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1. Introduction

Fault diagnosis and health condition monitoring have always been critical issues in
the engineering research community. Over the past decade, with the rapid development of
artificially structured materials, advanced sensing and data-driven intelligence algorithms,
fascinating technical possibilities have been reported in the area of fault diagnosis and
in the health condition monitoring of complex engineering systems. However, with the
development of highly efficient intelligent algorithms, recent fault diagnosis and health
monitoring strategies have become highly automated and are encountering sophisticated
problems in terms of data availability, computational complexity, accuracy, etc. Meanwhile,
combined with advanced intelligent algorithms, flourishing developments such as new
sensing techniques, diagnostic approaches and the design of new types of metamaterials
have also enabled significant advances and emerging opportunities in the field of system
health condition monitoring. These studies will doubtlessly promote the reliability, avail-
ability and robustness of systems for the fault diagnosis and health monitoring of complex
engineering systems.

This Special Issue of Sensors aims to collect research works encompassing the whole
area of fault diagnosis and health monitoring techniques for engineering systems. This
collection contains a total of 11 papers representing the current status of the research related
to different methods of monitoring the health and reliability of engineering systems.

Targeting the limitations of the original transition permutation entropy (TPE) method,
Guo et al. [1] propose a multiscale transition permutation entropy (MTPE) method. Fur-
thermore, considering the weaknesses of the proposed multiscale approach, the feature
extraction ability of the MTPE method is further improved by proposing a composite
multiscale transition permutation entropy (CMTPE) approach. Lastly, the researchers input
the features extracted using the CMTPE method into an extreme learning machine (ELM)
to perform the fault diagnosis of a bearing.

Bykerk et al. [2] used vibro-acoustic sensors for detecting leaks in the water distribution
mains of an urban area. The real-time data collected from the extensive deployment of
the vibro-acoustic sensors across a sprawling metropolitan city were used to monitor the
presence and absence of pipe leaks using a convolutional neural network (CNN) after
pre-processing via short-time Fourier transform (STFT). Different external factors, such as
pipeline size, pipeline material and the soil condition around the pipe, are also taken into
consideration.

Asadi et al. [3] designed a Takagi–Sugeno (TS) fuzzy-based sliding mode observer
(SMO) to reconstruct the faults in actuators and sensors installed in a nonlinear system
subjected to unknown external disturbance. A non-quadratic Lyapunov function (NQLF)
and fmincon function were used to guarantee the stability of the proposed SMO as a matlab
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optimization tool. The influence of unknown disturbances and uncertainties are minimized
by utilizing a performance criterion. The proposed method provides better accuracy, less
conservative optimization conditions and improved generality in comparison to other
existing state-of-the-art methods.

Hu et al. [4] combined piecewise aggregate approximation (PAA) with complete
ensemble empirical mode decomposition (CEEMDAN) to alleviate the high memory re-
quirements and low computational efficiency of the CEEMDAN method in bearing fault
diagnosis. Vibration signals were used to study the efficacy of the proposed method. An
enhanced bearing fault diagnosis performance was obtained using the proposed method.

Aiming to solve the problem of unavailable data in online fault detection in rolling
element bearings, a multiscale deep support vector data description (Deep-SVDD) approach
is proposed by Kou et al. [5] By utilizing data enhancement technology, training data were
transformed into multiple subspaces. Then, a subsequent clustering algorithm was utilized
to enhance the robustness of the features. Lastly, the proposed Deep-SVDD model was
constructed to achieve the online monitoring of the health of rolling element bearings. The
proposed method can be utilized to detect incipient faults in a bearing.

A new oversampling algorithm, namely, MeanRadius-SMOTE, is proposed by
Duan et al. [6] for diagnosing mechanical faults regarding unbalanced data. The newly
proposed method can effectively avoid the generation of useless and noisy samples and
solve the multiclassification problem regarding different mechanical faults. A complete
diagnosis of the faults in mechanical equipment can be achieved using the proposed
method.

Mao et al. [7] addressed the challenges of an incomplete training dataset using a cross-
domain intelligent fault diagnosis approach and proposed a novel deep learning approach
called the partial transfer ensemble learning framework (PT-ELF). After substituting the
missing health states with another dataset, the proposed method was able to address the
variable data distribution challenge by training a weak global classifier and two partial
domain adaption classifiers. Lastly, a specific ensemble strategy was used to combine these
classifiers for fault diagnosis.

Aldawood et al. [8] developed a self-vibration-powered energy harvester sensor sys-
tem to tackle the environmental threat posed by unused batteries in battery-powered sen-
sors in wireless sensor networks (WSN). Dual moving magnets bordered by coil windings
were used for power and signal generation in a harvester sensor unit. A radio frequency
(RF) transmitter is operated using the power generated from the harvester, and the gener-
ated signal from this sensor is transmitted as the vibration signal. Lastly, a custom-made
APP is utilized to detect faults in this system.

A 1D dilated convolutional neural network (1-DDCNN) is proposed by Chen et al. [9]
for the fault diagnosis in an aircraft retraction/extension (R/E) system.Aiming to solve the
limited feature information extraction and fault diagnosis ability of 1-DCNNs, multiple
feature parameters have been used. Moreover, the main fault mode of the R/E system for
aircraft landing gears has been studied, specifically exploring its working principal and the
influence of convolutional kernel size on the classification accuracy.

Lee et al. [10] studied the optimal sensor selection criteria in a multi-sensor-based
fault diagnosis of a roll-to-roll printed electronics system. Data are collected for four major
defects of a Gravure roll-to-roll printed electronic system with three triaxial acceleration
signals. Smart data were formed from the collected raw data obtained by a sensor data
efficiency evaluation; a sensitivity evaluation for axis selection considering the directional
nature of faults; and feature variable optimization using the feature combination matrix
method. The progressive application of the aforementioned phases enhanced the fault
diagnosis results in terms of accuracy, calculation time, predictive ability and data stor-
age capacity.

Pan et al. [11] proposed a new method to investigate the mitigation of commonly
occurring rotor–stator rub impact faults in aero-engines. A pre-strained, two-way shape
memory alloy (SMA) wire was used in the design of a current-driven active control actuator
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to mitigate the occurrence of rub impact faults. The feasibility of the proposed scheme is
verified by different properties of the used NiTi wires. Finally, a prototype of the schemed
actuator was designed and manufactured for testing under various conditions. The status
of the rub impact fault was monitored using an acoustic emission sensor.

On behalf of all the editors of this Special Issue, we would like to extend our heartiest
gratitude for the contributions from the authors to this project. We would also like to extend
our sincere thanks to all the reviewers and members of the editorial board of Sensors.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: Gravure printing, which is a roll-to-roll printed electronics system suitable for high-speed
patterning of functional layers have advantages of being applied to flexible webs in large areas. As
each of the printing procedure from inking to doctoring followed by ink transferring and setting
influences the quality of the pattern geometry, it is necessary to detect and diagnose factors causing
the printing defects beforehand. Data acquisition with three triaxial acceleration sensors for fault
diagnosis of four major defects such as doctor blade tilting fault was obtained. To improve the
diagnosis performances, optimal sensor selection with Sensor Data Efficiency Evaluation, sensitivity
evaluation for axis selection with Directional Nature of Fault and feature variable optimization with
Feature Combination Matrix method was applied on the raw data to form a Smart Data. Each phase
carried out on the raw data progressively enhanced the diagnosis results in contents of accuracy,
positive predictive value, diagnosis processing time, and data capacity. In the case of doctor blade
tilting fault, the diagnosis accuracy increased from 48% to 97% with decreasing processing time of
3640 s to 16 s and the data capacity of 100 Mb to 5 Mb depending on the input data between raw data
and Smart Data.

Keywords: defect detection; Directional Nature of Fault; gravure printing; fault diagnosis;
roll-to-roll printed electronics; sensor data characterization

1. Introduction

Roll-to-roll processing is highly advantageous because it results in multiple functional
layers of electronic circuitry printed on large flexible materials (i.e., web) [1–3]. Gravure
printing is the desirable mode for fabricating these printed electronic devices, owing
to its characteristic high-speed patterning of component layers [4–6]. Gravure printing
can be classified into the following four phases: inking, doctoring, ink transfer, and ink
setting [7,8]. Printing defects can be generated by undesired printing conditions and ink
characteristics during each printing phase [9–12]. For example, during the doctoring phase,
the misalignment of the doctor blade at either side can degrade the ink uniformity in
the engraved patterns in the width direction (i.e., transverse direction (TD)). Moreover,
non-uniform nip roll pressure can negatively affect the uniformity of the pattern thickness
in the TD. To derive high-quality patterns with uniform thickness using the roll-to-roll
gravure printing process, it is necessary to recognize and diagnose these.

In this study, a method of data characterization using sensor data efficiency evaluation
(SE), directional nature of fault (DNF), and feature combination matrix (FCM) is proposed
to diagnose these major faults. The aim is to recognize defects in advance and improve the

Sensors 2021, 21, 8454. https://doi.org/10.3390/s21248454 https://www.mdpi.com/journal/sensors5
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diagnosis results by optimizing the training (input) data acquired from multiple sensors
for the machine-learning fault diagnosis model. We find that the misalignment of the
doctor blade, eccentricity of the nip and printing rolls, and non-uniform nip pressure can
be indirectly measured via the vibration of the doctor blade, the nip roll, and the frames
supporting the printing module. Through the acquisition of vibration data using multiple
sensors, a vibration dataset (i.e., Raw data) is acquired. The smart data clearly show the
characteristics of the vibration caused by the factors mentioned above, and they are selected
from the raw dataset using the proposed methods in three phases to maximize performance
efficiency. The evaluation criteria include diagnosis accuracy, positive predictive value
(PPV), processing time for diagnosis, and data capacity. The performance of the machine-
learning model developed using smart data was compared to that of the model just using
the raw dataset.

With significant growth of industrial machines, recent studies have raised concerns
regarding the maintenance of operating conditions. Profound interest in the fields of fault
diagnosis based on data acquisition of sensors has been shown in recent research. Xia
et al. presented convolutional neural network-based feature extraction approaches for fault
diagnosis of rotating machines with multiple sensors [13]. Duan et al. have reviewed fields
of fault diagnosis and condition monitoring based on multi-sensors for rolling bearings
by presenting foundational knowledge [14]. Studies with multirate data and sensors for
fault diagnosis by feature extracting deep learning models has been carried out by Zhao
et al. and Huang et al. [15,16]. Research for fault diagnosis based on data optimization in
recent studies has been shown by Bazan et al. and Wang et al. [17,18]. Lee et al. proposed
quantification methods of fault features for rotary machine fault diagnosis. Most studies
regarding fault diagnosis have shown methods of feature extraction to improve the results
of machine learning from the data acquisition of sensors.

As shown in studies abovementioned, diagnosing the abnormal conditions with
multiple sensors show promising results of fault diagnosis; however, the efficiency of
diagnosis performance is without consideration. As studies focus on methods or strategies
to conclude in diagnosis, this paper proposes methods to optimize multiple sensor data by
selecting an optimal sensor. Furthermore, in comparison with Bazan et al., the performances
of diagnosis results regarding accuracy, and data reduction stretch to positive predictive
value and diagnosis processing time [17]. Related to Lee et al., this paper proposes strategies
based on quantification methods to evaluate the efficiency of each phase [19].

2. Methodology of Data Characterization

2.1. Procedure of Data Characerization from Raw Data to Smart Data

Procedure of data characterization is led with data acquisition with three acceleration
sensors which are attached to the doctor’s blade and the frame of the gravure printing
system. Each sensor is capable of acquiring data with three axes. Then on, experimentally
acquired raw data is achieved in three phases, as shown in Figure 1. During Phase 1, the
acquired sensor data are evaluated for efficiency (SE), and the most efficient (optimal)
sensor is chosen for DNF processing in Phase 2 to extract the most sensitive of three axes
from the sensor. Then, a list of feature variables is tallied for training data using the FCM
method in Phase 3. Finally, the processed smart data are used as input to the machine-
learning fault diagnosis model to classify the printing process operating conditions during
the major fault occurrences. Further description of smart data characterization through
Phases 1–3 will be extensively illustrated in detail in Sections 2.2–2.4.

2.2. Sensor Data Efficiency Evaluation

The optimally efficient sensor is selected using an evaluation procedure based on
Equation (1), which leverages three variables. α is the ratio of the data capacity between
raw data and single-sensor data. β is the ratio of the data processing time, and γ is the ratio
of the misclassification rate. Likewise, β and γ is a ratio between raw data and single-sensor
data. Since the value of SE in Equation (1) is dependent on the ratio of three variables
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of two comparing data, the sensor rating the highest SE is selected as the optimal single
sensor. In other words, a sensor with the clearest distinction to the raw data in three aspects
abovementioned is likely to score the highest SE.

SE =
α + β

2γ
(1)

In the case of this experiment, the diagnosis results from the raw data of three triaxial
sensors were compared.

Figure 1. Smart data characterization procedure from raw data.

2.3. Directional Nature of Fault

The DNF method extracts valid data from raw data by evaluating the sensitivity
of the axial information from a single sensor. After Phase 1, the DNF method evaluates
axes X, Y, and Z to extract valid data for fault diagnosis. The DNF method is defined in
Equation (2), where α and β are weight factors defining the relative ratio between kurtosis
and standard deviation. k f and kn are the kurtosis of the fault and normal conditions,
respectively. std f and stdn are the standard deviation of the fault and normal conditions,
respectively. Based on the probability distribution curve, the standard deviation of the
abnormal condition data has a wide distribution of data points [20,21]. The kurtosis of
an abnormal condition has an imbalanced distribution [22]. The DNF number based on
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Equation (2) can thus be acquired from each axis. The axis with the highest DNF number
defines the most sensitive and valid data for training.

DN =
1

α + β
(α

k f

kn
+ β

std f

stdn
) (2)

2.4. Feature Combination Matrix

The FCM method selects and extracts statistical feature variables. As shown in Figure 2,
feature extraction is performed when the list of statistical feature variables is acquired from
the dataset from Phase 2 [23,24]. The extracted features are then combined into the three
features of a three-dimensional volume. As mentioned in Section 2.3, based on a normal
distribution, the distribution of data points is likely to be imbalanced, broad, skewed, or
irregular [25–27]. Comparing the volume acquired from the combination of the three features,
the volume of the normal condition data is smaller than that of the abnormal condition.
Hence, the combination producing the largest difference between the two volumes of different
conditions reflects higher classification accuracy. The distance between the two datasets is
also a factor that improves classification performance because it distinguishes between normal
and abnormal conditions. The Mahalanobis distance is applied to evaluate the distance
between two datasets in a multivariate space, including correlated points for multiple variables,
considering the densities of the datasets [28–31]. Using the volumes of normal/abnormal
feature combinations and the Mahalanobis distance feature variables, the Feature Variable’s
Dimensional Coordination number (FDCN) can be obtained. As shown in Equation (3), the
FDCN evaluates the combination of extracted features to ranks them according to efficiency. V1
represents the volume of the normal condition feature combination, V2 represents the volume
of the abnormal condition feature combination, and Md represents the Mahalanobis distance
between V1 and V2.

FDCN = Md

(
V2 − V1

V2 + V1

)
(3)

The selected feature combination through evaluation of the FDCN is then applied to be
used as training data for developing a machine learning fault diagnosis model.

Figure 2. Feature engineering for feature combination matrix.
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3. Experimental Data Acquisition

The experimental data acquisition for major fault diagnosis of the gravure printing
system is shown in Figure 3. As shown, acceleration Sensors 1, 2, and 3 were installed on
both sides of the doctor blade and the frame supporting the printing module. All sensor
outputs were obtained using a data acquisition module (NI-9230, National Instruments).
Table 1 lists the specifications of the acceleration sensor and the NI-9230 module. When
the sensors obtained the vibration data, they were transferred to the LabVIEW software to
monitor and save the acquired data.

Figure 3. Experimental data acquisition by sensor position designation within the printing section.

Table 1. Specifications of acceleration sensor and NI-9230 module.

Item Parameter Value

Sensor

Sensor Type Share Accelerometer, Triaxial
Sensitivity

[
mV/

(
m/s2) ] 5.15

Measurement Range
[
m/s2 ] ±1000 g peak

Frequency Range [Hz] 2–5000 Hz
Resolution

[
m/s2 ] 0.003 (rms)

Module
Sampling Rate Range [Hz] 0–1651.6
Sampling Time per Trial [s] 36,000

The possible main faults during the printing process of the gravure printing system
are shown in Figure 4. The four main faults of the experimental design include doctor
blade tilting, printing roll eccentricity, nip roll eccentricity, and nip force non-uniformity. To
detect the main faults for diagnosis, the experimental variables included the doctor blade,
nip force, and tension. Cases with and without doctoring, and cases with and without
nipping were tested under tensions of 2, 4, and 6 kgf. Regarding the nip force, the nipping
cases were tested under 5 and 10 kgf, as shown in Table 2.

As shown in Table 3, each case was tested under different tension, nip force, and
doctoring conditions. The data used for diagnosing the doctor blade tilting fault required
Cases 1 and 2 at an operating tension of 2 kgf, Cases 7 and 8 at an operating tension of
4 kgf, and Cases 13 and 14 at an operating tension of 6 kgf. Cases 1, 7, and 13 had different
operating tensions; however, they were tested without and without doctoring. Cases 2, 8,
and 14 also had different operating tensions with and without doctoring. The data for the
fault diagnosis of the doctor blade tilting fault were acquired from the comparison of each
case at the same operating tension. The data for diagnosis printing roll eccentricity were
acquired from Cases 1, 7, and 13, which lack nipping and doctoring. Case comparison for
nip roll eccentricity required conditions without doctoring; hence, Cases 5, 11, and 17 with
a nip force of 10 kgf were compared to cases 1, 7, and 13. Nip force non-uniformity cases
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were selected using the nip force data shown in Figure 5. Cases 9 and 15 with uniform nip
forces were compared to Cases 11 and 17.

Figure 4. Possible main faults during gravure printing process: (a) Doctor blade tilting fault; (b) Printing roll eccentricity
fault; (c) Nip roll eccentricity fault; and (d) Nip force non-uniformity fault.

Table 2. Experimental design of data acquisition with experimental variables of tension, nip force,
and doctoring.

Case No. Tension [kgf] Nip Force [kgf] Doctoring

1

2

Without Nipping Without Doctoring
2 Without Nipping With Doctoring
3 5 Without Doctoring
4 5 With Doctoring
5 10 Without Doctoring
6 10 With Doctoring

7

4

Without Nipping Without Doctoring
8 Without Nipping With Doctoring
9 5 Without Doctoring
10 5 With Doctoring
11 10 Without Doctoring
12 10 With Doctoring

13

6

Without Nipping Without Doctoring
14 Without Nipping With Doctoring
15 5 Without Doctoring
16 5 With Doctoring
17 10 Without Doctoring
18 10 With Doctoring

10
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Table 3. Case comparison for fault diagnosis of possible main faults during printing process of gravure printing system.

Case No. Tension [2 kgf] Tension [4 kgf] Tension [6 kgf]

Doctor Blade Tilting Case 1 vs. Case 2 Case 7 vs. Case 8 Case 13 vs. Case 14
Printing Roll Eccentricity Case 1 Case 7 Case 13

Nip Roll Eccentricity Case 1 vs. Case 5 Case 7 vs. Case 11 Case 13 vs. Case 17
Nip Force Non-Uniformity - Case 9 vs. Case 11 Case 15 vs. Case 17

Figure 5. Nip force uniformity data of Cases 1–18.
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4. Results

4.1. Doctor Blade Tilting Fault Diagnosis
4.1.1. Doctor Blade Tilting Fault Diagnosis Based on Raw Data

In this section, the fault diagnosis results of the doctor blade tilting fault based on the
raw data are presented in Table 4. The raw data in this case include all data acquired from
Sensors 1, 2, and 3. The diagnosis of a doctor blade tilting fault at an operating tension
of 2 kgf showed 58.2 with a diagnosis accuracy of 1508.9 s and a processing capacity of
115 Mb. For a tension of 4 kgf, accuracy rates of 48.1% at 3640.4-s processing time required
100-Mb data capacity. At a tension of 6 kgf, the accuracy of fault diagnosis rates was 67.2%,
which was the highest among tensions by 368.4 s with 113-Mb data size.

Table 4. Doctor blade tilting fault diagnosis based on raw data (i.e., Sensors 1, 2, and 3).

[SVM] 2 kgf 4 kgf 6 kgf

Accuracy [%] 58.2 48.1 67.2
Positive Predictive Value [%] 51.4 36.7 64.4

Processing Time [s] 1508.9 3640.4 368.4
Data Capacity [Mb] 115 100 113

4.1.2. Optimal Sensor Selection Based on Sensor Efficiency Evaluation Method

The sensor data efficiency method described in Section 2.2 was applied to the raw
data to select a single optimal sensor for performance improvement. Because the raw
data comprised all sensor data, the sensor data efficiency method evaluates the sensors
individually, as shown in Table S1. To evaluate the efficiency of SE, the data capacity
(α), processing time (β), and misclassification rate (γ) must be obtained from individual
sensors. Sensors 1 and 2 from Figure 3 were evaluated because both were installed on
the doctor blade in the same directions as the X, Y, and Z axes. Tables S1–S3 show the
results of the sensor data efficiency evaluation, comparing the raw data to the data of
Sensors 1 and 2. The results of the doctor blade tilting fault diagnosis for optimal sensor
selection in Tables S1–S3 show that the highest SE results for Sensor 1 are as listed in
Table 5.

Table 5. Result of sensor data efficiency evaluation for optimal sensor selection of doctor blade tilting
fault.

SE Sensor 1 Sensor 2

2 kgf 6 5.79
4 kgf 6.69 5.70
6 kgf 8.17 5

The result of the optimal sensor selection can be verified in Table S4 as compared with
Table S5, based on the performance of the diagnosis results. It can also be seen that the
diagnosis result of Sensor 1 was improved in accuracy, processing time, and data capacity
compared with the result of raw data diagnosis shown in Table 4.

4.1.3. Optimal Axis Selection Based on the DNF Method

Sensor 1 from the raw data of the doctor blade tilting cases was selected as the optimal
sensor, and the DNF method was used to evaluate axes X, Y, and Z from Sensor 1 to extract
the most sensitive axis. As mentioned in Section 2.3, based on the kurtosis and standard
deviation of normal and abnormal conditions, the DNF number was calculated. The axis
having the highest number of DNFs resulted in the highest diagnostic performance. As
shown in Table 6, the DNF number evaluation of the X, Y, and Z axes from Sensor 1 is
shown. As shown in Table 6, the axis having the highest DNF number differed depending
on the operating tension. For a tension of 2 kgf, the Y-axis resulted in the highest DNF
number. Tensions of 4 and 6 kgf showed the highest DNF numbers on the X-axis. The
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theory of achieving the highest diagnosis performance depending on the DNF number
is verified in Tables S6–S8. Table S6 shows the highest accuracy of diagnosis for tensions
of 4 and 6 kgf along the X-axis, and Table S7 illustrates the best result for a tension of
2 kgf. The proposed method evaluates the sensitivity of the axis using the DNF number,
which resulted in a high rate of diagnosis accuracy and decreased processing time and data
capacity requirements.

Table 6. DNF Number of axis X, Y, and Z from Sensor 1 of doctor blade tilting fault.

DN X Axis Y Axis Z Axis

2 kgf 8.27 11.66 6.00
4 kgf 16.76 15.53 8.64
6 kgf 1.59 1.32 1.01

4.1.4. Feature Variable Optimization Based on FCM Method

As shown in Figure 2, 12 feature variables were extracted from the data acquired
during Phases 1 and 2. From the 12 feature variables, four were selected to be coordinated
into a feature combination. The four variables in this case were skewness, kurtosis, standard
deviation, and peak-to-peak. The left and right sides of the statistical feature variables
are generally symmetrical around the mean on a normal distribution. Hence, skewness
and kurtosis are selected as indicators to determine how far the distribution shape of
the data deviates from normal. Skewness measures the asymmetry of the distribution.
The more symmetric the data, the closer the skewness to zero. Furthermore, because
kurtosis is a measure of outliers present in the distribution, there are clear criteria for
discriminating between normal and abnormal, such as finding a value of three in the
Gaussian probability distribution. In the case of peak-to-peak, peak vibration can be
observed on the distribution chart when an abnormality occurs. Hence, the FCM method
was applied to skewness, kurtosis, standard deviation, and peak-to-peak. The coordination
of three feature variables of the selected four forms a volume, as shown in Figure 6. The
red volume represents the three-dimensional feature variables of the abnormal condition
data. The blue volume represents normal condition data. A significant volume difference
between normal and abnormal conditions is visible. After evaluating the coordination
of feature combinations from the selected feature variables using the FDC number from
Equation (3), the combination having the highest FDC number was used as input data to
train the machine-learning fault diagnosis model. As shown in Table 7, the fault diagnosis
results of the doctor blade tilting condition improved, owing to the data characterization
process of Phases 1, 2, and 3. Compared with the results of the raw data-based diagnosis in
Table 4, the smart data-based fault diagnosis resulted in an improved accuracy of 90.1%
from 58.2% at a tension of 2 kgf. At 4 kgf, the accuracy improved from 48.1% to 86.2%, and
67.2% to 97.0% at a tension of 6 kgf. The processing time reduced from 1508.9 s to 33.9 s at a
tension of 2 kgf. It reduced from 3640.4 s to 37.5 s at 4 kgf. It reduced from 368.4 s to 16.6 s
at 6-kgf tension. The data capacity was also reduced from approximately 113 Mb to 4 Mb.

4.2. Printing Roll Eccentricity Fault Diagnosis
4.2.1. Printing Roll Eccentricity Fault Diagnosis Based on Raw Data

The fault diagnosis of printing roll eccentricity was conducted using the raw data of
processes at tensions of 2, 4, and 6 kgf, as listed in Table 3. As shown in Table 8, the results
based on the raw data showed a diagnosis accuracy of 69.7–76.9%. The processing time of
the raw data diagnosis ranged from 208.0 s to 237.9 s.

4.2.2. Printing Roll Eccentricity Fault Diagnosis Based on Smart Data

The diagnosis of the printing roll eccentricity fault data was performed in the same
order as the doctor blade tilting diagnosis procedure described in Section 4.1. Based on
the raw data of Phase 2, the sensor data efficiency evaluation was applied to select a
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single optimal sensor. As shown in Tables S9–S11, the data capacity, processing time, and
misclassification rate of each case were computed to obtain SE, as shown in Table 9. SE
results of Sensor 2 reflected the highest value for all tensions. The fault diagnosis results
based on Sensors 1 and 2 are shown in Tables S12 and S13 as applied to the verification of
the sensor data efficiency evaluation.

Figure 6. Volume comparison of normal and abnormal condition data: (a) Operating tension of 2 kgf; (b) Operating tension
of 4 kgf; and (c) Operating tension of 6 kgf.

Table 7. Doctor blade tilting fault diagnosis based on smart data.

[SVM] 2 kgf [Y Axis] 4 kgf [X Axis] 6 kgf [X Axis]

Accuracy [%] 90.1 86.2 97.0
Positive Predictive

Value [%] 89.8 85.9 97.0

Processing Time [s] 33.9 37.5 16.6
Data Capacity [Mb] 5 4 5

Table 8. Printing roll eccentricity diagnosis based on raw data (i.e., Sensors 1, 2, and 3).

[SVM] 2 and 4 kgf 2 and 6 kgf 4 and 6 kgf

Accuracy [%] 74.8 76.9 69.7
Positive Predictive

Value [%] 70.2 73.5 54.2

Processing Time [s] 237.9 208.0 237.0
Data Capacity [Mb] 111 111 110

Table 9. Result of sensor data efficiency evaluation for optimal sensor selection of printing roll
eccentricity fault.

SE Sensor 1 Sensor 2

2 and 4 kgf 24.07 29.29
2 and 6 kgf 20.29 25.15
4 and 6 kgf 19.09 27.24

Based on the selected optimal Sensor 2 data, the DNF method was applied to extract
the most sensitive axis information based on the DNF number. The results of the computa-
tion of the number of DNFs are listed in Table 10. The X-axis for tension 2 (4 kgf) resulted
in the highest DNF number followed by the Z-axis for the remaining cases. Verification
results of the selected axis depended on the cases based on the DNF number and are shown
in Tables S14–S16. Compared with Table 10, the diagnostic performance of the selected axis
having the highest DNF number provided the most efficient outcome.
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Table 10. DNF Number of axis X, Y, and Z from Sensor 2 of printing roll eccentricity fault.

DN X-Axis Y-Axis Z-Axis

2 kgf 1.12 0.91 1.06
4 kgf 1.09 0.86 1.12
6 kgf 0.95 1.01 1.06

As shown in Figure 7, the feature variables were extracted and combined into three
feature combinations for evaluation. The selected and extracted feature variables were
identical to those described in Section 4.1.4. The conditions of normal and abnormal
data formed a volume measure for each feature variable, as shown in Figure 7. The
two conditions were then computed using Equation (3) to select the training input data.
Based on the results of the FCM method, it was then used as input data for printing roll
eccentricity fault diagnosis. The results are listed in Table 11. Compared with Table 8, smart
data increased the diagnosis accuracy up to 99.1% with a processing time of 3.7 s and a
data capacity of 4 Mb. In summary, diagnosing the main fault printing roll eccentricity
with smart data improved the diagnostic performance with less time consumption and
fewer data requirements.

Figure 7. Volume comparison of normal and abnormal condition data: (a) Operating tensions of 2 and 4 kgf; (b) Operating
tensions of 2 and 6 kgf; and (c) Operating tensions of 4 and 6 kgf.

Table 11. Printing roll eccentricity fault diagnosis based on smart data.

[SVM] 2 and 4 kgf [X Axis] 2 and 6 kgf [Z Axis] 4 and 6 kgf [Z Axis]

Accuracy [%] 97.9 99.1 96.3
Positive Predictive

Value [%] 93.4 94.9 92.0

Processing Time [s] 6.1 5.1 3.7
Data Capacity [Mb] 5 5 4

4.3. Nip Roll Eccentricity Fault Diagnosis
4.3.1. Nip Roll Eccentricity Fault Diagnosis Based on Raw Data

The fault diagnosis of the nip roll eccentricity based on raw data is shown in Table 12.
The results for cases of tensions 2, 4, and 6 kgf rated 42.1% to 56.0% diagnosis accuracy with
425.4 s to 597.0 s of processing time. The data capacity of the raw data ranged from 111 Mb
to 114 Mb, like the raw data capacity of doctor blade tilting and printing roll eccentricity
faults.

4.3.2. Nip Roll Eccentricity Fault Diagnosis Based on Smart Data

The smart data transition from the raw data is presented in this section. The evaluation
of the sensor data efficiency in Phase 1 used to select the optimal sensor is shown in Table 13.
Sensor 1 was selected as the optimal sensor for the next phase of the DNF method. It can
be seen that the SE of each case at Sensor 1 was higher than that of Sensor 2. As shown
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in Tables S17–S19, the data capacities of Sensors 1 and 2 maintained an average value of
43. As the capacity difference of both sensors merely influenced factor α, the major factor
influencing the outcome of SE was at factors β and γ. Tables S20 and S21 verify that the
sensor having the highest SE maintained the diagnosis result with higher accuracy.

Table 12. Nip roll eccentricity fault diagnosis based on raw data (i.e., Sensors 1, 2, and 3).

[SVM] 2 kgf 4 kgf 6 kgf

Accuracy [%] 53.8 56.0 42.1
Positive Predictive

Value [%] 46.7 47.7 33.9

Processing Time [s] 425.4 574.4 597.0
Data Capacity [Mb] 111 111 114

Table 13. Result of sensor data efficiency evaluation for optimal sensor selection of nip roll eccentricity
fault.

SE Sensor 1 Sensor 2

2 kgf 24.16 19.6
4 kgf 14.54 13.82
6 kgf 19.5 16.88

The evaluation of the X, Y, and Z axes of Sensor 1 was carried out based on the DNF
method and the DNF number. The results from the most sensitive axis for each case are
listed in Table 14. For the case of the tension of 2 kgf, the Z-axis rate had the highest DN ,
whereas tensions of 4 and 6 kgf rates were the highest in the X-axis. The diagnosis results
for each case, based on the axis of Sensor 1, are shown in Tables S22–S24.

Table 14. DNF Number of axis X, Y, and Z from Sensor 1 of nip roll eccentricity fault.

DN X Axis Y Axis Z Axis

2 kgf 0.89 0.86 1.09
4 kgf 1.53 1.30 1.04
6 kgf 1.67 1.15 0.92

The FCM method was carried out based on the results of Phase 2 in this section. The
feature variables used for coordination of the combination were identical to the results of
Sections 4.1 and 4.2 by skewness, kurtosis, standard deviation, and peak-to-peak. Kurtosis
considers the effect of data at the end of the distribution on the probability curve. Based on
the standard distribution, the kurtosis value increased with the weight of the outer values.
Hence, kurtosis refers to the sharpness of the distribution, and if the degree of dispersion
is large, the data are heterogeneous, and the height of the distribution is lowered. On the
other hand, if the degree of dispersion is small, the data are homogeneous, and the height
of the distribution increases.

The volume of normal and abnormal conditions based on the coordinated feature
variables can be seen in Figure 8. Normal volume is shown in blue, and abnormal volumes
are shown in red and yellow. The abnormal volumes differ depending on the nip force of
the data. Table 15 shows the results of the nip roll eccentricity fault diagnosis based on the
smart data. In the case of the tension of 2 kgf, the diagnostic accuracy rates were 100% with
a data capacity of 4 Mb and a processing time of 4.63 s. Compared with the results of the
raw data in Table 12, it can be seen that the fault diagnosis model performances improved
in areas of accuracy, positive predictive value, processing time, and data capacity.
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Figure 8. Volume comparison of normal and abnormal condition data: (a) Operating tension of 2 kgf; (b) Operating tension
of 4 kgf; and (c) Operating tension of 6 kgf.

Table 15. Nip roll eccentricity fault diagnosis based on smart data.

[SVM] 2 kgf [Z Axis] 4 kgf [X Axis] 6 kgf [X Axis]

Accuracy [%] 100.0 98.4 99.5
Positive Predictive

Value [%] 98.8 97.0 98.2

Processing Time [s] 4.63 4.38 4.40
Data Capacity [Mb] 4 4 4

4.4. Nip Force Non-Uniformity Fault Diagnosis
4.4.1. Nip Force Non-Uniformity Fault Diagnosis Based on Raw Data

Fault diagnosis based on raw data was performed to detect nip force non-uniformity.
Figure 5 shows the data of the nip force for Cases 1–18. As Cases 11 and 17 in Figure 5
showed non-uniformity nip forces, the data of both cases were used as abnormal condition
data for fault diagnosis. Table 16 shows the performance of the fault diagnosis at tensions
of 4 and 6 kgf.

Table 16. Nip force non-uniformity fault diagnosis based on raw data (i.e., Sensors 1, 2, and 3).

[SVM] 4 kgf 6 kgf

Accuracy [%] 65.5 65.4
Positive Predictive Value [%] 60.3 59.4

Processing Time [s] 281.7 515.4
Data Capacity [Mb] 115 116

4.4.2. Nip Force Non-Uniformity Fault Diagnosis Based on Smart Data

The sensor data efficiency evaluation results are shown in Table 17 based on the
computation of Tables S25 and S26. It can be seen that Sensor 2 had the highest SE among
the raw data. Tables S27 and S28 can be used to verify the optimal sensor selection results
of the sensor data efficiency evaluation.

The DNF method was used to evaluate the axis of Sensor 2 by X, Y, and Z for tension
cases of 4 and 6 kgf. The DNF numbers for both cases are shown in Table 18, where the
result of a tension of 4 kgf showed axis Y as the most valid, and X for the tension case
of 6 kgf. The results of the fault diagnosis based on Sensor 2 for the triaxis are shown in
Tables S29–S31.

With identical feature variables coordinated through the FCM method, the volumes of
normal and abnormal conditions are shown in Figure 9. It can be seen from Figure 9a that
the volume of the normal condition overlaps with the volume of the abnormal condition.
Thus, the peak values and the distribution of data points for abnormal conditions were

17



Sensors 2021, 21, 8454

broad, compared with the normal volume condition. Based on the results of the FCM, the
nip force non-uniformity fault diagnosis results with smart data are shown in Table 19.

Table 17. Result of sensor data efficiency evaluation for optimal sensor selection of nip force non-
uniformity fault.

SE Sensor 1 Sensor 2

4 kgf 11.29 11.83
6 kgf 11.91 12.45

Table 18. DNF Number of X, Y, and Z axes from Sensor 2 of nip force non-uniformity fault.

DN X Axis Y Axis Z Axis

4 kgf 0.97 1.12 1.10
6 kgf 1.16 1.03 1.04

Figure 9. Volume comparison of normal and abnormal condition data: (a) Operating tension of 4 kgf; (b) Operating tension
of 6 kgf.

Table 19. Nip force non-uniformity fault diagnosis based on smart data.

[SVM] 4 kgf [Y Axis] 6 kgf [X Axis]

Accuracy [%] 97.9 95.2
Positive Predictive Value [%] 93.5 90.7

Processing Time [s] 25.4 28.4
Data Capacity [Mb] 6 5

4.5. Simultaneous Fault Diagnosis

In Sections 4.1–4.4, defects caused during the printing process of gravure printing
system has been diagnosed independently. However, occasionally in real applications it is
likely for the gravure printing system to malfunction with more than one single fault. In this
section, characterized smart data has been applied under the assumption of multiple faults
appearing simultaneously to present the effectiveness of the diagnosis model performance.

Cases 6, 12, and 18 from Table 2 has been selected for the multiple fault data since the
experimental condition included with nipping and doctoring at tensions 2, 4, and 6 kgf.
Diagnosis results of simultaneous multiple faults is shown in Table 20. The effectiveness of
the smart data characterization is shown with comparison to the diagnosis result with raw
data. As the raw data of simultaneous faults contain various disturbances with noticeable
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peaks, it is less complex for the raw data-based diagnosis model to clarify the distinct
conditions for classification. Hence, the average accuracy of raw data diagnosis is at 72.3%
in which rates a higher value compared to single fault diagnosis results. Therefore, results
based on smart data rates at an average of 99% on the grounds of abovementioned basis.
In short, detecting simultaneous multiple faults based on smart data shows positive results
as shown in Table 20.

Table 20. Simultaneous fault diagnosis result based on big data and smart data.

[SVM]. 2 kgf [X Axis] 4 kgf [Y Axis] 6 kgf [Y Axis]

Accuracy [%] 70→97 74→100 73→100
Positive Predictive Value [%] 69→95 72→99 73→99

Processing Time [s] 4501→52 4035→34 4722→49
Data Capacity [Mb] 110→6 112→8 114→7

4.6. Raw Data and Smart Data Comparison for Fault Diagnosis

The fault diagnosis of four possible major faults during the printing process of the
gravure printing system based on raw and smart data is shown in Table 21. Table 21
summarizes the impact of data characterization methods for the diagnosis of the four
suggested major faults and the simultaneous faults of the gravure printing system printing
process. The diagnosis performance comparison results are shown based on raw and
smart data. All diagnosis results based on raw data and smart data are processed through
support vector machine algorithm. In Tables S32–S35, diagnosis results of the four major
faults depending on the machine learning algorithm is shown. A total of eight different
algorithms have been applied to each of the faults and consequently shows that the most
efficient outcome of the performance regarding accuracy, positive predictive value, and
processing time concludes with the use of a support vector machine algorithm to diagnose
all faults of the printing process.

Table 21. Raw data and smart data diagnosis comparison.

Main Faults Accuracy [%] PPV [%] Processing Time [s] Data Capacity [Mb]

Doctor Blade Tilting 48→97 36→97 3640→16 110→5
Printing Roll
Eccentricity 69→99 54→94 237→5 110→5

Nip Roll Eccentricity 42→100 33→98 597→4 114→4
Nip Force

Non-Uniformity 65→97 59→93 515→25 116→6

Simultaneous Faults 74→100 72→99 4035→34 112→8

Based on the results of Table 21, techniques to increase the accuracy of the classification
has been applied to faults of doctor blade tilting, printing roll eccentricity, and nip force
non-uniformity. As the abovementioned faults maintain an accuracy of 97% to 99%, it is
possible to improve the final diagnosis results by adjusting the parameter of window size.
As shown is Equation (4), the window size can be adjusted using the sampling rate and
revolutions per minute. As x is the revolutions per minute, and α as the sampling rate (Hz),
it is possible to obtain the value Ws. Once the value Ws is obtained for the three faults it is
then applied to as a fixed parameter to be diagnosed based on the smart data. The results
show in Table 22 that the contents of accuracy, PPV, and processing time have improved in
comparison to the results of Table 21.

Ws = α
( x

60

)−1
(4)
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Table 22. Smart data diagnosis improvement with window size adjustment.

Main Faults Accuracy [%] PPV [%] Processing Time [s] Data Capacity [Mb]

Doctor Blade Tilting 48→100 36→99 3640→13 110→5
Printing Roll Eccentricity 69→100 54→99 237→8 110→5

Nip Force Non-Uniformity 65→100 59→98 515→17 116→6

5. Conclusions

Printing defects generated by the misalignment of the doctor blade, eccentricity of
the nip and printing rolls, and non-uniform nip roll pressures can negatively affect the
performance of printed electronic devices. To prevent printing defects and to obtain high-
quality printed functional layers, it is necessary to recognize and diagnose factors that
cause printing defects. In this study, a method for data characterization using sensor data
efficiency evaluation (SE), DNF, and FCM methods was proposed to diagnose the possible
four major faults in the roll-to-roll gravure printing process, followed by experimental
verification. The misalignment of the doctor blade, printing roll eccentricity, nip roll
eccentricity, nip force non-uniformity, and simultaneous faults rated an average value of
56% accuracy with raw data. However, with smart data, the accuracy rated 100.0% on
average. The positive predictive value increased when the learning time was reduced from
1247 s to 12 s on average. The data capacity was reduced from 112 Mb to 5 Mb, depending
on the selection of the sensor and its axis with optimized feature variable coordination. It
is known that, with the use of smart data through sensor data efficiency evaluation, the
feature combination matrix, and DNF methods, machine learning fault diagnosis model
performance improves for classifying normal and abnormal conditions of datasets. The
proposed smart data process in this paper is the most novel and contributory aspect of
this paper because it leads to the near-perfect performance of the machine learning fault
detection model. It is also faster and less computer-memory intensive than the results
found from raw sensor data. This poses a contribution to the field, and countless industries
can benefit from the improved and most cost-efficient production of printed electronics.
Further research regarding the methodologies proposed in this paper plans to expand the
application for fault diagnosis despite the numerous numbers of sensors.
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Abstract: The faults of the landing gear retraction/extension(R/E) system can result in the deteriora-
tion of an aircraft’s maneuvering conditions; how to identify the faults of the landing gear R/E system
has become a key issue for ensuring aircraft take-off and landing safety. In this paper, we aim to
solve this problem by proposing the 1-D dilated convolutional neural network (1-DDCNN). Aiming
at developing the limited feature information extraction and inaccurate diagnosis of the traditional
1-DCNN with a single feature, the 1-DDCNN selects multiple feature parameters to realize feature
integration. The performance of the 1-DDCNN in feature extraction is explored. Importantly, using
padding dilated convolution to multiply the receptive field of the convolution kernel, the 1-DDCNN
can completely retain the feature information in the original signal. Experimental results demon-
strated that the proposed method has high accuracy and robustness, which provides a novel idea for
feature extraction and fault diagnosis of the landing gear R/E system.

Keywords: landing gear retraction/extension(R/E) system; 1-D dilated convolutional neural network
(1-DDCNN); fault diagnosis; feature integration

1. Introduction

The landing gear R/E system is the significant subsystem for aircrafts, after long-term
running under complex and variable conditions, with heavy loads and strong impact,
the key parts in the landing gear R/E system will inevitably generate multifarious faults,
which may affect take-off, landing, and flight safety.

Firstly, Hinton proposed a deep learning method in 2006, which set off a new wave
of research on artificial intelligence and its applications [1]. In particular, deep learning
models have shown significant success in image processing, speech recognition, target
detection, information retrieval, natural language processing, and so on [2]. Moreover, as an
important network structure, CNNs are widely applied in computer vision and natural
language processing [3]. Machine learning methods have made great progress in the field
of fault diagnosis. For example, Gligorijevic et al. proposed a method for rolling bearing
fault diagnosis. Through the five-level wavelet decomposition of the vibration signals,
the standard deviations of the wavelet coefficients from six sub-bands were extracted as
representative features; feature dimensionality reduction was then performed, and the
diagnosis accuracy reached 98.9% [4]. However, some scholars gradually introduced
CNNs into the field of fault diagnosis. By converting 1-D timeseries vibration signals
into 2-D input matrices, some experts and scholars constructed 2-D convolutional neural
network models for fault diagnosis of rotating machinery. Janssens et al. performed
a short-time Fourier transform on the vibration information of rotating machinery, then
input the transformed coefficient map into a constructed CNN model for feature extraction
to achieve CNN-based multi-fault identification [5]. Jing et al. proposed an adaptive
multi-sensor data fusion method based on deep convolutional neural networks, for fault
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diagnosis. The proposed method can learn features from raw data and adaptively optimize
a combination of different fusion levels to effectively diagnose different faults of planetary
gearboxes [6]. Wen et al. proposed a signal-to-image conversion method, using CNN
techniques to extract features of the converted images, and achieved excellent test results
for three famous datasets, comprising a motor bearing dataset, a self-priming centrifugal
pump dataset, and an axial piston hydraulic pump dataset [7].

The main difference between the 1-DCNN and 2-DCNN lies in the dimension of input
data and the sliding mode of the convolution kernel. Wu et al. proposed a 1-DCNN model
for fault diagnosis of original vibration signals, for which test diagnosis accuracy reached
99.3% [8]. Huang et al. proposed a multi-scale cascade convolutional neural network
(MC-CNN) model for fault diagnosis of bearings, achieving satisfactory results under
non-stationary operating conditions [9]. He et al. combined a 1-DCNN and a LSTM (long
short-term memory) network to construct a novel network model for fault diagnosis of
bearings, with an average accuracy of over 99% [10].

For the traditional CNN, the convolution and pooling operations are carried out
alternately, which reduces the feature maps’ size while increasing the receptive field.
However, for the pixel-level prediction problem of image segmentation, the final feature
output size is required to be consistent with the original image size, which involves the
down-sampling and up-sampling processes, image resolution reduction, and information
loss. To solve these problems, dilated convolution came into being [11]. Zhuang et al.
proposed a stacked residual dilated convolutional neural network (SRDCNN) for real-
time fault diagnosis of bearings by combining dilated convolution, LSTM, and residual
networks, and their experimental results show that the proposed model has improved de-
noising performance and adaptability [12]. Feng et al. used dilated convolution to replace
conventional convolution and pooling structures, and introduced instance normalization
(IN) to solve the issue of data style transfer. The proposed 1-D stacked dilated convolutional
neural network (1D-SDCNN) model has an average accuracy of 96.8% for fault diagnosis of
rolling bearings with variable loads [13]. Liang et al. combined LSTM, dilated convolution,
and capsule networks to construct a new capsule network with gate-structure dilated
convolutions (GDCCN). Their experimental results demonstrated that the proposed model
has strong noise resistance and generalization in fault diagnosis of motors under variable
load conditions [14]. As equipment has become more intelligent, complex, and integrated,
it is difficult to accurately determine the characteristics of the failure status with a single
feature. Moreover, using the 1-DCNN for fault diagnosis is highly dependent on fault
datasets for roller bearing. The CNN fault diagnosis model can directly extract features
from the original data to achieve end-to-end fault diagnosis without complicated data
pre-processing. Dimensionality reduction methods, such as principal component analysis
(PCA), cannot effectively preserve the time-dependence of timeseries data; moreover,
information loss occurs in the process of dimensionality reduction.

In order to solve the above problems, this paper proposes a fault diagnosis method for
the aircraft landing gear R/E system based on a 1-D dilated convolutional neural network
(1-DDCNN). The main work of this paper is summarized as follows:

1. Analyze the aircraft landing gear R/E system’s main fault mode with its working principle.
2. A conventional 1-DCNN was constructed to classify faults based on the actua-

tor’s displacement; experimental results show the average accuracy of the test set
reached 91.80%.

3. The receptive field size affects the extraction of the original information by the model.
There is a nonlinear relationship between the receptive field and the convolution
kernel size for the expanded convolution. The convolution kernel size’s influence on
classification accuracy is explored.

4. There is a low classification result with a single feature; consequently, 1-DDCNNselects
multi-feature parameters with the system pressure, the pressure at the right and left
end of the actuator cylinder. Experimental results reveal that the average test accuracy
of the model reaches 99.80%.
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2. The Typical Aircraft Landing Gear R/E System Analysis

2.1. System Working Principle and Composition

The landing gear system of a typical aircraft mainly includes the following: front
landing gear and cabin door, main undercarriage and cabin door, landing gear R/E system,
wheels and brakes, turning control system, landing gear position indication system, etc.
Among them, the R/E system mainly completes normal R/E and emergency R/E functions,
and provides the landing gear position indication signal.

The front landing gear R/E process is similar to that of the main landing gear; therefore,
only the front landing gear retraction process is described here. The working status of the
front landing gear is shown in Figure 1. When the plane takes off, and the landing gear
wheels are off the ground, the pilot sets the landing gear R/E control switch to the “UP”
position, and the current flows to the landing gear R/E electromagnetic switch and the
accumulator charging electromagnetic switch. The hydraulic fluid from the three-position
four-way directional valve enters the front landing gear lower lock and actuating cylinder.
As the accumulator charging solenoid switch is turned on, oil from the pump is supplied
to the actuating cylinder, and the oil in the accumulator is also released to aid the landing
gear retraction. When the aircraft is about to land, the pilot moves the control switch to the
“DOWN” position, the three-position four-way directional valve is switched to the down
circuit, and the fluid enters the front landing gear upper lock. Once the lock is opened,
the oil enters the lowering chamber of the R/E actuator to lower the landing gear.

Figure 1. Front landing gear retracting process.

The landing gear R/E system mainly includes the following components: constant
pressure variable pump, tank, hydraulic motor, filter, accumulator, actuator, press control,
throttle valve, and three-position four-way directional control valve.

Through providing certain pressure and oil mass, the pump converts mechanical
energy into hydraulic energy. The tank is used to store hydraulic oil. The filter is used
to filter the hydraulic oil and remove its impurities. The accumulator not only supplies
oil at both weak and heavy flows, it also compensates for leakage and maintains constant
pressure. The actuator is a device that converts hydraulic energy into mechanical energy for
linear reciprocating motion, which overcomes the load (including friction) and maintains
the speed of motion using pressure-driven liquid flow. The relief valve is one of the common
pressure valves used to regulate or limit the pressure in a hydraulic system. The throttle
valve is a hydraulic component that regulates and controls the flow of oil in a hydraulic
system. The function of the one-way throttle valve is to ensure that the oil flows in one
direction, with no backflow, using the throttling effect. The solenoid directional valve is one
of the frequently used hydraulic components in hydraulic systems, and is used to switch
the direction of the hydraulic circuit. This article uses a three-position four-way solenoid
directional valve. The “Position” refers to the working position of the spool. The “Way”
marks the valve body of the oil port [15].
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2.2. Failure Mode and Effect Analysis

The failure mode and effect analysis (FMEA), derived from typical civil aircraft design
data in this subsection, can be used for parameter selection and fault injection into the
simulation model, whereby fault datasets are obtained. The FMEA was carried out on
the system’s main components for subsequent fault diagnosis, the results of which are
shown in Table 1 below. The failure analysis in this paper focuses on the component
level of the landing gear R/E system and does not explore the specific internal failure
of each component. For the excessive noise from the pump, the failure threshold can be
obtained by changing the air content of the oil. If the clogging of the throttle valves at
both ends of the actuator cylinder has different effects on the system, it is necessary to
change the throttle valve’s diameter at both ends of the actuator cylinder to obtain the
failure threshold. Regarding the system failure caused by constant pressure variable pump
leakage, a throttle valve should be connected to the constant pressure variable pump in
parallel, and the throttle valve’s diameter should be changed to simulate different degrees
of leakage of constant pressure variable pump. Actuator cylinder leakage also affects the
normal operation of the system, and the failure threshold can be obtained by changing the
actuator leakage coefficient.

Table 1. FMEA for the landing gear R/E system.

Components Failure Mode Failure Cause

Constant pressure
variable pump

Insufficient oil output and
pressure of the pump

Severe pump leakage or low
pump speed

Excessive noise from the pump The pump is severely worn or air
mixed in the oil

Higher temperature Abnormal wear in the pump

Actuatorcylinder
Piston rod stuck The actuator cylinder is leaking

seriouslyor press control is faulty

The speed did not reach the
standard value

The actuator cylinder is leaking
seriously and it is subjected to

excessive external load
Creeping phenomenon Air entered the actuatorcylinder

Directional control
valve

Insufficient flow after
reversing spool Insufficient valve opening

Spool stands still Spool stuck or electromagnet failed

Excessive pressure drops Improper setting of some
parameters

Filter Filter clogging Oil is contaminated

Throttle valve The range of flow regulation is
limited Clogged throttle hole

3. 1-DDCNN Fault Diagnosis Model

3.1. 1-DCNN

The receptive field is defined as the area size mapped on the original image by each
pixel on the feature map output from each layer in the CNN. The neuron’s receptive field
value decides the original range it can cover, meaning that it may contain more global
features. Figure 2a shows the range of neuron receptive fields in the third layer of the
1-DCNN, with a convolutional kernel size of 3 × 1 and a step size of 1 × 1. The marked
blue neurons in the third layer are mapped from the blue regions in the first layer, that is,
the receptive field size of the input sequence data corresponding to a neuron in the output
feature map 2 is 5 × 1.
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(a) (b) 

Figure 2. The receptive field of 1-DCNN. (a) 1-DCNN; (b) 1-DDCNN.

Before inputting 1-D time series signals into 2-DCNN, the common method is to
rearrange and combine signal sampling points, using a simple procedure, and convert
them into 2-D matrix form. The 1-DCNN has the advantage that 1-Dtime series signals can
be input directly without the need for cumbersome conversions.

The output receptive field of the n-th layer is:

rn = rn−1 + ((kn − 1)×
n−1

∏
i=1

si), n ≥ 2, (1)

where rn is the receptive field size of the n-th layer,kn is the filter size of the n-th layer,
and si is the movement step size of the i-th layer filter.

According to the receptive field’s design principle, the size of the neuron receptive
field in the last layer is close to the input signal’s length, that is, it satisfies the condition
rn = L, where L is the length of the input signal. The convolution kernel size is k, and the
sliding step size of the convolution kernel is s. Each convolutional layer is followed
by the maximum pooling layer, where the step size of the maximum pooling layer is
kpool = 2, and the sliding window of the maximum pooling layer is kpool = 2. When n > 2,
the receptive field of the convolutional layer is:

rn = rn−1 + (k − 1)×
n−1

∏
i=1

si, (2)

and the receptive field of the pooling layer is:

rn+1 = rn + (kpool − 1)×
n−1

∏
i=1

si × s, (3)

when n > 2, the n-th network layer is a convolutional layer and n is odd, then the difference
between the front and back receptive fields is 2n−1; thus, the expression for the receptive
field rn of the neurons in the last pooling layer at the input signal, when n is even number, is:

rn = k + 1 + 2k + 4k + · · ·+ 2
n
2 −1k = 1 + 2

n
2 k − k (4)

According to the condition rn = L, the value of k is obtained from:

k ≈ L − 1

2
n
2 − 1

, (5)
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3.2. 1-DDCNN

Dilated convolution is also called expanded convolution; it replaces the traditional
CNN pooling operation by introducing the expansion ratio, which can completely retain
the feature information in the original signal so that the convolution kernel of the same size
can obtain a larger receptive field.{

r1 = k
rn = rn−1 + (kn − 1)ln, n ≥ 2

, (6)

where rn is the receptive field size of the n-th layer network structure, kn is the convolutional
kernel size of the n-th layer network structure, and ln is the expansion rate of the n-th layer
network structure.

Figure 2b shows the receptive fields’ range in the third layer of the 1-DDCNN (output
feature map 2) for the first layer(input sequence data) and the second layer (output feature
map 1). The convolutional kernel size is 3 × 1 (k = 3). The step size is 1 × 1. The expansion
rate is 2 (l1 = l2 = 2). The receptive field size in the second layer corresponding to output
feature 2 is 5 × 1, and the receptive field size in the first layer is 9 × 1.

3.3. 1-DDCNN Fault Diagnosis Model Framework

The structural framework of the proposed fault diagnosis method based on the
1-DDCNN is shown in Figure 3. The model fault diagnosis process was as follows:

 
Figure 3. 1-DDCNN fault diagnosis process.

Step 1: Datasets were divided into training set, validation set, and test set.
Step 2: According to the structure and parameters of the traditional 1-DCNN model,

the 1-DDCNN was preliminarily designed.
Step 3: The diagnostic accuracy of the multi-feature 1-DDCNN model under different

convolutional kernel sizes was investigated to determine the final model hyper-parameters.
Step 4: The proposed model was trained and tested with a test set to obtain the fault

diagnosis accuracy.
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4. Experimental Implementations

4.1. Data Description and Operating Environment

Due to the fault data insufficiency regarding operation conditions, there is an incen-
tiveto use AMESim® to model the landing gear R/E system model and obtain fault datasets.
According to the mutual logical relationship between components, the landing gear R/E
system model was established, and is presentedin Figure 4. The blue section represents
the hydraulic subsystem, the green section signifies the mechanical subsystem, and the
red section denotes the external load of the system. Component parameter settings in the
model are shown in Table 2.

 

Figure 4. Simulation of landing gear R/E system. 1. Hydraulic motor; 2. Constant pressure variable
pump; 3. Accumulator; 4. Filter; 5. Spring check valve; 6. Press control; 7. Oil tank; 8. Hydraulic check
valve; 9. Three-position four-way directional control valve; 10. Hydraulic fluid; 11. Two-position
three-way directional control valve; 12. Unlock actuator; 13. Flow control; 14. Actuatorcylinder.

Table 2. Component parameter settings in the landing gear R/E system model.

Sub-Model Parameter Value

Hydraulic fluid

Density 850 kg/m3

Bulk modulus 1.7 × 104 bar
Temperature 40 ◦C

Air/gas content 0.1%
Constant pressure variable pump Pump displacement 5 cc/rev

Hydraulic motor Shaft speed 5000 rev/min

Filter
Equivalent orifice diameter 6 mm

Critical flow number 2320
Maximum flow coefficient 0.7

Accumulator

Polytrophic index 1.4
Gas pre-charge pressure 118 bar

Initial pressure 152 bar
Accumulator volume 2 L

Actuatorcylinder

Piston diameter 69.596 mm
Rod diameter 30.099 mm

Length of stroke 276.1 mm
Leakage coefficient 0 L/min/bar

Unlock actuator
Piston diameter 25.12 mm
Rod diameter 11.049 mm

Length of stroke 70.84 mm
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Table 2. Cont.

Sub-Model Parameter Value

Press control
Relief value cracking pressure 206.843 bar

Relief value flow rate pressure gradient 20 L/min/bar
Throttle valve Diameter 2 mm

Three-position four-way directional
control valve

Valve natural frequency 80 Hz
Valve damping ratio 0.8

Flow rate 39 L/min
Pressure drop 2.5 bar

Valve rated current 40 mA

The specific parameters of the FMEA in Section 2.2 are shown in Table 3.

Table 3. Labels and failure threshold.

Failure Status Labels Failure Threshold

Normal 1 -

Excessive noise from the pump 2 Content of air in the hydraulic
fluidis more than 5%

Throttle valve blocking at right end of
actuating cylinder 3 The diameter of the throttle valve is

less than 2.5 mm
Throttle valve blockingat left end of

actuating cylinder 4 The diameter of the throttle valve is
less than 2 mm

Constant pressure variable pump leakage 5 The diameter of the throttle valve is
more than 3 mm

Actuator cylinder leakage 6 Leakage coefficient of actuator
cylinder is greater than 0.01

The failure status:1 curve in the subgraphs a, b, c, and d of Figure 5 shows the main
parameters’ variation trends under normal conditions, and that the entire landing gear R/E
process time is 32 s, during which the landing gear retraction time is 7.5 s and the extension
time is 10.8 s. These times are similar to those specified in the manual, and the manual
requires that the R/E time shall not exceed the specified time by 1 s, or it will be regarded
as a fault [16].

  
(a) (b) 

  
(c) (d) 

Figure 5. Comparison of the six fault types under different feature parameters. (a)The displacement
of actuating cylinder; (b) system pressure; (c) the pressure at the right end of actuating cylinder;
(d) the pressure at the left end of actuating cylinder.
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According to the fault thresholds in Table 3, 300 simulations were conducted for each
of the six fault states, and the four parameters (actuator cylinder displacement, system
pressure, and the pressure at the right and left end of the actuating cylinder) were sampled.
The sampling frequency was set as 0.01 to obtain 1800 samples. Training, validation,
and test sets were divided as 8:1:1, respectively. The details of the single-feature and multi-
feature datasets are shown in Tables 4 and 5, respectively, and the operation environment
for the simulation is described in Table 6.

Table 4. Single-feature dataset A.

Data Division
Failure Status

1 2 3 4 5 6

Training set 240 240 240 240 240 240
Validation set 30 30 30 30 30 30

Test set 30 30 30 30 30 30

Table 5. Multi-feature dataset B.

Data Division Feature Parameters
Failure Status

1 2 3 4 5 6

Training set
System pressure 240 240 240 240 240 240

The pressure at the right end of actuating cylinder 240 240 240 240 240 240
The pressure at the left end of actuating cylinder 240 240 240 240 240 240

Validation set
System pressure 30 30 30 30 30 30

The pressure at the right end of actuating cylinder 30 30 30 30 30 30
The pressure at the left end of actuating cylinder 30 30 30 30 30 30

Test set
System pressure 30 30 30 30 30 30

The pressure at the right end of actuating cylinder 30 30 30 30 30 30
The pressure at the left end of actuating cylinder 30 30 30 30 30 30

Table 6. Experimental operation environment.

Operating Environment Version

CPU Intel(R) Core(TM) i5-9300H 2.40GHz
System Windows 10 Home Chinese Version

Interpreter Anaconda2.0.3
Compiler PyCharm2019.3.4

Deep learning framework Tensorflow2.0

4.2. Experimental Model

Zhou [17] analyzed the following three important factors that have an impact on the
performance of the CNN: network organization structure, network depth, and feature
maps number. On the one hand, increasing the network depth can improve the recognition
accuracy; on the other hand, increasing the feature maps number can also improve the
recognition accuracy. Therefore, it is necessary to conduct a comparative study separately
to determine the final model parameters. From Section 4.1, it is known that the sequence
length of a single sample is 3201. The total number of convolutional and pooling layers is
n = 12 (excluding the dropout layer). On the basis of Equation (5), the convolution kernel
size of the first convolutional layer is 50. From the comparative test, the model with
convolution kernel size 50, convolution number 4, and moving step size 1 at the first
convolution layer, has the best diagnostic effect. The specific parameters of the traditional
1-DCNN model are shown in Table 7.
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Table 7. 1-DCNN model details.

No.
Layer
Type

Kernel
Size/Stride

Kernel
Number

Output Size
(Width × Depth)

Padding
Dropout

Rate

1 Convolution1 50 × 1/1 × 1 4 3201 × 4 Yes -
2 MaxPooling1 2 × 1/2 × 1 4 1600 × 4 No -
3 Convolution2 3 × 1/1 × 1 16 1600 × 16 Yes -
4 MaxPooling2 2 × 1/2 × 1 16 800 × 16 No -
5 Dropout1 - - 800 × 16 - 0.2
6 Convolution3 3 × 1/1 × 1 16 800 × 16 Yes -
7 MaxPooling3 2 × 1/2 × 1 16 400 × 16 No -
8 Convolution4 3 × 1/1 × 1 32 400 × 32 Yes -
9 MaxPooling4 2 × 1/2 × 1 32 200 × 32 No -
10 Dropout2 - - 200 × 32 - 0.2
11 Convolution5 3 × 1/1 × 1 32 200 × 32 Yes -
12 MaxPooling5 2 × 1/2 × 1 32 100 × 32 No -
13 Dropout3 - - 100 × 32 - 0.2
14 Convolution6 3 × 1/1 × 1 64 100 × 64 Yes -

Activation function of the convolution layer: Relu
Activation function of fully-connected layer:Softmax

Optimization: Adam(1.0 × 10−5)
Iteration: 100

Due to the limited feature information extraction and inaccurate classification of the
traditional 1-DCNN model with a single-feature parameter (actuator cylinder displace-
ment), the three features, e.g., system pressure and the pressure at the right and left end of
actuating cylinder, are selected to jointly characterize six failure statuses.

Referring to the traditional 1-DCNN, in 1-DDCNN we initially set the convolution
kernel size as 50, the step size as 1, and the expansion factor as ln = 2n−1, the calculation
formula for the receptive field is:

rn = 1 + (k − 1)(2n − 1) (7)

The network structure and initial settings are shown in Figure 6 and Table 8, respec-
tively. The design principle of the model is that the output feature graph size of the last
convolution layer is similar to, or exactly the same as, the size of the input data. The pro-
posed 1-DDCNN has the following advantages: firstly, it constructs the convolutional
kernel to obtain a larger receptive field and completely retain the feature information in the
original signal; secondly, it can act as a dropout layer to prevent over-fitting.

Figure 6. The structure of 1-DDCNN.
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Table 8. 1-DDCNN model details.

No. Layer Type
Kernel

Size/Stride
Kernel

Number
Expansion

Factor
Output Size

(Width × Depth)
Padding

Receptive
Field

1 Convolution 1 50 × 1/1 × 1 4 1 3201 × 4 Yes 50
2 Convolution 2 50 × 1/1 × 1 16 2 3201 × 16 Yes 148
3 Convolution 3 50 × 1/1 × 1 16 4 3201 × 16 Yes 344
4 Convolution 4 50 × 1/1 × 1 32 8 3201 × 32 Yes 736
5 Convolution 5 50 × 1/1 × 1 32 16 3201 × 32 Yes 1520
6 Convolution 6 50 × 1/1 × 1 1 32 3201 × 1 Yes 3088
7 Fully-connected 256 1 - 256 × 1 - -
8 Softmax 6 1 - 6 - -

4.3. Experimental Results and Analysis
4.3.1. Research on the Size of Convolution Kernel of 1-DDCNN Model

According to Equation (7), once the expansion factor is determined, the parameter that
has a decisive influence on the receptive field size is the convolution kernel size. Since the
output size of each dilated convolution layer in the 1-DDCNN is 3201 × 1, the convolution
kernel size does not affect the output features’ size of the dilated convolution layer, but has
a great influence on the feature extraction degree of the original data. Therefore, it is
necessary to investigate the convolutional kernel size’s effect on the classification accuracy.
The convolution kernel size was set to 30, 40, 50, 60, and 70 in turn to investigate the
diagnostic accuracy of the 1-DDCNN under different conditions, and to determine the final
model hyper-parameters.

Table 9 and Figure 7 show the detailed diagnosis results for the effect of convolution
kernel size on the test samples in each trial. As the convolution kernel size increases, the to-
tal training parameters rise, and the model running time expands accordingly. The average
accuracy of the 1-DDCNN with different convolution kernel sizes reached more than 90%.
In particular, when the convolution kernel size was 40, the highest average accuracy of
99.80% was achieved in five training sessions. When the convolution kernel size was 50,
its standard deviation was at least 0.0000, which indicates that the model had the highest
stability under this condition.

Table 9. Fault diagnosis results of 1-DDCNN under different sizes of convolution kernels.

The Convolution
Kernel Size

Average
Accuracy (%)

Standard
Deviation

Total
Parameter

Average
Running Time/s

30 99.00 0.0071 878355 187.2152
40 99.80 0.0045 897355 211.7023
50 99.00 0.0000 916355 231.7082
60 90.80 0.1355 935355 262.0429
70 96.20 0.0740 953355 280.4578

Figure 8 shows that accuracies were close to 100% at the 10th iteration with convolution
kernel size ranging from 30 × 1 to 50 × 1, and fluctuated around 94.5% from the 50th
iteration onwards, with convolution kernel size ranging from 60 × 1 to 70 × 1. In fact,
when the convolution kernel size is 60 × 1, the accuracy actually dropped. It can be seen
from Figure 9 that the loss values within the convolution kernel size range of 30 × 1 to
50 × 1 approach 0 at the 10th iteration. The loss value at convolution kernel size 60 × 1
remained around 0.92 after 10th iteration, which indicates over-fitting. The loss value of
the model corresponding to the convolution kernel size 70 × 1 remains around 0.14 after
the 40th iteration. In particular, at the 65th iteration, the training and validation loss values
at convolution kernel size 40 × 1 were both less than 1.0 × 10−5.
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Figure 7. Test accuracy of 1-DDCNN under different sizes of convolution kernels.

Figure 8. Training and validation accuracy at different convolution kernel sizes.

Figure 9. Training and validation loss values at different convolution kernel sizes.

Considering the accuracy, stability, and training cost comprehensively, results are
optimal when convolution kernel size is set as 40 × 1.

4.3.2. Comparative Experiment of Three Models under Different Datasets

To show the dilated convolution’s advantages in feature extraction and information
loss prevention, the comparative experiments of three models, e.g., traditional 1-DCNN,
1-DDCNN, and 1-DDCNN II, with dataset A and dataset B, were conducted. Depending

34



Sensors 2022, 22, 1367

on whether the same size is maintained between the feature map and the input data,
two types of convolution operations exist: VALID (without padding) and SAME (with
padding) convolution operations. Compared to the 1-DDCNN, the 1-DDCNN II’s dilated
convolution layer was VALID, and the convolution kernel size was uniformly set to 51 × 1.
Inputting the dataset into 1-DDCNN II, the output size of the flattening layer was 3264 × 1
after six dilated convolution layers, which is slightly larger than the sequence length of the
input samples. The model structure is similar to the 1-DDCNN, and specific parameter
settings are shown in Table 10.

Table 10. 1-DDCNN II details.

No. Layer Type
Kernel

Size/Stride
Kernel

Number
Expansion

Factor
Output Size

(Width×Depth)
Padding

Receptive
Field

1 Convolution 1 50 × 1/1 × 1 4 1 3151 × 4 No 51
2 Convolution 2 50 × 1/1 × 1 16 2 3051 × 16 No 151
3 Convolution 3 50 × 1/1 × 1 16 4 2851 × 16 No 351
4 Convolution 4 50 × 1/1 × 1 32 8 2451 × 32 No 751
5 Convolution 5 50 × 1/1 × 1 32 16 1651 × 32 No 1551
6 Convolution 6 50 × 1/1 × 1 64 32 51 × 64 No 3151
7 Fully-connected 256 1 - 256 × 1 - -
8 Softmax 6 1 - 6 - -

It can be seen from Table 11 and Figure 10 that, compared with dataset A, the diagnostic
accuracies of the 1-DCNN, 1-DDCNN, and 1-DDCNN II with dataset B were higher, and the
total training parameters and training time increased slightly. The average accuracies of
the 1-DDCNN and 1-DDCNN II reached more than 99%, and the standard deviation of
both was 0.0045, which indicates that both models are stable.

Table 11. Diagnosis results of different models.

Models Datasets
Average Accuracy

(%)
Standard Deviation Total Parameter

Average Running
Time/s

1-DCNN
A

91.80 0.0399 833074 60.9052
1-DDCNN 75.60 0.3278 897035 191.7420

1-DDCNN II 93.60 0.0055 1036854 153.4254
1-DCNN

B
97.40 0.0089 833474 76.4105

1-DDCNN 99.80 0.0045 897355 211.7023
1-DDCNN II 99.20 0.0045 1037262 171.7298

Figure 10. Test accuracy of different models from dataset A and dataset B.
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The training processes and confusion matrices for the three models are shown in
Figures 11–13.

 
Figure 11. Training and validation accuracy of different models from dataset A and B.

Figure 12. Training and validation loss value of different models from dataset A and B.
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 13. Confusion matrix of diagnosis results of different models based on dataset A and B.The fol-
lowing are the results of: (a) 1-DCNN from dataset A; (b) 1-DCNN from dataset B; (c) 1-DDCNN
from dataset A; (d) 1-DDCNN from dataset B; (e) 1-DDCNN II from dataset A; (f) 1-DDCNN II from
dataset B.
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In Figure 13, the rows represent the predicted class (output class) and the columns
represent the true class (target class). The diagonal cells represent the observations that
were correctly classified. The off-diagonal cells represent incorrectly classified observations.
Both the observation number and the percentage of the total observation numbers, are
shown in each cell. The far-right column in the plot shows the percentages of all the
predicted examples belonging to each class that were correctly and incorrectly classified.
These metrics are often called the precision and false rate, respectively. The bottom row in
the plot shows the percentages of all the examples belonging to each class that are correctly
and incorrectly classified. These metrics are often called the recall (or true positive rate)
and false negative rate, respectively. The cell in the bottom right of the plot shows the
overall accuracy.

When the 1-DCNN model with dataset A was located at the 100th iteration, the training
accuracy was 98.63%, and the training loss value was 0.0441. The validation accuracy was
98.61% and the validation loss value was 0.0609. The confusion matrix corresponding to the
test set is shown in Figure 13a; four fault samples caused by “excessive noise from the pump”
were incorrectly classified as “normal”, and this corresponded to 2.2% of all 180 samples
in dataset A. Similarly, six fault samples caused by “throttle valve blocking at left end
of actuating cylinder” were incorrectly classified as “excessive noise from the pump”,
and this corresponded to 3.3% of all data. Overall, 93.9% of the classifications were correct
and 6.1% were wrong. It is believed that the potential reason for the identification error
was the high similarities between sample sequences of different failure status, as shown
in Figure 5a.

It can be seen in Figure 11 that the accuracies of both 1-DDCNNs with dataset B were
close to 100% at the 10th iteration, while the accuracy of the traditional 1-DCNN model
with dataset A and B did not reach 100%, even after 100 epochs, which indicates that the
traditional 1-DCNN model loses a large amount of information during the pooling process.

Figure 12 shows the loss values of the 1-DDCNN and 1-DDCNN II with dataset B are
both close to 0 at the 10th iteration; the convergence trend of the loss value of the 1-DCNN
with dataset B was slower than that of the other models. The training and validation
loss value convergence curve of the 1-DCNN had a significant gap after the previous
20 iterations. In particular, at the 63th iteration, training and validation loss values of
the 1-DDCNN with dataset B were both less than1.0 × 10−5. In terms of training cost,
the iteration number should be set as 63 in subsequent model training.

It can be seen in Figure 13 that the test accuracies of subgraphs b, d, and f are higher
than those of the subgraphs a, c, and e. In particular, the test accuracy of the 1-DDCNN
(subgraph d) with dataset B reached 100%.

Figure 14 shows the output features visualization of Conv1 and Flatten layers in the
1-DDCNN with six failure statuses. The feature similarity of the four-channel output of
Conv1 was relatively high for the six failure statuses. After convolution and flattening
operations, the six failure statuses exhibited unique characteristics, which are conducive to
distinguishing the failure status of the model.
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Figure 14. Visualization of output features of Conv1 and Flatten layers with the six failure statuses of
1-DDCNN. (1–6) correspond to the six failure statuses in Table 3.
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5. Conclusions

Since the 2-DCNN cannot directly process one-dimensional time series data, which of-
ten requires complex pre-processing, a novel 1-DDCNN is proposed for landing gear R/E
system fault diagnosis in this paper. Dilated convolution can exponentially increase the
receptive field of the convolution kernel by adding the convolution layer, which could
acquire more redundant information to alleviate the influence of randomness. The dis-
placement of the actuator cylinder was selected as the feature parameter, and the diagnosis
classification was carried out on the traditional 1-DCNN model, for which the average
diagnosis accuracy reached 91.80%. Due to the limited feature information extraction
and inaccurate diagnosis for a single feature in the traditional 1-DCNN, multiple feature
parameters are selected to jointly represent the fault and to input into the proposed model
for feature integration. The convolution kernel size’s influence on classification accuracy
is explored. When the convolution kernel size is 50, the model has the highe ststability.
The results show that the average diagnostic accuracy of the proposed model is 99.80%,
compared with other models.

Future work will be carried out on the following two aspects. Firstly, the system has
noise in the actual working environment, and it is necessary to verify the robustness of the
proposed model on noisy data. Secondly, this paper only considers the influence of a single
parameter, such as oil mixing into the air or actuator leakage, on the system operating
state. In the future, the complex situation of the simultaneous failure of multiple internal
components, and the consequent effects on the system operating state, should be studied.
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Abstract: The aim of this study was to solve the frequently occurring rotor-stator rub-impact fault in
aero-engines without causing a significant reduction in efficiency. We proposed a fault mitigation
scheme, using shape memory alloy (SMA) wire, whereby the tip clearance between the rotor and
the stator is adjusted. In this scheme, an acoustic emission (AE) sensor is utilized to monitor the
rub-impact fault. An active control actuator is designed with pre-strained two-way SMA wires,
driven by an electric current via an Arduino control board, to mitigate the rub-impact fault once it
occurs. In order to investigate the feasibility of the proposed scheme, a series of tests on the material
properties of NiTi wires, including heating response rate, ultimate strain, free recovery rate, and
restoring force, were carried out. A prototype of the actuator was designed, manufactured, and tested
under various conditions. The experimental result verifies that the proposed scheme has the potential
to mitigate or eliminate the rotor-stator rub-impact fault in aero-engines.

Keywords: rub-impact; tip clearance; shape memory alloy; aero-engine; fault mitigation

1. Introduction

The efficiency of a rotating machine such as an aero-engine is strongly dependent
on the tip clearance between the stationary and rotating parts [1]. In order to improve
the efficiency of an aero-engine, the clearance should be designed as small as possible.
It has been reported that a 0.0254 mm reduction in the tip clearance of a high-pressure
turbine may lead to a decrease of 0.1 percent in specific fuel consumption [2,3]. However,
minimizing the clearance is usually associated with undesired rub-impact phenomena
occurring between the rotor and the casing due to mechanical, aerodynamic excitation,
or thermal gradience during engine operation [4,5]. This leads to material or structural
damage, e.g., plastic deformations, changes in the microstructure on the blade tips, crack
initiation, and the break out of liner material at the rubbing zone [6], and, sometimes,
catastrophic accidents [7].

Researchers have strived to understand the rub-impact fault, for example, exploring
the fault mechanism [8–10], the fault feature extraction method [11–13], source localiza-
tion [14,15], and intelligent fault diagnosis [16,17], etc. These studies contributed to the
development of rub-impact fault diagnosis and to practical applications. However, most
studies focused on how to monitor the occurrence of a fault and analyze its type or location;
few were concerned with the mitigation or elimination of the rub-impact phenomenon.
Unfortunately, rub-impact is a fault which may induce disastrous accidents, if it cannot be
mitigated in time.

In order to protect the rotor from rub-impact from the casing of an aero-engine, a
feasible solution is to adjust the tip clearance when it occurs. The most popular scheme
to achieve this that is used in the design of aero-engines is based on the active clearance
control (ACC) method [18]. For example, Bucaro et al. designed a new gas turbine engine
thermal control device to improve the control efficiency in terms of the active thermal
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control system [19]. Tillman et al. proposed a system and method of active thermal
control that includes processing aircraft data when the aircraft is flying at altitude cruise
conditions [20]. Decastro et al. used two actuators consisting of electrohydraulic servo
valves and piezoelectric stacks to adjust the shroud in a high-pressure turbine section [21].
However, ACC is generally used to schedule the clearance to improve the performance of
an operating aero-engine. The actuators based on ACC management do not execute any
action spontaneously when a rub-impact occurs between the rotor and casing, though such
events frequently occur [22].

Recently, researchers have explored ways of limiting the rub-impact in an aero engine.
They have proposed adding damping in the rotating machinery to control the abnormal
vibration and reduce the rubbing-induced stress. Ma et al. [23] proposed a multi-objective
optimization method to analyze the vibration attenuation effects of the squeeze film damper
parameters on the dynamic response of the system. It was found that in the misalignment-
rubbing coupling fault, the amplitude of the fundamental frequency reduced by 7.4%,
the amplitude of 2× the fundamental frequency dropped by 51.5%, and the amplitude
of 3× the fundamental frequency reduced by 16.8%. Their study provided a theoretical
reference for vibration control and the optimal design of rotating machinery. Xu et al. [24]
suggested an impulsive control method to eliminate the rotor-stator rubbing, based on the
phase characteristic. It utilized the vibration energy and the phase difference to trigger
the control of the rotor-stator rubbing by impulse. The impulse was applied in directions
x and y, several times, to avoid the rotor-stator rubbing. However, it is a theoretical
study, applicable to simple rotors only, and it did not account for the implementation
of impulse in practical rotating machinery. Shang et al. [25] investigated the influence
of cross-coupling effects on the rubbing-related dynamics of rotor/stator systems. They
proposed a control method by generating cross-coupling damping on the stator through
the active auxiliary bearing, thereby suppressing the contact severity to avoid rubbing
instability. This method was validated by numerical analysis on the Jeffcott rotor model,
yet it lacks theoretical analysis and experimental data for complicated rotating systems.
However, adding damping to the vibration system is beneficial with minor faults but it is
not a valid approach once the rub impact is serious. The research into adding damping in
the rotating machinery is not yet well developed.

It has been recognized that rub-impact originates from a very small tip clearance
between the stationary and rotating parts in an operating aero-engine [26]. If the clearance
can be systematically controlled, the rub-impact might be effectively mitigated or elimi-
nated. Garg [27] suggested shape memory alloy (SMA) as an attractive actuation material
in an aero-engine due to its high order-of-magnitude energy density and low energy con-
sumption. DeCastro et al. [28] advanced the concept of a prototype actuator consisting of
high-temperature shape memory alloys for ACC actuation in the high-pressure turbine
section of a modern turbofan engine. Based on the intrinsic properties of SMA and on
the development of tip clearance control technology management, this paper presents a
method to monitor rub-impact faults and mitigate them via SMA. The proposed method is
schematically shown in Figure 1.

This paper presents a promising solution for rub-impact fault detection and mitigation
for an aero-engine. An active control scheme, based on two-way SMA wires actuation is
proposed. The rub-impact fault is monitored by an acoustic emission (AE) sensor. An SMA
wire-based actuator prototype operated by an Arduino control board is established. A series
of tests to establish the material properties of NiTi wires, including heating response rate,
ultimate strain, free recovery rate, and restoring force, were carried out. The mechanism
and design of the actuator are described in detail in this paper. The feasibility of the
proposed model for rub-impact fault is verified by our experimental research and our
results show that the proposed active control actuator can effectively mitigate rub-impact
fault when it occurs. Therefore, the main contribution of this paper is that it provides
a potential way to mitigate or even eliminate the accidental rub-impact fault, without a
significant reduction in the engine’s efficiency.
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Figure 1. The basic idea of the proposed rub-impact fault mitigation method.

2. Mechanical Behaviors of SMA Wires

Typical SMA, such as NiTi, is capable of recovering its original shape after plastic de-
formation by heating above its characteristic transition temperature via the shape memory
effect (SME) [29]. This unique mechanical behavior results from a phase transformation
between high-temperature austenite and low-temperature martensite phases [30] and has
led to many actuation applications [31,32]. In this study, NiTi wires with a two-way shape
memory effect [30] were used in our design to drive the actuator through the application of
an electric current. As the primary functional component of the actuator, the SME mechani-
cal behaviors of NiTi wires were analyzed in a series of tests prior to design assembly. The
material properties of the NiTi wires used in this study and their transition temperatures
are listed in Tables 1 and 2, respectively.

Table 1. Material properties of NiTi wires.

Name Composition Density (Kg·m−3) Melting Point (◦C)

NiTi 50.3 at%Ni 6500 1295

Table 2. Phase transition temperatures of NiTi wires.

Mf (◦C) Ms (◦C) As (◦C) Af (◦C)

19.8 36.3 39.7 50.1

2.1. Heating Response Rate of NiTi Wires

The heating response rate of the NiTi wire is used as a measure of how fast the wire’s
SME function works. This function is represented by the phase transformation spending
time, which is the time it takes the wire to reach its austenite finish temperature Af from its
starting state. The shorter the phase transformation spending time, the higher the heating
response rate. In order to investigate the heating response rate of NiTi wires, a series of
tests under various temperatures were conducted. The experimental setup is schematically
shown in Figure 2. The test rig consisted of a DC power supply, a tension test platform,
NiTi wire, a thermocouple, and a data acquisition system.

The length and diameter of the NiTi wire were 100 mm and 0.8 mm, respectively.
During the tests, the wire was clamped on a tension test platform and one thermocouple was
attached to the wire to measure its surface temperature. At room temperature T0 = 21 ◦C,
the wires were heated by 2, 3, 4, and 5 A electric currents provided by the DC power supply.
The temperature variations of the wires are shown in Figure 3. The temperature of the NiTi
wire rose slowly initially, becoming almost invariable, with an increased electric current.
This means that the rising temperature rate of the NiTi wire gradually decreases, and tends
to become stable when subjected to a continuous electric current. Figure 3 also indicates
that the rising temperature rate of the wire is dependent on the amplitude of the electric
current. A large current amplitude is associated with a high rising temperature rate. In
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order to evaluate the response of the NiTi wires to different electric currents, the phase
transformation spending time, which is the time that it takes for the wire to reach Af from
its starting state, was measured, using various currents. The comparison results are shown
in Table 3. The heating response rate rose with an increased electric current, but an increase
in the response rate was not obvious when the electric current increased beyond 6 A.

 

Figure 2. Experimental setup of the heating response rate tests.

Figure 3. Temperature variation of NiTi SMA wire subjected to different currents.

Table 3. The phase transformation spending time to reach Af using different currents.

I (A) 2 2.5 3 3.5 4 5 6 7 8

t (s) 14.9 6.3 3.2 1.9 1.5 1.1 0.7 0.4 0.3

2.2. Ultimate Strain of NiTi Wires

A tension test was conducted using an Instron 5565 Universal Testing Machine. The
length of the wire specimen used was 750 mm. Because the wire is very fine, it is difficult
to accurately measure the ultimate strain directly during its deformation. As such, a load-
displacement curve was plotted from the tension test results, as shown in Figure 4. The
wire underwent elastic deformation from 0 to point A, plastic deformation from point A to
B, a hardening stage from point B to C, and it fractures at point C. The elongations at points
A, B, and C are 0.68%, 4.89%, and 13.33% of the original length of the wire, respectively.
We found that the NiTi wire behaved well in terms of plasticity and its pre-strain was not
allowed to exceed 13.33% due to its ultimate strain.

46



Sensors 2022, 22, 1796

Figure 4. A load-displacement curve under tension test.

2.3. Free Recovery Rate of NiTi Wires

The free recovery rate of NiTi wires under different pre-strain was investigated using
the same experimental setup as was used in the heating response rate tests. The initial
length of the wire specimens was 100 mm and they were trained to have the characteristic
of two-way SME. The wires were stretched with pre-strains of 2%, 3%, 4%, 5%, 6%, and 7%,
and were heated to recover their deformations, then cooled to room temperature. As shown
in Figure 5, L0, L1, L2, and L3 represent the original length of the wire, the length of the
wire after being stretched and unloaded, the length of the wire after being heated, and the
length of the wire after being cooled to room temperature, respectively. The elongations of
the wires were measured to calculate the two-way free recovery rate η, which is defined by:

η =
L3 − L2

L1 − L0
(1)

Based on Equation (1), the variation in the free recovery rate with respect to the cycle
number at different pre-strain levels is plotted in Figure 6. The two-way free recovery rate
initially increased with increased training cycles and then tended to stabilize after 60 cycles.
Additionally, the large pre-tension strain resulted in a low free recovery rate. However,
the largest free recovery rate appeared when the pre-strain was 4%. Therefore, a median
deformation of 4% is preferred in order to obtain the maximum recovery rate of the NiTi
wire used in a two-way SME.

Figure 5. Two-way shape memory effects.

2.4. Restoring Force of NiTi Wires

The restoring forces of the NiTi wires, with various pre-strains and which were
subjected to 3, 4, 5, and 6 A of electric current, were tested and measured. Figure 7 shows
that the restoring force of each wire, at a given electric current, begins to rise sharply and
then tends to stabilize. In addition, the maximum restoring force of the NiTi wire with a
given pre-strain is dependent on the amplitude of the electric current applied. The restoring
force rose with increased current. To compare the heating efficiency of the wires subjected
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to different electric currents, the response time required to reach the maximum restoring
force of each wire was measured and is listed in Table 4. The results indicate that the
heating response time to reach the maximum force under a large current does not change
significantly. Moreover, the wire with a 4% pre-strain presents the largest restoring force
at 6 A. Thus, the designed actuator, installed with a NiTi wire with a 4% pre-strain, may
obtain the largest restoring force in an acceptable response time under such conditions.

Figure 6. Free recovery rate curve of NiTi wires.

Table 4. Maximum restoring force and required time at different electric currents.

Strain (%) Electric Current (A) Maximum Restoring Force (N) Time to Reach the Maximum Restoring Force (s)

2

3 71.3 31.2
4 81.8 16.3
5 92.7 4.2
6 95.8 3.1

3

3 90.6 31.0
4 103.5 11.1
5 116.4 5.6
6 123.3 3.1

4

3 142.4 32.8
4 156.7 16.5
5 181.0 7.1
6 180.1 5.0

5

3 123.7 30.7
4 138.0 15.9
5 158.4 4.9
6 165.9 3.3

6

3 124.6 33.2
4 154.7 13.7
5 181.0 7.6
6 181.8 4.4

7

3 109.6 29.8
4 148.0 13.6
5 159.5 6.9
6 159.3 4.7
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

Figure 7. The restoring force of NiTi wires subjected to different electric currents: (a) ε = 2%;
(b) ε = 3%; (c) ε = 4%; (d) ε = 5%; (e) ε = 6%; and (f) ε = 7%.

3. Design of the Active Clearance Control Actuator

3.1. Prototype of the Actuator

The proposed actuator was designed with the aim of mitigating or eliminating the
rub-impact fault when it occurs between the rotor and casing during the operation of an
aero-engine. A flowchart of the proposed fault mitigation scheme is shown in Figure 8.
The design of the proposed actuator consists of a package, an electrode plate, an insulation
layer, pre-stretched NiTi wires, a driving lever, a limit roller, a baffle, a spring, and external
and internal casings, as is shown schematically in Figure 9.
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Figure 8. Flowchart of the proposed fault mitigation scheme.

Figure 9. Design of the proposed actuator.

The actuator works by using a driving lever that passes through the external casing.
The two ends of the lever are fixed on the internal casing and the bottom electrode plate,
respectively, which forces the internal casing to deform when the lever moves. Two
insulation layers are placed between the electrode plates and the other parts of the actuator
for the insulation and protection of the entire structure. The two ends of NiTi wires are
bolted at each end to two electrode plates and are heated by an electric current during the
operation of the actuator. A baffle is welded onto the driving lever and a spring is installed
between the baffle and the external casing to generate a restoring force. In addition, one
limiter with three rollers, circumferentially threaded and installed on the driving lever, act
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to improve the accuracy of the motion. The prototype of the actuator is shown in Figure 10.
To allow us to observe the behavior of the actuator, the package was not completely sealed,
as shown in Figure 10d.

  
(a) (b) 

  
(c) (d) 

Figure 10. Prototype of the SMA-based actuator: (a) Limiter; (b) driving lever and internal casing;
(c) electrode plates; and (d) package.

Once a rub-impact fault is detected, the external direct current (DC) power supply
system begins to heat the SMA wires. When the temperature is beyond the austenite start
temperature of the wires As, the wire undergoes a martensite phase transformation and
is compressed due to the unique property of SME. This compression forces the internal
casing to move upwards via the driving lever. Due to the motion of the internal casing, the
tip clearance between the rotor and the casing is enlarged and, as a result, the rub-impact
phenomenon is mitigated or possibly eliminated. The aim of using two-way NiTi wires
is to mitigate the rubbing fault, whilst guaranteeing engine efficiency, which is achieved
when the clearance is reduced once the NiTi wires cool to the martensite phase. To verify
the feasibility of the proposed model, a prototype of an SMA-based actuator was designed
and its geometric parameters are shown in Table 5.
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Table 5. Design of the proposed actuator prototype.

Parts Shape Dimensions

Package Hollow cylinder
Internal diameter: 70 mm
External diameter: 76 mm
Height: 150 mm

Electrode plate Disc Diameter: 40 mm
Thickness: 3 mm

NiTi wire Wire
Length: 50 mm
Diameter: 0.8 mm
Pre-strain: 4%

Driving lever Rod Diameter: 26 mm
Height: 70 mm

Spring Compression spring
Internal diameter: 28 mm
Free height: 25 mm
Wire diameter: 1.5 mm

Limiter Hollow cylinder with three rollers on the side of the cylinder

Internal diameter of cylinder: 70 mm
External diameter of cylinder: 76 mm
Height of cylinder: 150 mm
External diameter of roller: 6 mm
Thickness of roller: 2 mm

3.2. Control Scheme of the Actuator

In order to realize the self-healing of rub-impact faults, a control system based on an
Arduino control board was investigated for the proposed actuator. This system consists of
an Arduino Uno R3 control board, an RB-02S082A piezoelectric sensor, and an SRD-05VDC-
SL-C 5V electromagnetic relay, as shown in Figure 11. When the system is running, the AE
signals are acquired by the piezoelectric sensor and are then transferred to the Arduino
Uno R3 control board, which is capable of identifying whether the acquired signals are
fault signals. The electric circuit switching function is implemented by compiled coding. In
normal conditions, the current circuit is shut down and the actuator does not work. Once a
rub-impact fault is identified by the board, an order is sent to the electromagnetic relay to
switch on the current circuit to heat the NiTi wires. A flowchart depiction of the algorithm
of the control scheme is shown in Figure 12.

 

Figure 11. Configuration of the control system.
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Figure 12. Flowchart of the control scheme.

4. Experimental Verification of the Clearance Control Mechanism

In order to evaluate the effectiveness of the clearance control actuator, the mechanism
was verified by an experimental study. Figure 13 shows the experimental setup, which
consisted of a rotor test rig, a rotor power supply, an accelerator, an electromagnetic relay,
an Arduino control board, a piezoelectric sensor, an AE sensor, a preamplifier, a signal
acquisition instrument, a DC power supply, and a PC and data analysis system.

 

Figure 13. Equipment of the clearance control mechanism.

The NiTi wires with 4% pre-strain were installed on the clearance control actuator, and
the actuator was fixed on the external casing of the aero-engine. The power of the rotor
test rig was provided by a rotor power supply and the rotational speed of the rotor was
controlled by an accelerator. The piezoelectric sensor was attached to the upper surface of
the internal casing and was connected to the Arduino control board to identify the rubbing
and control the electromagnetic relay operation. An AE sensor was attached to the surface
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of the external casing to acquire the AE signals. These AE signals were processed by a
signal preamplifier and then transmitted to the PC.

4.1. Setting of the Threshold and Sampling Frequency

The accuracy of the proposed control scheme is dependent on the selection of the
signaling threshold and sampling frequency. The operation of an aero-engine is always
accompanied by vibrations, whether or not rub-impact occurs. Therefore, the primary goal
is to ascertain the appropriate threshold at which rub-impact faults occur, by reference
to the amplitude of the vibration signal. Figure 14 shows the signals acquired by the
piezoelectric sensor at rotational speeds of 1500, 2000, 2500, and 3000 rpm. The amplitudes
of all vibration signals without the rub-impact fault are lower than 20. Therefore, the
threshold may be set to 20 as the threshold for the occurrence of the rub-impact fault.
Regarding the sampling, in our experience, it is generally better for the set to be greater
than 5 times the highest frequency of the vibration signals, to ensure the reliability of the
acquired data. Because the rotational frequency of the rotor at 3000 rpm was measured
at 50 Hz in our tests, the sampling frequency in this study was set to 500 Hz, which was
10 times the highest frequency.

 
(a) (b) 

 
(c) (d) 

Figure 14. Vibration signal at various rotational speeds: (a) n = 1500 rpm; (b) n = 2000 rpm;
(c) n = 2500 rpm; and (d) n = 3000 rpm.

4.2. Verification of the Clearance Control Actuator

(1) Effect of rotational speed

The effectiveness of the proposed clearance control actuator was verified at rotational
speeds of 1500, 2000, 2500, and 3000 rpm, with a 6 A electric current, in our tests. Assuming
that t0, t1, t2, t3, t4, t5 represent the points at which a rub-impact fault occurs, the amplitude
of the AE signal reaches its maximum, the fault is eliminated, the second rub-impact fault
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begins, the amplitude of the AE signal reaches its maximum again, and the second fault is
eliminated, consecutively. The specific durations are defined by:

T1 = t1 − t0 (2)

T2 = t2 − t1 (3)

T3 = t3 − t2 (4)

T4 = t4 − t3 (5)

T5 = t5 − t4 (6)

where T1 is the duration from the start of rub-impact to its most serious state, T2 denotes
the rub-impact fault elimination time spent by the proposed actuator, T3 represents the
time interval between the rub-impact fault and the start of the following rub-impact fault
event, T4 is the duration from the start of the next fault to its most serious state, and T5
denotes the time spent to eliminate the fault.

Table 6 gives the spending times measured at various rotational speeds in the rotation
test, at a 6 A electric current. The results show that the control times T1, T2, T3, T4, and
T5 are almost the same at different rotational speeds. This means the control time of the
clearance control mechanism based on two-way NiTi wires is independent of the rotational
speed of the rotor.

Table 6. Control time of the clearance control actuator at different rotational speeds.

I (A) n (rpm) T1 (s) T2 (s) T3 (s) T4 (s) T5 (s)

6 1500 2.1 1.0 14.3 1.3 1.0
6 2000 1.8 0.9 13.5 1.2 0.8
6 2500 1.8 1.1 14.0 1.4 0.7
6 3000 2.1 1.0 13.7 1.3 1.1

A series of rotational rubbing tests were conducted under the condition of a 6 A
current and a 1500 rpm rotational speed, and the AE signal during the operational process
was measured. As shown in Figure 15, the amplitude of the AE signal continuously rises
with increased rotor speed during the start-up process until it reaches the maximum at
t1 = 2.143 s, i.e., the rubbing becomes serious and a fault at this moment. At t2 = 3.177 s,
this rubbing fault is eliminated. The next rubbing fault occurs at t3 = 17.49 s, becoming
severe at t4 = 18.77 s. At t5 = 19.78 s, the fault is eliminated.

Figure 15. AE signals acquired during the clearance control process based on two-way NiTi SMA wires.

(2) Effect of the electric current
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A series of rotational rubbing tests at 4, 5, and 6 A electric currents were conducted at
rotational speeds of 1500 rpm. The rubbing fault eliminating time spent during the control
process is recorded in Table 7. It was found that T2, T3, and T5 changed significantly with
different electric currents. The durations of T2 and T5 gradually descended with increased
current. Therefore, a large electric current contributes to a rapid control response time.
In addition, the interval between one rub-impact fault and the next fault, T3, becomes
larger at a higher current compared to lower currents, resulting from the fact that the
NiTi wires need more time to cool. The proposed actuator is affected significantly by the
electric current.

Table 7. Control time of the NiTi wire based actuator at various electric currents.

I (A) n (rpm) T1 (s) T2 (s) T3 (s) T4 (s) T5 (s)

4 1500 2.3 13.6 7.2 1.1 13.1
5 1500 2.0 4.7 10.4 1.1 4.4
6 1500 2.1 1.0 14.3 1.3 1.0

5. Conclusions

A fault mitigation scheme based on a two-way SMA wire system to mitigate and
possibly eliminate the rotor-stator rub-impact of an aero-engine, by controlling the tip
clearance between the rotor and stator, was proposed in this study. Based on the inherent
characteristics of SMA, a prototype of an SMA-based actuator was designed, manufactured,
and tested. Through our experimental study, the proposed scheme was verified and the
following conclusions were drawn:

(1) The mechanical properties of NiTi wire are highly dependent upon the heating electric
current and on its pre-strain level. It is recommended to apply a 6 A electric current
to heat the wires and to use wires with a 4% pre-strain in the design of an SMA
wire-based actuator.

(2) The time spent in the fault mitigation/elimination process is not significantly depen-
dent on the rotational speed of the rotor.

(3) The proposed SMA-based actuator is a promising model that mitigates the rub-impact
fault that occurs between the rotor and stator in aero-engines, whilst guaranteeing
engine efficiency.
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Abstract: Failure in dynamic structures poses a pressing need for fault detection systems. Inter-
connected sensor nodes of wireless sensor networks (WSN) offer a solution by communicating
information about their surroundings. Nonetheless, these battery-powered sensors have an immense
labor cost and require periodical battery maintenance and replacement. Batteries pose a significant
environmental threat that is expected to cause irreversible damage to the ecosystem. We introduce a
fully integrated vibration-powered energy harvester sensor system that is interfaced with a custom-
developed fault detection app. Vibrations are used to power a radio frequency (RF) transmitter
that is integrated with the vibration sensor subunit. The harvester-sensor unit is comprised of dual
moving magnets that are bordered by coil windings for power and signal generation. The power
generated from the harvester is used to operate the transmitter while the signal generated from the
sensor is transmitted as a vibration signal. Transmitted values are streamed into a high precision fault
detection app capable of detecting the frequency of vibrations with an error of 1%. The app employs
an FFT algorithm on the transmitted data and notifies the user when a threshold vibration level is
reached. The total energy consumed by the transmitter is 0.894 μJ at a 3 V operation. The operable
acceleration of the system is 0.7 g [m/s2] at 5–10.6 Hz.

Keywords: vibration energy harvesting; vibration sensor; self-powered sensor; clean technology;
wireless vibration sensor; IoT support technology

1. Introduction

Internet of Things (IoT) technologies are blooming and are expected to reach a
1567 billion USD market value by 2025 [1]. Currently, there are a little over 7 billion
sensor nodes worldwide [1]. These sensors represent the backbone of IoT systems since
they are responsible for detecting essential information about the surrounding environment
and monitoring the health conditions of structures such as compressors, pumps, bridges,
tunnels, railroads, and other dynamic structures [2]. Monitoring the health conditions of
structures using these sensors helps in preventing catastrophic failures and loss of lives [2].

Presently, the majority of these sensors are powered using traditional batteries [3].
The use of these traditional batteries limits the scope and value of these IoT sensors [4,5].
This is due to the fact that the use of conventional batteries as a power source for IoT
sensors results in several challenges. Not only do these batteries require continuous and
frequent replacement and maintenance [6], but also they have a limited lifespan and pose
an environmental threat [7]. Given the projected worldwide spread of these IoT sensors,
this environmental concern has become a pressing issue to deal with [8]. Moreover, in
harsh environments and remote locations, including wildlife, gas and oil fields, and drilling
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in mining fields, a self-powered solution becomes the only viable option for deploying
long-lasting, stand-alone, eco-friendly, and sustainable sensors [9].

Consequently, there has been a growing interest in developing autonomous, self-
powered, environment-friendly sensor technologies as a necessary and integral part of the
flourishing IoT systems and technologies [10]. Tremendous recent studies have investi-
gated the issue of developing autonomous sensors powered by free sources of energies
surrounding these sensors including solar and vibration energies. Vibration-powered
sensors are an attractive option since they are not constrained by the availability of sunlight
and can operate indoors and underground [3]. Moreover, vibration energy consists of
a broadband vibration spectrum rich in low frequencies with a power density as high
as 500 μW/cm3 [11]. Vibration energy also represents a wealthy form of freely-available
energy in transportation [12] and industry sectors [13].

To this end, Xin Li et al. developed a vibration-powered sensor node [3]. The sys-
tem used a piezoelectric transducer to harvest ambient vibrations. The fully integrated
self-powered sensing and transmitting system consisted of a few units including energy
generation, energy transduction, energy-boosting, energy management and circuitry, and
demonstration unit (mobile interface). The system was successfully demonstrated under
various vibrations conditions. In another effort, two wireless sensor nodes were powered
using an electromagnetic vibration energy harvesting system [1]. A custom-built power
conditioning system was integrated into the energy harvesting system and then used
to power a sensor node with a duty cycle of 30 s. The self-powered system was shown
to produce enough power to receive and transmit information at intervals of less than
60 s. Moreover, in Ref [14] a piezoelectric energy harvester was used to power a wireless
platform which consisted of a vibration sensor, a microcontroller, a power management
circuitry, and a custom-built low power radio transmitter. The fully integrated system was
operated at acceleration level and frequency of 0.25 g [m/s2] and 100 Hz, respectively. The
system was able to transmit the sensor data every 10 s for a duty cycle of 0.2%. Moreover,
in their study, Lu Wang et al. [15] built a wireless temperature sensor node powered by a
piezoelectric bimorph cantilever vibration energy harvesting system. A big proof mass was
attached to the harvester to lower its resonant frequency to approximately 22 Hz. A power
management circuitry was built for rectifying the output from the harvester which was
then used to power the temperature sensor. In Ref [16], the authors utilized a commercial
piezoelectric cantilever as an energy harvester for powering a wireless temperature sensor
node. The study focused on investigating the design methodology for the power manage-
ment circuitry used in their work. A demonstration of the self-powered temperature sensor
was performed. Additionally, Lu Wang et al. [17] built a hybrid piezoelectric-triboelectric
unit and used it to construct an autonomous wireless sensor node where the piezoelectric
generator served as the energy source and the triboelectric worked as an accelerometer
(i.e., sensing unit). The piezoelectric harvester produced approximately 6.5 [mW] at 1 g
[m/s2] and 25 [Hz] and the triboelectric accelerometer showed a sensitivity of 15 V/g for
acceleration range 0–1.5 g [m/s2]. In another effort, a piezoelectric energy harvesting-sensor
unit was developed and implemented in monitoring airflow from an HVAC outlet [18]. To
avoid signal distortion from the sensor the proposed system used two separate piezoelectric
devices (i.e., one for energy harvesting and one for sensing purposes).

One of the major constraints in wireless sensor technologies is associated with the
limitations in the supplied energy to the wireless sensor nodes [19–21]. Overcoming this
challenge can only be achieved through minimizing energy consumption by means of ultra-
low-power techniques. Several techniques to reduce energy consumption have emerged
in recent years, such as duty cycling [22]. Other techniques include topology control [23],
which deals with the distribution of the wireless sensor nodes in order to reduce energy
consumption while eliminating interference at the lowest cost possible. Additionally, data
transmission network protocol selection is based on application, where different protocols
have variable bandwidths with varying energy consumptions [24]. Cyber security of those
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networks is also amongst the necessary features that when added would require more
processing power from the sensor node [25].

The work presented in this article is focused on developing a novel, self-powered,
self-contained, environment-friendly, and wireless vibration sensor. One of the major
issues that the vibration-powered wireless sensor node designers are faced with is the
unstable power source causing much noise to the transmitted data [14]. This causes a
need for stringent supply regulation using linear or switching regulators that amounts to
power losses due to heat as a result of the regulation. In this work, power is conserved
from not using any regulators, and instead, the noise corrupted data is retrieved from
post-processing through a custom-developed dynamic fast Fourier transform (FFT) app. A
given dynamic structure has a vibration signature where a frequency shift can be detected
by implementing an FFT algorithm to the time series data [26]. Furthermore, there is
an ample amount of noise introduced into the signal due to interference from the use of
radiofrequency modules [14] and the use of FFT in post-processing of the data lessens the
impact of noise on the signal [27]. The custom developed app in this work can fetch the
sensor bit-stream, buffer the data, and use it to plot the vibration signal amplitude and its
frequency in real-time.

Moreover, unlike in the relatively high voltages produced in piezoelectric transducers
that would set a need for voltage regulation [3], in this work, electromagnetic transduction
is used and the output voltages are within the electronics acceptable supplied voltage
range. Also, unlike the aforementioned studies and state-of-the-art developments, in this
work, the self-powered sensor uses vibrations to synchronously perform two functions.
First, these free vibrations are converted into useful electric power through the presented
energy harvester system. Second, these vibrations are detected as electric signals (voltage)
by the presented vibration sensor, and are then transmitted wirelessly to the workstation
(laptop). Thus, the harvester-sensor hardware is self-contained and self-powered. That is,
the mechanical power required to operate the sensor is obtained from the energy harvester.
A charge pump circuit, also known as a voltage multiplier, is used to rectify the AC
output of the energy harvester. The output DC is then stored in a supercapacitor that
provides the energy to the microcontroller and sensor transmitter circuit. The voltage
multiplier circuit allows immediate circuit startup due to the transmitter circuit having
sufficient voltage and electric current to operate. The signal from the sensor is sampled
using a 10-bit analog to digital converter (ADC) and is transmitted over an RF amplitude
modulated (AM) carrier. When monitoring the health conditions of a structure, a shift
in its vibrations signature may indicate a malfunction in the structure which could lead
to impending failure [2,28]. In this article, collected sensor data are analyzed through a
custom-developed dynamic displacement monitoring software which helps in mitigating
damage to vibrating structures.

The structure and organization of the article are outlined next. The design and struc-
ture of the self-powered self-contained wireless sensor are presented in Section 2. The
manufacturing and fabrication of the system components are detailed in Section 3. Exper-
imental methods and testing techniques are detailed in Section 4. Results and findings
from this work and system operation and demonstration are discussed in Section 5. Finally,
Section 6 presents the major conclusions and summarizes the results from this work.

2. Design Concept and System Configuration

The concept and overall structure of the proposed self-powered self-contained fully
integrated system are shown in Figure 1. The overall structure of the self-powered sensor
consists of a few main sub-systems, namely a vibration energy harvester-sensor unit, a
transmitter circuit, a receiver circuit, and a custom-developed fault detection app. The
main elements and components of these sub-systems are shown in Figure 2.
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Figure 1. Design and concept of the wireless self-powered, self-contained, and eco-friendly vibration
sensor system and its main components.

Figure 2. Block diagram showing the layout of the proposed wireless self-powered, self-contained,
eco-friendly vibration sensor system.

2.1. Vibration Energy Harvester-Sensor Subsystem

The vibration harvester-sensor unit consists of two major components: a vibration
energy harvester and a vibration sensor (as shown in Figure 3). The harvester consists of
two (top and bottom) magnets with a third magnet that is levitated between them. The
magnets are arranged in a repulsive configuration with alike poles facing each other and,
therefore, the levitated magnet is floating between the top and bottom magnets. The bottom
magnet is fixed while the top magnet is glued to, and guided by, a mechanical FR4 sensor
diaphragm. A 40 AWG stationary copper coil is wound around the levitated magnet for
electric power generation. The vibration sensor consists of the mechanical diaphragm and
its guided top magnet, and copper coil windings are positioned around the top magnet
as shown in Figure 3. The 3D printed guiding rail of the levitated magnet is designed to
provide a restricted travel pathway for the levitated magnet between the top guided magnet
and the bottom fixed magnet. The energy harvester coil windings are wound around fixed
cylindrical support that is positioned in alignment with the center of the levitated magnet.
The fixed magnet support is used to hold the bottom magnet to the guiding rail frame. The
3D printed holder casing is designed to hold the guiding rail of the levitated magnet to the
rest of the components as shown in Figure 3.

When subject to external vibrations, first, the levitated magnet moves inside the
harvester’s coil windings, thus converting the kinetic energy from these oscillations into
electric power that is used to operate the system shown in Figure 1. Consequently, dynamic
displacement is induced in the sensor diaphragm and top magnet as a result of these
excitations. In turn, induced vibrations in the sensor’s diaphragm and top magnet result
in induced voltage in the top coil surrounding the top guided magnet. The voltage signal
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from the top coil is then sampled by the microcontroller in the transmitter circuit. This is
discussed in further detail next.

Figure 3. Design and 3D view of the structure of the vibration energy harvester-sensor unit presented
in this work: (a) exploded view and (b) collapsed view.

2.2. Transmitter Subsystem

The main components of the transmitter sub-system are shown in Figure 2. The
circuitry encapsulates a Microchip Technology PIC microcontroller that is enabled when
the energy harvester has sufficient energy to power the circuit load. The input AC voltage
from the energy harvester is rectified by a two-stage voltage multiplier, known as ‘voltage
doubler’. This is shown in Figure 4. In the voltage doubler circuit, the diode in the first
stage of the doubler is forward biased during the negative half cycle of the input sinusoidal
waveform. This allows charging up of both capacitors. Meanwhile, during the positive
half cycle of the input, the diode in the first stage of the multiplier is reverse biased and
is blocking the discharging of the capacitor in the first stage. This allows for the capacitor
on the second stage to charge up to approximately twice the voltage of the input source
voltage. The output DC voltage from the voltage doubler is stored in the supercapacitor to
power the load.

Figure 4. Circuit diagram of the voltage doubler used to rectify the input AC output voltage from the
energy harvester.
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The energy buffer for the system load is chosen to be a supercapacitor, due to being
maintenance-free as well as for its long lifetime and superior power density over chemical
batteries [29]. The microcontroller draws the stored energy in the supercapacitor and
uses it to power the system while allowing the supercapacitor to recharge in between the
transmission cycles. An RF solutions radio frequency transmitter/receiver module with
a high operating voltage range is used for the vibration sensor packetized data ahead of
post-processing by the custom-developed app. To allow for minimum energy consumption
and constant power savings, when vibration energy falls below a threshold value, the
microcontroller is set to go into idle mode. Similar to sleep mode, in idle mode, the CPU
clock is turned off. However, in idle mode, the microcontroller peripheral clock stays on.

2.3. Receiver Subsystem

As shown in Figure 2, the receiver subsystem is composed of the RF receiver, an
8-bit microcontroller, USB to serial UART interface, and the custom-developed dynamic
FFT app. The AM radio frequency receiver can receive the transmitted data at a range of
50 m. The microcontroller receives the bit-stream through a universal serial bus (USB) to
transistor-transistor logic (TTL) interface at a rate of 300 baud. The received data packet is
composed of 1 start bit, 8 data frame bits, and 1 stop bit. The data sampled from vibrations
is then run through the in-house custom-made dynamic spectrum analysis FFT app. In the
app, the user is prompted to turn data streaming on or off. Once the streaming is turned on,
the app stores both voltage and time data into an equal size window buffer. FFT algorithm
is carried out on the buffered vibration data, and the output vibration and amplitude of
the signal are plotted in real-time on the graphical user interface (GUI) axes. A frequency
tracking numeric field feature is also integrated into the app to offer a more distinguishable
frequency monitoring.

3. Manufacturing and Prototyping

This section describes the details of manufacturing, integration, and assembly of the
hardware of the self-powered sensor presented in this work. Additionally, details of signal
acquisition and data post-processing via the custom-developed fault detection MATLAB
app are discussed in this section.

3.1. Fabrication and Integration of System Hardware

The energy harvester-sensor unit was designed using a 3D CAD designing software
(SolidWorks). The casing of the energy harvester was printed using a 3D printer and
polylactic acid (PLA) filament. The FR4 sensor diaphragm customized patterns were
fabricated using a Kern laser cutter (KER4824-Ti100 micro). The 130 W laser cutter was
set at 80% of full power and a cutting rate of 20 mm/s. Three permanent solid magnets
were used in the device assembly. The bottom magnet was fixed to the bottom support,
the top magnet was fixed to the FR4 sensor diaphragm, and the levitated magnet was
left to float. The levitated magnet was guided by the walls of the guiding rail tube as
shown in Figure 3b. A manual winding machine (MXBAOHENG NZ-1) was used to
wind the enameled copper coils around the harvester and sensor. Details and dimensions
of the designed and fabricated structures are shown in Figures 5 and 6. A view of the
final assembled energy harvester-sensor unit is shown in Figure 7. A list of the design
specification and materials used to fabricate the energy harvester-sensor unit is shown
in Table 1.

The transmitter circuit electronic components, shown in Figure 8, were affixed on an in-
sulating board using soldering. The PIC microcontroller that was chosen (PIC16LF15325/45)
had ultra-low-power features where it typically consumed only 8 μA at 32 kHz oscillator
frequency and 50 nA at 1.8 V in sleep mode. The PIC also included a windowed watchdog
timer feature that was able to issue a reset to the microcontroller in the event of software
failure. Furthermore, the microcontroller peripheral module disable (PMD) feature was
used to disable all of the unused peripherals to minimize power consumption.
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Figure 5. Cross-section view of the vibration energy harvester-sensor unit along with a blow-up
detailed section view.

Figure 6. Design and fabrication of the FR4 Sensor diaphragm: (a) Fabricated sensor diaphragm next
to a scale, (b) CAD model top view and dimensions of the sensor diaphragm, (c) CAD model side
view of the sensor diaphragm and, and (d) simulated CAD view of the deflected sensor diaphragm.
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Figure 7. Fully assembled energy harvester-sensor unit next to a scale: (a) top view of the unit and
(b) side view of the unit.

 

Figure 8. Circuit and components of the transmitter subsystem as part of the manufacturing process
of the overall wireless sensor system presented in this work.
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Table 1. Specification and details of the fabricated energy harvester-sensor unit.

Specification Value

Energy Harvester
Coil turns number 450

Coil resistance 93 Ω
Minimum operable acceleration 0.7 g m/s2

Excitation frequency range 5–10.6 Hz
Casing material 3D printed polylactic acid (PLA)

Coil type 40 AWG enameled copper
Magnet’s material NdFeB type N42

Sensor
Coil turns number 1500

Coil resistance 890 Ω
Spring diaphragm material FR4 glass-reinforced epoxy resin laminate

Coil type 40 AWG enameled copper
Magnet’s material NdFeB type N42

Other components on the circuit board included a 433 MHz RF transmitter module,
voltage doubler components incorporating two 16 V, 2200 μF electrolytic capacitors, and
two Schottky diodes. The circuit also holds a supercapacitor energy buffer size 47 mF
with a 5.5 V voltage rating and a low equivalent series resistance (ESR) of 25 Ω. A circuit
diagram and interconnections of the transmitter circuit board are shown in Figure 9.

 
Figure 9. Circuit diagram and interconnections of the microcontroller transmitter subsystem compo-
nents used in the wireless vibration sensor system presented in this work.

3.2. Signal Acquisition

Both microcontrollers used in the transmitter and receiver subsystems were pro-
grammed through the PIC embedded applications development freeware (MPLAB X IDE)
and a PICkit 3 in-circuit debugger. The vibration signal acquisition process described in
Figure 10 starts when the microcontroller exits the idle (sleep) mode. The microcontroller
is programmed to stay in sleep mode until it is prompted to ‘wake up’ when triggered
by the voltage level held by the supercapacitor. The microcontroller waking up process
is set up to initiate when the sampled signal from the supercapacitor reaches (2 V). The
supercapacitor voltage signal sampling takes place at one of the 10-bit low power succes-
sive approximation ADC channels of the microcontroller (ADC-CH1). The ADC allows
conversion of the analog signal into a 10-bit binary form of that input signal. The ADC
channel input voltage level can vary from 0 V up to a maximum voltage that needs to be set
as the reference voltage of the channel. A reference voltage is needed by the ADC to create
a range of voltages that are mapped into specific length binary values. The supercapacitor
sampled input voltage is then compared to those binary values from the reference. Typically,
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the reference voltage used for ADC channels is the supply voltage to the microcontroller.
This poses a challenge since the supply voltage and the sampled voltage would both be
of the supercapacitor voltage. This was overcome by using the microcontroller internal
fixed voltage reference (FVR) feature that is independent of the microcontroller supply
voltage. A programmable independent buffer gain amplifier is used at the output of the
FVR and is set to amplify the voltage reference to a desired selectable voltage level. During
sampling, the supercapacitor voltage is compared to the FVR and when the value returned
matches the selected voltage level, power is delivered to the rest of the system after waking
the microcontroller up. During the microcontroller system initialization process, voltage
rails are stabilized, and the CPU starts fetching code instructions and data to operate the
necessary control registers.

Figure 10. A signal acquisition process flowchart of the wireless vibration sensor presented in
this work showing detailed description of the program starting at the initialization process of the
microcontroller and ending at the transmission of data.

Embedded systems interrupts are hardware features that preempt normal program
code operation in order to execute a command that requires CPU attention. As shown in
Figure 10, when an interrupt is set, an interrupt service routine firmware (ISR) determines
the source of the interrupt by the process of polling. The ISR polling protocol is an active
process of monitoring interrupt flag bits from the interrupt flag register. The peripheral
interrupt from the supercapacitor voltage level value reaching the set threshold allows the
CPU to service that interrupt and wake the microcontroller from sleep. As indicated in
Figure 10, unless the supercapacitor voltage level is above the preset threshold, the ISR
will continue polling and remain in sleep mode. A command to clear the interrupt flag
from a previous interrupt is necessary to execute following the servicing of an interrupt. If
the interrupt flag is not cleared, and if the supercapacitor voltage level is above the preset
threshold, interrupts will occur repeatedly overriding necessary CPU functions.

In idle mode the microcontroller CPU core and memory operations are halted while
the internal peripheral clocks such as ADC channels clock continue to operate. Once the
microcontroller is woken up, the sensor data are sampled through a second ADC channel
(ADC-CH2). In Figure 10, the ADC logs the sensor data and writes it to the enhanced
universal synchronous and asynchronous receiver transmitter (EUSART) register upon
waking up from idle mode. The data are then wirelessly transmitted via the 433 MHz
AM RF transmitter module. The signal is then received by a compatible receiver module
(QAM-RX10) that is connected to a second microcontroller in order to receive the data
through the serial port of a PC by utilizing a USB to serial converter. The antenna-equipped
receiver provides a two-way communication that transforms the electromagnetic waves
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into electrical signals. Modulation of the baseband data onto the carrier is accomplished by
amplitude shift keying (ASK) of the signal.

3.3. Custom Developed Fault Detection MATLAB App

In this work, the monitoring app is developed using MATLAB-GUI to extract useful
information from the collected vibration signal including maximum displacement ampli-
tude and frequency. The extracted information is then compared against preset threshold
values to assess the risk level associated with the operation performed.

Inside the MATLAB app development environment, the GUI components including
the data streaming switch, frequency tracking numeric field, status indicator, and real
time FFT plot are identified as dynamic objects. The objects are chosen from a MATLAB
supported components library as seen in Figure 11. The dynamic objects are configured
as public access properties that allow data exposure to the user through the GUI. The
corresponding values to the communication port and baud rate of the receiver board are
then specified. This allows for initiation of data streaming through the serial port when
the ‘on’ dynamic object under the data streaming label is selected by the user. Evenly sized
sectioned data buffers are set up for both voltage and time elements to allocate for real
time data plotting. Parameters of the FFT measurements including the length of the signal,
sampling frequency, and Nyquist frequency are identified to convert the windowed time
domain data into frequency domain. A peak finder function is then used to detect the
dominant frequency from the converted data for display in the GUI numeric field region.
The amplitude of the resultant peak is then compared against fixed threshold values to
vary the color of the status lamp indicator on the GUI. The variable colors of the lamp
give the user a risk severity measure of the performed operation. Therefore, the indicator
lamp switches color from green when the energy harvester sensor unit is subject to low
amplitude vibrations to red once it experiences higher vibration amplitudes. Further details
about the custom developed fault detection MATLAB app are discussed later in this article
(i.e., Section 5).

 

Figure 11. The design view browser inside MATLAB app development environment. The dynamic
objects are chosen from a component library and are populated into the GUI canvas.

4. Experimental Methods and Characterization Techniques

The experimental testing setup shown in Figure 12a was used to measure the dynamic
frequency response of the wireless sensor system presented in this work. An illustration
of the signal and power flow of the experimental testing equipment setup is shown in
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Figure 12b. In the closed loop vibration testing system, as shown in Figure 12a, a vibration
controller (S81B-P02, SENTEK DYNAMICS) is directed by a PC software. Initially, the
test is conducted by setting up frequency, acceleration as well as time elements through
the software’s control settings. The settings are managed through Crystal Instrument’s
engineering and data management (EDM) vibration control system (VCS) software. The
preset commands of the test are then transferred into a vibration controller. The controller
sends a drive signal to a power amplifier in order to drive a rectilinear shaker table. The
shaker table (VT-500 by SENTEK DYNAMICS) transforms the drive signal into mechan-
ical vibrations that are transferred into the energy harvester-sensor unit attached to the
shaker armature.

 

Figure 12. Experimental methods used in this work: (a) experimental apparatus used for charac-
terization of the wireless self-powered vibration sensor system presented in this work; (b) cartoon
schematic of the characterization setup showing signal and power flow in the equipment.

When performing the experiments, the lower end of the energy harvester-sensor unit
is secured on top of the shaker table as shown in Figure 12. The vibration response from
the energy harvester is measured by an accelerometer (PCB333B30 by PCB Piezotronics).

70



Sensors 2022, 22, 2352

The RF transmitter board situated on the static outer rim of the shaker table is connected
to the energy harvester-sensor unit as shown in Figure 12a. The RF receiver circuit board
is connected to the laptop via the USB to serial TTL level FTDI cable for live frequency
response analysis as shown in Figure 12a,b.

5. Results and Discussion

Using the experimental apparatus shown in Figure 12, dynamic characterization of the
fabricated energy harvester-sensor unit was performed. The resulting voltage frequency
responses of both the energy harvester and sensor are shown in Figures 13 and 14. The
energy harvester-sensor unit was subject to fixed input acceleration values ranging from
0.1 g up to 0.7 g [m/s2] while the frequency was swept at a rate of 0.0833 Hz/s.

Figure 13. Energy harvester-sensor unit open circuit frequency response at a range of input accel-
erations. (a) Open circuit voltage of the energy harvester. (b) Open circuit voltage from the FR4
sensor diaphragm.
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Figure 14. Energy harvester-sensor unit closed circuit frequency response at a range of input ac-
celerations. (a) Energy harvester closed circuit voltage values measured across the microcontroller
subsystem. (b) FR4 sensor diaphragm closed circuit voltage values measured across the input to the
microcontroller.

The nonlinear magnetic spring stiffness nature of the energy harvester is evident in
the voltage frequency response as shown in both Figures 13 and 14. That is, the repulsive
magnetic forces experienced by the levitated magnet can be described as a nonlinear spring
force [7,8]. This results in a hardening effect that is evident when comparing the trend
in output voltage peaks shown in Figures 13 and 14. One can notice that these peaks are
shifting to higher frequencies as the input acceleration is increased. The nonlinear behavior
of magnetic levitation-based energy harvesting system was studied extensively in our prior
work [5,7,8,29]. Furthermore, during the frequency sweep, an abrupt sharp decline of the
energy harvester’s frequency response is evident. This drop, known as the frequency jump
phenomenon [7,8], is attributed to the coexistence of multiple energy states at the frequency
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branch. The discontinuity in the response is a characteristic of magnetic levitation-based
energy harvesting systems [5,29].

The supercapacitor charging and discharging cycles were measured using a data
acquisition device (NI myDAQ) and the graphical programming environment LabVIEW
software. The supercapacitor charging history is shown in Figure 15 where the maximum
charge is held at 3.7 V after 122 s. During the charging cycle and after approximately 39 s, a
slight shift in voltage level that lasts for 4 s occurs during the microcontroller waking up
and voltage rails stabilization stage. The rate of the voltage held by the supercapacitor is
seen to decrease from 44 mV/s to 22 mV/s after the microcontroller startup period. This
is likely due to the fact that during this stage the system is draining the supercapacitor in
order to operate. After approximately 122 s of charging, while simultaneously the energy
harvester -sensor unit crosses the resonant frequency point during the frequency sweep, the
supercapacitor discharging cycle starts to take effect at a voltage decline rate of 15 mV/s.
The supercapacitor charging period after the microcontroller startup takes 79 s while it
takes 108 s to discharge before the microcontroller enters the sleep mode as shown in
Figure 15. At 230 s and 2 V, the microcontroller enters the sleep mode for a period that lasts
approximately 50 s before the supercapacitor voltage level drops below 1.8 V which is no
longer a sufficient amount of power for the microcontroller to operate. Consequently, the
supercapacitor starts a self-discharge process as shown in Figure 15.

Figure 15. The supercapacitor voltage charge and discharge cycle during frequency sweep 6.5–15 Hz
at 1 g [m/s2] acceleration level.
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Next, the fully integrated, self-powered, self-contained sensor system was subject to
harmonic oscillations and was tested under lab-controlled settings using the experimental
apparatus shown in Figure 12. The resulting energy consumptions at different system states
are shown in Table 2. The microcontroller internal oscillator was set to the lowest clock
frequency of 32 kHz to minimize energy consumption. The ADC peripheral was configured
to use the internal system clock oscillator. The microcontroller takes 10 measurements from
the sensor signal during analog to digital bit conversion at a sampling rate of 51 kHz. After
the measurements conversion is completed in 19.55 μs, the data are stored in the 16-bit
ADC results register. The data are then retrieved by the EUSART serial communication
peripheral, and the 10-bit data frame is transmitted asynchronously with 1 start bit and
1 stop bit added to each 8-bit sensor data packet and no parity bit.

Table 2. Transmitter circuit subsystem energy consumption at different program states.

Component Power Duration Energy

Microcontroller startup (32 kHz) 0.879 mW 22.5 μs 19.7 nJ

Microcontroller operation (32 kHz) 0.756 mW 17.6 μs 13.32 nJ

Radio transmission (8 bits, 76.8 kbps) 8.58 mW 0.1 ms 0.858 μJ

Sensor reading 0.144 mW 19.55 μs 2.8 nJ

Total 0.894 μJ

Figure 16 shows the power consumed by the transmitter subsystem as well as the
power generated at an unloaded voltage doubler circuit. The power generated from the
unloaded voltage doubler at resonant frequency is 12.6 mW and it exceeds the power
consumed by the transmitter subsystem load of 5.1 mW. In the power consumed curve,
the decline in power is more gradual compared to the abrupt decline seen in the power
generated curve due to having the supercapacitor in the transmitter subsystem circuitry.
In both power curves, the profiles show maximum power generation and consumption at
resonant frequency of 9.9 Hz.

 
Figure 16. Power generated from the energy harvester at an unloaded voltage doubler output
compared to power consumed by the microcontroller-transmitter subsystem load.
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The operation and realization of the fully integrated self-powered fault detection sys-
tem are examined next. A video recording of the self-powered, self-contained, environment-
friendly, and wireless vibration sensor during data acquisition and transmission process
is included in the Supplementary Materials. The video recording includes segments from
the custom developed fault detection app along with the EDM shaker table vibration
control software and the energy harvester and sensor voltage waveforms as well as the
experimental setup showing the fabricated energy harvester-sensor unit mounted on the
shaker table.

Figures 17–20 show selected timeframes showing the operation of the fully integrated
self-powered wireless fault detection system at different stages during the system’s op-
eration. Figures 17–20 demonstrate the ability to self-power the sensor and the ability
of the frequency tracker in the custom developed app to detect the vibration frequency
from the self-powered sensor. For example, Figure 17a shows the vibration frequency from
the sensor, detected by the frequency tracker in the custom developed app, at 9.479 Hz.
The sensor vibration frequency value can be confirmed by the EDM software shaker table
preset frequency, as shown in Figure 17b. Here, the preset frequency was approximately
9.007 Hz. Thus, there is a very slight discrepancy between the frequency detected by the
frequency tracker in the custom developed app and the preset frequency from the shaker
table. The error is estimated at approximately 5%. This discrepancy may be attributed to
a few factors including the high noise in the AM transmitter/receiver module that is not
filtered out during the FFT filtering process. Other factors include the use of the internal
microcontroller oscillator in this work as opposed to using an external oscillator which
would have resulted in a more accurate frequency stability. A bitrate estimated error of
approximately 1.24% in the transmitted data is also a contributing factor to the overall error
in the received and filtered data. Moreover, Figure 17c demonstrates the output signal from
the fabricated self-powered, self-contained senor as the top magnet moves inside the top
coil in response to the detected vibrations. That is, the dynamic displacement induced in
the sensor causes induced voltage in the top coil surrounding the top guided magnet as
shown in Figure 17c. Here, the power generated by the energy harvester is used to operate
the RF transmitter circuit. The output voltage from the sensor is then sampled by the
microcontroller on the transmitter circuit. The app, shown in Figure 17a, also demonstrates
successful status indicator monitoring capabilities where it shows a green light, indicating
a low level of acceleration experienced by the sensor (i.e., low risk operation). Similarly,
Figures 18–20 show subsequent timeframes from the demonstration experiment. In those
timeframes, the sensor is self-powered, and the app detects a transition from a lower risk
operation to a higher risk operation as seen signaled by the status indicator turning red in
Figure 18. In Figure 18, the preset frequency from the vibration source (i.e., the shaker table)
was approximately 9.652 Hz whereas the app detected tracker frequency was at 9.748 Hz.
This results in a small error of approximately 1%. Likewise, the next timeframe in Figure 19
shows the preset frequency was at 10.98 Hz with the app detecting a 10.86 Hz also corre-
sponding to a 1% error in the detected frequency value. The last presented timeframe from
the demonstration experiment is shown in Figure 20 with the app detecting a frequency of
11.05 Hz compared to the preset frequency of 11.15 Hz resulting in only a 0.9% error. The
mean absolute error value for all frequencies under investigation is found to be 0.8 while
the mean percent error value is 2.6%.
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Frequency tracker 

Status indicator: Low Risk 

(a) 

Shaker table preset frequency: 9.007 (b) 

(c) 

(c) 

Figure 17. Screen captures of the self −powered, self −contained, vibration sensor system taken from
the demonstration experiment: (a) custom developed fault detection app with a frequency tracker
feature and status indicator for risk monitoring, (b) EDM shaker table vibration control software with
preset frequency monitor, and (c) sensor voltage waveform monitor at preset frequency 9.007 Hz.
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Frequency tracker 

Status indicator: High Risk 

(a) 

Shaker table preset frequency: 9.652 Hz (b) 

(c) 

Figure 18. Screen captures of the self −powered, self −contained, vibration sensor system taken from
the demonstration experiment: (a) custom developed fault detection app with a frequency tracker
feature and status indicator for risk monitoring, (b) EDM shaker table vibration control software with
preset frequency monitor, and (c) sensor voltage waveform monitor at preset frequency 9.652 Hz.

77



Sensors 2022, 22, 2352

Frequency tracker 

Status indicator: High Risk 

(a) 

Shaker table preset frequency: 10.98 (b) 

(c) 

Figure 19. Screen captures of the self −powered, self −contained, vibration sensor system taken from
the demonstration experiment: (a) custom developed fault detection app with a frequency tracker
feature and status indicator for risk monitoring, (b) EDM shaker table vibration control software with
preset frequency monitor, and (c) sensor voltage waveform monitor at preset frequency 10.98 Hz.
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Frequency tracker 

Status indicator: High Risk 

(a) 

Shaker table preset frequency: 11.15 (b) 

(c) 

Figure 20. Screen captures of the self −powered, self −contained, vibration sensor system taken from
the demonstration experiment: (a) custom developed fault detection app with a frequency tracker
feature and status indicator for risk monitoring, (b) EDM shaker table vibration control software with
preset frequency monitor, (c) sensor voltage waveform monitor at preset frequency 11.15 Hz.

6. Conclusions

In this work, we have introduced a novel self-powered self-contained wireless vibra-
tion sensor for fault detection in dynamic structures. The energy harvester-sensor unit is
based on dual mass moving magnets. The voltages are extracted from the moving magnets
by the coil surrounding the casing around the magnets. The power produced by the energy

79



Sensors 2022, 22, 2352

harvester subunit is used to operate an RF based transmitter subsystem. The transmitter
subsystem sends mechanical vibration levels through a sensor subunit to a custom devel-
oped fault detection app wirelessly. The app notifies the user of the degree of risk associated
with the operation by applying an FFT algorithm to the transmitted vibration data. The app
can identify the frequency of the vibration with a low error of approximately 1% in most
of the transmitted values. Unlike commonly studied self-powered vibration based WSN
transmitter subsystems, this work utilizes the active power of the sensor subunit during
the transmission process as opposed to requiring to power a passive vibration sensor. The
transmitter subsystem operates at ultra-low power where the total consumption of energy
to transmit a sensor value is approximately 0.894 μJ at 3 V. The transmitter subsystem can
transmit the data from the sensor at a minimum operable acceleration of 0.7 g [m/s2] and
an excitation range of 5–10.6 Hz. The significance in this work also lies in the low frequency
required to operate the energy harvester-sensor unit that is widely available in many sur-
rounding environments. Future work will consider employing a more energy-aware circuit
with maximum power point (MPPT) tracking capability. This enhancement will allow for a
self-sufficient stand-alone field operation of the energy harvester sensor unit.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s22062352/s1. Video S1: Demonstration experiment.
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Abstract: Most cross-domain intelligent diagnosis approaches presume that the health states in
training datasets are consistent with those in testing. However, it is usually difficult and expensive to
collect samples under all failure states during the training stage in actual engineering; this causes
the training dataset to be incomplete. These existing methods may not be favorably implemented
with an incomplete training dataset. To address this problem, a novel deep-learning-based model
called partial transfer ensemble learning framework (PT-ELF) is proposed in this paper. The major
procedures of this study consist of three steps. First, the missing health states in the training dataset
are supplemented by another dataset. Second, since the training dataset is drawn from two different
distributions, a partial transfer mechanism is explored to train a weak global classifier and two partial
domain adaptation classifiers. Third, a particular ensemble strategy combines these classifiers with
different classification ranges and capabilities to obtain the final diagnosis result. Two case studies are
used to validate our method. Results indicate that our method can provide robust diagnosis results
based on an incomplete source domain under variable working conditions.

Keywords: partial transfer learning; ensemble strategy; fault diagnosis; deep adversarial convolu-
tional neural network

1. Introduction

Rotating components play a significant role in system performance and are widely
applied in engineering machinery such as aerobat, engine, and gearbox systems [1,2]. The
failure of rotating components may cause unexpected downtime and economic losses.
Therefore, it is crucial to precisely identify and detect the fault states of rotating machin-
ery [3]. Recently, intelligent fault diagnosis has become a hotspot because it can analyze
vast amounts of measured data and provide intuitionistic diagnosis results [4].

Intelligent fault diagnosis has received a lot of attention in recent years from both
industrial engineers and academic researchers and has accomplished remarkable achieve-
ments [5]. For example, shallow machine learning techniques such as support vector
machine (SVM) [6] and random forest (RF) [7] have been studied. Deep learning methods
have been researched that can adaptively extract the fault features hidden in a collected sig-
nal, such as recurrent neural network (RNN) [8], convolutional neural network (CNN) [9],
and stack autoencoder (SAE) [10]. In addition, some variant models are being studied, such
as dilated CNN [11], CNN with capsule network [12], and multiscale CNN [13]. However,
the existing methods are developed based on statistics, which assume that adequate la-
beled samples are obtainable to train the models. In addition, these methods require the
data distribution of training and testing to be identical [14]. In actual industry settings,
obtaining a large amount of labeled data is unrealistic. Even if the labeled data can be
acquired, the aforementioned methods may fail to recognize the unlabeled data collected
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from another machine or under different working conditions due to the inconsistent data
distribution [15].

The proposal of transfer learning aims to solve this problem by promoting models
trained by labeled data from a relevant domain to the target fields [16]. The implementation
of transfer learning for machine fault diagnosis mainly includes two scenarios: (1) A few
target-domain-labeled data are available but are insufficient to support the model training.
Qian et al. [17] implemented bearing fault diagnosis under diverse working conditions
by transferring the parameters of SAE. Chen et al. [18] studied the use of transferable
CNN to recognize the fault states of rotary machinery by pre-training a 1D-CNN using
the source data and fine-tuning it with the limited labeled samples in the target domain.
(2) There are no available labeled target data to participate in the model training process.
One solution is to add a domain adaptation term to the loss function, such as the Maximum
Mean Discrepancy (MMD) [4,19,20], Wasserstein distance [21]. Another solution is to
implement the transfer learning by use of an adversarial network, in which case a feature
extractor aims to extract domain-insensitive features from the target and source domains
by adversarial training [22–24].

The existing cross-domain fault diagnosis methods can obtain superior results in the
target domain, but the precondition lies in the assumption that the health states in the
target domain are identifiable with the source domain. However, given the variation of
operations and unpredictability of the fault states, it is difficult to guarantee that the current
or future fault states have all been learned in the training phase. Therefore, the source
training dataset is usually incomplete, and there are some additional failure states in the
target domain. This causes negative transfer and misclassification in the testing stage.
These private failure state data can be collected from another component, but the working
conditions, such as speed, load, and frequency, are completely different from the source
domain and target test data. Figure 1 shows an example of such a situation. Dataset A is
collected from bearing 1 and contains five health states. However, during the test, more
fault states appeared due to the change in working conditions, resulting in seven health
states. The data for the two missing health states can be supplemented from dataset B.
Dataset B is collected from bearing 2 and includes four health states total. So, the data
source domain discrepancy between A and B also needs to be taken into consideration; this
creates some difficulties for the implementation of transfer learning diagnostic methods.

Figure 1. Example of the situation of fault diagnosis with new health states.

This research studies a partial transfer ensemble learning framework (PT-ELF) to
solve the above problem. First, two incomplete source domain datasets collected from
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different components or under different working conditions are defined. Note that neither
of them contains all the health states present in the target domain data. They are used
to form a complete dataset in which all the health states are included. Then, a weak
global classifier based on the complete dataset and two partially strong classifiers based
on the deep adversarial network are established. Finally, since the classification ability
and classification range of classifiers differ, a particular ensemble strategy is designed to
combine these two strong partial classifiers and the weak global classifier, resulting in the
final diagnostic results. The main contributions of this research are summarized as follows:

(1) A partial transfer ensemble learning framework is designed to diagnose the fault with
incomplete training datasets under various conditions;

(2) To incorporate the classification ability of multiple classifiers into the PT-ELF model, a
particular ensemble strategy is designed to combine a weak global classifier and two
partial domain adaptation classifiers;

(3) Two case studies using rotor bearing test bench data and motor bearing data are
performed to validate and demonstrate the superiority of the proposed method.

The rest of this article is arranged as follows: Section 2 presents the basic theories. The
details of the proposed PT-ELF are given in Section 3. Section 4 validates the proposed
method and analyzes the results. Finally, the conclusion in Section 5 brings the study to a
close.

2. Basic Theory

2.1. Convolutional Neural Network

A standard CNN usually includes convolution, pooling, fully connected, and output
layers. In addition, batch normalization operation is usually used in CNN [25]. A con-
volution layer is combined with a pooling layer to form a convolution block, and a deep
architecture is built from several such blocks. A Softmax Regression layer usually serves
as the last layer and performs regression or classification [26]. In a convolutional layer,
the local receptive is adopted, in which only part of the input sample points connect to
each node. This operation rapidly decreases the number of parameters and the model
complexity. To identify the local features throughout the input sample, weights and biases
are shared between the hidden neurons in one convolutional layer [27]. The process in the
convolutional layer can be expressed as:

zl
n = ∑

k
xl−1

k ∗ wl
n + bl

n (1)

where xl−1
k is the k-th node in l − 1 layer. * represents the convolution operation. wl

n and
bl

n represent the weight and the corresponding bias. Additionally, the activation function
ϕ(•) is given to transform the convolution layers nonlinearly, which can be denoted as:

cl
n = ϕ

(
zl

n

)
(2)

where cl
n represents the k-th nonlinear feature value in l − 1 layer. Sigmoid and ReLU

activation functions are commonly used in CNN. Sigmoid can normalize the input data to
between 0 and 1. ReLU can enhance the efficiency of the model training and decrease the
risk of gradient disappearance [28].

In a pooling layer, the down-sampling operation can decrease the dimension of the
features and enhance their robustness. Mathematically, a maximum pooling operation is
defined as:

poj = max{cj(i)}
i∈mj

(3)
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where cj represents the j-th location, and the poj is the output of the pooling. For classifica-
tion tasks, after several convolution blocks and fully connected layers, the Softmax function
is usually utilized to predict categories. The loss objective function can be expressed as:

H(r, p) = −∑
i

rilog(pi) (4)

where p represents the output probability, and r corresponds to the actual labels.

2.2. Deep Adversarial Convolutional Neural Network

Generally, a deep adversarial convolutional neural network (DACNN) consists of a
feature extractor Gf, a domain discriminator Gd, and a classifier Gy [29–31]. The feature
extractor, namely several convolution blocks, serves as a contestant in the DACNN. It can
be expressed as Gf = Gf (x, θ f ), which indicates that the features are extracted from the
input sample x with parameters θ f . In addition, a discriminator (binary classifier) is treated
as the opponent, which is expressed as Gd = Gd(Gf (x), θd). Input the source and target
samples into the feature extractor, and the output features are further distinguished by the
discriminator Gd. The binary cross-entropy loss is taken as an objective function, which is
described as:

L(Gd(Gf (xi)), di) = di log
1

Gd(Gf (xi))
+ (1 − di)× log

1
1−Gd(Gf (xi))

(5)

where di denotes the binary variable for xi. Through the adversarial training between two
parts, the feature extractor Gf tends to extract the common features from the two types of
data and makes it hard to differentiate 0 or 1 as the discriminator. Hence, the model can
perform well on both the source and target datasets. The loss function is expressed as:

E(θ f , θd) =− (
1
n

n

∑
i=1

Li
d(θ f , θd) +

1
N − n

N

∑
i=n+1

Li
d(θ f , θd)) (6)

where n and N − n represent the sample number of the source and target domain.
Additionally, all of the labeled samples should be supervised during training to ensure

the accuracy of the diagnosis in the adversarial procedure. Thus, a classifier is established
and is expressed as Gy = Gy(Gf (x), θy) : RD → RL with parameters θy, in which L is
the number of classes. The cross-entropy loss is applied in the Softmax function and is
described as:

L(Gy(Gf (xi)), yi)= log
1

Gy(Gf (xi))yi

(7)

Adding Equation (7) to the objective function (6), the optimization objective can be
expressed as:

E(θ f , θy, θd) =
1
n

n

∑
i=1

Li
y(θ f , θy)− λ(

1
n

n

∑
i=1

Li
d(θ f , θd) +

1
N − n

N

∑
i=n+1

Li
d(θ f , θd)) (8)

where Li
y(θ f , θy) = L(Gy(Gf (xi)), yi) and λ is a non-negative hype-parameter trade-off

for the losses of the discriminator. In the whole training procedure of the DACNN, the
optimization parameters θ f , θy, θd can be obtained by:

(θ̂ f , θ̂y) = argmax
θ f , θy

E(θ f , θy, θ̂d) (9)

θ̂d = argmax
θd

E(θ̂ f , θ̂y, θd) (10)
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The flowchart of the DACNN is displayed in Figure 2. By optimizing Equations (9) and (10),
the DACNN tends to train a feature extractor Gf that can extract suitable representations
from input samples that can be classified accurately by the classifier Gy but weakens the
ability of the discriminator Gd to differentiate which domain this representation is from. In
the phases of testing, the domain-insensitive features are extracted by the feature extractor
Gf and fed into the health state classifier Gy to identify the states immediately.

 

Figure 2. The schematic of the DACNN.

3. The Proposed Method

This section describes the proposed method in detail. It mainly includes problem
formulation, the training of the three classifiers, and the classifiers’ ensemble.

3.1. Problem Formulation

Before implementing the proposed method, two incomplete source domain datasets A
and B are defined as shown in Figure 3. The source dataset A= {(xA

i , yA
i )}nA

i=1 of nA labels
instances associated with |DA| classes and is drawn from distribution PSA. The source
dataset B= {(xB

i , yB
i )}nB

i=1 of nB labels instances associated with |DB| classes collected
from another same-type component and is drawn from distribution PSB. The class label
spaces of A and B are denoted as DA and DB, respectively. The collection of different
components results in variations in the operating conditions (such as load, speed, etc.) in a
real industrial environment; this means that PSA �= PSB. In addition, there must be some
shared health states contained in both source dataset A and source dataset B, which are
denoted as D = DA ∩ DB and shown in Figure 3. D̂A = DA\DB denotes the private label
space of the A and D̂B = DB\DA denotes the private label sets of B.

 

Figure 3. Two different source domain datasets.

However, in the testing stage of the actual machine fault diagnosis scenario, all possible
health states may appear. Therefore, the target domain dataset includes all health states; it
can be expressed as T= {(xT

i )}nT
i=1 of nT unlabeled instances associated with |DT| classes

drawn from distribution PT. The DT represents the label sets of the target domain and
DT = DA ∪ DB. In addition, the target domain distribution PT is different in source domain
distributions PSA and PSB.

This paper aims to establish a fault diagnosis model to realize fault diagnosis based
on incomplete source training data under different operating conditions.
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3.2. Classifier Training

This section describes the training procedure for the three classifiers (weak classifier
CW, classifier CA, and classifier CB) concretely.

First, a complete dataset C that contains all of the classes can be formed based on the
incomplete source datasets A and B, as shown in Figure 4. In the complete dataset C, the
sample in label space D̂A is from source dataset A, and the sample in label space D̂B is from
source dataset B. For the samples in shared label space D, a portion of them come from A,
and the rest come from B. Thus, the label space of dataset C is the same as T, and it includes
|DT| health states. Second, a standard CNN classifier CW is trained using the complete
dataset C. However, since the source domain datasets A and B are collected under various
work conditions, the samples in the dataset C are drawn from two types of distributions. In
addition, the data distribution in the testing set PT is different in PSA and in PSB. Therefore,
the classifier CW has poor classification ability for the target domain data. However, the
classifier CW has the ability to classify all health states.

Figure 4. The process of forming a complete dataset C.

After the weak classifier CW is obtained, the test samples from the target domain
T= {(xT

i )}nT
i=1 of nT unlabeled instances associated with |DT| classes are classified, and

the result is served as a pseudo-label to participate in the subsequent training. Target
domain samples whose pseudo-label is in DA are obtained to construct the target domain
training set AT. The samples whose pseudo-label is in DB are obtained to construct the
target domain training set BT. Thus, the datasets A and AT have the same label space DA,
and the datasets B and BT have the same label space DB.

Dataset A and AT have the same health states but draw from different distributions.
So, a DACNN model can be trained using the datasets A and AT. A feature extractor and a
classifier in this DACNN are combined to form a block, which is taken as classifier CA. The
classifier CA is constructed by a DACNN using domain adaptation techniques, so that it
has a strong classification ability for the unlabeled target domain dataset. However, the
classification range of strong classifier CA is limited to |DA| classes. After the training
of classifier CA is completed, classifier CB is trained in the same way. Similarly, the
classification range of CB is limited to |DB| classes.
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In the implementation process of the DACNN, the SELU activation function is used in
convolutional layers; its mathematical expression is expressed as Equation (11):

SELU(x) =λ

{
αex − α (x ≤ 0)

x (x > 0)
(11)

where the value of α is 1.6732, and the value of λ is 1.0507. The SELU activation function
can automatically normalize the sample distribution to 0 mean value and unit variance to
avoid the gradient exploding or disappearing. The activation function used in the fully
connected layer in the state classifier and domain discriminator is ReLU, and it is expressed
as Equation (12):

ReLU(x) =
{

0 (x ≤ 0)
x (x > 0)

(12)

In this way, three well-trained classifiers are achieved, including one weak global
classifier CW, one strong partial classifier CA, and one strong partial classifier CB. The
details of the three classifiers are listed in Table 1.

Table 1. Classification range and ability of the three classifiers.

Classifiers Range of Classification Ability of Classification

CA

DA

 

Strong

CB

DB

 

Strong

CW

DA ∪ DB

 

Weak

3.3. Classifiers’ Ensemble

After the three classifiers are obtained, this section designs a particular ensemble
strategy to combine their results. The procedure for the ensemble strategy is presented in
Figure 5.

After inputting a testing sample x into the three classifiers, the classification result yW,
yA, and yB can be output from the three classifiers, which can be expressed as:⎧⎨⎩

yW = CW(x)
yA = CA(x)
yB = CB(x)

(13)

If yW = yA ‖ yW = yB ‖ yA = yB is satisfied, the final result y can be obtained by
a majority voting strategy immediately. Otherwise, it means that the results of the three
classifiers are different from each other. In such cases, because the classifier CW is a global
classifier, yW is served as the reference standard. If yW ∈ DA is satisfied, that means that
the actual label of xmay be in DA. In this range, the classifier CA has perfect classification
ability, and thus yA is served as the final result. Similarly, if yW ∈ DB is satisfied, yB is
served as the final result. However, if yW ∈ D is satisfied, both the classifiers CA and CB
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have good classification ability in this shared range. In this case, y is determined according
to the output probability p in the Softmax layer of classifiers, and it can be expressed as:⎧⎨⎩

y = yA i f pA = max(pA, pB, pW)
y = yB i f pB = max(pA, pB, pW)

y = yW i f pW = max(pA, pB, pW)
(14)

where the pA, pB, and pW represent the Softmax output probability of classifiers CA, CB,
and CW; max(·) is the maximum function.

 

Figure 5. The flowchart of the classifiers’ ensemble.

3.4. Architecture of the Proposed Method

The architecture of our method for fault diagnosis is presented in Figure 6, and the
process is summarized below.

(1) Collect original vibration signals from different components or under different work-
ing conditions, and convert them into frequency domain signals for subsequent model
training;

(2) Construct a complete dataset by combing these incomplete datasets, and train a weak
global classifier CNN;

(3) Classify the target domain data using the weak classifier to obtain the two target
domain training sets;

(4) Train two DACNN models using two source datasets and target domain training sets
to construct two strong partial classifiers;

(5) Design a particular ensemble strategy to combine the three classifiers and obtain the
final classification results.
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Figure 6. The overall procedures of the proposed method.

4. Experimental Verification

To validate the effectiveness of the proposed PT-ELF method, rotor and rolling bearing
experiments are designed. Note that the code for the proposed method is written in Pytorch
1.2 and runs with 16G RAM and a Core I5 10400F CPU.

4.1. Case 1
4.1.1. Rotor Experiment

Case 1 adopts the rotor dataset from Northwestern Polytechnical University. As shown
in Figure 7a, the experimental system is composed of a three-phase variable frequency
motor, single-span rotor shafting, torque speed sensor, rolling bearing seat, shafting load
plate, rubbing mounting bracket, platform bottom plate, radial loading device, coupling,
system control cabinet, and fault suite. A displacement sensor is mounted on the rotor test
bench to collect vertical vibration signals under a health state and six different fault states
as shown in Figure 8, and the sample frequency is 10,240 Hz. Figure 7b depicts the sensor
and single-span rotor shaft layout. The structural components are listed in Table 2.

Figure 7. The rolling bearing experiment system: (a) the experimental test rig; (b) the layout of the
test rig.
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Figure 8. Six different fault states: (a) full annular rub; (b) blade crack; (c) bearing fault; (d) blisk
crack; (e) Shaft coupling fault; (f) Shaft crack.

Table 2. The structural components of the single-span rotor shafting.

No Component

1 Support bearing pedestal
2 Displacement sensor bracket
3 Friction assembly and bracket
4 Shaft
5 Casing friction support and blade disc
6 Test bearing pedestal
7 Worm gear and worm

The rotor vibration data are collected under three working load conditions of 0%, 20%,
and 40%. As detailed in Table 3, for each load, data from seven health states (including a
health state and six fault states) are used. The data in each state are divided into 300 samples,
with 80 randomly selected as tests and the remaining 220 used to train. Each sample, each
consisting of 800 data points, is used to verify the method proposed in this paper. Figure 9
shows the waveform of the original displacement signal and the spectral distributions of
each health state under 0% load. The left shows the spectral signal, and the right shows the
corresponding spectrum. The signals have a large amplitude of around 10–30 Hz, showing
relatively similar characteristics, which makes it hard to recognize the health states.

Table 3. Seven health states of the rotor.

Label Health States
The Number of

Training/Testing Samples

0 Health 220/80
1 Full annular rub 220/80
2 Blade crack and bearing fault 220/80
3 Blade crack 220/80
4 Blisk crack 220/80
5 Shaft coupling fault 220/80
6 Shaft crack 220/80
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Figure 9. Original displacement signals and spectral distributions: (a) health; (b) full annular rub;
(c) blade crack and bearing fault; (d) blade crack; (e) blisk crack; (f) shaft coupling fault; (g) shaft
crack.

4.1.2. Results and Discussion

In this case study, two incomplete source datasets are constructed, as shown in Table 4.
The source dataset A contains five kinds of health states (states 1–5), and the source dataset
B contains four kinds of health states (states 4–7).

Table 4. Distribution of health states in two source domains and one target domain.

States
Source Domain Dataset A Source Domain Dataset B Target Domain Data

Data Labels Data Labels Data Labels

1
√ √ √

2
√ √ √

3
√ √ √

4
√ √ √ √ √

5
√ √ √ √ √

6
√ √ √

7
√ √ √

First, the source domain datasets A and B are mixed to form a training set that contains
all health states, which is used to train a weak classifier CW. The classifier CW has a
classification ability for all of the health states (seven kinds of health states). Second,
according to the classification results (the pseudo-label) of the weak classifier CW on the
target domain samples, two transfer models based on a DACNN are trained. They are
transferred from source domain dataset A and source domain dataset B to the target domain.
Thus, two strong classifiers CA and CB are trained. Finally, after classifying a test sample
by the classifiers CA, CB, and CW, three results are obtained and fused by the proposed
ensemble strategy described in Section 3.3.
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To demonstrate that our method is applicable to various operating conditions, five
test scenarios (test scenarios A1–E1) are designed to test the proposed method. As listed
in Table 5, the source domain A, source domain B, and target domain are served by the
collected dataset under different loads. In source dataset A, only five kinds of labeled
samples in states 1–5 are available. Similar to source domain A, in source dataset B, only
four types of labeled samples in states 4–7 are available. The test data in the target domain
contain all seven kinds of unlabeled samples in states 1–7.

Table 5. Five different test scenarios.

Test Scenarios Source Dataset A Source Dataset B Target Data

A1 Load 0% (states 1–5) Load 20% (states 4–7) Load 40% (states 1–7)
B1 Load 0% (states 1–5) Load 40% (states 4–7) Load 20% (states 1–7)
C1 Load 40% (states 1–5) Load 20% (states 4–7) Load 0% (states 1–7)
D1 Load 20% (states 1–5) Load 0% (states 4–7) Load 40% (states 1–7)
E1 Load 40% (states 1–5) Load 0% (states 4–7) Load 20% (states 1–7)

The accuracies of the three classifiers (two strong partial classifiers and a weak global
classifier) and the proposed PT-ELF method in the five test scenarios are listed in Table 6,
and a bar diagram is shown in Figure 10a. Note that the accuracy of CA is tested by states
1–5, and the accuracy of CB is tested using states 4–7. The result of the weak classifier
CWand the ensemble result are tested using target domain test data that contain all of the
health states (states 1–7).

Table 6. Results of different classifiers.

Test Scenarios
Strong

Classifier CA

Strong
Classifier CB

Weak Classifier
CW

Proposed
Method

A1 92.14% 98.58% 85.89% 91.08%
B1 95.15% 98.28% 92.14% 95.41%
C1 81.50% 99.68% 78.03% 83.75%
D1 99.50% 91.07% 89.07% 92.89%
E1 98.14% 96.56% 87.50% 90.48%

Average 93.29% 96.83% 86.52% 90.73%

Figure 10. The result diagram for different classifiers.
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It can be seen from Table 6 that the two strong classifiers CA and CB have high accuracy
in the corresponding classification range, with averages of 93.29% and 96.83%. On the one
hand, this is because the two strong classifiers are trained by a domain adversarial network
DACNN, which can extract domain-insensitive features to classify. On the other hand, they
are just tested by partial health states. The result of the weak classifier CW is relatively
poor, with an average accuracy of 86.52%. This is because the data of the target domain and
two source domains are not uniformly distributed, leading to the decrease in classification
performance.

Out of five test scenarios, the result in scenario B1 is the highest at 95.41%; scenario C1
has the lowest accuracy at 83.75%, and the average is 90.73%. This is significantly higher
than the weak classifier CW, and maintains a high classification accuracy. This is because the
proposed ensemble strategy can cause the test sample to be classified by the corresponding
strong classifier as far as possible. It indicates that our method can still achieve good results
even under incomplete training data.

In addition, to prove the superiority of our method, relevant methods for a CNN and
a DACNN, trained by source dataset A and source dataset B, respectively, are used as
comparison methods (Method 1–4). The result is listed in Table 7, and a bar diagram of
the various methods is shown in Figure 10b. It can be observed that the average accuracies
of the CNN trained by source domains A and B are 58.87% and 55.27%, respectively. The
average accuracies of the DACNN trained by source domains A and B are 64.02% and
56.79%, respectively, which are significantly higher than the accuracy of the CNN. This is
because the DACNN can extract domain-insensitive features using adversarial training;
this restrains the model’s performance decrease caused by a distribution discrepancy and
further improves the accuracy of the model in the target domain. However, since the
source domain A is incomplete, a model (CNN or DACNN) trained by source dataset A
is unable to classify the testing samples whose actual label is in D̂B (states 6–7). Similarly,
a model (CNN or DACNN) trained by source dataset B is unable to classify the testing
samples whose actual label is in D̂A (states 1–3); therefore, the results of methods 1–4 are
poor compared to our method. The average accuracy of our method is as high as 90.73%,
which indicates that the proposed method has good classification ability for all health states
presented in the testing dataset in the target domains.

Table 7. Results of different methods.

Test
Scenarios

Method 1
(CNN

Trained by
Source A)

Method 2
(CNN

Trained by
Source B)

Method 3
(DACNN

Trained by
Source A)

Method 4
(DACNN

Trained by
Source B)

The
Proposed
Method

A1 62.86% 55.54% 64.82% 57.14% 91.08%
B1 61.43% 56.43% 65.71% 57.28% 95.41%
C1 53.04% 54.89% 55.71% 56.42% 83.75%
D1 57.86% 53.93% 70.71% 56.25% 92.89%
E1 59.14% 55.54% 63.14% 56.96% 90.48%

Average 58.87% 55.27% 64.02% 56.79% 90.73%

4.2. Case 2
4.2.1. Rolling Bearing Experiment

The rolling bearing vibration data utilized in case 2 are from Case Western Reserve
University [32]. As shown in Figure 11, the setup mainly consists of a loading motor, an
induction motor, and testing bearings. The vibration signals used in this case are collected
by an accelerometer installed near the drive end. As listed in Table 8, the vibration signals
were collected under four different loads (Load 1–Load 4). Each fault was artificially
implanted into the bearings with different severity levels from 0.007 to 0.028 inches in
diameter (1 inch = 25.4 mm). The details of the test bearing are listed in Table 9.
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Figure 11. The experiment setup of rolling bearing.

Table 8. Four different loads.

Loads Values

Load 1 1797 rpm, 0 hp
Load 2 1772 rpm, 1 hp
Load 3 1750 rpm, 2 hp
Load 4 1750 rpm, 3 hp

Table 9. Details of the test bearing.

Parameters Values

Type 6205-2RS JEM SKF
The number of balls 9

Pitch diameter 1.537 inches
Ball diameter 0.3126 inches

Sampling frequency 12 (kHz)
Motor speed 1797/1772/1750/1730 rpm

The vibration data collected under four different loads are used to test the proposed
method. Each of them includes 12 health states, which include different failure locations
(shown in Figure 12), different failure orientations, and different failure severities. As
detailed in Table 10, each health state contains 300 samples, which consist of 400 continuous
data points. At random, 200 samples are selected to train, and the remaining 100 are
used to test. The raw vibration is under 1797 rpm (0 hp) (in the left column), and the
corresponding spectral distributions (in the right column) are shown in Figure 13. In terms
of raw vibration signals, the health state vibration amplitude is relatively small (Figure 13a).
The fault signals (Figure 13b–i) have an obvious impact. The spectral distribution contains
the fault frequency and the bearing natural frequency. In addition to the health signals,
the other fault vibration signals have a higher amplitude of around 3–4 kHz. It is still very
unrealizable to accurately distinguish the fault location, dimension, and orientation across
different working conditions with new fault states.

Figure 12. The faults of bearing in three locations: (a) ball fault; (b) inner fault; (c) outer fault.
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Table 10. The details of the 12 operating states.

Labels Failure Location
Failure

Orientation

Failure
Severities
(Inches)

The Number of
Testing/Training

Samples

0 Health - 0 100/200
1 Rolling element - 0.007 100/200
2 Rolling element - 0.014 100/200
3 Rolling element - 0.021 100/200
4 Inner race - 0.007 100/200
5 Inner race - 0.021 100/200
6 Inner race - 0.028 100/200
7 Outer race Center 0.007 100/200
8 Outer race Vertical 0.007 100/200
9 Outer race Center 0.014 100/200

10 Outer race Center 0.021 100/200
11 Outer race Vertical 0.021 100/200

The proposed method mainly studies the case in which only partial health state labeled
data are available in the source domain. To verify our method, we assume that source
domain dataset A only contains eight kinds of fault state labeled data, while source domain
dataset B contains seven kinds of labeled data. Among them, three categories overlap, as
shown in Table 11. In addition, all target domain data are unlabeled; these data contain
12 kinds of health states.

Table 11. Distribution of health states in source and target data.

States
Source Domain Dataset A Source Domain Dataset B Target Domain Data

Data Labels Data Labels Data Labels

1
√ √ √

2
√ √ √

3
√ √ √

4
√ √ √

5
√ √ √

6
√ √ √ √ √

7
√ √ √ √ √

8
√ √ √ √ √

9
√ √ √

10
√ √ √

11
√ √ √

12
√ √ √

4.2.2. Results and Discussion

Similar to Case 1, the source datasets A and B are first mixed to form a training set
containing all health states, and it is used to train the weak classifier CW. Thus, CW has a
classification ability for all of the health states, but the classification ability is weak.

In the following step, two DACNN models are trained based on source domain
datasets A and B to adapt target domain data. Then, two strong classifiers CA and CB can
be obtained. In each DACNN, the feature extractor Gf contains two convolution blocks.
Meanwhile, the classifier Gy contains a fully connected layer and output by a Softmax
function. The Gy(Gf (x)) in the DACNN is taken as the classifier. Finally, three well-trained
classifiers CA, CB, and CW with different classification capabilities and classification ranges
are integrated using the ensemble strategy introduced in Section 3.3 to obtain the final
diagnosis result.
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Figure 13. Waveform of raw signals and spectral distributions of the rolling bearing: (a) health;
(b) rolling element failure (0.007); (c) rolling element failure (0.014); (d) rolling element failure (0.021);
(e) inner race failure (0.007); (f) inner race failure (0.021); (g) inner race failure (0.028); (h) outer
race failure (0.007 Center); (i) outer race failure (0.007 Vertical); (j) outer race failure (0.014 Center);
(k) outer race failure (0.021 Center); (l) outer race failure (0.021 Vertical).
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To demonstrate that our method is applicable to different working conditions, five
test scenarios (test scenarios A2–E2) with incomplete data are used to test the proposed
method, as shown in Table 12. In source dataset A, eight kinds of labeled samples in states
1–8 are available, and in source dataset B, seven kinds of labeled samples in states 6–12 are
available. The target data, which contains 12 kinds of unlabeled samples in states 1–12, is
used to test. In the five test scenarios, source domain datasets A and B and the target domain
dataset are served by data collected under different loads. To indicate the superiority of our
method, two conventional deep learning methods based on CNN (method 1 and method
2) and two transfer learning methods based on DACNN (method 3 and method 4) are
used for comparison in five test scenarios; the results are listed in Table 13. Method 1 and
method 3 are trained using source dataset A, and method 2 and method 4 are trained using
source dataset B. In order to show the comparison results visually, the results bar diagram
for different methods is shown in Figure 14.

Table 12. Five different test scenarios.

Test Scenarios Source Dataset A Source Dataset B Target Data

A2 Load 1 (states 1–8) Load 2 (states 6–12) Load 3 (states 1–12)
B2 Load 3 (states 1–8) Load 4 (states 6–12) Load 1 (states 1–12)
C2 Load 2 (states 1–8) Load 3 (states 6–12) Load 4 (states 1–12)
D2 Load 1 (states 1–8) Load 2 (states 6–12) Load 4 (states 1–12)
E2 Load 2 (states 1–8) Load 3 (states 6–12) Load 1 (states 1–12)

Table 13. Results of different methods.

Test Scenarios

Method 1
(CNN Trained
Using Source

Dataset A)

Method 2
(CNN Trained
Using Source

Dataset B)

Method 3
(DACNN Trained

Using Source
Dataset A)

Method 4
(DACNN Trained

Using Source
Dataset B)

The Proposed
Method

A2 63.17% 57.13% 65.75% 58.33% 98.08%
B2 60.50% 58.25% 65.83% 58.08% 95.41%
C2 66.50% 58.08% 66.67% 58.33% 99.66%
D2 66.08% 58.14% 66.58% 58.33% 99.25%
E2 65.08% 56.08% 66.25% 57.17% 95.83%

Average 64.27% 57.53% 66.22% 58.05% 97.65%

Figure 14. The results diagram for different methods.

As shown in Table 13 and Figure 14, the average accuracies of methods 1 and 2
are 64.27% and 57.53%, respectively. The average accuracies of method 3 and method
4, based on transfer learning, are 66.22% and 58.05%, respectively. This is because the
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DACNN can solve the problem of cross-domain fault diagnosis well and enhances the
recognition accuracy in the target domain. However, since the source datasets A and B are
incomplete, neither of them contains all the health states presented in the testing data; the
fault classification accuracy is still relatively low even if the transfer strategy is used. The
accuracy of the method proposed can achieve 98.08%, 95.41%, 99.66%, 99.25%, and 95.83%
in five test scenarios, respectively. Accuracy is the lowest in test scenario B2, but it can still
remain at 95.41%. In test scenario C2, the classification accuracy is the highest at 99.66%.
The comparison results demonstrate that the proposed PT-ELF method exhibits satisfactory
cross-domain diagnostic ability with new health states.

5. Conclusions

This paper proposes a rotating machinery fault diagnosis method based on partial
transfer learning and ensemble learning. Unlike other existing cross-domain diagnostic
methods with the assumption of the same health states in the source and target domains,
the proposed method can provide a reliable diagnosis result in the target domain even
when the source domain is incomplete and only contains partial health states. As the
core of the proposed method, partial transfer learning can avoid the problem induced by
incomplete training data and train two classifiers with strong classification capabilities
for partial categories. Then, a particular ensemble strategy is designed to combine the
output of the three classifiers (a weak global classifier and two strong partial classifiers).
The effectiveness of the proposed method is validated on a rotor experiment and a bearing
experiment. After comparing with four related methods, results indicate that the proposed
method can achieve superior performance and provide a reliable diagnosis result based on
incomplete source domain under various working conditions.

In this preliminary study, the proposed method lies in the assumption that the missing
health states in the source domain training set can be obtained from another dataset or
another component. The unseen health states will be considered in our future research.
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Abstract: With the development of machine learning, data-driven mechanical fault diagnosis methods
have been widely used in the field of PHM. Due to the limitation of the amount of fault data, it is a
difficult problem for fault diagnosis to solve the problem of unbalanced data sets. Under unbalanced
data sets, faults with little historical data are always difficult to diagnose and lead to economic
losses. In order to improve the prediction accuracy under unbalanced data sets, this paper proposes
MeanRadius-SMOTE based on the traditional SMOTE oversampling algorithm, which effectively
avoids the generation of useless samples and noise samples. This paper validates the effectiveness of
the algorithm on three linear unbalanced data sets and four step unbalanced data sets. Experimental
results show that MeanRadius-SMOTE outperforms SMOTE and LR-SMOTE in various evaluation
indicators, as well as has better robustness against different imbalance rates. In addition, MeanRadius-
SMOTE can take into account the prediction accuracy of the overall and minority class, which is of
great significance for engineering applications.

Keywords: mechanical fault diagnosis; unbalanced data set; MeanRadius-SMOTE; minority class

1. Introduction

With the continuous innovation of technology, industrial equipment has developed
rapidly in the direction of large-scale, automated, integrated, and intelligent, such as
aircraft engines, steam turbines, wind turbines, centrifuges, etc. In order to meet the
requirements of mechanical equipment reliability and precision in the industrial field,
PHM (Prognostics and Health Management) was initiated to ensure the stable operation of
mechanical equipment and reduce maintenance costs [1–3].

With the development of big data in the industrial field, data-driven mechanical fault
diagnosis research has received more and more attention [4–6]. Mechanical fault diagnosis
generally starts by extracting vibration signals from the operation of the equipment, because
vibration signals can provide sufficient fault features to reflect the fault status and serve
as the input of the prediction model [7,8]. However, due to the low frequency of some
faults, the vibration signals of such faults are too small, and the classifier cannot predict
them accurately, which is the problem of unbalanced data sets in fault diagnosis. In the
multi-classification mechanical fault diagnosis problem, the machine learning classifier
emphasizes the accuracy of the overall prediction, which leads to sacrificing the prediction
accuracy of the minority class to ensure the prediction of the majority class samples [9].
However, there are infrequent failures in some mechanical equipment, which will lead to
huge economic losses once they occur. Therefore, it is necessary to research the problem of
unbalanced data sets in mechanical fault diagnosis.

At present, the research on the problem of unbalanced data sets is relatively mature,
but this research in the mechanical fault diagnosis field has just begun [10]. Many fault
diagnosis techniques rely on reliable and complete data sets, such as multi-sensing fusion
techniques [11]. However, since machinery usually operates under normal conditions, it is
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difficult to collect enough failure data, so that the actual data set lacks completeness [12,13].
The lack of samples with specific labels can lead to data imbalance problems. In recent
years, many scholars have begun to pay attention to this problem and have given their own
methods [14,15]. Generally, the solution to the problem of unbalanced data sets is mainly
divided into data and algorithm aspects, and sometimes they are combined [16].

For the data aspect, scholars mainly use resampling technology to copy, synthesize,
delete, and perform other operations on original samples, to adjust the number of samples
to reduce the impact of unbalanced data sets. Resampling techniques are divided into
oversampling for minority class samples and undersampling for majority class samples. The
main idea of oversampling is to increase the number of minority class samples to achieve
class balance. The main methods are divided into replicating samples and generating
new samples. ROS (Random Oversampling) is to randomly replicate original samples to
expand the number of minority class samples, but it may cause the replication of noise
samples to affect the quality of the data set [17]. The method of generating new samples
derives new samples from one or more original samples, and the new samples can indirectly
reflect the features of the minority class. The most classic oversampling is the SMOTE
algorithm [18]. The SMOTE algorithm selects the line connecting the two original samples
as the range of the new sample and determines a point on the line as the new sample.
However, SMOTE still does not avoid the generation of noise samples, and the new samples
are easily affected by the distribution of the original samples, which may cause the new
samples to deviate from the actual distribution. Later scholars improved SMOTE in terms
of noise reduction and generation algorithms, such as Borderline-SMOTE [19], Adasyn [20],
LR-SMOTE [21], etc. Undersampling achieves class balance by reducing the number of
majority class samples, such as undersampling based on the clustering algorithm and ENN
(Edited Nearest Neighbor) [22]. In fact, most of the unbalanced data sets are caused by too
few samples in the minority class, so oversampling is the key research in this field [23].

For the algorithm aspect, with the rapid development of machine learning, many
classifiers have responded to the problem of unbalanced data sets. On the premise that
each sample is equal, the number of samples determines which class the classifier prefers,
so setting the weight of the sample, the threshold of the decision boundary, or the objective
function of the classifier can strengthen the ability of the classifier to combat unbalanced
data sets [24,25]. Adjusting these can make the classifier’s decision boundary less sensitive
to the sample size [26]. Moreover, adding a proper regularization term to the objective
function can reduce the impact of the imbalance rate on the classifier [27].

There is no universal solution to the problem of unbalanced data sets in mechanical
fault diagnosis; although, scholars have tried in various directions. From the perspec-
tive of features, extracting more abundant features from vibration signals is beneficial to
solving the problem, because the failure can be reflected in the energy of the vibration of
the equipment [28]. In addition to features in the time and frequency domains, there are
features based on wavelet packet energy and entropy values [29,30], and the fault features
are also extracted using a bag-of-visual-word approach from the infrared thermography
images [31]. However, the increase of features will undoubtedly increase the workload
of feature screening. From the perspective of resampling, scholars use various existing
resampling methods to conduct experiments on mechanical equipment [32]. Once there
are more failure types or concurrent failures, existing oversampling algorithms may fail.
Therefore, analyzing the commonality of mechanical faults and proposing a new oversam-
pling algorithm is the key to solving this problem in the mechanical field [33,34]. From
the perspective of the classifier, scholars mainly set the cost matrix, and change the loss
function or network structure to make the classifier aware of this imbalance [35]. These
classifiers are often only suitable for identifying faults in stationary parts, such as gears or
bearings [36].

Although new oversampling algorithms are emerging, there are still the following
problems: (1) The solutions are generally only aimed at the prediction of bearing failures
or gear failures, so the methods cannot comprehensively diagnose the running state of
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complete mechanical equipment. (2) Most of the solutions are aimed at the two-category
problem, which is obviously not practical. For a simple secondary planetary gear, there
are already as many as eight failure types. (3) The new samples are not effective enough
that the existing oversampling methods generate. Although the number has reached a
balance, it is far from enough in terms of the amount of fault-type information contained in
the sample.

In view of the existing problems, this paper improves SMOTE and proposes an
oversampling algorithm called MeanRadius-SMOTE, which is specially used to solve the
multi-classification problems in mechanical fault diagnosis. MeanRadius-SMOTE can
reduce the production of noise samples and add more samples with the ability to affect
the decision boundary, and it is easier to inherit the feature information from the original
samples. The complexity of the MeanRadius-SMOTE algorithm is not high compared
to SMOTE.

The main contributions of this paper are as follows: To solve the problem of multi-
classification unbalanced data sets in mechanical fault diagnosis, a new oversampling
algorithm, MeanRadius-SMOTE, is proposed. The algorithm takes into account the per-
formance of prediction of overall and minority class, and especially in the minority class,
prediction accuracy is greatly improved. In this paper, a large number of comparative
experiments are carried out on data sets with various specifications and imbalance rates,
and the effectiveness, stability, and robustness of the algorithm are verified.

The rest of this paper is divided into five parts. In Section 2, the SMOTE algorithm
and the improved LR-SMOTE algorithm based on SMOTE are introduced. In Section 3, the
specific process of the MeanRadius-SMOTE algorithm is introduced in detail. In Section 4,
we mainly introduce the source and processing of the data set, as well as the selection
of classifiers and evaluation indicators in the experiment. In Section 5, we introduce the
experimental process and experimental results. In the following sections, we discuss and
summarize the MeanRadius-SMOTE algorithm based on experiments, and we propose
future research directions.

2. Related Works

Since the machine learning algorithm is greedy in the face of multi-classification
problems, the classifier will give priority to ensuring the highest overall accuracy, resulting
in an inaccurate prediction of some minority class samples. In the real industrial field, in
the face of some faults with low probability but high maintenance cost, operators hope
that the model can accurately predict these faults. Therefore, this section introduces the
commonly used methods to deal with unbalanced data sets, namely, the traditional SMOTE
method and the improved LR-SMOTE method.

2.1. SMOTE

The SMOTE algorithm was proposed by Chaw La et al. in 2002 [18], and the algorithm
is an improved method based on ROS. In the SMOTE algorithm, new samples are generated
based on the original samples, which has a greater probability of obtaining effective
features than random oversampling of new samples. The steps of the SMOTE algorithm are
as follows:

(1) For each sample x in the training set, calculate their Euclidean distance to each minority
class sample xi, and obtain the k nearest neighbors of each minority class sample.

(2) According to the sample imbalance rate, set the sampling ratio N. For xi, randomly
select N samples from its k nearest neighbors, denoted as xh.

(3) According to Equation (1), build new samples based on xi and xh until the classes are
balanced, denoted as xnew.

xnew = xi + rand(0 , 1) ∗ (xh − xi) (1)
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Although the SMOTE algorithm overcomes the overfitting problem of the ROS algo-
rithm, SMOTE still has some problems with noise samples and useless samples. Many
scholars have improved SMOTE. For example, Han proposed the Borderline-SMOTE al-
gorithm [19]. The algorithm first classifies the original samples into safe, dangerous, and
noise, then uses the dangerous samples to generate new samples. It not only reduces the
interference of noise points but also enables new samples to better reflect the features of
the data set. However, how to accurately divide the three labels is a more difficult problem
for different data sets.

2.2. LR-SMOTE

Based on the SMOTE algorithm, Wang proposed the LR-SMOTE algorithm [21]. The
algorithm first uses SVM (Support Vector Machine) and K-means to remove the noise
samples in the original data set, then changes the generation rules of new samples and
considers the center of the samples to generate new samples. The specific steps of the
LR-SMOTE algorithm are as follows:

(1) Use SVM to classify the data set, and then for the wrongly classified minority samples
use the K-means method to judge and remove the noise samples.

(2) Use K-means to find the center xc of the minority class sample, calculate the distance di
from each minority class sample to the center xc, and calculate the average distance dm.

(3) For each minority class sample xi, calculate the ratio Mi of the average distance dm
and the distance di.

(4) According to the number of the same samples in the neighbor samples, set the weight
of each minority class sample, and then randomly select a minority class sample xi
and build new samples xnew according to Equation (2).

xnew = xi + rand(0 , Mi) ∗ (xc − xi) (2)

(5) Repeat steps 3 and 4 until the number of samples of the majority class and minority
class is balanced.

In the LR-SMOTE algorithm, the new samples are generated based on the functional
relationship between the sample center and each sample, rather than any two minority
samples. Therefore, the new samples will not deviate from the range of the minority
samples, and the features are closer to the original sample. LR-SMOTE provides a good
direction for generating rules so that the algorithm determines the distribution of samples
according to the sample center. This paper also proposes a new algorithm along this way
to solve the unbalanced data sets in the mechanical field. We use the MeanRadius-SMOTE
algorithm to experiment on a variety of mechanical failure data sets, and the experimental
results show that the MeanRadius-SMOTE algorithm is suitable for solving the problem of
unbalanced data sets in the mechanical field.

3. Proposed Method

In an oversampling algorithm, new samples at different geometric locations have
different improvements in classifier training. In general, the more new samples near
the decision boundary, the greater the impact on the classifier. This paper proposes the
MeanRadius-SMOTE (MR-SMOTE) algorithm considering the sample center and radius.
When using machine learning to predict mechanical failures, we deal with noise samples in
advance, so noise reduction is performed in feature preprocessing. Noise reduction is not
involved in the MeanRadius-SMOTE, and the noise reduction algorithm will be introduced
in the next section.

The MeanRadius-SMOTE algorithm mainly changes the generation rules of the
SMOTE algorithm, so that the new samples are more likely to be distributed near the
average radius of the minority class samples, and the new samples have a stronger ability
to affect the decision boundary of the classifier. In the MeanRadius-SMOTE algorithm,
the new sample is determined by k vectors of the sample center to the samples, and the
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distance between the new sample and the sample center follows a normal distribution. The
steps of the MeanRadius-SMOTE algorithm are as follows:

(1) According to each minority class sample, calculate the geometric center, denoted as
the sample center xc of the minority class sample.

(2) Calculate the Euclidean distance from each minority class sample to the sample
center, and then obtain the average distance, denoted as the sample radius dm of the
minority class.

(3) Randomly select k minority class samples, and then obtain k vectors vi from the
sample center xc to the samples. Compute the resultant vector of k vectors.

(4) Use a normal distribution with mean dm and variance dm
θ to determine the distance

between the new sample and the sample canter. According to Equation (3), build
new samples.

xnew = xc + r ∗
k

∑
i=0

vi r ∼ N(dm,
dm

θ
) (3)

(5) Repeat steps 3 and 4 until the number of samples of the majority class and minority
class is balanced.

In order to show the flow of the algorithm more conveniently, we draw the flow chart
of the MeanRadius-SMOTE algorithm, as shown in Figure 1.

Begin

Calculate the sample center xc of the 
minority class sample

Calculate the Euclidean distance from each minority class 
sample to the sample center, and then obtain the sample 

radius dm of the minority class sample

Randomly select k samples, and then obtain k  vectors vi 
from the sample center to the samples. Compute the 

resultant vector of k vectors.

Use a normal distribution to determine the distance between 
the new sample and the sample center. And build new 

samples according to Equation (3)

The number of samples of the majority 
class and minority class is balanced?

End

Y

N

 
Figure 1. The flow chart of the MeanRadius-SMOTE algorithm.

In the MeanRadius-SMOTE algorithm, k and θ are hyperparameters of the algorithm,
which are determined according to the number of minority class samples and the imbalance
rate. If k is too large, the direction of the new sample relative to the sample center will
become meaningless, and θ directly affects the distribution of the new sample. As shown
in Figure 2, new samples under different θ are likely to be distributed in colored areas.
When θ is too small, the new sample may be far from the sample center. When θ is too
large, the new sample is too conservative and cannot balance the number of positive and
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negative samples near the decision boundary. Therefore, in general, the selection range of
parameters k is 2 to 5 and the selection range of parameters θ is 4 to 10.

Figure 2. New samples distribution under different θ.

For mechanical equipment, some concurrent faults and the original fault have similar
vibration states, and the two types of samples often overlap in distribution. Whether the
classifier can find an excellent decision boundary is the key to determining the accuracy of
the model. In the MeanRadius-SMOTE algorithm, most of the new samples are concen-
trated around the sample radius to ensure the validity of the new samples. The new sample
is determined by k samples and is related to the sample center, so that the new sample can
better inherit the features of the minority class. The geometric positions of new samples
generated by different oversampling algorithms have their own characteristics, so we plot
the examples of SMOTE, LR-SMOTE, and MeanRadius-SMOTE on two-dimension feature
samples, as shown in Figure 3. The information of the two-dimension feature samples is
shown in Table 1.

Figure 3. New samples on oversampling algorithms: (a) SMOTE, (b) LR-SMOTE, (c) MeanRadius-SMOTE.
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Table 1. The information of the two-dimension feature samples.

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 Sample 6 Sample 7 Sample 8

Feature 1 3 4 6 7 5 2 3 5.5
Feature 2 6 3 2 4 5 2 −1 0

The new samples of SMOTE are more inclined to be generated in locations with a
high density of the original samples. Since LR-SMOTE randomly chooses a sample to
determine the orientation of the new sample, the new sample is more clustered and radial.
In MeanRadius-SMOTE, the orientation of new samples is relatively random, and the new
samples are generated around the sample radius.

4. Experimental Preparation

4.1. Data Set

Our experimental data set is the 2009 PHM data challenge of gearbox [37]. The data
set is a typical industrial gearbox data set, which contains 3 shafts, 4 gears, and 6 bearings,
and its experimental bench is shown in Figure 4. The data set tests two sets of gears: spur
gear and helical gear. The spur gear data set contains 8 health states, and the helical gear
data set contains 6 health states. The data set consists of two channels of accelerometer
signals and one channel of tachometer signals. The sampling frequency is 66.67 kHz, and
the tachometer signals are collected at 10 pulses per revolution. There are five types of shaft
speeds: 30 Hz, 35 Hz, 40 Hz, 45 Hz, and 50 Hz, with high and low loads. In the experiment,
we chose the low load spur gear operating data at 30 Hz, and we used the vibration data of
the two acceleration channels for feature extraction, The 8 health states of spur gears are as
follows in Table 2.

Figure 4. Gearbox used in PHM 2009 challenge data.

Table 2. A brief description of the faults.

Label Description

Label 1 Good
Label 2 Gear chipped and eccentric
Label 3 Gear eccentric
Label 4 Gear eccentric and broken, bearing ball fault

Label 5 Gear chipped and eccentric and broken,
bearing inner and ball and outer fault

Label 6 Gear broken, bearing inner and ball and outer
fault, shaft imbalance

Label 7 Bearing inner fault, shaft keyway sheared
Label 8 Bearing ball and outer fault, shaft imbalance

Mechanical equipment frequently fails in the harsh environment of high temperature
and high pressure due to concurrent failures composed of multiple single failures [38]. In
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the PHM dataset, there are many types of concurrent failures, such as labels 4 to 8. They
are all combinations of different types of failures in gears and bearings.

For the vibration signal, we sampled the data set using a sliding window with a stride
of 100 and a width of 1000. Then we extracted time–frequency domain features for each
vibration signal sample and add labels [39]. The formula of 23 features is shown in Table 3.

Table 3. The time–frequency domain features.

Time-Domain Feature Frequency-Domain Feature
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where x(n) is a signal series for n = 1 − N, and N is the
number of data points.

where s(k) is a signal series for k = 1 − K, and K is the
number of spectrum lines; fk is the frequency value of the

kth spectrum line.

In the experiment, we used the K-nearest neighbor algorithm to denoise the data set.
If the five nearest samples around a sample are not of this class, we consider it to be a noise
sample and delete it. After the above preprocessing, we obtained 2656 samples per label, of
which 1000 samples per label were taken as the test set. Additional samples were used to
construct unbalanced data sets.

4.2. Classifiers

In order to comprehensively evaluate the oversampling algorithm, we chose different
classifiers to build the experimental model, which excludes the influence of the classifier
and verifies the generality of the oversampling algorithm. Through experiments in a
large number of mechanical fault diagnoses, the SVM classifier generally has a good
training effect, so we chose SVM to establish a classification model. With the continuous
development of the decision tree algorithm, the ensemble learning model is also favored by
scholars because of its excellent generalization ability. Therefore, we chose RF (Random
Forest) representing bagging ensemble mode, and GBDT (Gradient Boosting Decision Tree)
representing boosting ensemble mode for experiments.

4.3. Evaluation Indicators

Traditional evaluation indicators can well evaluate the performance of the model
in the two-category problem. However, in the multi-classification problem, due to the
partiality of the classifier, these indicators cannot comprehensively evaluate the model
on unbalanced data sets. The expectation of the oversampling algorithm in this paper is
to improve the prediction performance of the minority class without losing the overall
prediction accuracy of the classifier. Therefore, we will use the traditional evaluation
indicators and the prediction indicator of the minority class to evaluate the prediction
model. For class i samples, we define the prediction results as follows, as shown in Table 4:
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Table 4. Predicting results for class i samples.

Positive Prediction Negative Prediction

Positive class TPi FNi
Negative class FPi TNi

We choose the following four evaluation indicators:

(1) Accuracy (Acc): The Acc value is the ratio of the number of correctly predicted samples
to the total number of samples. The calculation method is as shown in Equation (4):

Acc =
∑
n

TPi + FNi

∑
n

FPi + TNi + TPi + FNi
(4)

The Acc value evaluates the overall prediction, but in the case of unbalanced data sets,
it is not a good indicator to measure the results.

(2) Macro-Precision (Mac-P): The calculation method of the Precision value for class i
samples is as shown in Equation (5):

Precisioni =
TPi

TPi + FPi
(5)

In the multi-classification problem, the Precision value is divided into Macro and
Micro methods. Micro-Precision focuses more on types of samples with a large
number of samples, so it is more susceptible to the majority class. However, Mac-P
will treat each type of sample equally, so it can better describe the model’s ability to
deal with unbalanced data sets. The calculation method is as shown in Equation (6):

Mac − P =
∑
n

Precisioni

n
(6)

(3) Macro-F1 (Mac-F1): It is contradictory to improve the Precision value and Recall value
at the same time. The F1 value is a balance point with high Precision value and high
Recall value, and its calculation method is as shown in Equation (7):

F1i =
2 ∗ Precisioni ∗ Recalli

Precisioni + Recalli
(7)

In the multi-classification problem, The F1 value also has Macro and Micro methods
such as the Precision value. This paper selects Mac-F1, which can better take into
account the minority class. The calculation method is as shown in Equation (8):

Mac − F1 =
∑
n

F1i

n
(8)

(4) Precision-Minority (Presmall): In order to pay more attention to the prediction effect
of the model on the minority class samples after oversampling algorithms, we will
calculate the Precision value of the minority class as an indicator, and its calculation
method is as shown in Equation (9):

Presmall =
TPsmall

FPsmall + TPsmall
(9)

5. Experimental Design and Results

In this paper, we will design unbalanced data sets of various sizes for experiments.
According to the distribution of sample data volume within each class, unbalanced data
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sets can be divided into two forms, linear imbalance and step imbalance. The distribution
of sample data volume for the two forms is as shown in Figure 5.

Figure 5. Two imbalance forms: (a) linear imbalance, (b) step imbalance.

In this paper, we design three linear unbalanced data sets and four step unbalanced
data sets. In order to reduce the interference of the class on the Presmall in different experi-
ments, we set the number of samples for labels 4 to 50 as the smallest minority class. We
set the normal label as the large sample class, and the imbalance rate is designed to be 30,
20, and 15, through which the number of other labels can be determined. The details of
the seven unbalanced data sets are shown in Table 5. For line-1 to 3, their imbalance rates
are not the same. Moreover, the label linear order is shuffled. For stage-1 to 4, there are
differences in the imbalance rate and the ratio of minority class and majority class labels.

Table 5. Unbalanced data sets description.

Imbalance Forms Name
Number of Samples

Imbalance Rate
Label 1 Label 2 Label 3 Label 4 Label 5 Label 6 Label 7 Label 8

linear
line-1 1500 465 258 50 672 879 1293 1086 30
line-2 1000 864 592 50 728 321 185 457 20
line-3 750 550 450 50 150 350 650 250 15

step

stage-1 1500 50 1500 50 1500 1500 1500 50 30
stage-2 750 50 750 50 750 750 750 50 15
stage-3 1500 50 1500 50 50 50 50 1500 30
stage-4 750 50 750 50 50 50 50 750 15

In the experiment, we will use the SMOTE, LR-SMOTE, and MeanRadius-SMOTE
to oversample the seven unbalanced data sets, so that each class label becomes balanced.
Then, we conduct experiments on the original data set and the three processed data sets on
SVM, RF, and GBDT classifiers. In order to eliminate the training bias caused by random
data, all experiments were performed with 5-fold cross-validation and repeated 10 times to
obtain the average number of indicators.

The experimental results of Acc, Mac-P, and Mac-F1 on the linear unbalanced data
sets and step unbalanced data sets are shown in Tables 6 and 7, where the values with bold
mean the largest value in four compared models.

From Table 6, it can be found that the oversampling algorithm can effectively improve
Acc, Mac-P, and Mac-F1, and MeanRadius-SMOTE is the best in most cases. In some
experiments, SMOTE performs better than MeanRadius-SMOTE, but the gap between them
is very small. However, in the SVM experiment, MeanRadius-SMOTE improves the three
indicators much better than SMOTE and LR-SMOTE.

From Table 7, since there are more minority classes in the step unbalanced data sets, the
three indicators are all lower in the experiments without oversampling, and are more affected
by the imbalance rate. The SVM classifier combined with any oversampling algorithm is
better than the ensemble learning classifier, and there are obvious gaps in the three indicators.
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On the step unbalanced data sets, MeanRadius-SMOTE outperforms SMOTE and LR-SMOTE
in all cases, and the gap is especially significant on the SVM classifier.

Table 6. Experimental results of the linear unbalanced data set.

Data Set Methods
SVM RF GBDT

Acc Mac-P Mac-F1 Acc Mac-P Mac-F1 Acc Mac-P Mac-F1

line-1

None 0.8675 0.8896 0.8484 0.7726 0.8122 0.7256 0.8126 0.8243 0.7842
SMOTE 0.9045 0.9148 0.8997 0.8555 0.8685 0.8471 0.8774 0.8849 0.8731

LR-SMOTE 0.9065 0.9161 0.9012 0.8339 0.8528 0.8182 0.8662 0.8746 0.8591
MR-SMOTE 0.9206 0.9233 0.9186 0.8678 0.8730 0.8643 0.8739 0.8773 0.8698

line-2

None 0.8733 0.8945 0.8607 0.7668 0.8075 0.7243 0.8209 0.8412 0.8011
SMOTE 0.8891 0.9062 0.8836 0.8548 0.8629 0.8501 0.8626 0.8713 0.8566

LR-SMOTE 0.8923 0.9059 0.8865 0.8354 0.8497 0.8271 0.8588 0.8685 0.852
MR-SMOTE 0.9139 0.9160 0.9131 0.8675 0.8702 0.8657 0.8733 0.8780 0.8698

line-3

None 0.8754 0.8890 0.8644 0.792 0.8261 0.7583 0.8344 0.8496 0.818
SMOTE 0.8995 0.9069 0.8954 0.8646 0.8726 0.8618 0.8748 0.8782 0.8716

LR-SMOTE 0.8988 0.9058 0.8947 0.8464 0.8575 0.8415 0.8683 0.8730 0.8639
MR-SMOTE 0.9175 0.9183 0.9168 0.8691 0.8720 0.8679 0.8803 0.8807 0.8784

Table 7. Experimental results of the step unbalanced data set.

Data Set Methods
SVM RF GBDT

Acc Mac-P Mac-F1 Acc Mac-P Mac-F1 Acc Mac-P Mac-F1

Stage-1

None 0.7403 0.8207 0.7066 0.6144 0.7610 0.5051 0.6793 0.7553 0.6194
SMOTE 0.8418 0.8685 0.8332 0.7614 0.8166 0.7447 0.8250 0.8487 0.8182

LR-SMOTE 0.8566 0.8789 0.8512 0.7103 0.7950 0.6729 0.8021 0.8403 0.7915
MR-SMOTE 0.9039 0.9062 0.9023 0.844 0.8592 0.8408 0.8596 0.8706 0.8561

Stage-2

None 0.7746 0.8365 0.7528 0.6398 0.7694 0.5538 0.7193 0.7936 0.6838
SMOTE 0.8575 0.8760 0.8525 0.7790 0.8242 0.7682 0.8368 0.8551 0.8330

LR-SMOTE 0.8649 0.8833 0.8602 0.7429 0.8073 0.7202 0.8205 0.8481 0.8142
MR-SMOTE 0.9064 0.9078 0.9051 0.838 0.8529 0.8357 0.8621 0.8723 0.8601

Stage-3

None 0.6465 0.8034 0.6369 0.4534 0.7669 0.3607 0.5651 0.6999 0.5259
SMOTE 0.7828 0.8481 0.7847 0.7390 0.8181 0.7336 0.8048 0.8297 0.8022

LR-SMOTE 0.8118 0.8546 0.8116 0.6766 0.8001 0.6654 0.7641 0.8044 0.7583
MR-SMOTE 0.8771 0.8826 0.8759 0.8163 0.8366 0.8151 0.8351 0.8431 0.8327

Stage-4

None 0.6823 0.8124 0.6767 0.5186 0.7697 0.4671 0.6491 0.7391 0.6334
SMOTE 0.8221 0.8606 0.8223 0.767 0.8119 0.7634 0.8098 0.8315 0.8082

LR-SMOTE 0.8440 0.8700 0.8434 0.7186 0.7957 0.7131 0.7871 0.8205 0.7848
MR-SMOTE 0.8766 0.8829 0.8762 0.8135 0.8278 0.8119 0.8436 0.8513 0.8425

By analyzing Acc, Mac-P, and Mac-F1, all oversampling algorithms can effectively
improve the overall prediction performance of the classifier on both forms of unbalanced
data sets, and the MeanRadius-SMOTE algorithm proposed in this paper has the most
obvious effect. We still need to focus on the prediction performance of the algorithm on the
minority class; the experimental results of Presmall are shown in Table 8, where the values
with bold mean the largest value in four compared models.

From Table 8, Presmall does not even exceed five in the None experiments. SMOTE
and LR-SMOTE only improved Presmall by around five in most experiments. However,
MeanRadius-SMOTE can help the classifier to more accurately predict the minority class,
improving Presmall by around six or seven. In addition, MeanRadius-SMOTE is more stable
in experiments with different imbalance rates, and does not fluctuate greatly like SMOTE
and LR-SMOTE.
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Table 8. Presmall on the data sets.

Data Set Methods
SVM

Presmall

RF
Presmall

GBDT
Presmall

Data Set Methods
SVM

Presmall

RF
Presmall

GBDT
Presmall

line-1

None 0.277 0.048 0.184

stage-1

None 0.329 0.039 0.154
SMOTE 0.563 0.472 0.588 SMOTE 0.555 0.484 0.545

LR-SMOTE 0.553 0.338 0.508 LR-SMOTE 0.584 0.322 0.506
MR-SMOTE 0.703 0.625 0.603 MR-SMOTE 0.781 0.615 0.619

line-2

None 0.358 0.052 0.261

stage-2

None 0.403 0.062 0.259
SMOTE 0.427 0.554 0.519 SMOTE 0.616 0.506 0.637

LR-SMOTE 0.501 0.449 0.433 LR-SMOTE 0.606 0.36 0.555
MR-SMOTE 0.768 0.681 0.612 MR-SMOTE 0.791 0.695 0.690

line-3

None 0.403 0.110 0.308

stage-3

None 0.445 0.042 0.368
SMOTE 0.583 0.607 0.618 SMOTE 0.657 0.738 0.697

LR-SMOTE 0.579 0.525 0.565 LR-SMOTE 0.662 0.605 0.616
MR-SMOTE 0.791 0.701 0.681 MR-SMOTE 0.768 0.738 0.708

stage-4

None 0.476 0.164 0.42
SMOTE 0.732 0.745 0.697

LR-SMOTE 0.754 0.648 0.705
MR-SMOTE 0.783 0.760 0.778

To better compare the effects of SMOTE, LR-SMOTE, and MeanRadius-SMOTE, we
draw the line charts of Mac-P, Mac-F1, and Presmall, as shown in Figure 6. Since the data of
Acc and Mac-F1 are close and their trend is basically the same, we only choose Mac-F1 to
draw the line chart.

Figure 6. The line charts of Mac-P, Mac-F1, and Presmall.
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According to Figure 6, the following conclusions can be drawn:

(1) Since these seven unbalanced data sets are homologous, the better the oversampling
algorithm, the closer the indicators should be. Comparing the nine charts, all indica-
tors are relatively stable in the MeanRadius-SMOTE experiment, which is less affected
by the imbalance rate and data set form, and this stabilization is more obvious in the
SVM classifier. This shows that MeanRadius-SMOTE has good robustness.

(2) Analyzing the three charts—Figure 6a,d,g, in the seven data sets, MeanRadius-SMOTE
on the SVM classifier can not only ensure that the overall prediction indicators reach
about 0.9 but also ensure that Presmall is relatively high, about 0.75.

(3) Comparing the three charts—Figure 6g–i, the SVM experiment can achieve a higher
Presmall, and in most experiments, Presmall is greatly affected by the data sets, especially
in the RF experiments. However, only in the model composed of MeanRadius-
SMOTE and SVM do we obtain a very flat line, which shows that this model has good
robustness and accuracy in predicting the minority class.

(4) Comparing the three charts—Figure 6a–c, for SMOTE and LR-SMOTE, LR-SMOTE
performs better than SMOTE on SVM, while it is the opposite on RF and GBDT.
In addition, SMOTE even outperforms MeanRadius-SMOTE in some GBDT experi-
ments. LR-SMOTE is also an oversampling algorithm for binary classification prob-
lems, which is more suitable for a classifier that is essentially a binary classification
algorithm-SVM. Therefore, it can be inferred that MeanRadius-SMOTE is also more
suitable for SVM classifiers.

In summary, MeanRadius-SMOTE shows excellent performance in all experiments,
which can take into account the prediction performance of the overall and minority class. In
individual experiments, SMOTE is slightly higher than MeanRadius-SMOTE in Acc, Mac-P,
and Mac-F1, but lower than MeanRadius-SMOTE in Presmall. We can think that this is the
result of sacrificing the prediction performance of the minority class. Therefore, it can still be
considered that MeanRadius-SMOTE is better than SMOTE and LR-SMOTE. Furthermore,
the model composed of MeanRadius-SMOTE and SVM can improve prediction accuracy
and stability.

6. Conclusions and Outlook

Mechanical fault diagnosis has always been a key issue in the PHM. Since the develop-
ment of machine learning, although mechanical fault diagnosis has been solved by many
effective methods, fault diagnosis under unbalanced data sets has always been a stubborn
problem. The oversampling algorithm is currently recognized as an effective means to
solve the problem of unbalanced data sets. The traditional oversampling algorithm is not
only affected by the sample distribution, but also easily generates noise samples, which
makes the decision boundary blurred. These drawbacks are not conducive to the classifier
making predictions.

Based on the SMOTE, this paper proposes the new algorithm, MeanRadius-SMOTE,
combining the sample center and radius. MeanRadius-SMOTE effectively avoids useless
samples and noise samples in the process of generating new samples. In this paper, we
conduct comparative experiments for SMOTE, LR-SMOTE, and MeanRadius-SMOTE
algorithms and use SVM, RF, and GBDT classifiers on three linear unbalanced data sets and
four step unbalanced data sets. Experimental results show that the MeanRadius-SMOTE
algorithm can effectively balance data classes and improve the prediction performance of
machine learning classifiers. From the perspective of various indicators, the MeanRadius-
SMOTE algorithm is better than SMOTE and LR-SMOTE, and has better robustness. In the
problem of unbalanced data sets, MeanRadius-SMOTE can more accurately predict the
minority class without sacrificing the prediction performance of other classes, which is of
great significance for mechanical fault diagnosis, and the combined model of MeanRadius-
SMOTE and SVM is proved to be much better than other models.

115



Sensors 2022, 22, 5166

Although this paper proves on PHM09 challenge data that MeanRadius-SMOTE has
a good ability to deal with unbalanced data sets, considering the actual situation, future
research can be carried out from the following aspects:

(1) In this paper, in order to ensure that the experiment is carried out under a variety
of unbalanced data sets, we use artificial unbalanced data sets in experiments. In
future research, we will collect the failure unbalanced data sets of actual mechanical
equipment to continue the verification experiment.

(2) When constructing the data set in this paper, we only extracted the time–frequency
domain features from the vibration signal. Currently, there are more methods to
extract features from vibration signals, such as convolutional neural networks, wavelet
packet decomposition, etc. Training sets composed of different types of features may
have an impact on the performance of MeanRadius-SMOTE.
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Abstract: Aiming at the online detection problem of rolling bearings, the limited amount of target
bearing data leads to insufficient model in training and feature representation. It is difficult for the
online detection model to construct an accurate decision boundary. To solve the problem, a multi-scale
robust anomaly detection method based on data enhancement technology is proposed in this paper.
Firstly, the training data are transformed into multiple subspaces through the data enhancement
technology. Then, a prototype clustering method is introduced to enhance the robustness of features
representation under the framework of the robust deep auto-encoding algorithm. Finally, the robust
multi-scale Deep-SVDD hyper sphere model is constructed to achieve online detection of abnormal
state data. Experiments are conducted on the IEEE PHM Challenge 2012 bearing data set and XJTU-
TU data set. The proposed method shows much greater susceptibility to incipient faults, and it has
fewer false alarms. The robust multi-scale Deep-SVDD hyper sphere model significantly improves
the performance of incipient fault detection for rolling bearings.

Keywords: incipient fault detection; robustness; reinforcement learning; anomaly detection

1. Introduction

As a kind of special mechanical parts, rolling bearing has a decisive impact on the
operation and reliability of mechanical equipment [1]. Once damaged, it will cause major
losses to industrial production and personal property. Detecting abnormalities in the early
stages of bearing fault, and performing accurate and reliable detection and diagnosis,
will help to take timely measures for maintenance and avoid major accidents. Incipient
fault detection is a key link in the Prognostics and Health Management (PHM) for rolling
bearings [2].

For signal analysis-based incipient fault detection methods, noise elimination and
noise utilization are conducted at first for vibration signal. Then, time domain, frequency
domain or time-frequency domain analysis are performed to extract and compare fault
characteristics [3–5]. Vibration spectra were conducted in [6] with consideration of a set
of different recurrence indicators to describe the response of the bearing to the optimal
clearance. Acoustic emission and lubricating oil characteristics are also very helpful for
condition monitoring of bearings. Liu et al. [7] based on acoustic emission signal proposed
a modified time-dependent excitation (TDE) model to detect defects of angular contact ball
bearings. Chen et al. [8] made contributions on low-speed rolling bearing fault detection
with subspace embedded feature distribution alignment and Structural Risk Minimization
framework based on acoustic emission signal. Maroua et al. [9] analyzed the performance
of different kinds of rolling bearings under five fully formulated axle gear oils with different
viscosity and different formulations.
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Those methods can extract incipient fault features from the original signal, which work
as the input feature vector of classifier or as the indicator of rolling bearing incipient faults.
However, the de-noise method has the disadvantage of weakening the fault information. In
addition, these time-frequency domain methods cannot adaptively extract features, which
lead to the weak ability of bearings early detection.

In recent years, machine learning-based methods are widely applied in many indus-
tries. In reference [10], an impact time-frequency dictionary was built to extract signal
features with short-time matching method first, and then support vector machine (SVM)
worked as classifier for incipient fault states. The supervised local Fisher discriminant and
K-nearest neighbor method were introduced for weak fault diagnosing in [11], in which
they are working for feature reduction and incipient fault state classification respectively.
Ocak et al. [12] proposed a Hidden Markov Model (HMM) for rolling bearing fault detec-
tion and diagnosis, which can identify and detect early failures by tracking the probability
changes of the pre-trained HMM under normal conditions. These methods usually use
part of the normal state data in the initial stage to establish a single classification model,
or employ existing normal state samples to construct abnormal discrimination criteria.
However, the bearing has certain noise in the normal state, this kind of methods cannot
automatically adapt to the irregular data fluctuations caused by the various noise, which
may cause false alarms.

In the past decade, deep learning has already become an efficient way to detect
and diagnose fault in many fields [13–17]. According to the authors’ literature research,
deep learning is still in its infancy on incipient fault detection. Lu et al. [18] used deep
neural networks (DNN) and long short-term memory (LSTM) to construct an online data
distribution estimator, and used the prediction bias value generated by the estimator to
identify incipient fault location. A two-way Gated Recurrent Unit (GRU) network with local
features is proposed for different types of faults to realize effective identification of incipient
faults [19]. A new framework for rotor-bearing system fault diagnosis under varying
working conditions is proposed in [20], it introduced stochastic pooling and Leaky rectified
linear unit to overcome the training problems in classical CNN. Chen and et al. studied
mixed faults diagnosis from multiple components by combining two 1-D convolutional
neural networks (CNNs) [21]. Mao et al. [22] proposed an on-line detection method based
on self-adaptive deep feature matching for incipient faults of rolling bearings. However,
due to weak incipient fault, the ability of feature representation is poor. At the same
time, due to the constraints of online application scenarios, the amount of available target-
bearing data are limited. These methods have insufficient normal state data information,
thus there are some certain obstacles in accurate decision boundary construction of online
detection models.

Machine learning is used to dig out regular information from training data and learn
pattern recognition knowledge. The parameter number of current deep neural networks
is always very huge. It requires sufficient training data for training in order to obtain
ideal results. In the case of a limited amount data, data enhancement technology can be
used to increase the diversity of training data. Meanwhile, transformation operations can
improve the feature representation ability of training data, therefore the feature information
of training data is more sufficient and the problem of model over fitting can be avoided.
Existing methods of data enhancement include: geometric transformation [23], color space
enhancement [24], kernel filter [25], as well as generative adversarial networks [26] based
on the idea of antagonistic thoughts and neural style transfer [27] and other methods. A
geometric transformation is applied in [28] to solve the data imbalance problem for bearing
fault detection.

To solve these problems, an incipient fault detection method based on multi-scale Deep-
SVDD model with data enhancement is proposed in this research. First, the training data are
transformed into multiple subspaces through data enhancement technology. Second, the
prototype clustering method is introduced to improve the robustness of features under the
framework of regularized dual averaging (RDA) algorithm, and then a robust multi-scale
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Deep-SVDD hyper sphere model is constructed. Finally, the product of the probability that
the transformed sample is located in its respective subspace is calculated as the anomaly
score to achieve early online fault detection. The effectiveness of the proposed method
is verified by experiments on the IEEE PHM Challenge 2012 bearing dataset and XJTU-
SY dataset. The contribution of this paper can be summarized as follows. (1) A robust
multi-scale Deep-SVDD hyper sphere model is proposed for online anomaly detection.
The data information based on data enhancement technology is enriched. By extracting
robust low-rank deep features, this method can enhance the capacity of multi-scale features
representation and has good robustness. (2) An anomaly alarm indicator is built for online
scenarios. This indicator is based on the robust low-rank features extraction, and then
can measure abnormality. Therefore, this indicator is very effectively suitable for online
applications. The details of this work are as follows.

2. Deep Support Vector Data Description

Deep support vector data description (Deep-SVDD) [29] is a representative method of
using deep learning for anomaly detection in recent years. The nonlinear high-dimensional
mapping is replaced by a neural network in this method, which improved the ability in
dealing with high-dimensional and very large data sets. Deep-SVDD can take advantage of
deep learning to deal with high-dimensional representation and processing of massive data.

Deep-SVDD constructs a neural network mapping. The method minimizes the volume
of the hyper sphere containing the data features in the network when solving, and obtains
the high-dimensional space common feature representation of normal data. The objective
function is:

min
W

1
n

n

∑
i=1

‖φ(xi; W)− c‖2
2 +

λ

2

L

∑
l=1

‖wl‖2
F (1)

The objective function consists of two items. The first item is the quadratic loss of the
distance between the penalty sample feature and the center of the hyper sphere, and the
second is the regular item that constrains the network weight to prevent over fitting, where
φ is neural network mapping function, xi, i = 1, 2, . . . , n is the sample data, W is the set of
weight parameters of the network, W =

{
w1, . . . , wL}. c is the center of hyper sphere, L

is the number of layers of the neural network, l = {1, 2, . . . , L}. λ is the hyper parameters
that control the weight decay. Wl is the weight of lth hidden layer.

Optimizing the first item lets the network learn parameters W such that data points
are closely mapped to the center c, and optimizing the second item is to minimize the
volume of the hypersphere.

Center c is fixed in the neighborhood of the initial network outputs, which makes
stochastic gradient descent (SGD) convergence faster and more robust [30].

The abnormal score of the Deep-SVDD algorithm evaluation sample can be calculated
by the following:

s(x) = ‖‖φ(xi; W∗)− c‖‖2 (2)

where W∗ is the network parameter of a trained model.
The larger s(x), the farther the sample is from the center of the hyper sphere, the

higher the degree of abnormality of the sample.

3. The Robust Multi-Scale Deep-SVDD Model of Incipient Fault Detection

In this section, the proposed incipient Fault detection method for bearing is divided
into offline stage and online stage. In the offline stage, employing data enhancement tech-
nology to transform a small number of normal samples into multiple feature spaces, based
on this, the prototype clustering loss and multi-hyper sphere Deep-SVDD center loss are
introduced to train the robust multi-scale Deep-SVDD model, and obtain each transformed
model in the feature space, the distance-based cross entropy is used to determine the
distance score threshold of the normal period data. In the online stage, the test samples to
be detected are subjected to the same transformation enhancement, and then they are put
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into the trained deep model to extract the deep features. The extracted deep features are
used with each prototype center to calculate the distance-based anomaly score, and finally
combined with the threshold value. When the score is less than the threshold, the sample
is regarded as normal, otherwise, it is judged to be abnormal. Each step of the proposed
robust multi-scale deep-SVDD model is elaborated in the following. The detailed flow
chart is shown in Figure 1.

Begin

Offline stage

normal vibration signal

signal enhancement 
with M transforms

Deep SVDD with deep 
features and M 

Prototype centers

Trained multi-scale 
robust Deep SVDD 

model

Online stage

Test sample

signal enhancement 
with M transforms

Determine the score 
threshold of normal 

sample

Calculate the test 
sample score 

comparison

Normal sample Anormal sample

less than 
the threshold

greater than
the threshold

End

pmpar

Figure 1. Flowchart of the Robust Multi-scale Deep-SVDD Model.

3.1. Signal Enhancement

Vibration signal is a special one-dimensional datum and there is no specific neigh-
borhood or order. Thus, traditional geometric transformations such as translation and
rotation cannot be performed. In order to enable the transformation-based method to pro-
cess vibration signal data, we propose a data transformation method for vibration signals.
Specifically, we propose two transformations of vibration signals from the perspective
of graphics.

3.1.1. Horizontal Scaling

First, we crop the length of p%(0 ≤ p ≤ 50) from either end of the original signal. To
ensure the same dimension of the feature space after transformation, we use the resampling
method to sample the cropped signal to the length of the original signal, which is equivalent
to stretching the original signal in the horizontal direction from a graphical point of view. In
addition, for a vibration signal sample, to reduce information loss, we cut the two ends of
the signal to obtain two sets of data of equal length, which are used as the two channels of
the transformed data, for signal samples are displayed in the same feature space at different
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scales. As shown in Figure 2, the original signal length is 1280, the cropping parameter p is
set to 30, and the two channels of the transformed sample are obtained by cropping from
the left and right ends respectively.

(a) 

(b) 

Figure 2. Schematic diagram of the horizontal scaling of the vibration signal with (a) the original
signal and (b) two transformed channel signals.

3.1.2. Vertical Scaling

We set scaling parameters 0 < α < 1, transforming the original signal as follows:

f (xi) =

{
(1 + α)xi, xi < 0
(1 − α)xi, xi ≥ 0

(3)

Vertical scaling does not change the length of the signal and the signal can extend or
shorten in the vertical direction from the graph. This transformation is also the display of
different scales of the signal. Similarly, to ensure the consistency of the feature space after
transformation, the samples after vertical transformation are set to be two channels.

By setting different parameters and different combinations of horizontal and vertical
transformation, we can obtain a variety of transformation methods to process the original
signal. In this paper, the original vibration signal sample space X is transformed to obtain
M subspaces X1, . . . , XM. The transformed sample is represented as T(x, i), . . . , T(x, M).
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3.2. Prototype Clustering

Prototype clustering is a clustering algorithm that uses the prototype to represent
the center of the cluster. The prototype clustering algorithm usually needs to initialize
the prototype cluster center and then employs the idea of iterative solution to find the
cluster prototype.

Learning Vector Quantization (LVQ) [31] is a typical prototype clustering method. The
LVQ algorithm uses prototype vectors to represent clusters. The sample is assumed to be
labeled, and then the label information is working as an aid in the iterative optimization
process to find the optimal prototype vector, which represents the cluster structure. The
high-dimensional clustering space is divided into n clusters, and each prototype vector
represents a cluster. The solution steps of the LVQ algorithm are as follows (Algorithm 1):

Algorithm 1 Learning Vector Quantization

Input:

Sample set M = (x1, y1), (x2, y2), . . . , (xm, ym); Suppose that, q is the number of
prototype vectors, t1, t2, . . . , tq is the initial category of each prototype vector, and
η ∈ (0, 1) is the learning rate.

Ouput: prototype vector v1, v2, . . . , vq
1: Initialize the prototype vector v1, v2, . . . , vq.
2: Loop

3: Select samples (xj, yj) from sample set M randomly.
4: Calculate the distance between xj and vi(1 ≤ i ≤ q): dji = ‖xi − vi‖2
5: Find the prototype vector vi closest to xj, i∗ = argmini∈{1,2,...,q}dji
6: If yi = ti
7: v′ = vi∗ + η

(
xj − vi∗

)
8: Else

9: v′ = vi∗ − η
(

xj − vi∗
)

10: End if

11: Update vi to v′
12: Until the stop criterian is reached

The algorithm finally learns a set of prototype vectors. Moreover, each of them
represents the center of a certain area, which is equivalent to the center point of Voronoi
division in space geometry. This center point is the center point of transformed sample in
the neural network feature space.

3.3. Distance-Based Cross Entropy Loss

The original sample space X undergoes M transformations to obtain the transformed
sample T(x, i), . . . , T(x, M). For each transformed sample T(x, i), calculate the following
conditional probability:

p(T(x, i) ∈ Xi) =
e−‖Eθ(T(x,i))−ci‖2

2

∑M
i=1 e−‖Eθ(T(x,i))−ci‖2

2
(4)

where Eθ is the network for feature extraction, ci is the center of Xi.
The distance-based cross entropy (dce) is expressed as:

lossdce = − log p(T(x, i) ∈ Xi) (5)

Minimizing distance-based cross-entropy loss can map data samples to the class
feature space near the prototype center, and improve the separability between classes.
Compared with the softmax loss in traditional neural networks, it is more robust.
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3.4. Robust Multi-Scale Deep-SVDD

The main idea of the robust multi-scale Deep-SVDD method proposed in this section is
to perform data enhancement on the normal samples in the single-class anomaly detection
and generate multiple transformations to construct SVDD hyper spheres, and use each
transformation in multiple Deep-SVDD hyper spheres. The comprehensive score is used to
measure the degree of sample abnormality.

First, to improve the robustness of feature extraction, we select robust deep auto-
encoding as the main framework, in which the robust deep auto-encoding encoder is
conducted for feature extraction, so as to map the original samples to the low-rank feature
space. Second, the learning vector method is used to find out the prototype centers
c1, . . . , cM of the transformed M samples subspace in the robust deep auto-encoder low-
rank space. On this basis, the Deep-SVDD center loss is added, so that all normal samples
are as close as possible to the center of each prototype, and the intra-class aggregation
degree of each subspace is constrained. The final optimization function is as follows:

min
θ,S

‖LD − Dθ(Eθ(LD))‖2
2 + lossdce + μ‖Eθ(LD)− ci‖2

2 + λ‖S‖2,1

s.t. X − LD − S = 0
(6)

where μ > 0, λ > 0 are regularization coefficient. Increasing the value of μ will make the
normal sample features move closer to the center of each prototype, and vice versa, it will
weaken the effect of the features gathering to the center.

3.5. Calculation of Anomaly Score

After the above steps, the training model can extract features from the input sample
data after specific transformations and obtain the corresponding set of prototype centers
c1, . . . , cM, and then we can measure the degree of abnormality of the test sample. In
the test stage, the test sample x undergoes M transformations to obtain the transformed
sample T(x, i), . . . , T(x, M). Put the transformed samples into a robust deep self-encoding
encoder to extract features, according to Formula (4), the distance between all transformed
samples and the centers of all prototypes is calculated to obtain the probability that they
are located in their respective subspaces. Then the probability of the test normal sample
x is the product of the probabilities that all the transformed samples are located in their
respective subspaces, and the final anomaly score is expressed as:

Score(x) = −
M

∑
i

log P(T(x, i) ∈ Xi) (7)

where the score represents the abnormal score of test sample x. The higher the score, the
more abnormal.

Finally, for the bearing incipient fault detection, we need to determine a threshold for
the abnormal score of a normal sample to determine whether the calculated abnormal score
of the test sample meets the abnormal standard, that is, whether the bearing operating
state is abnormal. In this paper, the maximum value of the training data anomaly score is
directly used as the threshold standard.

4. Experiment

Experiments on the IEEE PHM Challenge and XJTU-SY datasets are performed to
verify the effectiveness of the proposed method. The programming environment is Python
3.6.0, Guido van Rossum, Beijing, China. The computer used in the experiment is config-
ured with i5-8400 processor and 16 G memory.

4.1. Dataset Introduction

IEEE PHM Challenge 2012 dataset is collected from the PRONOSTIA platform (shown
in Figure 3a) [32], which specially designed and implemented by the AS2M department
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of the French FEMTO-ST Institute. It provides the entire life cycle data of rolling bearings
through accelerated life degradation experiments. Bearings are working under three
different working conditions in these experiments, (1) the engine speed is 1800 rpm and
the load is 4000 N, (2) the engine speed is 1650 rpm and the load is 4200 N, (3) the engine
speed is 1500 rpm and the load is 5000 N.

 
(a) 

(b) 

Figure 3. Test platforms of (a) PRONOSTIA [32] and (b) XJTU-SY [33].

The XJTU-SY dataset is provided by the Institute of Design Science and Basic Com-
ponent at Xi’an Jiaotong University (XJTU) [33], China and the Changxing Sumyoung
Technology Co., Ltd. (SY), Zhejiang province, China. The platform is shown in Figure 3b.
Three kinds of experimental working conditions were designed in this experiment, and
five bearings were tested in each working condition. (1) The engine speed is 2100 rpm and
the load is 12 kN. (2) The engine speed is 2250 rpm and the load is 11 kN. (3) The speed is
2400 rpm and the load is 10 kN.
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4.2. Model Parameter Settings

The same data transformation (Horizontal and Vertical scaling) is conducted in the
experiments. The parameter of Horizontal scale p is set to be 16, the value set is {0, 2, 4, 6,
8, 11, 14, 17, 20, 23, 27, 31, 35, 39, 43, 47}. The parameter of vertical scale α is set to be 3,
and the value set is {0, 0.3, 0.7}. There are 48 combinations of these two transformations.
The neural network structure used in the experiment is a deep residual network [34]. In
the multi-scale robust Deep-SVDD, μ = 0.0001, λ = 0.5, γ = 0.002, the training iteration
number is 100, and the size of each training batch is 8.

4.3. Incipient Fault Detection Results

Bearing 1_2 and bearing 1_3 in the IEEE PHM Challenge 2012 dataset, as well as the
bearing 1_1 and the bearing 2_2 in the XJTU-SY dataset, are the target bearings, as shown
in Table 1. The first 100 samples are selected for data transformation to obtain signals of
48 different scales in this experiment, and then the obtained data are put into the multi-scale
robust Deep-SVDD model for training to complete the model training. In the test stage, the
test samples are first subjected to data transformation, and then input into the model to
calculate the abnormal score of each sample. The results of abnormal score and the RMS
value are shown in Figures 4 and 5.

Table 1. Experiment dataset.

Dataset Sample
Number of

Sample
Training Sample Testing Sample

The Real Sample
Point of

Incipient Fault

Number of
Early Fault

Samples

IEEE PHM
Challenge 2012

dataset

Condition 1
Bearing1_2 871 The first 100

samples
The rest 771

samples - 479

Condition 1
Bearing1_3 2375 The first 100

samples
The rest 2275

samples 1348th 1027

XJTU-SY
dataset

Condition 1
Bearing1_1 1476 The first 100

samples
The rest 1376

samples 634th 839

Condition 2
Bearing2_2 1932 The first 100

samples
The rest 1832

samples - 942

Figure 4. Result comparison of abnormal score and the RMS value with (a) PHM1_2 and (b) PHM1_3.
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Figure 5. The comparison results of abnormal score and the RMS value with (a) XJTU1_1 and
(b) XJTU 2_2.

4.4. Comparative Results

To verify the superiority of the proposed algorithm, comparison between five other
widely used methods for incipient fault diagnosis and detection and the proposed method
is made. Among them, bandwidth empirical mode decomposition and adaptive multiscale
morphological analysis (BEMD-AMMA) [35] is a typical method based on weak signal
analysis, local outlier factor (LOF) and isolation forest (iFOREST) are two classic anomaly de-
tection algorithms, meanwhile, Self-Adaptive Deep Feature Matching method (SDFM) [22]
and Sparse Dictionary Representation (SDR) [36] methods are also used for comparison.

The Spectrum of bearing fault at different sample points are shown in Figure 6, where
Figure 6a is for PHM1_3, and Figure 6a is for XJTU1_1. As we can see from both Figure 6a,b,
the fault frequency gradually shows up with time.

We define a deviation rate of incipient fault detection (DA) to evaluate the methods’
performance mentioned above.

DA =
|pd − pr|
pe − pr

× 100% (8)

where is the detected sample point of incipient fault through method, pr is the real sample
point of incipient fault, and pe is the end sample point of bearing in whole life.

The anomaly detection result is shown in Table 2.

Table 2. Comparison of anomaly detection results.

Comparison Methods

PHM1_3 XJTU1_1

The Detected
Sample Point

Deviation Rate
of Incipient

Fault Detection

The Detected
Sample Point

Deviation Rate
of Incipient

Fault Detection

1. BEMD-AMMA 1600 55.79% 1320 57.33%
2. LOF 1236 20.35% 944 12.51%
3. iFOREST 1341 30.57% 1041 24.08%
4. SDFM 1156 12.56% 1137 35.52%
5. SRD 1160 12.95% 1013 20.74%
6. The proposed method 997 2.9% 826 1.55%
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(a) 

(b) 

Figure 6. Spectrum of bearing fault at different sample points (a) PHM1_3 (b) XJTU1_1.

As shown in Table 2, the detection result of proposed method is the best one in the
comparison. It indicates that employing multi-scale signal samples can enhance feature
representation and make incipient fault more sensitive. The robust low-rank deep features
extracted by multi-scale robust Deep-SVDD hyper sphere model have strong anti-noise
ability for signal fluctuations. Thus, the stability and accuracy of detection results are
relatively high.

5. Conclusions

This paper proposes a multi-scale robust incipient fault detection method of rolling
bearing with data enhancement. The data enhancement technology is incorporated into
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the framework of the robust deep auto-encoding network, to improve the anti-noise ability.
It makes the extracted features more robust. Moreover, the constructed robust multi-scale
Deep-SVDD model is with good stability by adopting the multi-scale vibration signal
features. From the experimental results, the proposed method is more sensitive to incipient
faults and has lower false alarm number. The proposed method significantly improves the
performance of incipient fault detection of rolling bearings.
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Abstract: Complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN)
effectively separates the fault vibration signals of rolling bearings and improves the diagnosis of
rolling bearing faults. However, CEEMDAN has high memory requirements and low computational
efficiency. In each iteration of CEEMDAN, fault vibration signals are added with noises, both the
vibration signals added with noises and the added noises are decomposed with classical empirical
mode decomposition (EMD). This paper proposes a rolling bearing fault diagnosis method that
combines piecewise aggregate approximation (PAA) with CEEMDAN. PAA enables CEEMDAN to
decompose long signals and to achieve enhanced diagnosis. In particular, the method first yields the
vibration envelope using bandpass filtering and demodulation, then compresses the envelope using
PAA, and finally decomposes the compressed signal with CEEMDAN. Test data verification results
show that the proposed method is more effective and more efficient than CEEMDAN.

Keywords: rolling bearings; fault diagnosis; piecewise aggregate approximation; CEEMDAN

1. Introduction

Rolling bearings are one of the most widely used components in rotating machinery.
Failure of rolling bearings are one of the most frequent reasons for machine breakdown.
Thus, fault diagnosis of rolling bearings is crucial to ensure the operational efficiency and
reliability of engineering systems [1,2]. When a fault bearing rotates, a localised defect on
the outer or inner race is struck by the rollers, or a localised defect on a roller strikes the inner
and outer races. High-frequency resonances are excited and presented as impact transients.
The periodicity of the successive impact transients is expressed as characteristic fault
frequencies [2]. The vibration of fault bearing is recognised as the modulation between the
components of low fault frequency fF and high natural frequency fn, as shown in Figure 1.
It is the most classic bearing fault diagnosis method to obtain the envelope spectrum
or squared envelope spectrum using bandpass filtering and demodulation [3]. Finding
the optimal frequency band for filtering is critical for the envelope analysis [4]. Some
successful tools, such as fast Kurtogram [5], the improved Kurtogram based on wavelet
packet transform [6], protrugram [7], and Autogram [8], have been developed for finding
the optimal band.
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f

f
Figure 1. Transient response of bearing defects.

Empirical mode decomposition (EMD) is another widely used method for bearing
fault diagnosis. EMD decomposes a signal into a set of intrinsic mode functions (IMFs)
and a residue signal [9]. The IMFs are narrow-band components and indicate the natural
oscillatory mode imbedded in the original signal [10]. As EMD is effective for nonlinear,
non-stationary signals with both Gaussian and non-Gaussian noise, it has been applied
with success in different fields, including bearing fault diagnosis [11], planetary gearbox
fault diagnosis [12], railway structural wavelength identification [13], automatic sleep
scoring [14], etc. However, EMD suffers from endpoint effects and mode mixing. As for
mode mixing, a single IMF consists of signals of widely disparate scales, or a signal of
a similar scale resides in different IMF components [15]. The mode mixing is the major
drawback of the EMD. Ensemble EMD (EEMD) is developed to suppress mode mixing by
adding assisted noises to improve the extrema distribution of the signal [16]. However, the
IMFs generated by EEMD contain residual noise, and different numbers of IMFs can be
generated as different assisted noises are added to the signal to be decomposed. In order
to solve the problem that the IMFs are contaminated by residue noise, complementary
EEMD (CEEMD) is presented via adding noises in pairs with opposite signs to the targeted
signal [17,18]. However, the completeness property is not proven, and different noisy copies
of the signal can produce a different number of modes. How to choose proper parameters
is also a problem for CEEMD. A further improved algorithm named CEEMD with adaptive
noise (CEEMDAN) is proposed to solve the problem of incomplete decomposition by
adding particular noise to the signal, which in turn reduces the residual noise in the
IMFs [19]. CEEMDAN has been applied in the fields of biomedical engineering [20], energy
economics [21], and fault diagnosis [22,23]. In each iterative layer of CEEMDAN, N signals
added with noises, as well as the N assisted noises (N is the number of overall averages),
are decomposed. Thus, CEEMDAN takes up a lot of memory, and is of low computational
efficiency especially for long signal analysing.

A longer signal brings more robust information. For a signal of x(t), its Fourier
transform is:

F(ω) = F [ f (t)] =
t2∫

t1

f (t)e−jωtdt. (1)

It can be seen from Equation (1) that a frequency component reflects the average
energy of the periodic component over the entire test period of t2 − t1. Theoretically, the
longer the signal is, the more times that a component is averaged, and the clearer the
spectrum will be. Figure 2a shows the simulation signal of a bearing with background
noise. The signal length is L = 100 s and the signal noise ratio (SNR) is −18.091 dB. The
fault characteristic frequency is 15 Hz. Signals with a length of 2 s, 10 s, 30 s, and 100 s
are selected for envelope analysis. The corresponding envelope spectra yielded are shown
in Figure 2b–e, respectively. It can be seen that the harmonics of fault frequency, which
cannot be seen in the spectrum of 2 s, can be seen in the spectra of 10 s, 30 s, and 100 s.
Although the harmonics of 10 s, 30 s, and 100 s have nearly equal amplitudes, the harmonics
become increasingly clearer from Figure 2c–e, as the longer the signal length is, the better
the background noise is reduced.
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Figure 2. Fault bearing simulation signal and its envelope spectra: (a) Time domain signal with noise;
(b) envelope spectrum of 2 s signal; (c) envelope spectrum of 10 s signal; (d) envelope spectrum of
30 s signal; (e) envelope spectrum of 100 s signal.

However, longer signals of high sampling frequency also increase the requirement
of computing hardware, which can be a challenge especially for the application cases of
edge computing. Particularly, as the natural frequency fn is as high as thousands (or even
tens of thousands) of Hz, the sampling frequency of bearing vibration, fS, is set to be
tens of thousands of Hz according to the Nyquist sampling theorem. Thus, it is natural to
compress the signal before processing it using algorithms of high complexity. The technique
of compressed sensing achieves data acquisition and compression at the same time. The
measurements that compressed sensing obtains are nonadaptive linear projections of the
original signals. And the original signals can be reconstructed with the measurements
using recovery algorithms [24]. Compressed sensing is originally used for image pro-
cessing in the fields of medical imaging [25–27], radar imaging [28,29], astronomy [30,31],
face recognition [32,33], etc. Compressed sensing is also introduced for machinery fault
diagnosis to obtain sparse representation of original signals and to extract fault features
from the compressed signals [34–36]. The major drawback of compressed sensing for fault
diagnosis is that the compression is not supervised with prior knowledge. Some classical
diagnosis methods, such as envelope analysis and EMD, are not applicable any more for the
compressed signals. In addition, loss of fault information is inevitable when reconstructing
the original signals from the compressed signals.

Piecewise aggregate approximation (PAA) is a far easier method that can be used for
signal compression [37,38]. An improved PAA is proposed to take fluctuating trends into
account as well [39]. PAA first divides the time series into N segments equally and uses
the average of each segment as an approximate representation of that segment. In this
process, the original time series with L samples is compressed into a signal of N samples,
which can be regarded as a process of dimensionality reduction. The equivalent sampling
frequency of the compressed signal is fES = fS × N/L, where fS is the sampling frequency
of the original signal. Thus, there is information loss for components whose frequencies are
larger than fES/2.56.

In order to obtain reliable diagnostic results using long signals, a method combining
PAA and CEEMDAN is proposed. In order to overcome the problem that CEEMDAN
has large memory requirements and low computational efficiency, PAA is introduced to
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compress the signals before decomposing them. Moreover, in order to avoid information
loss caused by signal compression, the traditional envelope analysis method is applied and
PAA is performed on the envelopes instead of the original signals. Validations are carried
out with signals collected from real rolling bearings.

2. Methodology

2.1. Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN)

CEEMDAN is an improved algorithm of EMD and EEMD, which overcomes the
shortcomings of EEMD, as mentioned in Section 1. The flow chart of CEEMDAN is shown
in Figure 3.
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Figure 3. Flow chart of the CEEMDAN algorithm.

Assuming y is the signal to be decomposed, CEEMDAN is performed to decom-
pose the signal y, and the IMF obtained by layer i decomposition is expressed as Ci,
i = 1, 2, · · · , I, where I is the number of layers of decomposition, and the decomposition
steps are as follows:

(1) First layer decomposition, i.e., i = 1.
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1© Adding white noise vj to the signal of y yields a new signal of y + εi=1vj, where
j = 1, 2, . . . , N, N is the number of adding white noise, and εi=1 is the amplitude of
white noise.

2© Decomposing the new signal of y + εi=1vj with EMD yields a series of IMFs, and
the first IMF is presented as Ej

1st,i=1.

3© Ensemble averaging of N IMFs Ej
1st,i=1 yields the ith (i = 1) IMF of CEEMDAN:

Ci=1 =
1
N

N

∑
j=1

Ej
1st,i=1 (2)

4© Removing the first IMF of Ci=1 from y yields the residual of ri=1:

ri=1 = y − Ci=1 (3)

(2) Second layer decomposition, i = 2.

1© Decomposing vj with EMD yields a series of IMFs, the first of which is presented as
E1
(
vj). Adding E1

(
vj) as noise to the residual ri−1 yields a new signal of ri−1 + εiE1

(
vj).

2© Decomposing the new signal ri−1 + εiE1
(
vj) with EMD yields a series of IMFs, the

first of which is presented as Ej
1st,i.

3© Ensemble averaging of N IMFs Ej
1st,i yields the ith IMF of CEEMDAN:

Ci =
1
N

N

∑
j=1

Ej
1st,i (4)

4© Removing the ith IMF of Ci from ri−1 yields the residual of ri:

ri = ri−1 − Ci (5)

(3) The above steps are repeated until the residual signal obtained is a monotone function
and cannot be further decomposed, at which point the algorithm ends. At last, the
signal to be decomposed is presented as:

y =
I

∑
i=1

Ci + rI (6)

in which I is the number of IMFs and rI is last residual signal.

2.2. Piecewise Aggregate Approximation

It can be seen that CEEMDAN has large memory requirements and low computational
efficiency, as in each iteration of CEEMDAN, tens of fault vibration signals added with
assisted noises, as well as the assisted noises, are decomposed with classical EMD. To solve
the problem of low computational efficiency, PAA is introduced to compress the signals
before performing CEEMDAN.

PAA compresses a large amount of time series data while keeping as many original
features of the data as possible. Assuming that the test signal is x = {xi}, the sampling
frequency is fS, and the signal length is L. PAA defines a constant window w, then divides
the sample sequence x into N equal segments, N = �L/w�, and finally calculates the mean
of each segment:

pn =
1
w

nw

∑
i=w(n−1)+1

xi , n = 1, 2, · · · , N (7)
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The new sequence p = (p1, p2, . . . , pN) is the obtained compressed signal. It can be
seen that the equivalent sampling frequency of the compressed signal is fES = fS/w. The
larger w is, the smaller the samples that the compressed signal has obtained.

2.3. Diagnosis Flowchart

Figure 4 shows the flow chart of the proposed method, which consists of five main
steps: optimal band selection for filtering, bandpass filtering and demodulation, PAA,
CEEMDAN, and spectra analysis. The steps are depicted as follows:

CEEMDAN

FFT

Extract fault characteristics from the spectrum of IMFs

Identify the faults of rolling element bearings

End

IMF1 IMF2 IMF3 IMF4 IMFn

Spectrum of 
IMF1 IMF2Spectrum of 

IMF2
Spectrum of 

IMF3
Spectrum of 

IMF4
Spectrum of 

IMFn

Optimal filtering band 
selection

Low frequency envelope 
signal

PAA

The compressed signal

Bandpass filtering and 
demodulation

Raw vibration signal

Start

⋅⋅⋅

⋅⋅⋅

Figure 4. Flow chart of the proposed method.

(1) Optimal filtering band selection.

In order to enhance the modulation signal of low fault frequency and high natural
frequency, finding an optimal resonance band for bandpass filtering is critical. The fast
Kurtogram, which finds the optimal band according to the kurtosis of the filtered time
signal in different filter banks, has been proven to be a practical tool in bearing fault
diagnosis. Thus, the fast Kurtogram is introduced for optimal filtering band selection.

(2) Bandpass filtering and demodulation.

Bandpass filtering enhances the modulation signal of low fault frequency and high
natural frequency, while demodulation obtains the envelope signal y of low fault frequency,
y = |x + iH(x)|, where x is the filtered signal and H(x) is the Hilbert transform of x.
The envelope consists of components of low frequencies, including the harmonics of fault
frequencies. As the fault frequencies are far smaller than the natural frequency, the envelope
can be compressed to obtain a signal whose equivalent sampling frequency is far smaller
than the original sampling frequency.
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(3) Signal compression.

PAA is introduced to compress the envelope yielded in the second step. PAA first
divides the envelope into N segments of equal length w, N = �L/w�, where L is the
length of the envelope. Then, PAA uses the mean pi of each segment as an approximate
representation of the segment. The obtained compressed signal is p = {pi}.

The window size, or the segment length, w, is the only unknown parameter of PAA. In
addition, w can be set according to the requirement for the equivalent sampling frequency
fES of the compressed signal. As for the envelope of the bearing fault signal, the interesting
components are the harmonics of bearing fault characteristic frequencies, which include
the ball pass frequency of outer race fBPFO, the ball pass frequency of inner race fBPFI, the
ball spin frequency fBS, and the cage frequency fC. The maximum of the bearing fault
characteristic frequencies, fmax = ( fBPFO, fBPFI, fBS, fC), is generally fBPFI. According to
the Nyquist sampling theorem, the equivalent sampling frequency of the compressed
signal should satisfy the condition of fES ≥ 2.56Z fmax, in which Z is the max order of fault
frequency harmonics. Therefore, the window size meets the inequality of:

w ≤ fS/(2.56Z fmax). (8)

(4) CEEMDAN.

Following the steps of CEEMDAN described in Section 2.1, the compressed signal is
decomposed, and a series of IMFs is obtained.

(5) Spectrum analysis.

Spectrum analysis is performed on the IMFs obtained to find the interesting IMFs
whose frequency bands cover the fault characteristic frequency. Fault diagnosis of rolling
element bearing is finally achieved according to the spectra of the interesting IMFs.

2.4. Remarks

PAA is simple, but the envelope waveform of impact transients is well retained in
the compressed signal. The reason is that signal compression is supervised with prior
knowledge. Particularly, PAA compresses the envelope instead of the original signal. The
series of impact transients produced successively by a localised defect are recognised as the
modulation between the low-frequency fault components and high-frequency resonances.
Thus, bearing vibration is collected with high sampling frequency, and compressing the
original vibration signal causes the information loss of the high-frequency resonance;
while the diagnostic information in the demodulated envelope is the low-frequency fault
components, and the information will be kept in the compressed signal as long as the
equivalent sampling frequency is larger than 2.56 multiples of interesting frequencies.

3. Experiment Validation

Bearing fault simulation tests are carried out on the test bench, as shown in Figure 5.
The test bench consists of a driving motor, a bearing-supported rotating shaft, an inertia
wheel for providing radial load, a belt drive mechanism, a gearbox, a crank connect-
ing rod mechanism, and a reciprocating mechanism. The bearing seeded with defect is
mounted in the bearing housing closer to the motor. The seeded defect is a localised
crack with both a width and depth of 0.2 mm. The bearing is a deep groove ball contact
bearing, the model is MB-ER-10K. The fault characteristic frequencies are fBPFO = 3.052 fr,
fBPFI = 4.948 fr, fBS = 1.992 fr, and fC = 0.382 fr, where fr is the shaft frequency. Vibration
signals were collected using accelerometers of the PCB Model 608A11, whose bandwidth is
of 0.5 Hz~9 kHz. The sampling frequency was set as fS = 25.6 kHz.
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Figure 5. Machinery fault simulation bench.

The maximum of the bearing fault characteristic frequencies is fmax = fBPFI. Assum-
ing that Z = 5 orders of fault frequency harmonics are supposed to be retained in the
compressed signals, it yields the condition of the window length, w ≤ 404.20/ fr, according
to Equation (8).

3.1. Validation for Outer Race Defect Case

The vibration signal of a bearing with an outer race defect is shown in Figure 6a. The
signal length is L = 19 s, the shaft speed is fr = 14.1184 Hz, and the corresponding fault
frequency is fBPFO = 43.0894 Hz. The proposed method combining CEEMDAN and PAA
was used to analyse the signal. Firstly, analysing the signal with fast Kurtogram yields the
diagram, as shown in Figure 7. It can be seen that the center frequency of the optimal band
is 10,667 Hz, the bandwidth is 4267 Hz, and the corresponding optimal filtering band is
8533.5~12,800.5 Hz. The filtered signal for the optimal filtering band is shown in Figure 6b.
The envelope of the filtered signal is shown in Figure 6c.

Figure 6. Case 1 for outer race defect: (a) Original signal; (b) filtered signal; (c) envelope;
(d) compressed signal; (e) partial enlarged envelope; (f) partial enlarged compressed signal.
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Figure 7. Case 1 for outer race defect: Kurtogram results of the vibration signal.

Performing PAA to compress the envelope yields the result shown in Figure 6d. The
window length is set to be w = 20 as w ≤ 404.20/ fr and fr = 14.1184 Hz. The equivalent
sampling frequency of the compressed signal is fES = 1.28 kHz. Partial enlarging the
envelope of Figure 6c yields Figure 6e, and partial enlarging the compressed signal of
Figure 6d yields Figure 6f. Comparing Figures 6d and 6c, and Figures 6f and 6e, it can be
seen that although the compressed signal has smaller amplitudes than the envelope does,
they share the same waveform of impulses.

Decomposing the compressed signal with CEEMDAN yields 16 IMFs. The spectra
of the IMF 2~IMF 7 are shown in Figure 8, from which the component of fBPFO and its
high order harmonics can be seen clearly. Particularly, the spectrum band of IMF 6 is
concentrated around fBPFO, IMF 5 is around fBPFO and 2 fBPFO, IMF 4 is around 2 fBPFO
and 3 fBPFO, and IMF 3 is around 3 fBPFO and 4 fBPFO. These peaks of the fault frequency
harmonics illustrate the tested bearing with outer race defects.

f

Figure 8. Case 1 for outer race defect: Amplitude spectra of IMFs obtained from compressed signal.
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The time length of the signal is L = 19 s, and the original signal is of fS × L = 486, 400 samples.
CEEMDAN was used to decompose the original signal directly, and the algorithm was
still running after 24 h of operation (the computer processor is I5 2.5 g dual-core, and the
operating memory is 8G). The compressed signal is of fES × L = 24, 320 samples, which
equals the original signal of 0.95 s. Performing CEEMDAN to decompose the compressed
signal 10 times, the mean operation time is 359.2 s.

For a segment of the original signal, which is of 0.95 s, it consists of the same
24,320 samples as the compressed signal does. Performing CEEMDAN to decompose
the signal segment also yields 14 IMFs. The spectra of IMF 7~IMF 12 are shown in Figure 9.
It can be seen that the spectrum band of IMF 10 is concentrated around fBPFO, IMF 9 is
around 2 fBPFO, and IMF 8 is around 3 fBPFO and 4 fBPFO. However, none of these harmonics
can be seen from these spectra. The reason is that the signal segment to be decomposed is
too short, and the times that these harmonics are averaged during FFT are not enough to
reduce background noises.

Figure 9. Case 1 for outer race defect: Amplitude spectra of IMFs obtained from an original signal
segment that has the same samples as the compressed signal.

Comparing Figures 8 and 9, it can be seen that PAA enables CEEMDAN to decompose
long signals and to yield enhanced diagnostic results.

3.2. Validation for Inner Race Defect Case

The vibration signal of a bearing with an inner race defect is shown in Figure 10a. The
signal length is L = 19 s, the shaft speed is fr = 19.7 Hz, and the characteristic frequency of
the inner race fault is fBPFI = 97.48 Hz. Analysing the signal with fast Kurtogram yields
the result shown in Figure 11. The diagram is different from the one in Figure 7. The same
band is selected, with a center frequency of 10,667 Hz, and a bandwidth of 4267 Hz.
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Figure 10. Case 2 for inner race defect: (a) Original signal; (b) filtered signal; (c) envelope;
(d) compressed signal; (e) partial enlarged envelope; (f) partial enlarged compressed signal.

Figure 11. Case 2 for inner race defect: Kurtogram results of the vibration signal.

Figure 10b shows the filtered signal for the filtering band, Figure 10c shows the
envelope of the filtered signal, and Figure 10d shows the compressed signal of the envelope
obtained with PAA. The window length of PAA is also set to be w = 20, which satisfies
w ≤ 404.20/ fr. The equivalent sampling frequency of the compressed signal is also
fES = 1.28 kHz. Figure 10e,f shows the partial enlarged envelope and the partial enlarged
compressed signal, respectively. It can be seen that the compressed signal keeps the
waveform of low frequency components in the envelope.

Decomposing the compressed signal yields 16 IMFs. The spectra of IMF 3~IMF 6
are shown in Figure 12. It can be seen that the spectrum band of IMF 4 is concentrated
around the inner race fault frequency fBPFI. The harmonic of fBPFI and its sidebands of
fBPFI ± fr, and fBPFI + 2 fr are clearly presented in the spectrum of IMF 4. The reason for
the modulation frequency of fr is that the inner race defect passes the bearing load zone
once every rotation of the shaft, and the transient amplitudes change periodically.
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Figure 12. Case 2 for inner race defect: Amplitude spectra of IMFs obtained from the compressed signal.

The spectrum of IMF 5 is concentrated around the frequency of fBPFI − fr, and clearly
shows the harmonics of fBPFI, fBPFI ± fr, and fBPFI − 2 fr. The spectrum of IMF 3 is concen-
trated around the band of [ fBPFI, 2 fBPFI]. The harmonic of the fault frequency fBPFI and its
sidebands of fBPFI + fr and fBPFI + 2 fr, as well as the second order fault frequency of 2 fBPFI
and its sidebands of 2 fBPFI − 3 fr and 2 fBPFI − 2 fr, can be clearly seen from the spectrum.
The sideband of 2 fBPFI − 3 fr can also be seen in the spectrum of IMF 4.

It is worth noting that the characteristic frequency of fBPFI = 4.948 fr is very close to the
5th order harmonic of shaft frequency 5 fr. Thus, the fault frequency harmonics and their
sidebands are very close to the high order shaft frequencies. In any case, the components of
fBPFI, 2 fBPFI, and their sidebands illustrate that the tested bearing has inner race defects.

4. Conclusions

In this paper, a rolling bearing fault diagnosis method that combines PAA and CEEM-
DAN is proposed. The method firstly extracts the envelope signal from an original signal
using bandpass filtering and demodulation, then compresses the envelope with PAA,
decomposes the compressed signal with CEEMDAN, and finally investigates the spec-
tra of IMFs. Validation results with real bearings show that the proposed method is
effective and efficient.

The interesting components in the original signal for fault diagnosis are the modu-
lation between the fault frequencies and the resonance natural frequencies. The natural
frequencies are as high as thousands of Hz, or even tens of thousands of Hz, while the
interesting components in the envelope are the fault frequency harmonics demodulated
from the original signal. As the fault frequencies are far lower than the natural frequencies,
compressing the envelope instead of the original signal avoids information loss.

The spectra of IMFs reflect the average energy over the entire test period. The longer
the signal is, the more times the spectra are averaged during FFT, and the better the back-
ground noise is reduced. However, in each iteration of CEEMDAN, an IMF is yielded
by decomposing tens of signals added with assisted noises, as well as the assisted noises
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themselves. Thus, CEEMDAN has large memory requirements and low computational effi-
ciency for long signals. Compressing the envelope with PAA enables the use of CEEMDAN
for long signals to achieve enhanced diagnosis.
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Abstract: This paper proposes a Takagi–Sugeno (TS) fuzzy sliding mode observer (SMO) for simulta-
neous actuator and sensor fault reconstruction in a class of nonlinear systems subjected to unknown
disturbances. First, the nonlinear system is represented by a TS fuzzy model with immeasurable
premise variables. By filtering the output of the TS fuzzy model, an augmented system whose actuator
fault is a combination of the original actuator and sensor faults is constructed. An H∞ performance
criteria is considered to minimize the effect of the disturbance on the state estimations. Then, by
using two further transformation matrices, a non-quadratic Lyapunov function (NQLF), and fmincon
in MATLAB as a nonlinear optimization tool, the gains of the SMO are designed through the stability
analysis of the observer. The main advantages of the proposed approach in comparison to the existing
methods are using nonlinear optimization tools instead of linear matrix inequalities (LMIs), utilizing
NQLF instead of simple quadratic Lyapunov functions (QLF), choosing SMO as the observer, which
is robust to the uncertainties, and assuming that the premise variables are immeasurable. Finally,
a practical continuous stirred tank reactor (CSTR) is considered as a nonlinear dynamic, and the
numerical simulation results illustrate the superiority of the proposed approach compared to the
existing methods.

Keywords: actuator and sensor faults; TS fuzzy system; sliding mode observer (SMO); H∞ perfor-
mance; non-quadratic Lyapunov function (NQLF); fmincon; fault reconstruction

1. Introduction

Over the past few decades, the reliability and safety of industrial systems has attracted
considerable attention. As a consequence, fault-tolerant control (FTC) has received con-
siderable attention in different fields [1,2]. There are different classifications for FTCs. In
general, FTCs are classified into passive and active classifications. Active fault-tolerant
controllers compensate for the effects of the occurred faults by using early information
obtained from fault detection and isolation (FDI) schemes, which leads to a more flexible
dynamic [3]. Consequently, FDI is becoming an attractive topic in different research fields.
Observer-based methods are one of the most popular model-based FDIs. The main idea of
observer-based FDIs is to construct a residual based on the measured output of the systems
or to reconstruct the fault directly. Sliding mode observer (SMO) works based on the second
approach, which detects the faults while determining the dynamic behavior [4,5]. SMOs
are more insensitive to the unknown uncertainties occurring in the system compared to
other observers like unknown input observers (UIOs) [6].

First, SMO observers were developed for linear dynamic systems; however, most ac-
tual physical systems are often nonlinear. Currently, lots of SMO-based fault reconstruction
methods have been developed for uncertain nonlinear systems. In ref. [7], by considering a
filter of the measured output vector, the original system with sensor and actuator faults is
transformed into an augmented system with just the actuator fault and unknown inputs.
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Nevertheless, the classes of nonlinear systems considered in most of the papers are limited
and cannot represent a general model for real systems [8,9].

Takagi–Sugeno (TS) fuzzy models can represent the behavior of nonlinear systems
while keeping the simplicity of the linear models. A TS fuzzy representation is a convex
nonlinear aggregation of several linear systems. Because the parameters of a TS fuzzy
representation satisfy the convex sum, it is interesting to investigate the properties of
the TS system based on its local linear vertices. With the advent of TS fuzzy systems,
TS-based FDI techniques emerged to tackle a broader range of nonlinear systems [10].
By changing a nonlinear system to a TS system, some local linear systems are created,
representing the behavior of the nonlinear system in a specific operating area. These local
linear systems can be aggregated by using an interpolation mechanism. Thus, TS fuzzy
models can represent the actual nonlinear behavior while maintaining the simplicity of
linear models. Thus, an efficient FDI can be obtained by combining the SMO, which is
robust to the uncertainties, and the TS fuzzy model, which causes simplicity in the design
process. Recently, several researchers have utilized TS-based SMOs for fault detection and
isolation in continuous-time and discrete-time systems [11,12]. However, in the methods
developed in these articles, it is assumed that the premise variables are measurable, which
reduces the applicability of these approaches. To deal with this problem, an FDI approach
for stability analysis of the TS fuzzy systems with immeasurable premise variables was
proposed in [13,14].

In [15], simultaneous actuator and sensor faults in a nonlinear system represented by
a TS fuzzy model are reconstructed by using an SMO and considering H∞ performance
criteria to reduce the effect of disturbance, whereas [16] does the same procedure for the
fault reconstructions and both of the exogenous disturbance and the system faults are
reconstructed. However, in refs. [15,16] quadratic Lyapunov functions (QLFs) are used to
design the observers. By using the QLF for TS fuzzy systems with a large number of fuzzy
rules can cause undesired performance or unfeasible solutions. Consequently, refs. [17,18]
offered to use a non-quadratic Lyapunov function (NQLF) to design the TS-based SMO for
the FDI purposes. In all these papers, a linear optimization approach based on linear matrix
inequalities (LMIs) is utilized, making the stability analysis more complex and using some
approximations and lemmas to prove the stability conditions.

In this paper, a TS fuzzy-based SMO with immeasurable premise variables is designed
to reconstruct simultaneous actuator and sensor faults in a nonlinear system exposed
to an unknown disturbance. Then, the states and faults are estimated. The stability of
the proposed observer is guaranteed by using the NQLF and fmincon as a nonlinear
optimization tool in MATLAB. In addition, H∞ performance criteria are considered to
minimize the effect of disturbances and uncertainties on the estimation error and the fault
estimations. By using the NQLF, a generalized eigenvalue problem is proposed, which
maximizes the admissible Lipschitz constant and minimizes the disturbance effects on the
estimation error through a nonlinear optimization problem.

The main advantages of the proposed approach over the existing methods can be
summarized as follows:

• Using nonlinear optimization tools instead of LMIs, which results in better accuracy.
• Utilizing NQLF, which leads to less conservative optimization conditions than simple

quadratic Lyapunov functions.
• Assuming that the premise variables are immeasurable, which makes the proposed

method applicable to a broader class of TS fuzzy systems.

This paper is organized as follows. Section 2 presents a TS fuzzy model with simulta-
neous actuator and sensor faults and disturbance and how to construct a fictitious system
with just an actuator fault. In Section 3, the main results of this paper, including the sliding
mode observer design and the sufficient conditions of stability of the estimation errors,
are proposed and guarantee the H∞ performance simultaneously. Section 4 discusses the
procedure of the actuator and sensor fault reconstructions. In Section 5, simulation results
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are given, and comparisons are discussed. Finally, in Section 6, the concluding remarks
are given.

2. Preliminaries

Assume that a continuous-time nonlinear system affected by actuator and sensor faults
and disturbance is given as{ .

x(t) = f (x(t), u(t), fa(t), d(x(t), u(t), t))
y(t) = Cx(t) + N fs (t)

, (1)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp, fa(t) ∈ Rq, fs(t) ∈ Rh and d(x(t), u(t), t) ∈ Rl are
the state, input, output, unknown actuator, and sensor faults, and the system uncertainty
vectors, respectively. f and g are nonlinear smooth functions. By using sector nonlinearity
transformation, the nonlinear model (1) can be replaced by the following TS fuzzy model⎧⎪⎨⎪⎩

.
x(t) = ∑r

i=1 μi(ξ(t))
{

Aix(t) + Biu(t) + Mi fa(t)
+Did(x(t), u(t), t)

}
y(t) = Cx(t) + N fs(t)

, (2)

where C and N are known full rank matrices with appropriate dimensions. Ai, Bi, Mi,
and Di are real known matrices, r represents the number of fuzzy rules and μi(ξ(t)) are
the fuzzy membership functions depending on the unmeasurable variable vector ξ(t) and
satisfy the following so-called convex sum property{

0 ≤ μi(ξ(t)) ≤ 1

∑r
i=1 μi(ξ(t)) = 1

. (3)

In the rest of the paper, (t) is dropped from the equations, d, μi and μ̂i denote
d(x, u, t), μi(ξ(t)), and μi

(
ξ̂(t)

)
and the mark (∗) denotes the transposed element in a

symmetric matrix.
To build a system with just an actuator fault and then use the actuator fault recon-

struction concepts, the output is passed through an orthogonal matrix Tr ∈ Rp×p and an
augmented TS system of order n + h can be obtained as{ .

X = ∑r
i=1 μi{AiX + Biu +Did +Mi fa +N fs}

Y = CX
, (4)

where X =
[
xT zT]T ∈ Rn+h, Y =

[
yT

1 zT]T ∈ Rp, and

Ai =

[
Ai 0

A f C2 −A f

]
,Bi =

[
Bi
0

]
,Di =

[
Di
0

]
, Mi =

[
Mi
0

]
,N =

[
0

A f N2

]
, C =[

C1 0
0 Ih

]
.

(5)

−A f ∈ Rh×h is an arbitrary stable matrix, z ∈ Rh and N2 ∈ Rh×h. Tr can be obtained
by QR reduction of the matrix N.

By defining

φ := ∑r
i=1(μi − μ̂i){AiX ++Biu +Did +Mi fa +N fs}, (6)

where x̂ is the estimation of the x, the TS system (4) can be derived as{ .
X = ∑r

i=1 μ̂i{AiX + Biu +Did +Mi fa +N fs + φ}
Y = CX

. (7)
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Moreover, the nonlinear term φ is assumed to satisfy the Lipschitz condition as

‖ φ ‖≤ γ ‖ x − x̂ ‖ . ∀x, x̂ ∈ Rn. (8)

To design a sliding mode observer, some assumptions and lemmas are needed as
follows.

Assumption 1.

rank(C[Mi N ]) = q + h (9)

Assumption 2.

n > p ≥ q + h (10)

Assumption 3.

rank
[

sIn+h−Ai Mi N
C 0 0

]
= n + 2h + q (11)

for all s satisfyingRe(s) ≥ 0 holds.

Lemma 1.

(a) If Assumptions 1 and 2 are satisfied, then there exist changes of coordinates Ti such that

Ai =

⎡⎣ A11.i A12.i[A211.i
A212.i

]
A22.i

⎤⎦, Mi =

[
0

M2.i

]
, N =

[
0
N2

]
, Di =

[D1.i
D2.i

]
, C = [0 T0], (12)

where A11.i ∈ R(n+h−p)×(n+h−p) , A211.i ∈ R(p−q−h)×(n+h−p) , D2.i ∈ Rp×l , and
T0 ∈ Rp×p is an orthogonal matrix. Matrices M2.i ∈ Rp×q,N2 ∈ Rp×h can have the
following structure:

M2.i =

[
0

M0.i

]
, N2 =

[
0
N0

]
. (13)

WithM0.i ∈ R(q+h)×q,N0 ∈ R(q+h)×hare nonsingular.
(b) The pairs (A11.i,A21.i) are detectable if and only if the invariant zeros of {Ai, [Mi N ], C} lie

in C− and it happens if and only if Assumption 3 is satisfied.

Assumption 4. The unknown vectors fa and fs and the derivatives of the μi for i ∈ {1. . . . .r} are
assumed to be norm bounded by some known constants. Therefore,

‖ fa ‖≤ ρa; ‖ fs ‖≤ ρs; ‖ .
μi ‖≤ ρmi. (14)

Lemma 2. Ref. [19] parameterized linear matrix inequality (PLMI) ∑r
i=1 ∑r

j=1 μiμjQij < 0 is
fulfilled if the following conditions hold:{

Rii < 0 f or i = 1, . . . , r
2

r−1 Rii + Rij + Rji < 0 f or i �= j = 1, . . . , r
. (15)

3. TS Fuzzy-Based Sliding Mode Observer Design

The proposed TS sliding mode observer for the nonlinear system (2) in the new
coordinate (10) is as follows:{ .

X̂ = ∑r
i=1 μ̂i

{Ai X̂ + Biu + Gl.ieY + Gn.iva.i + Gn.ivs
}

Ŷ = CX̂
(16)
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where Gn.i and Gl.i are design matrices of the observer that will be derived through
Theorem 1. eY := Y − Ŷ represents the output error estimation, νa.i and νs are the equiva-
lent output error injections that are used to compensate the errors due to the actuator fault
and sensor fault, respectively, and have the following structure:

νa,i =

{
ηa,i

‖eY‖
eY

eY �= 0
0 otherwise

νs =

{
ηs

‖eY‖
eY

eY �= 0
0 otherwise

,

(17)

where ηa.i and ηs are two positive scalars such that

ηa.i ≥ ρa ‖ T0M2.i ‖ max
j

(
‖P2.j‖

λmin(P2.j)
) + wa.i

ηs ≥ ρs ‖ T0N2 ‖ max
j

(
P2.j

λmin(P2.j)
) + ws

∀i, j ∈ {1. . . . .r}. (18)

wa.i and ws are two arbitrary positive constants.
The observer (16) guarantees that the state estimation error converges to a pre-designed

sliding surface in finite time and then, asymptotically to zero. Define state estimation error
as e := X − X̂. By subtracting the observer dynamics from the system dynamic (7) in the
new coordinate (12), the state estimation error dynamic can be given as

.
e = ∑r

i=1 μ̂i

{
(Ai − Gl.i C)e +Mi fa − Gn.iνa.i

+N fs − Gn.iνs +Did + φ

}
. (19)

By partitioning φ as φ =
[
φT

1 φT
2
]T and applying a further change of coordinates

TL.i =

[
In+h−p Li

0 T0

]
, Li =

[
Li 0

] ∈ R(n+h−p)×p
(20)

where Li ∈ R(n+h−p)×(p−q−h) is a stabilizing gain matrix, it is straightforward to see that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ãi =

[
A11.i + LiA21.i Ã12.i

T0A21.i Ã22.i

]

M̃i =

[
0

T0M2.i

]
Ñ =

[
0

T0N2

]
D̃i =

[D1.i + LiD2.i
T0D2.i

]
C̃ =

[
0 IP

]
G̃n,i =

[
0
Ip

]
G̃l,i =

[
Ã12,i

Ã22.i −As.i

]

φ̃ =

[
TL.iφ1
TL.iφ2

]

, (21)
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where As.i are arbitrary stable design matrices. Through the new coordinate, the error
dynamic (19) can be re-written as

.
ẽ =

[ .
e1.
eY

]
=

r
∑

i=1
μ̂i

{
Ãt. i ẽ + TL.iφ + M̃i fa−

G̃n.iνa.i + Ñ fs − G̃n.iνs + D̃id

}
(22)

where

Ãt, i =

[A11.i + LiA21.i 0
T0A21.i As.i

]
. (23)

The goal is to design the matrices Li such that the asymptotic stability of (22) is assured
while the following specified H∞ performance is guaranteed:

‖ ẽ2 ‖≤ ϑ2 ‖ d2 ‖. (24)

The following theorem provides sufficient conditions to ensure asymptotic stability of
the state estimation error (22) with maximized admissible Lipschitz constant γ in (8) and
minimized H∞ performance gain ϑ in (24).

Theorem 1. If there exist feasible solutions for the following optimization problem with a fixed
scalar 0 ≤ λ ≤ 1

min[λ(σ + ε) + (1 − λ)θ]

Subject

eig(Rii) < 0 f or i = 1, . . . , r

eig
( 2

r−1 Rii + Rij + Rji
)

f or i �= j = 1, . . . , r

−eig(P1.i) < 0 f or i = i = 1, . . . , r

−eig(P2.i) < 0 f or i = i = 1, . . . , r

−ε < 0
−σ < 0
−θ < 0

(25)

where

Rij =

⎡⎢⎣ Φ1,ij (P2,jT0A21,i)
T Φ3,ij

P2,jT0A21,i Φ2,ij P2,jT0D2,i

Φ3,ij
T (P2,jT0D2,i)

T −βIl

⎤⎥⎦
Φ1.ij = (A11.i + LiA21.i)

T P1j + P1j(A11.i + LiA21i) + ε−1P1.jP1.jr

+
(

σ−1 + 1
)

In+h−p +
r

∑
k=1

qmkP1.k

Φ2ij = AT
s.iP2.j + P2.jAs.i + ε−1P2.jP2.j +

(
σ−1 + 1

)
Ip +

r
∑

k=1
qmkP2.k

Φ3.ij = P1.jD1.i + P1.jLiD2.i

(26)

and eig represents eigenvalues of a matrix, then, the estimation error (22) is asymptotically stable
with the maximized admissible Lipschitz constant γ∗ = max(γ) = 1

‖TL‖‖TL−1‖√εσ
and the

derived Li matrices can be used for the purpose of simultaneous fault reconstruction.

Proof. The proof of this theorem is done by using a positive NQLF as follows

V = ẽT
(

∑r
j=1 μ̂jPj

)
ẽ, (27)
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where Pj = diag
(

P1j, P2j
)

with P1j ∈ R(n+h−p)×(n+h−p) and P2j ∈ Rp×p are symmetric
positive definite matrices. The time derivative of the candidate Lyapunov function along
the trajectory (22) is given by

.
V = ∑r

i=1 ∑r
j=1 μ̂iμ̂j{ẽT(At.i

T Pj + PjAt.i + ∑r
k=1

.
μ̂kPk)ẽ + 2ẽT Pj(TL.iφ + M̃i fa−

G̃n.iνa.i + Ñ fs − G̃n.iνs + D̃id)}.
(28)

From (14), (17), (18) and (21), one has:

ẽT Pj

(
M̃i fa − G̃n.iνa.i

)
= eY

T P2.jT0M2.i fa − ηa.i
eY

T P2.jeY
‖eY‖

≤‖ eY
T P2.jT0M2.i fa ‖ −ηa.i

eY
T P2.jeY
‖eY‖

≤‖ eY
T P2.jT0M2.i fa ‖ −ηa.iλmin

(
P2.j

) ‖ eY ‖
≤‖ eY ‖ (ρa ‖ P2.j ‖‖ T0M2.i ‖ −ηa.iλmin

(
P2.j

))
≤ −wa.iλmin

(
P2.j

) ‖ eY ‖≤ 0

ẽT Pj

(
Ñ fs − G̃n.iνs

)
= eY

T P2.jT0N2 fs − ηs
eY

T P2.jeY
‖eY‖

≤‖ eY
T P2.jT0N2 fs ‖ −ηs

eY
T P2.jeY
‖eY‖

≤‖ eY
T P2.jT0N2 fs ‖ −ηsλmin

(
P2.j

) ‖ eY ‖
≤‖ eY ‖ (ρs ‖ P2.j ‖‖ T0N2 ‖ −ηsλmin

(
P2.j

))
≤ −wsλmin

(
P2.j

) ‖ eY ‖≤ 0.

(29)

From (14), one has

∑r
k=1

.
μ̂kPk ≤ ∑r

k=1 ρmiPk. (30)

By considering the fact that 2PTQ ≤ 1
εP

TP+ εQTQ with ε > 0 and using (8), one
obtains

2ẽT PjTLφ ≤ 1
ε

ẽT PjPjẽ + εφTTL
TTLφ ≤ 1

ε
ẽT PjPjẽ + εα2‖ ẽ ‖2, (31)

where α :=‖ TL ‖‖ TL
−1 ‖ γ. By Substituting (29)–(31) into (28), one has

.
V ≤ ∑r

i=1 ∑r
j=1 μ̂iμ̂j

{
ẽT
(
At.i

T Pj + PjAt.i +
1
ε PjPj + εα2 In+h +

r
∑

k=1
ρmkPk

)
ẽ+

2ẽT PjD̃id
}

.
(32)

By defining parameter σ :=
(
εα2)−1 and the cost function as J :=

.
V(ẽ) + ẽT ẽ − ϑ2dTd,

one has

J ≤ ∑r
i=1 ∑r

j=1 μ̂iμ̂j{ẽT(At.i
T Pj + PjAt.i + ε−1PjPj + σ−1 In+h + In+h+

∑r
k=1 ρmkPk)ẽ + 2ẽT PjD̃id − βdTd},

(33)

where β := ϑ2. By placing (23)in (33) and considering the diagonal structure of Pj, the
inequality (33) is continued as

J ≤ ∑r
i=1 ∑r

j=1 μ̂iμ̂j

⎡⎣e1
eY
ξ

⎤⎦T

Λ

⎡⎣e1
ey
ξ

⎤⎦ < 0, (34)

153



Sensors 2022, 22, 6866

where

Λ =

⎡⎢⎣ Φ1,ij (P2,jT0A21,i)
T Φ3,ij

P2,jT0A21,i Φ2,ij P2,jT0D2,i

Φ3,ij
T (P2,jT0D2,i)

T −βIl

⎤⎥⎦
Φ1.ij = (A11.i + LiA21.i)

T P1.j + P1j(A11.i + LiA21.i) + ε−1P1.jP1j+(
σ−1 + 1

)
In+h−p +

r

∑
k=1

qmkP1.k

Φ2.ij = AT
s.iP2.j + P2.jAs.i + ε−1P2.jP2.j +

(
σ−1 + 1

)
Ip +

r
∑

k=1
qmkP2..k

Φ3.ij = P1.jD1.i + P1.jLiD2.i.

(35)

Based on the Congruence [20], the inequality (35) is satisfied by

∑r
i=1 ∑r

j=1 μ̂iμ̂j

⎡⎢⎣ Φ1,ij (P2,jT0A21,i)
T Φ3,ij

P2,jT0A21,i Φ2,ij P2,jT0D2,i

Φ3,ij
T (P2,jT0D2,i)

T −βIl

⎤⎥⎦ < 0. (36)

By utilizing Lemma 2, the summations and the fuzzy membership functions will be
omitted from inequalities (36). Finally, the results are going to be used for fmincon function
which is a nonlinear optimization tool in MATLAB software and finds the minimum of a
problem specified by

minx f (x)

subject to

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
c(x) ≤ 0
ceq(x) ≤ 0
A · x ≤ b
Aeq · x = beq
lb ≤ x ≤ ub

.
(37)

The matrix inequalities (36) should be changed to some one-dimensional inequalities,
and the optimization problem can be defined as (25) and (26). In addition, from the α and σ
found by the optimization problem, the maximum admissible Lipschitz constant and the
minimum can be calculated as

γ∗ = 1
‖ TL ‖‖ TL−1 ‖ √

σε
. (38)

�

4. Simultaneous Fault Reconstruction

In Section 3, an H∞ sliding mode observer is designed in which two discontinuous
terms (19) are considered to reconstruct simultaneous faults in the presence of an unknown
disturbance based on the measured signals u and y. Along the sliding surface eY =

.
eY = 0.

Consequently, (22) on the sliding surface changes to

∑r
i=1 μ̂i

{
T0A21.ie1 + T0φ2 + T0M2i fa−

νeqa.i + T0N2 fs − νeqs + T0D2id

}
= 0, (39)

where νeqa,i and νeqs are approximations of the equivalent output error injection terms (17)
required to maintain the sliding motion and can be defined as

νeqa.i = ηa.i
eY

‖ eY ‖ +δa
; νeqs = ηs

eY
‖ eY ‖ +δs

, (40)

where δ f and δd are small positive constants. Consequently, (40) leads to

0 = ∑r
i=1 μ̂i

{ A21.ie1 + φ2 +M2.i fa
−T0

−1νeqa.i +N2 fs − T0
−1νeqs +D2.id

}
. (41)
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On the other hand, using (8) and (24) can show that the term A21.ie1 + φ2 +D2.id is
bounded as

‖ A21.ie1 + φ2 +D2.id ‖
≤ (‖ A21.i ‖ +γ ‖ TL

−1 ‖) ‖ e1 ‖ + ‖ D2.i ‖‖ d ‖
≤ (‖ A21.i ‖ +γ ‖ TL

−1 ‖) ‖ ẽ ‖ + ‖ D2.i ‖‖ d ‖
≤ ε ‖ d ‖,

(42)

where ε = μ
(‖ A21,i ‖ +γ ‖ TL

−1 ‖)+ ‖ D2,i ‖. Therefore, for small values of ε ‖ d ‖, the
actuator and sensor faults can be estimated as

f̂a = (
r

∑
k=1

μ̂i{M2.i})
†

T0
−1

r

∑
k=1

μ̂i

{
ηa.i

eY
‖ eY ‖ +δa

}
(43)

f̂s = N †
2 T0

−1ηs
eY

‖ eY ‖ +δs
, (44)

where † shows the pseudo-inverse of a matrix.

Remark 1. The numerical solution of Theorem 1 can be summarized as follows:

• Find the orthogonal transfer matrix Tr ∈ Rp×p by using the QR reduction of matrix N and
obtain the augmented TS system (4).

• Find the changes of coordinates Ti and obtain the system matrices in the format(12) and(13).
• Compute the scalars σ, ε, and θ and also the matrices Li using the fmincon function in

MATLAB software and solving the nonlinear optimization problem(25).
• Compute the maximized admissible Lipschitz constant as γ∗ = max(γ) = 1

TLTL−1√εσ
.

• Reconstruct the sensor and actuator faults using Equations(43) and(44).

5. Numerical Example

In this section, a three-state variable continuous stirred tank reactor (CSTR) system is
utilized to show the effectiveness of the proposed sliding mode observer in both actuator
and sensor faults reconstruction in the presence of an unknown disturbance. To show the
performance improvement of the proposed approach, the obtained results are compared to
the LMI approach presented in ref. [17].

Consider a well-mixed variable CSTR in which a multi-component chemical reaction
A � B → C is being carried out. The nonlinear dynamics of the CSTR is given by the
following model [21],

.
x =

⎡⎣−4 0.8796 0
3 −3.6388 0
0 1.7592 −1

⎤⎦x +

⎡⎣0
1
0

⎤⎦u +

⎡⎢⎣ 0.5x2
2

−1.5x2
2

x2
2

⎤⎥⎦, (45)

where x = [x1 x2 x3]
T , and the states represent the concentrations of the species A, B, and C,

respectively. To check the advantage of the proposed method, two faults and a disturbance
are added to the dynamic (45) as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

.
x =

⎡⎣−4 0.8796 + 0.5x2 0
3 −3.6388 − 1.5x2 0
0 1.7592 + x2 −1

⎤⎦x +

⎡⎣0
1
0

⎤⎦u

+

⎡⎣1
0
0

⎤⎦ fa +

⎡⎣1
1
1

⎤⎦ξ

y =

⎡⎣0 1 0
1 0 0
0 0 1

⎤⎦x +

⎡⎣1
0
0

⎤⎦ fs

. (46)
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It is supposed that the concentration of B is dimensionless, which means that
x2 ∈ [−1 1]. Consequently, by using TS rules, two membership functions can be defined as

h1 =
1 − x2

2
; h2 =

1 + x2

2
. (47)

Therefore, the local linear TS matrices can be determined as

A1 =

⎡⎣−4 0.8796 − 0.5 0
3 −3.6388 + 1.5 0
0 1.7592 − 1 −1

⎤⎦; B1 =

⎡⎣0
1
0

⎤⎦; M1 =

⎡⎣1
0
0

⎤⎦; D1 =

⎡⎣1
1
1

⎤⎦
A2 =

⎡⎣−4 0.8796 + 0.5 0
3 −3.6388 − 1.5 0
0 1.7592 + 1 −1

⎤⎦; B2 =

⎡⎣0
1
0

⎤⎦; M2 =

⎡⎣1
0
0

⎤⎦; D2 =

⎡⎣1
1
1

⎤⎦.

(48)

The TS fuzzy system matrices satisfy all the assumptions; therefore, the TS fuzzy
sliding observer (16) can be designed.

For simulation, the parameters and input signal are chosen as u = sin(t), A f = 1,
As = −5I, ηd.i = ηa = 25, ηs = 25, δa = 0.01 and δs = 0.01. and the initial conditions are
chosen as X0 =

[
1 1.2 1 0

]T and X̂0 =
[
1.5 2.8 0.5 0

]T . Moreover, the disturbance
is chosen as d = 0.1 sin(0.2t)x3 and the shape is shown in Figure 1.

Figure 1. Disturbance d(t).

The maximum Lipschitz constant and the minimum H∞ performance gain obtained
through fmincon function in MATLAB on Theorem 1 are γ∗ = 0.8358 and ϑ∗ = 0.2982. The
observer matrices are derived as

Gl.1 =

⎡⎢⎢⎣
0.4499 1 0
3.3912 3 0
4.8998 0 0
1.1852 0 4

⎤⎥⎥⎦, Gl.2 =

⎡⎢⎢⎣
2.4723 1 0
−0.2487 3 0
8.9447 0 0
1.7921 0 4

⎤⎥⎥⎦,

Gn.1 =

⎡⎢⎢⎣
0 1 0

1.1852 0 0
1 0 0
0 0 1

⎤⎥⎥⎦, Gn.2 =

⎡⎢⎢⎣
0 1 0

1.7921 0 0
1 0 0
0 0 1

⎤⎥⎥⎦.

It should be noted that the initial point for fmincon is chosen based on the results of
the related published papers. Figure 2 shows the state estimation error which converges to
a neighborhood close to zero due to the unknown disturbance.
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Figure 2. State estimation error in the presence of faults and disturbance.

Figures 3 and 4 show that the proposed TS-based SMO is able to reconstruct the
simultaneous faults with a small error in the presence of an unknown disturbance.

Figure 3. Actuator fault fa(t) (by blue solid line) and its estimation f̂a(t) (by red dashed line).

Figure 4. Sensor fault fs(t) (by blue solid line) and its estimation f̂s(t) (by red dashed line).

The proposed approach is compared with another non-quadratic Lyapunov-based
approach using linear optimization analysis based on LMIs [17]. Figure 5 describes the
fault estimation errors using both approaches.
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(a) 

(b) 

Figure 5. Fault estimation errors (a). Actuator fault, (b). Sensor fault (the proposed approach by red
solid line and ref. [17] by green dashed line).

As can be seen, the proposed nonlinear approach is less conservative and can estimate
both actuator and sensor faults with smaller errors. In addition, the proposed approach
has less computational burden. In Table 1, a quantitative comparison between the pro-
posed approach and the LMI approach presented in ref. [17] is considered. In this table,
the Euclidean and infinity norms of the fault error estimations are compared and the
improvements are calculated as

Improvement (%) =

(
Fl − Fn

Fl

)
∗ 100, (49)

where Fn and Fl represent the ‖ Error o f f ‖ using the LMI approach [17] and the nonlinear
proposed approach, respectively.

Table 1. The norm specifications of the fault reconstruction errors for two different approaches.

‖efa‖2 ‖efa‖∞ ‖efs‖2 ‖efs‖∞
Proposed Approach 23.9858 0.3820 15.3073 0.4376

[17] 53.3519 0.5704 33.6076 0.7679
Improvement (%) +55.04 +33.03 +54.45 +43.01

As can be seen in Table 1, the proposed approach improves the fault estimation
accuracies by more than 30%.
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6. Discussion

In this paper, a nonlinear optimization approach for simultaneous actuator and sensor
fault reconstruction in nonlinear systems subjected to unknown disturbances was proposed.
First, an augmented system with just an actuator fault was created. Then, by using the fuzzy
Lyapunov stability analysis and two changes of coordinates, the parameters of a sliding
mode observer were designed through a nonlinear optimization problem while maximizing
the Lipschitz constant and minimizing the H∞ performance index. The optimization
problem was solved by using fmincon in MATLAB as a nonlinear optimization tool. By
utilizing the optimum points, both actuator and sensor faults were reconstructed properly.
Finally, the simulation results showed a considerable increase in the fault reconstruction
accuracy with constraints with smaller dimensions.
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Abstract: Non-surfacing leaks constitute the dominant source of water losses for utilities worldwide.
This paper presents advanced data-driven analysis methods for leak monitoring using commercial
field-deployable semi-permanent vibro-acoustic sensors, evaluated on live data collected from exten-
sive multi-sensor deployments across a sprawling metropolitan city. This necessarily includes a wide
variety of pipeline sizes, materials and surrounding soils, as well as leak sources and rates brought
about by external factors. The novel proposition for structural pipe health monitoring shows that
excellent leak/no-leak classification results (>94% accuracy) can be observed using Convolutional
Neural Networks (CNNs) trained with Short-Time Fourier Transforms (STFTs) of the raw audio files.
Most notably, it is shown how this can be achieved irrespective of the sensor used, with four models
from different manufactures being part of the investigation, and over time across extended densely
populated areas.

Keywords: water distribution network; vibro-acoustic sensors; leak detection; structural health
monitoring; feature extraction; signal processing; machine learning; binary classification; data-driven;
neural network

1. Introduction

Potable water mains are critical components of water infrastructure. Many water
utilities worldwide are managing underground pipes that have been in use for centuries.
Given their age and environmental surroundings, pipes are susceptible to failures often
caused by tree roots, corrosion, and/or ground movement. In addition to pipe failures,
leaks can also emerge from appurtenances in the pipe network such as hydrants, valves,
pipe joints, main tapping points, or service lines. Depending on the environment, water
from some leaks may never surface, and will remain hidden, resulting in large water
losses. When a leak becomes visible, reactive repairs are undertaken; causing disruption to
customers and costly maintenance, which can be challenging for utilities to manage.

Distributed IoT sensors such as digital meters are being increasingly used by utilities
to remotely monitor the performance of their network in (near) real-time. This allows
the monitoring of water usage habits, and establishing the potential for leaks in the main
tap and service line connection to a home. In the distribution network, IoT flow meters
have been explored to identify leakage. A small experimental laboratory study contrasting
various machine learning algorithms (random forest, decision trees, neural networks,
and Support Vector Machine) revealed the former as the best at detecting leaks with a
75% accuracy [1]. These sensors require access to the water column to operate, a non-
trivial exercise in distribution networks, thus severely limiting their leak identification
and localisation capabilities. They have not been widely adopted by the industry, whose
preference is for non-intrusive and portable sensing methods, such as contact acoustics-
based signalling. As water discharges from a leak in the pipe network, vibrations are
induced and propagated along the pipe wall. To detect hidden leaks, utilities commonly
schedule Active Leak Detection (ALD) teams to periodically sweep areas of pipelines using
acoustic leak detection equipment such as listening sticks and real-time correlators [2]. The
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success of these ALD sweeps can be hindered by the prevalence of environmental and
water usage noises during the day, when the sweeps are conducted, and the experience of
the user [3]. Depending on the length of the utility’s pipeline network, the time that elapses
between ALD sweeps may result in hidden leaks remaining undetected for long periods of
time, or missed entirely. For the continuous monitoring of the network, alternative methods
of leak detection are also employed, such as Minimum Night Flow (MNF) and pressure
transient analysis using existing network hardware (flow meters and pressure gauges).
These methods, however, are only capable of detecting possible leakage in a given area,
and will not provide any means of locating or pinpointing a leak location.

Vibro-acoustic sensing has been widely adopted by water utilities [4,5], mainly due
to the relative low cost, ease of implementation, flexibility, and passive nature of the
system, whereby no permanent changes to the water pipeline network are required for
the technology to function. These semi-permanent devices can be used to effectively and
remotely monitor the water mains for leakages—generally between 2 and 4 a.m.—when
there is low network activity (the time period when MNF is calculated) and low levels of
environmental noise. However, there are several challenges and uncertainties in analysing
the acoustic sensor data for leak detection: (1) a leak noise can be attenuated due to fittings,
joints, junctions, and service connections which are often undocumented; (2) the presence
of environmental noises, and water usage in the network; (3) the signal recorded by the
acoustic sensor is directly related to the pipe material and diameter, proximity to the leak
noise and the quality of the sensor’s mounting point on the asset [6,7].

Semi-permanent vibro-acoustic noise loggers have in-built algorithms which raise leak
alarms based on the intensity and consistency of the recorded noise [8]. Using this method,
a large number of false positive leak alarms are raised by the system, and quieter leaks are
missed (false negatives). By understanding the limitations of these in-built leak detection
algorithms, and the uncertainties affecting the data recorded by an acoustic logger, there is
a motivation and need for a more advanced analysis of the acoustic data to achieve accurate
and reliable leak detection. Signal processing and data-driven machine learning methods
are common techniques to increase the reliability of leak detection using vibro-acoustic
noise loggers. Most leak detection approaches in the literature extract features from an
audio recording, which is either directly used to interpret signals for leakage [7,9–11], or
used to train machine learning classifiers. Models trained with simple features such as the
absolute noise level recorded by loggers [12], or cross-correlation and coherence signals
from neighbouring correlating noise loggers [13] have also demonstrated high accuracies
in leak localisation and classification, respectively. Other methods rely on having collected
baseline signals or signals before and after a leak has been repaired [14–17], to establish leak
detection thresholds. Due to the persistent nature of a leak signal in an audio recording,
Recurrence Plots (RPs) offer an alternative input for a binary classifier, with RPs of leak
noises showing strong deterministic properties [18].

Data-driven machine learning studies have leveraged frequency-domain features of
acoustic signals for training such as the Power Spectrum Density (PSD) [14,19] or Intrinsic
Mode Functions (IMFs) [20]. Whilst these features may prove effective for classification
in controlled laboratory tests, they are easily influenced by a temporary ambient noise
which can mask a persistent leak noise in the PSD, leading to decreased classification
performance [21]. This limitation is critical for sensor deployments on functioning pipeline
networks, where both persistent and transient non-leak noises are prevalent, leak noises are
not controlled, and the pipe network can be complex. Many of these studies are conducted
in controlled laboratory environments [22–25], with few examples of data sets obtained
from real pipeline networks. Data collected from in-field deployments of vibro-acoustic
sensors have predominantly contained unbalanced data sets, with small amounts of leak
samples [18,26,27] or data collected with minimal interference noises, where Gaussian
White Noise (GWN) with different Signal-to-noise Ratios (SNRs) are added to augment the
data sets [21]. Unbalanced data sets remain a limitation in evaluating the success of any leak
detection classifier, particularly for real-world sensor deployments where pipe materials,
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diameters, soil properties, service lines, and offtakes, amongst other geospatial features, can
vary significantly and heavily influence the signals recorded by the vibro-acoustic sensors.

Time–frequency features generated using discrete Short-time Fourier Transforms
(STFTs), such as spectrograms, reveal the temporal nature of a signal that is not captured by
analysing frequency-domain features alone. STFTs can provide rich features for machine
learning; however, STFTs as standalone input features are rarely used for acoustic signal
analysis, due to a limitation in the time–frequency resolution [28]. In an effort to balance
the relationship between the time and frequency resolutions, a Time–Frequency Convolu-
tional Neural Network (TFCNN), with three different spectrogram resolutions as inputs
is proposed to study the efficacy of classification under varying SNR conditions in real
pipeline networks [21]. The TFCNN model is compared against a range of other common
classifiers, including a CNN trained with Fast Fourier Transform (FFT) data (Frequency
Convolutional Neural Network (FCNN)). It is reported that the spectrogram contains
sufficient defining characteristics of a leak signal (as opposed to time, or frequency-based
features alone), and is therefore more favourable and reliable as an input to a leak detection
system. Mel-frequency spectrograms, which closely align with the human perception of
sound, are also commonly used as features in machine learning applications, including
leak classification problems [29,30].

This paper evaluates state-of-the-art data-driven methods for leak classification using
data collected from semi-permanent vibro-acoustic logger deployments in small reticulation
mains across metropolitan Sydney over the course of up to 24 months. Data from a range of
commercially available types of vibro-acoustic sensors deployed in different metropolitan
areas of a utility-managed water network are used to evaluate the efficacy of existing
data-driven methods (FCNN and TFCNN models [21]) for reliable leak detection in urban
distribution mains.

The paper is organised as follows. Section 2 details the vibro-acoustic sensors and
data loggers, data collection, signal processing, data curation, feature extraction and binary
classification methods. Section 3 presents the results and discussion. Finally, the conclusions
and future work are presented in Section 4.

2. Materials and Methods

2.1. Vibro-Acoustic Sensors and Data Loggers

Vibro-acoustic logging hardware consists of a vibro-acoustic sensor, data logger, and
other peripherals such as GSM transmitters and antennas to send the collected data to the
cloud. Vibro-acoustic sensors function on the premise that when water leaks through a pipe
it creates vibrations due to the pressure differential between the inside and the outside of a
pipe. The waves can travel thorough both pipe material and water, allowing the sensors to
measure the vibration inflicted on the material, or directly in the water column. Standard
manufacturer specifications indicate that vibro-acoustic sensors are effective in recording
leakage noises on reticulation mains typically smaller than 375 mm in diameter, and can
correlate over distances of up to 150 m between adjacent loggers.

In December 2019, a range of vibro-acoustic sensors deployments commenced across
six Central Business District (CBD) areas in metropolitan Sydney (summarised in Table 1).
In these CBD areas, five different types of commercially available semi-permanent vibro-
acoustic loggers (see Figure 1) were deployed. These could not be collocated in the same
spots to compare performance given the chamber’s physical limitations, and the extent of
exposed asset to mount them on (see some examples Figure 2), and were thus distributed
to cover separate areas and zones (when within the same area). It should also be noted that,
given the attachment coupling of the sensor to the appurtenance, they can not physically
measure the exact same point regardless, so arranging them over an extended geographical
coverage of the city is more representative of a realistic deployment in a practical sense for
comparison, and more effective to search for as many leaks as possible over a given time
period for a more robust validation of the proposed scheme.
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(a) (b) (c) (d) (e)

Figure 1. Range of vibro-acoustic loggers installed across metropolitan Sydney: (a) HWM PermaNET
SU, (b) HWM PermaNET+, (c) SebaKMT Sebalog N-3, (d) Von Roll ORTOMAT-MTC, (e) Primayer
Enigma3m.

Table 1. Vibro-Acoustic Logger Deployment Details.

Manufacturer Model
Deployment

Area #
Frequency
Range (Hz)

Sampling
Rate (Hz)

Audio
Recording

Duration (s)

# Leaks
Detected

HWM PermaNET+ 1,2,3 0–2048 4096 10 19

HWM PermaNET SU 1 0–2048 4096 10 18

Von Roll ORTOMAT-MTC 2,4 0–2340 4681 10 16

SebaKMT Sebalog N-3 1,5 0–3277 6554 2.5 23

Primayer Enigma3m 4,6 0–2500 5000 10 11

Each of the five different vibro-acoustic sensors and data loggers are functionally
equivalent, whereby vibrations in the pipeline network are detected by the sensors and
recorded with the data logging hardware. The key differences between the loggers are the
quality of the hardware used, the level of processing of the data, both on the logger itself
and the cloud-based portals, and the user programmable settings (e.g., audio recording
duration and time).

The sensors have mostly been installed on appurtenances (valves and hydrants)
attached to Cast Iron Cement Lined (CICL) or Steel Cement Lined (SCL) pipelines, ranging
in diameter from 100 mm to 450 mm and up to more than 100 years old. Depending on the
available space in a hydrant or valve chamber and the condition of the assets, the sensors
are often mounted with differing orientations and mounting points, as shown in Figure 2.

Figure 2. HWM PermaNET SU loggers deployed on hydrant control valves in different locations.

2.2. Data Collection

Noises in the pipe network are measured every day at a time of low water usage and
theoretically low environmental noise (between 2–4 a.m.). With the exception of the Sebalog
N-3 vibro-acoustic sensors, all of the deployed sensors were programmed to record a 10-s
duration audio file daily. The Sebalog N-3 units have limited configuration settings, thus,
despite recording a 2.5 s duration audio clip every day, the audio file is only sent to the
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cloud if the logger itself determines that a leak is present (through a noise level threshold
algorithm). In addition to audio recordings, other noise-level data are also available for
analysis from most of the loggers; however, these were not used in this study. All loggers
are equipped with integrated modems and transmit data to the cloud, with the raw acoustic
data (audio files) available through the sensor manufacturers FTP servers, or accessible
through API calls.

The collected data consist of ‘leak’ and ‘no-leak’ audio recordings originating from a
range of leak sources across the six deployment areas. Approximately 70% of the detected
leaks were hidden, many of which were in built-up areas and estimated to have been
present for up to 10 years. The detected leaks were found to have emerged from a range of
sources, including hydrants ∼30%, valves ∼20%, main taps ∼22%, private ∼11%, service
lines ∼12%, mains (leaks/breaks) ∼2.5%, and meter taps ∼2.5%. Some examples of hidden
leaks detected by the vibro-acoustic sensors are shown in Figure 3.

(a) (b)

(c) (d) (e) (f)
Figure 3. Examples of detected hidden leaks from a range of vibro-acoustic sensors and deployment
areas (pictures supplied by utility field crews, taken during repairs): (a) Copper service leak, (b) Main
tap leak, (c) Main tap leak (clamped service line), (d) Leak on main tap coupling piece, (e) leaking
main tap (excavation site), and (f) leaking main tap repaired with full circumference pipe clamp.

The four logger data sets (HWM, Von Roll, SebaKMT, Primayer) mostly include
loggers that recorded leak noises from the first day they were deployed. These existing
leaks were monitored for several days to confirm the likelihood of the presence of a leak,
prior to raising these locations for in-field investigation by the water utility. The leaks
were confirmed on-site by skilled network technicians through use of listening sticks and
pinpointed using real-time correlators. Significant delays were experienced with some
repair jobs, due to the complex locations of some leaks. Consequently, many of the recorded
leak signals contain the same underlying persistent leak noise, occasionally overlaid with
transient environmental noises. As existing leaks were gradually repaired and baseline
noise levels could be achieved, the emergence and evolution of new leaks were able to be
identified and the data sets grew further in size over the course of the deployments. Since
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only a small subset of all of the deployed loggers detected leaks, only these loggers were
included in the data sets (both before and after leak repairs), to ensure a relative balance of
the data sets. To improve on the robustness of the classification in the presence of other
environmental noises, those loggers which only recorded ‘no-leak’ signals for the duration
of their deployment could also be used.

2.3. Data Analysis-Signal Processing

Across the six deployment areas, a wide variety of leak noises were recorded. Some
sensors were located very close to the leak source, and others at a distance, with variations
in pipe diameters and materials, and several offtakes between. Using STFT signal process-
ing techniques, acoustic signals can be best visualised by generating spectrograms, which
reveal temporal changes to the frequency and power of a signal. If the audio recording
contains persistent noise, without the presence of any intermittent external noises, PSD line
plots can also provide a simple means of signal comparison. As leaks are continuous noise
sources, their higher-power frequencies are persistent in the spectrum, for the duration of
an audio recording. On the other hand, non-leak noises—such as those from environmental
sources, or water usage—are mostly transient in nature, with intermittent frequency com-
ponents. Some environmental noises, however, can be persistent, such as mechanical or
electrical equipment which commonly emit high-power, low-frequency noises usually with
narrow frequency bands. Due to these characteristic features, persistent and intermittent
‘no-leak’ signals are easily distinguishable from ‘leak’ signals in a spectrogram (see Figure 4
for an example). Due to the close coupling of the sensors to the water main, leaks gener-
ally have a distinguishing pattern in the audio spectrum, even in the presence of other
intermittent noises.
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Figure 4. Spectrograms for a sensor detecting a variety of noises: (a) before and (b) after a leak was
repaired ∼21 m away from the sensor. The sensor was situated <1 m from a pedestrian crossing.

By clustering the loggers in the pipeline networks to ensure neighbouring loggers are
able to correlate, often more than one logger was able to record noise from a single leak
source; one such example is shown in Figure 5, where six vibro-acoustic sensors were able
to detect the leak noise caused by a broken back on the pipe (main break). The shift in the
dominant leak frequency can be observed with increased distance between the leak and the
sensor. Other contributing factors to the frequency shift could also include pipe material
change and junctions and offtakes between the leak and the sensor. In general, the further
away the sensor is from the leak location, the more the higher-frequency components of
the spectrum are attenuated, and the lower frequency noises are more prevalent. With
increased distance between the logger and the noise source, the intensity (power) of the
noise also decays.
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Figure 5. An illustration of a single leak source originating from a broken back pipe, and the noise
spectrograms picked up by 6 HWM PermaNET+ loggers in the vicinity. The 7th sensor on the right is
located too far away to pick it up.

A leak located close to the hydrant where the logger is installed will typically have
elevated noise across the spectrum, often with higher power in high frequency band/s.
Figure 6 shows PSD line plots from HWM vibro-acoustic sensors detecting leaks at the
hydrant they were installed on. All leaks were on screw-down-type hydrants, and sus-
pected to be of varying leak rates. The vibro-acoustic sensors were installed in different
orientations and with different contact points on the hydrants, similar to those mounting
configurations shown in Figure 2. There is a significant difference in the PSDs of each
hydrant leak. The difference in signals could be attributed to many factors including the
quality of the attachment point of the sensor on the asset or the magnitude of the leak. Com-
paring these signals to a ‘quiet’, baseline signal with no leak present, it is noted that all four
leak signals show elevated power across almost all recorded frequencies, and clear peaks
in the spectrum at certain frequencies. This indicates that despite leaking hydrant signals
being inconsistent across multiple loggers/hydrants, there is still a significant deviation
from a baseline ‘no-leak’ noise that is sufficient to detect a leak.

Figure 6. PSD plot: four different hydrant leak signals (loggers on leaking hydrants).
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2.4. Data Analysis-Data Curation

In order to curate the collected data to train machine learning classifiers, the raw
acoustic data were analysed in the time, frequency, and time–frequency domains using the
signal processing and visualisation techniques (PSD, STFT, FFT) described in Section 2.3.
Analysis of the vibro-acoustic data, in conjunction with feedback from the utility field
crews, allowed for a database to be compiled with key information pertaining to the leaks.
The collated and curated data consist of the audio file name, date of audio recording and
binary class label (‘leak’ or ‘no-leak’). Other collected information not used for the binary
classification includes the leak source, and the distance, pipe material/s, and diameter/s
between the leak and logger.

Most of the detected leaks were present prior to the loggers being installed; however,
there were some instances where new leaks emerged during the logger deployment time.
For the leaks that were already present, the collected acoustic signals were generally stable
and unchanged in their frequency. In some instances, noticeable frequency/power shifts
in the spectrum were observed (see Figure 7)—possibly from a leak worsening, or the
sensor being slightly shifted/dislodged on the asset due to environmental factors or human
intervention. These cases were carefully analysed to ensure that the data was representative
of a true ‘leak’ or ‘no-leak’ signal, and the logger had not been dislodged from the asset.

The curated data from individual loggers were compiled into complete data sets for
each logger manufacturer (for a total of four discrete data sets). Due to the slightly differing
frequency ranges and audio recording duration (as listed in Table 1), individual classifiers
were trained for each sensor manufacturer and were evaluated individually. With nearly
300 loggers deployed across the six deployment areas over the course of two years, the
complete data sets from each logger manufacturer are vast. To ensure a relative balance
of data for each data set, only data from loggers which recorded both ‘leak’ and ‘no-leak’
signals throughout their deployment are included in the data sets.

2.5. Feature Extraction and Binary Classification

To evaluate the performance of a binary classifier for each of the data sets, an extensive
literature review on the topic of data-driven leak detection methods with acoustic data
was first conducted. A critical criteria in determining the suitability of a classifier was the
reported performance with data collected from real pipeline networks. With limited studies
and evaluations utilising data from deployments of loggers outside of controlled laboratory
environments, it was found that CNN-based classifiers leveraging features obtained from
FFTs and STFTs (spectrograms) had the best reported performance, compared with other
common binary classification models.

Both the FCNN and TFCNN models from [21] are trained and evaluated in this paper,
using the four discrete data sets collected from the six deployment areas. The data sets
were first prepared by augmenting [31] (splitting) each audio file into several 1 s audio
chunks. For the SebaKMT loggers, only the first two seconds of the 2.5 s duration audio
recordings were used. All other loggers (with 10 s duration) audio recordings were split
into 10 individual audio chunks. Due to the vast array of samples, including various
‘no-leak’ noise sources, it was not deemed necessary to further augment the data sets by
adding GWN with different SNRs into the raw signals. To extract the frequency bands of
interest where leaks are most common, the 1 s duration audio samples are also bandpass
filtered (100–2000 Hz). With the data sets collected and curated, finally, a random 80% of
each complete data set (for each logger type) was used for training and 20% for testing. The
models (whose structures are shown in Figure 8) were implemented in Python 3.9 using
Keras [32] and TensorFlow [33] version 2.6.0.

168



Sensors 2022, 22, 6897

Figure 7. Leaking main tap-changing frequency distribution is visible in the PSD (top) and spectro-
grams (bottom) from consecutive days. The logger was situated approximately 59 m away from the
leak location, with noise being propagated along a straight section of 150 mm diameter CICL pipe.
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Figure 8. TFCNN and FCNN model structures.

The input to the FCNN model is purely frequency-domain based—a FFT of the 1 s
audio signal. The inputs to the TFCNN model are three spectrograms generated from
the same 1 s audio signal. Each spectrogram is generated with a different time–frequency
resolution (high time, transitional, high frequency) and is intended to improve the leak
detection performance, since ‘no-leak’ and ‘leak’ noises have different time–frequency
components. A high-time-resolution spectrogram reflects the change of the signal in the
time-domain, where a leak signal is most stable. In these spectrograms, the presence
of any transient noises are most obvious. The high-frequency-resolution spectrogram
reflects the spectral structure and energy distribution of the signal in the frequency domain.
Whilst transient noises can still be observed in these spectrograms, the leak frequency
or frequencies are best represented. Finally, the transitional time–frequency resolution is
intended to balance the relationship between the time and frequency resolutions. Due to
different sampling rates of the four sets of loggers, the dimensions of the three spectrograms
which are the inputs for the TFCNN model differ slightly, as listed in Table 2.

Table 2. TFCNN model spectrogram matrix sizes for different resolutions.

Logger Manufacturer Audio Sampling Rate (Hz)
Spectrogram Resolution

High Time Transitional High Frequency

HWM 4096 [94, 60] [186, 28] [372, 12]
Von Roll 4681 [99, 70] [197, 33] [394, 15]

SebaKMT 6554 [72, 99] [142, 48] [283, 22]
Primayer 5000 [94, 75] [184, 36] [369, 16]

3. Results and Discussion

Tables 3 and 4 summarise the results of the FCNN and TFCNN classification models
for the four logger data sets. The metrics used to evaluate the model performance were
accuracy, sensitivity, and specificity. The following abbreviations are used to simplify the
presentation of the equations: True Positive (TP); True Negative (TN); False Positive (FP);
False Negative (FN). Accuracy is the measure of the classifier’s overall correct classification
performance: TP + TN/(TP + TN + FP + FN). Sensitivity is the classifier’s ability to
label a ‘leak’ signal as ‘leak’ (recall of the positive class): TP/(TP + FN). Specificity is
the classifier’s ability to label a ‘no-leak’ signal as ‘no-leak’ (recall of the negative class):
TN/(TN + FP).
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Despite the excellent performance of the FCNN model, as was reported in [21], it was
found that the TFCNN model consistently outperformed the FCNN model across each of
the performance metrics studied (with the exception of the specificity of the HWM loggers).
This indicates that the spectrogram-based inputs are more effective than purely frequency-
domain-based inputs in representing the characteristics of both ‘leak’ and ‘no-leak’ signals
for binary classification.

Table 3. FCNN Results.

Logger
Manufacturer

Total #
Files

# Leak
Files

# No Leak
Files

Accuracy
(%)

Specificity
(%)

Sensitivity
(%)

HWM 67,730 36,310 31,420 98.18 99.19 97.32
Von Roll 37,160 14,850 22,310 96.60 98.57 93.60

Seba KMT 3072 1026 2046 87.97 95.09 71.66
Primayer 32,020 2950 29,070 96.83 98.94 75.77

Table 4. TFCNN Results.

Logger
Manufacturer

Total #
Files

# Leak
Files

# No Leak
Files

Accuracy
(%)

Specificity
(%)

Sensitivity
(%)

HWM 67,730 36,310 31,420 98.46 98.92 98.07
Von Roll 37,160 14,850 22,310 98.51 99.75 96.61

Seba KMT 3072 1026 2046 94.63 95.33 93.05
Primayer 32,020 2950 29,070 97.95 99.59 81.62

Figures 9 and 10 show the confusion matrices for each of the four different TFCNN
and FCNN trained models, respectively. For a practical leak detection system that water
utilities can rely on, high accuracy but also high specificity (true negative) and sensitivity
(true positive) rates are key performance metrics. A reliable leak detection system will
minimise the false positive leak alarms, to ensure that any follow-up field investigations
are for real leak events, maximising the efficiency for utilities.

Figure 9. Confusion matrices for TFCNN models. HWM (top left), Von Roll (top right), Seba KMT
(bottom left) and Primayer (bottom right).
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Figure 10. Confusion matrices for FCNN models. HWM (top left), Von Roll (top right), Seba KMT
(bottom left) and Primayer (bottom right).

Despite the limited data available from SebaKMT Sebalog N-3 loggers and a data
imbalance with ‘leak’ and ‘no-leak’ signals across 3/4 of the data sets, the results indicate
that the type of sensor used (different vibro-acoustic sensor with different sampling rate,
sensitivity, etc.) does not affect the performance of the classifier. Furthermore, the results
demonstrate that a leak detection system using either the FCNN or TFCNN model can be
effectively trained with data from a single location both before and after a leak repair.

The excellent classification results show that—irrespective of the type of vibro-acoustic
sensor used—the classifiers have been able to learn sufficiently with data from a range of
deployment areas, where leak sources, pipe sizes and materials as well as soil conditions
have varied widely. The results indicate that this is particularly relevant for identifying leaks
in built-up CBD areas, where a variety of ‘no-leak’ persistent and transient environmental
noises are prevalent, even in the early hours of the morning. Considering all of the factors
that affect the recorded vibro-acoustic signals, the results presented show great promise for
water utilities looking to integrate the use of semi-permanent vibro-acoustic sensors into
their business-as-usual practice for structural pipe health monitoring. Through the use of
vibro-acoustic sensors and early detection of hidden leaks, proactive maintenance can be
scheduled and conducted, with minimal impact to the customer.

The classification performance may be improved by including a large number of ‘no-
leak’ signals from elsewhere in the pipeline network during a deployment i.e., by including
those other loggers that did not record both ‘leak’ and ‘no-leak’ signals in the data set.
This will help further train the classifier to better discriminate between ‘leak’ and ‘no-leak’
noises, further increasing the reliability and robustness of the classification.

4. Conclusions

This paper studied and analysed the performance of a range of different semi-permanent
vibro-acoustic sensors deployed in six CBD areas across wider Sydney for extended periods
of time. Following careful collation, analysis and curation of the collected acoustic data,
two state-of-the-art CNN-based classification models (FCNN and TFCNN) were trained
and tested for each of the four logger types.
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The results presented point towards the potency of FFT and STFT signal processing
for CNN-based classification of vibro-acoustic measurements. Moreover, they represent
the first known documented comparison of a variety of different semi-permanent sensing
hardware, with a special underscore on the study having been undertaken on live deploy-
ments. The results demonstrate that these state-of-the-art methods are not only applicable
to one particular make and model of semi-permanent acoustic sensor, as was previously
documented in the single relevant case study found in the literature. Classification accu-
racies in the range of [94.63–98.51%] were achieved with the best performer, the TFCNN
model, for all the sensors studied.

Future work to enhance the results of this study would involve obtaining further
validated data collected from a wider variety of deployment locations and CBD areas.
As indicated in Section 3, the robustness and reliability of these classifiers may also be
improved by adding further existing ‘no-leak’ audio recordings into the data sets. Finally,
despite their sensing hardware similarities, a comparison of the classification performance
of semi-permanent and Lift and Shift (L&S) vibro-acoustic sensors (intended for short-term
deployments, rather than continuous monitoring) would also provide further insights into
the potential success and value of implementing smart leak detection methods for utilities.
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Abbreviations

The following abbreviations are used in this manuscript:

ALD Active Leak Detection
API Application Programming Interface
CBD Central Business District
CICL Cast Iron Cement Lined
CNN Convolutional Neural Network
FCNN Frequency Convolutional Neural Network
FFT Fast Fourier Transform
FTP File Transfer Protocol
GSM Global System for Mobile communication
GWN Gaussian White Noise
IMF Intrinsic Mode Function
L&S Lift and Shift (vibro-acoustic sensors)
MNF Minimum Night Flow
PSD Power Spectrum Density
RP Recurrence Plot
SCL Steel Cement Lined
SNR Signal-to-noise Ratio
STFT Short-time Fourier Transform
TFCNN Time–Frequency Convolutional Neural Network
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Abstract: When considering the transition probability matrix of ordinal patterns, transition permuta-
tion entropy (TPE) can effectively extract fault features by quantifying the irregularity and complexity
of signals. However, TPE can only characterize the complexity of the vibration signals at a single
scale. Therefore, a multiscale transition permutation entropy (MTPE) technique has been proposed.
However, the original multiscale method still has some inherent defects in the coarse-grained process,
such as considerably shortening the length of time series at large scale, which leads to a low entropy
evaluation accuracy. In order to solve these problems, a composite multiscale transition permutation
entropy (CMTPE) method was proposed in order to improve the incomplete coarse-grained analysis
of MTPE by avoiding the loss of some key information in the original fault signals, and to improve
the performance of feature extraction, robustness to noise, and accuracy of entropy estimation. A
fault diagnosis strategy based on CMTPE and an extreme learning machine (ELM) was proposed.
Both simulation and experimental signals verified the advantages of the proposed CMTPE method.
The results show that, compared with other comparison strategies, this strategy has better robust-
ness, and can carry out feature recognition and bearing fault diagnosis more accurately and with
improved stability.

Keywords: composite multiscale transition permutation entropy; bearing; fault diagnosis; feature extraction

1. Introduction

Rotating machinery is essential mechanical equipment which has been widely used
in large-scale industries, such as aerospace, vehicle engineering, electrical engineering,
machinery manufacturing, and so on. Bearings are an important part of electric and power
transmissions, and a bearing fault is one of the main causes of rotating machinery faults [1,2].
Bearing fault diagnosis is vital for the healthy maintenance and reliable operation of rotating
machinery. Bearing health detection can reduce the occurrence of rotating machinery
failures, thus ensuring system safety and reducing maintenance costs [3].

In bearing health monitoring, vibration signal analysis is a commonly used fault
feature extraction method. This is because the vibration signal contains a wealth of useful
fault information [4]. In recent decades, bearing vibration signal processing and pattern
recognition have become a research hotspot in the field of fault diagnosis. Kankar et al. [5]
used an artificial neural network (ANN) and a support vector machine (SVM) to diagnose
bearing faults, and verified that machine learning can be used for the automatic diagnosis
of a bearing fault. With the development of deep learning algorithms, neural networks
such as convolutional neural networks (CNN) have been effectively used in bearing fault
diagnosis [6,7]. The authors of [8] proposed a deep learning model to preprocess the
original signal for noise removal to overcome the shortcoming of the traditional intelligent
method being greatly affected by noise. However, in practice, the vibration signal of the
bearing has obvious nonlinear and non-stationary characteristics. Therefore, the analysis of
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nonlinear dynamic behavior and the extraction of useful and reliable fault features have
become the key steps in fault diagnosis.

Entropy methods can quantify the dynamic trend and randomness of a nonlinear time
series. In recent years, the use of entropy-based methods has become an important tool for
analyzing signal complexity and feature extraction, and has been effectively used in fault
diagnosis [9]. At present, approximate entropy (AE), sample entropy (SE), permutation
entropy (PE), fuzzy entropy (FE), and diversity entropy (DE) methods are widely used in
fault diagnosis of rotating machinery. AE was proposed by Pincus [10], and can be used
to measure the regularity of a time series. Richman et al. [11] proposed SE, which uses
the association dimension to induce SE to show relative consistency, and its complexity
analysis performance is better than that of AE. However, SE has the disadvantage of relying
heavily on data length [12]. The FE method proposed by Chen et al. [13] is an improvement
on the SE method. Other researchers [14] have used FE to measure the complexity of
vibration signals, and they verified the excellent dynamic tracking performance of FE
and its ability to obtain a more accurate complexity estimation. In consideration of noise
resistance and computational efficiency, Wang et al. [15] proposed DE, which uses cosine
similarity to measure the divergence of orbits. Bandt et al. [16] proposed PE to calculate the
state probability of track arrangement order, showing it has high computational efficiency
and good feature extraction effects in signal processing.

In order to overcome the problem of insufficient information analysis when using SE
to evaluate the dynamic characteristics and randomness of complex data, Costa et al. [17]
proposed using multiscale sample entropy (MSE) to evaluate the complexity of time series
over a range of scales. MSE has been successfully applied to analyze vibration signals
generated by various dynamic behaviors [18–20]. Based on the same coarsening process as
MSE, FE, PE, and DE can be extended to multiscale fuzzy entropy (MFE) [21–23], multiscale
permutation entropy (MPE) [24–26], and multiscale diversity entropy (MDE) [15]. Through
coarse-grained processing, the original time series can be divided into several short time
series. The coarse-grained time series can represent the dynamic distribution characteristics
of the original signal at a certain scale. Therefore, multiscale processing enhances the
performance of entropy methods in evaluating signal complexity. On a multiscale basis,
the combination of the symbol dynamic filtering process and the entropy method can not
only remove noise, but also significantly improve the computational efficiency and feature
extraction ability [27–29].

Recently, Zhang et al. [30] proposed a novel complexity estimation method, transition
permutation entropy (TPE). TPE is different from the other methods in that it extracts the
features of a time series from the transition probability matrix of ordinal patterns. Because
the eigenvalue is very important when analyzing the dynamic behavior, TPE uses the posi-
tive eigenvalue of the transition probability matrix to calculate the entropy. This improves
the feature identification performance of a time series. However, TPE only analyzes a
time series using a single scale, which reduces the accuracy and comprehensiveness of the
information analysis. Therefore, in this work we extended TPE to multiscale analysis. In
the traditional multiscale calculation method, the coarse-grained time series is obtained by
calculating the arithmetic mean of adjacent data points on the original time series without
overlapping. The length of the coarse-grained time series obtained in this way is too short
at large scale, and the accuracy and stability will be affected. Therefore, in this work, com-
posite multiscale transition permutation entropy (CMTPE) was proposed as a way to solve
these obstacles. When the composite multiscale method is used to coarse-grain the original
time series, a coarse-grained time series with different starting points can be obtained at
each scale, and the number is equal to the scale factor. Each coarse-grained time series
can characterize the dynamic characteristics and randomness of the original signal, which
can effectively enhance the accuracy and stability of TPE. CMTPE not only had excellent
feature extraction performance, but also had better robustness to noise. The superiority of
the proposed CMTPE method was verified by the simulation and experimental signals of
bearing faults. The main contributions of this study are given as follows:
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(1) In order to enhance the accuracy of feature extraction and the comprehensiveness of
information analysis, CMTPE was proposed as a strategy to quantify the complexity
of time series.

(2) A fault diagnosis strategy based on CMTPE and ELM was proposed for bearing fault
type identification to identify the fault types of bearings.

(3) The advantages of CMTPE in feature extraction were verified by simulation and
experimental signals. Comparing TPE, MPE, and MTPE, the results showed that
CMTPE has the highest fault diagnosis performance.

The rest of this paper is organized as follows: The concept of CMTPE is introduced
in Section 2. In Section 3, results from simulation signals used to validate the superiority
of CMTPE are reported. In Section 4, the effectiveness of CMTPE was verified using
experimental signals. Finally, the conclusion of this article is provided in Section 5.

2. Methodology

In this section, the theories of TPE and MTPE are introduced in detail. In addition, the
concept of the CMTPE algorithm is proposed.

2.1. Transition Permutation Entropy (TPE)

A time series of length N can be written as X = {x1, x2, · · · , xN}. The TPE algorithm
is introduced as follows:

Step 1. According to the phase space embedding theory, reconstruct X into a series of
vectors with embedding dimension m. The reconstructed phase space is as follows:

X =

⎡⎢⎢⎢⎣
x1 x2 · · · xN−m+1
x2 x3 · · · xN−m+2
...

...
. . .

...
xm xm+1 · · · xN

⎤⎥⎥⎥⎦ (1)

The reconstructed vectors can be expressed as Xi = {xi, xi+1, · · · , xi+m−1}, 1 ≤ i ≤
N − m + 1.

Step 2. Compare the size relationship of the elements in the vector, so as to identify the
ordinal pattern of each vector. When the embedding dimension is m, there are m! possible
ordinal patterns for any vector. For example, if the embedding dimension m = 3, there
are 6 ordinal patterns. The size relationship of all vectors can be expressed by the size
relationship of 0, 1, 2. For vector (xk−1, xk, xk+1) = (18, 3, 15), the element size relationship
is xk < xk+1 < xk−1, and its corresponding ordinal pattern is π = 2, 0, 1.

Step 3. Calculate the transition probability between the ordinal patterns corresponding
to all vectors to obtain the following transition probability matrix P:

P =

⎡⎢⎢⎢⎣
p11 p12 · · · p1n
p21 p22 · · · p2n

...
...

. . .
...

pn1 pn2 · · · pnn

⎤⎥⎥⎥⎦ (2)

where n = m!, and pij represents the probability of an transition from pattern πi to pat-
tern πj.

Step 4. Calculate the TPE using the positive eigenvalue of matrix P. If the eigenvalue is
complex number, its real part is taken. If P has n positive eigenvalues λi, TPE is calculated
as follows:

TPE(X, m) = −
n

∑
i=1

λi
m!

log
λi
m!

(3)
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2.2. Multiscale Transition Permutation Entropy (MTPE)

The entropy calculated from a single scale can only provide poor fault information.
Multiscale analysis can extract more useful information from time series of different scales.
The MTPE algorithm consists of two steps: (1) Conducting a coarse-graining process to
obtain the series of the original time series at different scales; and (2) Calculating the TPE
of each coarse-grained time series. First, divide the time series X = {x1, x2, · · · , xN} into
multiscale time series Y = {Y1, Y2, · · · , Yτ}. The scale factor τ is a positive integer. The time
series at any scale is Yτ =

[
y1,τ , y2,τ , · · · , yj,τ

]
, j = N/τ, and the calculation is as follows:

ys,τ =
1
τ

τs

∑
i=τ(s−1)+1

xi (4)

Then, the time series of all scales obtained from the above process can be substituted
into the TPE algorithm to calculate the MTPE as follows:

MTPE(X, m, τ) = TPE(Yτ , m) (5)

2.3. Composite Multiscale Transition Permutation Entropy (CMTPE)

In order to further improve the accuracy and stability of MTPE, CMTPE was proposed.
When the scale factor is τ, τ different time series can be obtained. MTPE only considers the
first coarse-grained time series at each scale, while CMTPE considers all τ coarse-grained
time series. As shown in Figure 1, when the scale factor τ = 3, MTPE only calculates one
coarse-grained time series y(3)1 , while CMTPE calculates three coarse-grained time series

y(3)1 , y(3)2 , and y(3)3 . Divide the time series X = {x1, x2, · · · , xN} into multiscale time series

Y = {Y1, Y2, · · · , Yτ}. The time series at any scale is Yτ =
[
y1

τ , y2
τ , · · · , yk

τ , · · · , yτ
τ

]
, where

yk
τ =

[
yk

1,τ , yk
2,τ , · · · , yk

j,τ

]
. The calculation is as follows:

yk
j,τ =

1
τ

τ j+k−1

∑
i=τ(j−1)+k

xi (6)

CMTPE is the mean of the TPE values for all coarse-grained time series, that is,

CMTPE(X, m, τ) =
1
τ

τ

∑
k=1

TPE
(

yk
τ , m

)
(7)

CMTPE considers all τ different coarse-grained time series, at each scale factor τ.
Therefore, CMTPE can extract more fault information from the original time series. The
entropy calculated by this method is more accurate and stable than that calculated by MTPE.

 

Figure 1. Schematic diagram of multiscale coarsening process when scale factor τ = 3.
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2.4. CMTPE Based Fault Diagnosis Strategy

In this work, a fault diagnosis strategy based on CMTPE was proposed. In this strategy,
an ELM classifier was used to identify different fault types. The overall fault diagnosis
framework is shown in Figure 2 [31]. The main steps were as follows:

Step 1. The vibration signals of bearings under different health conditions are mea-
sured by sensors.

Step 2. CMTPE is used for feature extraction of vibration signals. Each health condition
will provide the corresponding entropy characteristics, representing the complexity of
different vibration signals.

Step 3. A part of the fault features is randomly selected as a training set to train the
ELM classifier.

Step 4. The remaining features are used as the test set to test the trained ELM, and
the fault recognition rate is obtained. Steps 3 and 4 are run 20 times to obtain the average
test accuracy.

EE E τ

E E

mE τmE mE

m

τ}E τ

 

Figure 2. The overall fault diagnosis framework.

3. Simulation Evaluation

3.1. Simulated Bearing Signal

In this section, in order to verify the effectiveness and advantages of the proposed
CMTPE, we detail the three types of simulated bearing faults which were designed: outer
race fault, inner race fault, and ball fault models. The schematic diagram of the three
simulated faults is shown in Figure 3.

In the load area, as shown in Figure 3, the sensor was installed at the maximum load
density. Figure 3a shows the fault model of an outer race fault. Since the location of a
localized defect will not change with time, the impulse force can be regarded as an ideal
force. Figure 3b shows the fault model of an inner race fault, which has the same basic
assumptions as the outer race fault model. At the peak of the load area, the ball will contact
with a localized defect, resulting in the first impulse. After that, the localized defect will
rotate with the inner race, so the contact position between the ball and the inner race will
change with time. This type of contact will generate an impulse force only when it occurs
in the load area. Figure 3c shows the ball fault model, which also has the same basic
assumptions as the outer race fault model. In contrast to the inner race fault, a localized
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defect will rotate with the ball, and the defect will continuously contact the inner and outer
races to continuously generate impulse force [32].

 

Figure 3. The schematic of simulated bearing faults.

The simulated bearing type was an N205 cylindrical roller bearing. The rotating speed
was 3000 rpm. The sampling frequency was 10,240 Hz. The detailed bearing dimensions
are shown in Table 1.

Table 1. Bearing parameters.

Parameter Value

Pitch circle diameter 35.5 mm
Roller diameter 6.5 mm
Rotating speed 3000 rpm

Number of rollers 12
Sample frequency 10,240 Hz

Natural frequency of bearing 4000 Hz
Contact angle 0◦

The fault frequency can be calculated according to the parameters in Table 1. Main
parameters of the bearing: roller diameter d = 6.5mm; pitch circle diameter D = 35.5mm;
number of rollers Z = 12; contact angle α = 0; rotating speed v = 3000rpm. The fault
frequency was calculated as follows:

(1) Outer race fault characteristic frequency f0

f0 =
1
2

Z
(

1 − d
D

cos α

)
v
60

= 245.0704(Hz) (8)

(2) Inner race fault characteristic frequency fi

fi =
1
2

Z
(

1 +
d
D

cos α

)
v
60

= 354.9296(Hz) (9)

(3) Ball fault characteristic frequency fe

fe =
D
d

(
1 −

(
d
D

)2
cos2 α

)
v
60

= 263.9220(Hz) (10)

Figure 4 shows the time domain and envelope spectrum of each of the three simulated
fault types. Among the data, Figure 4a,c,e depicts the time domain diagrams of the three
faults, and Figure 4b,d,f shows the corresponding envelope spectrum diagrams. The fault
frequency is marked with a blue arrow in the envelope spectrum.
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Figure 4. Time domains and spectra of simulated bearing faults: (a) time domain of ball fault;
(b) envelope spectrum of ball fault; (c) time domain of outer race fault; (d) envelope spectrum of
outer race fault; (e) time domain of inner race fault; (f) envelope spectrum of inner race fault.

3.2. Analysis of Simulation Results

In the practical working environment, the operation of the equipment is influenced
by noise. Therefore, the simulated bearing fault signal was added to Gaussian white noise
with different signal-to-noise ratios (SNR) to simulate the actual working conditions. SNR
ranged from 10 dB to 40 dB, in 1 dB steps.

In this simulation, MTPE, TPE, MPE, and the proposed CMTPE were used to extract
fault features from simulation signals. For the selection of the main parameters when using
the above method, there were the following considerations: if the embedding dimension
m is small, the dynamic process of reconstruction will contain non detailed dynamic
information, while if the value of m is too large, the number of vectors will decrease,
which will lead to the loss of information. In addition, a large value of the scale factor τ
will lead to information redundancy, and a small value of τ will lead to the loss of fault
information. Therefore, the recommended value for parameter τ is 10–20 [29]. The values
for the parameters of the entropy methods used in this study were set as m = 3 and τ = 20.

The fault diagnosis strategies of each of the four methods combined with ELM were
used to identify three simulated bearing faults. For each fault type, the original signal
was sliced into 100 samples without overlap, and the data length of each sample was 2048.
Therefore, the data set had a total of 300 samples. Among them, 50 samples of each fault
type were randomly selected as the ELM training set, and the rest of the samples were
used to test the trained ELM. The ELM was run 20 times and the average test accuracy was
taken as the final test accuracy. Higher test accuracy means better performance of fault
diagnosis strategy, and smaller test variance means better stability. The robustness of the
method against noise can be obtained by comparing the test accuracies for each different
SNR value.
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The test results are shown in Figure 5. It is obvious that no matter the SNR value, the
test accuracy of CMTPE was always higher than that of the other methods, and its error
bar was also smaller than that of other methods. This shows that CMTPE had the best
bearing fault diagnosis performance and the highest test stability. When the signal-to-noise
ratio was high, all strategies except TPE had high accuracy. For example, when the SNR
range was 30 to 40, the test accuracy of CMTPE, MTPE, and MPE was higher than 95%.
However, as the SNR gradually decreased, the test accuracy of MTPE and MPE decreased
at a faster speed and a larger range, while CMTPE still had 100% test accuracy, even when
the SNR value decreased to 20 dB. Moreover, when the SNR was reduced to 10 dB, the
test accuracy of MTPE and MPE was only 61.90% and 71.73%, respectively, while the test
accuracy of CMTPE was still 89.60%. This shows that the proposed CMTPE method has
better robustness to noise.

Figure 5. Test results with different SNR value.

When the SNR was less than 5, the classification accuracy of all methods was less than
60%, and the accuracy near 0 was less than 50%. When the SNR was negative, the accuracy
of the classifier was no longer referential, because at this time, the simulation signal had
been submerged by noise, and none of the four methods could correctly identify faults.
However, when the noise was relatively weak, CMTPE still had the highest classification
accuracy and the smallest error bar, compared with other methods, and had better stability.
In the case of negative SNR, we used filtering and other noise reduction methods to
preprocess the signal to achieve better anti-noise effects.

4. Experimental Evaluation

In this section, we report the testing of the effectiveness of the CMTPE using bearing
fault data. CMTPE was compared with TPE, MTPE, and MPE to verify the superiority of
the CMTPE-based fault diagnosis strategy.

184



Sensors 2022, 22, 7809

4.1. Bearing Test Rig and Experimental Data Illustration

The experimental data were collected on an HD-FD-H-03X rotor rolling bearing fault
test rig. The appearance and structure of the platform are shown in Figure 6. In the
experiment, the speed of the motor was 1000 rpm and no load was applied. In order
to verify the effectiveness of the proposed method, five different health conditions were
designed, as shown in Figure 7. One of them was designated as normal, and the other
four fault types were inner race crack 4mm (IRC), outer race crack 4 mm (ORC), inner race
pitting 3 mm (IRP), and outer race pitting 3 mm (ORP).

 
Figure 6. The bearing fault test rig used in the experiment.

 
Figure 7. Four types of bearing fault designed in the experiment: (a) IRC; (b) ORC; (c) IRP; (d) ORP.

The vibration signals of the different health conditions were collected through the
acceleration sensor, in which the sampling frequency was 10,240 Hz. Figure 8 shows
the time domain and envelope spectrum of each of the four fault states. Figure 8a,c,e,g
shows the time domain diagrams of three faults; Figure 8b,d,f,h displays the corresponding
envelope spectrum diagrams. The vibration signal of each state was divided into 75 samples
for feature extraction, and the length of each sample was 2048. Then, 25 samples of each
state were randomly selected to train the ELM classifier, and the remaining samples were
used for testing [33]. Therefore, the total number of training and test sets was 125 and
250, respectively.
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Figure 8. Time domains and spectra of the four fault states: (a) time domain of IRC; (b) envelope
spectrum of IRC; (c) time domain of ORC; (d) envelope spectrum of ORC; (e) time domain of IRP;
(f) envelope spectrum of IRP; (g) time domain of ORP; (h) envelope spectrum of ORP.

4.2. Comparison Analysis

According to the proposed fault diagnosis strategy, CMTPE was used to extract the
fault features of bearing vibration signals. In addition, in order to prove that CMTPE has
better feature extraction and fault diagnosis ability, MPE, TPE, and MTPE were used for
comparison. The main parameters of these methods were as follows: the scale factor of the
multi-scale methods was τ = 20 and the embedding dimension of all methods was m = 3.
The features extracted by the above four methods were used to train and test the ELM. In
order to reduce the error caused by randomness, each method was run 20 times, and then
the average test accuracy was taken as the final classification result. The test accuracy of the
four strategies over 20 runs is shown in Figure 9. Table 2 shows the classification accuracy
and variance. The criteria were: higher accuracy represents better feature extraction ability,
and lower variance represents better stability.

Figure 9. Test accuracy of the four strategies.
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Table 2. Average test accuracy and variance of the four methods.

Methods CMTPE TPE MTPE MPE

Average test
accuracy (%) 98.60 82.16 86.37 96.51

Variance (%) 0.65 1.39 1.92 0.94

From Table 2 and Figure 9, it can be observed that the fault identification accuracy
of TPE was lower than that of the other multiscale methods, and that the identification
accuracy of CMTPE reached 98.60%, which was the highest among the multiscale methods.
This shows that the multiscale analysis could extract more abundant fault information when
processing vibration signals. Moreover, the coarse-grained process also affects the quality
of the fault features. The higher identification accuracy proves that the coarse-grained
process of the proposed CMTPE method can better grasp the key information related to
bearing faults, and it had the best feature extraction effect. Furthermore, the variance of
CMTPE was only 0.65%, which was lower than the other methods. This verifies that the
proposed fault diagnosis strategy based on CMTPE not only had excellent fault feature
extraction performance, but also had the best stability.

As shown in Figure 10, the confusion matrix of the four methods can intuitively
visualize the classification performance of each method combined with ELM [34,35]. As
shown in Figure 10b,c, TPE and MTPE exhibited many misclassifications; in particular, it
was difficult to distinguish between IRC and IRP, while, as shown in Figure 10a,d, CMTPE
and MPE have better classification performance. CMTPE had only four misclassifications,
and the classification accuracy reached 98.4%, which was the highest among all methods.

Figure 10. Confusion matrix of four methods.
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In this work, 25 training samples and 50 test samples were selected. In order to elimi-
nate the contingency brought by the specific number of training samples, a performance test
of CMTPE with different numbers of training samples was carried out. The classification
accuracy was tested with 15, 25, 35, 45, 55 and 65 training samples, and each case was run
20 times to reduce randomness. The results are shown in Figure 11. Obviously, with an
increase in the number of training samples, the accuracy of various methods will increase,
but CMTPE always had the highest test accuracy compared to the other methods.

Figure 11. Effect of the number of training samples on the performance of CMTPE, MTPE, MPE
and TPE.

In order to further intuitively compare the feature extraction capabilities of the three
multiscale methods, we carried out visual processing on the extracted fault features. In this
work, the scale factor of multiscale method was τ = 20. Therefore, the t-SNE visualization
method was used to reduce the dimension of fault features to two dimensions [36]. The
results of this feature visualization are shown in Figure 12. The criterion of feature extraction
effect is: the closer the distance between clusters of the same type of features, the farther
the distance between clusters of different types of features, which proves that the feature
extraction effect of this method is better.

 

Figure 12. Visualization of features extracted by three multiscale entropy methods: (a) MPE method;
(b) MTPE method; (c) CMTPE method.

As can be seen from Figure 12b, the features of the states, other than ORC, were
obviously mixed, which indicates that MTPE has poor feature extraction performance.
Figure 12a demonstrates that the features extracted by MPE could better distinguish
between most fault characteristics. However, the distance between clusters of different
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state features was small, some feature points were mixed, and the distance within clusters
was large, so the effect of feature extraction were poor. In contrast, it can be seen from
Figure 12c that CMTPE had the largest inter-cluster distance and the smallest intra-cluster
distance, and that the feature extraction performance was the best.

In order to test the minor fault identification ability of the proposed method, the
following two cases were designed with different extents of faults. Case 1 included a
normal control and eight different degrees of inner and outer race crack faults: normal,
inner race crack 0.2 mm, outer race crack 0.2 mm, inner race crack 1 mm, outer race crack
1 mm, inner race crack 2.7 mm, outer race crack 2.7 mm, inner race crack 4 mm, and outer
race crack 4 mm. Case 2 included a normal control and six different degrees of pitting
faults: normal, inner race pitting 1 mm, outer race pitting 1 mm, inner race pitting 2 mm,
outer race pitting 2 mm, inner race pitting 3 mm, and outer race pitting 3 mm.

The vibration signals of each state were again divided into 75 samples, with 25 used
for training the ELM, and the rest used for testing. The classification accuracy and variance
under the two cases for the four methods are shown in Tables 3 and 4. It was found that
CMTPE still had an excellent classification effect for the more minor faults, especially for
pitting faults of different degrees; the test accuracy reached 99.67%. CMTPE also still
had the highest stability. However, the other three methods had decreased test accuracy
for minor faults, in particular, the classification effect of TPE was very poor. This also
shows that the composite multiscale method can avoid the information loss caused by the
single scale method, and also overcome the problem of low accuracy of entropy estimation
caused by the traditional multiscale method. Therefore, CMTPE can effectively identify
minor faults.

Table 3. Average test accuracy and variance of the four methods for different degrees of crack faults.

Methods CMTPE TPE MTPE MPE

Average test
accuracy (%) 96.46 44.71 70.46 94.31

Variance (%) 0.74 1.95 1.85 1.01

Table 4. Average test accuracy and variance of the four methods for different degrees of pitting faults.

Methods CMTPE TPE MTPE MPE

Average test
accuracy (%) 99.67 60.49 86.39 94.97

Variance (%) 0.34 1.51 1.90 1.06

5. Conclusions

In this study, a method using CMTPE for quantifying the complexity of time series was
proposed. CMTPE takes into consideration the transition probability matrix of an ordinal
pattern and performs composite multiscale processing on the original time series. This
avoids the loss of information caused by single-scale analysis, and overcomes the problem
where the traditional multiscale method will greatly shorten the time series in large scale,
resulting in low accuracy of entropy evaluation. Composite multiscale analysis improved
the performance of CMTPE feature extraction, the accuracy of entropy estimation, and the
robustness against noise. Compared with MTPE, TPE, and MPE, the superiority of CMTPE
was verified by both simulation and experimental data. The results show that CMTPE has
better robustness, can effectively identify bearing faults, and has the highest diagnostic
accuracy and stability.

Moreover, in the case of negative SNR, it was necessary to use filtering and other
noise reduction methods to preprocess the signal to achieve better anti-noise effect. Thus,
in future work, we will test the effectiveness of combining CMTPE with other noise
reduction methods.
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