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Abstract：In order to solve the problems of insufficient extrapolation of intelligent models for the fault 1 

diagnosis of bearings in real wind turbines, this study has developed a multi-scale convolutional neural 2 

network with bidirectional long short term memory (MSCNN-BiLSTM) model for improving the 3 

generalization abilities under complex working and testing environments. A weighted majority voting rule 4 

has been proposed to fuse the information from multi-sensors for improving the extrapolation of 5 

multisensory diagnosis. The superiority of the MSCNN-BiLSTM model is examined through experimental 6 

data. The results indicate that the MSCNN-BiLSTM model has 97.12% mean F1 score, which is higher 7 

than existing advanced methods. Real wind turbine dataset and an experimental dataset are used to to 8 

demonstrate the effectiveness of the weighted majority voting rule for multisensory diagnosis. The results 9 

present that the diagnosis result of the MSCNN-BiLSTM model with weighted majority voting rule is higher 10 

respectively 1.32% and 5.7 % than the model with traditional majority voting or fusion of multisensory 11 

information in feature-level.  12 

Keyword：Bearing; Wind turbine; convolutional neural network; fault diagnosis; information fusion  13 

Nomenclature 

MSCNN-BiLSTM Multi-scale convolutional neural network with bidirection long short term memory 

TICNN Convolution neural networks with training interference 

MSCNN-GRU Multi-scale convolutional neural network with Gate Recurrent Unit 

MS-CNN Multi-scale convolutional neural network 

MC-CNN multi-scale cascade convolutional neural network 

CNN Convolutional neural network 

GRU Gate Recurrent Unit 

EMD Empirical mode decomposition 

LSTM Long short term memory 

MCCNN-LSTM Multi-convolution convolutional neural network with long short term memory 

MA-CNN Multi-head attention convolutional neural network 

MSCNN Multi-scale convolutional neural network 

C-CNN Parallel Convolution Layers with Multi-Scale Kernels 

SNR Signal-Noise-Ratio 

WT Wind turbine 

LR Logistic regression 

Conv Convolutional layer 
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BN Batch Normalization 

ReLU Rectified Linear Unit 

( , )l i jy  the dot product of kernel 

W  represents the width of the kernel 

( ')l

i jK  the thj weight of kernel l. 

( , )l i jz  the output of one neuron 

  the mean of 
( , )l i jy  

2  the variance of 
( , )l i jy , 

  a small constant 

( )l i  the scale to be learned 

( )l i  the shift parameters to be learned 

( , )l i ja  the activation of ( , )l i jz  

( )s

j
y j  the output of the ( )x i  processed by IMS procedure with the interference 

Oi(k) the kth output feature 

i  the output of fully connected layer 

i  The feature weight of each scale 

t
g  Input gate 

t
q  Output gate 

t
f  Forget gate 

t
c  Cell state 

NREL National Renewable Energy Laboratory 

DAQ Data Acquisition system 

1. Introduction  14 

Nowadays, various countries have paid more and more attention on the issues about energy security 15 

and ecological environment [1].The wind turbines (WT), as one of the most important renewable power 16 

productions, are developing rapidly in both terms of installed capacities and sizes because that vigorously 17 



3 
 

developing clean renewable energy has become the universal consensus and concerted action of the 18 

international community to promote the transformation of the energy structure and respond to climatic 19 

variation [2]. Bearings are the key mechanical parts in a WT’s transmission, the health conditions of 20 

which determine the power generation efficiency and stable operation of a WT. Therefore, diagnosis and 21 

monitoring for bearings in the WTs are necessary for reducing their maintenance costs and delaying 22 

service life [3].  23 

On the one hand, in benefited from the development of deep learning techniques, a lots of neural 24 

network-based methods for maintenance and diagnosis have good graces in the age of digital information 25 

industry [4, 5, 6]. In this kinds of neural network-based diagnosis method studies, whether a diagnosis 26 

model is developed based on convolutional neural network [7], long short term memory [8] or adversarial 27 

network [9], the research points are the structure of network and the construction of data input [10]. But 28 

wind-induced vibration of wind turbine leads to complex operating environment of wind turbine [11-12], 29 

which leads to become difficulty for neural network-based fault diagnosis model. On the other hand, 30 

collaborative maintenance for multisensory diagnosis has become the research hotspot with the advent of 31 

the Industry 4.0. Single model performance and information fusion strategy all affect diagnostic results.  32 

In order to improve the performance of a diagnostic model, images and raw vibration signals are 33 

used as the inputs for training a neural network-based model. Wang et al. [13] employed the wavelet 34 

spectrogram with a size of 32 32  as the input. The spectrogram, which is based on a 2-D CNN model, 35 

was adopted to identify different working states of the rotor systems. In their study, using different spare 36 

convolution neural network increased 5% than using ReLU network. Similarly, Chen et al. [14] used the 37 

continuous wavelet transform to gain representation images and then imported the images into a 2-D CNN 38 

model to address the fault diagnosis. Their model had 99.83% in their test experimental dataset. The 39 

difference between their study and Wang’s study was that the classifier used in Chen’s study is the extreme 40 
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learning machine, leading to a higher performance under a fault diagnosis task for the rolling bearings. 41 

Considering this kinds of input data in the form of images will cause the loss of effective information, 42 

Jiang et al. [15], using 1-D vibration signals as the input data, proposed a diagnosis model based on the 43 

multi-scale convolutional neural network (MS-CNN) to diagnose gearbox faults of a wind turbine. The 44 

results indicated that the time scale of the MS-CNN model has a significant impact on the diagnosis effect 45 

of the model and got 98.53% on their experimental dataset. Zhao et al. [16] used 1-D vibration signal as 46 

the input of the proposed normalized CNN for an intelligent fault diagnosis of rolling bearings. The results 47 

show that the normalized CNN model has a better extrapolation ability by 98.50% than a traditional CNN 48 

model. Wang et al. [17] used 1-D CNN-based network to examine ten groups of bearings to validate its 49 

reliability. The results showed that the diagnostic performance of the model under variable conditions 50 

was improved to 99.93% because more fault information was considered. Wei et al. [18] adopted 1-D raw 51 

vibration signals of rolling bearing as the input of a deep CNN to simultaneously achieve feature 52 

extraction and classification. Huang et al. [19] convoluted the 1-D vibration signals by different kernel 53 

sizes to obtain different resolutions in frequency domain, which was introduced in to a CNN-based model 54 

to develop a multi-scale CNN diagnosis model to address the fault identification of bearings, which had 55 

83.2% diagnosis result on their experimental dataset. Considering the contents of the fault information, 56 

Zhao et al. [20] proposed a bi-directional LSTM framework to monitor machine health. Lu et al. [21] 57 

used the LSTM with the deep neural network to address fault diagnosis at the beginning of failures. In 58 

summary, using raw vibration signals as the data set to train a neural network-based model for fault 59 

diagnosis are more robust than using images. Considering multi-scale information and the potential 60 

semantics relationships of fault information are helpful to improve a model’s extrapolation performance. 61 

Therefore, combining the advantages of the above studies for establishing a single sensor model, the first 62 

motivation in this paper is to design the Multi-Scale CNNBiLSTM network for considering both multi-63 
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scale information capability and context association of fault information.  64 

In the studies of multisensory information fusion strategies to machine diagnosis for collaborative 65 

maintenance, Jing et al. [22] and Azamfar et al [23] directly fused raw signals from multiple sensors as a 66 

multi-signals and used a CNN to extract advanced features for gearbox fault diagnosis. The above studies 67 

are based on the signal fusion level to process the information collected by multiple sensors. Although 68 

there are little loss through the date-level fusion, big data and noisy make those are not easy to achieve 69 

truly engineering. As an alternative, Chen et al. [24] and Liu et al. [25] first constructed a multi-sensor 70 

features then realize information fusion in the feature-level to finally diagnose fault. However, those kinds 71 

of feature fusions in the feature-level have better interpretabilities when facing the same category of 72 

information fusion. If the advanced features are derived from different information sources, the 73 

interpretability will be not strong enough. Therefore, the realization of information fusion in the decision-74 

making level is a relatively suitable choice to address multi-sensor fault diagnosis for wind turbine 75 

maintenance [26]. Therefore, the second motivation in this paper is to design a weighted voting rule based 76 

on Genetic Algorithm (GA) for multisensory fault diagnosis. The disadvantages of CNN-based fault 77 

model, RNN-based model and multi-sensor fault diagnosis method are summarized in Table 1. 78 

Table 1: Brief compared of diagnosis method 

Methods Advantages Disadvantages References 

CNN-based model 
End-to-end feature extraction 

Fast calculation 

Ignoring the temporal 

correlation of fault features 

15，19，40，

41，42 

RNN-based model 
Considering the semantics of the 

fault features 

Large amount of 

calculation 
38 

CNN-RNN-based 

model 

End-to-end feature extraction 

Considering the semantics of the 

advanced fault features 

Single feature extraction 

The order of advanced 

features is not considered 

39，43 

Multisensory diagnosis 
Consider multiple sources of 

information 

Strategy of information 

fusion is not considered 
36，30 

In order to improve the generalization abilities of a neural network-based model for fault diagnosis 79 

and fusing the diagnostic results from multiple sensors in a suitable way to increase the final diagnostic 80 
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accuracies and robustness for wind turbine bearing maintenance. The Multi-Scale CNNBiLSTM model, 81 

based on multi-scale coarse-grained procedure algorithm, convolutional neural network and Bidirectional 82 

long short memory network, has been developed in this paper to capture multi-scale time information and 83 

associate fault semantic information. A weighted majority voting method based on Genetic Algorithm is 84 

proposed to fuse the diagnostic results corresponding to every sensor for improving robustness of the 85 

diagnostic method. The proposed Multi-Scale CNNBiLSTM model is examined through comparison with 86 

experimental data of noise and variable loading scenarios to verify its reliability and superiority in real 87 

wind turbine. The originalities and main contributions of this study are summarized as follows. 88 

(1) The Multi-Scale CNNBiLSTM model, based on multi-scale coarse-grained procedure algorithm, 89 

convolutional neural network and Bidirectional long short memory network, has been developed in this 90 

paper to capture multi-scale time information and associate fault semantic information for improving the 91 

performance of a single model.  92 

(2) An end-to-end intelligent diagnosis framework based on the Multi-Scale CNNBiLSTM model is 93 

developed to realize fault diagnosis of a rolling bearing, which is capable of directly operating on the 94 

measured raw signals without any manual modifications.  95 

(3) A weighted majority voting method based on genetic algorithm has been proposed to fuse the 96 

diagnostic results of different sensors in decision-making level, which has better information fusion 97 

interpretation.  98 

The remaining parts of the paper are organized as follows. The development of the Multi-Scale 99 

CNNBiLSTM framework is presented in Section 2. The experimental data of a test experimental data and 100 

the evaluation index is presented in Section 3. The validation and discussion of the Multi-Scale 101 

CNNBiLSTM model under various working conditions are presented in Section 4. Conclusions are 102 

presented in Section 5.  103 
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2. Methodologies about Multi-Scale CNNBiLSTM  104 

2.1 Multi-scale extraction 105 

A multi-scale coarse-grained process has been developed and implemented into a multi-scale feature 106 

extraction layer to extract more information from raw signals with multiple time scales [15]. However, 107 

the multi-scale layer in reference [15] adopted the non-continuous sampling when capturing the multi-108 

scale information, which leads to omission of some inherent information. 109 

The processing for calculating the traditional multi-scale coarse-grained procedure, is based on a 110 

given time series, :1
i

x i n   and the coarse-grained time series as the time scale factor of   in order 111 

to calculate a sub-signal j
y

 through Eq. (1).  112 

( 1) 1

1
,1 ( )

j

j i
i j

ny x j





   

    (1) 

where 1, 2,3,   is the time scale factor. The length of the sub-signal j
y

 is ( )n


. 113 

An illustration of the traditional multi-scale operation for a time scale factor =3  is presented in 114 

Figure 1.  115 

 

Figure 1: The traditional multi-scale coarse-grained operation  

As shown in Figure 1, the length of the sub-signal decreases exponentially with increase in the time 116 

scale factor, which leads to its inability to perform the convolution process in a very deep convolution 117 

layer. More importantly, some useful information of the fault representation will not be captured due to 118 

discontinuity in the operation of a traditional MS coarse-grained procedure.  119 

In order to solve the shortcomings of the traditional MS operation, a novel multi-scale coarse-grained 120 

procedure is developed and presented in this section. Figure 2 shows the continuous multi-scale coarse-121 
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grained procedure when the time scale factor   is 3. The sub-signal 
n

j
z  obtained by the CMS operation 122 

at any time scale factor   is calculated by Eq (2).  123 

( 1) 1

( 1) 1

1
( ), [1, ], 2

j
n

j
i j

z x i j n


  


  


  


  


 - , , [ , ]n

n
z j n n


 

-
0 -  (2) 

where 1, 2,3,   is the time scale factor. The length of the sub-signal 
n

j
z  is n . 124 

 

Figure 2: The continuous multi-scale coarse-grained operation  

Compared with Figure 1, the length of the sub-signal processed by the CMS procedure will not 125 

decrease with time scale factor  , which makes the CMS-based model easier to be maintained. In 126 

addition, some data points are randomly discarded using the dropout technology in the coarse-grained 127 

extraction process, in order to avoid the overfitting of data when training a model and to improve its 128 

robustness. Thus, the output z is given by Eq. (3). 129 

1

1 1

~ (0.1 ~ 0.2)

r ( ) ~ ( )

( ) r

i

j i i i

p Uniform

k Bernoulli p

z j K x






  

 (3) 

where (·) represents the element-wise product, when the dropout rate p  obeys the uniform distribution 130 

U(0.1,0.2); 
1r ( )
i

k  follows the Bernoulli distribution, which is used to determine whether the kth element 131 

in the ith frame of the convolutional 
1

i
K  is dropped or not. ( )

j
z j

 is the output of i
x  processed by the 132 

CMS procedure with an interference in every batch training.  133 

2.2 Feature learning layer  134 

The feature learning layer consists of parallels of 1D CNNs that extract representation features from 135 

the sub-signals. Generally, a CNN structure is mainly composed of various pairs of convolutional layers 136 

and pooling layers. The activation function is used to realize the linear separation of the high-dimensional 137 
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features after the convolution operations. 
l

iK is the thi  filter in layer l , and 
(R )jlX  is thj  local area in 138 

the convolutional layer l . The convolutional process is given as follows: 139 

( , ) (R ) ( ')

' 0

( ')
j

W
l i j l l l l j j

i i

j

y j 



  K X K X  4) 

where 
( , )l i jy  denotes the dot product of kernel and the local area. W represents the width of the kernel. 140 

( ')l

i jK  is the thj weight of kernel l.  141 

In order to enhance the non-linear expression ability of the input signal and to more easily identify 142 

the learned features, the ReLU activation function is added after the convolutional layer. The formula for 143 

the ReLU is given in Eq. (8): 144 

( , ) ( , ) ( , )( ) max{0, }l i j l i j l i ja f z z    (5) 

where ( , )l i jz  is the output array of the Batch Normalization (BN) and ( , )l i ja  is the activation of ( , )l i jz . 145 

In order to efficiently accelerate the network training and to avoid the problem of gradient 146 

disappearance caused by activation function, the BN technique is introduced before the pooling operation. 147 

The n-dimensional array 
(1) (2) ( )( , , , )l l l l ny y yy  to the thl BN layer is represented as 148 

( ) ( 1) ( 2) ( , )( , , , )l i l i l i l i ny y yy
， ，

 and 
( ) ( ) ( 1)l i l i l iy y y

，
 when the BN layer is placed after the convolutional 149 

layer and fully connected layer, respectively. The formula for the BN operation is presented as follows: 150 

( , )
( , )

2
ˆ

l i j
l i j y

y


 





,

( , ) ( ) ( , ) ( )ˆl i j l i l i j l iz y    (6) 

( , )

1

1
=

n
l i j

i

y
n




  (7) 

2 ( , ) 2

1

1
= ( )

n
l i j

i

y
n

 


  (8) 

where ( , )l i jz  is the output of one neuron.   and 2  are the mean and variance of 
( , )l i jy , respectively. 151 

  is a small constant introduced to prevent the calculation from being invalid when the variance is 0 .152 

( )l i and
( )l i are respectively the scale and shift parameters to be learned. 153 
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The pooling layer is also called the down-sampling layer. The most common pooling techniques 154 

include average pooling and maximum pooling.The maximum pooling is chosen in this research, and it 155 

is presented in Eq (9). 156 

( , )( , ) { }

( 1) 1max
l i tl i j a

j W t jWp       (9) 

where ( , )l i ta  is the value of the tht  neuron in the thi  framework of layer l ; W  is the width of 157 

pooling size; 
( , )l i jp  is the corresponding value of the neuron in layer l  of the pooling, and158 

[( 1) 1, ]t j W jW   .  159 

2.3 The BiLSTM layer 160 

The LSTM, proposed by Hochreiter et al. [27], is a variant of the Recurrent Neural Network (RNN). 161 

Using a standard RNN model [28] to calculate a given sequence 1 2 3
( , , , , )

m m
z z z z z   that is obtained 162 

by the CMSCNN layer for obtaining a hidden sequence 1 2
( , , , )

m
h h h h  and an output sequence163 

m 1 2
( , , , )

m
Z Z Z Z . In order to overcome the shortcoming of the LSTM, thus in this study, BiLSTM is 164 

used to consider the semantic relevance of the information from both of the forward and backward of 165 

advanced features, which are represented as Eq. (10). The forward and backward information are fused 166 

into the fully connected layer and softmax function to calculate the probabilities of each failure.  167 

[ , ]
f b

Z  Z Z  (10) 

Where Zf is the forward features; Zb is the backward features.  168 

The forward and backward features calculations are similarity. Take the forward features as an 169 

example, the calculation of 
t

Z is shown below, which also is the LSTM.  170 

1
( )

t a zh t hh t h
h f W x W h b


    (11) 

t zh t z
Z W h b   (12) 

where W  represents the weight coefficient matrix; b  is the offset vector; a
f  is the activation function; 171 

The subscripts t  represents time.  172 
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The LSTM network is proposed to solve the problems of the gradient disappearance and gradient 173 

explosion, which owns long-term memory. The input gate t
g  , output gate t

q , forget gate t
f  and cell 174 

activation vector t
c  are updated in the LSTM. The LSTM cell structure in a hidden layer is presented 175 

in Figure 3.  176 

 

Figure 3: The LSTM structure  

The updating equations are given as follows: 177 

1
( )

t g t g t g
g U x W h b


     (13) 

1
( )

t f t f t f
f U x W h b


     (14) 

1
( )

t o t o t o
q U x W h b


     (15) 

1 1
tanh( )

t t t t i t i t i
C f C g U x W h b

 
       (16) 

tanh( )
t t t

h q C   (17) 

where t
g , t

q , t
f  and t

c  are the input gate, output gate, forget gate and cell state respectively; W  178 

and b  are the corresponding weight coefficient matrix and bias term, respectively;   and tanh  are 179 

the sigmoid and hyperbolic tangent activation functions, respectively.  180 

2.4 Classification layer  181 

The probability distributions of the representative features extracted by the 1-D CNN and BiLSTM 182 

layer, are fed into the fully connected layer for classification. Each output is mapped into a probability by 183 

a softmax function  , which is defined by  184 
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1

( ) , 1,2, ,
c

c

u

T uc

c

eu c T
e




 


 (18) 

where ( )
c

u  is a T-dimensional probability vector and denotes the probability distribution under T kinds 185 

of test scenarios, c
u  is the fusion features. 186 

2.5 The proposed Multi-Scale CNNBiLSTM architecture 187 

The proposed Multi-Scale CNNBiLSTM architecture consists of the multi-scale layer, the feature 188 

learning layer consisted of 1-D CNN, the BiLSTM layer and the classification layer. Figure 4 presents 189 

the proposed MSCNN-BiLSTM framework.  190 

 
Figure 4: The architecture of the CMSCNN-LSTM model 

As shown in Figure 4, the vibration signals measured by a sensor are fed into the MSCNN-BiLSTM 191 

network. The representation features with lower dimension features are obtained by the multi-scale layer 192 
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and multiple parallels of 1-D CNN. The number of time steps of the advanced features fed into the 193 

BiLSTM network is decreased significantly from n to L, where n is the length of the input sequences, and 194 

L is the number of elements in the pooling layer. The relevant information is obtained by BiLSTM, which 195 

hidden in each advanced features of the forward and backward are fused into fully connected layer to 196 

calculate the probabilities of each working condition. 197 

In contrast to the CNN-based model and LSTM-based model, the advantage offered by the structure 198 

of the proposed MSCNN-BiLSTM model is that its capability of examining time multi-scale features, 199 

which can capture more information needed to improve the performance of the model. The problem of 200 

high time complexity caused by being fully connected with the LSTM network has been improved by 201 

implementation of the pre-processing capability within using the advanced features as the feature vectors 202 

of a RNN network.  203 

The improvement of the multi-scale coarse-grained procedure makes the data length of the sub-204 

signals that obtained by the improved MS layer are the same as the original inputs. Which makes the 205 

feature extraction procedure using a CNN model to be more uniform and easier to be modified and 206 

maintained. The parameters of the feature extraction layer based on the 1D CNN in Figure 4 are presented 207 

in Table 2.  208 

Table 2: The details of the 1D CNN in the CMSCNN-LSTM model  

No. Layers Kernel Size/Stride Filter numbers Outputs Size 

1 A sub-signal  - - [4096,1] 

2 Conv_1 [128,1]/[5,1] 16 [794,1] 

3 Pool_1 [64,1]/[3,1] 16 [395,1] 

4 Conv_2 [2,1]/[2,1] 32 [111,1] 

5 Pool_2 [3,1]/[2,1] 32 [54,1] 

6 Conv_3 [2,1]/[1,1] 8 [18,1] 

7 Pool_3 [3,1]/[2,1] 8 [7,1] 

The parameters of the 1D CNN in the MSCNN-BiLSTM model are shown in details in Table 2. 209 

Compared with the CNN structure in other studies, the number of filters increases with the layers 210 
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deepening. However, the number of filters of the last convolution layer is too small to reduce the time 211 

complexity. The BN layer and the ReLU activation are introduced between the convolution layer and the 212 

pooling layer to prevent the gradient disappearing.  213 

The MSCNN-BiLSTM model is optimized by the Adam gradient descent optimization algorithm 214 

with a mini-batch size of 256 samples. The loss function is cross entropy. The learning rate is initialized 215 

to 0.001 with no decay on each update. A dropout layer is added before the fully connected layer to 216 

minimize over-fitting risk.  217 

2.6 Weighted majority voting for multisensory diagnosis 218 

It can be seen from review studies that the multisensory intelligent fault diagnosis is not only affected 219 

by the performance of a model [29], but how to summarize the useful information from multiple sensors 220 

also has significant impact on the final diagnostic results [30]. As a single model, the proposed MSCNN-221 

BiLSTM has good performance. Therefore, in this study, motivated from the ensemble learning. Each 222 

MSCNN-BiLSTM model is regarded as a sub-model. Using different signals acquiring from different 223 

sensors as dataset to train MSCNN-BiLSTM model will integrate multiple learners to develop an 224 

improved deep learner to work in tandem. The weighted majority voting rule treats the predictions as the 225 

final class label. The choice of weights directly affects the final diagnostic result. Eq. (19) delineates 226 

weighted majority voting.  227 

ax
1

H( ) ( )
j

N
j

arm n n
n

x C w h x


   (19) 

Where for each probabilities x, the prediction of N sub-model is ( )j

nh x . The weighted for majority voting 228 

of each ( )j

nh x  is 
n

w . The final prediction labels H( )x  is calculated by the 
ax

( )
jarm

C   to find out which 229 

prediction has the most votes.  230 

Weights play a key role in weighted majority voting rule. Thus, in this paper, GA [31] is used to find 231 

the optimized weights for majority voting. The motivation of using GA to evaluate weights is that we 232 
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hope the weights can help to improve the F1 score of the ensemble MSCNN-BiLSTM framework. The 233 

fitness functions of the GA consist of F1 score. Assumed the MSCNN-BiLSTM model will solve a k-234 

classification problem, the weights are 
1 2 T=[ , , , ]k k

n n n n
w w w w . The pseudo-code to solve the weight of the 235 

weighted majority vote is shown in Table 3 236 

Table 3: Pseudo-code of weighted majority voting rule  

Input：the output probabilities of each MSCNN-BiLSTM  

Initial：initialization of the GA parameters，including popN  

, Proportion of cross variation ( , )c mP P  and the maximum iteration maxN  

Based on popN to Initialize the population and reset the number of iterations as

1n   

while maxn N  perform  

     Through the 
1 2 T=[ , , , ]k k

n n n n
w w w w  to calculate the weighted voting for 

each sensor  

     Calculate fitness through the F1 score  

     Choose according to competitive strategy 

    Perform crossover and mutation and renew the population 

    Determine convergence 

    if  convergence then 

       jump out of the loop 

    end 

end 

end：Output the best weights for weighted majority voting  

2.7 Fault diagnosis framework based on the MSCNN-BiLSTM for multisensory  237 

In the section, the proposed MSCNN-BiLSTM model is examined using experiments on a bearing 238 

test rig. Figure 5 presents the fault diagnosis workflow based on the MSCNN-BiLSTM for multisensory.  239 
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Figure 5: The fault diagnosis system based on the MSCNN-BiLSTM model with weighted majority 

voting rule  

Figure 5 presents the intelligent diagnosis flowchart of wind turbine bearing based on MSCNN-240 

BiLSTM model for multisensory. Using data acquisition system to obtain vibration signals from different 241 

sensors. Training dataset and validation dataset are built through sample segmentation and standardization. 242 

The best parameters of the MSCNN-BiLSTM model are trained and saved by cross validation. The 243 

number of the MSCNN-BiLSTM models are determined by the number of the sensors. For instance, use 244 

two sensors to collect signals can be used to train two MSCNN-BiLSTM models with different parameters. 245 

In order to integrate each MSCNN-BiLSTM model’s performance, same as the ensemble learning, the 246 

predictions of the multiple MSCNN-BiLSTM models are fused in decision-making level through the 247 

proposed weighted majority voting rule for multisensory diagnosis.  248 

 249 

Vibration signal 

collected by Data Acquisition system 

from multiple sensors 

 Training the MSCNN-BiLSTM models for multiple 

sensors

 Sample Segmentation: training, validation and testing

Training  Validation  Testing  

Diagnosis framework of MSCNN-BiLSTM with Weighted 

majority voting rule 

Fault diagnosis 

Weighted majority voting rule 
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3. Experiments and evaluation method 250 

3.1 The description of experiment datasets  251 

The bearing experimental data from Case Western Reserve University (CWRU) [32] and XJTU 252 

Xi’an Jiao Tong University (XJTU) [33] is used to construct different test scenarios to examine the 253 

performance of the proposed MSCNN-BiLSTM method. The NREL wind turbine transmission database 254 

is used to examine the practical application abilities in engineering of the proposed multisensory diagnosis 255 

method [34].  256 

The CWRU experimental data, as the standard bearing vibration data set, is used to examine the 257 

performances of three kinds of RNN variants that include LSTM, BiLSTM and GRU and to compare the 258 

performance with CNN-based models for proving the superiority of the MSCNN-BiLSTM model. The 259 

data of CWRU covering normal state, inner race fault, ball fault and outer race fault in different azimuths 260 

(3, 6 and 12o’clock directions) are selected by two sensors with different sampling frequencies in order 261 

to validate the developed MSCNN-BiLSTM model. The data is examined for each of the fault category 262 

stated above. In total, 11 sets of data are used in this study. The motor loads range from 0 HP to 3 HP and 263 

the tested bearing model is SKF 6205. 264 

The experimental data of CWRU is used to build different scenario and it is presented in Table 4.  265 

Table 4: Datasets of bearing fault diagnosis for variable loads test  

Datasets labels Samples  Number of samples Loads (hp) 

I  
Training 

Test 

1600 

160 

0,1,2,3 

0,1,2,3 

II  
Training 

Test 

1600 

160 (Added noise) 

0,1,2,3 

0,1,2,3 

The data of XJTU covering inner race fault, cage fault outer race fault, and hybrid faults that consist 266 

of inner race, ball, cage and outer race failure, is selected by two sensors with different sampling directions 267 

to validate the developed MSCNN-BiLSTM model when the failures are weak. In the XJTU data includes 268 
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the full-life of a bearing, the extrapolation abilities of the MSCNN-BiLSTM model are examination 269 

through the manually segmentation samples set that contain different damage magnitudes. Table 5 270 

presents the details of the scenario setting for bearing degradation adaptation. The normal distribution of 271 

inner race fault from Phase 1 to Phase 3 are presented in Figure 6.  272 

Table 5 Details of the bearing degradation 

configuration 

Case 

Name 

Training 

samples 
Testing samples 

A Phase 1 Phase 2  

B Phase 1 Phase 3 

C Phase 2 Phase 1 

D  Phase 2 Phase 3 

E Phase 3 Phase 1 

F Phase 3 Phase 2 
 

 

Figure 6: The normal distribution of different phases 

As shown in Table 5 and Figure 6, six scenarios are constructed by extracting data from three 273 

different stages in the XJTU experimental process of bearing degradation. Phase 1, Phase 2 and Phase 3 274 

respectively represent the development process of bearing failures from small to large, but it is worth 275 

noting that the data of the complete failure phase is not selected. The probability densities of the normal 276 

distributions of the three phases are different. Therefore, the bearing damage magnitude adaptation 277 

scenario test is used to verify the effectiveness of the proposed method.  278 

Wind turbine condition monitoring benchmarking dataset provided by National Renewable Energy 279 

Laboratory is used to examine the proposed MSCNN-BiLSTM in the real engineering. The test turbine 280 

drive train configuration and the vibration sensor locations on wind turbine are shown in Figure 7 [35]. 281 
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(a) Wind turbine drive train configuration (b) Vibration sensor locations 

Figure 7 The illustration of the NREL test wind turbine  

Table 6 presents a complied list of the actual damage occurred to the test drive train system. The 282 

damage detection are deemed through vibration analysis. In this study, HS-SH downwind bearing 283 

overheating, IMS-SH assembly damage of upwind and downwind bearings are used to build dataset for 284 

training MSCNN-BiLSTM model.  285 

 Table 6: Datasets of damage bearings of NREL wind turbine  

labels  Samples  Number of samples Sensors Mode 

1 
Training 

Test 

200 

200 

AN8 

AN9 
Healthy condition 1 

2 
Training 

Test 

200 

200 

AN5 

AN6 
Healthy condition 2 

3 
Training 

Test 

200 

200 

AN8 

AN9 
HS-SH downwind bearing overheating 

4 
Training 

Test 

200 

200 

AN5 

AN6 
IMS-SH downwind bearings damage  

3.2 Development environment and evaluation methodology 286 

Different scenarios created based on the four aforementioned datasets are used to examine the 287 

proposed MSCNN-BiLSTM model. The data mining and setup of the deep learning model is conducted 288 

using the MATLAB® Deep Network Designer, MATLAB version 9.70 (R2019b, The MathWorks, Inc., 289 

Natick, MA, USA).  290 

The F1 score is used to evaluate and compare the performance of the diagnosis model examined in 291 

this study, which offers a comprehensive metric to measure the extrapolation of the model. The definition 292 

of the F1 is presented in Eq. (20).  293 
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2TP
1=

2TP+FP+FN
F  (20) 

where TP, FP, TN and FN mean correctly classified as positive samples, misclassified as positive samples, 294 

correctly classified as negative samples and misclassified as negative samples, respectively. 295 

4. Validation and discussion 296 

4.1 Comparison of the RNN variants   297 

The LSTM module of the MSCNN-BiLSTM model is used to consider the long-term dependences 298 

of fault information. In this section, the influence of type of the RNN networks including the LSTM, 299 

BiLSTM [36] and GRU [37] is investigated using dataset II when integrated with the MSCNN model. 300 

The diagnosis models are named as MSCNN-LSTM and MSCNN-GRU. Figure 8(a) and Figure (b) show 301 

the accuracy and loss curves of training and validation of the three models. Figure 8 (c) presents the 302 

performance of the models examined using dataset II with SNR from -4dB to 4dB. Table 7 gives the 303 

training time, response time and F1 score of the methods examined in -4dB.  304 

Table 7: Comparison of the performances of the MSCNN-LSTM model, the 

MSCNN-BiLSTM model and the MSCNN-GRU model 

Methods F1 score (%) Training time (s) Testing time (s) 

MSCNN-LSTM 85.58±0.29 206.84+16.57 0.4943±0.0037 

MSCNN-BiLSTM 86.93±0.17 209.85+19.45 0.4557±0.0035 

MSCNN-GRU 86.83±0.21 204.42+16.93 0.4789±0.0038 
 305 

 

(a) accuracy  

 

(b) loss 

 

(c) F1 score  

Figure 8: The training and validation accuracy curves of the three models with increasing epochs and 

performances of the models examined using dataset II with SNR from -4dB to 4dB. 

Figure 8 (b) presents the loss curves of the models’ training and validation. The loss of the MSCNN-306 

LSTM is the most unstable model among the three RNN-variants model, while the MSCNN-BiLSTM 307 
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model is stable due to the fusion of forward and backward information. As shown in Table 4 and Figure 308 

8, the differences between the training/response times of the variants are insignificant. The MSCNN-309 

BiLSTM has a slightly longer training time and a shorter response time. That is because forward and 310 

backward propagation of advanced features to record different fault context information. It is noted that 311 

the MSCNN-GRU model examined in the 0 dB environment has the highest F1 score of 97.5%. This is 312 

because the GRU only contains update and reset gates. However, in a noisy environment (-4dB), the 313 

MSCNN-BiLSTM model has the highest F1 score of 86.9%, which is because the LSTM units can control 314 

whether the important information in them is retained or not. The two-way propagation makes the 315 

BiLSTM unit more capable of capturing long-term dependencies, which gives the model a better noise 316 

immunity. Thus, the MSCNN-BiLSTM model performs better in a large noise environment, which also 317 

proves the motivation of the proposed MSCNN-BiLSTM model.  318 

4.2 Comparison with advanced methods 319 

In order to confirm the superiority of the MSCNN-BiLSTM model in identifying the failure types 320 

and the failure magnitudes of the bearings in the noisy environments, Figure 10 provides the comparisons 321 

of the proposed MSCNN-BiLSTM, the LSTM [38], the CNN-LSTM [39], TICNN [40], MC-CNN [19], 322 

C-CNN [41], MA-CNN[42], MCCNN-LSTM[43], and MS-CNN [15] by using average F1 scores with 323 

10 trails examined on dataset H with -4dB noise level to 4dB noise level. The diagnosis results of nine 324 

methods under different noise environments are shown in Figure 9 to further demonstrate the reliability 325 

of the proposed MSCNN-BiLSTM model. Table 8 presents the details of the F1 scores in average, nine 326 

methods examined by dataset II with 0 dB in 10 trails. 327 

Table 8 Comparison of the Deep learning models  

Methods F1 score (%) 

MSCNN-BiLSTM [Our method] 97.12±0.09 

CNN-LSTM [2020] 92.03±0.24 

MS-CNN [2019] 83.75±0.78 
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LSTM [2019]  83.08±1.49 

TICNN [2018] 82.23±0.92 

MC-CNN [2019] 81.19±1.92 

C-CNN [2020] 75.83±1.14 

MA-CNN [2020] 67.15±1.43 

MCCNN-LSTM [2021] 96.00±0.15 

 328 

 
Figure 9: Diagnosis results examined in 10 trails on the noisy signals with different SNRs 

As shown in Figure 9, the proposed MSCNN-BiLSTM model always shows the highest average F1 329 

score with the SNR changed from -4dB to 4dB. The performance of the MCCNN-LSTM model is second 330 

only to the MSCNN-BiLSTM model. There are two possible reasons why the MSCNN-BiLSTM is better 331 

than the MCCNN-LSTM: 1. the multi-scale features extraction of the MSCNN-BiLSTM is developed 332 

based on multi-scale coarse-grained algorithm, which is more robust than the MCCNN-LSTM model 333 

using multi-scale convolution to extract multi-scale information. 2. The proposed MSCNN-BiLSTM 334 

considers the forward and backward fault semantics, which can capture more useful information than the 335 

MCCNN-LSTM only consider single direction fault semantics. Besides, The MA-CNN performs poorly 336 

when the test date source contains noise. That is because, the MA-CNN is used the gray images of the 337 

vibration signals as the inputs of the CNN-based model.  338 

4.3 Damage magnitude detection adaptation scenario test for multisensory  339 

In the damage magnitude detection adaptation scenario, the training dataset and the test dataset are 340 

from a same data source but diatribe differently due to the damage evolution, which can prove a strong 341 

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

-4 -3 -2 -1 0 1 2 3 4

F
1

 s
co

re

SNR/dB

MSCNN-BiLSTM CNN-LSTM

MS-CNN LSTM

MCCNN-LSTM MC-CNN

TICNN C-CNN

MA-CNN



23 
 

extrapolation the proposed MSCNN-BiLSTM model has. Table 9 give the weights of majority voting and 342 

F1 score of each sensor.  343 

Table 9: The weights of majority voting and F1 score for every conditions and sensor 

 
Weights for majority voting 

[Sensor1, Sensor2] 

F1 Score 

(Sensor 1/ Sensor 2/ Fusion ) 

Inner Race fault  [1，1] (0.9887/0.9962/0.9963) 

Cage fault  [1，2] (0.9197/0.9876/1.0000) 

Outer race fault [1，1] (0.8503/1.0000/1.0000) 

Hybrids faults [1，2] (0.9975/1.0000/1.0000) 

As shown in Table 9, the examined results of MSCNN-BiLSTM model show that there are low F1 344 

scores of the cage fault and outer rave fault for each sensor due to damage evolution and added noise 345 

(SNR=-4). Although the mean of F1 score of each sensor is high, there is a little false alarm rate that is 346 

needed to be avoided in fault diagnosis. The proposed weighted majority voting can integrate the positives 347 

of each sensor, through the weights votes, to improve F1 score of each classified conditions. It can be 348 

seen that the F1 score of cage fault for sensor 1 increases from 0.9197 to 1.0000, the F1 score of outer 349 

race fault for sensor 1 increases from 0.8503 to 1.0000. To further explain the mechanism of the weighted 350 

majority voting rule, confusion matrix is used to show how the weighted voting majority rule to improve 351 

the performance of the MSCNN-BiLSTM model for multisensory diagnosis. Figure 10 presents the 352 

diagnosis results, tested in different damage magnitude to examine the extrapolation of the MSCNN-353 

BiLSTM model for multisensory. 354 

   
(a) Sensor 1 (b) Sensor 2 (c) Fusion 

Figure 10 Confusion matrix of diagnosis results  

Figure 10 presents that the diagnosis result of sensor 1 has a very high false alarm rate for detecting 355 
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cage fault, thus only 1 weight is given to sensor 1 for voting. In order to combine the excellent 356 

performance in distinguishing cage fault, 2 weights are given to sensor 2 for voting to reduce the false 357 

alarm. Therefore, there is little false alarm rate in the diagnosis result of the fusion.  358 

The generalization of the proposed MSCNN-BiLSTM model for multisensory are examined through 359 

the damage evolution scenario, which is compared with the diagnosis results of multisensory information 360 

fused respectively on feature-level and majority voting decision-level. Figure 11 361 

  

Figure 11: Comparison of the fusion methods for multisensory  

As shown in Figure 11, the MSCNN-BiLSTM model fused the multisensory information on decision 362 

level through the proposed weighted majority voting rule has a better performance than the other methods 363 

when the examined under damage evolution scenario tests. The mean of F1 scores the weighted majority 364 

voting rule is higher than feature-level fusion for multisensory information by 5.7% and is higher than 365 

traditional majority voting by 1.23%. That indicates that the proposed weighted majority voting rule is 366 

effective.  367 

4.4 Real wind turbine fault diagnosis for multisensory  368 

In real industrial engineering, the model for multisensory diagnosis is offline trained in advanced. 369 

Thus, the data of NREL wind turbine respectively acquired on different days. In the NREL dataset, the 370 
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data acquired on day 1 is used to train the MSCNN-BiLSTM model, and test the model respectively 371 

through day 2 and day 3. Confusion matrix and the F1 score are used to demonstrate the superiority of 372 

the MSCNN-BiLSTM and to explain the mechanism of the weights majority voting. Table 10 give the 373 

weights of majority voting and the F1 score of each sensor.  374 

Table 10: The weights of majority voting and F1 score for every conditions and sensor 

 
Weights for majority voting 

[Sensor1, Sensor2] 

F1 Score 

(Sensor 1/ Sensor 2/ Fusion ) 

Healthy condition 1 [1，2] 1.000/1.000/1.000 

Healthy condition 2 [1，2] 1.000/1.000/1.000 

downwind bearing overheating [1，2] 1.000/0.9913/1.000 

downwind bearings damage [1，1] 0.9963/0.9622/1.000 

As shown in Table 10, there are some false alarm rate in the case of only using a sensor to diagnosis. 375 

The faults of downwind bearing overheating and damage sometime are misclassified due to a sensor can 376 

not capture useful information for fault diagnosis. The proposed weighted majority voting rule can 377 

integrate the diagnosis results from multiple sensors for improving the performance of the diagnosis. The 378 

sensor 2 takes up a weight 2 votes for healthy condition1, healthy condition2 and bearing overheating, 379 

which can deal with some false alarm rate existed between the condition of bearing overheating and 380 

damage. To further demonstrate the performance of the proposed weighted majority voting, the diagnosis 381 

results of the single sensor and multisensory are respectively presented by confusion matrix in Figure 11.  382 

   
(a) Sensor 1 (b) Sensor 2 (c) Fusion 

Figure 12 Confusion matrix of diagnosis results  

As shown in Figure 12, the proposed weighted majority voting rule reduce the false alarm rate 383 

existing between the healthy condition 2 and bearing damage. The mechanism of the weighted majority 384 

voting rule is that Sensor 2 is given more vote weight to health condition 1, health condition 2 and bearing 385 
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overheating fault to compensate for the bias of diagnosis results on bearing damage. It can be seen that 386 

although there are false positives in both sensor 1 and sensor 2 during diagnosis, these false alarms are 387 

eliminated after weight voting, which proves the reliability of the proposed method in real wind turbine 388 

engineering.  389 

5. Conclusions  390 

A novel fault diagnosis method of wind turbine bearings is developed based on multi-scale coarse-391 

grained procedure algorithm, CNN, BiLSTM and a proposed weighted majority voting rule for 392 

multisensory fault diagnosis. The method is combined with the advantages of the CNN in auto features 393 

extraction and BiLSTM in capturing the correlation features. CNN is used to extract useful advanced 394 

fearless from the multi-scale sub-signals that generated by an improved multi-scale coarse-grained 395 

procedure algorithm, which also can reduce the dimension of the fault features to decrease the calculated 396 

amounts of the LSTM unit. In addition, a weighted majority voting rule is designed to fuse the 397 

multisensory information in the decision-fusion, which improves the robustness of the MSCNN-BiLSTM 398 

model. The verification of our method are examined through multiple groups of experimental data and 399 

the main conclusions of this study are as follows: 400 

(1) The robustness of the MSCNN-BiLSTM model can be improved by using bidirectional LSTM 401 

network to capture forward and backward semantic information between advanced fault features, which 402 

has higher diagnosis performance than MSCNN-GRU and MSCNN-LSTM when they are examined in 403 

noisy environment.  404 

(2) Compared with existing fault diagnosis model developed based on CNN network, the proposed 405 

MSCNN-BiLSTM model has the highest F1 score by 97.12% examined through anti-noise test. The 406 

generalization of the proposed MSCNN-BiLSTM model is better than the generalizations of the LSTM, 407 
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the CNN-LSTM, TICNN, MC-CNN, C-CNN, MA-CNN, MCCNN-LSTM and MS-CNN.  408 

(3) The proposed weighted majority voting rule can take advantages of a good fault diagnosis results 409 

of each sensor to improve the final diagnosis performance. In the damage evolution test scenario, the 410 

0.8503 F1 score of the outer race fault, diagnosed by a sensor, is improved by the proposed weighted 411 

majority voting rule to increase to 1.0000, which is helped by giving another sensor more vote weights.  412 

(4) The proposed weighted majority voting rule is compared with different methods for multisensory 413 

diagnosis, that include a traditional majority voting rule that belongs to fusion on decision-level and fusion 414 

on feature-level. The results indicate that the proposed weighted majority voting rule is higher than the 415 

others by 1.23% and 5.7%.  416 
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