;

ee > b2

Figure 5.32 Zipping like words together, to give labels.

206

5: A Notation for Skelchlng Syntax

The parallel maps aL and aR, regarded as a graph, yield a set of components Zip which are the

maximal matched subword pairs [fig 5.32 left] - because components of a graph are maximally

connected. Then each word-pair in Word2 has a zip ssz which starts on ss and a zip eez which ends on

ee; if these are the same zip, then the word-pair is fully matched. Hence equivalent pairs Eqw of words

can now be constructed as loops in the'graph'ssz & eez. Each equivalence link attaches a word wl to a

word w2 (sometimes the same word) (rig 5.32 right].

The equivalence graph wl & w2 on words has components which are all the labelsmaed in the

expression.

We see in this example that the schemas describe what amounts to an abstract computation

within syntax.

5.3.3 Jackson Structure Diagrams

We now have enough groundwork to present a syntactic specification for Structure Diagrams of

the Jackson (1983) method of software development. The schemas below are based upon

Jackson's exposition, where restrictions on syntax are on the whole carefully stated; in some cases

there is looseness in his description, necessitating reasonable assumptions to be made about to

what is intended.

Figure 5.33 An example Jackson Structure Diagram

Structure diagrams are intended to express the analysis of a process as a sequence of actions

generated by a regular grammar. Each diagram displays in effect a parse tree for a regular

expression. Syntactically, each diagram (e. g. [fig 5.33]) is apparently a kind of ordered tree

structure with labelled nodes; it is this structure which are now described.

207

5: A Notatlon for Sketchlng Syntax

Tree \rme

0 basEe=

down -) ý> tree 11 (Une Box ýLree
up

Figure 5.34 A Tree structure

Trees can be specified as in the preceding section [fig 5.24], with some name-changes. [Fig 5.34]

allows for a diagram (or document) to contain several trees, together treated as a graph whose

nodes are the (process- or action-) boxes, and arcs appear as lines joining boxes. Each line thus

connects two boxes: up and down (sometimes called "parent and child"). Each box belongs to a

tree that is a component of this graph. If a box is uppermost (i. e. not down), it is the base of its

own tree. The schema depicts these facts.

5.3.3.1 Ordered Trees

stait
X

left

dght jen ýd

x

Figure 5.35 A row of lines below a box

The notion of Chain [fig 5.25] can now be borrowed to provide an ordering on the lines below a

box. Schema [fig 5.35] defines a second graph structure in which lines join a series of gaps.

empty regions beside a line or between neighbouring lines. Each component of the graph is a row

(of gaps) corresponding to exactly one ('parent') box; in this case the construction acts as a

constraint on the entities Line and Box that are in common with [fig 5.34].

The component property ensures that for each line, Ueft; row) and (right; row) arethesame

box; in the diagram we see that this is also the 'parent' up, as depicted by the equality on the right side

of [fig 5.36].

208

5: A Notabon for Sketching Syntax

0--D -, j i leaf L! af
CB2

row

parenj
jup

MI

C Une

Figure 5.36 Leaves and branches

It is necessary to distinguish two kinds of boxes: leaves and branches, because they have different

syntactic properties. By means of a third graph, the top left of the schema constructs leaves as

boxes which have no children: each box is regarded as a connecting arc between two gaps,

namely those which start and end its row of lines. If this row is empty, its start and end coincide, so

that a leaf is a loop of this graph (see [fig 5.5]).

A branch is any box which has lines below it: every branch is a parent of some line (this map is

marked as a sudection). Box is then the disjoint union of branch and leaf either a box has

children or it does not. Further, the map (parent; branch) identifies the 'parent' up from the

line.

5.3.3.2 Sequence, Choice and Iteration

Branches (unlike leaves) are of three types, according to how their dependent boxes ("children*)

are marked. They are Sequence, Choice, or Iterator, further, an iterated child must be an "only

child". These three types are recognised by inspecting their children: Children are marked either

Blank, Circle, or Star (though "blank" is actually the absence of a mark). Hence Line and Branch

are both constrained as disjoint unions [fig 5.37]. The correspondence between types (of branch

and line) is shown by "right-angle" links between sequence and norm, also choice and circ, this

construction ensures for instance that sequence is derived by "pulling backo the map parent along

seq, i. e. restricting parent to the subset Blank. Blank can be seen as a relation between lines and

sequence-processes. 16

161t Is Interesting that Jackson chooses to mark the row of dependent boxes to distinguish the three kinds of process, rather than

the single parent boxes.

209

5: A Notation for Sketching Syntax

G; D
iter

>-j -.,
(

ýR,.,
alt 129 CBrar

sequence paren choice

;: I

norm Blar ý) _____4ý= D t-2ým--ýL
star

GD
Figure 5.37 Three types of branch

iter

only iterator parent

C 3tai star D
Figure 5.38 An only star-child

The entities Iterator and Star are isomorphic; the bijection between the sets they denote is formed from

the maps iterator and only [fig 5.391, which express the fact that iterator processes have just a single
starred child.

Jackson states the further restriction that a choice process cannot have only one "alternative"

(though a sequence may have only one child); though this is not notated here, it would present no

problem to do so. Constraints of this kind, which are motivated by semantics, may be included in

syntax or not as desired.

5.3.3.3 Names

This short study of Jackson's diagrams concludes by expressing restrictions on naming of boxes,

which are not fully stated by Jackson. A name in a branching box refers to a process which is

specified in the subtree that it subtends, whereas a name in a leaf box refers to some action of the

system that the diagram describes. In order that a process does not receive two different

specifications, a syntactic rule may be added to ensure that each process-name is used only once.

Thus names for process (branch) boxes must be unique, though leaves may share names (both

within and between trees).

wStart x

pa >word to Box
wR

EE) Ei) (E)

wjEnd Box

S B: -ýr s

N7 CED
>ti nullbox wStart

wEnd

Figure 5.39 Words in boxes

210

5: A Notatlon fbr Sketching Syntax

Each box is constrained to correspond to a string of alphabet tokens from a set denoted by Alpha

[fig 5.39 top]. Names can be specified as labels consisting of character-strings, as explored above

(§5.3.2). By two schemas similar to those given there [figs 5.31,5.32], names may be constructed

as classes of equivalent strings.

Every box contains a name-token, which belongs to some equivalence class in Name. The lower right

square of the schema [fig 5.40] indicates that the assignment of boxes to names must be unique when
restricted to processes, and the upper right square constructs the set of action-names, which may not

also be process-names.

There is a special name for the null action, drawn as a dash. The null name can conveniently be

identified with the empty word, which consists only of the space at its start and end [fig 5.39

bottom].

Null denotes a set of identical dashes which are placed in boxes which do not contain a word. Only
leaves can have the null name [fig 5.40]. The marks on the maps null and nullcirc signify injections: at

most one dash may be written below a circle, and at most one dash may be written in a leaf-box.

E Null >1 null leafaction D GD va'a ED

nul circ nu x leaf action

GED
Clox > name

circ do box Process

A

E Une Branch D D-
Figure 5.40 Names

Jackson states that a null process is not allowed in sequential or iterated leaves, while at most one

null is permitted in a choice. This latter is not notated here. Also not considered here are cases

where names have internal structure (with parenthesized arguments), that are found in some of

Jackson's examples.

5.4 Discussion of SIGN Design Issues

After the work of explaining how SIGN, as a sketch-based formalism, can provide a graphical way

of defining syntax, the last task of this chapter is to examine the design details of SIGN itself. This

section describes and assesses the pictorial, syntactic and logical aspects of the notation, and

211

5: A Notation for SketchIng Syntax

suggests extensions or alternatives that might improve its suitability or usefulness. To end with, a

brief summary is given of the chapter's work.

5.4.1 An Assessment of SIGN

The version of SIGN demonstrated above is intended in the first instance as a vehicle for research

rather than for general use; it alms at simplicity rather than sophistication. We first look at the

features chosen to achieve this aim, and assess their adequacy in the context of SIGN's role as a

vehicle for reasoning about the design of notation syntax. As was noted in Chapter 2, the mere

use of a diagrammatic mode in a notation does not justify a claim that it is more beneficial than a

textual version. According to the analysis of (§4.1.3), we need to assess how engaging, instructive

and communicative it succeeds in being.

5.4.1.1 Features of SIGN

The design for SIGN has a clear origin; it is derived from entity-relation diagrams and category-

theory diagrams, which are each known to be useful both informally and formally. In order to keep

the rules for reasoning about syntax simple, SIGN is based on just a small number of primitive

notions.

Here four specific features and conventions are given that are expected to make SIGN simple and

effective. By graphical means, these features help to reduce visual complexity without introducing

ambiguity.

1) The (indexical) use of textual names provides a cross-reference mechanism within and

between schemas, which makes it possible to simplify layout and avoid overly long or

confusing connectors. Names also offer an informal verbal interface with accompanying

natural language narrative.

2) Since schemas may then be drawn as plane graphs (i. e. without crossing connectors), the

properties of plane geometry can be exploited. Thus the polygonal regions that are

bounded by paths are helpful in making constraint-symbols concise; for instance, an

equality-sign relates to the two 'parallel' paths that bound the immediate region that holds

it.

3) Geometric arrangements are used: e. g. loop (and component) constructions use

geometrically parallel alignments of connectors in order to bind the syntactic construction

together.

212

5: A Notation for Sketching Syntax

4) Some weak iconism is applied: the shape and placing of certain symbols Is chosen to help

cue their logical properties. For example, the (unconventional) use of a bar as marker for
both injective and surjective maps tells viewers that these restrictions are mutually dual;

also, the single bar denotes a logically weaker constraint than that implied by the double-
bars of 'loop' and 'component' maps (§5.2.4).

5.4.1.2 Modularity of SIGN

As a result of feature (1), flexibility is permitted in expressing sketches in a modular fashion. A

schema can be thought of as a frame of reference or viewpoint that highlights certain formal

relationships and hides others. It may correspond to either a sentence or a paragraph in natural

language. A schema 'sentence' collects together entities that form some important substructure,

such as the Tree of [fig 5.34], whereas a 'paragraph' may tell a story of how several substructures

are combined, as in [fig 5.36].

In many ways, we see that schemas perform a similar function to schemas in Z notation - but with

some important syntactic differences. In Z the signature and explicit predicates (i. e. constraints)

are placed separately within a schema box, whereas SIGN mingles them. We see that SIGN

employs much less abstraction than Z, SIGN schemas are not arranged in a decomposition

hierarchy. For example in SIGN, a schema is not named, and thus cannot be referred to within

another schema, as is possible in Z Also, SIGN has no mechanism for re-naming entities in a

schema or for formally combining schemas. In the next chapter a further notation for depicting

relations between sketches is suggested, which goes some way towards filling these gaps.

5.4.1.3 Adequacy of SIGN: Conciseness and Richness

SIGN is proposed as a working conceptual tool to assist precise design of notational syntax

(whether for new or existing notation). How well would it fulfil this function?

SIGN is not designed to be very concise. Generally we would expect diagrammatic depiction of

syntax to take more space than any textual equivalent; also, formal description tends to be

lengthy because it must make every detail explicit. Taking this into account, the schemas required

for the example specification in this chapter are fairly economical, but this could be improved

upon, with a more richly expressive syntax, as considered below.

SIGN is deliberately not a rich notation; as it stands, it is too restricted from a practical point of

view. The symbols introduced in (§5.2) notate only an elementary set of constructions - almost a

213

5: A Notatlon for Sketching Syntax

minimal logical basis for sketches - as a result of a particular compromise between convenience

and logical generality.

One problem with the reliance on such a small number of primitive notions is that it leads to less

succinct schernas. Although the choice makes it feasible to notate constraints in situ upon

schemas, this carries the disadvantage that names are required for unimportant intermediate

maps. The task undertaken to produce the specification above has shown that choosing layout

and naming requires care if schemas are to be clear and easy to understand. Each of the many

maps must be named uniquely - for instance subsets are named as inclusion maps. Finding

suitably intuitive names for the many entities and maps has proven to be an awkward task.

5.4.1.4 Specificity

Do schemas exhibit the property of specificity (§4.3.1) that is needed to help reasoning? Since

specificity is determined by the directness of the relation between graphics and semantics, the

answer to this depends on what we take to be the semantics for SIGN. Schemas denote sketches,

but sketches denote classes of models. Further meanings involve the deductive dependencies

revealed by schemas.

If we regard sketch structure as a semantic level within SIGN's syntax, then there is a fairly direct

relationship between items drawn in schemas and items of a sketch, though this is subject to the

restrictions of feature (1) - several boxes with the same name refer to a single entity.

At another semantic level, a depicted sketch denotes a definition of its models. Though the

relationship between sketch and model is not direct, schemas, on the other hand, can be drawn to

express models directly. This is achieved by using the syntactic signature as basis for a kind of

proto-notation, equivalent to a directed graph labelled with names of entities and maps. This

possibility arises by virtue of feature (1), which gives SIGN enough flexibility to 'explode' a schema

into broadly the 'same shape' as a sample expression in the notation it describes -a technique

that can be useful for analysing expression-instances during notation design.

As illustration, we take a proto-notated version of the JSD diagram [fig 5.321 of (§5.3.3); this is

derived from the tree schema [fig 5.33], by 'exploding' into schema [fig 5.4 1]- though note that some

connectors are ornitted to avoid any cross-overs.

214

5: A Notation for Skelchlng Syntax
base

x
9D

tree (ED,,,,
up

Una Una

/d/oKwn own d

Sw

\ýU\p

ýown ýown ýown ýown

ED ED ED ED
u ýp p

Una Una

, (Hý
/down J6ýý ýown

down

(E) ED ED

Figure 5.41 An Exploded Schema

As far as semantics for reasoning with sketches is concerned, deductive relations within or

between schemas are not depicted, but are only accessible via. formal logical rules. Though

schemas cannot notate deduction, they are important as a visual aid in support of reasoning. The

instructive use of SIGN for tractable reasoning about syntactic structure is aided by directness, but

as we have just seen, this depends on the level (or fragment) of semantics which is the focus of

reasoning. Either different variants of SIGN would be needed, or more flexibility could allow

expressions to be tailored to a particular focus.

5.4.2 Redesigning SIGN for General Work

How can SIGN be extended to overcome the above problems? What changes are needed to

SIGN to render it suitable for a non-specialist in notation, who wishes to see an instructive formal

definition of a standard notation? We look next at ways that expressiveness and engaging

qualities of SIGN might be improved - in order to create a more expressive working version

without losing its basis in Sketch Theory.

5.4.2.1 Improving Expressiveness of SIGN

Methods of enriching syntax or semantics of SIGN could be applied, to adapt it to both context and

practice of design.

215

5: A Notation for Sketching Syntax

In specification notations generally, it is desirable to be able to express as directly as possible

those concepts that predominate in the subject domain. Directness is achievable by giving these

concepts special symbols, denoting either primitive or derived elements of the logical formalism.

Extending a notation with new symbols can therefore be done in two distinct ways:

Syntactic extension introduces a symbol as a shorthand to replace an arranged group of symbols,

without otherwise changing deductive rules. The new syntax can be concrete (replacing a specific

group) or abstract (replacing a type of pattern).

Semantic extension enriches a notation by enlarging the set of primitives, which entails the reframing
of deductive rules, and may cause radical changes that require further mathematical analysis.

Syntactic extension is similar to the technique of definition in a logical calculus. Rather than

devising a logic with a rich set of primitives, a method of extending the logic with derived notions

is preferable to the second option, because it does not require a complete reworking of the

deductive rules.

Concrete syntactic extension was employed in the definitions of SIGN symbols for bijection

(§5.2.3) and pullback (§5.2.4). The definitional method takes some common sketch and represents

it by a special symbol with its own syntax and derived rules of logic. The sketch binds together and

constrains several maps and entities; it can be viewed as a compound construction, in which some

of the maps may have an auxiliary function. Auxiliary maps appear only as supporting framework,

and will be hidden when a symbol for the compound is defined. Thus in notating the compound

construction pullback, SIGN hides one entity and three maps (Arc, arc, source, targeo that are

auxiliary to its definition [fig 5.171. Without a symbol for the pullback, schemas like [fig 5.371

would be far more complex, with many unimportant maps needing to be named.

What is involved here is a compromise between concrete and abstract modes of expression. By

adding extra defined symbols, schemas built from commonly occurring compounds can be

simplified. Another way to make schemas more concise is to notate general kinds of

construction17, to avoid an ever increasing symbol-set. Thus more general derived constructions

could be notated, but this is achieved at the cost of increased abstraction and complexity.

As a form of abstraction, we could include syntactic definitional mechanisms in SIGN itself. Such

17This refers to sketch cones and cocones of any size, Le. general limits and colimits In categories. It is possible to go even

further and notate left and right Kan Extensions, or Ends and Coends (MacLane 1971).

216

5: A Notation for Sketching Syrntax

abstract syntactic extensions would involve more complex graphical reasoning patterns,

increasing the requirement for professional expertise.

5.4.2.2Ways to Improve Engagement

What would make SIGN more engaging and communicative? One way is to provide more flexible

ways of naming maps and entities.

The conventions for naming of maps could be Improved. It may help to develop conventions

where maps are given compound names, so that map-labels need not be unique. It should be

easy to create a formulaic notation for naming, because categories and sketches determine an

internal language in which maps are expressed by formulae (Lambek & Scott 1986). The syntax

for these internal formulae can be constructed from the doctrinal rules, and manipulated through

an 'essentially algebraic' (equational) reasoning process. An experimental method of naming

paths is used in Appendix B. 18

SIGN uses verbal text to label each syntactic entity (box). We could instead or in addition use

pictorial cues taken from the target notation, to help the user identify the graphical pattern denoted

by an entity in a schema. For instance, an entity named 'arrow'could be illustrated by drawing a

typical arrow-icon in the entity-box. In serniotic terms (§4.3), this amounts to an iconic temporary

extension to SIGN, specific to the particular target notation. This could be accommodated as an

informal annotation, but is hard to see how it could be done formally. In practice, such annotation

or extension to SIGN could only be made with the help of a versatile notation-development tool

such as that proposed in Chapter 7.

5.4.3 Alternatives to Sketch Theory

SIGN attempts to achieve clarity and avoid ambiguity in its schemas through the support of formal

logic, in the form of sketches. Here we consider changing the semantics of SIGN, by using other

possible logical bases, and we ask how the method of sketches compares with other formal

approaches.

Is a categorical foundation is the most appropriate? The main alternative formal description

18 A simple way to name maps Is to prefix a map-label by Its domain name, and to name an unlabelled map by default after its

codomaln.

217

5: A Notation for SketchIng Syntax

methods would be the general purpose languages of classical Predicate Calculus (first or second

order) and Set Theory. Both satisfy criteria of good mathematical support, but reasoning in these

systems is difficult even for experts. As with sketches, there is a hierarchy of strengths for

classical logical formulae, that can be used to control the complexity of serniotic relations. Set

theory might appeal to a wider mathematical audience than category theory, but neither it nor

classical logic are commonly used by software developers.

If having a graphically expressed formalism is important, then sketches are better placed than set

theory, for which no such notation has been developed. However, an extension of sketches to

accommodate Set Theory could be based on Topos Theory and higher-order logic (Lambek &

Scott 1986). Peirce's existential graphs do provide classical logic with a graphical notation that is

worthy of investigation. A pictorial first-order logic based on the work of C. S. Peirce (Hartshorne&

Weiss 1933) is demonstrated in the conceptual graphs of (Sowa 1984) see (§2.1.1,2.2.2).

We require evidence that reasoning by graphical constructions and equations in sketches will

prove any easier to support than other formulations of logic. The arguments of Chapter 4 suggest

that this will only be so if the sketches used are restricted in logical complexity, and if the schema

notation is adapted to reflect the restrictions graphically.

We have seen that sketches, through their connexion with category theory, provide for mappings

between syntactic structures. This promises to be an especially fruitful aspect of the method, in

that it allows analysis of analogy and metaphor, making it particularly suitable- for describing

semlotic structure. Predicate Calculus does not easily allow such mappings (Roisin 1979).

5.4.3.1 Expressing Properties and Relations

Among the Predicate Calculus concepts that the sketches do not express directly, are the

fundamental notions of property and relation. Many geometric and semantic connexions found in

general notations seem relational rather than functional (e. g. 'near-to'). Sketches represent such

relations indirectly as subsets (injective maps into product sets); hence SIGN lacks symbols for

many-to-many relations and partial functions. From (§5.4.2) we see that symbols could easily be

defined by syntactic extension, if necessary. A relation could be regarded as a 'loose' function that

can yield ambiguous values or no value at all.

The alternative would be to take relations as primitive. The concept of a total function must then

218

5: A Notation for Sketching Syntax

be derived as a restricted kind of relation, with the help of a special relation called 'equality', in the

standard approach of predicate logic. A lengthy investigation of fundamentals would be needed to

base a notion of sketch upon relations. A possible starting point is Peter Freyd & Andre Scedrov's

work (1990) on Allegories (Broome & Lipton 1994). The foreseen generalizations of sketches

(Bagchl & Wells 1994) referred to in the next chapter may suffice for this.

5.4.4 Summary

To finish the chapter, a short summary is given here of its achievements.

In this chapter a graphical notation and formalism for specifying syntax has been described and

illustrated with examples. This work has demonstrated that the proposed notation enjoys a

mathematical basis, which is found in the Theory of Sketches and Category Theory. The

formalism treats syntax as a set of perceived connectivity constraints which are definable without

reliance upon the details of realization in a pictorial medium.

An example specification for Jackson Structure Diagrams has been presented, to include the

constructions and constraints for all the properties which Jackson documents, apart from some

minor omissions that are indicated. The method establishes the principle that syntactic constraints

can be diagrammed formally.

The benefits and deficits of the proposed schematic formalism have been analysed according to

the work of Chapter 4. As a result, ways of improving its notational design are suggested, with a

view to providing more useful and practical developments of the formalism.

219

Chapter 6
Support for Notation Design and Processing

Abstract

Here we find an investigation into how the proposed 'tectonic' framework can be applied to

problems of computer-aided notation processing. Starting with 'a look at methods of formal

deduction and proof within sketches, the discussion proceeds to define a set of notions based upon

maps between sketches. These notions are particularly useful for describing reasoning about

syntax and operations on expressions. The technique suggested for designing notation structure

then involves building a syntactic sketch from a network of sub-sketches and maps.

The theory indicates a method for diagramming the logical relations between sub-sketches by

means of 'meta-schemas', which can be used in planning the computational strategies involved in

interpretation of expressions. The question of defining the appearance of a drawn symbol is also

addressed, recognizing the need for universal pictorial theories into which the syntax can be

mapped.

In order to discuss a range of operations on expressions, the tasks of editing are next analysed in

detail. Editing is seen as the building of a model, guided by a syntactic theory and directed

towards the user's semantic goals. In theoretical terms, creation of an expression is described as

the instantiation of its syntactic sketch. In a graph grammar approach, guided editing allows an

expression to be instantiated gradually, by inserting temporary symbols for syntactic items that will

later be replaced by patterns of items. For this to work in general, it is shown that a separate

editorial syntax is needed.

We see how the framework of tectonic sketches constrains a flow of change within syntactic

structure, resulting when a graphical expression is modified. Graph rewriting techniques offer an

elementary way to implement this flow. These rewriting operations are analysed in relation to

logical properties definable within the framework.

221

Chapter 6.

Support for Notation Design and Processing

The previous two chapters have proposed a theoretical framework and indicated a method for

specifying a layered syntactic structure. Our purpose now is to see how this 'tectonic' framework

can support techniques for reasoning about structure and operating upon expressions. These

techniques are directed both at the designing of effective notation and addressing particular

problems of providing computer-assistance. Computer-aided editing is selected as an important

topic to address, with a discussion to clarify, the processes involved in modifying expressions. A

logical analysis is applied in order to resolve difficulties found in design of rewrite-rules for flexible

editing methods. Without exploring too deeply, this chapter thus covers a number of areas that

pertain to the building of a notation design tool, which will be the subject of the succeeding chapter.

We wish to give assistance to people in several roles: to the technical designer of notations and to

those who will employ notations, either as a viewer of expressions or as a notator who produces

expressions.

The activities that users are engaged in come under two headings: employing and editing.

Employing expressions involves a range of cognitive actions, more or less tacitly: from creating

ideas through to physically expressing them; from perceiving pictures through to impressing their

content on the mental state (in readiness to respond). Editing involves some explicit actions which

are reliant on this cognition: for instance the building, modifying, formatting and translating of

expressions.

There are three areas where the ideas of this thesis may lend support, and three kinds of support

that are offered. Problems of specification have already been partly addressed; problems of design

and processing are the focus here. Theoretical support provides the confidence that practical and

computational support for all areas can be developed. Design of computer-assistance can then

follow a policy of providing algorithmic processes that correspond to cognitive ones.

223

6: Design and Processing Support

6.0.0.1 Operations

How can we reason about operations? To operate or work upon an expression means to change it

in a regulated manner. There are two aspects of this working that require our attention: the

structural integrity to be maintained throughout any change, and the means by which the

processes of change are to be controlled. As in computing, where these aspects arise as the

declarative logic of system specification and interactive logic of program execution, our problem is

how to unify them.

The first aspect involves defining the deductive, serniological processes underlying all notational

tasks. In the case of interpretation - the discovery of meaning - semantic facts are deduced from

observed graphical properties of expressions. Conversely, in producing graphical forms to

express facts in a situation, the task is one of selection or discovery of a display that has the

intended interpretation. From an operational perspective, both of these entail constructive proofs-

of-existence. As regards the second aspect, we have seen (§3.2,3.3,4.4) that the control of

change is often achieved by means of rewrite rules. With a view to implementing notational

processes, we must therefore examine techniques of graph rewriting in relation to the logical

framework.

How do the theories presented apply to parsing and interpretation of drawings, or production and

display of expressions - when carried out by computer? This is answered below with the help of

the concept of translators between syntactic theories, as introduced in (§4.5.2). Translators of

theories would in principle be associated with programs that convert models of one form to those

of another, as proposed in (§4.5.2). There it was suggested that interpretive processes encode

information in an intermediate abstract form (theory R of [fig 4.4% from which meaning is derived.

Here this abstract R-form will be regarded as conceptual data and could be called an idea.

Display of semantic data starts by forming an idea. Production of a drawing that expresses it

requires a search strategy that selects from a huge variety of solutions, applying informal criteria

such as aesthetic heuristics to choose layout.

6.1 Supporting Notation Design

In order to support for the designing of notations, this work must offer help in the logical analysis of

notation syntax. Further to the theory outlined in (§5.1), this section elaborates the descriptions of

224

6: Design and Processing Support

semiotic structure given in Chapter 4 (§4.5) and proposes language and methods for structural

design. The main device to be introduced below is a tectonic sketch for a theory of notations in

their context. This overall sketch is resolved into a complex of named sketches connected by

logical relationships, which are in turn depicted in meta-schemas. The mechanics of the

relationship between graphics and semantics is discussed, and finally consideration is given to

question of pictorial realization.

6.1.0.1 Various Reasoning Processes

As noted in Chapters 2 and 4, we can discriminate several kinds of reasoning associated with a

notation. For the user, the most apparent thoughtful activities occur in the sub'ective semantic

domain: employing an expression to think about possibilities expressed in the subject area

(§2.1.2), and potentially complex processing such as the calculation of consequences (which are

however outside the scope of this thesis). These activities rest upon transductive capability in

interpreting or conversely producing expressions, alluded to in (§4.3). In one direction, interpretive

thought extracts semantic properties of an expression from graphical facts; in the other, productive

thought expresses semantic properties in graphical form. These capacities rely, in turn, upon an

implicit understanding of the notation's structure, which users must develop.

During the design of a notation, these understood processes need to be made explicit; not as

cognitive functions, but as formal structure that is related to computational needs. In order to

support all these processes, the notation designer must exercise deductive reasoning in deriving

systematic properties of a notation from within its specification.

Determining the effect of syntactic constraints involves construction of required maps and entities,

and inferring new constraints which are implied by those already asserted. The reasoning method

for the sketches is graphically assisted by the SIGN schemas, in an analogous manner to the

practice of Euclidean geometry - whereby lines, points and arcs are constructed on a drawing, and

new properties are deduced using explicit postulates and theorems.

6.1.1 Theoretical Support for Deduction

We begin with some further details of the theory behind deductive processes, which relies on the

construction of a formal theory -a category that is the closure of a sketch - which was mentioned

in (§5.1.3). The objects of study which a formal theory is intended to describe are approximated

225

6: Design and Processing Support

by its formal models.

Both sketches and theories declare the properties of models, but sketches additionally allow us to

take some account of 'cognitive effort' in the interpretive processes, inasfar as these are mirrored

by deduction on a sketch. By referring to an ideal notion of theory, mathematics abstracts away

from (or avoids) such concerns. The intention here is to accommodate both of these perspectives

on deduction, in a version of logic that is intuitionist rather than classical.

S

In
h B> n

z

Figure 6.1 A Natural Transformation

6.1.1.1 Formal models

Theories and sketches describe models, in the sense that they identify the set of models that

satisfy them, and they establish the systematic relations that hold between models. When a

theory is presented by a sketch, we want the models of the sketch to be effectively the same as

those of the theory, or of any other sketch that presents the same theory. The category of models

of a sketch, referred to in (§5.1.3), will now be defined.

Given a sketch S and a suitable category Z the sketch-morphisms from S to Z are known to form

objects of a category Mod z (s) - the category of S-models in ZA morphism between these

models [fig 6.11 is an example of a natural transformation: -

If Z is a category, a model of S in Z is defined as a sketch-morphism from S to Z

A natural transformation h between models m, n: S -4 Z is a family of arrows in Z, indexed by the

entities in S, such that for all maps f: xy in S,

m(f) ; hy = hx ; n(f)

is an equality in Z.

If Z is a category of sets and functions, the natural transformation is a family of functions, each of

which maps each element of a given sort in m onto an element of the same sort in n, while

preserving the connectivity. This formalizes the part-whole relation discussed in Chapter 4 (§4.3),

and for example corresponds exactly to the usual definition of graph homomorphism.

226

6: Design and ProcessIng Support

It is usual in category theory to characterize a category by its arrows, and not by any supposed

internal structure of its objects. In our case we are especially interested in models that are

concrete object-representations - arrangements of items, with morphisms that are certain

functions between item-sets. The morphisms in this case do not tell the whole story. In particular,

we do not here pursue a notion of semantics in which morphisms between graphical models

correspond to morphisms between semantic models (§3.2.3).

6.1.1.2 Deduction

In any logical system, deduction is an activity that allows us to develop a theory from a set of

postulates. Deduction upon a sketch S leads to the extension of S into a sketch T by adding

formally derived entities, maps and constraints - governed by some doctrine E. Viewed

abstractly, this constitutes a sketch-morphism d: S --ý T, through which every model of S is also

a model of T The theory generated by S is, in a sense, the largest such T On the other hand,

the theory is a minimal E-category that includes S. It follows that stronger doctrines generate

potentially larger theories.

In the following exposition, the general framework for *graph-based logic" (GBL) described by

Bagchi & Wells (1994) is the source of formal definitions for these notions. The general notion of

a theoty in a doctrine E can be defined formally in two ways. The first definition yields a notion of

loose theories: -

(a)

Figure 6.2 Unique factorization of model m via the generic model s.

Loose theories

If E is a doctrine, every E-sketch S has an E-theory E<S>, which is an E-category together with a

sketch-morphism s, called the generic S-model for E: -

s: S -4 E<S>

such that for any E-category C and S-model in in C, there is a model M of E<S> in C, unique up to

isomorphism, for which m=s; m.

Every model of S is said to "factor uniquely" through the theory E<S>.

This determines E<S> up to equivalence of categories.

227

6: Design and Processing Support

The generic model s induces a natural equivalence between mod c (s) and the category of E-

functors from E<S> to C. In this sense the sketch S has the 'same' models as its enclosing theory.

The force of the phrase "up to equivalence" is that we do not specify how many isomorphic copies

there are of each object of E<S> - i. e. each derived concept. A loose theory captures the notion

of a definition that is not tied to a particular presentation S.

For the purpose of defining formal deduction it is helpful to have a second way to understand a

theory - as a model of a doctrinal FL-sketch. These strict theories are E-categories with

designated E-limits and functors that preserve them) Bagchi & Wells give a set of rules of

construction that produce the strict E-theory of a sketch as the initial algebra for the FL-sketch of

E-categories with constants added describing the sketch (see also Wells 1990).

Strict theories

In the general case a doctrine is established by taking an FL-sketch E and generating its theory E (i. e.
FL<E>), which is thought of as a constructor space. Then E-categories are just the models of E in Set.

Each object in F, is a type of construction that can be carried out in any E-category; in a model of E,

each object is mapped onto the set of all possible examples of that particular type.

Technically, an E-sketch S is a constant in the limit vertex v of a certain diagram in E, which depicts

the signature and constraints of S. When this constant S: 1 --> v is formally adjoined to E, it

generates a loose theory F, [S] that forces the value of v in a model to contain the signature and

constraints of S. Then the (strict) E-theory of S, E<S> is the initial model of E[S], a kind of 'deductive

closure! of S.

The details of this construction need not concern us too much. The effect of it is that an E-sketch

S allows us to specify any kind of construction that can be made in an E-category such as the

medium Z

6.1.1.3 Proofs

The GBIL framework also associates a sound and complete proof-theoretic structure with a sketch.

In this framework, proof takes place in a workspace W in support of a claim C about an hypothesis

H- all objects of JE,
that are limits of diagrams in E.

An assertion is presented as a potentialfactorization of a map h: H --ý W via a given map c: c -4

w. It is valid if it does factorize in every model of E. The assertion is deducible if the claim is verified

by existence of an actual factorization -a map d: H -* C, that makes the triangle

(h = d; c) an equality in E.

I The corresponding theory functor Is left-adjoInt to the monadic functor that treats an E-category as a sketch.

228

6: DesIgn and Processing Support

The resulting proof theory is suitable for computer Implementation since it makes explicit the full

detail of the relationships between different parts of the structure. It has the advantage that proof

under any doctrine is always an algebraic operation. For human manipulation, we require a more

customary system of inference that is instantiated for the doctrine we are using, and which relies

on pattern matching - such as that informally described in (§5.3.1).

6.1.2 Languages for Notational Design

We have seen in the preceding chapter how notation design can be supported by a schematic

notation for syntax, which could also be adapted to finer layers of structure. It will now be helpful

to invent some further language - appropriate terminology and ideas for new notation - to help

apply this theoretical perspective.

6.1.2.1 Translators, Codices and Expressions

In the examples of the previous chapter, syntax was specified in the doctrine corresponding to

finitely bicomplete categories (FIVI-categories) in which limits and colimits exist for all base graphs

of finite size. We remain generally concerned with FIVI-sketches and FIVI-deduction within FIVI-

Theories, but the prefix FIVI- will be usually be omitted. If S is an FIVI-sketch for a particular syntax,

its FIVI-theory category FM<S> may be written simply . 6.

In Chapter 4, translation between theories was described by morphisms (Li: an a) that respect . aL-tQr. a

the doctrinal structure - in other words as FM-functors. These translators represent systematic

ways of converting between models, but because theories are generated, translators subsume an

arbitrarily large amount of symbolic computation.

Morphisms between finite sketches are much simpler. In this context, finite sketch-morphisms will

here be called codices in order to emphasize their role as illustrations or translations. A codex

maps signature and constraints of a source sketch S coherently into signature and constraints of a

target sketch T, and may be thought of as a vehicle for interpreting into concepts of S from those

of T Applying a codex converts any T-model to an S-model by simple operations of selecting and

copying, without any deductive computation.

If Z is a category suitable for containing models, then any codex from a sketch S to Z is a model,

regarded as an 6xpression with structure S within the medium Z (in short, an S-expression in 2).

229

6: Design and Processing Support

Equivalently, expressions are models of the theory
.6

in Z (regarded as an FIVI-category), i. e.

translators from S to Z

6.1.2.2 Notated Language: a Category of Forms

Each FM-sketch S has an underlying graph, its signature, denoted ISL Graphoid forms are models

of these graphs, and thus are like abstract unconstrained expressions. Forms on a signature

belong to a category US (a topos) that supports all the standard definitions of graph rewriting. The

arrows between forms in L$j are transforms: natural transformations between models, as defined

above.

The language defined by S (in 2) is then the. category Mod Z(S), of S-expressions in Z with

transforms as arrows. This will be simply written 2, when Z is understood from context. Although

2 is a subcategory of LSJ, it need not share the same closure properties. The language 2 may be

deficient in transforms between its expressions and it may even be empty of expressions - in

general there is no guarantee that the constraints of S are satisfiable, especially when Z is

restricted to finite sets.

6.1.2.3 Media and Models

For most purposes we take the medium Z to be some category of Liw-ijq sets, perhaps imagining

sets in the given context, of geometric space, coloured pixel arrays, perceptual images, concepts

and computer storage. If we restrict ourselves to formal reasoning, nothing is lost by regarding Z

simply as an indefinitely rich theory category. If we wish to describe the nature of a specific

medium more closely, this may be done by sketching a theory M of the medium, and factorising

an expression in Z into a codex to M, composed with some M-model in Z.

Let S be a syntactic sketch and e: S -ý Z be an expression.

Let M be a theory and m: M -* za model - i. e. a concrete medium.

Then e can be expressed in the medium m provided it can be factorized via m:

3p: S -4 M-e=p; m

Expressions in Zare called concrete in contrast with abstract expressions in

For the constructions demanded in Chapter 5, Z must have uniquely designated finite (co)limits,

whose apex objects are referred to as canonical constructions. Thus, for example, the product of

two sets in Z is a specific set that represents all the ordered pairs.

230

6: Design and Processing Support

Since we rarely have cause to discriminate between isomorphic models, for computational

purposes we could choose as medium a skeleton category N of natural numbers. This has a

single representative for each size of set; each number is the set of its predecessors, and the

arrows are all functions between the sets.

6.1.2.4 Meta-Schernas

In order to discuss the design of notation structure, we will need a new form of diagram to express

relationships between sketches. These *meta-schemas" will be drawings of a more elaborate kind

of sketch - one whose models are not in the medium of sets, but in a category of FIVI-sketches.

Sketches and codices are the 'objects' and 'arrows' of the category of Sketches, Sk. Since this

category Sk is known to be bicomplete, it provides a suitable medium for mixed sketches; in other

words we can use sketches with models in Sk to sketch the relationships between certain codices

and sketches. This implies that a variant of the schema notation of the previous chapter can also

serve to denote such a "meta-sketch".

The notation provided by meta-schemas could distinguish different kinds of sketch and codex in

the richer structure of Sk. For instance Sk has a subcategory Th of theories and translators.

Furthermore, a second level of arrows is needed to depict the transforms - arrows between

parallel codices to a category2 as in [fig 6.11].

The syntax of meta-schemas would therefore be based upon that of schemas, but extended to

express transforms between codices and to distinguish different kinds of codices. In particular we

may want to distinguish deductive codices that merely deduce extra structure, or to indicate the

strength of the deduction - whether limits or colimits are involved. Details of such a notation will

not be presented at this point, but informal graphical structure will be devised and explained when

needed.

6.1.2.5 Notating Formal Proofs

In the formal design of a notation, there will be a practical need to establish logical dependencies

between the facts formalized in a sketch. SIGN schemas can support structural reasoning by

2Th has the further structure of a 2-category, but Sk does not. Given two sketches S and T, we might consider what structure

can be found In the set of codices (S -+ T), where the target T Is not a category. Although transforms can be defined in this case,

they do not form a category because the map formed by composing two compatible transforms may not itself be a transform.

231

6: Design and Processing Support

depicting all the items and constraints involved in a chain of inference, but they are not designed

to notate the deduction itself as a formal proof. Meta-schemas could be adapted to depict

deductive stages between parts of a sketch in broader terms.

Though proof documentation is likely only to be of academic interest, the outcome of a proof is an

important data-structure -a network of dependencies between sketch-items, useful in controlling

computations on expressions. The dependencies could be diagrammed along with the schemas

that visually motivate the deductive steps, but further special notation is not proposed here.

6.1.3 Specifying Serniotic Structure

We now turn our attention to considering what a full notation specification would look like. In

Chapter 3 (§3.4.2) we observed that reported methods of specification take little account of

semiotic properties such as layering. It is thus proposed to define the layered structure in a

tectonic sketch that incorporates the syntactic sketch described in the previous chapter. By

combining structure from all layers together with pragmatic items, this sketch could in principle

specify some of the interaction between expressions and situations that was envisaged in (§4.5).

We here examine its primary purpose, which is to guide interpretation and display of expressions.

6.1.3.1 An Outline of a Tectonic Sketch

To design a notation, the plan is to build a tectonic sketch that specifies all of its associated

entities and maps, as are necessary for interpretation, display, translation or other processing.

The flow of information, from graphical facts about an expression to properties of the referred-to

situations, is to be carried in its network of maps and constraints and controlled by the

dependencies between them. The tectonic sketch K for one notation might take the shape roughly

illustrated in [fig 6.3]; the diagram shows a notation with four separated layers of syntax.

232

6: Design and Processing Support
>17 SEMANTIC I's IT (U

,

0 C) C)

TAGMATIC

CD CD

CD CD CD CD
T LEXIC

I

T-
L) CD 0

0 C)
,

Tb
C GRAPHIC

-- -------------------
Figure 6.3 A rough picture of a tectonic sketch of syntactic structure.

This picture does not show any of the pragmatic constraints on how and when an expression may

be used, necessary in a full serniotic sketch. Pragmatic items may connect at all levels -

coordinating style and context, dealing with presuppositions, anaphora etc. These further

contextual entities would supply referents for unbound names, and - in a programming context -

might for example hold the structure of an automaton that executes expressed instructions.

The sketch could be extended to a community of notations with a common focus, so that different

views of a complex system wo. uld be coordinated by the constraints. Within this global sketch

would lie all the logical connexions. Its constraints would determine a dependency network for

controlling information flow between representations and situations. This opens the possibility of

constraint logic approaches for processing expressions - as suggested by some researchers in

(§3.2).

6.1.3.2 Meta-Schernas for Tectonic Design

To facilitate the design, the tectonic sketch K would be built up from smaller modules, each

defining a component of the formal structure. Meta-schemas provide a way to show the overall

logical design, depicting the layers and deductive or analogical relations between them. This

constitutes a second level of description, in which each sketch-name relates to a document of

schemas that define it.

We can separate out the layers by means of four codices into K. Each codex embeds the sketch

233

6: Design and Processing Support

for its layer in the abstract context K, as depicted in the meta-sherna (fig 6.4].

Q sm > e--N

s tR

G) Ix K

Q gr >

Figure 6.4 Layered sketches

Here the sketch Gr presents a limited theory of graphics that is appropriate to the notation

concerned. This would be supported by a more complex general theory of the graphical medium,

that is not properly part of the notational structure. Likewise Sm is only a small part of the

semantic ramifications of the subject domain. This arrangement allows for overlap between the

different layers, and also for some parts of Kto be unrepresented in any layer. A K-expression k:

K -) z contains items of all layers in K; it is correct in syntax, semantics and the rules that

coordinate them, and is appropriate in context. It denotes a type of situation containing a drawing

gr; k (a Gr-expression) with meaning sm; k (an Sm-expression). In this way the layers refer to

different aspects of a situated expression.

If we were specifying a textual notation, the graphic layer might describe an expression as a two-

dimensional array of characters; the lexic layer might define which sequences of characters are

keywords, and classify other sequences as variable-names or numerals; the "tagmaticm layer might

identify phrase-types and an underlying tree-structure, with cross-reference links between names;

the semantic layer might determine the logical-types of subtrees.

Q sm
K

gr
U

Figure 6.5 Direct graphical analogy

Further codices may be added to define analogies between layers, following (§4.5.2). For

example, a direct analogy between some part of the semantic aspect and a part of the graphic

would be described by a span -a pair of codices from a relator sketch R:

Gr (-- R -+ Sm

234

6: Design and Processing Suppoil

In this case R indicates graphic items that are in 1-tol correspondence with semantic items [fig

6.5]. The constraints of R will be satisfied correspondingly in Sm and Gr. More generally, a

network of analogies of various strengths can be specified.

6.1.3.3 Relating Graphics to Semantics

The relation between graphic and semantic layers is not a balanced one. Design aims at an

unambiguous interpretation for expressions, but conversely, the displayed expression need not be

uniquely determined from semantics. It is usually preferable to have many ways of expressing the

same statement.

In order to prevent ambiguity, it is necessary to ensure that the syntactic sketch expresses enough

properties to determine semantic facts without the need for extraneous information. The strongest

way to achieve this is to make the facts formally deducible. In such deductions, not all entities and

maps in K are relevant; some take no part in interpretation, although their existence acts as a

constraint upon the syntax.

A simple example of this occurs when two sorts (A and B) of item are constrained so that there may be

no fewer of sort B than sort A. To achieve this we can specify (in K) an injective map from A to B.
Note, however, that this map describes only the operation of comparing sizes of the sets - it will not
become part of the semantics Sm, nor need it be depicted graphically via Gr.

Thus in a suitably 'well-behaved' sketch K, internal logic would allow exact deduction (from a Gr-

form) of all the maps in Kthat were salient to Sm. In such a case, each layer constrains all layers

below it; hence not every Gr-expression would give rise to a well-formed Sm-form. Rather, every

K-model would 'contain' a Gr-expression and its exact Sm-interpretation. Cognitive interpretation

and production relies upon the deductive structure of K- thus the design must ensure enough

logical dependency within Kto support known operations and tasks.

6.1.3.4 Interpretation

Whereas the designer is concerned with deduction on sketches, the user has skills that operate

constructively on models. In the case of an informal notation the interpretive procedure may be

pictured roughly as follows.

On being offered a visual expression, the reader favorably assumes that an interpretation of it exists.
Where possible, she interprets new entities and maps from those present in the visible structure, by a

variety of cognitive mechanisms. For those semantic maps that cannot be found by following deductive

235

6: Design and Processing Support

semiotic rules, she has to derive their values by searching for a meaning consistent with background

knowledge.

The purpose of formal syntax is to avoid the need for this kind of search by providing a deductive

strategy for exact interpretation. Given a graphical expression, we can observe the values of sets

A, B, C, and maps a, b, c, etc. of the graphic layer illustrated in [fig 6.31. By obeying the

constraints of K, it may be possible to calculate first the lexical sets and functions, then those of

the syntactic layer, and finally the sets S, T, U and maps s, t, u, etc. of the semantics. Provided all

the semantic entities and maps can be formally FM-deduced via intermediate structure,

interpreting an expression becomes possible by direct calculation. If K does not support this direct

unambiguous interpretation, it is necessary to search for sets and functions that resolve the

constraints, given the graphical data.

Exact interpretation is to be ensured by relating Sm to some deductive extension of Gr Models of

Gr then have unique interpretations as models of Sm, as was established above. The procedure

follows the codices:

Gr +- GrO =* Grl +- Sml -4 Sm

- where GrO is a salient part of Gr, deductively extended to GR1 (where '==>' means a deductive

codex); the codices from Sml select the salient derived graphical aspects, and apply further

constraints. In the same vein, the interpretive process passes through each intervening tectonic

layer. For instance, this might be described by a sequence of codices:

Gr +- GrO =* Grl +- LxO -ý LX =* Lx1 +- TgO -4 Tg =ý Tg1 +- SmI -4 Sm

There are many variations on this theme; the important point is that such structuring can be

described in some detail by a network of codices of different kinds.

The semantic sketch is likely to have constraints that are not a consequence of syntax, which can

cause failure in interpreting some expressions. Such failure signals that the expression is

syntactically correct, but inappropriate in the current (and perhaps any) circumstance. By tracing a

sequence of deductions starting from facts of Sm, it may be possible to prove some properties that

restrict lower layers. This will allow failure to be detected earlier in the interpretive process.

An example of interpretation is found in the task of assembling a syntactic sketch from a selection

of SIGN schemas as mentioned in (§5.4.1).

236

6: Design and Processing Support

What this description of the interpretive process implies is that a small number of simple cognitive

steps separate graphic structure from semantics; moreover, these steps can be simply simulated

in formal logic. The amount of effort needed for a construction in a model Is apparently of the

order of the size of the set of items involved - at least in a literal implementation in which each

item occupies a storage location. 3 For this reason, the syntactic doctrine of the previous chapter

excludes constructions which create entities for huge setS4 on grounds that they might fail to be

cognitively feasible. Were we to apply the suggested methods to the semantics and translation of

expressions, a more powerful doctrine such as higher-order logic might be preferred.

6.1.3.5 Production

The reverse process, of graphically expressing a semantic idea, is not normally a direct

calculation, but requires a search and selection of a pleasing layout. If it is hard to find any layout

that works, the notation is impractical. To implement the passage from Sm to Gr efficiently, such

searches could be guided by informal rules - for instance, extra constructions on Sm that specify

favoured arrangements of items in lower layers. Further consideration of computational methods

and their efficiency is outside our scope.

6.1.4 The Pictorial Design of Notation

So far this research has given very little attention to the pictorial nature of expressions, except

rather abstractly in the notion of a graphic layer of syntax (§4.5.1). The discussion of this last

aspect of design purposes to clarify the notion of a drawn symbol, and to observe what kind of

formal descriptions are called for. How can we specify the appearance of a drawn expression?

Let us for a moment picture a notation as a 'semiotic house' bounded above and below by roof and

foundation. The tectonic sketch then describes the interior, while the roof is the subject domain

and the ground is the physical nature of the chosen graphical medium. These two boundaries

touch the outer world, where description is independent of the notation.

We look briefly here at some questions about the lower boundary or 'ground' - regarding the

3- subject to a proper analysis of complexity, which has not been carried out In this work.

41n a higher-order doctrine, an aKponendal rule, for example, could construct the set of all subsets of a set or the set of all

functions between two sets.

237

6: Design and Processing Support

designing of a pictorial realization for syntax. We ask how visual analogies can map explicit

syntactic patterns into the implicit combinatoric geometry of the medium, as in spatial sequences

and hierarchies. We seek adequate theories to support design of drawings, covering three

different domains, two of which lie beyond semiotic bounds. For formally specifying the pictorial

appearance of expressions we must know how drawings may be perceived and recognized. In

order to produce or read drawings automatically, we need to know how they can be represented

geometrically and computationally.

6.1.4.1 Embodying Syntax in Drawings

The contention here is that syntax is realized in an interaction between chosen properties of the

pictorial medium plus further structural constraints applied to drawings. Descriptions of this

interaction are essential for any claim that a drawing can become a precise portrayal. Ideally a

designer should be able to prove absence of pictorial ambiguity, guaranteeing that viewers cannot

be misled into deducing unintended properties - as in the failure of Euclidean geometric diagrams

to support formal proofs.

F-I

Figure 6.6 Two other ways of drawing a forest

There are many ways to endow a syntactic structure with a picture as body. Consider for example

'tree-like' structures (ignoring labelling of nodes) as in JSD. These can be drawn as node-and-

branch arrangements such as [fig 5.24] in (§5.3.2), nested enclosures, or indented horizontal lines

[fig 6.6]. Suppose for instance a diagram consists of a set of drawn rectangles that by convention

may not overlap. The geometric relation of inclusion then enforces the syntactic relation of a

branching hierarchy; thus the syntax is embodied by means of a conventional explicit constraint

defined in the graphical layer of semiosis, together with constraints that are implicit in all drawings.

The drawn form of the expression also satisfies many stylistic constraints that have no bearing on

syntax. In the example, any non-intersecting closed curve would serve; rectangles are chosen

since they are visually simple.

238

6: Design and Processing Support

This kind of geometric analogy leads to economies in the notation, reducing the need for drawn

linkages and expediting the learning of its significant features. In (§4.3) the structural analogy in

the embodiment of semantics was referred to as a form of iconic mechanism. This is only the

case when the salient graphical properties are easily recognized, owing to habits of perception or

prior experience. The appropriate analogy may be indicated by a familiar cue -a visual

metaphor.

6.1.4.2 Pictorial Theories

We saw in Chapter 4 (§4.3) that diagrams can call upon a wide range of principle of visual

distinctions and oppositions in their expressive mechanisms. The design of these mechanisms

requires an understanding of diagrams as pictures; for practical and computational purposes, it is

necessary to formalize the pictorial properties. This study lies outside of the notational sign-

system, but rather belongs to a general scientific perspective, whose laws are not restricted to

simple logical doctrines. Inasmuch as diagrams are physical and cognitive objects, they can only

approximately conform to any given theoretical design.

Some disagreement was noted in Chapter 3 (§3.2.2) about how much pictorial structure should be

included in syntactic description. Several attempts at using spatial theories were found to suffer

from a lack of grounding in both geometric and perceptual laws. Oliver Lemon (1996) reasoned

for the requirement that a proper spatial theory should not admit models that cannot be embedded

in a plane. Although this is a valid concern, it is not clear how careful we need to be in our

axiornatization. Failure of planarity may be no worse than failure to fit the screen, but the logic

would become over-complex if we insisted that only drawings within a given size and resolution be

accepted.

Owing to the restrictions of the display medium (resolution and size of page), it is not easy to

determine the class of syntactic-expressions which can in fact be drawn. Production of

expressions entails a packing problem -a potentially complex search for a configuration that

satisfies many geometric constraints. With theory we can reduce but not eliminate the need for

trial and error.

Accordingly it is here proposed to divide the problem of pictorial theorization into several parts.

Firstly there is the theory Gr that is specific to a notation - this is intended to rest upon the lower

239

6: Design and Processing Support

boundary of the serniotic system. Below this lies a general theory of drawings as perceived

objects. Then for processing we also need a theory of drawings as computational objects - and

strictly, a theory of computer displays. None of these areas are well enough understood to yield an

established standard theory, and they will not be examined here beyond the following brief

comments.

6.1.4.3The Graphical Theory

The lowest semlotic layer of a given notation is described by a sketch such as Grin [fig 6.4], that

specifies the most basic 'graphical' items and direct relations that make up expressions - e. g. the

parts out of which lexemes are built. To fulfil this, Gr must encode relevant geometric properties,

but without recourse to complex quantitative notions and topology. For example, a rectangular

'box' might be defined in terms of the incidences of its horizontal and vertical sides, and an arrow

may consist of a constrained chain of straight segments joining head to tail.

Arbitrary models of Gr are abstract pictures in the style of notated expressions; they need not

contain any significant patterns. Those models that are syntactically well-formed will be drawings

of arrangements of lexical items. Different models of Gr that correspond to the same lexical

combination should be recognizable as the 'same' expression.

6.1.4.4 Specifying Drawings as Perceived Objects

A model of Grcan hardly be called a drawing. In order for the design of a notation to take account

of perceptual, cognitive and ergonomic criteria in its layout, we would need a psycho-physical

theory of pictures in terms of universal items, valid for all notations. For a theory that can

adequately explain visual analogy, we would need a general sketch of the pictorial medium, which

could highlight analogies by matching of subsketches or derived subsketches. Building a theory of

drawings is unfortunately a difficult problem.

An elementary theory of drawings might be devised by considering the normal capacities of

human vision and perceptual gestaft-formation. This theory should be compatible with classical

geometry, perhaps based on a qualitative approach, with concepts of association between

elements derived from gestalt theories of perception (Palmer 1992). The appropriate description

of the geometry should be determined from perceptual cognition and actions such as the control of

focal attention. Viewers can follow the connectivity of lines and closure of curves, and establish

240

6: Design and Processing Support

separation of regions - but only for a restricted range of shapes. They can match recognized

shapes occurring at different locations, as with known words in a text - which Is a good criterion to

determine whether an item can function as a lexeme.

Perceived geometry is not simply Euclidean 21), since the eye/brain responds strongly to depth

and motion cues - as evidenced by many optical illusions (Kellman & Shipley 1991). Some

notations exploit 3D notions that are constructed by the perceptual mechanisms; examples of this

are the use of perspective transformations and the overlapping of items, with transparent or

opaque features. Other salient geometrical features of shapes are: symmetry (see Appendix A),

orientation, size and scale.

Geometry is only part of the problem. Although the shape of a character or other individual or

discriminated mark may be definable via plane geometry, other attributes such as Colour, Texture,

Pattern and Style take the variations outside of the domain of simple geometric theory. An

understanding of the actions of drawing might also contribute to pi6torial theory; the viewer of an

expression may take account of how it was drawn, as well as what the result looks like.

6.1.4.5 Drawings as Computational Objects

For purposes of implementing graphical operations in a computer, we need to define an ideal data

structure based on plane geometric concepts such as Points, Line-Segments and Regions. A

geometric embedding of Gr must define its entities and maps as geometrical shapes, attributes of

shapes and adjacency relations, etc. Standardization in computer graphics makes this a much

more manageable task than the previous.

One way in which a computer-gene rated expression differs from a hand-drawing is that layout of

elements can be modified by direct manipulation instead of re-drawing. If a viewer can re-format

expressions, there may be the further benefit of reducing perceptual conflicts and ambiguities that

might arise through poor layout.

Direct manipulation can be supported by a dynamic view of graphical geometry, following an

analogy with mechanical linkage. A system of points and lines can be treated as a linked structure

whose freedom of movement (and deformation) is restricted by arithmetical constraints. This is a

practical solution which will be applied in the next chapter.

241

6: Design and Processing Support

6.2 Computer-Aided Editing

In the light of the above methods, we now look in more detail at notational operations, taking the

broad requirements of an editor system as motivation. The section discusses editing functions

and the making of changes in theoretical terms. After exploring the properties of rewrite-rules on

syntactic forms, the discussion points to the problems of applying rewriting techniques to editing,

and suggests solutions. For several reasons, we discover a need for extra 'editorial' syntactic

structure in order to make this feasible.

Although editing is not the only activity that calls for notation processing, it covers a wide range of

operations of interest to us. Other important global operations such as translation and layout

algorithms lie outside of the remit of this research.

6.2.1 The Demands of Editing

The practical tasks of editing have been mentioned in Chapter 3 (§3.3.1). The investigation here

begins with an attempt to clarify the nature of the tasks and to find what processing is entailed.

The analysis classifies the kinds of change that occur during editing of an expression and

considers ways of managing both overt change and its hidden effects.

6.2.1.1 Making Changes

Editing involves changing the data of a displayed expression somehow; under this heading we can

include tasks of creating, modifying, formatting and also translating expressions. Each task

requires the control of changes to be carried out on expressions, whether directed by programs or

by user actions. The conventional way of carrying out these tasks would be by drawing and re-

drawing; in a computer-aided setting the system might automatically check or interpret the

resulting drawings. With computer support much more is normally expected. An user can

manipulate not just the graphical layer, but also the higher levels of structure which change the

display less directly. In this case the computer takes on part of the task of producing the

expression, as well as part of the interpreting. Editing is thus a collaboration between user and

system, with the aim of regulating changes to information expressed.

Regulated changes can be divided into two kinds: those that can affect (formal) meaning, and

those intended to preserve it. Creating and modifying cause changes of the first kind - they do not

242

6: DesIgn and Processing Support

necessarily maintain well-formedness at all levels. Translation and-formatting changes are of the

second - they affect lower layers of structure while leaving certain upper layers invariant.

0 Creating an expression involves a supply of information, moving from an Incomplete form
to a fully well-formed form.

Modifying a complete expression may require both removal and supply of information, or
the joining of incomplete parts.

Formatting involves the adjustment of graphical layout without affecting upper syntactic
layers or formal meaning - either carried out for aesthetic purposes or to express further
informal information, such as emphasis. Adjusting layout may also help a viewer to

comprehend a displayed expression.

TransWion is an automated process in which an expression supplied in another notation is

converted to the one being edited.

In each of these four tasks we would like to understand what the user is doing and how the

computer system ideally responds.

In creating an expression, the focus is upon helping the user express ideas both formally and

informally, by providing ways to add information. The user may be enabled to draw graphical

marks directly, to select and place lexemes, or to choose syntactic arrangements ("tagmemes").

In each case the changes made are partially interpreted (by the system) into higher levels and also

expressed in lower levels - and displayed on screen. A computer system would therefore need to

store and coordinate data for all layers.

In other editing tasks, changes can be grouped according to the structural level that remains

invariant -a flexible notation design will allow changes that are limited to a given layer and those

below. Thus manipulation of graphical format will make no difference to lexical, syntactic and

semantic data. Replacement of a lexeme by a synonym will not affect syntax and semantics.

Rearranging a syntagmatic construction need not alter the meaning. These constrained editing

options are supported by structuring the notation design into explicit layers.

Computed interpretation of a drawing takes place in (nominally) three steps. There is recognition

of lexemes, parsing of syntagmatic patterns, and computing an abstract data-structure. Each step

involves finding possible compound entities implied by the combination of items already found,

and testing of the results against goal constraints. Where the test fails, 'backtracking' occurs -

different groupings are tried until the goal can satisfied. If this search fails, the user may be

243

6: Design and Processing Support

informed. A strategy for this search may be specified by a grammar. In designing a notation it is

thus advantageous to rely more on constraining lower layers, by "moving" the semantic constraints

down to the graphical layer, so that anomalous forms are rejected as early as possible in the

interpretive process.

6.2.1.2 Methods of Managing Change

Making changes to an expression can therefore be a complex affair. We take it that a graphical

editor system should help the user to control changes in content, form and layout of created

expressions. In Chapter 3 (§3.3.1,3.4.3) we noted two issues that are often raised in this respect:

provision of syntax-guidance and direct manipulation of visible items. There we envisaged many

ways of incorporating such facilities, ranging from direct manipulation of syntax (via a menu of

transformation rules), to pen-based editing (e. g. free-drawing of changes over the displayed

expression).

Free drawing would entail recognition as well as parsing computations. Operating on lexical and

tagmatic patterns could avoid parsing problems and guarantee that applying rules would preserve

syntactic correctness. It would, however, be dependent on establishing a complete and useful set

of rules. We have seen that the strategy of specifying rewrite-rules to guarantee that syntax

remain correct (if possible) is generally too restrictive.

Here we aim to negotiate a path between the extremes of freedom and restraint in editing. The

model-theoretic method proposes to allow rewrite-rules to be flexibly devised and co-ordinated

with the given syntactic constraints. These constraints can be seen as goals to be achieved - as

in a text editor that accepts any entered text, relying on the user's knowledge of the language,

while offering spelling and grammar checks at certain stages. The maintaining of syntactic

correctness is then a matter of re-satisfying constraints that have been disturbed as a result of

some local change made to the expression. A very lax approach to editing would permit the user

to add, delete and rearrange items from any layer.

Immediate visual feedback is an important guide. Geometric properties may restrict change or at

least act as a cue to the required constraints - such kinematic metaphors were remarked upon in

Chapters 2 and 4 (§2.1.3,4.4.2). Where syntax is not simply related to geometry, an offered

repertoire of rewrite-rules may give welcome guidance for a less expert user.

244

6: Design and Processing Support

6.2.1.3 Hidden Layers

Arguably, it is the lexical layer that often dominates the notator's attention during editing - in the

same way that writers may concern themselves mostly with finding the right words. From the

writer's perspective, syntagmatic and semantic data are, as it were, hidden above the visible

drawing. On the other hand, the primitive graphical items on display are hidden below the lexical

items recognized. Writers often do not consciously control the flow of meaning and syntax, nor

are they usually paying attention to the detailed shape of words and type-faces used in printing.

They are likely to be 'searching for a way of saying it' rather than searching for a meaning to

express, or a grammatical way of generating an expression, or a geometric way to draw it.

Continuing this analogy, we see that when words are changed, the 'overhead' syntax and meaning

as understood by the writer must follow suit; whilst the direct 'underlying' activity of shaping the

new words is either habitual or mechanized. Typewriting and handwriting suggest two means of

aiding the drawing of expressions. Either the editor system supplies ready-made lexical

primitives, or it enables mark-making, in the case where the notator possesses specific drawing

skills. If a lexical change is made, perhaps as permitted by an implicit rule, the other hidden layers

of the expression are filled in by a transductive process - which will succeed when all constraints

can be satisfied. In this way the user's attention is only diverted to another level when induced

structure fails to meet some constraint.

6.2.1.4 Problems of Part-Formed Forms

During editing we thus expect some syntactic constraints to be broken. If the changes to an

expression preserve full semantic well-formedness, the edited expression may successively

approach the intended meaning. If they are only part-formed, the intermediate forms may acquire

ill-defined meanings. Semantically, the goal becomes the achievement of a coherent meaning,

being the one that was intended. 5

Naive operations that simply delete or add a single lexemic or graphemic symbol are likely to

break incidence properties as well - e. g. leaving 'dangling' arcs on a graph when a node is

deleted. We should at least ensure that the changes preserve the more visible bonds. The

51n some cases, incoherence may be Interpretable as less-definite meanings. This may provide an opportunity to develop an

extended semantics that allows a certain vagueness and ambiguity.

245

6: Design and Processing Support

propagation of a change may cause temporary breaking of hidden bonds, but restorative action

should be automatic. An editor system must check the result of a change for conformance to

(hidden) syntax, and report any failure to restore conformity.

6.2.1.5 Semantic Input

Where several notations are in use, we could allow for input in other modalities - an expression in

a different syntax or medium (e. g. gesture), or information from unexpressed context. The editor

system would then translate the inserted input and incorporate it into the layout.

6.2.2 Editing in a Sketched Syntax

We now explore how the theoretical framework of tectonic sketches can explain processes of

change that occur as a result of edit-actions. In considering how one might design a versatile

editor, we examine goals of editing, maintenance of constraints on expressions, instantiation of

sketches to make models, and the role of grammars.

6.2.2.1 Some Suggestions on Control of Editing

The above arguments suggest the following summarized account of the processes underlying an

editing session.

(1) Goals: The procedure of editing is one of building and rebuilding a partial expression, with the

goal of obtaining a model that satisfies all required constraints. The response of an editor to a

local change prompted by the user causes new information to be propagated upwards and

downwards through the layers, as specified in the network of maps and constraints. Where

constraints are broken, all maps dependent upon them will become uncertain. One formal

goal of the session is to repair all such 'damage'; there are also informal goals. The output

from a completed editing session is a well-formed form: an expression well-defined in all

tectonic layers.

(2) Context: If the session is conditioned by pragmatic structure, the resulting form may be further

constrained by a specification of the context which will contain the expression. This may be

either a type of situation or details of an actual instance of this type - such as an existing

document.

(3) Focus: The editorial protocol should enable the user to initiate changes on different levels of

246

6: Design and Pmcessing Supporl

structure, although only the lowest graphical level is visible in a direct sense. It should mostly

engage the user in emplacing and arranging lexical items. The focus for formatting is

graphical.

(4) Fixed substructure: An instantiated area of the sketch may be "held constant* in order to

restrict the editing session - protecting information encoded in certain layers. For example,

formatting preserves data of upper tectonic layers; documentary context may be fixed, as in

(2).

(5) Translated Input: To translate an input expression, the system must interpret it and re-

produce it into the target-notation's form. The input need only be partially interpreted to some

least abstract (semantic) level in order to make the conversion. In a known (instantiated)

context, a similar operation may serve to give a change of view on a situation. In this case,

the change may Introduce extra contextual information.

(6) Layout criteria: When the computer system is required to produce expressions, it must apply

chosen criteria for automatic layout. This can be user-assisted via the formatting protocol.

(7) Prompting change: Rewrite rules are one possible means of effecting a local change as

directed by the user. The rules available to users have several purposes. Some are chosen

to preserve certain constraints - 'strict' rules preserve more, 'lax' rules fewer. Others are

designed to restore constraints that are commonly broken.

(8) Editorial syntax: Editing may necessitate the use of supplementary syntax - acting as a

supportive frame for drawing incomplete expressions.

6.2.2.2 Maintaining Syntactic Conformity

The critical principle for control of editing is to decide which kinds of structural restriction are to be

maintained during changes. We gain assistance in this from the items that make up a sketch,

which fall into three different strengths. The strongest structural sketch-items are the maps which

denote bonds of incidence. Next come the equalities that constrain the maps, and finally the

cocones and cones that specify pieces and parts of expressions by their universal properties.

The proposat is to protect incidence bonding as defined in a signature, but pay less respect to the

specified syntactic constraints. It appears that this policy can only apply to a chosen segment of

247

6: Design and Processing Support

syntax that is the user's focus of manipulation. The rest of the syntax then acts as a body of

hidden restrictions - which have the force of existential quantifiers. We are especially interested

in the restrictive effect of layers that lie above the editorial segment, and how this effect is

conveyed in the protocol. Lower layers only cause problems when layout algorithms are

unsuccessful - when no acceptable drawing can be found.

Once the editorial segment has been chosen, it remains to determine which of its constraints will

be respected by the changes that the notator may make - and by each rule governing these

changes.

6.2.2.3 Full Expression

Given a tectonic sketch K, we see that the goal of an editing session is to create a full expression

(K-model). The starting point will either be "from scratch" or there may be an existing fragment to

be modified. Creating an expression is thus the process of making a model. In the general case,

where the context is partly known, editing is a matter of extending an existing model that denotes

the situations upon which the expression will impinge. A full expression is both interpreted and

produced.

The notator accomplishes the making of this K-model by means of a directly manipulable editorial

syntax that deductively supports the editorial segment (a codex into K). At any stage, the

manipulated editorial form is a fragmentary expression that is produced and displayed, and may

be extended by interpretation into a part-formed K-model. To produce an expression, the existing

abstract editorial encoding of information is rendered into graphical form according to lower layers

of syntax.

6.2.2.4The Manufacture of Models

The problem to be addressed is that of model-making within the editorial syntax, which is assumed

specified by a sketch Ed. Manufacture can be seen as a progressive instantiation of the full

syntactic sketch K, with the intention to satisfy formal and informal goals. If m is the resulting Ed-

expression, we require that it extends to some K-form k that is produced (made visible) and fully

interpreted in K. Here we consider how m is created.

Instead of finding rn as an object that satisfies Ed, we can extend Edwith structure that refines the

definition until all its models are isomorphic to m

248

6: Design and Processing Support

A model (of Ed in Z) consists of an arranged set of items of various sorts, as defined in the entities of
Ed. We can treat an item as a global element of its entity -a map from a canonical singleton entity
One - which may be added to Ed. An item is arranged in an expression by selecting its relations to
other items as defined by maps in Ed. I'liese relations can be treated as equalities added to Ed, that
involve the global elements. 6 An entity becomes fully instantiated when it is defined as a disjoint union
of its global elements.

There are two ways of going about this instantiation. The first method is the familiar one of

modifying expressions by adding and removing items.

The procedure can be illustrated by the simple case in which a notator creates a form by

successively adding single items. The protocol for these additions can be ascertained from the

signature of Ed. As the examples of Chapter 5 have shown, all items in an expression serve

either as nodes or as polyadic 'links' - rather like verbs that relate subject and possibly several

objects holding different roles.

In the sketch Ed, each outgoing map from a link-item is a'limb' of the link, denoting a role that
attaches to a specific sort of item. Nodal items are non-links, having no limbs; a monadic item is

effectively a member of a set associated with its 'subject! item; a dyadic item is an arc that links a
'subject'item to an'object'item of specified sorts; and so on.

Generally, no item may be placed in an expression until holders for each of its roles have been

selected by the user. For example, on a directed graph, an arc may only be drawn if its source

and target nodes are known. An isolated node may be added at any point - needing no role-

holders. Thus an arc may not be drawn until a node is present.

Adding an item

The drawing of a graph may start by placing two nodes p and q (say).

- In the sketch [rig 6.7], this adds distinct maps p, q: One -ý Node.

To partly instantiate Arc, the notator draws an arc r from node p to node q.

- This adds a map r: one -+ Arc

withequalities (r; source = p) and (r; target = q).

To complete this simple graph of two nodes and one arc, two constraints are added to the sketch.
Node is forced to be the disjoint sum (one + one) with projections p and q, while Arc is forced to

be isomorphic to One via map r. 7

6This construction assumes that our notion of category Is also defined upon Z- its sets (of objects and arrows) are taken to be

Z-objects.

7This defines the graph as a data-object giving the cardinal number of items for each entity (two nodes and one arc) and all

canonical projections.

249

6: Design and Processing Support

e---, > source

Arc *r One Node

-q
>

target

Figure 6.7

In general, the adding of items follows the hierarchy in the signature of Ed -a pre-order on entities

- where entity A is "higher" than entity B if there exisits a path from A to B. If there are cycles

within the signature, there will be different entities that are equivalent in this order, satisfying A :5

B and B _-ý A (say). It follows that items of A and B must be introduced together. The problems

of cycles are fu rther discussed below.

6.2.2.5 Refinement by Grammars

In the second method of instantiation, Ed is regarded as a maximally vague definition for an

intended Ed-model m. Hence we refine Ed = Ed(O) via a sequence of sketches Ed(i), by adding

special maps and equalities that gradually define the intended model. The process ends with a

sketch Ed(n) = M, that presents all the properties of a particular Ed-model m- from which the

editor system must build a consistent full K-expression. The sketches Ed(i) are viewed as

approximate (partly known) models, in which some entities and maps are not fully instantiated.

Since each Ed(i) is a sketch, it is not notated within K, and therefore the process requires extra

notation to make the steps visible. This idea leads to the notion of an editorial grammar that

generates Ed-expressions, using an extended syntax in which non-terminal items denote

uninstantiated syntactic patterns. Forward rewrite-rules govern how each non-terminal may be

replaced by a more specific pattern of items.

We can picture this editorial sequence as a river flowing from a single source, selecting one of

many possible courses, resulting in a particular destination. As the river spreads, there is less

certainty about the movement of a particular body of water within it. Whether by'spreading and

narrowing, or by selecting and meandering, it reaches its destination. Manufacture is not,

however, a monotonic process; items and information can be removed as well as added. The

river flows sometimes nearer to, sometimes further from the source, but always downhill, following

its intentions.

250

6: Design and Processing Support

6.2.2.6 Sketching a Generative Grammar

Following this train of thought, we consider how a sketched syntax can act as a grammar, to

generate or parse an expression in some "visible segment" V of syntax. We observe two ways of

sketching a grammar. The first is to specify its generated result -a well-formed derivation

structure that incorporates a visible expression. The second way is to specify its parsing process -

a whole search for derivations, including the set of successful ones.

The first way is compatible with that suggested in (§6.1.3). In this case a sketch Dv of a derivation

corresponds to the upper layers, including V, of a tectonic syntax K. An ambiguous grammar

would allow many derivations for a given well-formed V-expression. The second way is interesting

because parsing Is unique even in cases of ambiguity; it makes a sketch Ps for all (partial)

interpretations of any part-formed V-form being edited. The advantage of this method is that the

interpreting of a Worm is encoded in Ps as a gene rate-and-f ilter process which can accommodate

ambiguity and failure. The disadvantage is that the model generated may diverge and generate an

impractical mass of possibilities. In the general case, parsing may not terminate.

To obtain a result Dv from a parse-process Ps, it is necessary to instantiate Ps under the

constraints that force all visible items to be generated by some single derivation of the grammar.

An example of these methods, applied to a string grammar, is worked out in Appendix B.

By instantiating a sketch Ps in a top-down direction, it is possible to mimic the effect of simple

rewritings in the grammar. Working from the bottom up, starting with V instantiated (a drawn V-

form), the constraints of Ps propagate upwards to give, all possible (partial) derivations. In

principle, these methods could extend to attribute grammars that are capable of interpreting visible

expressions.

6.2.2.7 Propagation of change

We conclude that changes to a model of Ed initiate a process of change within K-a flow of

instantiation. Transductive rules can be used to spread the changes from the editorial segment

Eds to other layers of K. The rules are also strategic, directed towards the goal of finding a full K-

expression. They separate into two autonomous rule-sets - an upward set of interpretive rules,

and a downward set of productive rules. Assuming unambiguous syntax, the interpretive rules

amend a network of canonical extensions to Eds. The productive rules are responsible for making

251

6: Design and Processing Support

the edited change visible.

The rules for propagating change are internal to the system and hidden from the user. They

implement a form of constraint logic programming; executing the program instantiates a computer-

assisted proof that a model exists to satisfy the current constraints. The methods of applying a

grammar amount to ways of organizing such proofs, as proposed in Chapter 4 (§4.5.3). The whole

system of editorial rules implements a kind of collaborative constraint logic engine.

6.2.3 Rewriting in a Sketched Syntax

The preceding argument indicates that control of incremental change to a model leads to the idea

of rewriting. Since general rewriting systems can effect arbitrary computations - as was noted in

(§3.1.3) - they offer a means of implementing sketch logic, and in principle the various processes

described in (§6.2.1). Here the theory of such rule-systems is analysed, to investigate how

rewriting techniques may be encompassed by the proposed logical framework and used to

implement simple manipulation of forms.

We see that editing involves a dynamic of structure-breaking and structure-restoring, which must

be managed somehow. The problem raised is that of organizing local changes to a structure.

Being just a matter of general computation, we can apply standard techniques and theories. An

approach such as conventional programming, however, does not promise to shed light on the

procedures of editing that have been discussed. The object of using a rewriting notion is to get an

abstract view that is better suited to these processes, while still forming the basis for an

implementation.

6.2.3.1 Theoretical Rewriting Processes

Rewriting systems offer a means of describing systematic change within expressions as the

parallel application of local replacement operators called rewrite-rules. We take a standard

definition that is general enough for our purposes.

The general notion describes 'local' change to objects of some category F. Change is defined by a

span G <-- D ---> H, where object G changes to H, whilst D indicates the context: the (main) part

that remains constant. The two F-morphisms are injective. This change is controlled by rewrite-

rules; each rule is a span that acts as a template for a local change. Applying a rule results in a

252

6: Design and Processing Support

small change according to the template.

The following definition is specialized to notational forms, where the morphisms are transforms

(§6.1.2): -

0 CD > (3

Figure 6.8 A double pushout

A rewrite rule takes the form of a span L +- C -+ R, where L, C and R are structural forms, and

the arrows denote maps (transforms) that preserve the structure specified in some syntactic signature.
The form L specifies a pattern which may be replaced wherever it occurs; R specifies its replacement;

the interface C maintains attachments to the context. The patterns involved are concretely specified.

A (DPO) rewriting operation causes a change denoted by G +- D -ý H, where form G becomes

form H, with a constant context of form D. This change is afforded by the above rule whenever the

double-pushout diagram [fig 6.8] is satisfied; it states that G is formed by joining L to D at the interface

C, while His formed byjoiningR toD at C. Usually there is a further requirement that certain maps

are injective - otherwise the rule may permit fusing and splitting of items.

Executing a rule on an expression involves several steps; the operation is a deletion coordinated

with an addition. Firstly, a search is made in the expression for an instance of the pattern detailed

in L, that is connected to its context as defined by the map C to L Secondly, those items in the

instance that are not maintained by C are deleted. Thirdly, a new pattern of shape R is attached

via Q as detailed in the map C to R.

A change resulting from several successive local changes is also local. Thus we can compose

changes, and thereby build a compound rule from the result of several successive applications of

rules. Richard Banach's (1996) analysis of DPO rewriting on graphs, mentioned in (§3.1.3), could

equally be applied to the graphoid forms assumed here: -

Rewriting system behaviour

Abstract rewritings take place on a skeletal category of graphs - i. e. one in which isomorphic graphs

are considered as the same. Rewriting generates a category whose arrows are sequences of canonical

rewritings; they allow a natural abstract explanation of a rewriting system's behaviour, via event

structures with conflict (Winskel 1988). The construction of this category is somewhat awkward; in

certain circumstances, automorphisms on graphs may force apparently independent rewrite-events to

become causally dependent.

253

6: Design and Processing Support

6.2.3.2 Sketches of Rewriting

Both the Span and DPO diagrams are in fact sketches, whose models are in the medium F that is

some category of forms. In general: -

A category 5 of expressions defined as codices (S --> Z) can - by cartesian closure of A- be

represented as a sketch ZAS . Given a sketch D, its models in medium S comprise a category of

codices D -4 (ZAS) which is then isomorphic to the category of codices DXS --- ý Z.
In other words, D-models in S are equivalent to (D x S)-expressions.

It is thus easy to encode both a change and a DPO rule as expressions in medium Z If the

category F of forms consists of models of a sketch S (S-expressions), then a local change is a

model of (Span x S), and a rewriting is a model of (DPO x S). A calculation of products of

sketches thus allows us to represent in diagrams the changes, rules and rewritings on a given

syntax - in a natural way. Properties of changes and rewriting can be investigated by making

deductions on these product sketches. (An approach similar to this is used in Appendix C).

IC IR

CD (D &- CD

00

J
Oz

Figure 6.9 Adding an arc to a graph

6.2.3.3Aftaching an item

To illustrate, we look at the simple case of a rule that adds a single item to an expression - for

example, adding an arc to a directed graph. Here the context is the whole graph G; the single

pushout on the right is all that need be specified. The graph R will be the arc to be added, which

must be accompanied by its source and target nodes. These two nodes are not added - they are

the interface C which selects the location in G for the arc.

In category-theoretic terms, the item (an arc) is being represented by a graph (R) and a morphism. that

selects the location of an arc in the result H. This is a case of the Yoneda construction; it allows any
item of a form H to be represented by some morphism to H- which was part of the motivation for

choosing graphoid structure for forms in (§4.4.3).

254

6: Design and Processing Support

The diagram [fig 6.9] shows the operation. The nodes of C are labelled '1' and 7 to define the

map (graph homomorphism) from C to R. The other maps are clear from the context.

6.2.3.4 The Problem of Cycles

Although we can always write rules for adding and deleting items, there Is a difficulty with the

DPO approach: there are many instances where adding a single item requires an infinite rule.

For example, let us take the case of a looped signature: (f :N -ý N) - there is just one entity N

and one map f. The loop in this sketch leads to cycles in its models. A form on this signature

might for instance be a cycle diagram 0 of *nodes" (N-items), each mapped by f onto its clockwise

neighbour. A form M representing a node is found (by the Yoneda construction) to be a semi-

infinite chain of nodes; the morphism that selects a node in the cycle 0 will, in effect, wrap the

chain M around 0 ad infiniturn.

Even if we somehow accept such infinite rules, the simple operation of adding items does not

suffice to generate all forms. When adding a new node to 0, it will attach outside the cycle. The

pushout rule that adds a single node is of no use for enlarging a cycle. It seems we require an

infinite set of rules, one for each size of cycle.

6.2.3.5Transductive Rewriting

We wish to support the tasks of interpretation, production, translation, and the propagation of

information which entail change from a form in one signature to a form in another. However, rules

for changing forms by rewriting apply only within the same signature. Although in principle these

facilities might also be implemented by means of a rewrite-system, its rules would manipulate a

data structure more basic than that of the syntax - such as the labelled directed graph 'proto-

notation' of (§5.4.1). In encoding rules as sketches and implementing sketches by rules, we fall

prey to infinite regression. Accordingly, these questions will not be investigated here.

6.2.4 Editing by Rewriting

This final subsection synthesizes the ideas presented and explores a method of devising

supportive structure for editing some target-notation.

255

6: Design and Processing Support

6.2.4.1 Designing Rewrite-Rules for Editors

Although the behaviour of general rewriting systems is complex, we fortunately need only

consider kinds of rule and rule-system that are appropriate to the tasks at hand. The preceding

discussion in this section leads us to the following methods.

To apply rewriting to a notation editor, we must choose a workspace: a suitable category of

rewritable finite forms - within the bounds of a logical specification of invariant properties and

attainable goals. This must be a concrete category in which sufficient pushouts exist to apply the

rules. The category need not be co-complete, nor have all pushouts, nor even all those that are

mentioned in a rule-set. Because the rules refer to fragments of expressions, the workspace will

contain forms that are part-formed from the viewpoint of the full notation syntax.

According to the previous reasoning, we need to select a syntactic focus for editing: a segment

Eds -ý K of the full tectonic syntax K. Rewrite-rules are devised for a specially designed

editorial syntax Ed, from which Eds is derived via codiceS Ed +- Edd =* Eds. The sketch Edd

excludes any Ed items that are not salient to the notation. Edited Ed-forms may introduce

temporary items purely for construction purposes - visible place-holders waiting to be filled by

more detailed information - in the same way as non-terminal symbols are treated in grammars.

Editing has a goal of removing these items, which must be absent from a complete expression.

We may choose to edit by rewriting on lEdl, the category of graphoid Ed-forms. This category has

all the pushouts needed, but only protects incidence bonds and may be too lax to serve as a good

workspace. In between LEdl and its constrained subcategory Ed lie a range of partly-constrained

categories. To design rules for editing, it is pertinent to discover what pushouts exist for these

potential workspaces. Category Theory gives some general results on this - for instance, if we

enforce only the equalities of the sketch Ed, all pushouts will still be found.

We want a generative rule-set to be complete with respect to a notation - capable of generating

every Ed-expression; this can be achieved by means of add- and delete-rules for each sort of

item. The rule-set need not be sound, in the sense that not all generated forms need be well-

formed in Ed- and not all Ed-expressions need give rise to consistent K-expressions. Should we

wish to preserve some stricter part of Ed-syntax during rewriting, we could seek rules in which a

well-formed G would always give rise to a well-formed H (referring to [fig 6.8]). For instance, in a

string grammar, string rewrites preserve the string-structure, even though the interface C for any

256

6: Design and Processing Support

rule is not a string: it is typically a pair of nodes between which the substituted string sits.

6.2.4.2 Adding Branches to Trees

As a small example we can analyse rewriting on trees, following the definitions in (§5.3.2).

Let the schema [fig 5.251 specify a sketch FForest for a forest of trees. The underlying directed graph

of a forest will suffice as both editorial segment and syntax, with the sketch Graph defined as in schema
[fig 5.2] . Ile embedding codex Graph -4 FForest then has two effects; it allows the set of trees to be

constructed from the arrangement of nodes and arcs, and it also constrains the graphs to be well-formed

trees.

Informally, it can be seen that if we start with an empty graph, two rules will generate all finite

graphs: -

R I: add an isolated node
R2: link two nodes with an arc

We seek a set of rules that will only 'grow' forests. A third rule can provide a safe way of growing

a branch on a tree: -

R3: add to some node a "branch" consisting of an arc and a new target node

Now all three rules are pushout rules over the category of graphs, and R1 and R3 preserve the

properties of forests. 8

Let G be a forest -a model of FForest. Then applying RI to G will simply add another tree - or rather

plant a seed for one. Clearly R2 may result in a graph that is not a forest, when applied to G, but R3

will always result in a forest.

The logic of adding branches to trees is worked out in Appendix C.. We would also wish to prove

that R1 and R3 can generate all finite forests from an empty forest.

Since the reverse of each rule serves to carry out the corresponding deletions, we can in this way

provide a simple rule-set capable of editing forests, with a subset that maintains syntactic

correctness.

6.2.4.3 Applying a Rewrite-Rule

When a rule is applied during editing, the search may be carried out by the user, with computer

assistance in finding and indicating instances of the pattern L of [fig 6.8]. Since they are defined

8AII the graphs in the pushouts are forests, but the graph-morphisms need not be forest morphisms. The latter must preserve

trees and base nodes.

257

6: Design and Processing Support

on the signature lEdl, rewritings preserve editorial incidence, but may not always take note of Ed-

constraints. Each rule may be designed to maintain certain constraints, while treating others as

goals to be achieved. The constraints to be preserved should include those that-are consonant

with the pictorial realization, otherwise it may not always be possible to display the result in the

notation's graphics.

A rewrite-application makes a change to certain functions denoted by maps in the syntactic sketch

K. When these changes are propagated up through the layers of K, the system might warn the

user of any constraint-breaking that results 7 indicating areas where further modification could

achieve correct syntax. These procedures raise issues of editorial protocol which are not of

concern here.

6.2.4.4 Removing Cycles

We saw above that problems in defining rewrite-rules can arise if the signature lEdsl has cycles,

as is common. This circumstance is remedied by devising Ed so as to avoid the cycles, by

relaxing certain incidence bonds into universal constraints. An example shows that cycles can be

removed with little trouble.

We take the example of a looped sketch, that was considered in the preceding subsection.

--> ->-->7

Q
Figure 6.10 Function on states of a system

[Fig 6.10] shows a diagram D, whose arcs represent states of a system which is subject to a function.

7be diagram represents a set of states and their accessibility by the function; it also shows that there are

two fixpoints where the state is unchanged by the function, and three subsets of states that indicate

invariant properties under the function (Jay 1991). The sketch for this semantics is based upon a singe

entity State with a single looping map move: State -+ State.

We can represent the semantics Sm by a schema:

258

6: Design and Processing Support

(ý 3ý1 ! fix (ý State E) > Inv ii E)

which shows how the fixpoints and invariants are constructed.

The diagram [fig 6.10] suggests a syntax in which states are represented by the arrows of D. In

order to manipulate these arrows individually, we need to find a diagram Arr that corresponds to

an arrow, which we can map into D. We can then select any arrow with some morphism a: Arr

D. As was noted above, Arris the semi-infinite diagram: -

Inspecting D, we see that any arrow and its successors take the shape of a tail of length m followed by a

cycle length n. In order to be able to delete any arrow in D, we are forced to have an infinite supply of

diagrams Arr(m, n) to cope with every possible size of cycle and tail.

The solution is to choose as editorial syntax a directed graph whose nodes are the feet of the arcs.

We take the schema for Ed to be as in [fig 5.2].

The schema [fig 6.11] relates Ed to Sm. The constraints specify an isomorphism between arcs and

states, and state that the function move corresponds to the target map of the graph, via the source map.
This source is constrained so that each node is a source, of at most one arc. This ensures that there is a
bijection between arcs and nodes (in all models); source has an inverse that can be constructed by

internal logic.

tate
State ! ýZ

, move

:> tarqet

source

move

source

target

Figure 6.11 Semantic-editorial sketch for function diagrams

The isomorphism between Arc and State is easily maintained during editing, by permitting no arc

to be added without its accompanying node. Only two rules are needed to allow any (Sm-)well-

formed graph to be generated.

6.2.4.5 An Editorial Framework

It follows that support for editing requires the design of an hierarchical (acyclic) sketch - defining a

more flexible, partial notation with a relaxed and extended syntax that is amenable to edit

operations - whose expressions can be transduced into the target-notation. This editorial syntax

should ensure that full expressions can be built up in a simple manner by means of rewritings and

constraint goals.

259

6: Design and Processing Support

6.3 Summaries

Here we recall the themes that have surfaced in this chapter, and end with an account of the

approach to editing.

6.3.1 Themes and Topics

This chapter has explored various ways of developing the proposed tectonic theory, in support of

notational design and computer-assisted editing. Three themes have been followed: -

a An encoding of serniological structure underlies all processing of expressions in a
designed notation.

The producing and the interpreting of expressions requires a "transductive" capability, to

convert information between semantic and graphic forms.

Mechanisms for reasoning about syntax also offer support for regulating change to

expressions.

6.3.1.1 Deduction and Interpretation

Logical support needed for these processes has been supplied in terms of doctrines, sketches,

theories and models. On this basis, notions of a codex between sketches, and a transform

between expressions have been defined. Exact interpretation relates notation semantics to a

deductive extension of its graphics. The effort needed to interpret an expression is related to the

power of the logical doctrine defining the deduction.

A mathematical "graph-based logic" has been applied that defines a notion of formal

theory, independent of any particular presentation, in which deduction follows algebraic

procedures.

0 Deduction on sketches broadly simulates the 'cognitive effort' in an interpretive process.

6.3.1.2Tectonic Design

A method of notation design has been outlined. This is achieved by building a tectonic sketch,

whether for a single notation or for a community of notations with a common focus. A further

meta-schematic notation helps depict deduction, analogy and embedding between segments and

layers: -

0A tectonic sketch is a modular system of sketches defining a layered syntax for each

notation, which may include semantic and pragmatic constraints.

0 Meta-schemas are diagrams for the logical design of codices and sketches in tectonics.

260

6: Design and Processing Support

6.3.1.3 Drawings and Pictures

The graphical layer of expression syntax represents only an abstract notion of a picture, that must

be embodied in a physical medium. The chapter has noted a need for two general pictorial

theories. One would provide a computational data structure based on plane geometric concepts,

to support direct manipulation of a visual display. The other would be a psycho-physical theory of

drawings, to provide a basis for defining spatial and other graphical analogies.

" The pictorial realm of a notation involves an interaction between chosen salient properties

of drawings and added conventions of syntactic constraint.

" Spatial analogy leads to economies in the notation, with fewer conventions needed.

" The salience of graphical properties is affected by perceptual and conceptual habits, and
is not purely a matter of geometry.

A theory of drawings could test for pictorial ambiguity and solve "packing problems" in

expression layout.

6.3.1.4 Editing

The support needed for editing tasks has been explored, with a view to letting the user decide the

degree of freedom and restraint in an editing session. A theoretical view of the editing process,

as model-making within a sketched editorial syntax, has been suggested. : -

0 Editing involves changing the stored data that results in a displayed graphical form,

including forms that only partially obey the intended syntax.

Editing allows the supply and removal of items, with the goal of obtaining a well-formed

form: one satisfying all the syntactic constraints required of an expression.

Editing involves the breaking and restoring of structural constraints. Selected structural

restrictions may be maintained during changes.

Information of a change may propagate upwards and downwards through the syntactic

layers, to update both interpretation and display.

Formatting allows graphical adjustment in search of a desired layout.

Creating an expression can be viewed as the procedure of Instantiating a sketch; editing modifies

an instantiation. In this view, a sketch is itself regarded as an unformed pre-expression. During

editing, the sketch is extended and refined by instantiation, adding constants to represent items,

and equalities to bind them together.

261

6: Design and Processing Support

6.3.1.5 Rewriting

Rewrite-rule systems have been examined as ways of controlling editing. Editorial rewriting

requires to be carried out in a specialized syntax separate from that of the notation, so that

rewriting can cover sufficiently general operations on the part-formed forms.

0 Sketches allow us to diagram the changes, rules and rewritings on a given syntax.

0 An editorial sketch can act as a grammar for generating and parsing, by specifying a

gene rate-and-fi Iter process - thereby accommodating ambiguity and failure.

To edit by rewriting requires the design of an editorial syntax defined by an hierarchical

sketch. Editorial syntax should be consonant with the notation's pictorial realization. The

rule-set must be complete: able to generate all well-formed forms.

6.3.1.6 Propagation

Editorial actions initiate a flow of change within the whole instantiated tectonic sketch.

Rewriting has been examined as a way of implementing deduction in sketches. Interpretive and

generative grammars are understood as providing proof-search strategies. In order to propagate

editorial changes efficiently, incremental rewriting is suggested: -

Rewriting can describe 'local' incremental change to objects of a category. A rewriting

system's behaviour permits concurrent propagation of change.

Propagative rules implement a kind of collaborative constraint logic engine. Rules attempt
to re-satisfy constraints disturbed as a result of local change, by rewriting the basic data

structure of syntactic sketches.

6.3.2 Summary of the Editorial Process

With this chapter we come to the end of the theoretical part of the thesis. The above discussion

and examples of the second section indicate a certain method of supporting editing, which is

summarized here in preparation for the next chapter, where development of an editor is discussed.

6.3.2.1 Editorial Rewriting

In the envisaged editing method, the editor system affords control by means of an expandable set

of rewriting rules. These editorial rules govern direct changes to a particular segment of the

syntactic structure that is 'graphically accessible' - its items are easy for an user to locate and

manipulate. This segment is defined by an 'editorial syntax', acting as a supportive frame, that is

tied into the tectonics at several levels and which extends the notation to permit part-formed forms

262

6: Design and Processing Support

(Pff).

These part-formed expressions are commonly focused on the lexical layer of notation syntax, but

may extend to upper layers in a more grammatical or semantic approach, or to lower layers in a

graphical approach. Rules that govern rewriting may be combined or reconstructed without

affecting the notation. A single rule controls a very limited kind of change - it defines the exact

pattern of items involved.

The editorial syntax is constructed to have an hierarchical signature, which is needed to enable

rewriting. The frame belongs to the computational context; it makes building easier, but is

removed when work reaches completion. It may involve extra graphical structure, since the frame

may have its own ('non-terminal') drawn items.

Editing is carried out by rewriting expressions in the editorial syntax. Editorial rewrite-rules must

include constructor and destructor rules that enable any expression to be generated and

consumed. The starting point for generation must be some minimal form in the signature, typically

with entities instantiated as empty or singleton sets. The constructor rules do not constitute a

grammar for parsing an expression -the history of an editing process need carry no significance.

Although the editorial rules are simple, they can cover very general operations on the part-formed

forms being modified, because their effects are extended by transduction into the whole of the

notation's semiosis. This is done by employing autonomous rule-sets which propagate syntactic

change to other parts of the tectonic structure. A rule can remove, for instance, a whole

connected component of a graph - if the component is a defined syntactic construction.

263

Chapter 7

A System to Aid the Design of Notations and Editors

Abstract

Here we find a description of a software system to aid notation design, the plan of which follows

the principles in the previous chapter. Details are given of the system's purpose, its component

parts and how it operates. A basic prototype is developed and partly implemented within an

object-oriented environment, In order to demonstrate how the theoretical framework and principles

apply in practice. The methods of development and the actual process of implementation are

explained, with indications of where this activity has added substance to the theory.

The planned system is proposed as a research tool to explore the design tasks of specifying

syntax and generating syntax-guided editors. A full system would allow a practitioner to build and

formally document the design of notations for a known task, addressing all aspects of structure

and helping develop editors.

The prototype offers more limited functions, as a generic editor for a notation whose syntax is

specified by sketches, and whose pictorial realization is defined using a geometric theory. It

contains an editor for the syntactic schemas, which it can interpret as parts to be compiled into a

sketch.

An editor for a designed notation is defined by an editorial sketch and a set of basic rewrite-rules

calculated from this sketch, which may be augmented by further combined rules. Direct

manipulation for formatting is derived from geometric definitions. The prototype system does not

yet incorporate facilities for deductive reasoning about syntax and properties of rewrite-rules. The

working implementation currently supports generic editing and editing of syntactic schemas.

265

Chapteff.

A System to Aid the Design of Notations and Editors

"Given the short horizons of researchfunding in the current climate, it

is incumbent upon visual language researchers to demonstrate that their

workisusefut" (Wittenburg&Weitzmannl996)

We have now reached a point where theory should give way to consideration of testing. How

might the theoretical work developed here be applied in practice? To address the question, this

chapter puts forward a plan for a software application (AGENDA) for computer-aided development

of graphical notations.

The AGENDA system (A Generic Editor and Notation Design Assistant) Is proposed as a research

tool for exploring the practical utility of the syntactic specification techniques described in the

previous two chapters. It offers help in designing and specifying any notation's syntax, and also in

generating simple syntax-guided editors. With this plan in view, details are given of a more basic

prototype that has been partially implemented for the purpose of demonstrating the principles.

Implementation and development methods are explained, and a narrative describes the actual

process of building the prototype during the course of the research. To end with, we consider what

has been discovered through this activity and what contribution it has made to the proposed

theory.

7.1 Outline of the AGENDA System

We begin with an outline of the principles on which the system is established, and the functions to

be provided. A short narrative suggests how the system would be used, and describes its

components.

7.1.1 Principles and Functions

Here we look at what the system is for and what it can do to help build notations and editors.

7.1.1.1 Purpose

The AGENDA system is intended to help in designing or modifying a 'community' of notations in

some common context. In essence, AGENDA is a generic expression editor with a meta-editor

267

7: An Aid for Notation Design

that allows the user to modify both the syntax of each specified notation and also the editor's own

rules. For developing each notation, the system will allow its structure to be sketched. Precise

design of notational syntax is accomplished through using SIGN as a conceptual too[to help build

a sketch.

Taking the sketch as a specification, an editor for the notation can be built, by defining a set of

rules and protocols for guided editing. Since the focus of this research is not upon the complex

matter of editor design, the plan concentrates on supporting basic flexibility, and not on elaborate

interaction protocols.

Notation Design is a technical activity that requires specialist skill and knowledge of the structural

properties of many existing notations. It may be compared to programming language design.

Designing a new notation (referred to below as a target-notation) involves several tasks: specifying

its syntax, defining the shape and behaviour of the pictorial components that make up graphical

expressions, providing editing operations, and establishing semantic and pragmatic connexions to

its discourse context.

In order to check that a sketch does define the intended syntax, assistance in thinking about

structure will be necessary. The system must provide some support for reasoning, though not

necessarily for documented formal theorem-proving.

7.1.1.2 Principles for a Notation Design System

The principles of the design are derived from the previous chapter. As indicated in (§6.1),

specifying a notation principally involves the development of a syntactic sketch, which typically

divides into tectonic layers. This specification is to be achieved by means of the graphical notation

SIGN, as described in Chapter 5. Semantic processing for SIGN can then interpret a composed

schema in the context of the growing sketch, which seeks to define a target-syntax. In practice,

several variants of SIGN would be available for depicting the different levels of serniotic structure.

To give full support to a notation-user, the System should help build editors, with interpreters that

can check semantic properties and convert expressions to computational data-structures or other

forms of representation for further external processing. It should be able to express external data

in target notations, and translate between these notations where appropriate. It should check

compatibility of an expression with other expressions in the context, perhaps in other notations.

268

7: An Ald for Notation Design

These demands for operation on expressions may be satisfied in the ways discussed in the

previous chapter.

As well as the essential syntax for the target notation, an editorial syntax must be created, with the

intention of ensuring that expressions can be built up In a simple manner by means of rewritings.

This special weakened syntax normally has an hierarchical signature, and may introduce extra

non-terminal symbols, as explained in (§6.2). The technique of designing the editorial syntax

involves the removal of cycles by the method shown in (§6.2.4). This approach provides freedom

in editing by relaxing syntactic constraints. Constraints that are goals during editing may for

instance force the replacement of any non-terminal items that were inserted to aid construction.

In coordination with the syntactic sketches, the pictorial appearance of both the target notation and

its editorial extension is settled by drafting geometric realizations for lower level entities and maps.

Lastly an editor is assembled as a weak grammar composed of generalized graph-rewriting rules,

with editing constrained or guided by the defined syntax.

7.1.1.3 Principles for a Generic Editor

The tasks and processes of editing were explored in (§6.2.1,6.2.2). An editor lets the user build

and modify expressions in a particular notation. A generic editor behaves as an editor for a

chosen notation when it is supplied with the data which specifies syntax and editorial protocol for

that notation.

Editing actions are governed by constraints in syntax, which are either seen as properties to be

maintained or as goals to be achieved. The system can help in producing expressions in several

ways: -

Guidance protocols
Available editing actions may be filtered in order to maintain certain constraints,

unsatisfied constraints may be highlighted on the display,

requesting an action may result in warnings about constraints that will be broken,

effected actions may result in notices about constraints that have been broken,

certain constraints may be checked only on request.

By applying rewrite rules on displayed forms, the user may generate any configuration of lexical

items according to their own knowledge of the notation. Constraint-checking in software can signal

any discovered irregularities to the user, who may use this feedback to help arrive at a well-formed

269

7: An Aid for Notation Design

result. Layout Is adjusted in a separate manner.

Many notations are flexible in allowing much variation in layout without affecting syntax. For

adjusting layout, the system would afford basic direct manipulation of the notation's graphical

items, while respecting the connectivity expressed by the signature and graphical details. Such an

ability to maintain geometrical connections is a familiar attribute of constraint-based graphical

systems.

Formatting is controlled by means of a defined protocol, which determines how the incidence

constraints are applied. A lexical items can be a compound of simpler parts which are sometimes

modified individually. When one part is handled, other connected parts must adapt to the change

according to connectivity rules: a set of geometric constraints and protocols. The constraints assert

properties which the token must possess before and after any change, while the protocol

determines how changes to parameters are propagated)

7.1.1.4 Functions to Aid Notation Design

Essential functions deal with the pictorial definition as well as syntax, reasoning of various kinds,

and interpretation of sketches must be supported. The use of meta-schemas and methods for

design of analogies (§6.1.3) is not described here.

Realizing a graphical expression as a picture can be seen as a task of translation from abstract

syntactic representation to concrete display data. Shapes of lexical items are composed of

graphical elements that may be constant, or variable in size (or orientation, etc.) according to

context; hence the translation may not be simply determined by positioning of lexical items.

To allow expressions to be drawn, such items must be given distinctive features such as shape

and position. As discussed in (§6.1.4), this is best done by embodying the syntax S in a general,

near-universal pictorial theory of drawings. At some level of syntax the form is decomposed into

pictorial elements, which are treated as data for display algorithms to process.

As described in (§6.1.4), the representation of pictorial data is non-semiotic - independent of the

target notation. Calculations of geometric constraints can therefore be built into the System, and

I Some kinds of geometric constraint, such as collision avoidance or global symmetry, would require warnings or automatic layout

heuristics after a formatting operation - these are not considered here.

270

7: An Aid for Notation Design

will not have to be changed for each new notation under consideration. For diagrammatic

notations, we would expect a graphical layer of target-notation syntax to specify the smallest

drawn elements of the diagram.

In order to offer assistance in designing, the System should possess some theorem-proving

capacity. It should be able to track logical dependencies between constraints and use pattern

matching on the sketch to apply inferences, following the logic doctrine, as discussed in (§6.1.3).

The network of dependencies within the syntactic sketch is important because it determines how

the interpretation of an expression is calculated.

Technical work on syntactic logic needs to be supplemented with reasoning by cases: the testing

of sample expressions against the proposed sketch. This necessitates a way of displaying samples

- even before the pictorial appearance of items has been decided upon. For this purpose, the

syntactic signature defines a 'default' appearance (§5.4.1) - equivalent to a directed graph labelled

with names of entities and maps in the sketch - that can serve as an intermediate proto-notation,

as illustrated in [fig 5.41].

By an interpretive process, the system can assemble a syntactic sketch from the SIGN schemas

chosen to express it. Further interpretation of the information in the sketch would result in a

dependency network linking the constraints of the sketch. This network would be used as a basis

for processing during editing in the target-notation. Each sketch known to the System can be

referred to by name in a meta-schema.

7.1.2 A Narrative of Facilities Proposed

By way of illustration, a short narrative on the proposed AGENDA system is given here. It

includes an outline of the subsystems and their functions.

7.1.2.1 Using the System

On opening the System, the user is offered a choice of working contexts. Each context offers a

choice of appropriate notations, and also documents that have been drawn up in that context. The

user may open a document and edit an expression for insertion into it, by running an editor for

one of its notations. The System is capable of building a community of notations, described in a

specification document.

271

7: An Aid for Notabon DesIgn

Changes of meaning expressed may be made by general editing, controlled in various ways, e. g. --

free-drawing (making gestures that are tracked and recognized as drawing acts),
guided graphics (adding or deleting graphical elements),
lexic rewriting, (entering shaped items and characters as a whole),
tagmatic rewriting (rearranging structure),
translation from another notation (via a translato6.

The meaning of the expression being edited can be held constant, during: -

formatting, in which only layout may be changed, or

rephrasing, by selecting permitted syntagmatic variations.

Edit changes may be guided by syntax and documentary context; they can be checked while an

edit action is in progress or after completion. The completed expression stands as a message that

can be sent to the document in order to eff ect changes to it.

If available, a (partial) Interpreter may be run to calculate and check the semantic

structure of the expression in the context of the document.

A translator runs a translation routine that partly interprets an expression, and then re-
expresses it into another notation in the common context. The re-expression is

constrained by the situation in which it is requested. In so doing it may express
information implicit in the situation, for example by replacing a variable with its calculated
value.

A semantic analyser assists the writing of interpreters which implement deduction or calculation

by means of graph-rewrite systems. The analyser may also provide an interface with standard

programming languages, for tasks that are fully computational and lie outside of the semiotic

system of the target-notation.

From the editor the user may gain access to the meta-editor that enables changes to be made to

the notation specification. In the meta-editor, the user can edit any schema belonging to the

specification document. The schemas are drawn in standard variants of SIGN notation, suited to

graphic, lexic, tagmatic, or semantic structural description. Editing is checked for conformance

with the rest of the document. In addition to the normal editing functions, the meta-editor

develops rewrite rules and constraint checks which make up an editor. It is accompanied by

several assistants: -

272

7: An Aid for Notation Design

A sketch-compiler is provided to process the semantics of the schemas. It compiles a
new schema into the document, incorporating it in an Interpreted sketch. It derives a
network of dependencies In the sketch, and searches for internal conflicts and possible
sources of inconsistency.

A reasoner is a'deduction engine'that assists in logical construction and inference. The

notation-designer can switch between editing a sample form and amending the schemas
for its notation, using the reasoner to highlight consequences of a change.

A drafter enables shape and behaviour of graphical elements to be edited by direct

manipulation, in conjunction with the Information In graphic-schemas.

An auto-formatter helps design heuristics for automatic layout of compute r-gene rated
expressions, such as outputs from translation. These rules become part of an editor.

A rule-maker helps build rewrite-rules when designing the notation's editor, after the
editorial syntax has been sketched.

There are also libraries of standard syntactic constructs and pictorial components such as
boxes and arrows.

7.2 Developing a Prototype

This section describes work in progress on a prototype notation design tool, developed in order to

make the proposed theory clear and concrete. Notes about the implementation give some of the

details, and a narrative explains the structure of the software as it was constructed from the

original ideas. The section ends with a summary.

7.2.1 Description of the Development

Here the development environment is described and the functions of the prototype are outlined.

7.2.1.1 An Object-Oriented Prototype

A prototype generic diagram editor is being built to explore and test the methods presented in the

previous chapter. The software is written in the Smalltalk programming language and

development environment2. Smalltalk is based on the object-oriented approach to programming,

and supports the familiar 'desk-top' metaphors of interaction. It was one of the original languages

to take this approach, and therefore has a relatively coherent structure in which every data item

2Smalltalk/V version 2.0 vAthin Microsoft WINDOWS user Interface, on an IBM PC (486).

273

7: An Aid for Notation Design

(an integer, for example) is treated as an ObjeCt3 that responds to Messages. The control

structure of the language is imperative, though expressed by means of functional (lambda-)

abstraction. Smalltalk was chosen in order to simplify the programming process and take

advantage of a built-in library of graphical interface functions. Speed and compactness were not a

prime objective of the exercise.

Smalltalk encourages development of software by building in new functions one by one on top of

its own skeleton of graphical user-interface software. Development begins with a proposed Class

hierarchy, which can be modified or enlarged later. Once the hierarchy is established, "Methods"

(routines associated with a Class) can be added in any convenient order. These are compiled and

incorporated automatically, without leaving the development environment.

7.2.1.2 Functions of the Prototype

The prototype system offers a more limited set of functions than the AGENDA proposal; for

practical reasons, only a few essential operations are provided. It supports syntactic design using

sketches and it has facilities for generic development of editors. The prototype includes an

Schema Editor for SIGN, enabling the user to build and/or modify schemas, which contribute to a

sketch for the target-notation. Pictorial design is carried out with a Shape Editor. A Sketch

Compiler maintains consistency of a suite of schemas, which together can be interpreted as a

partial or complete sketch of target-syntax.

A Meta-Editor assists the user in building an editor a data-object that contains all the information

needed to run an editor for expressions in the target-notation. Simple rewrite-rules defined on the

sketch signature provide the main method of creating and editing expressions. A Rule-Maker

helps develop the rewrite rules and constraint checks which make up an editor.

The prototype is limited to working with the design of a notation in isolation - not part of a

community. Deduction and proofs of syntactic properties are not implemented. Semantic and

pragmatic processing, such as interpretation and translation of target-notations, are also not

implemented in the general case. For simplicity, graphical shapes are limited to line drawings plus

ellipses and rectangles.

3This term and others used In object-odented programming are capitalized In order that they may not be confused with other

usage.

274

7: An Aid for Notation Design

7.2.2 Implementation Details

Next some notes are given on how the prototype is programmed, with a definition of terms that the

program uses. The implementation takes a naive approach, following as simply as possible the

theory and principles; it is not intended to adapt or improve upon other implementations. The

implemented facilities for direct manipulation of graphical shapes during formatting illustrate one

method of manoeuvering the layout of expressions.

7.2.2.1 Data Structures for Expressions

The sketch of a notation's syntax provides a direct way to represent an expression as a set of

stored items. These items are held in a single family of several named sets - the sorts which

make up its syntax, with one sort corresponding to each entity in the sketch. Items may belong to

any of the tectonic layers, e. g. lexical sorts such as boxes and arrows, or semantic sorts such as

statements. The connectivity of the figure is stored locally, in the items themselves.

Each stored item represents a syntactic token in the expression, and its incidence with other items is

encoded as an array of links (i. e. pointers). There are various types of item, distinguished by their

behaviour outside of the serniotic layers. Graphical items may be drawn (and displayed), and semantic
items may be treated as data or operations by the system.

Expressions are stored for display as figures. A figure is a collection of syntactic and pictorial

items arranged to satisfy constraints of syntax and geometry. The sets of primitive pictorial items

that make up the displayed -figure are constructed from shape definitions. The sketch for a

notation defines its full syntax; the forma contains further data to define its pictorial form.

The embodiment of a form is an interpretation of syntactic sorts and maps of the sketch S in terms of

pictorial concepts such as geometric shape, graphical attributes, adjacency and enclosure. The syntactic

sketch together with details of this pictorial realization is termed theforma for the target-notation. A

figure is a model of the forma for S. i. e. an S-form, with data for drawing it. An embodied expression is

thus represented as a data-object formed of the syntactic sketch and the associated shape definitions.

Editing is carried out on a figure displayed in a screen window, with commands available from pull-

down menus in the usual way. The constraints in the sketch give rise to simple routines that check

an edited expression for well-formedness, using linear searches and tracking of links. When

expressions are small in size, these operations do not require complex algorithms.

7.2.2.2 Glyphs

During editing, some drawn items can be directly manipulated on screen. These graphical or

275

7: An Aid for Notation Design

S4 II lexical items, which have distinctive shapes, are referred to as gyph The gyphs suppy a

pictorial grounding for the target notation.

A glyph is a type of shape which can be recognized and discriminated from others. Its identity is

invariant under specified transformations and spatial deformations. A locatable glyph is invariant

under translation; sometimes rotation and enlargement are also allowed. Afixed glyph is in an

absolute or reference position, e. g. the rectangular boundary of an expression. A glyph may be

composed of parts which transform separately.

A glyph consists of a sequence of vertices (or pins) upon which stand primitive pictorial elements:

lines, rectangles, ellipses and curves. The locations of these vertices define the actual stance in

which the glyph is placed on the diagram, which may be adjusted during formatting. A glyph is

constructed from certain vertices called pegs, which behave as controlling parameters for the

shape.

The shape of a glyph is specified by primitive geometric relations between vertices, which

constrain or restrain them. A restraint may for example force a vertex to remain on one side of a

given line joining two other vertices. A constraint fixes the position of a vertex dependent upon

other vertices.

A glyph contains a sequence of parts which are drawings, and a sequence of parts which are

frame shapes that may be scaled or rotated, or are sites for linkage. Attachment of one glyph to

another is achieved by restraining vertices of the one to lie in a site of the other. These sites may

be circular, linear or polygonal regions, for instance.

The behaviour of a glyph is the protocol required for varying its shape or position during

formatting. A peg may serve as a handle for adjusting the glyph. When a peg is moved, the new

stance of a glyph is determined by calculating each vertex in sequence, provided each vertex

depends only on its predecessors.

Here are some examples: -

Boxes

A box is characterized by the thickness, shape and symmetries of its quadrilateral boundary, and

sometimes by the colour and texture of boundary and interior. The boundary normally consists of

straight edges and may have rounded comers. A box may be resized along two axes, but not rotated.

Resizing does not usually affect the rounding on corners.

4(literally, carved items)

276

7: An Aid for Notation Design

Arrows

Simple arrows consist of a straight shaft, with a head and tail on the ends, for instance, or a'flight' in

the middle. An arrow may be rotated as a whole. A flight may be moved along the shaft, but its

orientation remains fixed relative to the shaft, and its size is also fixed. Compound arrows have

polygonal shafts, in which each junction can be moved independently.

Curves

Curves, which show continuous variation in direction, present special difficulties in characterizing

shape and style and finding a natural protocol for adjusting shape. They can be regarded as polygons

with many sides, that are defined to appear smooth on screen. Curves may be constrained to be below a

maximum curvature at all places, or to be convex, or closed. Any point of the curve may be adjusted,

causing a local region of the curve to change within its constraints.

7.2.2.3 Shape and Behaviour Editing

To support formatting, a Shape Editor (drafter) is required for defining glyphs. The editor provides

for drawing and designing their shape and appearance, and specifying their linkage properties

during formatting. It allows the geometric incidence between glyphs to be realized in concordance

with syntactic incidence. The Shape Editor should be supplied with a library of standard glyphs

such as boxes and arrows.

When designing the graphical realization of an item, the user can place vertices, join them with

drawn lines, and constrain them geometrically. Each kind of constraint and restraint is symbolized

as a drawn connector between vertices. The editor allows drawing and specification of handles for

format operations. The user can test that constraints operate as intended, by using the handles to

re-format the glyph.

7.2.2.4 Formatting Protocol

A formatter allows the user to move and modify glyphs in a figure without affecting syntactic form.

This is achieved by providing handles on each item, thereby affording variation of the item's

parameters (position, size, etc.) when the user selects and drags the handle. Adjustment of layout

is permitted so long as all restraints can remain satisfied.

The technique of handling allows the figure to be treated as a program for exhibiting itself as an

interactive display. By using a selected peg as a handle, the position or stance of a glyph can be

directly adjusted on screen. Moving a glyph-site constrains movement of those glyphs linked to it

so that they remain correctly attached.

277

7: An Aid for Notation Design

During formatting, any glyph can be selected for modification by pointing to its body. The selected

('live') token then displays handles (e. g. small black squares) on its parts. In any formatting

operation, the coordinates of the handle position directly control the value of one or two

parameters, which may vary within limits. The protocol maintains various principles: -

"A physical analogy is used to help the user understand the operation.

" The cursor is always free to move, but invalid positions are signalled.

" The values of changed parameters depend only upon the cursor position and the old values.

" To tell the user when parameter values are restricted, the path of the dragged handle is constrained.

" 77he body of a token is treated as a handle when moving it as a rigid whole.

" For visual feedback, a'ghost'is displayed during drag operations, to help the user achieve accuracy.

The protocol can be expressed as a rule-set, in which each handle indicates a choice of rule and a
I

site of application. The implementation manages the propagation of constraints and the

computation of displayed shape.

7.2.3 Implementing the Prototype

Next we look at the implementation work, which involved developing a SIGN editor and a generic

editor. A narrative of the process of creating the program is followed by a summary of the

program structure.

7.2.3.1 Phases of Development

The prototype has been developed incrementally, by applying the theoretical framework to

progressively more general tasks. The ordering of tasks is broadly as follows:

1. Groundwork for editing of schemas and generic editing:

a) Developing a working editor for a simple version of SIGN schemas

b) Generalizing this towards a generic editor, supplied with the formal syntax of SIGN

c) Defining geometric primitives and using these to build lexical items for SIGN

2. Developing the Figure Editor

a) Choosing a method for sequential encoding of figures for disk file storage

b) Developing a shape editor for design of graphical realizations for lexical items

c) Providing routines for checking syntactic constraints
d) Providing routines for applying general rewrite-rules

3. Developing the Meta-Editor as an extension to the figure-editor:

278

7: An Aid for Notation Design

a) Generalizing the figure-editor with methods for modifying menus
b) Developing a Compiler for interpreting a schema within a sketch
c) Developing a Rule Maker for building general rewrite-rules

The current version implements 1 (a, b, c), 2(a, b) and 3(a).

7.2.3.2 Implementing the Schema Editor

Task 1 (a) was the writing of an editor (SchemaEdito4 to enable creation of schemas in SIGN.

Because the syntax of SIGN has not yet been formally fixed, this task gave Insight into the

difficulties of editing graphical syntax. It was immediately necessary to fix on the shape of the

lexical items and decide how they were to be linked geometrically. It proved to be a difficult task

to reduce the geometry to a small number of primitive relationships. Resolving these geometrical

issues was an important step towards the development of a formatter.

The notional syntax for SIGN was adapted from that implied in Chapter 5, to provide an editorial

vehicle and to simplify the initial development. The syntactic items naturally follow a loose

hierarchy (a preorder), the lowest items being boxes and the highest being the angles and ties

which connect arrows. For simplicity, ties were only allowed to connect a pair of arrows. No extra

graphical items were introduced into the syntax.

The lexical items of a schema are named boxes, arrows, labels, marks, angles, ties, equals. Each of
these has a shape, and it was convenient at first to make this shape a separate Class (subclasses of

Shape). Each such class holds the Methods for drawing a shape and testing the position of the cursor

relative to its body (for selection purposes). The items themselves were represented by subclasses of

Item: - Box, Arrow, Angle, and so on. Each subclass holds methods for initializing the shape and

forming syntactic links.

The Class Schema holds all the Methods for searching patterns in the syntax (as preconditions for

rules), for adding items, deleting items (and rewriting generally) and for displaying a schema.

It became apparent that the main problems of editor-design lay in the protocols for simple rewriting

of lexical items. Adding an item, for instance, involves using the cursor to select the size, shape

and exact points of connexion of the new item. Other problems arose from the lack of a syntactic

specification for SIGN: -

In SIGN syntax, certain connexions are indicated by geometric relations: e. g. an equal-sign must be

placed in a closed region bounded by a pair of arrow-paths which both originate from some box A and

terminate at some other box B. Such a pair of "parallel" arrow-paths can be constructed syntactically,
but the property that they form a simple region empty of other arrows is a geometric constraint. To

279

7: An Aid for Notation Design

simplify the prototype, the syntax of regions was ignored, so that the attachment of an equality to its

two paths was not checked. As a consequence, some of the syntactic relations stored in the syntactic

representation were not forced properties of the schema displayed.

A computation of geometric facts is then needed during each editing action. This problem of

specifying this calculation was deferred until the relationship between geometry and syntax could

be investigated in detail.

A schema is a plane graph whose edges, nodes and regions may have markings; the edges attached to a

node have a cyclic order which is featured in syntax.

The first draft of the editor was thus specifically programmed, with every operation programmed

individually. This enabled the basic structure of the user-interface for the editor to be developed.

In the process, a lot was learned about editorial protocol and pictorial definitions.

7.2.3.3 Abstracting the SIGN editor

Task 1(b): The next stage involved progressively modifying the program by generalizing all

syntactic concepts, so that the editor would take on the appearance of being a generic diagram

editor specialized to SIGN syntax. Methods for the generic FigureEditor could then be written. This

process of generalizing or abstracting the program made the code more compact and flexible.

The first step was to modify class Schema so that it became a special case of Figure supplied with

the details of an editorial sketch for SIGN. This was straightforward for the syntactic data, but

issues of geometric (pictorial) representation had to be decided in order to store all the data of a

figure. The pictorial data was also be needed to support the formatting operations on schemas.

The final step of abstraction required a standard technique for the user to apply rewrite rules, and

a standard representation of these rules. Only addition and deletion of simple items was

supported; even this raised the difficulty of setting a protocol to allow the user to position a new

item in accordance with geometric constraints.

Task 1 (c): Defining geometric primitives

Tackling the problem of building lexical items for SIGN gave rise to the notion Of 'glyph' described

above. The implementation copes with geometric constraint-solving in a simple manner; cyclic

constraints are avoided by giving each sort of item a priority based on its hierarchy in the syntax.

The geometric components of a glyph are universal pictorial items.

280

7: An Aid for Notation Design

As just noted, difficulties arise In regard to geometric properties of regions, which have to be

calculated when checking syntactic conformity of SIGN expressions. Although it was clear how to

program this in the particular case, it Is not obvious how to establish a set of primitive geometric

constraints with any confidence that they would be universally adequate.

7.2.3.4 Developing the Figure Editor

Task 2(a): Choosing a method for textual encoding of figures for disk file storage

Each schema-figure was required to be stored on'disk, most conveniently as a text file. This

presented no problems.

Task 2(b) Developing a shape editor for design of graphical realizations for lexical items

Glyphs are supported by Methods for drawing shapes and testing when the cursor touches a shape

(for selection purposes). A glyph is drawn by displaying all of its drawings; the positions of vertices

are taken as arguments to primitive graphic functions which draw lines, boxes and curves. For

speed of calculation, it is best to store the whole array of vertices which fix the stance, and not just

the pegs which define it. The shape editor is treated as a diagram editor, by giving a graphical

notation for the components of a glyph, namely vertices, pegs, sites, restraints and constraints.

7.2.4 Summary and Discussion

To finish, the content of the chapter is summarized, and we consider what has been learnt in the

tasks and processes described.

7.2.4.1 Summary

This chapter has proposed a plan and prototype for a system (AGENDA) to aid notation design,

based on the principles in the previous chapter. The AGENDA system would offer means of

exploring and formally documenting the design and development of notations in a specified

context, addressing all structural layers. The chapter does not describe a working system or a

completed design for the AGENDA concept, and only a partial prototype is developed. The

purpose of the prototype is to demonstrate practical application of the theory that has been

presented in preceding chapters. Currently the prototype, implemented within an object-oriented

(Smalltalk) environment, supports only generic editing and editing of syntactic schemas.

281

7: An Aid for Notation Design

7.2.4.2 Processing and Graph Rewriting

The computational questions of how syntactic conformity is checked and how interpretation is

carried out are not covered in this chapter. It is taken for granted in the previous chapter that

algorithms exist for categorial construction of limits and colimits. General purpose algorithms can

for example be found in (Rydeheard & Burstall 1988) in the medium of ML. Rydeheard & Burstall

derive their algorithms from constructive proofs in category theory; in this way they show how to

compute pushouts in general categories and also how to carry out term unification. The methods

are easily applicable to graphold rewriting, though they cannot provide an algorithm for graph

unification. Since most of the constructions needed in our case are carried out on finite sets, there

Is no need for such a general method; we require only a simple algorithm for coequalizers.

In the prototype we have less need for these total algorithms, but more need for incremental

algorithms that propagate syntactic constraints when a change is made. Grammars have a role in

organizing this efficiently, which is why other work on grammar-based techniques is important.

It should be made clear that rewriting used to implement interpretive operations is not the same as

editorial rules that are chosen in generating an expression, but the distinction is blurred when

syntax-directed rules are used in editing.

7.2.4.3 Lessons Learned

The plan for the AGENDA system has provided a vehicle for addressing practical problems and

discussing solutions. Since the practical exploration of the prototype development was interleaved

with theoretical research, it was possible for practice to inform theory at several stages.

Successful implementation gave confidence in applying the framework, whereas difficulties

encountered were useful in clarifying and tackling a number of problems. For example, the

problems encountered in pictorial definition and interpretive processes prompted the investigations

recorded in the previous chapter.

The difficulties found in developing an editor for SIGN were caused not by inadequacies in the

theory, but in aspects of the program that lie outside of the theory. Wherever aspects of syntax

could be defined in a sketch, matters were easily resolved. Problems occurred in areas not

effectively treated by sketches - such as the arithmetical operations of geometry. The attempt

indicates many areas that require further research.

282

Chapter 8

Conclusions

Abstract

Here we find a full review and evaluation of the work in the thesis. We refer back to the literature

review and the research objectives in order to assess the achievements in terms of the problems

listed there. Most of these problems have been explored and the four objectives have largely

been met.

A critique of the work discusses how it compares with other approaches and assesses what

contribution each chapter makes to published researches in the same area. Problems that have

not been treated or have not reached a satisfactory resolution are noted. The thesis is shown to

offer attractive openings for further research into notation and analysis of sign-systems generally;

this is emphasized by briefly exploring some possible future directions.

The evaluation points to the originality of the work in offering a new application of mathematics to

questions of signification which have not in the past received much attention. The research

expounds a precise diagrammatic method of specifying syntax, and charts the way to a formal

serniotic theory of notation. Though much work remains to be done in this area, the theoretical

framework developed in the thesis is seen to provide a firm basis for improved practical and

computational support of notation in a technical context.

283

Chapter 8.

Conclusions

In this final chapter we review the work reported in the thesis, reflecting on the problems that have

been addressed and evaluating the solutions proposed. At this point it is appropriate to ask how

far the work has brought us towards an understanding of formal description and processing of

notation, and to consider what further research is called for.

8.1 Summary of Research

The summary gives an overview of the research presented and lists the achievements.

8.1.1 Overview

First we review the thesis as a whole and then take each of its chapters individually.

8.1.1.1 The Thesis

Graphical notations were chosen as the topic for research because of their important role in

technical work of many kinds. The focus of this thesis has been on notations in software

development, which are often diagrammatic, but can also be as complex as the formal languages

of mathematics and programming. Literature reviews have, revealed that although a rigorous

approach to notations is required, there is no standard formal technique for specifying their

structure, and support has suffered from a related lack of adaptable tools for manipulating them.

Research in this area is however increasing, and several diverse approaches are being tried.

In an attempt to encompass the diversity, this thesis has proposed a formal serniotic theory of

'notation tectonics', which treats notations as sign-systems and advocates a layered logical

analysis. By applying the categorical Theory of Sketches as an uniform method, a schematic

notation (SIGN) has been developed for specifying notation syntax formally - by means of

diagrams - which can be extended to depict all aspects of serniotic structure. The method employs

logical constraints, and supports graph rewriting as an operational technique. As well as providing

a specification formalism, the mathematical 'sketches' may be compared and combined, making

them suitable for a discussion of systematic metaphor and analogy in the design of a notation.

The thesis has described a new approach to building a tool for aiding the task of designing and

285

8: Conclusions

specifying notations. The AGENDA system allows notations to be specified and processed without

recourse to a fixed graph grammar or spatial logic system. Such a tool promises a powerful

method for the expert development of new graphical notations; it also offers the ability to help

practitioners modify or adapt notations for specific circumstances - thereby granting them more

control over their working aids. A prototype has been partly implemented to inform the research

and test its practicality.

To a large extent, the research has thereby succeeded in its objectives. Many further avenues for

investigation have also been opened up. Two of these are particularly important, as evidenced by

other continuing work in the field: firstly the study of perceptual theories of graphics, which has a

bearing on questions regarding ease of use, and secondly the study of deductive logic in relation

to graph grammars, which pertains to the problem of grading the logical complexity of different

descriptive formalisms.

8.1.1.2 Motivation and Methods

In Chapter I the reasons were given for researching the formalization of graphical notations, and a

research method was proposed. The motivation rests upon the needs of software development

practitioners to employ flexible notational techniques in all aspects of their work. Computer aids

for notation processing are essential for a rigorous approach. The research objectives of formal

specification for syntax and practical support for notation design were to be met by the methods of

applied mathematics, starting from an informal discussion of the topic.

8.1.1.3 Reviewing the Area

Surveys and reviews gave attention to some of the practical and theoretical needs acknowledged

in this area. In Chapter 2a survey of the literature considered the few existing studies of notation,

both early writings on mathematical logic and recent writings prompted by computer applications.

A survey of writings on notations in software development revealed that they have become an

important feature of methodology, but that no coherent body of theory exists to support graphical

notation design. Practical problems with notation include difficulties for the learner, lack of

explanation or justification of design, lack of formal definitions of structure and interpretation. The

chapter suggested several avenues of research, the primary need being for mathematical and

computational support.

286

8: Conclusions

in Chapter 3 an extensive review of related research considered formal descriptive techniques and

tools to process notations. The review showed that there are no established techniques of

syntactic description, though a disparate variety of approaches are currently being investigated.

Many techniques follow methods used in linguistics, with various kinds of grammar; logical

specification is also common, with some methods based on spatial relations.

The review of tools concentrated on editors and visual programming environments. In the past,

tools to process notations have mostly been based on general programming methods, leading to

inflexibility. Notations available in CASE tools are often closely bound to specific development

methods. Although research into visual languages has begun to address the need for generic

editors and universal syntactic formulations, users still have no easy way to Influence notation

design and usage. The chapter listed the many problems and avenues for solutions, and stated

limited alms and objectives for the thesis.

8.1.1.4 Defining Problems and Solutions

Chapter 4 opened by establishing the boundaries of the research, examining the nature of

notations and the roles that they play. An exploration of semlotic theory led to a discussion of how

the meaning of symbols and structures is motivated and maintained, with a notation seen as

embodying a stable relation between graphics and semantics. Signs In diagrams rely on metaphor

and iconism in all levels structure, not just in the shape of lexical symbols. It was noted that

motivation for signs, although important in justifying design decisions and giving help to learners,

does not affect formal notation structure.

Semiosis was described as a (culturally local) network of temporary logical connexions amongst

symbol configurations and their contexts, motivated by past patterns of experience and maintained

by habit. Thus the logic is implemented through a variety of cognitive skills. No firm fundamental

differences could be discerned between the various layers of structural description, though the

relationship between higher layers becomes more complex. We observed that the structure of

diagrammatic notation can be closely allied to the logical basis of its semantics, through graphical

analogy. This reliance on analogy could render generative grammars inappropriate as a

descriptive tool, despite their usefulness in implementation and for syntax of sequential text.

Based on research in the field of computational linguistics, an argument was made that tractable

287

8: Concluslons

logical systems are inherent in semlosis. The view was advanced that graph grammars are best

treated as resource-sensitive logic systems, useful in constructing forms that satisfy specified

constraints; they offer a model of limited-resource computation that is compatible with notational

methods.

A theory of notation tectonics was outlined as a model-theoretic approach to an uniform

foundation. Maps between formal theories were used to explicate the notions of analogy and

translation. The aim of this very general theory - not based on an empirical study - was to

provide a foundation for such a study of actual notations. Therefore important practical issues

such as computational and cognitive complexity were only touched upon.

8.1.1.5 Sketches and the Schematic Notation

In Chapter 5 the logical basis for syntactic description was taken from Category Theory and the

notion of a Sketch of a theory was explained. Through its analysis of logic, Category Theory

appears to be the mathematical field best able to describe the workings of serniotic processes at a

suitable level of abstraction. The structure of categorial logic lends itself to expression in a style

similar to Entity-Relation Diagrams. This style was developed into a schematic notation for

syntactic sketches, which was described and applied in a case study. The formalism puts the

definition of structure on a firm mathematical footing, in which both notated expressions and

syntax specifications are formal objects. Practical design of the schematic notation was

discussed.

8.1.1.6 Questions of Notation Processing

In Chapter 6 the proposed methods were extended to the areas of semantics and graphics in a

discussion of support for notation design and processing. Further theory covered processes of

reasoning needed for design of syntactic layers and for interpretive and generative operations.

Based on this, an outline was given of a method for building the tectonic sketch of a notation, and

thus for expressing its syntactic and pragmatic design. The problem of embodying syntax in a

pictorial medium was also considered.

The practice of editing expressions was analysed to discover what processes must be supported.

The theory was shown to support generalized graph-rewriting for elementary editing operations,

which are treated as steps in building a model of a syntactic theory. This investigation revealed

288

8: Conclusions

that a simplified or weakened adjunct syntax would often be needed In order to support flexible

editing in this way.

8.1.1.7 A Notation Design System

Following the principles of this analysis, Chapter 7 presented a plan for a system to aid notation

design, with the principal roles of specifying notation syntax and building notation editors. The

object-oriented development of a simpler prototype system was described, followed by details of a

partial implementation. Some problems were encountered in putting it into practice; formatting

and layout problems were resolved by treating a diagram as a dynamic structure obeying a simple

form of geometric constraint logic. The exercise was found useful in testing the basic notions of

the theory and suggesting points for further research.

8.1.2 Achievements

In recording what has been achieved, we refer back to find which problems were successfully

solved, and how this was accomplished.

By supplying a theoretical framework, the thesis offers a sound basis for practical and

computational support of notation. The problems that were listed In (§3.4) have mostly been

investigated: -

Difficulties in design methods DI-D4 have been addressed in Chapter 4.

Specification issues SII-S8 have been discussed and analysed in Chapters 4 to 6.

Problems of syntax formalisms F1-F5 and F8 have been addressed in Chapters 5 and 6.

Limitations of processing tools T2-T5 have been addressed in Chapter 6.

Difficulties of editors EI-E5 have been addressed in Chapter 6.

Chapter 6 has shown that formalization is helpful in ways H1-H4, H6, H8 and H9.

With regard to the objectives (§3.5.1), the following list indicates how they have been met.

1) The thesis provides an uniform framework for specifying notations, that:

a) rests on established mathematics,

b) supports reasoning about structure,

c) does not rely on graph grammars and parsing operations.

2) The thesis provides a computational and mathematical foundation for design of notations.

The method:

289

8: Conclusions

a) supports re-use and combination of specifications,
d) allows analogies to be described.

c) supports the use of rewrite-rules to operate on formal structure,
d) Is compatible with constraint-logic approaches.

3) The schematic notation SIGN provides a clear diagrammatic way to communicate syntax.

a) SIGN has expressions similar in style to entity-relation diagrams;

b) it derives from diagrams used in category theory;

c) it enjoys full theoretical grounding in the framework.

4) The plan for developing a generic notation-processing tool is partly implemented with a

prototype in Smalitalk. The development is made easier because the framework:

a) uses constructive logic that assists in implementation,

b) makes possible a detailed analysis of generic editing,

c) offers full formal support for the activity of notation design.

d) encourages a modular method of design.

8.2 Critique

Here we take a look at relationships between this research and other work; this is followed by a

discussion of ways in which the work has failed to address or resolve important problems.

8.2.1 Comparison with Other Work

We wish to consider how the thesis improves upon, adds to, or contributes to other work on the

topic. The following brief commentary recalls the approaches reviewed in Chapter 3 and

considers how the methods proposed in the thesis relates to these other studies.

8.2.1.1 Other Approaches and Formalisms for Specifying Syntax

Many approaches are based on grammar techniques (§3.2.4, §3.3), of which the most general

employ relations and constraints. Other researchers who start with a logical formulation are

motivated by the computational convenience of unification as opposed to graph rewriting. In fact,

declarative logic specifications can be regarded as a context-free grammars in view of the

equivalence shown in (Corradini et aL 1991). Unification (Goguen 1988) is also important in

equational logic, which supports executable algebraic specifications of syntax and semantics, via

the linguistic notion of feature structures.

Some formalisms are intended to be purely descriptive, and are free to use logics that do not

290

8: Conclusions

guarantee a computable proof theory. In order to treat the graphical properties of notations, a few

researchers explore spatial logic formulations; though those reviewed In (§3.2.2) are only applied

to specific notations.

Amongst the grammar-based approaches reviewed, techniques adopt various graph grammars

as a basis for defining structure; in order to overcome limitations, many go outside of the grammar

paradigm, requiring constraint logic or programmed operations as well as rewriting.

Work on relational grammars (Wittenburg & Weitzmann 1996, Feruccl et at 1996) Is applied by

some researchers. MOller & Lehrenfeldt (1994) use a version of Ferrucl's context-free relational

grammar, in which each rule rewrites a single symbol as a multiset of symbols, subject to a set of

topological constraints between sequences of terminal symbols (which are graphical objects).

Adjacency Grammars (Jorge & Glinert 1995) are related to Wittenburg's unification-based

approach, with parsing controlled by associating constraints with productions; each adjacency

constraint is associated with a function that finds the set of neighbours of a given lexical token.

Constraint Set Grammars (Helm & Marriott 1991) is an approach based upon Constraint Logic

Programming. Constraint Multiset Grammars (Marriott & Meyer 1996) combine both relational

grammar and constraint logic (§3.2.4), making it possible to define a generalized 'Chomsky

hierarchy'of visual languages.

Some approaches use declarative logic as a basis for parsing, via unification algorithms (§3.2.1).

These are able to cover a wider layer of syntactic structure by incorporating some spatial

reasoning. Since specifications can be executed, the techniques are particularly suitable for

defining visual programming languages.

The valuable work of (Haarslev 1995,1996a) proposes a formal framework to unify grammars,

semantic approaches and visual (spatial and temporal) reasoning. Description Logics -a

declarative knowledge representation system based on inheritance networks and a term-rewriting

language. The spatial logic describes qualitative relations between points, lines or convex regions.

Picture Logic (Meyer 1992) provides an executable declarative specification that is itself

expressed in a visual language. A picture language consists of a set of spatial object types and a

set of relation types. The work embeds Picture Logic in standard logic programming by

implementing a new non-deterministic unification algorithm for picture terms. Though the result is

291

8: Conclusions

complex, less expressive Picture Grammars can be derived. Clauses in a specification are

presented pictorially by borrowing shapes from the lexicon of the target notation.

Other logic-based specification methods and formalisms reported in (§3.2.1) rely on first-order

logic and set theory. GDL (Welland et aL 1990) is an expressive textual language for specifying

diagrams composed of typed nodes and links, by means of first-order logic constraints. PSN

(Hekmatpour & Woodman 1987), developed for formal specification of graphical notation, admits

first-order logic formulae, set-theoretic notation, function definition and a query notation for binary

relations. VCT (Serrano & Welland 1997) is a textual formalism for specifying syntax and

semantics of diagrammed modelling techniques; it is based on set theory, and uses predicate logic

to express semantic constraints. Z notation can also be used (David Gee 1995).

The generality of these techniques allows them to specify all layers of semiotic structure, which are

often not clearly discriminated. Spatial logic is treated on its own in (Lemon 1996), which presents

a complete axiomatization of 2D space in a modal logic of connected regions.

Algebraic and semantics-based approaches include VODL and VSDF (Oskodadi & Dinesh 1995a,

b) treat graphical and higher layers separately. VODL is a constraint-based declarative formalism

for pictures; it describes the visual tokens and spatial relations that comprise lexical syntax. VSDF

provide a visual formalism for specifying the syntax and semantics of visual languages. The syntax

specifies a context-free term language, which is provided with an algebraic semantics.

Sorted logics are commonly applied in semantics. Region Connection Calculus (Gooday & Cohn

1996a) allows the specification, parsing and execution of expressions to be defined in a common

language by means of the order-sorted logic LLAMX A sorted logic (inL) is applied to semantic

representation in (Klein 1987), which uses Kamp's Discourse Representation Theory: a version of

first-order logic with a novel treatment of quantifiers, pronouns and anaphora. Order-sorted algebra

is applied in (Wang & Zeevat 1996) to define a metaphor between expression and meaning as a

partial mapping from a graphical signature to an application signature. A pictorial language would

be characterized as a set of picture algebras. The nature of analogy is further explored in (Gurr

1996) in terms of homomorphisms between worlds of objects and relations.

8.2.1.2 The Value of this Thesis in Relation to Other Formalisms

The thesis brings together elements from many related studies, such as diagrammatic reasoning,

292

8: Conclusions

visual (programming) languages, mathematical logic, serniotics, computational linguistics,

category theory, logic programming and graph rewriting. These threads are woven Into a fabric

whose strength is not dependent on any one particular study. This Is an improvement on the many

recent studies which are based on trials of some chosen technique; such approaches are restricted

to a narrower focus, and are thus less credible as a candidates for an unified standard theory of

graphical notation.

The approach adopted in this thesis is not based on coverage of a certain set of example

notations, but justifies its choices with a theoretical analysis of semlotic structure. This policy for a

general theory is less vulnerable to change when new examples arrive, and thus improves on

those attempts that choose a specific definition of grammar in the hope that it will be sufficiently

broad to cover the required range of cases of notation.

The research is not aimed specifically at extending any of the current approaches to supporting

diagrammatic syntax and generic notation processing; nor Is it intended to replace or to compete

with work that investigates particular difficulties of syntax description and computational support.

The research rather provides a framework which can encompass the approaches, making it easier

to clarify their strengths and reveal the relationships between them. The thesis offers a

mathematical method and a graphical notation which make this possible.

The relationship between different formalisms is, in general, a complicated matter that requires

separate study. This work does not obviate the need to study spatial logic and the complexity of

different grammars. The study of relative power of grammars in (Marriott & Meyer 1996) thus

complements the thesis, which instead seeks to define a hierarchy in the complexity of constraints

expressed in sketches.

The broad base of this research reveals that tractability is a central issue in notations, whigh is

inherent in semiotic systems and is not just a consequence of a general concern for computational

efficiency. Over-complex formalisms are thus inappropriate unless they offer a clear analysis of

deductive effort. Over-simplified formalisms are only appropriate for kinds of notation that are

known to fall within a limited range.

8.2.1.3 Using Sketches

How do the proposals of Chapter 5 compare with other logic-based formalisms? The idea of

293

8: Conclusions

'sketching syntax' is a radical departure from the predominantly grammar-based approaches

currently being explored. The control of complexity in sketches is better understood than in

grammars, because sketches benefit from a long history of research into logical systems, whereas

graph rewriting systems are relatively new and difficult to analyse.

As a logical language, sketches are theoretically simpler and cleaner than those based on first-

order logic and set theory with extensions. Sketches embody an elementary logical system and

are also not complicated by any assumptions about graphical primitives (as is VODQ or syntactic

structure (as are grammar approaches). In contrast to the approaches that are committed to a

certain type of grammar, the approach in this thesis is to organize structure in a logical theory from

the start, with syntactic sorts and logical constraints, and then to treat rewrite rules as a separate

process of implementation.

Although the thesis does not demonstrate that all the various grammar and logic formalisms can

be encoded in sketches, there is ample evidence that this should indeed be possible. For

grammars, sketches can specify a derivation structure for the given grammar, as in the example

of Appendix B. Implementing the logic entails a search for a grammatical derivation of an

expression, which cannot in general be encoded in the sketches of Chapter 5, since the recursive

operations required are only available in a stronger doctrine. The thesis does not explain how

declarative logic can be expressed in sketches, though it is known that FL-sketches can encode

Horn clauses. In (Goguen 1988) it is noted that cones of a sketch can be treated as generalized

equations, embodying a set of constraints, for which a most-general-solution is simply a limit of the

cone.

The use of a (subsumption) ordering on syntactic sorts or types is notable in several approaches,

suggesting an indirect relationship with the feature-based grammars in computational linguistics

(§4.4.1) which allow multiple inheritance. The definition (D6rre 1994) of a general feature

structure is also similar to the notion of syntactic signature employed here, though syntactic sorts

are not ordered in our case. Ordering of sorts would require an extension to the notion of sketch,

but still lies within the general framework described in (§6.1.1), and should more naturally

accommodate the linguistic aspects of notations.

Sketched syntax also rests upon an encoding of graphical properties. Spatial logics are not

294

8: Conclusions

addressed in the thesis, though they are relevant to the graphical and pictorial theories requested

in (§6.1.4). The separation of abstract syntactic structure from pictorial properties helps keep the

proposed formalism simple and general.

8.2.11AThe Schematic Notation

How does SIGN compare with other specification notations? The other methods reported have

mostly given little attention to how specifications are presented and made available to users.

Previous notations for describing diagram syntax are either informal or choose a technical textual

coding. Those whose aim is to express syntax pictorially (§3.2.1), borrow most of their graphical

aspects from shapes in the notation being specified. Specifications in SIGN are made more

accessible by taking a schematic form; the schemas are rigorous, being both formal and

graphically independent of the target notation.

8.2.1.5 Other Methods of Formalizing Semlotics

The methods that the thesis offers can be applied far more widely than the special topic of

notation, though they do not directly address the general problem of how to formalize semiotic

theory. Although there is increasing interest in semiotics as a field for computational research,

with applications in a number of disciplines, the only other comparable formalization available is

that very recently developed by Goguen (1997).

There are many similarities between Goguen's mathematical approach and that presented in

Chapters 5 and 6 here. Goguen espouses Category Theory; he works with sorted logic, and

develops a notion of hidden algebras (Goguen & Malcolm 1996), in which hidden sorts fulfil a role

resembling that of hidden parts in (tectonic) syntactic signatures of Chapter 6. His work differs in

that he pursues an algebraic approach, so that specifications are (for the most part) executable by

means of term-rewriting in OBJ. The language OBJ also places an ordering on sorts. Goguen &

Malcolm's hidden agenda (op. cit.) , concerns one theme that has arisen in this thesis - that of

combining different paradigms of logic implementation; it is especially motivated by the object-

oriented paradigm, but it does not include graph rewriting.

It has been argued in this thesis that specification of notations should not be tied too closely to

implementations, since this must lead to greater complexity in the descriptions. Sketched syntax

can separate specification from implementation because the model-theoretic approach

295

8: Conclusions

distinguishes between internally provable and externally observed properties of expressions. This

is more intuitive than standard algebraic approaches, in which the notion of an expression is

identified with the class of all equivalent ways of generating it.

8.2.1.6 Other Work on Notation Design and Generic Editing

None of the works reviewed in Chapter 3 consider the task of designing notations in any depth,

though the generic editors of (§3.3.2) have limited uses for this purpose. How can we assess

claims that it is easy to build an editor with such systems? The AGENDA concept as proposed in

Chapter 7 goes beyond the notion of a generic editor for diagrams, which assists design only in

certain limited syntactic and graphical features.

As noted in (§3.4.3), researchers who have built generic notation editors have been generally

concerned with gaining practical success on supporting a range of trial notations. They have not

established an adequately broad definition of what constitutes a notation or an editing operation, a

problem which this thesis addresses.

Grammar-based editing rests upon a set of rewrite-rules, whereas this thesis gives rewriting a

different status:

In the graph grammar approaches (§3.3,4.4.2), expression structure is defined as a derivation, via

rewritings that follow some fixed rule-set. These fixed rules do not on their own constitute editing

operations. In contrast, in editorial rewriting proposed in (§6.2), the history of deriving an expression

can be discarded - since interpretation is carried out only on the result, effectively by a parsing

operation. Information on how an expression is drawn may give help in automatic interpretation. If

the editorial syntax adds non-terminal symbols that denote 'hidden' syntactic items, information in

rewritings need not be discarded because it reduces the effort of parsing.

The experience with graph-grammar-based systems such as DiaGen (reported in §3.3.2) has

shown the need to define transformations on the derivation, which are propagated to the visible

structure. This is in accord with the idea that flexibility in an editor can be achieved only by means

of manipulation in an unrevealed accompanying structure. For Diagen, this was discovered by

testing a prototype, and not through prior theoretical analysis of editing processes. The use of a

syntactic specification in AGENDA avoids the need for a fixed type of graph grammar.

The small amount of system development outlined in Chapter 7 cannot, of course, compete in

practical terms with large projects such as PROGRES (SchOrr et al. 1995). The AGENDA system

296

8: Concluslons

would not go as far as the PROGRES system in offering complete notational support integrated

with software, development. Methods employed in PROGRES follow a layered approach to

graphical parsing (§3.3.3), which is in sympathy with the reasons for layering advocated here.

Whereas specifying notations in PROGRES requires the engineering or programming of graph

grammars, AGENDA would see the task as one of building up a specification from re-usable parts,

supported by reasoning.

AGENDA is not aimed at the design of user interfaces to applications, as in Escalante (McWhirter

1995). In principle, AGENDA is closer to a constraint-logic system, though not explicitly

implemented as such. GenEd (Haarslev & Wessel 1996) and VisualGen (Chok & Marriott 1995)

are similar in philosophy, though not in methods; GenEd alms to support reasoning; VisualGen

allows flexible hand-drawn editing.

8.2.2 Unresolved Problems

The next task is to provide a critical summary of the work, assessi. ng what has been overlooked,

what remains unresolved, and how the solutions could be improved.

Is this a suitable topic for a PhD thesis? The amount of published interest in diagrams and visual

languages has increased considerably during the course of the research, showing that the topic

lies within a broad problem area that is perceived as important. The specific topic of notation in

software development is less usual, and more manageable, but still raises difficult problems.

8.2.2.1 Survey and Review

Much of the literature in the survey (Chapter 2) is written from a software developer's perspective

and tends to be prescriptive in approach. If the purpose is to ascertain how notations are used and

what is needed to support them, we would do better to consult studies of the tasks of software

design process for a more objective viewpoint. Ideally we would need models of the activities in

software development in order to explain the problems with notations, but this is another difficult

area worthy of further research.

There may be a bias towards an overly formal approach in the quotations chosen; design theory

suggests that informal notations are at least as important in practice. It is hard to establish what

are the needs for formal graphical notation design, since this has up to now not been a feasible

297

8: Conclusions

task.

The review of techniques and tools covers sufficient examples of the relevant approaches and

difficulties. As pointed out in (§3.4.3), a more comprehensive review would look at CASE tools or

data visualization applications, which could give more definitive information on how notations are

used.

8.2.2.2 Balance of the Approach

Is there too much theory? There Is a danger In developing a theoretical approach without backing

it up with concrete examination of an extensive body of data. Despite the arguments made in

Chapter 4, it may turn out that important difficulties have been missed. The value of the work lies

in the conceptual framework that it provides, which can now be used for the detailed analysis of

particular notations.

The work deliberately avoids the known practical problems of finding effective and efficient

grammars, upon which other researchers have concentrated. It also avoids the difficult questions

of pictorial perception and inference. The strength of the approach would be improved if these

other concerns could be shown to be addressable within the framework presented. It would then

be possible to evaluate and compare the varied methods reviewed in Chapter 3.

8.2.2.3Tectonic Notation Theory

To validate the notion of a layered structure in notation, we require further evidence from

cognitive analyses of perception and interpretation of diagrams or formulae. Study of evolutionary

mechanisms could help explain how such cognitive abilities arose. Otherwise we should regard

'tectonics' simply as a convenient modular method for developing a formalized notation.

8.2.2.4 Choice of Mathematical Method

Is Category Theory appropriate? Despite being an established tool in theoretical computer

science, Category Theory is unfortunately a difficult theory for the layperson to apply. It remains

to be seen whether its mathematical intuitions can be conveyed well enough for the practical

purposes intended here. There is no obvious alternative that would be as versatile.

The level of category theory applied is purposely naTive and elementary. More sophisticated

categorial methods should provide a more powerful analysis of the processes described, and a

298

8: Conclusions

source for general theorems on syntactic structures.

8.2.2.5 Usefulness of SIGN

The schematic syntax notation offers only modest help with reasoning; it Is hard to be aware of both

the syntactic theory and its models at the same time. Elementary reasoning of the kind used in

sketches is too difficult without computer aids, but the situation is better than other kinds of formal

proof theory that have no diagrammatic help.

The current version of SIGN requires development into practical versions that limit the amount of

reasoning expected. This task is of course exacty the kind that the AGENDA system is intended to

help.

8.2.2.6 Feasibility of Notation Design

Would the ideas for notation design in Chapter 6 work? The research looks forward to notation

design, but more detail is required before we will be able to judge whether the methods suggested

would be workable. Full case studies of notations, especially in a software engineering context, are

nee ded. It is not clear how practical it would be to design notation at this level of formality, and

sophisticated support for reasoning would certainly be necessary. In any case, full notation design

is expected to be a specialist task. There is no forseeable way to make this an easy task

At the outset of the research it was hoped that an approach to formal description of syntax would

suffice to support notation design. It is evident that this cannot be accomplished without a universal

theory of drawings, in the same way that linguistics is grounded in the study of phonetics and

phonology. A theory of drawings would mainly concern the perception of space and recognition of

shapes.

There is a long way to go before generic notation can be integrated with CASE methods.

integration would require standard data-formats for expressions, syntactic sketches and editor

specifications. It would also require formal semantics for each notational role. Some important

problems, such as translation, have been hardly touched upon.

8.2.2.7 Processing and Complexity

The question of how the syntactic specification gives rise to rules for interpreting drawings is an

important one that is not fully addressed in the thesis. Part of the work of designing a notation is

299

8: Conclusions

to ensure that interpretation can be computed. We have seen in Chapter 4 that this is a matter of

controlling the complexity of each layer in the tectonics (in terms of the size of sets constructed), but

the details of how this might be done have not been given. The complexity of different kinds of

sketch has not been related to the hierarchies that have been defined for grammars.

8.2.2.8 The Prototype

Is the AGENDA system feasible? The prototype development remains incomplete because certain

theoretical problems (discussed in Chapter 6) were beyond the scope of the research effort.

Exploring the prototype was effective in raising further areas for research, but the task of

implementing a notation design tool was premature. Many questions are not addressed in the

AGENDA system as described - the use of meta-schemas to define codices, for example, and

making constructions on sketches to help with design of analogies.

How does the prototype reflect the research? The implementation follows the theoretical

perspective as directly as possible. Where programming encountered difficulties, further theory

was pursued to overcome them; often the solution was to express more of the structure as

sketches.

What was the benefit of having the theoretical framework? Without a theory to work to, it would

have been difficult to make any progress at all. The initial attempt to develop an editor for SIGN

showed that an object-oriented programming system is suitable for this task, but requires a lot of

work. As soon as the editor was rewritten to take account of the theory, the programming became

more compact, and it was clear that the same techniques would suffice for any other notation -

without claiming it to be the best approach in all cases.

8.2.3 Repeating the Attempt

How might the research be done on a second attempt? One surprise of the research was that the

solutions found demanded such a deep appreciation of logic. It would be interesting to start from

this direction, with a study of the development of practical systems of logic - especially intuitionist or

constructivist logics and labelled deduction systems.

A better balance of theory and practice could be achieved by restricting the study to notations for a

particular purpose, such as formal specification, or diagramming of functional programs. This would

also provide more opportunity to investigate formal semantics.

300

8: Conclusions

Because of the importance of contributions from different disciplines, it would be best to pursue the

research in a collaborative project involving cognitive psychologists, cognitive scientists,

computational linguisticians, logicians, software developers and category theorists.

8.3 Further Work

The assessments in this chapter show that the thesis provides ample opportunities for further

studies of notation and related areas. A list of possible future directions is commented upon below.

8.3.1 Practical Opportunities

Research consequent upon this thesis could attempt some of the following practical tasks :-

RI specifying a wide selection of notations by these methods in order to refine the theory

R2 developing graphical theories suitable for particular classes of notations
R3 re-design of the syntax formalism (SIGN) and variants In the light of practical experience

R4 specifying standard notational mechanisms to build up a library resource
R5 developing software for a notation design assistant
R6 providing support for reasoning about syntax and calculating interpretations

A straightforward option [1111 would be a thesis devoted to specifying a variety of notations, while

looking for cases that could cause difficulties, in order to refine the theory and method.

A thesis could investigate graphical theories for existing notations [R2] with a view to specifying the

geometric elements that make up certain classes of diagrams.

Another option would be to explore whether the specification formalism could be improved, as

Chapter 5 suggests, by creating variants of SIGN more suitable for practical use [113] - or for

different participants in software development Applying the'bootstrap' prindiple, variants could be

designed by means of the techniques proposed in this thesis.

On a larger scale, a funded project could establish specifications and properties of familiar

notational mechanisms [R4], which could become a resource for development of new practical

notations and a medium for standards in graphical notation.

The larger project of building a full version of AGENDA is a natural successor to this research [R51-

This would need to follow up a number of strands made apparent by the encleavour of building

301

8: Conclusions

building the prototype in Chapter 7. For example, work is needed to Investigate the relationship

between geometry and syntax, In order to find suitable computational theories for drawings.

Another concern Is the question of how reasoning about syntax [R6] can be supported in practice.

Other areas for practical research concern the problems of designing and supporting flexible

protocols for editing, and the need for ways of offering easy routes for users to modify syntax.

8.3.2 Theoretical Opportunities

On the theoretical side, further research could address the following needs: -
R7 detailed study of how other approaches can be accommodated in this framework
R8 exploring fully the relationship between logical deduction and graph rewriting
R9 developing a universal pictorial theory that formalizes perception of drawings
RIO investigating the methodology of notation design
R11 analysing the mechanisms of metaphor in graphics
R12 extending the theory to cover ambiguity, approximation and vagueness in notations

We have noted a need for studying how the theoretical framework can accommodate the other

approaches described in Chapter 3 [117]. In this regard, the sketch formalism could be generalized

to incorporate an ordering of syntactic sortsl, in line with the techniques of computational

linguistics and object-oriented notions of class-hierarchy and inheritance. Unifying all the

approaches is a major task that would entail fundamental research on the relation between graph

rewriting, unification, constraint logic, type theories and model theory [118]. The aim would be to

study how logics are implemented, in the sense of how reasoning is carried out within a calculus of

limited resources. Such a project would necessarily rely on a collaboration of experts in the topics

listed. The question of the hierarchy of complexity in logics and calculi could then be addressed,

beyond the confines of grammar.

Theoretical methods are needed for im lementing interpretive reasonIng2 by means of graph .p

rewriting or other techniques.

Interpretation is treated as incremental deduction of a semantic layer. Graph grammars are an

attractive means of organizing this, because they implement a linear form of logic in which patterns of

graphical items are premisses that are consumed when an inverse rule is applied, replacing the pattern

'This was also suggested In a communication from Prof. He JI-Feng of Programming Research Group, Oxford University.

2- Le. computational Interpretation, which Is different from cognitIve Interpretation In which there Is always a synthesis of what Is

perceived and what is expected.

302

8: Conclusions

by a higher syntactic item. This linearity is lost if we treat deduction as the inference of semantic

properties from graphical ones, since each graphical property can be used many times in a proof. One

of the features of linear deduction is the case of ambiguity between resources, which is not the same as

the offering of alternatives or conjoint resources. Signification appears as a kind of linear implication.

The graphical theories of [R2] may help with a more difficult project, suggested in Chapter 6, of

finding a formal theory of pictorial structure as perceived and understood by people [R91.

Qualitative topological theories are reported in (§3.2.2), but there is scope for many more notions.

One mathematical topic that might find application is the theory of matrolds (Welsh 1976, Oxley

1992). Matrolds are 'pre-geometric' structures: abstract systems that have a concept of

dependency, in the same sense as found in vector spaces.

71bere are several reasons why this topic is attractive. Combinatoric structures such as graphs qualify as

matroids, by defining an independent set of edges as one that contains no circuits (in a certain sense).

The multidimensional variation found in formattable diagrams, with geometric constraints, can be

described by matroids. One of the problems of diagrammatic design is in finding ways to express many

dimensions of connectivity within a 2D graphical medium. In the semantics of expressions, notions of

logical dependency occur; representing these in some kind of graphical dependency would appear to be

an ideal way to assist reasoning in the subject domain.

The thesis invites a more general investigation [1110] of possible techniques and methods of

notation design. This would include the quest for an understanding of the mechanisms of

metaphor in the design of notations [R1 1], which is outlined in Appendix E. Research should study

this approach in the light of the wide literature that exists on the subject of metaphor generally.

Such a project would be more realistic if designed notations were tested with a suitable group of

users.

Since this work has been arbitrarily restricted to notations whose coding is discrete, its application

could be extended to include cases where continuous quantities are approximately represented

[R12], such as geographical maps and architectural drawings. This could be approached within

the same framework by using a medium such as topological spaces rather than sets. For the

theory to treat ambiguity and vagueness in notations, it may be necessary to not only to consider

other media, but to use a more general formulation of sketches. Although this is forseen in the

sketch literature cited in Chapter 6, there would be less established support available. The work of

(Goguen 1997) should also be taken into account.

303

8: Conclusions

8.4 Evaluation

In this last section we consider In what ways this research makes an original contribution to

knowledge.

8.4.1 Originality and Usefulness

The originality of this work lies in newly applying mathematical concepts to address problems in a

somewhat neglected area. This is the first study of notations to put forward clear mechanisms by

which signification may take place. The study takes large steps towards formalizing serniotics and

deriving a general theory of notation.

By providing a mathematical basis for notation structure, this work enables standard specifications

of current software development notations to be constructed. The specifications do not rely on

particular notions of grammar or spatial structure, as do other approaches. The formalism used is

expressed in a new formal, graphical meta-notation based on the Theory of Sketches. As one of

the few formalisms able to present specifications in diagrams, it is the first in which appearance of

the specifying expressions is independent of that of the notation being defined. * Sketches are

shown to offer a hierarchy of logical strengths.

Although not a focus of the work, the theory makes possible a systematic analysis of analogy and

metaphor in sign systems. These advances open up the possibility of giving full formal support to

notation design, where support hardly exists at present. The work illustrates a novel approach to

the development of generic editors.

8.4.1.1 Importance

How significant is this research? The thesis represents not only a step towards formalizing

notations, but the beginning of a strategy for justifying notation design and finding new designs

that will better serve the various purposes in software engineering - to help in thinking about

system design problems and to communicate design decisions or proposals. For theorists, design

of one's own notations is an important avenue for creative thought, especially in exploration of new

topics.

The work draws attention to the nature of semlosis as a process that relies on varieties of tractable

logic. This Insight has repercussions throughout the subject of software development, since the

304

8: Conclusions

design of computer systems depends upon structures that can be understood and communicated

by people, and Is therefore a serniotic field. The ultimate benefit of formal approaches to notation

will be seen as improved accuracy and effectiveness of software.

8.4.2 Conclusion

This thesis has demonstrated a coherent approach to formalizing graphical notations. It has

shown that it is possible to assist the design of notations by means of diagrammatic expressions of

syntax, with computational support. As a result, the work has uncovered a rich vein for future

research, which has the potential to help in all activities of software engineering where notation

plays a part.

305

Bibliography

Papers and Reports

Books and Proceedings

307

References: Papers and Reports

LNCS = Lecture Notes in Computer Science

Mt-Kaci, H. & Nasr, R. (1986) LOGIN: A Logic Programrnýing Language with Built-in Inheritance. Journal

of Logic Programming 3p 187-215. (Definite Clause)

Backlund, B.; Hagsand, 0. & Pehrson, B. (1990) Generation of Visual Language-Oriented Design

Environments. Journal of Visual Languages and Computing 1,1990 p333-354.
Bagchi, Atish & Wells, Charles (1994) Varieties of Mathematical Prose. Case Western Reserve University,

Cleveland Ohio.

Bagchi, A. & Wells, C. (1994) Graph-Based Logic and Sketches 1: The General Framework. Case Western

Reserve University.

Ballance, R. A.; Graham, S. L.; Van de Vanter, M. L. (1990) The Pan Language-Based Editor for Integrating

Development Environments. ACM SIGSOFr Notes 15(6) Dec 1990 p77-93.
Balzer, R. & Goldman, N. (1985) Principles of Good Software Specification and their Implications for

Specification Languages. In (Gehani & McGettrick 1985) p26-39
Banach, R. (1996) DPO Rewriting and Abstract Semantics via Opfibrations. SEGRAGRA'95 Workshop on

Graph Rewriting and Computation, Italy Aug. 1995. Electronic Notes in Theoretical Computer

Science 2.

Barr, Michael (1989) Models of Horn Theories. In (Gray & Scedrov 1989) pl-7.
Barr, M. & Wells, C. (1985) Toposes, Triples and Theories. Grundlehren der Mathernatischen

Wissenschaften 278. Springer.

Barwise, Jon (1993) Heterogeneous Reasoning. In: Mineau, G.; Moulin, B.; Sowa, J. F. (eds.) (1993)

Conceptual Graphs and Knowledge Representation. Lecture Notes on Artificial Intelligence 754

Springer Verlag, p64j74.

Barwise, Jon & Etchemendy, John (1988) A Situation-Theoretic Account of Reasoning with Hyperproof.

STASS meeting, Asilomar, March 1988.

Barwise, J. & Etchemendy, J. (1990a) Visual Information and Valid Reasoning. In: Zimmerman, W. (ed.)

(1990) Visualization in Mathematics. Washington DC: Mathematical Association of America.

Barwise, J. & Etchemendy, J. (1990b) Information, Infons and Inference. In Cooper, Perry and Mukai

(eds.) (1990) Situation Tbeory and its Applications. CSLI Lecture Notes Series 22. Stanford: CSLI

publications.
Barwise, J. & Etchemendy, J. (1994) Hyperproof. Stanford: CSLI, and Cambridge University Press.

Barwise, J. & Etchemendy, J. (1995) Heterogeneous Logic. In: (Glasgow et al. 1995) p2ll-234. Also in

(Allwein & Barwise 1996) p179-200.

Barwise, I& Etchemendy, J. (1996) Computers, Visualization, and the Nature of Reasoning. To appear in

Moor, James (ed.) On the Impact of Computers in Philosophy. Oxford: Blackwell.

Barwise, Jon & Hammer, Eric (1994) Diagrams and the Concept of Logical Systems. In Gabbay, D. (ed.)

(1994) What is a logical system? Studies in Logic and Computation, Oxford University Press, p73-

106. Also in (Allwein & Barwise 1996).

Barwise, J. & Perry, J. (1981) Situations and Attitudes. Journal of Philosophy 78(11) Oct. 1981 p668-691-

309

Bibliography

Bastiani, A. & Ehresmann, C. (1973) Categories of Sketched Structures; Cahiers de Topologie et Geometrie

Differentielle 13(73) pl-105.
Bauderon, M. (1996) Parallel Rewriting of Graphs through the Pullback Approach. SEGRAGRA'95

Workshop on Graph Rewriting and Computation, Italy Aug. 1995. Electronic Notes in' Ileoretical

Computer Science 2,1996.

Beer, S. & Welland, R. (1987) Software Design Automation in an IPSE. In (Nichols & Simpson 1987).

Black, W. J.; Sutcliffe, A. G.; Loucopoulos, P.; Layzell, P. J. (1987) Translation between Pragmatic Software

Development Methods; in (Nichols & Simpson 1987) LNCS 289 p357-365. (AMADEUS unified

conceptilal model; analyses JSD)

Bolognesi, T.; Hagsand, 0. & Latella, D. (1991)The Definition of a Graphical G-LOTOS Editor using the
Meta-Tool LOGGIE. Computer Networks and ISDN Systems 22(l) August 1991.

Brachman, R. J. & Schmolze, J. G. (1985) An Overview of the KL-ONE Knowledge Representation System.

Cognitive Science Aug. 1985 p 171-216.

Bricken, William & Gullischen, E. (1989) An Introduction to Boundary Logic with the Losp Deductive

Engine. Future Computing Systems 2(4) 1989.

Broome, Paul & Lipton, James (1994) Combinatory Logic Programming: Computing in Relation Calculi.

In: Bruynooghe, M. (ed.) Proc. International Logic Programming Symposium 1994, MIT Press. (Long

version is available from the Logic and Computation Group, University of Pennsylvania.)

Burroni, A. (1991) Higher Dimensional Word Problem. In (Pitt et al. 1991)p94- 105. (rewriting in n-

categories)
Carpenter, R. (1995a) -- Interview published in: Ta! 3(l) Spring 1995. (Dutch student's magazine for

computational linguistics)

Carpenter, R. (1991) Typed Feature Structures: A Generalization of First-Order Terms.

Carpenter, R. (1995b) The Turing-Completeness of Multimodal Categorial Grammars.

Cartmell, J. W. (1986) Formalising the Network and Hierarchical Data Models: An Application of

Categorical Logic. In (Pitt et a]. 1986) LNCS 240 p466-492.

Caswell, M. J. A. (1997) Equivalence of Formal Semantic Definition Methods. Formal Aspects of Computing

9 (1997) p68-77.
Chang, S. K. (1994) Ten Years of Visual Languages Research. IEEE Symposium on Visual Languages,

1994 p196-205.
Chok, S. S. & Marriott, K. (1995) Automatic Construction of User Interfaces from Constraint Multiset

Grammars. IEEE Symposium on Visual Languages, Darmstadt, Sept. 1995; IEEE Computer Society

Press.

Citrin, W.; Doherty, M. & Zorn, B. (1994) Formal Semantics of Control in a Completely Visual

Programming Language. IEEE Symposium on Visual Languages, St. Louis, Missouri, Oct. 1994 p208-

215.

Citrin, W.; Hall, R. & Zorn, B. (1995) Programming with Visual Expressions. IEEE Symposium on Visual

Languages, Darmstadt, Sept. 1995; IEEE Computer Society Press.

Clement, D.; Incerpi, J.; Kahn, G. (1990) CENTAUR: Towards a Software Toolbox for Programming

Environments; in Software Engineering Environments 89; Fred Long ed; LNCS467 Springer 1990

p287-304.

310

Bibliography

Cohn, A. G. (1987) A More Expressive Formulation of Many-Sorted Logic. Journal of Automated

Reasoning 3,1987 p 113-200.

Cohn, A. G. & Gooday, J. M. (1994) Defining the Syntax and Semantics of a Visual Programming Language

in a Spatial Logic. AAAI'94 Spatial and Temporal Reasoning Workshop 1994.

Coleman, Edwin (1990) Paragraphy. Information Design Association Newsletter v6 n2 1990.

Cook, Steve& Masnavi, Siamak (1988) Visual Programrning of User Interfaces. In: (Kilgour&Earnshaw

1988).

Coomber, C. J. & Childs, R. E. (1990) A Graphical Tool for the Prototyping of RTS; ACM SIGSOFr Notes

15(2) April 1990 p70-82.
Coppey, L. & Lair, C. (1984) Leqons de Thdorie des Esquisses. Diagrarnmes 12,1984.

Coppey, L. & Lair, C. (1988) Legons de lbdorie des Esquisses, Partie-11. Diagrammes 19,1988.

Corradini, Andrea (1995) Concurrent Computing: from Petri Nets to Graph Grammars. SEGRAGRA'95

Workshop on Graph Rewriting and Computation, Italy Aug. 1995. Electronic Notes in Theoretical

Computer Science 2.

Corradini, Andrea & Montanari, Ugo (1991) An Algebra of Graphs and Graph Rewriting; in (Pitt et al.

1991) LNCS 530 p236-260
Corradini, A.; Montanari, U.; Rossi, F.; Ehrig, H.; L6we, M. (199 1) Graph Grammars and Logic

Programming. In: (Ehrig et al. 1991) LNCS 532 p221-237.
Courcelle, Bruno (1987a) A Representation of Graphs by Algebraic Expressions and its use for Graph

Rewriting systems. In (Ehrig et al. 1987) LNCS 291 pl. 12-132.

Courcelle, Bruno (1987b) On context-free Sets of Graphs and their Monadic Second-Order Theory. In

(Ehrig et al. 1987) LNCS 291 p133-146.

Courcelle, Bruno (1990) Graph Rewriting: An Algebraic and Logic Approach; (van Leeumen 1990) ch. 5.

Courcelle, B. (1994) Monadic Second-Order Definable Graph Transductions, a Survey. Theoretical

Computer Science 126 p53-75.
Courcelle, B. (1996) Basic Notions of Universal Algebra for Language Theory and Graph Grammars; TO

appear as a tutorial in TCS.

Davis, Alan M. (1988) A comparison of techniques for the specification of external system behaviour;

Communications of ACM 31 (9) Sept 1988 p1098-1115.
de Rijke, Maarten (1992) The Modal Logic of Inequality. Notre Dame Journal of Formal Logic 57(2), 1992,

p566-584.
D6rre, J. & Dorna, M. (1993) CUF: A Formalism for Linguistic Knowledge Representation. Deliverable

R. 1.2. A, DYANA 2, Aug. 1993.

D6rre, J.; K6nig, E. & Gabbay, D. M. (1994) Fibred Semantics for Feature-Based Grammar Logic. Journal

of Logic, Language and Information, Special Issue on Language and Proof 'Ibeory.

Egenhofer, M. J. (199 1) Reasoning about Binary Topological Relations. In GOnther, 0. & Schek, H. -K. (eds)

LNCS 525; Springer 1991. p143-160.

Ehrich, H. -D. & Lohberger, V. G. (1979) Constructing Specifications of Abstract Data Types by

Replacements; in (Claus et al. 1979) p180-191

Ehrig, H.; Korff, M.; Lowe, M. (1991) Tutorial Introduction to the Algebraic Approach. In (Ehrig et al.

1991) p24-37.

311

Bibliography

Engels, G.; Lewcrentz, C.; Schaeffer, W. (1987) Graph Grammar Engineering: A Software Specification

Method; in (Ehrig et al. 1987) LNCS 291 p 186-20 1.

Ferrucci, F.; Tortora, G.; Tucci, M. & Vitiello, G. (1994) A Predictive Parser for Visual Languages

Specified by Relation Grammars. IEEE Symposium on Visual Languages, 1994 p245-252.
Ferrucci, F.; Tortora, G.; Tucci, M. & Vitiello, G. (1996) On the Generation and Recognition of Visual

Languages: Relation Granunars and Related Approaches. In: TVL: 96: International Workshop on the
Tbeory of Visual Languages, Gubbio, Italy, May 1996.

Ferrucci, F.; Pacini, G.; Satta, G.; Sessa, M.; Tortora, G.; Tucci, M.; & Vitiello, G. (1996), Symbol-

Relation Grammars: A Formalism for Graphical Languages. Submitted for publication.
Freyd, Peter (1972) Aspects of Topoi. Bulletin of the Australian Mathematical Society 7. pl-72.
Galton, A. (1988) Formal Semantics: Is it Relevant to Artificial Intelligence; All Reviews 2(3) 1988

Gee, David M. (1995) Dept. of Computing, University of Nothumbria at Newcastle.

Gehani, Narain (1985) Specifications: Formal and Informal -- A Case Study; in (Gehani & McGettrick

1985) p173.

Girard, J. -Y. (1987) Linear Logic. Theoretical Computer Science 50, pl-102.
Godwin, W. H. (199 1) Some Proposals Towards a Theory of Notation in Software Engineering. In De

Neuman, B ernard et al. eds. (199 1) Mathematical Structures for Software Engineering. IMA Conf.

series 27, Oxford University Press, p53-82.
Goel, Vinod. (1992) "III-Structured Diagrams" for III-Structured Problems. In Proc. AAAI Symposium on

Diagrammatic Reasoning, Stanford University, March 1992 p66-71.
Goguen, Joseph A. (1985) More Thoughts on Specification and Verification; in (Gehani & McGettrick

1985) p47.

Goguen, J. A. (1988) What is Unification?; Report SRI-CSL, 88-2R2. Also in Nivat, M. & ATt-Kaci, H.

(eds.) (1989) Resolution of Equations in Algebraic Structures, Vol. 1: Algebraic techniques. London:

Academic Press, p217-261.
Goguen, J. A. (1997) Serniotic Morphisms. (Draft paper) Dept. of Computer Science and Engineering,

University of California at San Diego.

Goguen, J. A & Burstall, R. M. (1984) Introducing Institutions. LNCS 164, Springer, Berlin.

Goguen, Joseph A. & Burstall, R. M. (1986) A Study in the Foundations of Programming Methodology:

Specifications, Institutions, Charters and Parchments. In (Pitt et al. 1986) LNCS 240 p313-333.

Goguen, J. A & Burstall, R. M. (1992) Institutions: Abstract Model 'Ibeory for specification and

programming. Journal of ACM 39(l) p95-146-
Goguen, LA. & Malcolm, G. (1997) A Hidden Agenda. Technical Report CS97-538, Dept. of Computer

Science and Engineering, UCSD.

Goguen, J. A. & Meseguer, J. (1987) Models and Equality for Logic Programming. In Ehrig, H.; Kowalski,

R. et al. eds (1987) Tapsoft'87 vol2, LNCS 250; Springer, pl-21.

Goguen, J. & Meseguer, J. (1989) Order-Sorted Algebra 1: Equational Deduction for Multiple Inheritance,

Polymorphism, Overloading and Partial Operations. Tech. Report SRI-CSL-89-10, SRI International.

Goldblatt, R. (1986) Topoi: Categorical Analysis of Logic; Studies in Logic and Foundations of

Mathematics 98, North Holland 1979 (2nd Edn. 1986).

312

Bibliography

Golin, E. J. (199 1 a) Parsing Visual Languages using Picture Layout Grammars. JVLC 2(4) Dec. 1991 p37 I-

393.

Golin, E. J. (1991b) A Method for the Specification and Parsing of Visual Languages. PhD Thesis, Brown

University.

Golin, E. J.; Danz, S.; Larison, S.; Miller-Karlow, D. (1992) Pallette: An Extensible Visual Editor. In Proc.

ACM / SIGAPP Symposium on Applied computing, March 1992 p 1208-1216.

Gooday, J. M. & Cohn, A. G. (1996a) Visual Language Syntax and Semantics: A Spatial Logic Approach.

International Workshop on the Theory of Visual Languages, Gubbio, Italy, May 1996.

Gooday, J. M. & Cohn, A. G. (1996b) Using Spatial Logic to Describe Visual Languages. Artificial

Intelligence Review 1996 to appear.
G6ttler, Herbert (1983) Attributed Graph Grammars for Graphics; in (Ehrig et al. 1983) LNCS 153 p 130-

142 (Nassi-Shneidermann example)
G6ttler, H. (1987) Graph Grammars and Diagram Editing; in (Ehrig et al. 1987) LNCS 291 p216-23 L

G6ttler, H.; GOnther, J. & Nieskens, G. (1990) Use Graph Grammars to Design CAD-Systems. In (Ehrig et

al. 199 1) LNCS 532 p396-4 10.

Gray, J. W. (1989a) The Integration of Logical and Algebraic Types. In Ehrig, H. et al. (cds) (1989) LNCS

393 Springer p 16-35.

Gray, John W. (1989b) The Category of Sketches as a Model for Algebraic Semantics. In (Gray & Scedrov

1989) p109-136.
Green, T. R. G.; Petre, Marian; Bellamy, R. K. E. (1991) Comprehensibility of Visual and Textual Programs:

The Test of Superlativism Against the "Match-Mismatch" Conjecture. In Empirical Studies of
Programmers: Fourth Workshop, 1991 p 121-146.

Gruzlewski, T. & Weiss, 7- (1991) Semantic Correctness of Structural Editing; ACM SIGPLAN 26(8)

Aug 1991 pII 1- 120.

Gurr, C. A. (1996) On the Isomorphism (or Otherwise) of Representations. International Workshop on the

Ileory of Visual Languages, Gubbio, Italy, May 1996.

Guttag, John & Homing, J. J. (1985) Formal Specification as a Design Tool; in (Gehani & McGettrick

1985) p195

Haarslev, V. (1995) Formal Semantics of Visual Languages Using Spatial Reasoning. IEEE Symposium on

Visual Languages, 1995 p 156-163.

Haarslev, V. (1996a) A Fully Formalized Theory for Describing Visual Notations. International Workshop

on the Theory of Visual Languages, Gubbio, Italy, May 1996.

Haarslev, V. (1996b) Formal Semantics of (Completely) Visual Languages. Tech. Rep. 1996 in preparation.

Haarslev, V. & Wessel, M. (1996) GenEd -- An Editor with Generic Semantics for Formal Reasoning about

Visual Notations. Tech. Report in preparation, University of Hamburg Computer Science Dept.

Hammer E. (1993) Representing Relations Diagrammatically. In: (Allwein & Barwise 1993) p77-119.

Hammer E. (1993) Reasoning with Sentences and Diagrams. In: (Allwein & Barwise 1993) p 120-143.

Hammer, Eric & Danner, N. (1996) Towards a ModelIbeory of Venn Diagrams. In (Allwein & Barwise

1996).

Hammer, Eric (1996) Peircean Graphs for Propositional Logic. In (Allwein & Barwise 1996).

313

Bibliography

Harel, David (1987) Statecharts: A Visual Formalism for Complex systems. Science of Computer

Programming 8,1987 p231-274.
Harel, David (1988) On Visual Formalisms; Communications ACM 31(5) May 1988 p514-53 1.

Harel, David; et al. (1990) STATEMATE: A Working Environment for the Development of Complex

Reactive Systems; IEEE Trans. SE v16 n4 Apr 1990 p403-413.
Hekmatpour, S. (1990), Templa Graphica. New York, Prentice Hall.

Hekmatpour, S. & Woodman, M. (1987) Formal Specification of Graphical Notations and Graphical

Software Tools. Open University CDFM Technical Report 87n. In (Nichols & Simpson 1987) LNCS

289 p297-305.
Hekmatpour, S.; Preece, J.; Woodman, M.; Ince, D. C. (1988) Graphics Tools for Software Engineers. In

(Yjlgour & Earnshaw 1988)

Heim, R. & Marriott, K. (199 1) A Declarative specification and semantics for visual languages. JVLC 2,

1991. +++
Hinton, G. (1979) Some Demonstrations of the Effects of Structural Descriptions in Mental Imagery.

Cognitive Science 3 p231-250.
Hinton, G. (1980) Frames of Reference and Mental Imagery. In Long, J. & Baddeley, A. (Eds.) Attention

and Performance. Hillsdale, New Jersey: Lawrence Erlbaum.

Hintikka, Jaakko (1979) Quantifiers in Natural Languages; in (Saarinen 1979) p8l-117.

Hoare, C. A. R. (1986) The Mathematics of Programming; Clarendon.

Hull, M. E. C.; O'Donoghue, P. G.; Hagan, B. J. (1991) Development Methods for Real-Time Systems;

Computer Journal v34 n2 April 1991; BCS CUP p164-172.
Ince, D. C. & Woodman, A (1986) The Rapid Generation of a Class of Software Tools; Computer Journal

29(2) 1986,151-160.

Indurkhya, Bipin (1992) Metaphor and Cognition. Studies in Cognitive Systems 13, Kluwer Academic.

Israel, D. J. & Brachman, R. J. (1984) Some Remarks on the Semantics of Representation Languages, in

(Brodie et al. 1984) ch. 5.

James, Jeffrey M. (1993) A Calculus of Number Based on Spatial Forms. MSc Thesis, University of

Washington.

Jay, C. B. (199 1) Tail Recursion from Universal Invariants. In (Pitt et al. 199 1) LNCS 530 p 151 - 163.

Jensen, Kurt (1991) Coloured Petri Nets: A High-Level Language for System Design and Analysis; in

Rozenberg, Grz. ed. (199 1) Advances in Petri Nets 1990; LNCS483 Springer, p342-416.

Jorge, J. A. P. & Glinert, E. P. (1995) Online Parsing of Visual Languages using Adjacency Grammars. IEEE

Symposium on Visual Languages, Darmstadt, Sept. 1995; IEEE Computer Society Press.

Kahn, K. M. & Saraswat V. A. (1990) Complete visualizations of Concurrent programs and their executions.

IEEE Symposium on Visual Languages, Skokie, Illinois, Oct. 1990 p7-14. [PJ1

Kamp, H. (198 1) A Theory of Truth and Semantic Representation; in Groenendijk, J.; Janssen, T.; Stokhof,

M.; eds (1981) Formal Methods in the Study of Language; Mathematical Centre Tracts 136,

Amsterdam, p277-322.
Kauffman, Louis H. (1988) The Form of Arithmetic. In: Proceedings of the 18th International Symposium

on Multiple-Valued Logic. IEEE Computer Society Press.

Kaul, A (1982) Parsing of Graphs in Linear Time. In (Ehrig et al. 1983) LNCS 153 p206-218.

314

Bibliography

Kellman, P. J. & Shipley, T. F. (199 1) A Theory of Visual Interpolation in Object perception. Cognitive

Psychology 23,1991 p 141-22 1.

Kiesel, N.; SchUrr, A. & Westfechtel, B. (1995) GRAS, A Graph-Oriented (Software) Engineering Database

System. In information systems 20(l), Pergamon Press p2l-52.
Kindfield, A. C. H. (1992) Expert Diagrammatic Reasoning in Biology. In Proc. AAAI Symposium on

Diagrammatic Reasoning, Stanford University, March 1992 p4146.
Klein, Ewan ed. (1987) Dialogues with Language, Graphics and Logic; ESPRIT 87, CEC-DGXIII North-

Holland.

Kleyn, M. F. & Browne, J. C. (1993) A High Level Language for Specifying Graph Based Languages and

their Programming Environments. In 15th International Conference on Software Engineering, May

1993 p324-335.
Knight, K. (1989) unification: A Multidisciplinary Survey. ACM Computing Surveys 21 (1) p93-124.
Knuth, D. E. (1968) Semantics of Context-Free Languages; Mathematical Systems Ibeory 2(2) 1968 p 127-

145.

Koedinger K. R. (1992) Emergent properties and structural constraints: Advantages of diagrammatic

representations for reasoning and learning. In: Narayanan, N. Hari (Ed.): AAAI Spring Symposium on
Reasoning with Diagrammatic Representations. AAAI, Stanford, CA.

K6nig, Esther. (1995) LexGfam: A Practical Categorial Grammar Formalism. In: Proceedings of the

Workshop on computational logic for natural language processing. Edinburgh, Scotland, April 1995.

(cmp-Ig/9504014). Also from Institute of Computational Linguistics, University of Stuttgart (1996

version).
Kuratowski, G. (1930) Sur le Probleme des courbes gauches en topologie. Fund. Math. 15-16,1930, p271.

Kulpa, Z. (1994) Diagrammatic Representation and Reasoning. Machine Graphics and Vision 3(1/2) 1994

p77-103.

Lambek, J. (1958) The Mathematics of Sentence Structure. American Mathematical Monthly 65,1958

p154-170. Reprinted in: Buszkowski, W.; Marciszewski, W. & van Benthem, J. (eds.) (1988)

Categorial Grammar. John Benjamins, Amsterdam.

Lambek, J. (1961) On the Calculus of Syntactic Types. In: Jakobson, R. (ed.) (1961) Structure of Language

and its Mathematical Aspects. Proc. Symposia in Applied Mathematics, American Mathematical

Society, Providence, Rhode Island.

Larkin, J. H. & Simon, H. A. (1987) Why a Diagram is (Sometimes) Worth 10000 Words. Cognitive Science

11, p65-99.
Laurel, Brenda K. (1991a) Interface as Mimesis; in Laurel, B. K. ed. The Art of Human-Computer Interface

Design, Addison Wesley. p67-85.
Lee, John; Oberlander, John; Stenning, Keith (199 1) SIGNAL: Specificity of Information in Graphics and

Natural Language. Report July 1991, Human Communication Research Centre, Edinburgh University.

Lemon, Oliver J. (1996) Semantical Foundations of Spatial Logics. Dept. of Computing Science, University

of Manchester.

Lemon, Oliver J. (1996) Theories of Representation. In Logica'96 International Symposium, Prague.

Filosophia Academic Publishing.

Levesque, H. J. (1988) Logic and the complexity of reasoning. Journal of Philosophical Logic 17 p355-389.

315

Bibliography

Loucopoulos, P. & Champion, R. E. M. (1990) Concept Acquisition and AnalYsis for Requirements

Specification; SEJ v5 n2 Mar. 1990 p 116-124.

Lunney, T. F. & Perrott, R. H. (1988) Syntax-Directed Editing. Software Engineering Journal, March 1988

p3746.
Makkai, Michael (1997) Sketches. Journal of Pure and Applied Algebra 115 (1,2 & 3), 1997, (in three

parts).
Makkai, M. & Reyes, G. (1977) First Order Categorical Logic. Lecture Notes in Mathematics 611,

Springer.

Makkai, M. & Pard, R. (1990) Accessible Categories: the Foundations of Categorical Model Ileory.
Contemporary Mathematics 104; American Mathematical Society.

Marriott, K. (1994) Constraint Multiset Grammars. IEEE Symposium on Visual Languages, St. Louis,

Missouri, Oct. 1994 p 118-125.

Marriott K. & Meyer, B. (1996) Formal Classification of Visual Languages. International Workshop on the
Theory of Visual Languages, Gubbio, Italy, May 1996.

McWhirter, J. D. (1995) Characterization, specification and generation of visual language applications; PhD

Tbesis, Computer Science Dept., University of Colorado.

Menzies, T. (1995) Frameworks for Assessing Visual Languages; Tech. Report TR95-35, Dept. of Software

Development, Monash University, Melbourne, Australia.

Meyer, B. (1992) Pictures Depicting Pictures - On the Specification of Visual Languages by Visual

Grammars. Proc. IEEE Symposium on Visual Languages, Seattle, Sept. 1992 p4l-48. (short version).
Minas, H. & Viehstaedt, G. (1995) DiaGen: A Generator for Diagram Editors Providing Direct

Manipulation and Execution of Diagrams. IEEE Symposium on Visual Languages, Darmstadt,

Sept. 1995; IEEE Computer Society Press.

Moher, T. G.; Mak, D. C.; Blumenthal, B.; Leventhal, L. M. (1993) Comparing the Comprehensibility of

Textual and Graphical Programs: The Case of Petri Nets. In Empirical Studies of Programmers: Fifth

Workshop, 1993, p 137-161.

Montague, Richard (1974) The Proper Treatment of Quantification in Ordinary English; in (Thomason

1974): p247-270]
Moortgat, M. (1988) Categorial Investigations: Logical and Linguistic Aspects of the Lambek Calculus.

Gr6ningen-Amsterdam Studies in Semantics 9, Foris, Dordrecht.

Moortgat, M. (1994) Residuation in Mixed Lambek systems. Paper in the Deduction and Language

Workshop, London. Manuscript: Institute for Speech and Language, OTS, Utrecht.

Morrill, Glyn (1993) --Interview published in Dutch student's magazine for computational linguistics, Ta!

2(2) Summer 1993.

Morrill, G. (1994) Type Logical Grammar: Categorial Logic of Signs. VJuwer Academic, Dordrecht.

Mililer, W. & Lehrenfeldt, G. (1994) Defining the Relational Grammar of Pictorial Janus; Cadlab Institute,

Paderbom University, tech. rep. CR-07-94.

Myers, Brad A. (1988) The State of the Art in Visual Programming and Program Visualization; in

(Kilgour & Earnshaw 1988)

Myers, B. A.; Guise, D. A. et al. (1990) Garnet: Comprehensive Support for Graphical, Highly Interactive

User Interfaces. IEEE Computer 23(l 1) Nov. 1990 p7l-85.

316

BibIlography

Mylopoulos, J. & Levesque, H. J. (1984) An Overview of Knowledge Representation; in (Brodie ct al. 1984)

Pg.
Nagl, M.; Engels, G.; Gall, R.; Schaeffer, W. (1983) Software Spccification by Graph Grammars; in (Ehrig

et al. 1983) LNCS 153 p267-287.
Nagl, A (1987) A Software Development Environment based on Graph Technology; in (Ehrig et al. 1987)

LNCS 291 p458-478.
Nassi, 1. & Shneiderman, B. (1973) Flowchart Techniques for Structured Programming; ACM SIGPLAN

8(g) Aug. 1973 p12-26.
Netz, Reviel (1996) Greek Diagrams, their Use and their Meaning. Talk given at 3rd International ConC for

the History of Greek Mathematics. Delphi, August 1996.

Newberry, F. J. & Tichy, W. F. (1988) EDGE: An Extendible Graph Editor. Software -- Practice and
Experience 20, June 1988 p63-88.

Nickerson, J. (1995) Visual Progranuning. PhD Thesis, UMI #9514409

Oberlander, J. & Stenning, K. (1990) Words, Picture and Calculi. Paper for 2nd Conference on Situation

'Ibeory and its Applications, Kinloch Rannoch, Scotland, Sept. 1990.

Palmer, Stephen (1992) Common Region: A New Principle of Perceptual Grouping. Cognitive Psychology

24,1992 p436-447.
Pfeiffer, J. J. (1995) Ludwig2: Decoupling Program Representations from Processing Models. IEEE

Symposium on Visual Languages, Darmstadt, Sept. 1995; IEEE Computer Society Press.

Pineda, L. A. (1990) GRAFLOG: A Theory of Semantics for Graphics with Applications to Human-

Computer Interaction and CAD Systems. PhD Thesis, Edinburgh University.

Pineda, L. A.; Klein, Ewan; Lee, John (1988) GRAFLOG: Understanding Drawings through Natural

Language; Computer Graphics Forum 7 (1988) p97-103.

Pitts, Andrew M. (1989) Conceptual Completeness for First-Order Intuitionistic Logic: An Application of

Categorical Logic. Annals of Pure and Applied Logic 41,1989 p33-8 1.

Plotkin, G. D. (1981) A Structural Approach to Operational Semantics Report DAIMI FN-19, Computer

Science Dept., Arhus University, Denmark.

Pollard, Carl J. & Sag, Ivan A. (1994) Head Driven Phrase Structure Grammar. University of Chicago

Press.

Pong, M. C. (1991) I-Pigs: an Interactive Graphical Environment for Concurrent Programming; BCS

Computer Journal 34(4) Aug 1991 p320-330.
Post, Julian (1986) Application of a Structured Methodology to a Real-time Industrial Software

Development; SEJ Nov 1986 p222-247.
Pratt, T. W. (1971) Pair Grammars, Graph Languages and String-to-Graph Translation. Journal of

Computer and system sciences 5, Academic Press p560-595.
Pratt, T. W. (1983) Formal Specification of Software using H-Graph Semantics; in (Ehrig et al. 1983) LNCS

153 p314-332.
Pratt, V. R. (1993) The Second Calculus of Binary Relations. In: Proceedings of MFCS'93, Gdansk, Poland

1993. LNCS 711, Springer Verlag. p 142-155.

Pratt, V. R. (1995) Chu Spaces and their Interpretation as Concurrent Objects. In computer Science Today:

Recent Trends and developments; LNCS 1000, Springer, Berlin, p392-405.

317

Bibliography

Pratt, V. R. (1988) Dynamic Algebras as a Well-Behaved Fragment of Relation Algebras. In Bergman, C. H.;

Maddux, R. D.: Pigozzi, D. L. (eds.) (1990) Algebraic Logic and Universal Algebra in Computer

Science. LNCS 425 Springer p77-1 10.

Randell, D. A. & Cohn, A. G. (1992) Exploiting Lattices in a Theory of Space and T"ime. In Lehmann, F.

(ed.) (1992) Semantic Networks in Artificial Intelligence. Pergamon Press, Oxford. p459-476.

Reiss, S. P. (1987) Working in the Garden Environment for Conceptual Programming. IEEE Software Nov.

1987 p 16-27.

Rckcrs, J. (1994) On the use of Graph Grammars for Defining the Syntax of Graphical Languages; Dept. of

Computer Science, Leiden University Tech Report 94-11.

Rekers, J. & SchOrr, A. (1995a) A Parsing Algorithm for Context-Sensitive Graph Grammars (long

version). Technical Report 95-05, Leiden University.

Rekers, J. & SchUrr, A. (1995b) A Graph Grammar approach to Graphical Parsing. IEEE Symposium on
Visual Languages, Darmstadt, Sept. 1995; IEEE Computer Society Press.

Roisin, J. -R. (1979) On Functorializing Usual First-Order Model Theory. In: Fourman, M. P.; Mulvey, C. L;

Scott, D. S. (Eds.) (1979) Applications of Sheaves. Proc. Symposium on Sheaf Theory, Durham 1977.

Lecture Notes in Mathematics 753, Springer, p612-622.
Rounds, W. C. & Kasper, R. T. (1986) A Complete Logical Calculus for Record Structures Representing

Linguistic Infortnation. In: Proc. 15th Annual IEEE Symposium on Logic in Computer Science,

Cambridge Massachusetts.

Rozenberg, G. & Welzl, E. (1986) Boundary NLC Graph Grammars -- Basic definitions, Normal Forms,

and Complexity. information and Control 69,1986 p136-167.
Sammet, Jean E. (199 1) Some Approaches to, and Illustrations of, Programming Language History; Annals

of the History of Computing 03 nl 1991 p33-50.

Schfirr, A. (1990) PROGRES: A VHL-Language based on Graph Grammars. In (Ehrig et al. 199 1) LNCS

532 Springer p641-659. Also Tech. report AIB 90-16, RWTH Aachen, Germany.

SchUrr, A. (1994a) PROGRES: A Visual Language and Environment for Programming with Graph

Rewriting; Tech. Report, Aachener Informatik-Berichte AM 94-11.

SchUrr, A. (1994b) Specification of Graph Translators with Triple Graph Grammars. Tech. Report,

Aachener Informatik-Berichte AIB 94-12, RWTH Aachen. In Proc. WG'94 Int. Workshop on Graph

Theoretic Concepts in Computer Science. LNCS 903, Springer-Verlag p151-163.

SchUrr, A. (1994c) Logic Based Structure Rewriting Systems. In (Schneider & Ehrig 1994) LNCS 776

p341-357.
SchOrr, A.; Winter, A. & Zondorf, A. (1995a) Visual Programming with Graph Rewriting Systems. IEEE

Symposium on Visual Languages, Darmstadt, Sept. 1995; IEEE Computer Society Press.

SchOrr, A.; Winter, A. & ZUndorf, A. (1995b) Graph Grammar Engineering with PROGRES. In Schdfer,

A. & Botella, P. (eds.) (1995) Proc. 5th Eoropean Software Engineering ConE ESEC'95, Barcelona,

Sept. 1995, LNCS 989, Springer, Berlin, p219-234.
Serrano J. A. (1995) The Use of Semantic Constraints on Diagram Editors. IEEE Symposium on Visual

Languages, Darmstadt, Sept. 1995; IEEE Computer Society Press. p211-216.

Serrano, J. A. & Welland, Ray (1997) VCT -A Formal Language for the Specification of Diagrammatic

Modelling Techniques. Dept. of Computing Science, University of Glasgow, Scotland.

318

Bibliography

Shieber, Stuart M. (1986) An Introduction to Unification-Based Approaches to Grammar; CSLI Lecture

Notes 4, University of Chicago Press.

Shin, Sun-Joo (1994) The Logical Status of Diagrams. Cambridge University Press.

Shin, Sun-Joo (1996) Situation-Theoretic Account of Valid Reasoning with Venn Diagrams. In (Allwein &

Barwise 1996).

Shu, N. C. (1986) Visual Programn-dng Languages: A Perspective and a Dimensional Analysis. In (Chang et

al. 1986) pl 1-34.

Skousen, Royal (1975) Empirical Restrictions on the power of Transformational Grammars; in Storer, Th.

& Winter, D. eds (1975) Formal Aspects of Cognitive processes; LNCS 22 Springer, p204-214.
Smolka, G. (1988a) A Feature Logic with Subsorts. LILOG-REPORT 33, IBM Stuttgart.

Smolka, G. (I 988b) Logic Programming with Polymorphically Order-Sorted Types. LILOG-REPORT 55,

IBM Stuttgart.

Sowa, J. F. (1979) Definitional Mechanism of Conceptual Graphs; in (Claus et al. 1979) p426-439
Stenning, Keith (1994) Logic as a Foundation for a Cognitive Theory of Modality Assignment [Allocation].

Report HCRC/RP-51, Human Communication Research Centre, Edinburgh University. Also in

Masuch, M. (ed.) (1994) International Colloquium'Logic at Work!, Amsterdam University.

Stenning, K. & Oberlander, J. (1992) A Cognitive Theory of Graphical and Linguistic Reasoning: Logic

and Implementation. HCRC / RP-20 Edinburgh University. Also in (1995) Cognitive Science 19,1995

p97-140.
Stenning, K. & Tobin, R. (1994) Assigning Information to Modalities: Comparing Graphical Treatments of

the Syllogism. HCRC RP-71, Human Communication Research Centre, Edinburgh University.

Sylva, L.; Freeman, E. et al. (1991) PRONET: The Application, and its use in Modelling the Uswest

Telecommunications Network. Technical Report, USWest Advanced Technologies, Boulder, Colorado.

Tennant, N. (1986) The Withering Away of Formal Semantics. Mind and Language 4 p302-318.

Tse, T. H. & Pong, L. (199 1) An Examination of Requirements Specification Languages; Computer Journal

v34 n2 April 1991; BCS CUP p143-152.

Tse, T. H. & Pong, L. (1989) Towards a Formal Foundation for De Marco Data Flow Diagrams; Computer

Journal 32(l) 1989 pl-12.
Oskijdarli, S. M. (1994) Generating Visual Editors for Formally Specified Languages. Proc. 1994 IEEE

Symposium on Visual Languages, p278-285.
UskOdarli, S. M. (1995) Specifying Visual Syntax. In ASD+SDF95: A Workshop on Generating Tools from

Algebraic Specifications, May 1995.

UskOdarli, S. M. & Dinesh, T. B. (1995a) Towards a VP Environment Generator for Algebraic

Specifications. IEEE Symposium on Visual Languages, Darmstadt, Sept. 1995; IEEE Computer

Society Press.

Oskfidarli, S. M. & Dinesh, T. B. (1995b) VODL: A picture description language. Tech. report, University of

Amsterdam. To Appear.

Varadharajan, V. & Baker, K. D. (1987) Directed Graph Based Representation for Software System Design;

Software Engineering Journal Jan. 1987.

Varela, F. J. (1975) A Calculus for Self-Reference. International Journal of General Systems 2,1975 p5-24-

Varela, F. J. (1979) Principles of Biological Autonomy. New York: North Holland.

319

Bibliography

Viehstaedt, G. (1995) A generator for diagram editors. PhD Thesis, University of Erlangen.

Viehstaedt, G.; Minas, M. (1995) Graphical Representation and Manipulation of Complex Structures Based

on a Formal Model. In fivari, J.; Lyytinen, K.; Rossi, M. (eds.), Proc. Advanced Information Systems

Engineering, 7th International Conference, CAiSE'95, Jyvaskyla, Finland, June 1995. Lecture Notes in

Computer Science 932, Springer Verlag, Heidelberg, p243-254.
Waite, Kevin W. (1988) Visualising Abstract Data Types; in (Kilgour & Earnshaw 1988)

Wang, D. (1995) Studies on the Formal Semantics of Pictures. PhD Thesis, University of Amsterdam.
Wang, D.; Lee, J. R. & Zeevat, H. (1995) Reasoning with Diagrammatic Representations. In (Glasgow et al.

1995) p339-393.
Wang, D. & Zeevat, H. (1996) A Syntax Directed Approach to Picture Semantics. International Workshop

on the Theory of Visual Languages, Gubbio, Italy, May 1996.

Ward, P. (1986) The Transformation Schema: an Extension of the Data Flow Diagram to Represent Control

and Timing Information; IEEE S-E 12(2) Febl986 p198-210.
Weitzmann, L. & Wittenburg, K. (1994) Automatic Presentation of Multimedia Documents using Relational

Grammars. Proc. 2nd ACM Multimedia Conference, San Francisco Oct. 1994 p443-45 1.
Welland, Ray; Beer, Stephen & Sommerville, Ian (1990) Method Rule Checking in a Generic Design Editing

System. Software Engineering Journal 5(2) March 1990,105-115.

Wells, C. (1994) Communicating Mathematics: Useful Ideas from Computer Science. Case Western Reserve

University, Cleveland Ohio.

Wells, C. (1990) A Generalization of the Concept of Sketch; TCS 70,1990; p 159-178.

Wells, C. (1994) Sketches: Outline with References. Report, Case Western Reserve University, Cleveland

Ohio.
Wells, C. & Barr, M. (1987/8) The Formal Description of Data Types using Sketches. In Main, M. et al.

(ed.) (1988) Mathematical Foundations of Programming Language Semantics. LNCS 298, Springer.

Winskel, G. (1988) An Introduction to Event Structures. In de Bakker, de Roever, Rozenberg (eds.) Linear

Time, Branching Time and Partial Order Logics and Models of Concurrency. LNCS 354 Springer

Verlag p364-397.

Wittenburg, K. (1993) Adventures in Multi-dimensional Parsing: Cycles and Disorders. Int. Workshop on

Parsing Technologies, Netherlands & Belgium Aug. 1993.

Wittenburg, K. & Weitzmann, L. (1996) Relational Grammars: Theory and Practice in a Visual Language

Interface for Process Modelling. In: Proceedings AVIITVL'96: International Workshop on the Theory

of Visual Languages, Gubbio, Italy, May 1996.

Wittenburg, K.; Weitzmann, L.; Talley, J. (199 1) Unification-based Grammar and Tabular Parsing for

Graphical Languages. JVLC 2(4) Dec. 1991 p347-370.

Woodman, M.; Ince, D. C.; Preece, J.; Davies, G. (1986) A Grammar Formalism as a basis for the Syntax-

directed Editing of Graphical Notations; Open University CDFM Technical Report 86/19.

Zave, Pamela (1985) An Operational Approach to Requirements Specification for Embedded Systems. In

(Gehani & McGettrick 1985) p 148.

Zave, Pamela & Yeh, R. T. (1985) Executable Requirements for Embedded Systems. In (Gehani &

McGettrick 1985) p341,2.

320

BlbHography

Books and Proceedings

Allwein, G. & Barwise, J. (Eds.) (1993) Working Papers on Diagrams and Logic. Preprint IULG-93-24,

Logic Group, Indiana University, Bloomington, IN.

Allwein, Gerald & Barwise, John (1996) Logical Reasoning with Diagrams; Studies in Logic and
Computation 6; Oxford University Press USA

Barthes, Roland (1967) Elements of Serniology; Cape.

Berge, Claude (1970) Graphs and Hypergraphs; North Holland.

Bergstra, J.; Heering, J. & Mint, P. (eds.) (1989) Algebraic Specification. ACM Press, Frontier series, with
Addison Wesley. (ch 1,6).

Bertin, Jacques (1982) Graphics and Graphic Information Processing; de Gruyter.

Bertin, J. (1983) Serniology of Graphics: Diagrams, Networks, Maps. University of Wisconsin Press.

Bird, Richard & Wadler, Philip (1988) Introduction to Functional Programming. Prentice Hall.

Brodie, M. L.; Mylopoulos, J.; Schmidt, J. W. (1984) On Conceptual Modelling; Springer.

Cajori, Florian (1929) A History of Mathematical Notations, Vol 11; Open Court, Chicago. (also published
1974).

Carpenter, R. (1996) Type-Logical Semantics. MIT Press.

Chang S. -K., Ichikawa T., Ligomenides P. A. (Eds.) (1986) Visual Languages. Plenum Press, New York.

Checkland, Peter (1981) Systems Thinking, Systems Practice. New York: John Wiley & Sons.

Chen, Peter P. (1978) The Entity-Relationship Approach to Logical Database Design. QED Monograph

Series 6. Massachusetts: Information Services Inc.

Chomsky, Noam (1965) Aspects of the Theory of Syntax; MIT Press.

Claus, V.; Ehrig, H.; Rozenberg, G. eds. (1979) Graph Grammars and their Application to Computer

Science & Biology: (Proc. I st Int. Workshop). Lecture Notes on Computer Science 73. Heidelberg:

Springer.

Clocksin, W. F. & Mellish, C. S. (1987) Programming in Prolog. New York: Springer.

Cohen, B.; Harwood, W. T.; Jackson, M. I. (1989) The Specification of Complex Systems. Addison-Wesley.

(p94-100).

Dalrymple, M.; Kaplan, R. M.; Maxwell, J. T.; Zaenen, A. (eds.) (1996) Formal Issues in Lexical-Functional

Grammar. CSLI Lecture Notes 47. Cambridge University Press.

De Marco, T. (1978) Structured Analysis and System Specification; Yourdon NY.

Deransart, Pierre; Jourdan, M.; Lorho, B. (1988) Attribute Grammars. LNCS 323, Springer.

Dershowitz, N. (1989) Rewriting Techniques and Applications VII. LNCS355, Springer.

Devlin, Keith J. (1991) Logic and Information. Cambridge University Press.

Dijkstra, Edsger W. (ed.) (1990) Formal Development of Programs and Proofs. Addison Wesley

Eco, Umberto (1976) A Theory of Sen-dotics; Indiana University Press.

Eco, Umberto (1984) Semiotics and the Philosophy of Language. London: Macmillan.

Ehrig, H.; Nagl, M.; Rozenberg, G. eds (1983) Graph Grammars and their Application to Computer

Science: (Proc. 2nd Int. Workshop). LNCS153; Springer.

Ehrig, H.; Nag], M.; Rozenberg, G.; Rosenfield, A. (eds.) (1987) Graph Grammars and their application to

Computer Science (3rd). LNCS 291, Springer.

321

BIbliography

Ehrig, H.; Kreowski, H. -J.; Rozenberg, G. eds (199 1) Graph Grammars and their application to Computer

Science (4th). LNCS 532, Springer.

Ehrig, H.; Engels, G.; Rozenberg, G. cds. (1995) Graph Grammars and their Application to Computer

Science: (Proc. 5th Int. Workshop). LNCS 1073; Springer.

Ellis, G. & Levinson, R. (Eds.) (1992) Proceedings of the I st International Workshop on Peirce: A

Conceptual Graphs Workbench", Las Cruces, New Mexico, July 1992.

Ellis, Gerard & Levinson, Robert (Eds.) (1994) Proceedings of the 3rd International Workshop on Peirce: A

Conceptual Graphs Workbench, University of Maryland, August 1994.

Ellis, Gerard; Levinson, R.; Rich, W.; Sowa, John F. (Eds.) (1995) Conceptual Structures: Applications,

Implementation and Theory, Proceedings of Third International Conference on Conceptual Structures,

ICCS'95, Santa Cruz, CA, USA, August 1995. Lecture Notes in Al 954, Springer-Verlag.

Findler, N. V. (1979) Associative Networks: Representation and Use of Knowledge by Computer; Academic.

Frege, Gottlob (1972) Conceptual Notation and Related Articles. Oxford: Clarendon Press.

Freyd, Peter & Scedrov, A. (1990) Categories and Allegories. North-Holland.

Gane, C. & Sarson, T. (1977) Structured Systems Analysis: Tools and Techniques. IST, NY.

Gehani, N. & McGettrick, A. D. eds. (1985) Software Specification Techniques. Addison Wesley.

Girard, J-Y.; Lafont, Yves; Taylor, Paul (1989) Proofs and Types. Cambridge University Press.

Glasgow, JI & Narayanan, N. H. & Chandrasekaran, B. (eds.) (1995) Diagrammatic Reasoning: Cognitive

and Computational Perspectives. Menlo Park: AAAI Press / Cambridge, MA: MIT Press.

Goodman, Nelson (1968) Languages of Art: An approach to a Theory of Symbols. Indianapolis: Bobbs-

Merrill.

Gordon, M. J. C. (1979) The Denotational Description of Programming Languages: An Introduction.

Springer-Verlag.

Gorny, P. & Tauber, M. J. (1987) Visualization in Progranuýning. LNCS 282, Springer.

Gray, John W. & Scedrov, Andre (eds.) (1989) Categories in Computer Science and Logic: (proc. conf. June

87) Contemporary Mathematics 92; American Mathematical Soc.

Hammer, Eric (1996) Logic and Visual Information. Studies in Logic, Language and Information 3. CSLI,

Cambridge University Press.

Hardwick, C. S. (ed.) (1977) Semiotics and Significs: The Peirce/ Welby Correspondence; University Press.

(pictorial logic)

Harland, David (1984) Polymorphic: Programming Languages. Ellis Horwood, Chichester UK.

Harland, David (1986) Concuffency and Programming Languages. Ellis Horwood, Chichester UK.

Hartshorne, C. & Weiss, P. eds. (1933) The Collected Papers of Charles Sanders Peirce. Harvard University

Press, vols 3,4. (v3 Exact Logic; v4 The Simplest Mathematics)

Hartshorne, C. & Weiss, P. (eds.) (1933) The Collected Papers of Charles Sanders Peirce; Harvard

University Press.

Hintikka, J. (1969) Models for Modalities; D. Reidel, Dordrecht.

Houser, N.; Roberts, D. D. & van Evra, J. (eds.) (1997) Studies in the Logic of C. S. Peirce. Bloornington:

Indiana University Press.

Jackson, M. A. (1983) System Development. Prentice-Hall.

Johnston, David E. & Postal, Paul M. (1980) Arc Pair Grammar. Princeton University Press.

322

Bibliography

Jones, Cliff B. (1990) Systematic Software Development using VDM. Prentice-Hall (2nd edn.)

Jouannaud, J. P. ed. (1985) Rewriting Techniques and Applications V, LNCS202, Springer.

Kilgour, A. C. & Earnshaw, R. A. eds (1988) Graphics Tools for Software Engineering: Visual Programming

& Program Visualisation (Proc BCS Symposium London March 1988). British Computer Society,

London.

Kilgour, A. C. & Earnshaw, R. A. eds (1988) Graphics Tools for Software Engineering: Visual Programming

& Program Visualisation (Proc BCS Symposium London March 1988). British Computer Society,

London.

Lambek, J. & Scott, P. J. (1986) Introduction to Higher Order Categorical Logic. Cambridge University

Press.

Laurel, B. K. (1991b) Computers as Theatre. Addison Wesley

Lescanne, P. ed. (1987) Rewriting Techniques and Applications VI. LNCS 256, Springer.

Levinson, R. & Ellis, G. (Eds.) (1993) Proceedings of the 2nd International Workshop on Peirce: A

Conceptual Graphs Workbench. Quebec City, Canada, August 1993.

MacLane, Saunders (1971) Categories for the Working Mathematician. Springer.

Manzano, Maria (1996) Extensions of First-Order Logic. Cambridge Tracts in Theoretical Computer

Science 19, Cambridge University Press.

Martin, J. & McClure, C. (1985) Structured Techniques for Computing. Prentice-Hall.

Martin, R. M. (1978) Serniotics and Linguistic Structure -A Primer in Philosophic Logic. State

University of NY, Albany. (Formal logical analysis of the use of formal language)

MASCOT (1987) The Official Handbook of MASCOT; Crown, HMSO, UK.

Milner, R. & Strachey, C. (1976) A Theory of Programming Language Semantics. Chapman and Hall.

Nichols, H. K. & Simpson, D. eds (1987) Proc. ESEC87: First European Software Engineering Conf. LNCS

289, Springer.

Oxley, J. G. (1992) Matroid Theory. Oxford University Press.

Peirce, C. S. (1984) Writings of C. S. Peirce. Indiana University Press

Peterson, J. L. (1981) Petri Net Theory and the Modelling of Systems. Prentice-Hall.

Peyton Jones, Simon (1987) Implementation of Functional Languages. Prentice-Hall. (G-machine)

Pitt, D. H. et al. (eds.) (1986) Category Theory and Computer Science. LNCS 240 Springer.

Pitt, D. H. et al. (cds.) (199 1) Category Theory and Computer Science. LNCS 530 Springer.

Potter, B.; Sinclair, J.; Till, D. (199 1) An Introduction to Formal Specification and Z. Prentice-Hall.

Roberts, Don D. (1973) The Existential Graphs of Charles S. Peirce. The Hague: Mouton.

Rydeheard, D. E. & Burstall, R. M. (1988) Computational Category Theory. Prentice-Hall.

Saarinen, Esa (ed.) (1979) Game-Theoretical Semantics; D. Reidel, Dordrecht.

Saussure (1916) Cours de Linguistique General; engl. tr. Baskin, W. (1950). Peter Owen.

Shannon, Claude & Weaver, Warren (1964) Mathematical Theory of Communication. Illinois.

Seligman, Jerry & Westerstahl, Dag (eds.) (1996) Logic, Language and Computation vol. 1. CSLI Lecture

Notes, Cambridge University Press.

Sowa, John F. (1984) Conceptual Structures: Information Processing in Mind and Machine; Addison

Wesley.

323

Bibliography

Sowa, IF (ed.) (199 1) Principles of Semantic Networks: Explorations in the Representation of Knowledge.

San Mateo, California: Morgan Kaufmann.

Spencer-Brown, George (1969) Laws of Form. New York: Bantam. (Also published by New York: Julian

Press 1972).

Spivey, J. M. (1988) Understanding Z. Cambridge University Press.

Tepfenhart, W. M.; Dick, J. P.; Sowa JR (Eds.) (1994) Conceptual Structures: Current Practices.

Proceedings of Second International Conference on Conceptual Structures: ICCS '94, College Park,

Maryland, August 1994. Lecture Notes in Al 835, Springer-Verlag.

Thomason, Richard (ed.) (1974) Formal Philosophy: Selected Papers of Richard Montague; Yale University

Press.

Tufte, E. R. (1990) Envisioning Information. Graphics Press, Cheshire, CT.

van Leeuwen, Jan; ed. (1990) Formal Models and Semantics (Handbook of Tbeoretical Computer Science

vol B), Elsevier Science.

Vickers, Stephen (1989) Topology via Logic. Cambridge University Press

Watt, D. A. (199 1) Programming Language Syntax and Semantics. Prentice Hall.

Welsh, D. J. A. (1976) Matroid Theory. London: Academic Press.

Whitehead, Alfred North (1948) An Introduction to Mathematics. New York: Oxford University Press.

Yourdon, E. & Constantine, L. (1978) Structured Design. Yourdon, NY.

Zhao, R. (1993) Handsketch-based Diagram Editing. Teubner, Stuttgart.

324

Appendices

A Note on Syntactic Symmetry

B. A Sketch for a BNF Grammar

C. A Proof Concerning a Simple Rewrite Rule

A Short Glossary

EA Note on Sketching Metaphors

F. Smalltalk Classes of the Prototype Implementation

325

Appendix A.
A Note on Syntactic Symmetry

This short note discusses and illustrates the notion of symmetry In forms and sketches, which

relates to the concept of geometric shape either In a graphical or more abstract sense.

A. 1 Syntactic Symmetry and Abstract Geometry

Abstract ideas of shape can be described by algebraic operations in geometry. We examine the

case where the items or expressions of a notation are symmetric In some way.

In the language of algebra, a. morphism from an entity to itself Is called an endornorphisar, If It Is

an isomorphism, it is called an automorphism. The associative composition of morphisms

provides a total binary operation on the generated set of endomorphisms on an entity, comprising

the identity morphism and all composites, which means that the set carries an algebraic structure

known as a monoid. The subset of automorphisms is closed under composition, and has an

inverse for each member, which makes it a group.

Forms that are invariant under a group of operations are said to possess the global property of

symmetry. Symmetries of this kind may be evident at any level of syntax, but are especially

noticeable in graphical properties. Automorphisms within a sketch show where symmetries can be

drawn into the graphics.

A Symmetric Relation

C'ý%
Figure A. 1 A web

For example, a non-directed graph (or web) [fig A. 11 may be used to denote a symmetric binary

relation. We consider the sketch for a 'nearness' relation, which describes a subset of ordered

pairs: -

@iD (ý A pair (E first

Figure A. 2 A sketch for a relation on nodes

327

Appendix A

In this sketch, it is Intended that a web is ambiguous as to which end of any arc is first and which is

second. The map invert associates each near-arc of a graph with an arc in the opposite direction,

by virtue of the equality: -
ED >

pair
>

second

Invert Node

GD > DaIr >first
LJ

Figure A. 3 An equality of arc-inversion

From the sketch,

invert: Near -4 Near

invert; invert = Near

invert; pair; first = pair; second

Hence

invert; invert; pair; first = invert; pair; second

pair; first = invert; pair; second

This abstract symmetry can then be realized through geometric symmetry. The pictorial link-items

that express nearness of two nodes may be symmetric, with invert corresponding to rotation

through 180".

A. 2 Symmetric Sketches

Symmetries may also exist within sketches (e. g. chains in [fig 5.26] of §5.3.2.2). We may define--

An endo-codex is a codex from a sketch to itself; it is an auto-codex if it is an isomorphism.

The set of endo-codices generated by composition of endo-codices on a sketch has the structure of a

monoid. The subset of autocodices is a group.

Since a codex re-interprets one sketch in another, we can follow a geometric metaphor and regard

the group of auto-codices as giving all viewpoints on any expression. If all expressions are

symmetric under a group of auto-codices, then viewpoints in the group have no effect on meaning.

(ý ý> tamet

Let Di be the sketch for directed graphs: source

There is an auto-codex on this sketch which swaps the roles of its two maps, and thus has the effect of

reversing the arcs of a graph. This codex (reverse) is self-inverse, as depicted in the meta-schema:

328

Appendix A

(B a
If g is a formal digraph (a model of Di), then reverse; g is the'same'graph but with arcs reversed.
A graph g is symmetric under reversal iff reverse; g =- g.

As with the digraph, the nearness sketch above also exhibits symmetry between the maps first and

second. The autocodex that swaps these maps represents the semantic operation of Inverting the

relation. In the case of such a self-dual graph, this global reversal cannot affect meaning.

329

Appendix B.

An Example Sketch for a BNF Grammar

This example explores how a conventional BNF syntax can be specified in SIGN. This may be

compared with the general case of sketches for context-free grammars given in (Wells & Barr

1988), in which the initial algebra for a suitable sketch is the set of derivation trees for a context-

free language.

B. 1 Sketches for a Syntax of Boolean Expressions

The syntactic fragment covers expressions such as:

- (TV (-, (FAT)))

in which there is one unary and two binary operators, and two constants.

The 'tagmatic' syntax may be defined by the BNF rules:

Bool :: = Sent I Value

Char:: = Value I Op I Not I Brac I Ket

Sent:: = Dyad I Neg

Dyad:: = Part Op Part

Neg :: = Not Part

Part:: = Value I Sub

Value:: = True I False

Sub:: = Brac Sent Ket

Op :: =And I Or

- where Bool is the type of a complete formula and Char is the type of a character in the formula.

Note that the characters themselves, which are terminal symbols, are here represented by the

names:

Not And Or Brac Ket True False.

This avoids extending the BNF formalism with extraneous literal characters, and emphasizes the

fact that character-shapes are not formally specified.

The schemas below are intended to define the lexical and tagmatic layers of syntax - neither

stating how the characters are drawn, nor interpreting the expression into a normal form or

evaluation. The schemas may define the abstract shape of expressions as strings of characters,

which is taken for granted in BNF. Strings are defined as certain connected directed graphs

331

Appendix B

whose arcs are characters, each linking a node on the left to one on the right, as described in

Chapter 5.

If we depict the BNF rules directly, we get schemas such as the following: -

(Char

(Value

LAný) CHD

CýH) (ED F- Sub Gii)

Dyad > Sub > -1-<
CN

g right
EH)

left right left right oft

left ight r

left DIL DR right left right E-D,
r\ight left

7/

Part I OP Part Ket
I\

ft
ýýhl

oft

lig\ht

left rigý\ /11/eP t le

Node

Figure B. I Schemas for generative Boolean syntax

Apart from Node, every entity is a type of substring between a left node and a right node. The

substrings are defined as limits - for example Neg is a pullback: the apex of a coneon base:

(Not --> Node +- Part)

that denotes a Not-character preceding a Patt-phrase.

In the case of Dyad, three pullbacks are used to construct a cone on base:

(Part --) Node +- Op -4 Node +- Part) .

B. 1.1 A Notation for Map-Labelling

In this example the maps are given structured names rather than the unique labels of SIGN in

Chapter 5. Map labels in the schemas here need not be unique, but maps with the same label and

same domain entity must be equal. Where no name is shown, the map takes the default name of

its target-entity, but uncapitalized. Thus the map from Value to Char is called "cha? '.

332

Appendix 8

To avoid ambiguity, paths are given unique names, built as follows:

<name of start entity> followed by a list of <map-label>, separated by stops.

- if two paths have the same name, they are equal.

E. g. the left-node for a value is identified by the pathname value. char. lef t,

the r ight-node for a left-bracket (Brac) is identified by the pathname Brac. char. right , and
the left-node for a right-bracket (Ket) is identified by the pathname Ke t. char. 1eft.

A map can then be uniquely named by its singleton path, e. g. value. char , and an identity map

on an entity is named (as before) by its entity name, which also denotes an empty path.

The equalities shown in [fig B. I] can then be written: -

Dyad. left = Dyad. dl. part. left

Dyad. right = Dyad. dl. part. right

E. g. the first of these equalities has the effect of constructing Dyad. left as the composite:

Dyad. dl; DL. part; Part. left

of functions denoted by the maps.

By exploiting the algebraic definition of theory-categories, derived maps can generally be named

by textual expressions. For example, we can calculate the bounding nodes of a formula in Bool as

follows:

Bool. left = Value. char. left v Sent. left

- which constructs the unique map from Bool, which is the apex of cocone on base (Value Seno.

The symbol /v/ signifies choice between disjoint cases. (To avoid ambiguity it may sometimes be

necessary to label the cones and co-cones of the sketch.)

Using this notation, the rest of the calculation for bounding nodes of a formula in Bool is as

follows:

Sent. left = Dyad. left v Neg. left

Neg. left = Neg. not. char. left

Dyad. left = Dyad. dl. part. left

Part. left = Value. char. left v Sub. sl. brac. char. left

Op. left = And. char. left v or. char. left

333

Appendix IS

Similarly,

Bool. right = Value. char. right v Sent. right

Sent. right = Dyad. right v Neg. right

Neg. right = Neg. part. right

Dyad. right = Dyad. dr. part. right

Part. right = Value. char. right v Sub. sr. ket. char. right

op. right = And. char. right v or. char. right

[Some of these equalities are omitted from the above schema, for brevity.]

The full sketch describes the steps in parsing any string of characters in search of substrings of

type Bool. It specifies constraints on the search, but does not lead to a direct construction of the

maps Bool. lef t and Bool. right - owing to cyclic dependencies in the constraints.

B. 1.2 When is a string well-formed?

If we wish to specify that an expression must consist solely of a set of boolean formulas, it is

necessary to add several more constraints.

It is clear that the following isomorphisms hold:

Dyad -= DL =- DR -= Op

Sub -= SL =- SR =- Brac =- Ket

Neg =- Not

We need to constrain every string of characters to be an item with property Bool, though we note

that substrings may also be of type BooL This makes it possible to simplify the sketch, along the

lines of [fig B. 2], with further constraints to ensure every string defines a formula of Bool.

334

Appendix B
(Formula EH).

right

left
Char > Formula

right

left

Op 1;
(Boo Formula
CHD

ri

(Value

lpf
frp fft,

-

1-1

ri

(EH) (ED

Figure B. 2 Constraints on Boolean formulae

The challenge (not taken up here) is to describe in a sketch the full computation of parsing.

Apparently in this case the recursion in the context-free grammar has a polynomial bound, and we

should be able to carry out the recursion diagrammatically by means of limits and colimits, within

the logic of FIVI-sketches.

335

Appendix C.

A Logical Proof Concerning a Simple Rewrite Rule

This proof illustrates how sketches can be used for rigorous reasoning about the effects of

rewriting operations. We consider the example of generative rewriting given in (§6.2.4.2), of

adding branches to trees.

CA Two Rules that Generate a Forest

A simple example of generating an expression is found in the case of trees in a forest, in the sense

of (§5.3.2.1). It is easy to see that the two simple rewrite-rules R1 and R3 of (§6.2.4.2) suffice to

generate a forest of trees - where R1 adds an isolated node as the base of a new tree, and R3

selects any node of a tree and adds a new branch consisting of a new node attached by a new arc,

as for example in [fig C. 11].

Figure C. IA single new branch on a lone tree

The soundness of the rules is evidently expressed in the following fact:

Starting with an empty expression, the application of rules R1 and R3 always results in a

syntactic forest.

In the sketch doctrine FM we can prove this assertion and also the property that applying rule R3

leaves the set of trees unchanged. In order to prove completeness - that the two rules can

generate every finite forest - we would need to represent an inductive argument, which is not

considered here.

C. 1.1 Proving the Effect of Adding Branches

For purposes of illustration, the proof presented below treats only the properties of R3. It is

demonstrated in a diagram-assisted outline that could be expanded into a fully formal

presentation. The method analyses the effect of multiple application of rule R3 in parallel - adding

a set of branches to the nodes of a set of trees.

337

Apperxfix C
C Tree i:)

base
M target ýý

> tree 1. Tree

,v

CiD source jrode

EiD

Figure C. 2 Sketch FF+ of a forest with added branches

The operation of adding branches requires a translator from the theory EE of a forest If ig 5.251 to

the theory EE+ of forest-with-added-branches (fig C. 2]. This may be carded out by constructing

suitable codices between the sketches that present the theories needed.

E) .> (D <-. E) (D
cc ff ff*

\Y \Y N/
(ýBj (2j7+ aa S

Figure C. 3 A meta-sketch of adding branches

The meta-schema [fig C. 3] is drawn to depict the constituents of a derived sketch AA which Is

constructed In the proof in order to define the application of the rule. The codex aa Is a deductive

extension of FF+, and therefore AA Is a part of the theory EE+.

In If ig C. 3 left), BB is the sketch consists of two entities connected by one map - corresponding to

the relation between Node and Branch In FF+. The codex bb Is the subsketch of FF4:

(Ej)
node

GjjD whose shape is that of BB . The codex ff embeds FF as a subsketch of

FF+.

The image bb Is joined to ff (using a pushout construction on sketches) to give the sketch FF4' for

a forest-and-new-branches (fig C. 2]. The two Images ft, bb share the entity Node, to which

branches are joined. The sharings are depicted with the help of the sketch EE which consists

simply of a single entity, with both nn and cc being the subsketch either of FF or BB

respectively.

In [fig C. 3 right], the Images ff, ft* share the entity Tree - denoting the set of trees of the forest.

338

Appendix C

The codex H is the subsketch (Ej) within FF The sketch AA contains two images (f f; aa and

ff *) of the sketch FF for a forest, and an image bb of a sketch BB for the new branches. The

image (f f; aa) specifies the forest beforehand, and ft* yields the forest after the branches have

been added. The new forest-schema [fig CA] for ff is shown with derived entities and maps

named with an added asterisk. This is just a renaming of FF.

ý Tree E)

alse* b =9

source.

ta ýet* ý7- (N=ode* >Ire"ej CTrje:)

Figure CA A new forest

The correspondence between the old and new tree of the instance [fig C. 11 is depicted using the

proto-notation described in (§5.4.3.4); in the proto-schema [fig C. 51, the tree on the left has a new

'branch' marked, and the resulting new tree copies the old tree and translates the branch into a

new arc whose target is a new node. (The branch-attaching map node from Branch to Node is

omitted for tidiness).

(Tres

baseT
Itree

treej
Tbase*

(ý > oldNode

Sourcel Sourcei

oIdArc

targe targ;

ýý

(ý > oldNode (ý Branch

SOU Sourca 6\0 ne rc Met
Are newNode

r
7-N (A

c) oldArc

targ/e'ý targe target*

(ý > oldNode Node*
ED

Figure C. 5 Relating signatures of old trees, branches and new trees

C. 2 The Proof

The proof proceeds in stages. The first step is to construct the new entities and maps of the new

forest fl* of [fig CA], which expresses the assertions to be proved. Schema [fig C. 6] depicts this

construction. In order to confirm that the constructions still satisfy the syntax of a forest (fig CAJ

339

Appendix C

we must justify three assertions: The base of a new tree belongs to that tree itself; targer and

base* form a disjoint union; trees are the components of the digraph (source, targer).

The schemas supporting the proof depict construction and inferences; derived items are shown in

bold, and equalities are numbered for ease of reference.

C. 2.1 Constructing the New Forest

To construct the new entities and maps which constitute the new forest, we add new members to

the sets of arcs and nodes.

C -D252-<
(Branch >-ý (Ei)

426 Brdnch be 9 ldýode - -TArc - ne4ode -a

base* tree*
newArc newNode

> (E)

>jArc

r, \-
oldiode rc miode

Itree

(H)
oldArcRD

1ýýIdýNode

el source
_: §Mý (Nods

Figure C. 6 Stages in interpreting the new trees

New entities Arc* and Node* are defined by adding in a newArc and a newNode for each branch, by

means of disjoint-union constructions.

The base* of any Tree remains as the oldIVode at its base. [E81

From Arc*, a map source* is defined by cases:
the source* of a newArc is the oldNode at the branching node; [E4]

the source* of an oldArc is the oldNode at its source. [ES]

From Arc*, a map farget* is definedly cases':

the target* of a newArc is a newNode; [E2]

the target* of an oldArc is the target of an oldNode. [E3]

From Node*, a map tree* is defined by cases:

the tree* of a newNode is the tree of the branching node; [E61

the tree* of an oldNode is just its tree. [E7]

Schemas [fig 5.25], [fig C. 4] and [fig C. 6] together show the sketch AA referred to in [fig C. 3].

C. 2.2 Finding the Bases of New Trees

To show that the new base of a tree belongs to that tree itself we need only simple composition of

equalities [fig C. 7].

340

Appendix C

ýý'Ibase* (ý 3ý'tree*

oldide 7

base tree

>
Tree

Figure C. 7 Proof of (base*; tree* = Tree)

To show that base*; tree* = Tree. [E9]: -

base*; tree* = base; oldNode; tree* = base; tree = Tree

[ES E7 EI =* E9].

To show that targer and base* form a disjoint union, we require to find an unique map h from

Node*, under the circumstances depicted in [fig C. 8].

E ý>
oldArc

e

41t II Tf
(ED >k0

ise
ZE=

Ig

Tree

(ý ýýNnewArc

nN e ode

ýNode- >h0

oldiOde
14 ik

(ýNe

Branch >newArr

2 13
neTArc _ n4ode

Tf

(ý > tamet* (ý >h

Oýrc 3
oldiode 14

0--ý target k Arc > ED >

oldArc >fu

ý, -ee > base* -- h (Nod; ý >

9
oldiode

14

> base EýE) >k

L-J
>

(Branch ----) ý>newkc

16
newTrc

T

(ý > tarqet* >h Ix,

irc
17

8> oldArc GD >

Figure C. 8 Proving the existence of h

Tree

15
ba9

>h

talret'
It

(j;;;

The colimit property required of Node* holds if, given any entity X and maps f, g such that:

f: Arc* -4 X and g: Tree -4

then there is an unique map to X that converts target* tof and base* to g, i. e.: -

3! h: Node* --> X- target*; h =f^ base*; h =g [EI5 EI81

We can show this by constructing a map h as follows, with the help of a map k, and then showing it to
be unique: -

341

Appendix C

Because Node is a disjoint-union, and oldArc; f: Arc -4 X, we can define unique k: Node

-4

3! k: Node -+ X- target; k = oldArc; f A base; k =g [Ell E12]

Because Node* is a disjoint-union, we can define h by cases:

Let newNode; h := newArc; f and oldNode; h :=k [E13 E14]

Then base*; h = base; oldNode; h = base; k =g [E8 E14 E12=*EI5]

And by cases,

newArc; target*; h= newNode; h = newArc; f [E2 E13=ýEI6]

oldArc; target*; h = target; oldNode; h = target; k = oldArc; f

[E13 E14 Ell=: > E17]

Hence, target*; h = f. [E16 E17=ýEI81

so that h has the required properties [E 15 and E 181.

Tree rc 3ý'newkc

2
g

4se

bTse*

T

n4e

>PldNod >P ux Node*

+3
t+t*

18,18,

> oldArc - (Are

Tree >newArc

12' 13'
Nf

4le T9

ne

T

ode

T

Eýe >PldNod (ý > F, ux (ýe >p (X

4
d

let
ol

te

(ý > oldArc (Are 77) (Node

Figure C. 9 Proving uniqueness: p=h

For uniqueness of h, let p satisfy target*; p =f and base*; p = g. [E18'AE15']

Then base; oldNode; p = base*; p = g[E8 1315'=ý]312']

And target; oldNode; p = oldArc; target*; p= oldArc; f [E3 E18'=ýEIFI

By definition of k, it follows that oldNode; p = k[E12' Ell'=. >E14,1

Since newNode; p = newArc; target*; p= newArc; f [122 E18'=: >EI3'1

By definition of h, it follows that p=h. [EITA E14'=* p=h]

342

Appendix C

C. 2.2 The New Trees are the Old Trees

To show that no extra trees are created nor existing trees removed, we need to show that trees are

the components of the new digraph (sourc6*, target*).

ED

newAr
Br7anch >newArc =

oldArc
Are

--) >
oldArc

GD

t rget*
2

newTode 4 souý'

Target*

_.
2_ taýet i rou ce*

0 4rce T
6 >oldNod oldNode >oldNod CNode* GE)

77
t tree'

Ttree
7

Tree'

tee

Tree
tre Ei*

c- Tree

Figure C. 10 Proof of E21

To show tree*: Node* -+ Tree finds components of the graph, we show first that it satisfies the

equality: source*; tree* = target*; tree*[E211

Proof by cases [fig C. 10]:

newArc; source*; tree* = node; oldNode; tree* = node; tree

= newNode; tree* = newArc; target*; tree* [E4ME6E2=ýE19]

oldArc; source*; tree* = source; oldNode; tree* = source; tree

= target; tree = target; oldNode; tree* = oldArc; target*; tree*

[E5 E7 EO E7 E3 =eý E201

And it follows that [EI 9 E20 =* E21] (not depicted).

Arc >. -Urce
(Nods

5 target 0; c= oldTods wm

33 B >. -Urce*

4 t* 22

.- TY
>pldNcd (ý >Y(yq

nowNode <,

2 Branch

Node* targer newArc L

\I
source.

T 4 y
48

ne4ode
22 oldNcd

23 y Ytree

ED oldNod (ý >pldNod (ý

Ty

-L3-

Ttr"e
2-- tf.

0q Tree ýýD

Node* oldNod ED

26 - -2- tlee TY - Tu" T
(I) r Tres

(Tree

ýE)
oldNode

TY _L4

+e

oq CH) t%* ýE)

ly
21- n+9

ýE) , newNode ED

Figure C. 11 Proving colimit properties of tree*.

343

Appendix C

Secondly [fig C. I I], we show that for any entity Y and map y satisfying the same property, y factorizes

through tree*.

Let y: Node* -+ Y

satisfy source*; y = target*; y[E22]

Show that there exists q: Tree -+ Y suchthat tree*; q = y(E26]

Now,

o1dArc; source*; y= source; oldNode; y [135]

o1dArc; target*; y= target; oldNode; y [1331

So we define q uniquely by tree; q = oldNode; y [defof tree] [E23]

Then oldNode; tree*; q tree; q = oldNode; y[ME23=ý1324]

And newNode; tree*; q node; tree; q = node; oldNode; y

= newArc; source*; y newArc; target*; y= newNode; y [E6E23E4E22E2=>E25j

Hence we have the factorization tree*; q y [E24E25=*E26]

Thirdly we show that q is unique:

Letting tree*; r= y[E26'], we show r q.

Immediately, oldNode; y = oldNode; tree*; r = tree; r [E7 E26'=: > E23']

Hence by uniqueness of qin [E23], we have r=q.

This completes the proof

C. 3 Remarks

Simple theorems of this kind can be proved more easily as instances of general theorems - in this

case concerning colimits in categories. The proof above demonstrates an elementary style of

formal reasoning determined by the rules of the doctrine. What is needed is an automated proof-

assistant to carry out the mechanics of the process of applying deductive rules and help in

searching for a proof.

344

Appendix D.

A Short Glossary of Terms

For convenience the definitions of new or adapted terminology are listed below, together with

reference to the place where each term is introduced.

Codex: A codex is a sketch-morphism -a map between sketches that preserves connective

signature and constraints. (§6.1.2)

A codex can extend a sketch with extra entities, maps and constraints.
A deductive codex: extends a sketch within the same theory; all extra entities and maps

are constructions on the sketch, and all extra constraints are deductions.

Community of notations: a set of related logical instruments that assist visual presentation,

reasoning and communication (regarding system designs) within a common environment.
(§4.5.1)

Embody: To embody an abstract expression-form is to realize it in some physical medium.
(§4.5.1)

Expression: a model of a syntactic sketch.
Concrete expressions are syntactic models in a medium, a category of finite sets.

Abstract expressions are codices to some theory-category.

Form: an underlying combinatoric structure for an expression as defined by a syntactic

signature for the notation. Forms are graphoid, i. e. graph-like. (§4.4)

The category of forms formalizes the part-whole relation on expressions (§4.4.4).

A well-formed form (wff) is a whole expression. (§4.4.1)

The form-space is the category of forms (including all those that are not well-formed).

Interpret: To interpret an expression in the subject domain is to recognize it as an action

within the cultural world of shared ideas. (§4.5.1)

Interpretant: a semantic entity that corresponds to a graphical sign in an expression. (§4.5.1)

Language: The 'language' of a notation is the category of models of its syntactic sketch.

Medium: a category of (finite) sets and functions in which expressions are modelled.

Meta-sketch: a sketch that is interpreted in the category Sk of sketches itself. (§6.1.2)

Meta-schema: a schema that depicts (part of) a meta-sketch.

Model: a codex to a category, or sometimes a functor from a theory to a category.

Referent: A referent of a (graphical) token is an actual object or state that is to be found in the

whole context that surrounds a displayed expression containing the token. (§4.5.1)

Semlosis: A notation's semiosis is its character and structure as a sign-system. (§4.2)

345

Appendix D

Situated: An expression is situated when it is embedded in a formal presupposed context -
i. e. a context where it would be appropriate.

Syntax: The syntax of a notation is the layered coding structure that defines the relation
between graphical and semantic forms.

Tagmatic: a layer of syntax in which the entities are types of syntagmatic arrangement of
lexical items. (§4.5.1)

Tectonics: The tectonics of a notation is the layered theory that defines its semlosis.

Theory: A formal syntactic theory is a deductively complete class of entities, maps and

constraints, generated from a sketch (that presents the theory) by the logical rules of a
doctrine. (§6.1.1)

Transform: A transform between models is a family of functions on arranged sets of items.

(§6.1.2)

Translator: afunctor between theory-categories. (§6.1.2)

A translator from theory A to theory 5- translates 13-expressions as A-expressions.

346

Appendix E.

A Note on the Sketching of Metaphor Structure

There is enough substance in the theory of Chapter 4 to help understand the mechanisms of

metaphor. We consider how this might proceed, by taking the example of data flow.

A Treatment of Metaphor

Let A and S denote formal theories that define a familiar and an unfamiliar domain respectively.

An analogy between the domains A and S may be represented by a span from some theory M,

which contains conceptual structures common to both domains.

A f- N -4 S

In the example, A refers to fluid flow, and S to data flow. We seek a way of notating S that

suggests to the viewer the familiar domain A in order to motivate understanding of S. This is done

by providing a visual cue C for the familiar domain. The cue is a visual aspect of the domain A,

such as the linear shape of a duct or pipe. The occurrence of a line on the diagram indicates the

route for data to flow. The theory C conceptualizes the visual notion of pipe or line (and therefore

not the invisible fluid or data that flows in it).

When we notate S in syntax G via analogy R, we enforce semantic well-formedness constraints

(from S) onto drawings. There are thus two analogies operating on &

A-M -4 S f- R-G

The cue C carries graphical properties that are true in S by analogy - the shape of a line reflects

the attributes of a data channel. The cue also shares these properties with M, the metaphorical

image of domain A- where the shape of a pipe must be that of a duct for fluid.

We wish the cue to be present graphically, which we achieve by extending C into a syntactic

relation R that spans S and G. As a result, C becomes a span between M and R.

M-C -* R

A simple equality of paths specifies that C describes the same structures in the metaphoric

analogy with S and in the graphically expressed part of S.

Let C define a visual part of A that serves as a cue.

= C-4R-4S

347

Appendlx E

In order to qualify as a metaphor, the maps from C must identify cues in G that suggest the

familiar domain A to the viewer, who must guess at the extent and precision of the map into A in

order to transfer knowledge of A to meanings in S. Thus the viewer must guess which attributes of

pipes are salient in a discussion of data channels, but also whether other symbols in a diagram

bear a similarity of meaning to reservoirs, pumps and desalination units known about in A but not

in C.

Here M covers a part of the intended subject domain S. If we design the notation with lconism as

a guiding principle, we may wish to cover the whole of S with overlapping metaphors.

This brief analysis offers a way of structuring and exploring possible analogies and metaphors that

may help motivate a new notation.

348

Appendix F.

S
1%

malltalk Classes from the Prototype Implementation

Here is a summary of the prototype as so far constructed. In view of the object-oriented approach,

the system is described in terms of its main Classes of Object.

Structure of the Implementation

The principal Object in the application is a FigureEditor that allows editing of expressions In any

formally specified notation. The editor is applied to a Figure that is the expression being edited,

displayed in a window called a FigurePane, which may be drawn upon by a Pencil A figure

consists of a set of items of various sorts (in a Class ltemSort). Each Item is linked to other items

according to the data on sorts for the notation as specified in its Sketch. Graphical depiction of

these syntactic items is defined in a Forma, and details for editing the sketched notation are held

in an Editorfor the forma.

The main Classes and subclasses are: -

FigureEditor (SchemaEditor MetaEditor)

Figure (Schema)

Item (Drawn (Textual) Frame Glyph Peg Site Restraint (Constraint)

Sketch (Forma (Editor))

FigurePane

Pencil

FigureEditor

FigureEditor is a subclass of the Smalltalk system's Class ViewManager. A View-Manager

maintains an application window and controls user interaction, menu management, opening and

closing an editing session. Data for a Figure-Editor record the status during the editing session.

These are the pane (window) upon which a figure can be drawn, the pen or drawing implement

being used, the figure being edited, and the editorthat is being used. In the act of editing, there will

be the mode of operation in force, the rule being applied, and the actual details of a rewrite in

progress. FigureEditor has Methods for accessing this status information, and for signalling the

operation mode: whether adding/removing an item, adding/removing an annotation, editing,

formatting, or applying a rule.

MetaEditor is a subclass of FigureEditor. MetaEditor has Methods for opening a window for

349

Appendix F

editing schemas of a target-notation, and for opening figure-editors. It enables the definition of

rewrite rules, and the building and modifying of menus.

Figure

A figure is stored as a set of items of various sorts and a forma that specifies syntax and graphics.

Figure has Methods for adding and deleting items, for finding an item's attachments, for

determining specific sets of formatting items, and for saving and retrieving figures stored on disk.

Schema is a subclass of Figure, specialized for syntactic SIGN schemas. A schema has

Methods for finding subsets of items and for connectivity information special to schemas.

suite of completed schemas is interpreted as a sketch.

Item

An item is an element of a figure, stored as a name identifying what sort of item it is, with a

sequence of links to other items. Item Methods give access to these data, and allow paths of

connectivity to be calculated; items may be encoded for saving on file. its subclasses are for

graphical or other items that have associated actions in the system.

Drawnitem is a subclass of Item. A drawn-item is a primitive graphical shape such as a line

or circle. It has Methods for drawing itself on screen or on a printer, and for testing if a

selected point on screen lies upon itself.

Textual Is a subclass of Drawn1tem, with Methods for editing and printing characters and

strings, and for calculating their sizes.

Restraint is a subclass of Item. A restraint is a primitive geometric restriction on a vertex, for

example restraining it to remain on one side of a given line. It has Methods for checking each

kind of restraint and temporarily drawing itself as a link - for use when designing the graphical

realization of an item.

Constraint is a subclass of Restraint. A geometric constraint determines how the position

of a vertex is calculated from a set of vertices that it depends on. Constraint Methods

control the activation of constraints and calculate the effects of movement. *

Sketch

A sketch stores names of entities and maps, a definition of its connectivity as a directed graph,

and its set of formal constraints on the graph. Sketch Methods provide access to these data, and

350

Appendix F

to allow a sketch to be built by combining compatible sketches. It has basic facilities to support

reasoning.

Forma is a subclass of Sketch. A forma stores also the graphical information needed for

drawing models of the sketch as adjustable figures in a figure-pane. Its Methods give access

to the graphical sorts, maps and constraints [not yet implemented].

Editor Is a subclass of Forma. An editor stores definitions of all rewrite-rules to be made

available during editing expression in the specified notation. It also defines how the rules

are offered to the user on visual menus [or via other protocols]. It has Methods for

accessing and modifying both the rule-definitions and the menu structure offered.

FigurePane

FigurePane is a subclass of the standard Smalltalk Class GraphicsMedium. A figure-pane is a

medium (a window) on which a figure is drawn under the direction of a figure-editor. FigurePane

has Methods for locating the mouse and identifying items selected by the user, and for drawing,

hiding, and showing selections, by recolouring highlighted items. It manages format operations,

calculating and storing the constraints, restraints, and marks that are affected in formatting. It also

controls the retrieving and saving of figures on disk.

Pencil

Pencil is a subclass of GraphicsTool, a standard Smalltalk Class. A pencil can draw any item on

its pane, by giving control to the item. It has Methods for changing its effect on the pane (e. g.

mode or colour), for handling construction lines (rubber bands) -and for drawing all graphical

primitives.

351

ALL MISSING

PAGES ARE

BLANK

IN

ORIGINAL

