309 research outputs found

    Data modelling and Remaining Useful Life estimation of rolls in a steel making cold rolling process

    Get PDF
    The economic cost of roll refurbishment in the steel-making industry is considerable. In a cold rolling mill, wear and damage of rolls disrupt the industrial environment, so it is critical to predict the remaining useful life early and change the roll without causing disruption to the manufacturing process. However, since cold rolling is a complex process affected by multiple variables which are operated in adverse conditions, it is very challenging to mathematically analyse the roll wear and failure. For this reason, in the present paper, a data-driven solution is proposed to predict the correct time for changing individual rolls. To develop an accurate predictive model, several datasets containing high-resolution production data and roll refurbishment data collected from a UK based steel plant have been acquired and processed in a way that the roll wear is modelled as a Remaining Useful Life (RUL) problem, where the number of coils that a roll is able to process is viewed as the remaining cycles. Then hybrid deep learning models are used to predict the Remaining Useful Life of rolls used in steel making. This novel data-driven approach achieves high prediction accuracy and has been validated on a real-world dataset. The proposed approach not only helps avoiding early failure but also can serve as a critical step towards the design of an optimal, automated maintenance schedule for the roll management

    Fault diagnosis of wind turbine bearing using a multi-scale convolutional neural network with bidirectional long short term memory and weighted majority voting for multi-sensors

    Get PDF
    In order to solve the problems of insufficient extrapolation of intelligent models for the fault diagnosis of bearings in real wind turbines, this study has developed a multi-scale convolutional neural network with bidirectional long short term memory (MSCNN-BiLSTM) model for improving the generalization abilities under complex working and testing environments. A weighted majority voting rule has been proposed to fuse the information from multi-sensors for improving the extrapolation of multisensory diagnosis. The superiority of the MSCNN-BiLSTM model is examined through experimental data. The results indicate that the MSCNN-BiLSTM model has 97.12% mean F1 score, which is higher than existing advanced methods. Real wind turbine dataset and an experimental dataset are used to demonstrate the effectiveness of the weighted majority voting rule for multisensory diagnosis. The results present that the diagnosis result of the MSCNN-BiLSTM model with weighted majority voting rule is higher respectively 1.32% and 5.7% than the model with traditional majority voting or fusion of multisensory information in feature-level

    A review on deep learning applications in prognostics and health management

    Get PDF
    Deep learning has attracted intense interest in Prognostics and Health Management (PHM), because of its enormous representing power, automated feature learning capability and best-in-class performance in solving complex problems. This paper surveys recent advancements in PHM methodologies using deep learning with the aim of identifying research gaps and suggesting further improvements. After a brief introduction to several deep learning models, we review and analyze applications of fault detection, diagnosis and prognosis using deep learning. The survey validates the universal applicability of deep learning to various types of input in PHM, including vibration, imagery, time-series and structured data. It also reveals that deep learning provides a one-fits-all framework for the primary PHM subfields: fault detection uses either reconstruction error or stacks a binary classifier on top of the network to detect anomalies; fault diagnosis typically adds a soft-max layer to perform multi-class classification; prognosis adds a continuous regression layer to predict remaining useful life. The general framework suggests the possibility of transfer learning across PHM applications. The survey reveals some common properties and identifies the research gaps in each PHM subfield. It concludes by summarizing some major challenges and potential opportunities in the domain

    Artificial Intelligence-based Technique for Fault Detection and Diagnosis of EV Motors: A Review

    Get PDF
    The motor drive system plays a significant role in the safety of electric vehicles as a bridge for power transmission. Meanwhile, to enhance the efficiency and stability of the drive system, more and more studies based on AI technology are devoted to the fault detection and diagnosis of the motor drive system. This paper reviews the application of AI techniques in motor fault detection and diagnosis in recent years. AI-based FDD is divided into two main steps: feature extraction and fault classification. The application of different signal processing methods in feature extraction is discussed. In particular, the application of traditional machine learning and deep learning algorithms for fault classification is presented in detail. In addition, the characteristics of all techniques reviewed are summarized. Finally, the latest developments, research gaps and future challenges in fault monitoring and diagnosis of motor faults are discussed

    Degradation Modeling and Remaining Useful Life Estimation: From Statistical Signal Processing to Deep Learning Models

    Get PDF
    Aging critical infrastructures and valuable machineries together with recent catastrophic incidents such as the collapse of Morandi bridge, or the Gulf of Mexico oil spill disaster, call for an urgent quest to design advanced and innovative prognostic solutions, and efficiently incorporate multi-sensor streaming data sources for industrial development. Prognostic health management (PHM) is among the most critical disciplines that employs the advancement of the great interdependency between signal processing and machine learning techniques to form a key enabling technology to cope with maintenance development tasks of complex industrial and safety-critical systems. Recent advancements in predictive analytics have empowered the PHM paradigm to move from the traditional condition-based monitoring solutions and preventive maintenance programs to predictive maintenance to provide an early warning of failure, in several domains ranging from manufacturing and industrial systems to transportation and aerospace. The focus of the PHM is centered on two core dimensions; the first is taking into account the behavior and the evolution over time of a fault once it occurs, while the second one aims at estimating/predicting the remaining useful life (RUL) during which a device can perform its intended function. The first dimension is the degradation that is usually determined by a degradation model derived from measurements of critical parameters of relevance to the system. Developing an accurate model for the degradation process is a primary objective in prognosis and health management. Extensive research has been conducted to develop new theories and methodologies for degradation modeling and to accurately capture the degradation dynamics of a system. However, a unified degradation framework has yet not been developed due to: (i) structural uncertainties in the state dynamics of the system and (ii) the complex nature of the degradation process that is often non-linear and difficult to model statistically. Thus even for a single system, there is no consensus on the best degradation model. In this regard, this thesis tries to bridge this gap by proposing a general model that able to model the true degradation path without having any prior knowledge of the true degradation model of the system. Modeling and analysis of degradation behavior lead us to RUL estimation, which is the second dimension of the PHM and the second part of the thesis. The RUL is the main pillar of preventive maintenance, which is the time a machine is expected to work before requiring repair or replacement. Effective and accurate RUL estimation can avoid catastrophic failures, maximize operational availability, and consequently reduce maintenance costs. The RUL estimation is, therefore, of paramount importance and has gained significant attention for its importance to improve systems health management in complex fields including automotive, nuclear, chemical, and aerospace industries to name but a few. A vast number of researches related to different approaches to the concept of remaining useful life have been proposed, and they can be divided into three broad categories: (i) Physics-based; (ii) Data-driven, and; (iii) Hybrid approaches (multiple-model). Each category has its own limitations and issues, such as, hardly adapt to different prognostic applications, in the first one, and accuracy degradation issues, in the second one, because of the deviation of the learned models from the real behavior of the system. In addition to hardly sustain good generalization. Our thesis belongs to the third category, as it is the most promising category, in particular, the new hybrid models, on basis of two different architectures of deep neural networks, which have great potentials to tackle complex prognostic issues associated with systems with complex and unknown degradation processes

    Advanced Fault Diagnosis and Health Monitoring Techniques for Complex Engineering Systems

    Get PDF
    Over the last few decades, the field of fault diagnostics and structural health management has been experiencing rapid developments. The reliability, availability, and safety of engineering systems can be significantly improved by implementing multifaceted strategies of in situ diagnostics and prognostics. With the development of intelligence algorithms, smart sensors, and advanced data collection and modeling techniques, this challenging research area has been receiving ever-increasing attention in both fundamental research and engineering applications. This has been strongly supported by the extensive applications ranging from aerospace, automotive, transport, manufacturing, and processing industries to defense and infrastructure industries

    Noise-Boosted Convolutional Neural Network for Edge-based Motor Fault Diagnosis with Limited Samples

    Get PDF
    Convolutional neural networks (CNNs) have been widely applied in motor fault diagnosis. However, to obtain high recognition accuracy, massive training data are typically required and transmitted to the cloud/local server for training, which may suffer from security and privacy problems. In this study, a noise-boosted CNN (NBCNN) model is developed to achieve accelerated training and improved recognition accuracy with limited training samples. First, the NBCNN model with a noise-injection fully connected layer is established. Then, a strategy for noise selection and injection is proposed to obtain an optimal matching among the data, model, and noise. Finally, the optimal injected noise accelerates the convergence of model training and improves the accuracy of motor fault diagnosis. Compared with the conventional CNN without noise injection and the state-of-the-art models, the effectiveness and superiority of the proposed NBCNN model are validated by two benchmark datasets. In addition, the algorithm is deployed onto an edge device and the results show that the training speed of the developed NBCNN can reach nine times faster than the conventional CNN. The proposed method shows remarkable potential for distributed model training, federal learning, and real-time motor fault diagnosis

    Deep Learning-Based Machinery Fault Diagnostics

    Get PDF
    This book offers a compilation for experts, scholars, and researchers to present the most recent advancements, from theoretical methods to the applications of sophisticated fault diagnosis techniques. The deep learning methods for analyzing and testing complex mechanical systems are of particular interest. Special attention is given to the representation and analysis of system information, operating condition monitoring, the establishment of technical standards, and scientific support of machinery fault diagnosis
    corecore