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In recent years, deep learning has shown its unique potential and advantages in feature
extraction and pattern recognition. The application of deep learning to fault diagnosis
of complex machinery systems has begun its initial exploration stage. This Special Issue
provides an international forum for professionals, academics, and researchers to present the
latest developments from theoretical studies and computational algorithm development to
applications of advanced deep learning-based machinery system fault diagnosis methods.
The contents of these studies are briefly described as follows.

In [1], a possibilistic fuzzy C-means (PFCM) algorithm was proposed to realize the
fault classification. Based on the results of fault diagnostics, a fuzzy control strategy was
used to solve the fault tolerant control for AUV. Considering the uncertainty of ocean
currents, a min-max robust optimization strategy was carried out to optimize the fuzzy con-
troller, which was solved by a cooperative particle swarm optimization (CPSO) algorithm.
Simulation and underwater experiments were used to verify the accuracy and feasibility of
the proposed method in fault diagnostics and fault-tolerant control.

In [2], the authors proposed a fault detection (FD) model, named as CCA-JITL by
using canonical correlation analysis (CCA) and just-in-time learning (JITL) to process
scalar signals of high-speed train gears. After data pre-processing and normalization, CCA
transformed covariance matrices of high-dimension historical data into low-dimension
subspace and maximized correlations between the most important latent dimensions. Then,
JITL components formulated the local FD model by utilizing the subsets of testing samples
with larger Euclidean distances to training data. A case study demonstrated that a CCA-
JITL FD model significantly outperformed traditional CCA models. The proposed approach
can also be integrated with other dimension reduction FD models, such as the principal
component analysis and partial least squares models.

In [3], the authors designed a Resnet-based classifier with the model-based data
augmentation skill, which was applied for bearing fault detection. In particular, a dynamic
model was first established to describe the bearing system by adjusting model parameters,
such as speed, load, fault size, and the different fault types. Large amounts of data under
various operation conditions can then be generated. The training dataset was constructed
through the simulated data, which was then applied to train the Resnet classifier. Moreover,
in order to reduce the gap between the simulation data and the real data, the envelop signals
were used instead of the original signals in the training process. Finally, the effectiveness
of the proposed method was demonstrated by the real bearing data. It was remarkable
that the application of the proposed method can be further extended to other mechatronic
systems with a deterministic dynamic model.

In [4], a local density-based abnormal case removal method was proposed to remove
the abnormal cases so as to prevent performance deterioration in industrial operational
optimization. More specifically, the reasons why classic case-based reasoning (CBR) would
retrieve abnormal cases were analyzed from the perspective of case retrieval. Then, a local
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density-based abnormal case removal algorithm was designed based on the local outlier
factor (LOF) and properly integrated into the traditional case retrieval step. Finally, the
effectiveness and the superiority of the local density-based abnormal case removal method
was tested on a numerical simulation and the cut-made process of cigarette production.
The results showed that the proposed method improved the operational optimization
performance of an industrial cut-made process by 23.5% compared with classic CBR and
13.3% compared with case-based fuzzy reasoning.

In [5], in order to improve the performance of fault diagnosis, the authors designed
a novel approach by using particle swarm optimization (PSO) with wavelet mutation
and least square support vector machine (LSSVM). The implementation process can be
concluded as adhering to the following three steps. Firstly, the original signals were decom-
posed through an orthogonal wavelet packet decomposition. Secondly, the decomposed
signals were reconstructed to obtain the fault features. Finally, the extracted features were
used as the inputs of the fault diagnosis model. This joint optimization method not only
solved the problem that PSO is easy to fall into a local optimum but also improved the
classification performance of fault diagnosis effectively. Through experimental verification,
the wavelet mutation particle swarm optimization and least square support vector machine
(WMPSO-LSSVM) fault diagnosis model has a maximum fault recognition efficiency that
was 12% higher than LSSVM and 9% higher than extreme learning machine (ELM). The
error of the corresponding regression model under the WMPSO-LSSVM algorithm was
0.365 less than that of the traditional linear regression model.

In [6], traditional fault diagnosis methods were limited in the condition detection of
shore bridge lifting gearboxes due to their limited ability to extract signal features and
their sensitivity to noises. In order to solve this problem, an adaptive fusion convolutional
denoising network (AF-CDN) was proposed in this paper. First, a novel 1D and 2D adaptive
fused convolutional neural network structure was built. The fusion of both the 1D and
2D convolutional models can effectively improve the feature extraction capability of the
network. Then, a gradient updating method based on the Kalman filter mechanism was
designed. Finally, the effectiveness of the developed method was evaluated by using the
benchmark datasets and the actual data collected for the shore bridge lift gearbox.

In [7], the authors investigated the event-triggered fault diagnosis (FD) problem.
Firstly, an FD fuzzy filter was proposed by using IT2 T-S fuzzy theory to generate a residual
signal. The evaluation functions were referenced to determine the occurrence of system
faults. Secondly, under the event-triggered mechanism, a fault residual system (FRS) was
established with parameter uncertainties, external disturbances and time delays, which can
reduce signal transmission and communication pressures. Thirdly, the stability conditions
of the faulty residual system were proposed by using the Lyapunov theory. For the energy
bounded condition of external noise interference, the performance criterion was established
by linear matrix inequalities. The matrix parameters of the target FD filter were obtained
via a convex optimization method. Finally, the simulation examples were provided to
illustrate the effectiveness and the practicalities of the proposed method.

In [8], the authors thought that the relationship between the indicator reference grades
and pre-defined assessment result grades was regarded as a one-to-one correspondence.
However, in engineering practice, this strict mapping relationship was difficult to meet.
Therefore, a new evidential reasoning (ER) rule-based health assessment model for complex
systems with a transformation matrix was adopted. First, on the basis of the rule-based
transformation technique, expert knowledge was embedded on the transformation matrix
to solve the inconsistent problems between the input and the outputs, which keeps the
completeness and consistency of information transformation. Second, a complete health
assessment model was established via the calculation and optimization of the model
parameters. Finally, the effectiveness of the proposed model was validated in contrast with
other methods.

In [9], the authors constructed a spatiotemporal feature fusion network (STNet) to
enhance the influence of signal spatiotemporal features on the diagnostic performance
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during motor fault diagnosis. The network used dual-stream branching to extract the
fault features of motor vibration signals via a convolutional neural network and gated
recurrent unit (GRU) simultaneously. The features were also enhanced by using the
attention mechanism. Then, the temporal and spatial features were fused and input into
the SoftMax function for fault discrimination. After that, the fault diagnosis of motor
vibration signals was completed. In addition, several sets of experimental evaluations were
conducted to verify the effectiveness of the proposed method.

In [10], a data-driven distributed subspace predictive control feeding strategy was
proposed. Firstly, the aluminum reduction cell was divided into multiple sub-systems
that affect each other according to the position of the feeding port. Based on the subspace
method, the prediction model of the whole cell was identified, and the prediction output
expression of each sub-system was deduced by decomposition. Secondly, the feeding
controller was designed for each aluminum reduction cell subsystem, and the input and
output information can be exchanged between each controller through the network. Thirdly,
with consideration of the influence of other subsystems, each subsystem solved the Nash-
optimal control feeding quantity so that each subsystem realized distributed feeding.
Finally, the simulation results showed that the proposed strategy can significantly improve
the problem of the uniform distribution of alumina concentration.

In [11], a new belief rule base (BRB) model, called the FFBRB (fuzzy fault tree analysis
and belief rule base) was given, which solved the problems existing in the BRB effectively.
The FFBRB used the Bayesian network as a bridge, used the FFTA (fuzzy fault tree analysis)
mechanism to build the BRB’s expert knowledge, used ER (evidential reasoning) as its
reasoning tool, and used P-CMA-ES (projection covariance matrix adaptation evolutionary
strategies) as its optimization model algorithm. The feasibility and superiority of the
proposed method were verified by an example of a flywheel friction torque fault tree.

In [12], the authors introduced a new intelligent fault diagnosis method based on stack
pruning sparse denoising autoencoder and convolutional neural network (sPSDAE-CNN).
Firstly, a one-dimensional sliding window was introduced for data enhancement. In addi-
tion, transforming one-dimensional time-domain data into a two-dimensional gray image
can further improve the learning ability of models. At the same time, pruning operation
was introduced to improve the training efficiency and accuracy of the network. Actual
experiments showed that for the fault of unmanned aerial vehicle (UAV) blade damage, the
sPSDAE-CNN model the authors used has better stability and reliable prediction accuracy
than traditional convolutional neural networks. The experimental results showed that the
sPSDAE-CNN model still has a good diagnostic accuracy rate in high-noise environment.
In the case of a signal-to-noise ratio of −4, it still has an accuracy rate of 90%.

In [13], aiming at the characteristics of dynamic correlation, periodic oscillation, and
weak disturbance symptom of power transmission system data, an enhanced canonical
variate analysis (CVA) method, called SLCVAkNN was presented. In the proposed method,
CVA was first used to extract the dynamic features by analyzing the data correlation and
established a statistical model with two monitoring statistics. Then, in order to handle the
periodic oscillation of power data, the two statistics were reconstructed in phase space,
and the k-nearest neighbor (kNN) technique was applied to design the nearest neighbor
distance as the enhanced monitoring indices. Further considering the detection difficulty
of weak disturbances with the insignificant symptoms, statistical local analysis (SLA) was
integrated to construct the primary and improved residual vectors of the CVA dynamic
features. The verification results on the real industrial data showed that the SLCVAkNN
method can detect the occurrence of power system disturbance more effectively than the
traditional data-driven monitoring methods.

In [14], the authors proposed an auxiliary model-based multi-innovation fractional
stochastic gradient method. The scalar innovation was extended to the innovation vector
for increasing data based on the multi-innovation identification theory. By establishing
appropriate auxiliary models, the unknown variables were estimated and the improvement
in the performance of parameter estimation was achieved owing to the fractional-order
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calculus theory. Compared with the conventional multi-innovation stochastic gradient
algorithm, the proposed method was validated to obtain better estimation accuracy through
the simulation results.

In [15], a process monitoring method based on the dynamic autoregressive latent
variable model was proposed in this paper. First, from the perspective of process data, a
dynamic autoregressive latent variable model (DALM) with process variables as input and
quality variables as output was constructed to adapt to the variable time lag characteris-
tic. In addition, a fusion of Bayesian filtering, smoothing and expectation maximization
algorithm was used to identify model parameters. Then, the process monitoring method
based on DALM was constructed, in which the process data were filtered online to ob-
tain the latent space distribution of the current state, and two statistics were constructed.
Finally, by comparing with the existing methods, the feasibility and effectiveness of the pro-
posed method were tested on the sintering process of ternary cathode materials. Detailed
comparisons were given to show the superiority of the proposed method.

As guest editors of this Special Issue, we would like to thank all of the authors for
their contributions. We wish that the readers can benefit from the above fifteen papers. We
would like to thank Machines for giving us the opportunity to serve as the guest editor for
the Special Issue. Finally, we would like to thank the reviewers for their excellent job on
evaluating these papers.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Tian, Q.; Wang, T.; Liu, B.; Ran, G. Thruster Fault Diagnostics and Fault Tolerant Control for Autonomous Underwater Vehicle
with Ocean Currents. Machines 2022, 10, 582. [CrossRef]

2. Zheng, H.; Zhu, K.; Cheng, C.; Fu, Z. Fault Detection for High-Speed Trains Using CCA and Just-in-Time Learning. Machines
2022, 10, 526. [CrossRef]

3. Qian, L.; Pan, Q.; Lv, Y.; Zhao, X. Fault Detection of Bearing by Resnet Classifier with Model-Based Data Augmentation. Machines
2022, 10, 521. [CrossRef]

4. Peng, X.; Wang, Y.; Guan, L.; Xue, Y. A Local Density-Based Abnormal Case Removal Method for Industrial Operational
Optimization under the CBR Framework. Machines 2022, 10, 471. [CrossRef]

5. Guan, S.; Huang, D.; Guo, S.; Zhao, L.; Chen, H. An Improved Fault Diagnosis Approach Using LSSVM for Complex Industrial
Systems. Machines 2022, 10, 443. [CrossRef]

6. Zhao, R.; Hu, X. An Adaptive Fusion Convolutional Denoising Network and Its Application to the Fault Diagnosis of Shore
Bridge Lift Gearbox. Machines 2022, 10, 424. [CrossRef]

7. Lu, Z.; Zhang, C.; Xu, F.; Wang, Z.; Wang, L. Fault Detection for Interval Type-2 TS Fuzzy Networked Systems via Event-Triggered
Control. Machines 2022, 10, 347. [CrossRef]

8. Li, Z.; Zhou, Z.; Wang, J.; He, W.; Zhou, X. Health Assessment of Complex System Based on Evidential Reasoning Rule with
Transformation Matrix. Machines 2022, 10, 250. [CrossRef]

9. Wang, L.; Zhang, C.; Zhu, J.; Xu, F. Fault Diagnosis of Motor Vibration Signals by Fusion of Spatiotemporal Features. Machines
2022, 10, 246. [CrossRef]

10. Cui, J.; Wang, P.; Li, X.; Huang, R.; Li, Q.; Cao, B.; Lu, H. Multipoint Feeding Strategy of Aluminum Reduction Cell Based on
Distributed Subspace Predictive Control. Machines 2022, 10, 220. [CrossRef]

11. Cheng, X.; Liu, S.; He, W.; Zhang, P.; Xu, B.; Xie, Y.; Song, J. A Model for Flywheel Fault Diagnosis Based on Fuzzy Fault Tree
Analysis and Belief Rule Base. Machines 2022, 10, 73. [CrossRef]

12. Yang, P.; Wen, C.; Geng, H.; Liu, P. Intelligent Fault Diagnosis Method for Blade Damage of Quad-rotor UAV Based on Stacked
Pruning Sparse Denoising Autoencoder and Convolutional Neural Network. Machines 2021, 9, 360. [CrossRef]

13. Wang, S.; Tian, Y.; Deng, X.; Cao, Q.; Wang, L.; Sun, P. Disturbance Detection of a Power Transmission System Based on the
Enhanced Canonical Variate Analysis Method. Machines 2021, 9, 272. [CrossRef]

14. Xu, C.; Mao, Y. Auxiliary Model-based Multi-innovation Fractional Stochastic Gradient Algorithm for Hammerstein Output-error
Systems. Machines 2021, 9, 247. [CrossRef]

15. Chen, N.; Hu, F.; Chen, J.; Chen, Z.; Gui, W.; Li, X. A Process Monitoring Method Based on Dynamic Autoregressive Latent
Variable Model and Its Application in the Sintering Process of Ternary Cathode Materials. Machines 2021, 9, 229. [CrossRef]

4



Citation: Tian, Q.; Wang, T.; Liu, B.;

Ran, G. Thruster Fault Diagnostics

and Fault Tolerant Control for

Autonomous Underwater Vehicle

with Ocean Currents. Machines 2022,

10, 582. https://doi.org/10.3390/

machines10070582

Academic Editor: Ahmed Abu-Siada

Received: 26 May 2022

Accepted: 12 July 2022

Published: 18 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

Thruster Fault Diagnostics and Fault Tolerant Control for
Autonomous Underwater Vehicle with Ocean Currents

Qunhong Tian 1,*, Tao Wang 1, Bing Liu 1 and Guangtao Ran 2,3

1 College of Mechanical and Electronic Engineering, Shandong University of Science and Technology,
Qingdao 266590, China; wangt@sdust.edu.cn (T.W.); metrc@sdust.edu.cn (B.L.)

2 Department of Control Science and Engineering, Harbin Institute of Technology, Harbin 150001, China;
ranguangtao@hit.edu.cn

3 Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
* Correspondence: tianqunhong@sdust.edu.cn

Abstract: Autonomous underwater vehicle (AUV) is one of the most important exploration tools
in the ocean underwater environment, whose movement is realized by the underwater thrusters,
however, the thruster fault happens frequently in engineering practice. Ocean currents perturbations
could produce noise for thruster fault diagnosis, in order to solve the thruster fault diagnostics, a
possibilistic fuzzy C-means (PFCM) algorithm is proposed to realize the fault classification in this
paper. On the basis of the results of fault diagnostics, a fuzzy control strategy is proposed to solve the
fault tolerant control for AUV. Considering the uncertainty of ocean currents, it proposes a min-max
robust optimization problem to optimize the fuzzy controller, which is solved by a cooperative
particle swarm optimization (CPSO) algorithm. Simulation and underwater experiments are used
to verify the accuracy and feasibility of the proposed method of thruster fault diagnostics and fault
tolerant control.

Keywords: autonomous underwater vehicle; thruster fault diagnostics; fault tolerant control; robust
optimization; ocean currents

1. Introduction

An autonomous underwater vehicle (AUV) is one of the most important exploration
tools in the ocean underwater environment. As an important part of AUV, the thruster di-
rectly determines the efficiency and safety with strong working intensity for AUV, However,
the thruster fault usually happens in engineering practice [1,2]. Therefore, how to make
thruster fault diagnosis and fault tolerant control for AUV is the premise for completing
underwater missions [3,4].

There have been many works applied to AUV fault diagnosis. A Gaussian particle
filtering algorithm is presented to estimate the AUV failure model, the Bayes algorithm
is used to realize the AUV thruster fault detection [5]. For solving the fault diagnosis of
AUV actuators, a diagnostic network is proposed based on extreme learning and a wide
convolutional neural network [6]. Through experimental data analysis, a feature calculation
method is presented to solve the weak faults thruster faults, which provides accurate
and concise information for fault severity identification [7]. A fault diagnosis method
is presented based on deep learning and attention mechanism for AUV, a data attention
mechanism is developed for realizing dynamic decorrelation, multi-layer perceptron is used
for fault detection [8]. From training datasets gathered in previous AUV operations directly,
the Bayesian nonparametric technique is used for modelling the vehicle’s performance
including faults, in the light of the Kullback-Leibler divergence measure, a nearest-neighbor
classifier is used to accomplish the fault diagnosis [9]. In summary, the above studies
have given some methods to solve the AUV fault diagnosis. However, ocean currents
perturbations could produce noise for thruster fault diagnosis, the above methods are

Machines 2022, 10, 582. https://doi.org/10.3390/machines10070582 https://www.mdpi.com/journal/machines5
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difficult to be used for AUV fault diagnosis with ocean currents in practice effectively.
The above methods also do not consider how to control AUV to complete the underwater
missions with minor faults.

Fault tolerant control is the technology to ensure the AUV for completing the under-
water mission with faults [10,11]. In order to realize the fault tolerant control, it develops a
model-parameter-free control strategy for AUV trajectory tracking, tracking controller is
designed through the employment of sliding mode control technology without utilizing
model parameters. However, the sliding mode control easily lead to the chattering of the
AUV control system [12]. In order to solve the problem of thruster fault tolerant control for
AUV, a fault tolerant control method is proposed in the light of the sliding mode theory,
the adaptive law is developed for the proposed controller to mitigate the chattering phe-
nomenon [13]. In order to further improve the performance of the fault tolerant control,
some intelligent methods are investigated [4,14,15]. An iterative learning algorithm is pro-
posed to process the propeller failure for AUV based on an extended state observer, a fuzzy
logic controller is introduced to deal with the fuzzification of the parameters of a saturated
proportional-derivative controller and extended state observer [14]. Combined with the
backstepping method, a single critic network based on adaptive dynamic programming
is used to deal with the AUV fault tolerant control. It designs an online policy iteration
algorithm in light of the estimated system states [4]. To further conduct the effect of the
ocean currents, the fault tolerant issue is transformed into an optimal control problem by
the adaptive dynamic programming method, the neural-network estimator is developed
to estimate ocean currents [15], however, it is difficult to establish the ocean current ac-
curately in practice. In summary, although the above research has given some methods
for fault tolerant control for AUV, they are difficult to be used in an environment with
ocean currents.

Ocean currents perturbations could produce noise for thruster fault diagnosis. In this
paper, in order to solve the problem of the thruster fault diagnostics and fault tolerant
control for AUV with ocean currents, the possibilistic fuzzy C-means (PFCM) algorithm
is proposed for realizing the thruster fault diagnostics effectively. Once the thruster fault
is diagnosed, based on the fault diagnosis results, a fault tolerant control is presented
by the fuzzy controller, to improve the performance of the fuzzy controller, a robust
optimization problem is proposed by considering the uncertainty of ocean currents, which
is solved by the proposed co-evolutionary (CPSO) algorithm, finally, it forms a mechanism
of diagnostics and control strategy to accomplish the missions.

The rest of this paper is given as follows. Section 2 presents the AUV mathematical
models; Section 3 gives the algorithm for AUV fault diagnostics and fault tolerant control;
Section 4 discusses the effectiveness of the proposed method based on different scenarios;
Section 5 concludes the paper.

2. Mathematical Models of AUV

In this section, the problem description is given for the AUV firstly, and then the AUV
models are discussed.

2.1. Problem Description

AUV works in a complex marine environment, which is a complex dynamic system
with strong nonlinearity. Due to the complexity and unpredictability of the marine environ-
ment, thrusters are easy to fail. However, when the thruster fails, the expected task of the
AUV cannot be completed, or AUV may be destroyed directly, which will cause extremely
serious losses and may pollute the environment.

Thruster fault diagnostics is the premise to solve the above problems, which include
the type of motor fault, propeller enwinding by foreign matter, propeller blade damage,
thruster idling, and so on. However, AUV is greatly affected by the external disturbance
of ocean currents, the external interference and fault are difficult to be separated, which
takes great difficulty for AUV fault diagnosis. Meanwhile, the ocean currents increase the

6



Machines 2022, 10, 582

difficulty of controlling the AUV to accomplish the missions with thruster fault. Figure 1
gives the design process of thruster fault diagnostics and faults tolerant control for AUV,
the PFCM algorithm is proposed to realize the thruster fault diagnostics. Once the thruster
fault is diagnosed, based on the fault diagnosis results, a fault tolerant control is presented
by the fuzzy controller, in order to improve the performance of the fuzzy controller, a
robust optimization problem is proposed by considering the uncertainty of ocean currents,
which is solved by the proposed CPSO algorithm, finally, it forms a mechanism of fault
diagnostics and tolerant control strategy to accomplish the missions.

Figure 1. Design process of thruster fault diagnostics and fault tolerant control for AUV.

2.2. AUV KINEMATIC model

Figure 2 gives two coordinate systems for AUV to obtain the kinematic model, one
is the earth-frame {O − X, Y, Z}, the other is the body-fixed frame {O1 − X1, Y1, Z1}. The
AUV kinematic model can deal with the geometric aspects of motion, which is written in a
general form as follows [16–19]:

.
η =

[
J1 03×3

03×3 J2

]
υ (1)

[
.
x

.
y

.
z

.
φ

.
θ

.
ψ
]T

=

[
J1 03×3

03×3 J2

][
u v w p q r

]T (2)

where the vector η =
[
x y z φ θ ψ

]T denotes the position and orientation of AUV in
the Earth-frame, x, y, z represent the position, φ, θ, ψ are the Euler angles of roll, pitch and
yaw angles respectively; υ =

[
u v w p q r

]
denotes the translational and rotational

velocities in the body-fixed frame, u, v, w are the surge, sway and heave components
respectively, p, q, r are the roll, pitch and yaw rates respectively; J1 and J2 are the coordinate
transformation matrixes, which are given as follows:

J1 =

⎡⎣cos θ cos ψ sin θ sin φ cos ψ − cos φ sin ψ sin θ sin ψ + sin θ cos φ cos ψ
cos θ sin ψ sin θ sin φ sin ψ + cos φ cos ψ sin θ cos φ sin ψ − sin φ cos ψ
− sin θ sin φ cos θ cos φ cos θ

⎤⎦ (3)

J2 =

⎡⎣1 sin φ tan θ cos φ tan θ
0 cos φ − sin φ
0 sin φ/cos θ cos φ/cos θ

⎤⎦ (4)

Figure 2. Coordinate systems for AUV.

7



Machines 2022, 10, 582

2.3. AUV Dynamic Model

It can describe the general motion of AUV with six degrees of freedom dynamic
equation as follows [17,18,20]:

M
.
υ + C(υ)V + D(υ)υ + g(η) = τ (5)

where M ∈ R6×6 is the inertial matrix; υ is the position and orientation vector; C ∈ R6×6

is the matrix of Coriolis and Centripetal terms; g ∈ R6×6 is the gravitational terms matrix;
D ∈ R6×6 is the damping matrix; τ is the control forces vector. Figure 3 shows the planform
of the designed AUV, it assumes that the center of gravity is at the same point as the center
of buoyancy for AUV, the translational motion and rotational motion are expressed by six
equations as follows:

m
( .
u − vr + wq − xg

(
q2 + r2)+ zg(pr + q)

)
= XHS + Xu|u|+ X .

uu + Xwqwq + Xqqqq + Xvrvr + Xrrrr + Xprop
(6)

m
( .
v − wp + ur − zg

(
qr − .

p
)
+ xg

(
pq +

.
r
))

= YHS + Yv|v|v|v|+ Yr|r|r|r|+ Y .
v

.
v + Y.

r
.
r + Yurur + Ywpwp + Ypq pq + Yuvuv + Yuuδr u2δr

(7)

m
( .
w − uq + vp − zg

(
q2 + p2)+ xg

(
rp +

.
q
))

= ZHS + Zw|w|w|w|+ Zq|q|q|q|+ Z .
w

.
w + Z .

q
.
q + Zuquq + Zvpvp + Zpr pr + Zuwuw + Zuuδs u2δs

(8)

Ixx
.
p +

(
Izz − Iyy

)
qr + m

∣∣−zg
( .
v − wp + ur

)∣∣
= KHS + Kp|p|p|p|+ kp|p|p|p|+ k .

p
.
p + kprop

(9)

Iyy
.
q + (Ixx − Izz)pr + m

∣∣zg
( .
u − vr + wq

)− xg(
.

w − uq + vp)
∣∣ =

MHS + Mw|w|q|q|+ Mq|q|q|q|+ M .
w

.
w + M .

q
.
q + Muquq + Mvpvp + Mrprp + Muwuw + Muuδs u2δs

(10)

Izz
.
r +

(
Iyy − Ixx

)
qp + m

∣∣xg
( .
v − wp + ur

)∣∣ =
NHS + Nv|v|v|v|+ Nr|r|r|r|+ N .

v
.
v + N.

r
.
r + Nurur + Nwpwp + Npq pq + Nuvuv + Nuuδr u2δr

(11)

F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 cos β cos β − cos β − cos β

0 0 sin β − sin β sin β − sin β

0 1 0 0 0 0

bv bv sin β · ch sin β · ch − sin β · ch sin β · ch

av av cos β · ch cos β · ch − cos β · ch − cos β · ch

0 0 B1 B2 B3 B4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F1

F2

F3

F4

F5

F6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(12)

where B1 = cos β · bh + sin β · ah, B2 = − cos β · bh − sin β · ah, B3 = − cos β · bh − sin β · ah,
B4 = cos β · bh − sin β · ah. F1 is the thrust of the left vertical thruster; F2 is the thrust of the
right vertical thruster. F3 is the thrust of the left front horizontal thruster; F4 is the thrust of
the right front horizontal thruster; F5 is the thrust of the left rear horizontal thruster thrust;
F6 is the thrust of the right rear horizontal thruster thrust. av is the distance between the
center of vertical thruster and X1O1Z1 plane; bv is the distance between the center of vertical
thruster and Y1O1Z1 plane; ah is the distance between the center of horizontal thruster
and X1O1Z1 plane; bh is the distance between the center of horizontal thruster and Y1O1Z1
plane; ch is the distance between the center of horizontal thruster and X1O1Y1 plane.
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Figure 3. Planform of the designed AUV.

3. Thruster Fault Diagnostics and Fault Tolerant Control

Thruster fault diagnostics and fault tolerant control problem is discussed in this section.
Based on the results of thruster fault diagnostics by PFCM algorithm, a fuzzy controller
is proposed for AUV fault tolerant control, which is optimized with the proposed CPSO
algorithm, the control performance is ensured with the robust optimization design.

3.1. Thruster Fault Diagnostics for AUV

AUV thruster is usually constituted by a motor, reducer, propeller, controller, and so on.
The battery pack provides the drive energy, motor, and reducer as the actuator, the output
voltage is controlled by the received upper computer instruction by the driver controller,
further to control motor speed, motor and speed reducer drive screw rotation. Generally, the
speed is proportional to the thrust. The propeller provides the thrust to realize the variable
speed sailing of AUV, the drive controller uploads the real-time operation parameters of
the propeller to the upper computer. The propeller protection cover is used to avoid the
propeller damage caused by the impact of fish or other objects. In this paper, the type of
the thruster fault is given as follows: motor fault, propeller enwinding by foreign matter,
propeller blade damage, thruster got stuck, thruster idling. The voltage, current, and speed
of the thruster are used to judge whether the thruster is faulty.

It is well known that it is difficult for fault diagnosis of nonlinear systems [21,22].
Moreover, ocean currents perturbations could produce noise and further increase the
difficulty of thruster fault diagnosis. To solve the thruster diagnosis of AUV nonlinear
system with ocean currents, it proposes the PFCM algorithm. PFCM algorithm is one
popular clustering method, it is highly sensitive to noise and outliers, and the size of the
clusters [23,24]. The algorithm is an unsupervised technique, the data is clustered based
on similarities and dissimilarities, which are measured via distances of the cluster centers
to the data points. The clustering results are described by introducing membership and
probability partition matrixes.
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PFCM algorithm is proposed with optimization as follows [25].

min JM(U, T, V) =
n
∑

i=1

c
∑

j=1
(aum

ij + btp
ij)d

2
ij +

n
∑

i=1
ηi

c
∑

j=1
(1 − tij)

p

s.t.
c
∑

i=1
uij = 1

(13)

ηi = K
n

∑
j=1

um
ij d2

ij/
n

∑
j=1

um
ij (14)

where c is the number of clusters; m > 1 is the degree of fuzziness; n is the number of data
points; a and b are the constants (a > 0, b > 0), which represent relative importance of
fuzzy and possibilistic terms respectively, the larger value of b, the better the ability to resist
noise points; U = [uij]c×n is the membership degrees matrix (0 ≤ uij); T = [tij]c×n is the
typicality matrix (tij ≤ 1); V = [vij]c×n is the cluster centers matrix; p > 1 is the possibilistic
exponent, dij is the distance between the cluster center (vi) and data point (xi); ηi is the
penalty factor, K is a constant.

The objective function in Equation (13) can be solved via an iterative procedure
as follows:

uij =
1

c
∑

k=1

( dij
dkj

)2/m−1 (15)

tij =
1

1 +
(

b
ηi

d2
ij

) 1
p−1

(16)

vi =

n
∑

j=1

(
aum

ij + btp
ij

)
xj

n
∑

j=1

(
aum

ij + btp
ij

) (17)

according to the above Equations (15)–(17), it can obtain the optimal degree of membership
and cluster center.

3.2. Fault Tolerant Control for AUV

Fuzzy theory can describe the uncertainty of the system, it has been used to solve the
problem of fault diagnosis and control effectively [26–28]. Therefore, in this paper, fuzzy
controller is proposed to solve the fault tolerant control problem for AUV path tracking,
the fuzzy control includes the fuzzification, fuzzy inference and defuzzification. For the
fuzzification operation, the Gaussian function is selected as the membership function of
fuzzy variable; Table 1 gives the fuzzy control rule for fuzzy inference; centroid method is
used to realize the defuzzification operation. The input parameters of the fuzzy controller
are position error e(t) and its derivative

.
e(t), the output parameters of the fuzzy controller

are angles and those derivatives. Figures 4 and 5 give the membership functions for
position error and its derivative respectively. λ1, λ2, λ3, λ4, λ5, λ6, λ7 are the mean of the
normal distribution for Gaussian membership function of position error. It includes seven
fuzzy states: NB(λ1), NM(λ2), NS(λ3), ZO(λ4), PS(λ5), PM(λ6), PB(λ7). β1, β2, β3, β4,
β5, β6, β7 are the mean of the normal distribution for Gaussian membership function of
the derivative of position error. It includes seven fuzzy states: NB(β1), NM(β2), NS(β3),
ZO(β4), PS(β5), PM(β6), PB(β7).
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Table 1. Fuzzy control rules for AUV.

e(t)/
.
e(t) NB NM NS ZO PS PM PB

NB NB NB NM NS NS ZO PM
NM NB NM NS ZO ZO PS PM
NS NB NM NS ZO PS PS PM
ZO NB NM NS ZO PS PM PB
PS NM NS NS ZO PS PM PB
PM NM NS ZO ZO PS PM PB
PB NM ZO PS PS PM PB PB

Figure 4. Membership function for position error.

Figure 5. Membership function for the derivative of position error.

3.3. Robust Optimization for AUV

Tracking error between the desired and tracking path is the important performance
index for path tracking results, which is replaced by the average of the total absolute of the
position errors in this paper, it can be given as follows:

fE =
1
T

T

∑
t=0

|et| (18)
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where et is one position error at the point qt of the tracking path; |et| is the absolute value of
et, fE is the average of the total |et|, T is the total number of points of AUV tracking path.

It defines that the start and target points are (x0, y0, z0) and (xT , yT , zT) for
the tracking path respectively, the tracking path can consist of a sequence of points
A = [(x0, y0, z0), · · · , (xt, yt, zt), · · · , (xT , yT , zT)].

min fE(A)

s.t. xmin ≤ xt ≤ xmax

ymin ≤ yt ≤ ymax

zmin ≤ zt ≤ zmax

.
η =

[
J1 03×3

03×3 J2

]
V

(19)

where xm, ym, zm are the decision variables of the optimization problem for AUV path track-
ing; (xmax, ymax, zmax) and (xmin, ymin, zmin) are the maximum and minimum coordinate
position points, respectively.

Considering the uncertain ocean currents, Equation (19) can be transformed into a
robust optimization problem as follows:

min
(xm ,ym ,zm)

max
(uc ,νc ,wc)

f (xm, ym, zm, uc, νc, wc)

s.t. xmin ≤ xm ≤ xmax

ymin ≤ ym ≤ ymax

zmin ≤ zm ≤ zmax

.
η =

⎡⎣ J1 03×3

03×3 J2

⎤⎦V

uminc ≤ uc ≤ umaxc

vminc ≤ νc ≤ vmaxc

wminc ≤ wc ≤ wmaxc

(20)

where
[
uminc νminc wminc

]
and

[
umaxc νmaxc wmaxc

]
are the minimum and maximum

values of the components of ocean currents. Equation (20) is the robust optimization
problem, which is also called “min-max” optimization problem for the AUV path tracking,
whose goal is to find the robust solution for the tracking path with the best performance in
all the worst ocean currents.

CPSO is proposed to solve the robust optimization problem (20), which can find a good
solution to the “min-max” optimization problem for the AUV path tracking. The CPSO
algorithm involves two populations P1 and P2, each population evolves independently and
tied together via the fitness evaluation [29,30]. The first population P1 is used to evolve
the decision variables (xm, ym, zm), the second population P2 is used to evolve the ocean
currents (uc, νc, wc).

For the first population, the fitness function of decision variables is given by

G(xm, ym, zm) = max
uc ,νc ,wc∈P2

f (xm, ym, zm, uc, νc, wc) (21)

which is to be minimized.
For the second population, the fitness function of ocean currents is given by
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H(uc, νc, wc) = min
xm ,ym ,zm∈P1

f (xm, ym, zm, uc, νc, wc) (22)

which is to be maximized.

3.4. Thruster Fault Diagnostics and Fault Tolerant Control Algorithm

For the CPSO algorithm, in the light of Equation (21), the global best value in P1 is
gotten as the solution. Based on Equation (22), the globally best values in P2 are obtained
as the scenarios for ocean currents. According to the above design principles, the optimal
tracking path can be obtained.

Figure 6 gives the flowchart for the thruster fault diagnostics and fault tolerant control
of AUV, the corresponding steps are given in detail in Algorithm 1.

Algorithm 1: Thruster fault diagnostics and fault tolerant control for AUV

1: Initializing the parameters m, p, U, T, V and so on for thruster fault diagnostics;

2: Calculating the penalty factor ηi based on Equation (14), updating U, T, V based on
Equations (15)–(17) respectively;

3: If the iterations Nd are smaller than the given maximum number of times (Nd_max),
obtaining the final U, T, V; else if go to Step 2.

4: Considering the effects of ocean currents, establishing the robust optimization model for
AUV fault tolerant control systems.

5: Establishing the models of the evaluation functions (21) and (22) for P1 and P2 respectively.

6: Initializing the two populations randomly, evaluating each population co-evolutionarily by
using (21) and (22), respectively.

7: Evolving the population P1 based on (21); replacing the global best (gbest) and personal best
(pbest) particle positions.

8: If the iterations (Ni_1) is smaller than the given maximum number of times (Nm_1), go to the
next step, else if go to Step 7.

9: Evolving the population P2 based on (22); replacing gbest and pbest particle positions.

10: If the iterations Ni_2 are smaller than the given maximum number of times (Nm_2), go to the
next step, else if, go to step 9.

11: If the iterations Ni_3 are smaller than the given maximum number of times (Nm_3), obtaining
the optimal parameters of the membership function, then getting the final tracking points,
end the program; else if go to Step 6.

13



Machines 2022, 10, 582

Figure 6. Flowchart for thruster fault diagnostics and fault tolerant control for AUV.

4. Simulation and Experiment Analysis

In this paper, different experiments are given to analyze the performance of the
proposed thruster fault diagnostics and fault tolerant control method for AUV, Figure 7
shows the designed AUV, and Figure 8 gives the AUV thruster in practice. Based on the test
data of the thruster fault, the results of the fault type are obtained for AUV thruster fault
diagnostics. AUV is equipped with six underwater propellers, among which the propeller
at the top of the AUV is used to control the sinking and floating of the AUV, and the
other four propellers at the front and back are used to control the forward, backward, and
steering of the AUV. The speed of AUV is set as 0.15 m/s, and the speed of uncertain ocean
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current is set as 0–0.08 m/s, whose direction is random. Sine path, circular path, rectangular
path, and irregularity path are given to illustrate the tracking effect with thruster fault. The
algorithm is coded in MATLAB R2019a and simulations are run on the PC with 2.00 GHz
CPU/8 GB RAM.

Figure 7. The designed AUV.

Figure 8. The thruster of AUV.

In order to test the effectiveness of the proposed thruster fault diagnostics, a data set
with 300 groups is obtained from the underwater experiment for our designed AUV. Each
group data is composed of voltage, current, and speed of the thrusters, which can denote
the characteristic of six types of thruster operation: motor fault, propeller enwinding by
foreign matter, propeller blade damage, thruster got stuck, thruster idling, and normal
operation. Therefore, it assumes that the number of the clustering centers is 6. Figure 9
shows the classification results by the proposed PFCM algorithm. The center of clustering
of the thruster stuck state is (11.98 V, 0.58 A, 0.75 r/s), the center of clustering of the
propeller enwinding state is (12.2 V, 0.41 A, 12.07 r/s), the center of clustering of the thruster
normal operation is (12.48 V, 0.35 A, 16.9 r/s), the center of clustering of the propeller
damage is (12.78 V, 0.27 A, 21.01 r/s), the center of clustering of the thruster idling state is
(13 V, 0.17 A, 25 r/s), the center of clustering of the motor fault is (13 V, 0.05 A, 0.77 r/s).
The signals of six different fault types are closely clustered around their respective clustering
centers after classification by the PFCM algorithm. The proposed fault detection algorithm
can accurately identify the fault types of AUV and effectively classify them.

Because the thrusters of AUV are often immersed in seawater, the probability of failure
is significantly improved after the corrosion of seawater. AUV operation in the ocean may
be enwound by marine plants or marine organisms, which affects the performance of the
thrusters. The thruster is the main forward power of AUV, if the above phenomenon occurs,
it affects the velocity, heading angle, and the safety of AUV, and even leads to the AUV
being unrecoverable. Therefore, in this paper, after detecting the fault type of AUV based
on the PFCM algorithm, the corresponding fault tolerant control is adopted according to the
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fault type and degree. By reducing the thrust of other thrusters, the AUV can continue to
move to accomplish the missions. If the AUV loses all power, it can be stopped and floated
up for recovery. Therefore, the fault tolerant control proposed in this paper only applies to
the fault types of AUV power loss caused by AUV enwinding or propeller damage.

Figure 9. The classification results by the proposed PFCM algorithm.

When a thruster fault happens, it loses thrust and its torque balance is broken, which
leads the change of heading angle and takes off its desired path. For example, if the left
thruster (F5) of the AUV fault happens and its thrust decreases, the thrust of its adjacent
thruster (F6) should be correspondingly reduced to balance the torque of the AUV. If the
two adjacent thruster faults happen, the thrust of the thruster with a larger thrust is reduced
accordingly to make its torque reach balance. If these two thrusters (F5, F6) have a large
degree of fault, the thrusters (F3 and F4) are responsible for AUV regression on the opposite
side, which can complete the follow-up tasks or realize turning back.

In the complex environment, there are many factors that affect the AUV operation,
such as obstacles, ocean currents, and fish schools. Therefore, the AUV path is not a line, the
curved path is an essential to the AUV path. This paper gives a sine curve path as follows:⎧⎨⎩

x(t1) = t1
y(t1) = 80 sin(t1π/80)
z(t1) = 0

(23)

where t1 ∈ [0 : 0.25 : 360], it assumes that the sine curve is constituted of 1440 points
[(0, 0, 0), (0.25, 0.78, 0), · · · , (360, 0, 0)], the tracking start point is (0, 0, 0). The initial
position, angle, initial velocity, and expected velocity are set as (x, y, z) = (0, 0, 0)
m,(ϕ, θ, φ) = (0◦, 0◦, 0◦), (u, v, w) = (0, 0, 0) [kn], (u, v, w) = (0.2, 0, 0) [kn] for
AUV. If the thruster is enwound with foreign matter. Based on the results of thruster
fault diagnostics, Figure 10 gives the tracking results for the sine path by the proposed
fault tolerant control algorithm, the tracking path length is 832.91 m. Figure 11 shows
the position error for the corresponding sine path tracking, the average position errors is
0.27 m, the range of the tracking error is [−1.44 m, 1.91 m], and the standard deviation of
the tracking error is 0.16 m. The proposed algorithm can realize the sine path tracking with
thruster enwinding effectively.
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Figure 10. Tracking for sine path.

Figure 11. Position error for the sine path tracking.

In the practice, in order to complete some specific tasks, AUV needs to move around
the detected object in a circle. Therefore, the circular curve is also one of the key paths of
AUV path tracking. The circular path is described as follows:⎧⎨⎩

x(t2) = 55 + 40 cos(t2)
y(t2) = 40 sin(t2)
z(t2) = 0

(24)

where t2 ∈ [π : −π/400 : −π], it assumes that the curve is constituted of 800 points
[(15, 0, 0), (15.002, 0.31, 0), · · · , (15, 0, 0)], the stat tracking point is (0, 0, 0).
The initial position, initial angle, initial velocity, and expected velocity are set as
(x, y, z) = (5, −5, 0) m, (ϕ, θ, φ) = (0◦, 0 , 0 ), (u, v, w) = (0, 0, 0) [kn].
(u, v, w) = (0.2, 0, 0) [kn] for AUV respectively. If the thruster is enwound with foreign
matter. Based on the results of thruster fault diagnostics, Figure 12 gives the path tracking
results for the circle path. Figure 13 shows the position error for the circle path tracking.
The tracking path length is 261.73 m, the average position errors is 0.59 m, the range is
[−10 m, 0.71 m] for AUV tracking position errors, the standard deviation of the tracking
error is 0.15 m. The proposed algorithm can realize the circle path tracking with thruster
enwinding effectively.
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Figure 12. Tracking for circle path.

Figure 13. Position error for the circle path tracking.

In the real working environment, in order to successfully complete the missions, AUV
needs to run along different paths, among which rectangular paths are common. Therefore,
a rectangular path is given to simulate the actual path tracking, the basic path parameters
are given for the rectangular path as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x = t3
y = t3 + 10 t3 ∈ [10, 50]
y = −t3 + 110 t3 ∈ [50,−30]
y = t3 + 170 t3 ∈ [−30,−70]
y = −t3 + 30 t3 ∈ [−70, 10]

(25)

It assumes that the path is constituted of the points [(10, 20, 0), (1, 11, 0), · · · ,
(10, 20, 0)]. The start tracking point is (10, 20, 0), The initial position, initial angle, initial
velocity, and expected velocity are set as (x, y, z) = (0, 0, 0) m, (ϕ, θ, φ) = (0◦, 0◦, 0◦),
(u, v, w) = (0, 0, 0) [kn], (u, v, w) = (0.2, 0, 0) [kn]. If the thruster is enwound
with foreign matter. Based on the results of thruster fault diagnostics, Figure 14 gives
the tracking results for the rectangular path. Figure 15 shows the position error for the
rectangular path tracking. The tracking path length is 255.06 m, the average position errors
is 0.81 m, the range is [−1.94 m, 8.26 m] for AUV tracking position errors, the standard
deviation of the tracking error is 0.35 m. The proposed algorithm can realize the rectangular
path tracking with thruster enwinding effectively.
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Figure 14. Tracking for the rectangular path.

Figure 15. Position error for the rectangular path tracking.

In order to verify the path tracking effect of the controller proposed in the presence of
obstacles, multiple circular obstacles are set in the environment. The tracking start point is
(x, y, z) = (0, 0, 0), the target point is (x, y, z) = (100, 100, 0). The initial position,
initial angle, initial velocity, and expected velocity are set as (ϕ, θ, φ) = (0◦, 0◦, 0◦),
(u, v, w) = (0, 0, 0) [kn]. (u, v, w) = (0.2, 0, 0) [kn]. If the thruster is enwound
with foreign matter, the ocean current is 0.07 [kn]. Based on the results of thruster fault
diagnostics, it can obtain the fault tolerant control results by the proposed and existing
traditional algorithms as shown in Figure 16. For the proposed algorithm, the tracking
path length is 150.54 m, the average of the position errors is 0.78 m, and the standard
deviation of the position errors is 0.18 m. For the traditional fuzzy control, the parameters
of the membership function are optimized by the trial and error method. The tracking path
length is 152.71 m, the average of the position errors is 0.92 m, the standard deviation of
the position errors is 0.22 m. Table 2 gives the comparison results between the proposed
and traditional algorithms. Figure 17 shows the position error for the function tracking.
The ranges of the position errors are [−1.65 m, 7.53 m] and [−1.75 m, 7.47 m] for the
proposed and existing algorithms respectively. Compared with the traditional algorithm,
one can see that the tracking path length, average position error, and time are smaller
by the proposed algorithm. The proposed algorithm can realize the path tracking in the
environment with obstacles and ocean currents effectively.
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Figure 16. (a) Path tracking in the environment with obstacles. (b) Part of the enlarged view for path
tracking curve.

Figure 17. Position error for the path tracking in the environment with obstacles.
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Table 2. Comparison results between the proposed and traditional algorithms.

Method
Path Length

(m)
Mean Tracking Error

(m)
Standard Deviation

(m)

The proposed algorithm 150.54 0.78 0.18
Traditional method 152.71 0.92 0.22

5. Conclusions

Thruster is the driving mechanism for AUV movement, whose fault diagnostics and
fault tolerant control are the premise to complete the underwater missions. In practice,
ocean currents perturbations could produce noise for thruster fault diagnosis, in this paper,
the PFCM algorithm is proposed to solve the problem of thruster fault diagnostics. It is
not enough just to realize the thruster fault diagnostics, in order to successfully complete
the missions with thruster fault, a fuzzy controller is presented. Considering the effect
of ocean currents, the CPSO algorithm is developed to optimize the fuzzy controller,
which guarantees the fault tolerant control performance. Based on the designed AUV,
a date set is obtained to demonstrate the effectiveness of the thruster fault diagnostics.
Different scenarios of path tracking are given to illustrate the performance of the proposed
algorithm. Compared with the traditional fuzzy fault tolerant control, the tracking path
length and tracking error are smaller by the proposed algorithm, which illustrates the
proposed algorithm. In this paper, the proposed algorithm is difficult to be used for weak
faults diagnosis of AUV thrusters. However, major faults are generally developed from
weak faults. Therefore, in future work, we will try to solve the problem of accurate weak
faults diagnosis of AUV thrusters in the presence of interference, which is one of the keys
to preventing and reducing catastrophic accidents.
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Abstract: Online monitors of the running gears systems of high-speed trains play critical roles in
ensuring operational safety and reliability. Status signals collected from high-speed train running
gears are very complex regarding working environments, random noises and many other real-world
constraints. This paper proposed fault detection (FD) models using canonical correlation analysis
(CCA) and just-in-time learning (JITL) to process scalar signals of high-speed train gears, named
as CCA-JITL. After data preprocessing and normalization, CCA transforms covariance matrices of
high-dimension historical data into low-dimension subspaces and maximizes correlations between
the most important latent dimensions. Then, JITL components formulate local FD models which
utilize subsets of testing samples with larger Euclidean distances to training data. A case study
introduced a novel system design of an online FD architecture and demonstrated that CCA-JITL
FD models significantly outperformed traditional CCA models. The approach is applicable to other
dimension reduction FD models such as PCA and PLS.

Keywords: canonical correlation analysis; just-in-time learning; fault detection; high-speed trains

1. Introduction

In the past twenty years, high-speed railway systems are gradually becoming one of
the most popular transportation services because of their significant advantages in speed
and energy efficiency [1–3]. The running gears are critical parts to ensure the safety of
high-speed train operations. To precisely detect the real-time health status of running
gears is very challengeable. In reality, sensor signals of running gears in high-speed trains
have a very high degree of complexity, for instance, messy signals from bogie, bearing
temperature, gear temperature, working environments and random noises. Moreover, there
are only small-scale historical failure data available among large volumes of monitoring
data streams. Incomplete training resources might easily raise detection errors.

With the rapid development of train sensor technology, data-driven FD methods have
been well studied in the last century. Many multivariate statistical methods have been
widely applied in the fault detection fields [4–6], for example, principal component analysis
(PCA), partial least squares (PLS) and CCA. PCA was one of the earliest dimensionality re-
duction methods to process high-dimension signal data for FD purposes [7,8]. PCA projects
high-dimension input data into low-rank subspaces while retaining the main information
of the original data within a few top latent dimensions. Moreover, PCA FD models are
derived from a large scale of normal status signals and generate fault alarm thresholds
for incoming error signals. PLS and CCA are widely utilized to develop advanced FD
models [6,9,10]. PLS decomposes the covariance matrices of two sets of variables into
relational subspaces and residual subspaces. Then, the regression analysis to covariance
structure estimates the multi-direction of one set of variables that explains the maximum
multidimensional variance direction of another set of variables. CCA identifies linear
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combinations between two groups of variables to maximize the overall group correlation.
Multi-set CCA resolved feature fusion of multiple groups of variables [11].

Chen and Ding [12] designed a general CCA-based FD infrastructure for non-Gaussian
processes which aimed to boost the fault detection rate (FDR) under an acceptable false
alarm rate (FAR). Peng and Ding [13] have proposed CCA-based distributed monitoring
processes within partly-connected networks, which reduced communication costs and risks
and avoided a significant drop in system performance. Chen and Chen [6] introduced a
single-side CCA (SsCCA) model with promising FD performance using single-side neural
networks. Chen and Li [14] had proposed a stacked approach, so called neural network-
aided canonical variate analysis (SNNCVA), which showed satisfactory FD performance for
nonlinear datasets. Garramiola and Poza [15] introduced a data-driven approach of fault
diagnosis to build hybrid fusion models to detect, isolate and classify sensor faults. Kou
and Qin [16] extended fault diagnosis methodology into tensor space to deal with multi-
sensor data with high precision and convergence speed. Zhao and Yan [17] provided a
comprehensive review which summarized state-of-the-art deep learning (DL) technologies
applied on machine health monitoring (MHM). Niu and Xiong [18] proposed a novel fault
Petri net fault detection and diagnosis (FDD) model to analyze signals of speed sensors of
high-speed trains. Fu and Huang [19] proposed a fault diagnosis method based on the long-
short-term memory (LSTM) recursive neural network (RNN) to reduce the steps of signal
preprocessing and optimize prediction accuracy. Cheng and Guo [20] designed a real-time
prediction framework for running state of running station based on multi-layer BRB and
priority scheduling strategy. Guan and Huang [21] created a particle swarm optimization
algorithm based on wavelet variation and a least squares support vector machine to avoid
falling into local extremum problems. Sayyad and Kumar [22] introduced a survey to
review service life prediction technologies of real-time health monitors of cutting tools
from perspectives of modeling, systems, data sets and research trends. Capriglione and
Carratu [23] proposed an FD method using a nonlinear autoregressive with Exogenous
Inputs (NARX) neural network as a residual generator for online FD of travel sensors.
Shabanian and Montazeri [24] proposed an online FD and diagnosis algorithm based on
the neural fuzzy, and adaptive analytic method and neural network to track faults online.

JITL technologies involve collecting the most relevant samples as training data for
online query and making predictions of local modeling running time [25–27]. Compared
with similar samples in historical databases, the signal status of online query could be
possibly acquired in real time. Robust JITL strategies to leverage the weights of high
leakage points of signals such as outliers had been successfully applied to the FD tasks [28].
A simulation study showed that the combined JITL-PCA models outperformed PCA in
the analyzing of nonlinear signals [26]. In addition, neural network methods and the
stochastic hidden Markov model (HMM) were studied to improve FD performance of
dynamic systems [29,30].

Motivated by the previous studies, we designed a novel CCA-JITL model to analyze
real-time signals from running gears of high-speed trains. The model was built and
testified using real-world datasets. The algorithm split the data input into two groups and
verified the system performance by group comparison The evaluation demonstrated that
the accuracy of FD detection was significantly improved. The algorithm detects the data in
groups and verifies the two groups of results, and the proposed system infrastructure was
also applicable to enhance PCA and PLS FD models.

The rest of this article is content as follows. Section 2 gives introduction the structure
of running gears system, experiment design and datasets. Section 3 presents theoretical
foundations of the proposed method. Section 4 presents evaluation results of a FD use case
and discussion of the results. Finally, Section 5 summarizes this paper study.
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2. Preliminaries

This section introduces the mechanical structure of a running gear system in a high-
speed train. In this study, signal faults mainly caused by parts were selected as FD targets.
Then, the research goals and problem statements of system design were discussed.

2.1. Introduction of a Running Gears System of a High-Speed Train

The running gear system is an important system that affects the smooth running of
high-speed trains. It improves the traction performance of high-speed trains and has the
functions of generating power, buffering and supporting. The running gears system of
high-speed trains include many complicated parts such as the axle box, traction drive,
detection sensor, and spring device. Any malfunction from these parts may cause the
carriage to shake during running and result in unpredictable consequences.

This paper aimed to analyze the running gears model and establish a data-driven FD
model. The running gears system has such a multi-level complex structure. Therefore, it
is difficult to build an FD model. As shown in Figure 1, many temperature sensors are
arranged inside the gears. The test points of temperature sensors, for example, A1–A4 for
axle box bearing temperature measuring point, B1–B3 for motor temperature measuring
point, and C1–C4 for gear box temperature are shown in Figure 1 [31].

Figure 1. Structure of a running gears system.

2.2. Fault Description

The running gears system is equipped with many sensors to keep track of the actual
status. The real data used in this study is based on data collected by a railway department
in a specific year and then classified and processed to obtain the fault signals of gears. This
paper uses the matrix to describe the data set for research purposes. This paper uses the
matrix Zw to describe the data set as followings

Zw = [qw(1), qw(2), · · · , qw(8)] (1)

where Zw ∈ RN×m with N samplings collected from m sensors. In this application m = 8,
N = 2000. Furthermore, Zw can be rewritten as

Zw =
[

Xx Yy
]

Xx(k) = [qw(1), qw(2), qw(3), qw(4)]

Yy(k) = [qw(5), qw(6), qw(7), qw(8)]

(2)

where qw(i) represents the data collected for the ith sensor. The data subset Xx is the input
matrix, and Y is the output matrix. In the paper, we use types of faults as follows: (1)
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Bogie 1 failure; (2) Bogie 2 failure; (3) Motor drive side bearing failure; (4) Non-drive side
bearing failure; (5) Motor side big gear failure; (6) Wheel side pinion failure; (7) Wheel
side motor big gear failure; (8) Motor side pinion failure. Moreover, in the process of data
collection, the data collected from the same carriage in a train is selected. Without loss of
generality, after splitting data into the two groups, we added fault data with labels to form
experimental training data. Therefore, the fault data can be represented as

qw(η) =
[

x fwt
]T , η = 1, 2 · · · , m (3)

Remark 1. Divide the data into the two groups: (1) qw(1) to qw(4) in one group as input; (2)
qw(5) to qw(8) in another group as output. We added fault data with labels to form experimental
data.

Remark 2. In this study, all the FD models were constructed and compiled within the software
environment of MATLAB, and all the experiments were executed and evaluated in a PC in CPU
mode.

2.3. Objective and Design Issues

The FD models for moving gear parts were often error-prone due to the scalability and
complexity issues of signals. Our CCA-JITL FD model solved many challenges as below:

• Investigate effective data processing techniques, and maintain the original trend of
the data.

• Design a series of statistical tests for model evaluation.
• Design a use case and apply the proposed method.

2.4. System Design

In order to solve the above problems, this paper proposed an FD method based on
CCA and JITL. We mainly used the CCA component to preprocess and normalize data,
transform high-dimensional data into low-dimensional variable covariance subspaces and
maximize the correlation between the most important top latent dimensions. SVD was
applied to decompose the covariance matrix of input and output into two separate singular
subspaces and keep the original distribution trends of variable correlations. Subspace
mapping procedures projects input and output matrices back to the singular subspaces
only with the most important relations and generates two groups of variables, Px and Py,
after dimension reduction which eliminates the noise, that is, the residual subspaces. Then,
JITL was used to calculate the Euclidean similarity of the query sample and the training
data, respectively, and selected a sample subset for online testing regarding distances
between them. During the experiments, the data sets of Px and Py were equally divided
as a training data set and a testing data set. Finally, the FD model formulated statistics
to define thresholds of fault signals and performed to detect signal faults in the testing
samples. The workflows of the model are shown in Figure 2.
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Figure 2. Flowchart of the proposed CCA-JITL FD model.

3. Methodology

In this section, combined with the characteristics of signals of the running gears,
CCA-JITL FD model is introduced in details.

3.1. Canonical Correlation Analysis and Just-in-Time Learning Methods

CCA transforms covariance matrices of input and output datasets into two subspaces
with the greatest correlation by computing the linear combination of the latent dimensions.
The algorithm is adopted by using singular value decomposition (SVD), and it can preserve
the original trend of the data [4,32]. The algorithm maximizes Pearson coherence between
Xx and Yy. Pearson correlation of data sets Xx and Yy can be expressed as [4]

R
(
Xx, Yy

)
= max

uTSXYv√
uTSXXu

√
vTSYYv

(4)

where SXY = XT
x Yy, SXX = XT

x Xx and SYY = YT
y Yy. According to the data set Xx and Yy

given above, standardization is carried out, respectively. Calculation of matrix is [6]

W = S− 1
2

XXSXYS− 1
2

YY =
XT

x Yy√
XT

x Xx

√
YT

y Yy

(5)

The matrix W is decomposed by singular value decomposition (SVD), and the W is
decomposed as [4]

W = ΓDVT (6)
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where Γ = (u1, · · · , ut), D =

[
Dh 0
0 0

]
, V = (v1, · · · , vn), and where h represents the

number of top-ranking singular values and ∑h = diag(ρ1, · · · , ρh). Through the formula
ω = Γ(:, 1 : h), ψ = V(:, 1 : h), the related subspaces Hx and Hy are generated as [6]

Hx = S− 1
2

XXω =
1√

XT
x Xx

ω

Hy = S− 1
2

YY ψ =
1√

YT
y Yy

ψ
(7)

The latent space of Xx is divided into two subspaces, namely the related subspaces
with Yy and the unrelated subspaces with Yy. Similarly, the latent space of Yy is divided
into two parts, namely the related subspaces with Xx and the unrelated subspaces with
Xx. According to the above parameters, the original data inputs are mapped to the related
latent spaces, Hx and Hy, and obtain two associated matrices, Px and Py. The correlation
coefficient is ρ1 between Hx and Hy if only considering the first canonical variate pair of
CCA. The data matrix can be formulated as

Px = u = Hx

(
Xx

(
HT

x Hx

)−1
HT

x

)T

PY = v = Hy

(
Yy

(
HT

y Hy

)−1
HT

y

)T
(8)

The following JITL algorithm is carried out on Px and Py, respectively, for data fitting.
Different from the traditional global model approach, this JITL-based approach uses an
online local model structure which could effectively track the current status of the algorithm.

JITL is to improve the prediction of the local FD model using similarity measures.
After the most relevant normal data selected from the database, the distance measure,
e.g., Euclidean distance d(t′s, tc) = ‖t′s, tc‖2, is employed to evaluate the similarity between
t′s and tc. Here, t′s is the data point of the training set, tc is the data point of the test set; that
is, a smaller value of distance implies a greater similarity between these two vectors [26].
The inverse of Euclidean distance is used to find the correlation between two vectors.

Si,k =
1√

e(‖t′s ,tc‖2)
2

, i = 1, 2, 3, · · · , N (9)

where Si,k represents the magnitude of correlation.

Remark 3. The JITL algorithm arranges Si,k values in descending order. The number of data to be
selected is determined by calculating the accumulated contribution value of Si,k to the variance of

the overall data, and the formula for the average value of Si,k is θi =
(

∑N
i=1 Si,k

)
/N. The variance

formula is G = (Si,k − θi)
2. The contribution parameter G is used to determine how many data

points to be included in the testing sample data. For example, the algorithm picks 900 data points
until the sum of G value reach 90%.

Remark 4. JITL selects testing data points which have lower correlations with training dataset.
In the experiment, the system only takes the last 900 data points from the sorted testing dataset.

3.2. Monitoring Statistics of FD Models

This section describes the test statistics used for FD. This article uses T2 and SPE for FD.
Firstly, a data matrix to be detected is given. Let the input and output matrices obtained after
the JITL processing be μx = [αr(1), · · · , αr(N)] ∈ Rl×N , μy = [αc(1), · · · , αc(N)] ∈ Rm×N .
According to the Formulas (5)–(7), the residual vector is obtained [6]
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s = HT
y μx − MTμy (10)

where MT = Dh HT
x .

In the FD algorithm, statistics and their corresponding thresholds define the bound-
aries of system prediction. T2 and SPE are the two most commonly used statistics in
FD [33–36]. Taking the two data matrices Px and Py perform separately FD. The detection
of the subspaces is the same as the routine detection process. Then, judging whether the
input signals normally or not requires the following methods [4]

SPE = sTs

SPEx ≤ Jx,th and SPEy ≤ Jy,th ⇒ fault − free

SPEx > Jx, th or SPEy > Jy,th ⇒ faulty

(11)

where Jx,th and Jy,th are the thresholds for SPEx and SPEy, respectively. Then, judging
whether the input signals normally or not need methods as following [4]

T2 = sTΛ−1s

T2
x ≤ Tx,th and T2

y ≤ Ty,th ⇒ fault − free

T2
x > Tx,th or T2

y > Ty,th ⇒ faulty

(12)

where s is residual matrix, Tx,th and Ty,th are the thresholds for T2
x and T2

y , respectively.

3.3. Offline Training and Online Detection Algorithms

The procedures in Algorithm 1 are used for offline training. The steps in Algorithm 2
are used for online detection.

Algorithm 1 Offline training
1: Normalize the measurement data.
2: The data is divided into two data matrices via CCA model.
3: The JITL model is used to improve accuracy of data fitting.
4: Find the thresholds Jx,th and Tx,th associated with the data matrix Px, and the thresholds

Jy,th and Ty,th associated with the data matrix Py.

Algorithm 2 Online detection
1: The collected fault data is normalized.
2: Find the two data matrices.
3: The JITL model is used to improve accuracy of data fitting.
4: Calculate SPE and T2 via (11) and (12) .
5: Determine whether a fault occurs comparing the test statistic with the thresholds.

3.4. System Evaluation Methodology

To measure the performance of the FD models, the most commonly used evaluation
metrics are the false alarm rate (FAR) and fault detection rate (FDR). FAR uses the probabil-
ity to quantify the occurrence of alarm when there is no fault. FDR uses the probability to
quantify the occurrence of the alarm method in the case of actual failure.

According to the threshold calculated above, FARs and FDRs can be expressed as
follows

FAR =
Mj

Mth
× 100% (13)

where Mj is the number of test statistics higher than the threshold in fault-free conditions,
Mth is the total number of test statistics.

FDR =
Bj

Bth
× 100% (14)
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where Bj is the number of test statistics higher than the threshold after injection of fault,
and Bth is the total number of test statistics after fault injection.

Receiver Operating Characteristic (ROC) curves represent the performance of the
model at different thresholds. The X axis of the curve is the false positive rate, and the Y
axis is the true positive rate. The ideal is an inverted L-shaped curve [37]. The calculation
formulas of the true positive rate (TPR) and false positive rate (FPR) are [38]

TPR =
TP

TP + FN

FPR =
FP

TN + FP

(15)

where TN is actually the number of samples classified into negative samples, FP is actually
the number of samples classified into positive samples, FN is actually the number of
samples classified into negative samples, TP is actually the number of samples classified
into positive samples.

The Area Under a ROC Curve (AUC) is a comprehensive measure of sensitivity
and specificity across all possible threshold ranges. It represents the probability that a
classifier will rank randomly selected positive instances higher than randomly selected
negative instances. The AUC ranges from 0 to 1. The closer AUC is to 1, the better FD
performance [38]. The calculation formula is

AUC =
N

∑
i=1

(TPR(i) + TPR(i + 1))(FPR(i + 1)− FPR(i))
2

(16)

4. Experimental Results and Discussion

High-speed train running gears systems are considered to verify the reliability of
the proposed algorithms. When the data of the running gears is chosen, and in order to
guarantee the consistency of the experiment input, signal data of the running parts was
adopted from the same train and the same carriage. In order to guarantee the validity of
the data, the monitoring data at the speed of 1000 r/min or above were utilized in the
model. The paper uses real data of a running gears system with fault signals to simulate
the settings of the experiments very close to the real situations.

4.1. Experimental Verification

Figure 3 shows two correlated subspaces of the input dataset. Figure 3a shows each
input variable in the data set Px. The charts of variables from top to bottom belong to bogie
1, bogie 2, motor-driven side bearing, and non-driven side bearing, respectively. Figure 3b
shows each variable in the data set Py. From top to bottom, the charts represent motor side
big gear, wheel side pinion, wheel side motor big gear, and motor side pinion, respectively.

1. Fault Injection: Under the given speed 1000 r/min of high-speed trains, 1000 × 8
samples under health and fault conditions are collected from eight sensors as data
sets. Fault data was injected from the 500th data points of the sample test dataset.

2. Fault Detection: Fault detection results of CCA-JITL are shown in Figure 4 where red
dashed lines are thresholds and blue sold lines are test statistics.
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(a) Data matrix Px (b) Data matrix Py

Figure 3. The input dataset. (a) Data matrix Px; (b) Data matrix Py.

(a) Data matrix Px detection (b) Data matrix Py detection

Figure 4. Experiment results of CCA-JITL FD model. (a) Data matrix Px detection; (b) Data matrix
Py detection.

4.2. Discussions

In order to prove the reliability of the method in this paper, several points will be
discussed: (1) the problem solved by this method; (2) the comparison analysis based on the
FAR and FDR; (3) the feasibility of the proposed algorithms is testified.

CCA-JITL FD model was applied to detect fault signals of the running gears in two
groups in which the results were compared to each other to improve detection accuracy.
The method uses CCA to group data and a JITL algorithm to optimize selection of sample
data points, so as to achieve better FD performance based on the data shown in Figure 4.
Figure 4a depicts the CCA-JITL FD output based on data set Px, and Figure 4b is the
result of CCA-JITL FD based on data set Py. The number of singular vectors, h values,
decide the proximity of dimension reduction and affect FAR and FDR very much. We
tuned parameters and concluded that when h = 2, CCA-JITL models achieved the best
performance.

Figure 5 shows FD experiment results using only CCA. The system infrastructure
of CCA-JITL was generalized to be utilized to other FD models using PCA and PLS. FD
experiment results using SVD-based PLS and JITL are shown in Figure 6. FD experiment
results using PCA and JITL are shown in Figure 7. FD experiment results using only PCA
are shown in Figure 7.

Figure 5. Experiment results of the FD model using CCA.
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(a) (b)

Figure 6. Experiment results of the FD model using PLS. (a) Online testing of the FD model using
PLS; (b) Online testing of the FD model using PLS and JITL.

(a) (b)

Figure 7. Experiment results of the FD model using PCA. (a) Online testing of the FD model using
PCA; (b) Online testing of the FD model using PCA and JITL.

Based on the detection results shown in Figure 4, the detection of data set Px after
injection fault data is normal, and the detection results of data set Py show short-term and
transient fluctuations after fault injection. Then, the statistics fall back above the threshold.
The detection results of the datasets Px and Py are compared with each other to verify
the performance after injecting fault data, Figure 4a detects a fault, and Figure 4b shows
short-term fluctuations. Then, the statistics fall back above the threshold. According to
the comparison and verification of the FD results, it was proved that the fault detection at
the 500th sample was accurate. Based on the detection results shown in Figure 5, it was
observed that statistics were above the threshold before the injection failure time, so false
positives have occurred. Moreover, after the injection fault, there is a fluctuation of the
statistical value lower than the threshold value, and there is a situation of false negatives.
Based on the detection results shown in Figure 6, in Figure 6a it was observed that statistics
were above the threshold before the injection failure time, so false positives have occurred.
Additionally, after the injection fault, there is a fluctuation of the statistical value lower
than the threshold value, and there is a situation of false negatives. Based on the detection
results shown in Figure 6b, detection after fault injection is normal, but the fluctuation
of statistical value before injecting fault data was partly above the threshold, so a false
positive situation had occurred.

Based on the detection results shown in Figure 7. Based on the detection results shown
in Figure 7a. T2 statistics showed a few statistical fluctuations higher than the threshold
before the fault injection, so false positive situations have occurred. SPE statistics fluctuated
a few times above the threshold before the injection of failure signals and kept below
the threshold many times after the fault injection. There are serious false positives and
omissions. In Figure 7b it was observed that the short-term or instantaneous fluctuations
of T2 scores were above the threshold before the fault injection time, so false positive
situations had occurred. In the detection results of this method, SPE statistics fluctuation
indicates that the SPE scores fluctuate higher than the thresholds before a fault signal is
added and then if the SPE scores remain below the threshold, thus, false negative situations
have occurred.
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As shown in Figure 8, the receiver operating characteristic (ROC) curves of CCA-JITL,
CCA, PLS-JITL, PLS, PCA-JITL and PCA are compared. The ROC curves of each method
from top to bottom represent the ROC curves of the model when T2 statistics and SPE
statistics are used, respectively. Combined with the area under the curve (AUC) the score of
each method shown in Table 1. It proved that the performance of CCA-JITL is better than
other methods. The AUC values of CCA-JITL, PLS-JITL and PCA-JITL were mostly higher
compared with those of PCA, CCA and PLS. The AUC scores of the models increases after
adding JITL.

(a) A ROC curve of CCA and JITL (Px) (b) A ROC curve of CCA and JITL (Py)

(c) A ROC curve of CCA (d) A ROC curve of PCA and JITL

(e) A ROC curve of PCA (f) A ROC curve of PLS and JITL

(g) A ROC curve of PLS

Figure 8. The ROC curves of FD models. (a) A ROC curve of CCA and JITL (Px); (b) A ROC curve of
CCA and JITL (Py); (c) A ROC curve of CCA; (d) A ROC curve of PCA and JITL; (e) A ROC curve of
PCA; (f) A ROC curve of PLS and JITL; (g) A ROC curve of PLS.

Comparisons of FAR and FDR measures on FD models using CCA-JITL, CCA, PLS-
JITL, PLS, PCA-JITL and PCA are shown in Table 1. By comparing FAR and FDR among all
algorithms, CCA-JITL worked best for online testing. FAR and FDR scores were calculated
regarding T2 and SPE statistics, respectively. The average scores of FAR and FDR were
considered to be used in the result comparison. Compared with the CCA method, the av-
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erage FAR score of CCA-JITL was reduced by 54.44% across both T2 and SPE measures,
and the average FDR score was increased by 34.05%. Compared with algorithms based on
PCA-JITL or PLS-JITL, the FAR score of CCA-JITL is lower. The JITL component improved
all the FDR scores of all the FD models. PLS, PCA, and CCA showed that the FDR score
increased by 32.20%, 29.2%, and 34.05%, respectively, after using JITL. Since the variables of
the real data used in this paper are not independent, CCA-JITL method are more favorable
for FD of the data in the running gears. The feasibility of the proposed algorithms were
testified by the above comparative experiments. JITL is also useful to shape the visual
representation of data fitting so that the fault signals were displayed more distinguished.

Table 1. Online Testing Results of FD models.

Methods
FAR FDR AUC

T2 SPE T2 SPE T2 SPE

PLS 8.81% 45.69% 100% 17.61% 0.9802 0.7729
PLS and JITL 44.75% 0% 100% 82% 0.8430 0.9261

PCA 14.75% 83.5% 41.6% 100% 0.5612 0.7708
PCA and JITL 28.26% 7.41% 100% 100% 0.9887 0.9798

CCA 69.8% 62.2% 38% 90% 0.3601 0.6775
CCA and JITL (Px) 2.5% 6.5% 100% 100% 0.9961 0.9943
CCA and JITL (Py) 7.75% 29.5% 100% 92.2% 0.9847 0.8778

CCA and JITL
(average value) 5.125% 18% 100% 96.1% 0.9904 0.9361

The model was tested using a new 1000×8 data set as the independent testing set.
According to Table 2, compared with the CCA model, the results of independent testing of
the CCA-JITL FD model showed that the AUC score increased, FAR decreased by 33.2%,
and FDR increased by 60.65%. It proved that this approach is generalizable and still had
good performance when random new data was applied.

Table 2. Independent testing of FD models.

Methods
FAR FDR AUC

T2 SPE T2 SPE T2 SPE

PLS 4.6% 0.6% 80% 78% 0.7851 0.7861
PLS and JITL 44.5% 0.5% 100% 66.8% 0.9384 0.8506

PCA 13% 66.8% 76.4% 79.6% 0.7370 0.3738
PCA and JITL 0% 2.75% 98.6% 98.2% 0.9975 0.9868

CCA 83.2% 54.2% 16.2% 62% 0.2158 0.7730
CCA and JITL (Px) 13.25% 19% 100% 100% 0.9587 0.9874
CCA and JITL (Py) 34.25% 67.5% 99% 100% 0.8081 0.8291

CCA and JITL
(average value) 23.75% 43.25% 99.5% 100% 0.8834 0.9083

5. Conclusions and Future Studies

In this study, the proposed algorithms have demonstrated significant advantages on
the fault detectability in the running gear systems. This paper presents an FD algorithm
based on CCA and JITL. After data preprocessing and normalization, CCA transforms high-
dimension historical input data matrices from the database into low-dimension subspaces
to maximize correlations between the most important latent dimensions. Then, online
input sample data is mapped to these subspaces with coordinates. Finally, JITL components
measure Euclidean similarity between query samples and historical samples in subspaces
and search subsets of query sample data points with largest distance to training data to
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build local fault detection models. The evaluation results of the case study showed CCA-
JITL outperformed traditional CCA very much in terms of FAR and FDR. This approach
was also applied to the FD models based on PCA and PLS and achieved better outcomes,
which suggested our system infrastructure was transferable to PCA and PLS FD models.

In future, there are still many research directions that are worth further study. The eval-
uation results in Tables 1 and 2 suggested that PCA, PLS and CCA FD models have their
unique strengths using different evaluation methods, and thus, the study of model fusion
strategies will be promising. Moreover, only FD was investigated in this paper, without clas-
sifying and diagnosing positions and categories of faults. Different types of FDD machine
learning models will be meaningful to detect specific failure points. Another possible direc-
tion for optimization is to change the fitting methods of JITL, such as clustering, and the
derivation method of CCA, such as Kernel-based CCA, to enhance the performance of the
systems. The third possibility is to improve the scope of the model, that is, how to apply
the models to dynamic systems. Furthermore, the research investigation on how to support
multi-sensor data acquisition will be very useful, for instance, the data acquisition system
using FUSED deposition modeling [39]. Moreover, the method of using prior prediction
to detect the remaining useful life is also an important research direction. These research
topics will be considered in order to successfully implement and deliver real-world FDD
applications for high-speed train running gear systems of high-speed trains.
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Abstract: It is always an important and challenging issue to achieve an effective fault diagnosis in
rotating machinery in industries. In recent years, deep learning proved to be a high-accuracy and
reliable method for data-based fault detection. However, the training of deep learning algorithms
requires a large number of real data, which is generally expensive and time-consuming. To cope
with this, we proposed a Resnet classifier with model-based data augmentation, which is applied for
bearing fault detection. To this end, a dynamic model was first established to describe the bearing
system by adjusting model parameters, such as speed, load, fault size, and the different fault types.
Large amounts of data under various operation conditions can then be generated. The training
dataset was constructed by the simulated data, which was then applied to train the Resnet classifier.
In addition, in order to reduce the gap between the simulation data and the real data, the envelop
signals were used instead of the original signals in the training process. Finally, the effectiveness of
the proposed method was demonstrated by the real bearing experimental data. It is remarkable that
the application of the proposed method can be further extended to other mechatronic systems with a
deterministic dynamic model.

Keywords: bearing fault detection; deep residual network; data augmentation

1. Introduction

As an indispensable element of rotating machinery, the rolling bearing plays an
effective and crucial role in real industries, whose operation status profoundly influences
the performance of rotating machinery equipment. If faults occur in critical bearings, it
may cause costly downtime and catastrophic accidents. Therefore, having an effective and
accurate fault diagnosis of bearings is critical to improving the reliability and safety of
rotating machinery equipment.

During the past decades, the fault detection and diagnosis of roller bearings have been
receiving increasing attention and have been a research hotspot. Due to the distinctive
characteristics of the vibration signals produced by a faulty bearing, such as its periodicity
and sensitivity to faults, great efforts have been made to develop a bearing fault diagnosis
based on vibration-based methods. Model-based methods are devoted to revealing the fault
generation mechanism and finding the fault-related information according to the map from
inputs to responses [1,2]. Meanwhile, a few model-based methods have also been applied
for degradation data analysis and the remaining useful life estimation and prediction [3,4].
In addition, numerous signal processing methods have been used to reduce the noise and
extract and highlight the fault-related features in vibration signals to achieve an accurate
fault diagnosis [5,6]. These methods can be classed into three categories on the basis of the
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fundamentals of signal processing methods. The first is time-domain analysis [7], such as the
peak value, standard deviation and kurtosis, and so on. Frequency domain analysis, typified
by fast Fourier frequency transform (FFT) [8], is the second category. The third kind is
time-frequency domain analysis, including short-time Fourier transform (STFT) [9], wavelet
transform [10,11] and empirical mode decomposition (EMD) [12], and so forth. However,
most of the available traditional signal-based methods presently require human intervention
and sufficient expert knowledge on the diagnosis of an object and signal processing, which
limits their industrial application to mechanical equipment fault diagnosis. In this regard,
alternative methods should be developed for a bearing fault diagnosis.

To overcome the limitations of demands of prior expertise based on the signal-based
methods and achieve higher performance, machine learning techniques have already been
widely applied in mechanical fault diagnoses [13]. Based on the machine learning tech-
niques, fault diagnosis is regarded as a classification problem. In the traditional machine
learning methods, representative features are first extracted from the raw signals, based on
which pattern of recognition technology is applied to classify the health conditions of the
equipment, for instance, support vector machines (SVM) [14], clustering algorithms [15]
and artificial neural networks (ANN) [16,17] and so on. Shi et al. [18] applied linear dis-
criminant analysis and gray wolf optimizer to improve the SVM algorithm and enhance
the performance of fault classification. Zhang et al. [19] applied the BP neural network
algorithm, which was based on the transfer component analysis, to detect the bearing
fault states. In spite of the success achieved by these methods of fault diagnosis in the
past years, it is still a challenge to ensure fault diagnosis accuracy with highly complex
nonlinear signals. Due to the high performance in dealing with nonstationary signals,
the deep learning method has recently been developed for feature extraction and pattern
recognition [20]. Lei et al. [21] presented a framework for intelligent fault diagnosis, where
a two-layer neural network with sparse filtering was constructed to learn the features
from raw mechanical signals directly. Additionally, based on these learned features, the
mechanical faults were identified by the classifier. Kolar et al. [22] propose a multi-channel
deep convolutional neural network configuration for a rotary-machinery state classifica-
tion. Janssens et al. [23] proposed a feature learning model for the bearings condition
monitoring, based on convolutional neural networks, which removed the need for expert
knowledge related to feature extraction compared with the classical statistical feature anal-
ysis. Mao et al. [24] proposed a multiple-fault diagnosis method that was based on deep
output kernel learning, in which the depth features were extracted adaptively by an auto
encoder neural network and thus, by means of solving the objective function constructed
by the output kernel regularizer, the fault classifier was constructed. Due to the powerful
capacity for classification and excellent convergence behaviors, deep learning methods can
learn the deep features of different data and distinguish them automatically. However,
deep learning methods require a large number of datasets to achieve a high accuracy of
classification [25]. The industrial applications are limited by the requirement of in-service
data under a wide range of operating conditions, which is generally an expensive and time-
consuming practice to carry out dozens of experiments, especially for the key components
in large machinery and equipment.

To deal with this issue, researchers have started to focus on the data augmentation
method to extend the amount of available data with limited in-service data. Data augmenta-
tion is first applied in the field of two-dimensional images, and then the available images
are transformed into new images by various means [26,27]. To solve the problem of the
paucity of data, some approaches were developed based on data augmentation to deal with
one-dimensional signals. To achieve the engineering prognostics, Kim et al. [28] proposed
a run-to-fail (RTF) data augmentation method based on the dynamic time warping (DTW)
technique, where a neural network was trained for the remaining useful life prediction of
the current system by using the other system’s RTF data. A semi-supervised learning (SSL)
approach, based on data augmentation and metric learning, was proposed by Yu et al. [29].
Seven data augmentation strategies were applied to expand the feature space with limited
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labeled data. However, the data augmentation was realized by transforming the available
signals into new signals in these studies, which led to limited distribution and feature space
of the dataset. To overcome this barrier, simulation-driven machine learning methods were
studied to create the training data, including a variety of operating conditions, which can
be combined with available in-service fault data for the fault diagnosis. A data simulation
by resampling (DSR) method was proposed by Hu et al. [30] to generate various working
conditions of data for fault diagnoses. Lu et al. [31] proposed a vibration-based classification
approach using model-based data augmentation for light-weight robotic-drilling-condition
identification, where a dynamic model for a robotic drilling system was built to generate
signals for the training data augmentation. Sobie et al. [32] generated training data by using
information gained from high-resolution roller bearing dynamics simulations. Then, the
machine learning algorithms were trained with the simulated data to classify the bearing
faults. However, the roller bearing dynamics in this study are considered as a linear system,
in which the race defect is modeled with a prescribed force, and the interaction between each
element caused by faults is neglected. There exist certain differences with the actual situation.

Motivated by the aforementioned studies, we developed a fault detection approach
based on data augmentation for roller bearing in this paper, which integrated a model-based
method and deep learning method. To be specific, a dynamic model of a roller bearing
was first established to reflect the correspondence between the bearing states and vibration
signals. Then, the data augmentation was achieved by the simulated signals generated by
the dynamic model, and based on this, a fault classifier was trained by a deep learning
algorithm. Moreover, the envelop signals were used instead of the original signals in the
training process to reduce the gap between the simulated data and the real data. Finally,
the operation states of the roller bearings could be identified by the trained fault classifier
by inputting the vibration signals to be classified.

The remainder of the paper is organized as follows: Section 2 introduces the framework
of the proposed method in detail, including the model-based data augmentation and deep
residual network classification. The experimental study will be presented and discussed in
Section 3. Finally, some conclusions are given in Section 4.

2. Methodology of Data Augmentation

Model-based methods and data-driven methods have demonstrated the effectiveness
and performance of fault diagnosis of machines [1,33,34]. Model-based methods show
advantages in providing the map from inputs to responses and revealing the fault genera-
tion mechanism. However, it is less effective in dealing with data at a low signal-to-noise
ratio (SNR). By contrast, intelligent fault diagnosis methods can achieve reliable diagnostic
results with complex signals. However, massive datasets are required to ensure classifi-
cation accuracy, which brings about a high cost of data collection and training. To detect
the bearing state with less real data, a fault detection method for bearings based on data
augmentation is proposed in this paper, which integrates the model-based methods and
data-driven methods. To this end, based on the physics knowledge and failure mechanism
of the bearings, a dynamic model was constructed to generate the vibration signals of the
bearing to alleviate the problem of data acquisition. Then, the generated dataset was used
to realize the data augmentation, and the deep learning algorithm was applied to train the
fault classifier. Moreover, the envelop signals were used instead of the raw signals in the
training process to reduce the gap between the simulated data and the real data. Finally, a
reliable fault classifier insensitive to noise signals was obtained. The operation states of the
rolling bearings can be delivered by the fault classifier by inputting the vibration signals to
be classified. The framework of the proposed method is shown in Figure 1.
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Figure 1. Framework of the fault detection by Resnet classifier with model-based data augmentation.

2.1. Model-Based Data Augmentation

To analyze the structural vibration characteristics of the rolling element bearing, the
contact between the outer race and other components can be considered as a spring-mass
system, in which the outer race is fixed on a pedestal, and the inner race is fixed with the
shaft. The sensor is placed on the pedestal with an outer race to detect high-frequency
natural vibrations of the bearing. Thus, to provide the vibration response signals of the
rolling bearings containing different working states, a vibration model with four degrees
of freedom (DOFs) was constructed by considering the movements in the horizontal and
vertical directions of the inner race and outer race, as shown in Figure 2.

Figure 2. Vibration model of rolling element bearing.

Considering the vibration of the outer race and inner race in a vertical direction, the
dynamic equation of the bearing system can be described as:

ms
..
xs + cs

.
xs + ksxs + Fx = 0

ms
..
ys + cs

.
ys + ksys + Fy = Fr

mp
..
xp + cp

.
xp + kpxp = Fx

mp
..
yp + cp

.
yp + kpyp = Fy

(1)

where xs and xp denote the displacement of the inner race and outer race in the x direction,
ys and yp represent the displacement of two raceways in the y direction, accordingly. Fx
and Fy are the elastic contact force between the raceways and the rolling elements in the x
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and y direction, and Fr is the radial load generally produced by the weight of the shaft and
the rotor. Other parameters in Equation (1) can refer to the given nomenclature table.

According to the Hertz contact theory, the contact force between the raceways and the
rolling elements can be given as

f = kbδn (2)

where kb represents the load-deflection factor which depends on the contact geometry
and the elastic contacts of the material. δ is the overall contact deformation of the rolling
elements, which is composed of the contact deformation of each rolling element. The
exponent n = 1.5 for ball bearings and n = 1.1 for roller bearings.

When the bearings operate, part of the raceway will be in the load zone, and the other
part of the raceway will be in the non-load zone, which is shown in Figure 3. The contact de-
formation of each rolling element is determined by the angular position of the rolling element,
the relative displacement between the inner and outer races, and the bearing clearance. The
calculation of the contact deformation of the jth rolling element can be given as

δj = (xs − xp) cos φj + (ys − yp) sin φj − c, j = 1, 2, . . . , nb (3)

where nb denotes the number of the rolling elements. According to the elasto-hydrodynamic
lubrication (EHL) theory, the clearance value c is set as negative, owing to the effect of oil
EHL film [28]. The angular positions of the jth rolling element φj can be described as

φj =
2π(j−1)

nb
+ ωcdt + φ0

ωc = (1 − Db
DP

)ωs
2

(4)

where ωc is the angular velocity of the bearing cage, φ0 denotes the initial angular position
of the bearing cage, Db is ball diameter and Dp is the pitch circle diameter of the bearing,
ωs is the angular velocity of the shaft.

Figure 3. Load distribution of roller bearing.

According to Equations (2) and (3), summing up the contact forces of the nb rolling
elements, the overall nonlinear elastic contact forces of the bearing in the x and y directions
can be calculated as

Fx = kb

nb
∑

j=1
γj((xs − xp) cos φj + (ys − yp) sin φj − c)1.5 cos φj

Fy = kb

nb
∑

j=1
γj((xs − xp) cos φj + (ys − yp) sin φj − c)1.5 sin phij

(5)
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where γj is a switch function which depends on the positive and negative values of the
contact deformation δj, described as

γj =

{
1 i f δj > 0
0 otherwise

(6)

It is noticed that the vibration model of the bearings presented above does not take
different fault types into consideration. To simulate the vibration of the localized faults on
the different components of bearings, the effects of the localized faults will be considered
in the vibration model. The dynamic equation of the bearing system with faults can still be
given by Equation (1). The main difference lies in the expression of the contact deformation
of the rolling elements.

If a bearing operates in the health state at a steady speed, all forces in the bearing
are in quasi-equilibrium. Once a localized fault occurs in the inner and outer races or the
rolling elements, a certain deformation will be suddenly released when the fault contacts
other components. As a result, a rapid change will take place in the elastic deformation of
the components, and the force equilibrium state will be disturbed. Considering the new
variations in the model with localized faults, the contact deformation of the jth rolling
element is rewritten as

δj = (xs − xp) cos φj + (ys − yp) sin φj − c −
fault part︷︸︸︷

β jcd (7)

where cd denotes the fault depth. βj is a switch function to describe whether there is a
contact loss due to the fault depth, which is closely related to the angular position of
the faults. In addition, different fault types bring about different expressions of switch
functions βj. In what follows, the expressions of the switch functions for the different
localized faults will be discussed in terms of the outer race fault, inner race fault, and the
fault in the rolling elements.

a. Outer race fault

When the outer race exists as the local fault, such as a spall, the switch function βj is
expressed as

β j =

{
1 if φd < φj < φd + Δφd
0 otherwise

(8)

In this case, the spall is fixed in the outer race located from the defined angular position
φd to φj + Δφ. Here, phid is a constant value, and Δφ is related to the fault length.

b. Inner race fault

In the case of the inner race fault, the local fault rotates with the inner race and the
shaft. The switch function βj is given as

β j =

{
1 if ωst + φd0 < φj < ωst + φd0 + Δφd
0 otherwise

(9)

In this case, the angular position of the fault φd will change with the speed of the shaft.
Here, φd = ωst + φd0, where ωs denotes the angular velocity of the shaft and φd0 is the initial
angular position of the fault.

c. Fault in rolling elements

It is more complicated when a local fault occurs in a rolling element. The fault will
rotate with the rolling element. The angular position of the fault is described as

φs = ωrt + φd0

ωr =
ωs
2

Dp
Db

(1 − (
Dp
Db

cos α)
2
)

(10)

where ωr is the angular velocity of the rolling element, and α is the contact angle.
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When there exists a fault in the rolling element k, the fault will make contact with
both the inner and outer races. The switch values and the fault periods will differ for both
races due to the difference in the raceway curvature between the inner and outer races.
Therefore, the switch function βj is defined as

β j =

⎧⎪⎪⎨⎪⎪⎩
0, j �= k

1, if 0 < φs < Δφdo, j = k
cdr+cdi
cdr−cdo

, if π < φs < π + Δφdi, j = k
0, otherwise, j = k

(11)

with
cdr =

Db
2 −

√
Db

2

2 − x2, cdi = ri −
√

ri
2 − x2, cdo = ro −

√
ro2 − x2

ri =
Dp−Db

2 , ro =
Dp+Db

2

Δφdo =
2x
ro

, Δφdi =
2x
ri

where x is the half of the spall width. For more details, please refer to [35].

2.2. Deep Residual Network for Fault Detection

Deep residual network (Resnet) is a deep learning method with extremely deep archi-
tecture, which shows outstanding performance on accuracy and convergence. It introduces
the shortcut connection module into the framework to learn the residual, which avoids the
degradation problem of deep networks. The high-level representative features can be better
extracted by propagating the data information directly throughout the network [36,37].

A residual learning unit is shown in Figure 4, which can be expressed as:

yl = h(xl) + F(xl , Wl)
xl+1 = f(yl)

(12)

where Xl and Xl+1 denote the input and output vectors of the lth residual unit, which
generally includes multi-layers. F is the residual function, which represents the learned
residual, while h(Xl) = Xl denotes the identity mapping, and f (yl) is the activation function.
Based on Equation (12), the learning features we obtained from the shallow layer l to the
deep layer L are described as

xL = xl +
L−1

∑
i=1

F(xi, Wi) (13)

Figure 4. A residual learning unit.
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With regard to backpropagation, assuming the loss function is E, the gradient of the
reverse process can be obtained according to the chain rule of backpropagation.

∂E
∂xl

=
∂E
∂xL

· ∂xL
∂xl

=
∂E
∂xL

· (1 + ∂

∂xl

L−1

∑
i=1

F(xi, Wi)) (14)

where
∂E
∂xL

denotes the gradient of the loss function to L, the 1 in parentheses indicates

that the shortcut mechanism can propagate the gradient lossless, and the other residual
gradient needs to pass through the layer with weight; the gradient is not passed directly.
The residual gradient is not all −1 coincidentally, and even if it is small, the presence of 1
will not result in the gradient disappearing. The advantage of the Resnet neural network is
that it can be used to train complex networks and ensure high classification accuracy.

3. Experimental Verification

In this section, the open dataset from the Bearing Data Center of Case Western Reserve
University is used to verify our method. In order to reduce the process of real data collection,
model-based data augmentation is used to construct the training dataset. To reduce the
parameters to be identified, Equation (1) can be written as:

..
ys +

cs
ms

.
ys +

ks
ms

ys =
Fr−Fy

ms
,

..
yp +

cp
mp

.
yp +

kp
mp

yp =
Fy
mp

.
(15)

An error index is used to evaluate the distance between the simulation results and the
measured experimental results. To consider the influence of the wave shift, this index is
defined in the frequency domain as

einx = ‖|FFT
( ..

yp,sim

)
| − |FFT

( ..
yp,real

)
|‖/‖|FFT

( ..
yp,real

)
|‖ (16)

where |FFT( )| is the amplitude of the frequency.
Then, the system parameters are obtained by solving the optimization problem,

argmin
P

einx

P ∈ {
cs/ms, cp/mp, ks/ms, kp/mp

} (17)

By comparing the simulation data with the experimental data, the parameters of the
bearing model can be obtained, as shown in Table 1.

Table 1. Value of parameters in the dynamic equation.

Parameters Description

cs/ms 1000 m/s
cp/mp 100 m/s
ks/ms 7 × 106 N/m
kp/mp 15 × 105 N/m

To better simulate the real situation, a disturbance signal is added in the Equation (1),

ms
..
ys + cs

.
ys + ksys + Fy + Fext = Fr (18)

with
Fext = A sin(ωt)

where A is the amplitude of the disturbance force, while ω is the frequency of the dis-
turbance force. In the fault-free case, the information about the disturbance force can be
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extracted. Figure 5a shows the experiment in the fault-free case. A vibration with 30 Hz
can be measured, which is considered the disturbance force.

Figure 5. Real and simulation data in fault-free cases: (a,c,e) are the original data, the envelop data,
and the frequency spectrum of the real envelop data; (b,d,f) are the original data, the envelop data,
and the frequency spectrum of the simulation envelop data.

For the purpose of the data augmentation, we used the envelop of the signals instead of
the original signals. The reason is that the envelop signals contain less noise. Additionally,
the information of the eigenfrequency was not taken into consideration in the envelop
signal. Thus, by using envelop signals, we did not need a sufficiently exact model, i.e.,
the parameter ks and kp could deviate to the real value to some extent. Figure 5 gives the
real and simulation data in the fault-free case, and (a,c,e) are the original data, the envelop
data, and the frequency spectrum of the real envelop data, and (b,d,f) are the original data,
the envelop data, and the frequency spectrum of the simulation envelop data, respectively.
Figure 6 shows the real and simulation data in the outer race fault case. The task of fault
detection is to distinguish the normal case, outer race fault, and inner race fault. Therefore,
a Resnet deep neural network was used to design the classifier. The deep neural network
shows a powerful ability for classification, but requires mass data for training. Therefore,
we used the dynamic model to generate the dataset to assist the training process.
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Figure 6. Real and simulation data with outer race fault: (a,c,e) are the original data, the envelop
data, and the frequency spectrum of the real envelop data; (b,d,f) are the original data, the envelop
data, and the frequency spectrum of the simulation envelop data.

In parameter identification, a group of experiment data is required. After parameter
identification, the dynamic model can generate data under different conditions. For ex-
ample, parameter identification is carried out when the rotation speed is 1797 rpm with a
12 kg load. The model can generate vibration data at different speeds and different loads.
Figure 7 shows the generated data with the outer race fault, where (a,c,e) are the original
data at different speeds, different pre-loads, and with noise, and (b,d,f) are the envelop
data at different speeds, different pre-loads, and with noise. Similarly, the vibration data
in the normal case and the inner race fault case can also be generated. Figure 8 shows the
simulated vibration data in the inner race fault case. Only a few data are required (such as
data with the outer race fault), and the model can generate rich data in different situations.

The Resnet classifier is used for the fault detection of the bearing faults. Table 2 shows
the parameters of the Resnet. Three training datasets are constructed for the verification of
the proposed method. The first one is the original data. Then, the real envelop dataset and
the simulated envelop dataset are used to train the Resnet classifier. The testing dataset
includes the normal, outer race fault, and inner race fault cases.
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Figure 7. The generated data with the outer race fault: (a,c,e) the original data at different speeds,
different pre-loads, and with noise; (b,d,f) are the envelop data at different speeds, different pre-loads,
and with noise.

Figure 8. The generated data with inner race fault: (a,b) are the original data and the envelop data
when the rotation speed is 1797 rpm; (c,d) are the original data and the envelop data when the
rotation speed is 1730 rpm.
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Table 2. Structure parameters of Resnet.

Description Value

The resolution of input signals 1 × 2000

The size of the network

Layer name Output size Layer

Conv1 1 × 1000 3 × 3, 8

Conv2 1 × 500
[

3 × 3, 16
3 × 3, 16

]
× 3

Conv3 1 × 250
[

3 × 3, 32
3 × 3, 32

]
× 4

Conv4 1 × 125
[

3 × 3, 64
3 × 3, 64

]
× 6

Conv5 1 × 64
[

3 × 3, 128
3 × 3, 128

]
× 3

GAP 1 × 2 128

Activation function Sigmoid

In general, if smaller differences exist between the simulation data and the real data,
the classified results will be more accurate. However, the gap between the simulation and
the real data will always exist. This is the reason why we use the envelop data instead of
the original data. Figure 9 shows the comparison results between the simulation and real
data. The error index is used to evaluate the performance of the simulation results for data
augmentation. The error index for the original data is 0.9214, while the error index for the
envelop data is 0.4622. The gap between the real and simulation results of the original data
is much larger than that of the envelop data. This is the reason why we use the envelop
data as the training dataset. training cost, which has a large application prospect.

Figure 9. Comparison of experimental and simulation data: (a,c) are the data in the time domain;
(b,d) are the data in the frequency domain, where the blue line is the experiment data, and the red
line is the simulation data.

Figure 10 shows the distribution of the probability of each dataset after training. The
training dataset contains 500 groups of data, while the testing dataset contains 150 groups
of data. If the real data (the original data and the envelop data) are used for training, the
classified accuracy can reach 100%. The reason for this is that the difference is great for the
signal in the three cases. However, the collection of the data in different operation situations
is expensive work. Figure 10c shows the classification results of the Resnet classifier, which
is trained by pure simulation data. The classified accuracy is still 100%, but the possibility
is lower than that by using the real data. The reason for this is that the simulation data

48



Machines 2022, 10, 521

is not the same as the real data. A gap between the simulation and real data therefore
results in a low possibility. By using the envelop data, we can reduce the gap and achieve
accepted classification results. The proposed method, based on the Resnet classifier with
model-based data augmentation, can overcome the high costs of the classifier training cost,
which has a large application prospect.

Figure 10. Classification results of the Resnet classifier: (a) the training and testing datasets are the
real original data; (b) the training and testing datasets are the real envelop data; (c) the training
dataset is the simulation data while the testing dataset is the real data.

4. Conclusions

In this paper, a bearing fault detection method, based on a Resnet classifier with
model-based data augmentation, is proposed. For our purpose, a four-DOFs dynamic
model is constructed to describe the bearing system. The dynamic model was identified
by comparing the simulation and experimental results. Then, a large number of data
under different conditions could then be generated, based on which the training dataset
was constructed, and the Resnet classifier was trained for the bearing state classification.
Furthermore, to reduce the gap between the simulation data and the real data, the envelop
signals were applied in the training process rather than the original signals. The proposed
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method was testified by the real data from the Bearing Data Center of Case Western Reserve
University. The trained Resnet classifier was able to identify the bearing states with 100%
accuracy. The framework of the proposed method, based on data augmentation, which
combines the theoretical model with the deep learning method, can be further used in other
fields which have the deterministic model.
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Nomenclature

xs, ys shaft/inner race DOF
xp, yp pedestal/outer race DOF
ms mass of shaft/inner race
mp mass of pedestal/outer race
cs damping of shaft/inner race
cp damping of pedestal/outer race
ks stiffness of shaft/inner race
Db ball diameter
DP pitch circle diameter
ωs angular velocity of the shaft
ωc angular velocity of the cage
ωr angular velocity of the rolling element
φj angular position of the rolling elements
δ overall contact deformation
c clearance value
φ0 initial angular position of cage
cd fault depth
φd angular position of the fault
φd0 initial angular position of the fault
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Abstract: Operational optimization is essential in modern industry and unsuitable operations will
deteriorate the performance of industrial processes. Since measuring error and multiple working
conditions are inevitable in practice, it is necessary to reduce their negative impacts on operational
optimization under the case-based reasoning (CBR) framework. In this paper, a local density-based
abnormal case removal method is proposed to remove the abnormal cases in a case retrieval step, so
as to prevent performance deterioration in industrial operational optimization. More specifically, the
reasons as to why classic CBR would retrieve abnormal cases are analyzed from the perspective of
case retrieval in industry. Then, a local density-based abnormal case removal algorithm is designed
based on the Local Outlier Factor (LOF), and properly integrated into the traditional case retrieval
step. Finally, the effectiveness and the superiority of the local density-based abnormal case removal
method was tested by a numerical simulation and an industrial case study of the cut-made process
of cigarette production. The results show that the proposed method improved the operational
optimization performance of an industrial cut-made process by 23.5% compared with classic CBR,
and by 13.3% compared with case-based fuzzy reasoning.

Keywords: data-driven; operational optimization; case-based reasoning; local outlier factor;
abnormal case removal

1. Introduction

Frequent changes in operating conditions require the operating settings to change
accordingly and appropriately, and unsuitable settings will bring about performance
deterioration and disqualified products [1]. Therefore, operational optimization plays an
essential role in industrial production since it ensures process safety and enhances economic
benefit [2–4]. Generally, there are two kinds of operational optimization methods: model-
based methods and data-based methods. In particular, the model-based methods firstly
build a process model with some basic operational laws, such as material conservation
and energy conservation, and then construct a constrained optimization problem with the
pre-established process model [5,6]. On this basis, global optimal solutions are obtained
with some optimization algorithms, such as sequential quadratic programming (SQP) [7],
the genetic algorithm (GA) [8], and particle swarm optimization (PSO) [9]. Although
model-based methods have been successfully applied to many fields, their shortages
are inevitable when the industrial process is extremely complex. In fact, it is difficult
to build an accurate model if the process is featured by a large scale, long procedure,
and changeable environments [10]. Moreover, it is challenging to select an appropriate
optimization algorithm to balance the efficiency and the accuracy of a certain operational
optimization problems [11].

In response to the drawbacks of model-based methods, data-based methods–which
are free from prior knowledge on process mechanisms [12]–have attracted much attention
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in both the academic and industrial community [13]. For example, Wang et al. designed
an adaptive moving window convolutional neural network to extract useful information
from the process time-series data, based on which the optimal decision is made according
to the expected operational indices [14]. Ding et al. integrated the reinforcement learning
strategy with Case-Based Reasoning (CBR) so that the optimal operational indices for
a large mineral processing plant can be easily found [15]. Overall, data-based methods
benefit from various kinds of sensors installed in modern industry, and they can make
optimal decisions using plentiful historical data and operational experience.

Among the data-based methods, CBR does not rely on any process mechanism knowl-
edge, so it is suitable for operational optimization problems where it is difficult to establish
accurate process models. In detail, CBR solves the operational optimization problem by
referring to previous operating experience, and it has been successfully applied to many
processes. For example, Li et al. developed a principal component regression-based case
reuse method under the CBR framework [16]. To be specific, the developed method could
learn valuable experience from historical production data and finally obtain the global
optimal operating settings for a coking flue gas denitration process. Ding et al. integrated a
multi-objective evolutionary algorithm into the classic CBR, and the modified CBR was
then employed to optimize some operating indexes of the largest hematite ore processing
plant in western China [17]. Basically, since CBR could work out the optimal operating
settings for certain conditions with some successful cases (also named historical optimal
cases or case base), requirements of safety and stability are automatically satisfied for the
acquired settings [18]. This is another advantage of CBR when it is employed to solve
operational optimization problems in industry.

Conventionally, CBR includes the following steps: (1) Case retrieval; (2) Case reuse;
(3) Case revision; and (4) Case retention [19]. Among them, case retrieval is one of the most
important steps and its task is to retrieve the most useful cases from the pre-established
case base to solve the target problem [20,21]. Currently, the majority of case retrieval is
based on similarity [22], which is typically measured by various kinds of distances, such as
the Euclidean distance, the Mahalanobis distance, the cosine angle distance, etc. [23]. How-
ever, similarity fails to consider the significance among different dimensions. Therefore,
reference [24] employs the weighted Mahalanobis distance to measure the similarity, and
reference [25] designed a new similarity measurement that combined the Euclidean distance
and the cosine angle distance. To improve the accuracy of case retrieval facing nonlinearity,
Li et al. introduced a new similarity index that can transfer traditional distance-based simi-
larity into their corresponding Gaussian forms by Gaussian transformation [26]. In terms
of industrial operational optimization, the Euclidean distance or the weighted Euclidean
distance is adopted to calculate the similarity between two cases in most previous studies.
Usually, the weights are allocated based on experience, and the allocation requires prior
knowledge about the studied process. Moreover, the accuracy of case retrieval would be
decreased if the process data include measuring error. Therefore, Zhang et al. utilized
fuzzy logic to select the most suitable cases from a case base, and then obtained the global
optimal solution for the target problem in an oil refinery [18].

Although plenty of works have improved the accuracy of case retrieval, it is still
difficult to guarantee the quality of retrieved cases when applied to complex industrial
processes when only using distance-based similarity. Firstly, measuring error is unavoidable
in historical data [27], so it is hard to build the case base accurately. Secondly, industrial
processes often run in many working conditions [28], so it is difficult to ensure the distance-
based case retrieval would only retrieve cases from the same working conditions as the
target problem. In this paper, these wrongly retrieved cases are named as abnormal
cases because they are not helpful for the target problem. Furthermore, applying the
operational settings of abnormal cases to the target problem is hazardous and may result
in performance deterioration and disqualified products, or even stall the production of
subsequent processes. Therefore, a local density-based abnormal case removal method is
proposed in this paper to remove the abnormal cases in the case retrieval step, and finally
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to improve the performance of CBR for industrial operational optimization. The main
contributions of this paper are summarized as follows:

(1) The reason why historical cases in low-density areas should not be included in the
case reuse step is analyzed from the perspective of safety and reliability requirements
in industrial operational optimization problems.

(2) A novel abnormal case removal method, which could effectively remove the abnormal
cases before case reuse, is proposed on the basis of the Local Outlier Factor (LOF), and
properly integrated into the case retrieval step.

(3) The effectiveness and superiority of the newly proposed local density-based abnormal
case removal method is verified by a numerical optimization case study and an
industrial operational optimization case study.

The rest of this paper is organized as follows. Some preliminaries of the CBR frame-
work and the distance-based similarity measurements are briefly reviewed in Section 2,
then the motivations, principles, and procedures of the local density-based abnormal case
removal method are systematically presented in Section 3. Section 4 exhibits the opera-
tional optimization results of a numerical case study and an industrial case study. Finally,
conclusions are given in Section 5.

2. Preliminaries

In this section, some basic knowledge on the CBR framework and the distance-based
similarity measurements is introduced. Unlike the model-based methods, CBR solves the
target problem with several related cases stored in the case base. To be specific, the case
base should be constructed with as many historical cases as possible. Each case consists of
a problem description and a case solution. Figure 1 gives the basic framework of CBR (also
known as the CBR cycle).

Case retrieval

Case base
Case reuse

Case revise

Case retain

Retrieved cases

Target problem

Suggested solutionRevised solution

Figure 1. Basic framework of CBR.

It could be seen from Figure 1 that case retrieval is the first step of the CBR cycle.
The task of case retrieval is to retrieve several valuable cases from the constructed case
base. Supposing the number of retrieved cases is fixed as k, the retrieved cases are the
first k cases with the most similar problem descriptions to the target problem. After the
case retrieval step, the case reuse is performed to obtain a suggested solution according
to the retrieved cases. If the suggested solution is not applicable to the target problem,
the suggested solution needs revising to adapt to the target problem. In the last step, the
experience of solving this target problem is stored to update the case base, which enable
CBR to constantly learn during the CBR cycle.
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In general, CBR solves the target problem by learning from historical cases with similar
problem descriptions to the target problem. Therefore, case retrieval is the foundation of
CBR, and the retrieval accuracy directly affects the performance of CBR [29–31]. In previous
studies, most case retrievals are based on distance-based similarity. Table 1 lists five most
commonly used distances for similarity measurement in CBR.

Table 1. The most commonly used distances for similarity measurement in CBR.

Name Formula

Euclidean Distance D(X1, X2) =
√
(X1 − X2)(X1 − X2)

T

Mahalanobis Distance D(X1, X2) =
√
(X1 − X2)

T ∑−1(X1 − X2)

Cosine angle Distance D(X1, X2) =
X1X2

T

‖X1‖‖X2‖
Manhattan Distance D(X1, X2) =

N
∑

i=1

∣∣X1,i − X2,i
∣∣

Chebyshev Distance D(X1, X2) = max
(∣∣X1,i − X2,i

∣∣), i = 1, · · · , N

As shown in Table 1, several distances can be applied to measure the similarity be-
tween two cases. Under the CBR framework, great attention has been paid to measure the
similarity between the target problem and historical problems in the case base. However,
due to the complexity of industrial processes, it is still hard to choose an appropriate similar-
ity index that only retrieves valuable cases when facing gross measuring error and multiple
working conditions. Therefore, it is necessary to develop an abnormal case removal method
so as to obtain the most valuable cases in industrial operational optimization.

3. Methods

3.1. Analysis of Case Retrieval in Industrial Operational Optimization

To improve product quality and enhance economic benefits, operational optimization
has been widely implemented in industrial processes. CBR can find the optimal operational
settings by learning from the historical optimal operational settings in the case base, so it
has been widely studied in the industrial operational optimization community. Suppose
that there are k cases overall retrieved from the case base, and Xi(i = 1, 2, · · · , k) and
Yi(i = 1, 2, · · · , k) represent the problem descriptions and the optimal solutions of the ith
retrieved case, respectfully. Under the CBR framework, the suggested solution Ỹt of the
target problem Xt can be determined as follows:

Ỹt =

k
∑

i=1
S(Xi, Xt)Yi

k
∑

i=1
S(Xi, Xt)

(1)

where S(Xi, Xt) represents the similarity between the target problem Xt and the problem
description of the ith historical case Xi. In fact, the suggested solution Ỹt is a weighted sum
of historical optimal solutions. Concretely, k historical cases are selected by the case retrieval
step according to their similarity to the target problem. Moreover, Equation (1) shows that
the weight of the suggested solution is only determined by the similarity between the target
problem and the problem description of the selected historical case. In other words, the
case retrieval step not only provides some helpful candidates for the suggested solution,
but also determines their weights in the suggested solution. Hence, the accuracy of case
retrieval is vital to the performance of industrial operational optimization.

Since CBR assumes that similar problem descriptions always have similar case solutions [32],
most of the previous studies tend to discover the most similar cases to the target problem.
Although the classic case retrieval methods have been proved effective in many fields, the
accuracy of case retrieval is still inevitably affected by measuring error and by multiple working
conditions. As a result, not all retrieved cases are helpful for solving the target problem. The
concrete reasons are as follows.
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(a) Accuracy of case retrieval would be influenced by the measuring error

Industrial data are collected by various kinds of sensors installed in the factory. Since
perturbations and noises are inevitable in industrial processes, measuring error is naturally
introduced in the case base. Consequently, the descriptions of historical cases are not
accurate. For the ith case, its measured description X̂i can be represented as follows:

X̂i = Xi + Wi (2)

where Xi and Wi are the accurate description and the measuring error of the ith case,
respectively. Considering the measuring error in its corresponding measured description,
the true Euclidean distance between Xi and Xt are calculated as follows:

D(Xi, Xt) =

√((
X̂i − Wi

)− (
X̂t − Wt

))((
X̂i − Wi

)− (
X̂t − Wt

))T (3)

Then the similarity between Xi and Xt can be calculated as follows:

S(Xi, Xt) =
1

1 + D(Xi, Xt)
(4)

Obviously, the measuring error in industrial data would degrade the accuracy of case
retrieval and make it hard to evaluate the importance of historical cases in solving the target
problem. Therefore, it is necessary to eliminate negative impacts from historical cases that
have gross measuring error.

(b) Accuracy of case retrieval would be influenced by the multiple working conditions

Industrial processes always run in many working conditions, which leads to some
undesirable results if the number of retrieved cases is not appropriate. That is to say, not
only the similarity S(Xi, Xt) but also the number k have an impact on the accuracy of case
retrieval. Therefore, an appropriate parameter k is crucial for the success of industrial
operational optimization under the CBR framework. However, for a particular process,
there are different numbers of historical cases in different working conditions, suggesting
that the case base is imbalanced. There are a larger number of cases in common working
conditions and a smaller number of cases in uncommon working conditions. Therefore, it
is easy to retrieve enough cases from a common working condition, yet difficult to do the
same from an uncommon working condition. Since the parameter k is fixed as a constant
in classic CBR, it may perform well for some working conditions but perform poorly for
others. The reason why classic CBR has a different performance in different working
conditions is that some irrelevant cases from other working conditions may be retrieved if
the target problem belongs to uncommon working conditions. Thus, the suggested solution
may be inapplicable.

In summary, both the measuring error and the multiple working conditions would
decrease the accuracy of case retrieval, which is going to affect the performance of opera-
tional optimization under the CBR framework. To decrease the negative impact from these
abnormal cases, a local density-based abnormal case removal method for the case retrieval
step is proposed in the following subsection.

3.2. Local Density-Based Abnormal Case Removal

Most of the previous studies on case retrieval have only focused on similarity mea-
surement, while the distribution of retrieved cases was neglected. The goal of case retrieval
is, in essence, to search the case base for valuable cases in order to solve the target problem.
In Section 3.1, the reasons as to why abnormal cases commonly exist in industry are thor-
oughly analyzed. Consequently, the retrieval results may not be reliable and the accuracy
of case retrieval needs enhancing. In contrast to the model-based methods, CBR directly
uses the operational information in retrieved cases, so the accuracy of retrieved cases is
vital to the performance of CBR. In another words, abnormal cases are harmful for the
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industrial operational optimization, so they must be removed before the case reuse. In
this paper, it is believed that the distribution of retrieved cases can reflect their reliability.
By eliminating low-reliability cases, the quality of the retrieved cases can be significantly
enhanced. Figure 2 presents a demonstration of the relationship between the distribution
and the reliability of cases.

R1

Accurate descriptions of 
cases with an acceptable 
confidence level

Measured descriptions of cases 
in working condition 1

Overlapped area

Measured descriptions of cases 
in working condition 2

Measured descriptions of case 
with gross error

Target problem

Figure 2. Distribution and reliability of the retrieved cases in industrial processes.

As shown in Figure 2, the retrieved cases are not uniformly distributed in the whole
space. Moreover, the accurate descriptions of historical cases are uncertain due to the
existence of measuring error. In this paper, the measuring error is assumed to follow the
Gaussian distribution. With a certain confidence level, accurate descriptions of historical
cases lie in dashed circles centered in their corresponding measured descriptions. Since
the similarity is usually calculated according to the measured descriptions, cases with
the highest similarity are not necessarily the most helpful cases for the target problem.
However, there exist some overlaps in the area with high-density cases, showing cases in
the high-density area have higher reliability than other cases since the accurate descriptions
are more likely to lie in the overlaps. Therefore, although cases in the low-density area may
have a higher similarity to the target problem, they should not proceed to the case reuse
step due to their lower reliability.

Another issue that impacts the accuracy of case retrieval is the multiple working
conditions of industrial processes. For a target problem that lies on the edge of a working
condition, its nearest neighbors probably include cases from other working conditions.
Obviously, these cases will not help to solve the target problem and should not be included
in the retrieved cases. This issue can be partly solved by assigning different number
of retrieved cases to every working condition, but it requires identifying the working
conditions in advance and setting a different k parameter for every working condition.
Consequently, it demands more priori knowledge and becomes much more complicated.
Considering the working condition identification problem can be transformed into a classic
classification problem, the K-Nearest Neighbors (KNN) classifier believes that the target
problem belongs to the working condition that the majority of its nearest neighbors belongs
to. That is to say, the number of retrieved cases from other working conditions is less
than the number of retrieved cases from the working condition that the target problem
belongs to. Since all retrieved cases belong to the same neighborhood, cases from other
working conditions are more likely to be in the low-density area, so they can be identified
by calculating the density of retrieved cases.

To conclude, measuring error and multiple working conditions are two inevitable
problems affecting the accuracy of case retrieval and degrading the performance of CBR.
Therefore, developing an abnormal case removal method is urgent and necessary. Since
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cases in a high-density area are more reliable than those in a low-density area, the latter
should be removed from the retrieved cases. In this subsection, a local density-based
abnormal case removal algorithm is designed based on the Local Outlier Factor (LOF),
which is a common index showing how isolated a data point is comparing with its nearest
data points. The LOF of historical case Xi is defined as follows:

LOF(Xi) =
1
m

m

∑
q=1

lrd(Xq)

lrd(Xi)
(5)

where m is an adjustable parameter; lrd(Xq) and lrd(Xi) stand for the local reachability
density of case Xq and Xi, respectively; Xq is the qth similar cases in the retrieved cases.
Particularly, the lrd(Xi) can be represented as follows:

lrd(Xi) =

(
1
m

m

∑
q=1

D(Xi, Xq)

)−1

(6)

where D(Xi, Xq) is the Euclidean distance between Xq and Xi.
As shown in Equation (5), LOF reflects the average ratio of lrd(Xq) to lrd(Xi). There-

fore, a bigger LOF indicates a smaller local density, and the corresponding case should
be removed. Normally, the threshold of LOF is determined after the whole dataset has
been analyzed, while in this paper, the threshold of LOF can be adaptively adjusted. To
automatically eliminate the retrieved cases in a low-density area, the threshold of the local
density-based abnormal case removal algorithm is designed as follows:

ξ = μ + α

√
∑k

i=1(X(i)− μ)2

k − 1
(7)

where α is an adjustable parameter of the threshold ξ, and μ is the average LOF of the
retrieved cases, which can be calculated as follows:

μ =
1
k

k

∑
i=1

LOF(Xi) (8)

In this paper, k is optimized according to the mean absolute error of the training set; m
and α are optimized determined by orthogonal experiments. With the optimal parameter k,
m, α, pseudo-codes of the designed local density-based abnormal case removal algorithm
are shown in Algorithm 1.

Algorithm 1: Local density-based abnormal case removal

Input: k retrieved cases; optimal parameter m, α

Output: The retrieved cases without abnormal cases
1 Calculate the local density of every retrieved case according to Equation (6)
2 Calculate the LOF of every retrieved case according to Equation (5)
3 Calculate the threshold of the retrieved cases according to Equations (7) and (8)
4 Remove the cases whose LOF are higher than the threshold

With the aforementioned local density-based abnormal case removal algorithm, proce-
dures of the industrial operational optimization are as follows:

Step 1: construct the case base with history data;
Step 2: for a target problem, select k most similar cases from the case base and construct

the original retrieved cases Ci = {Xi, Yi}(i = 1, · · · , k);
Step 3: employ the local density-based abnormal case removal algorithm to remove wrongly

retrieved cases;
Step 4: acquire the suggested solution for the target problem according to Equation (1);
Step 5: revise the suggested solution, if necessary;
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Step 6: store it in the case base after the target problem is solved.

4. Case Studies

In this section, the effectiveness and the superiority of the designed local density-
based abnormal case removal method were validated by two case studies. Firstly, a
numerical simulation was designed, where case descriptions were featured with multiple
working conditions and measurement error. Then, an industrial case study, whose data
were collected from a cut-made process of cigarette production, was designed to show
the effectiveness and the superiority of the abnormal case removal method in industrial
operation optimization under the CBR framework. In these case studies, the proposed
method was compared with classic CBR and case-based fuzzy reasoning in which the fuzzy
membership function and its parameters were determined according to their ability to
resist measuring error [18]. The concrete hardware and software are as follows: Intel(R)
Core (TM) i5-4590, ROM 8 GB, Windows 10 professional.

4.1. Numerical Simulation

In this numerical simulation, 120 operating points were generated with MATLAB
2019A to simulate the characteristics of multiple working conditions and measurement
error of industrial data. Particularly, two working conditions were generated with different
centers and deviations (the deviations followed Gaussian distribution to simulate the mea-
surement error in industry). In detail, every working condition consisted of 60 operating
points, and the centers of working condition 1 and working condition 2 were set as (1, 1)
and (−1, −1), respectively. In addition, standard deviations of the two working conditions
were both set as 0.5. It should be noted that the operating points with larger deviation from
their corresponding centers were considered as operating points with gross error, and they
should be removed before the case reuse. Figure 3 shows the distribution of the generated
dataset, which can perfectly reflect the characteristics of industrial data.

Figure 3. Distribution of the generated dataset.

As shown in Figure 3, the operating points lying on the edge of working condition 1
and working condition 2 were considered as operating points with gross error in this
study. Moreover, the case solutions of working condition 1 and working condition 2 were
designed as Equations (9) and (10), respectively.

Y1(i) = 0.2(x1(i)− 1)2 + 0.3(x2(i)− 1)2 + (x1(i)− 1) + 4 (9)
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Y2(i) = −0.2(x1(i) + 1)2 + 0.5(x2(i) + 1)− 4 (10)

Their parameters were designed differently to reflect diverse operating experience in
different working conditions. Furthermore, Equations (9)–(12) were designed as quadratic
polynomials to represent the nonlinearity in the operating experience. For operating points
with gross error, their measured descriptions were heavily deviated from their accurate
descriptions. Consequently, their case solutions are less helpful for operational optimization
than those of normal cases. For this reason, the case solutions of working condition 1 and
working condition 2 with gross error were designed as Equations (11) and (12), respectively.

Y1e(i) = 0.2(x1(i)− 1)2 + 0.3(x2(i)− 1)2 + (x1(i)− 1) + 8 (11)

Y2e(i) = −0.2(x1(i) + 1)2 + 0.5(x2(i) + 1)− 8 (12)

In this numerical simulation, 60 operating points were randomly chosen from the
generated dataset as a case base, while the rest of 60 operating points were equally divided
into two datasets. To be specific, the first was used as training dataset to pick out the
optimal parameters including k, m, and α, and the last was chosen as a testing dataset to
evaluate the performance of the designed abnormal case removal method with the selected
optimal parameters. The concrete evaluation criterion was Mean Absolute Error (MAE).

MAE =

n
∑

i=1

∣∣∣Yi − Yi,suggested

∣∣∣
n

(13)

where n is the number of cases in the testing dataset. Yi and Yi,suggested are the optimal
solution and the suggested solution of the ith cases, respectively.

Since k is a crucial parameter for case retrieval and its value directly affects the
performance of CBR, sensitivity analysis was firstly carried out to find the best parameter k.
Figure 4 presents the MAE of the training dataset when k changed from 1 to 15.

M
A

E

Figure 4. MAE of the training dataset with different parameter k.

As shown in Figure 4, the tendency of MAE firstly decreases with k changing from 1 to
6, and then generally increases with k changing from 6 to 15. The minimal MAE was 0.1896
when the parameter k was chosen as 6. Therefore, the number of retrieved cases was set as
6 both in classic CBR and the improved CBR with the proposed abnormal case removal
method. In addition, in order to find out the best parameters m and α for the abnormal case
removal algorithm, orthogonal experiments were designed with the training dataset. In
particular, the parameter m was set from 1 to 5 while the parameter α was set from 0.2 to
2.2. Table 2 shows the MAE of the training dataset with different combination of parameter
m and parameter α.
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Table 2. MAE of the training dataset with different parameter combination. Bold shows the
optimal number.

MAE m=1 m=2 m=3 m=4 m=5

α = 0.2 0.1858 0.2378 0.1937 0.1984 0.2070
α = 0.4 0.1872 0.2380 0.1622 0.2001 0.1948
α = 0.6 0.1870 0.2078 0.1651 0.1675 0.1526
α = 0.8 0.1742 0.1967 0.1671 0.1475 0.1521
α = 1.0 0.1741 0.1930 0.1956 0.1457 0.1470
α = 1.2 0.1647 0.2032 0.1950 0.1458 0.1478
α = 1.4 0.1935 0.2016 0.1882 0.1541 0.1478
α = 1.6 0.1930 0.2018 0.1873 0.1893 0.1602
α = 1.8 0.1859 0.1840 0.1840 0.1877 0.1877
α = 2.0 0.1797 0.1896 0.1896 0.1896 0.1896
α = 2.2 0.1896 0.1896 0.1896 0.1896 0.1896

As shown in Table 2, the minimal MAE of the training dataset was 0.1457 when the
parameter m and α were set as 4 and 1, respectively. The reason as to why m and α could
influence the MAE of the training dataset were analyzed as follows:

(1) Supposing the parameter m was fixed as a constant, if the selected parameter α was
too small, it would result in a lower threshold ξ and more normal cases would be
removed by mistake in the retrieved cases. This would increase the MAE.

(2) Supposing the parameter m was fixed as a constant, if the selected parameter α was
too big, it would result in a larger threshold ξ and more abnormal cases would be
preserved in the retrieved cases. This would increase the MAE.

(3) Supposing the parameter α was fixed as a constant, if the selected parameter m was
too small, fewer nearest neighbors would be included in the calculation of LOF. This
would make the LOF more vulnerable to uncertainty so as to increase the MAE.

(4) Supposing the parameter α was fixed as a constant, if the selected parameter m was
too big, more nearest neighbors would be included in the calculation of LOF. This
would reduce the distinguish ability of LOF so as to increase the MAE.

In the end, the best parameters of the designed abnormal case removal algorithm were
set as k= 6, m= 4 and α= 1, respectively. With the aforementioned parameter combination,
the testing dataset was finally used to show the effectiveness and the superiority of our
method. Additionally, Cauchy fuzzy membership function was selected for the case-based
fuzzy reasoning and its optimal parameters were 0.725 and 0.837, based on its performance
against measuring error. The concrete fuzzy membership functions evaluation method
and parameters optimization method can be found in reference [18]. Figure 5 presents the
concrete results.

According to Figure 5, it can be found that the set values of our method are closer to
their corresponding optimal set values than that of the other two methods. Specifically,
there are overall five operating points (marked with red boxes) in which our method outper-
formed the classic CBR and case-based fuzzy reasoning. As an average, the abnormal case
removal method improved the setting accuracy in the testing dataset by 20.3% compared
with classic CBR, and by 8.5% compared with case-based fuzzy reasoning. The reason
why our method can obtain better results is that some abnormal cases retrieved by the
classic case retrieval step could be removed with Equations (5) and (7). By eliminating
these abnormal cases whose LOFs are higher than the threshold, the impacts of these cases
can be removed in the case reuse step, thus improving the quality of the retrieved cases.
Naturally, the MAE of the testing dataset would be decreased, and the performance of
operational optimization would be improved under the CBR framework.
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Figure 5. Set values of the testing dataset for numerical simulation.

4.2. Operational Optimization of an Industrial Cut-Made Process of Cigarette Production

In this case study, the designed abnormal case removal method was tested with
industrial data collected from a cut-made process of cigarette production. In this production,
the operator aims to keep the moisture content of leaf-silk close to the desirable value,
and the operational optimality has an impact on the quality of cigarettes. Specifically, the
studied cut-made process includes the following three procedures: (1) the leaf-silk drying
procedure, (2) the blending procedure, and (3) the spicing procedure. Since many operating
experiences were stored in the production data, the set value of the moisture content of
the leaf-silk drying procedure could be determined with historical optimal cases. Table 3
presents the basic structure of historical cases for the operational optimization of cut-made
process of cigarette production.

Table 3. Structure of historical case for the operational optimization of cut-made process.

Case Description Case Solution

Average ambient temperature at the drying machine

The optimal set value of leaf-silk drying machine in
production line A

Average ambient moisture at the drying machine

Average leaf-silk moisture content of production line B

Average leaf-silk moisture content of production line C

Tobacco stems moisture content

Expanded leaf-silk moisture content

Blending time

Average ambient temperature at spicing

Average ambient moisture at spicing

After data preprocessing, a total of 200 cases were extracted for having valuable
operating experience from the production data. Then, 100 cases were randomly chosen
from the 200 cases as the case base, while the rest were equally divided into two datasets.
The first was used as training dataset while the last was chosen as testing dataset. Similar
to the numerical simulation, MAE was chosen to evaluate its operational optimization
performance, and an orthogonal experiment was conducted to find the best parameter
combination for the abnormal case removal algorithm and CBR. By trial and error, the best
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parameters of the proposed abnormal case removal algorithm were set as k = 8, m = 5
and α = 0.6, based on which the operational optimization performance in the training
dataset was improved by 22.3% compared with classic CBR. Furthermore, the Gaussian
membership function was selected, and the optimized parameters were displayed in Table 4.
Figure 6 exhibits the set values provided by these methods for the industrial cut-made
process in the testing dataset.

Table 4. Optimized parameters of Gaussian membership function in the industrial case study.

Case Description Optimized Parameters

Average ambient temperature at the drying machine 0.4317
Average ambient moisture at the drying machine 0.3811

Average leaf-silk moisture content of production line B 0.5302
Average leaf-silk moisture content of production line C 0.3529

Tobacco stems moisture content 0.4173
Expanded leaf-silk moisture content 0.5513

Blending time 0.5556
Average ambient temperature at spicing 0.4098

Average ambient moisture at spicing 0.4885

Figure 6. Set values of the testing dataset for industrial cut-made process.

As shown in Figure 6, CBR with the designed abnormal case removal method (our
method) can obtain better results in the operational optimization of moisture content of
leaf-silk drying machine in production line A. In particular, overall, there are six operating
points (marked with red boxes) in which our method outperformed the classic CBR and
case-based fuzzy reasoning. This is due to some abnormal cases being removed by the
proposed case removal method in the case retrieval step. Furthermore, the influence of
multiple working conditions was not considered in the case-based fuzzy reasoning, and
thus the performance of CBR with the designed abnormal case removal method was better.
In summary, the MAE of classic CBR in testing dataset was 0.034 and the MAE of case-based
fuzzy reasoning was 0.03, while the MAE of our method in the testing dataset was 0.026.
The proposed abnormal case removal method improved the MAE by 23.5% compared
to classic CBR, and by 13.3% compared to case-based fuzzy reasoning. Therefore, the
effectiveness and the superiority of the local density-based abnormal case removal method
was proven, and it is suitable for the operational optimization of industrial processes.
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5. Conclusions

This paper proposed a local density-based abnormal case removal method for the
industrial operational optimization problem. Particularly, the reason as to why abnormal
cases should be removed from the case set retrieved by traditional method was analyzed
in view of the safety and reliability requirements of industrial operational optimization.
Then, historical cases whose LOF exceeded the corresponding threshold were removed
by the designed local density-based abnormal case removal algorithm. The simulation
results showed that, compared with classic CBR, the local density-based abnormal case
removal method could improve the performance of operational optimization by 20.3% in
the numerical case and 23.5% in the industrial case study, while improving the performance
of operational optimization by 8.5% in the numerical case and 13.3% in the industrial case
study compared with case-based fuzzy reasoning. In this paper, the calculation of local
density increased computation cost, thus, how to obtain the local density of retrieved cases
with lower computation burden would be an interesting topic in the future.
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Abstract: Fault diagnosis is a challenging topic for complex industrial systems due to the varying
environments such systems find themselves in. In order to improve the performance of fault diagnosis,
this study designs a novel approach by using particle swarm optimization (PSO) with wavelet
mutation and least square support (LSSVM). The implementation entails the following three steps.
Firstly, the original signals are decomposed through an orthogonal wavelet packet decomposition
algorithm. Secondly, the decomposed signals are reconstructed to obtain the fault features. Finally,
the extracted features are used as the inputs of the fault diagnosis model established in this research
to improve classification accuracy. This joint optimization method not only solves the problem
of PSO falling easily into the local extremum, but also improves the classification performance of
fault diagnosis effectively. Through experimental verification, the wavelet mutation particle swarm
optimazation and least sqaure support vector machine ( WMPSO-LSSVM) fault diagnosis model has
a maximum fault recognition efficiency that is 12% higher than LSSVM and 9% higher than extreme
learning machine (ELM). The error of the corresponding regression model under the WMPSO-LSSVM
algorithm is 0.365 less than that of the traditional linear regression model. Therefore, the proposed
fault scheme can effectively identify faults that occur in complex industrial systems.

Keywords: fault diagnosis; PSO; wavelet mutation; LSSVM

1. Introduction

Fault diagnosis and detection for complex industrial systems has been widely investi-
gated and rapidly developed in recent years [1–5]. In essence, fault diagnosis in industrial
environments is pattern recognition based on fault features. In engineering systems, fault
diagnosis is usually carried out in two aspects: model-based and data-based [6]. With
the progress of science and technology, intelligent pattern recognition algorithms for fault
signals have been developed vigorously, such as neural networks [7–9], K-nearest neigh-
bor [10–12], and LSSVM [13–15]. Neural networks have the advantage of being able to
approximate arbitrary complex nonlinearities and have good robustness [6,16]. For ex-
ample, Xu et al. [17] proposed a fault diagnosis method based on neural networks and
fuzzy theory for rotating machinery. In [4], a performance degradation and fault detec-
tion model for industrial systems was proposed based on transfer learning and federated
neural networks, and the analysis illustrated its effectiveness and feasibility for industrial
systems. For the purpose of fault detection, Chen et al. [9] established a data-driven fault
detection scheme based on two neural networks, which can construct the optimal model
adaptively. These methods demonstrate the effectiveness of neural network algorithms
in fault diagnosis for dynamic industrial systems [18]. In another respect, vibration sig-
nals can be converted into two-dimensional digital images representing the patterns of
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the permutation entropy of those signals, as in [19], where a deep neural network was
established for pattern recognition. Usually, a neural network algorithm needs a large
amount of data training to establish a model with high diagnostic accuracy. However, it is
difficult to obtain a large amount of fault data from complex systems in practice. K-nearest
neighbor is one of the simplest algorithms based on data-driven classification technology,
and it is easy to implement and requires no parameter estimations. It is widely applied
in pattern recognition, fault diagnosis, and the multiple classification problem [20–22].
Ma et al. [23] proposed a multilabel learning algorithm based on the K-nearest neighbor
algorithm for managing the prognostics and health of rolling bearings, and Gan et al. [24]
used the K-nearest classifier to identify different rolling bearing conditions for industrial
systems. Nevertheless, K-nearest neighbor is highly dependent on samples, the effect of
this defect on classification accuracy cannot be neglected.

Support vector machine (SVM), as a classical pattern identification method, is widely
used in various fields. For example, a temporal-based support vector machine for the detec-
tion and identification of several toxic gases in a gas mixture was proposed in [25], which
also indicates the great potential of SVM. LSSVM, which is a modification of the SVM, was
proposed by Suykens and Vandewalle in [26]. Inequality constraints in SVM are replaced
by equality constraints in LSSVM, reducing the difficulty of calculation. Zhang et al. [27]
combined a generalized frequency response function and LSSVM to achieve fault classifica-
tion for a nonlinear analog circuit. The results showed that the fault diagnosis method can
obtain high recognition accuracy. Product function correntropy and LSSVM were presented
in [28] to improve the fault diagnosis performance for rolling bearings in varying industrial
conditions. In order to further improve the effectiveness of LSSVM, Zhang et al. [29] used
PSO to optimize LSSVM, and their proposed PSO-LSSVM fault diagnosis method had
a high recognition rate. Similarly, a fault identification method for rolling bearings in
industrial systems was proposed in [30]. In addition, Ren et al. achieved fault detection
and diagnosis in complex industrial systems based on PSO-LSSVM, and their experimental
results showed that this method can be applied well in the field of industry. As mentioned
above, as a classical intelligent optimization algorithm, PSO is widely used due to its
convenience of implementation: it does not require that extra attention be paid to param-
eter tuning. However, the PSO algorithm also has many disadvantages, such as a poor
ability to search locally, and its tendency to fall easily into the local extremum [31–33]. To
solve this problem, many scholars have made great efforts. For example, Zhang et al. [34]
introduced dynamic inertia weights and gradient information to improve PSO. At the same
time, a bearing fault diagnosis method via an LSSVM identification model was presented.
Liu et al. [35] established a fault detection model based on a chaotic PSO algorithm and
a kernel-independent component analysis, and the simulation results showed that the
optimization method can avoid the phenomenon of the PSO algorithm’s susceptibilty
to falling into a local extremum. Furthermore, an improved PSO- and SVM-based fault
diagnosis methodology was presented in [36] to predict faults in nuclear power plants.

Motivated by the above observations, the first contribution of this study is to design a
novel fault diagnosis method based on WMPSO-LSSVM that can achieve a high classifi-
cation accuracy. The second contribution is to solve the problems of the PSO algorithm’s
susceptibilty to falling into a local extremum and its low search precision. In addition, this
study adopts the data-driven method to realize the fault diagnosis and prognostics of the
actual complex parts in an industrial system, and a contrast experiment shows that the
established joint optimization scheme has superior performance and strong robustness,
which can promote the development of mechanical fault diagnosis.

The remaining parts of this study include Section 2, which introduces the signal pre-
processing and feature extraction methods, which are based on an orthogonal wavelet
packet algorithm ( WPT); Section 3, in which the WMPSO-LSSVM-based fault diagnosis
scheme is presented; Section 4, where the effectiveness of this study is verified by actual
fault data and comparison experiments; and finally, Section 5, in which the conclusion
is given.
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2. Signal Decomposition and Feature Extraction-Based Orthogonal Wavelet
Packet Transform

Wavelet transforms have been widely used for vibration signal pre-processing for
industrial systems. Generally, wavelet transforms only decompose the low-frequency part
of the signal, and do not treat the high-frequency portion of the signal at all. However,
the detailed information that can characterize the vibration signal usually exists in the
high-frequency section. Therefore, the orthogonal wavelet packet transform is introduced
to solve this problem. Furthermore, the vibration signal of industrial systems can be
decomposed in this way without information loss, which lays a foundation for obtaining
high fault diagnosis accuracy. The theoretical basis is described as follows.

In multiresolution analysis, L2(R) is a square-integrable space and L2(R) = ⊕
j∈Z

Wj,

indicating that the multiresolution analysis decomposes L2(R) into the orthogonal sum of
all subspaces Wj(j ∈ Z), according to the different scale factors j. Wj(j ∈ Z) is the wavelet
subspace of the wavelet function ψ(t). Then, we hope to further subdivide Wj(j ∈ Z)
through a binary fraction. Therefore, the scale subspace Vj and the wavelet subspace Wj
can be represented through a new subspace Un

j , if there are the following conditions:{
U0

j = Vjj ∈ Z
U1

j = Wjj ∈ Z
(1)

Then, the orthogonal decomposition of the Hilbert space can be expressed as follows:

U0
j+1 = U0

j ⊕ U1
j (2)

Suppose Un
j is the wavelet subspace of un(t), U2n

j is the wavelet subspace of u2n(t),
and un(t) is: ⎧⎨⎩

u2n(t) =
√

2 ∑
k∈Z

h(k)un(2t − k)

u2n+1(t) =
√

2 ∑
k∈Z

g(k)un(2t − k)
(3)

where h(k) represents the low-pass filter coefficients and g(k) represents the high-pass filter
coefficients, and g(k) = (−1)kh(1 − k). Then, Formula (3) can be rewritten as follows:⎧⎨⎩

u2n(t) =
√

2 ∑
k∈Z

hkun(2t − k)

u2n+1(t) =
√

2 ∑
k∈Z

gkun(2t − k)
(4)

where u0(t) = φ(t) (φ(t) is the scale function), u1(t) = ψ(t) (ψ(t) is the wavelet basis
function), and the sequence {un(t)}n∈Z+

is the orthogonal wavelet packet basis.
Suppose f (n) is the signal to be decomposed. In fact, a wavelet packet transform of

f (n) is a projection coefficient on the wavelet packet basis {un(t)}n∈Z+
:

p f (n, j, k) = 〈 f (t), un(t)〉 =
∫ +∞

−∞
f (t)

[
2−j/2ūn

(
2−j t̄ − k

)]
dt (5)

where {ps(n, j, k)}k∈Z is the sequence of transformation coefficients of f (n) on Un
j .

Usually, the transformation coefficients {ps(n, j, k)}k∈Z can be calculated through the
Mallat algorithm: ⎧⎨⎩

p f (2n, j, k) = ∑
l∈Z

hl−2k p f (n, j − 1, l)

p f (2n + 1, j, k) = ∑
l∈Z

gl−2k p f (n, j − 1, l)
(6)

According to the above discussion, the decomposition processing of the original signal
is depicted and illustrated in Figure 1.
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Figure 1. Wavelet decomposition for original signals.

Because of the integrity and orthogonality of the wavelet packet space, the origi-
nal signal f (n) is almost completely intact after wavelet decomposition, which provides
conditions for analyzing signal characteristics.

According to the above definition of the orthogonal wavelet packet transform, the
signal f (n) has been projected adaptively into the orthogonal wavelet packet space; then,
the obtained component can be regarded as the energy distributed in the corresponding
space. If the energy distribution of signals in the space of each orthogonal wavelet packet
can be calculated at a certain decomposition level, then the characteristics can be extracted
by sorting these energies according to the frequency index of Un

j . The energy distribution
in the time-frequency localization space can be interpreted as follows:

E(j, n) = ∑
k∈Z

[
p f (n, j, k)

]2
(7)

Therefore, if the original signal f (t) is decomposed by P levels, the energy feature
vector extracted from the original signal can be expressed as follows:

E∗(P, f ) =
[

E(P, 0), E(P, 1), . . . , E
(

P, 2P − 1
)]

(8)

3. Improved Fault Diagnosis Approach Using WMPSO-LSSVM

3.1. Least Squares Support Vector Machine

The literature of various fields shows that the LSSVM model performs well on various
datasets, so it can process the data generated under unknown working conditions in
complex industrial systems well. In addition, the complete theoretical basis of LSSVM can
also ensure its stability. The principle of LSSVM is as follows:

min
w,b

1
2
‖w‖2 + C

m

∑
i=1

ζ2
i (9)

s.t.yi

(
wTxi + b

)
= 1 − ζi, i = 1, 2, . . . , m (10)

where {(x1, y1), (x2, y2), . . . , (xl , yl)} are the samples to be observed, w is the perpendicular
vector of the line, b is the offset of the hyperplane, C is the regularization parameter, and ζi
represents the fluctuations in the error of each sample.
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To obtain an accurate solution to the above optimal problem, the Lagrange function
with slack variables can be established as follows:

L(w, b, ζ, α, λ) =
1
2
‖w‖2 + C ∑

i
ζ2

i + ∑
i

αi(1 − ζiyi

(
wT ϕlssvm(xi) + b

)
)− ∑

i
λiζi (11)

where αi is the Lagrange multiplier of the original problem, and λi is the Lagrange multi-
plier of the additional slack variables.

Take the derivative of each variable in Formulas (9) and (10) and let them be 0. The
following equalities hold: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

w =
n
∑
i

αixiyi

n
∑

i=1
αiyi = 0

C − αi − λi = 0

(12)

Thus, Formula (11) can be rewritten as follows:

L(ζ, α, λ) = ∑
i

α2
i + ∑i,j αiαjyiyjXT

i Xj (13)

Therefore, the optimal problem of Formulas (9) and (10) can be expressed as follows:⎧⎪⎪⎨⎪⎪⎩
maxαW(α) =

n
∑

i=1
αi − 1

2

n
∑

i,j=1
yiyjαiαj

〈
xi, xj

〉
s.t.

n
∑

i=1
αiyi = 0

(14)

Given the varying conditions of industrial systems, the vibration signal of equipment
follows a nonlinear relationship. In order to solve the problem of linear indivisibility in
primordial space, it is necessary to transform the failure samples into multi-dimensional
distinguishable space by introducing kernel functions. Therefore, Formula (14) can be
written as follows: ⎧⎪⎪⎨⎪⎪⎩

maxαW(α) =
n
∑

i=1
αi − 1

2

n
∑
i,j

y(i)y(j)αiαjk
(

xi, xj
)

s.t.
n
∑

i=1
αiyi = 0

(15)

where k
(
xi, xj

)
is the kernel function, and the selection of the kernel function has great

flexibility. The common kernel functions are described as follows:

1. Linear kernel function:
K
(

xi, xj
)
= xi · xj (16)

2. Polynomial kernel function:

K
(

xi, xj
)
=

(
xi · xj + 1

)l , l = 1, 2, . . . (17)

3. Gaussian kernel function:

K
(
xi, xj

)
= exp

[
−

∥∥xi − xj
∥∥2

2σ2

]
(18)

The Gaussian kernel function selected in this paper can effectively transform the data
from the low-dimensional non-separable space to the high-dimensional separable space,
and it can further improve the classification accuracy of the model. Another advantage
of Gaussian kernels, compared to other kernels, is that the more complex the model,
the stronger the performance. In addition, no matter how many dimensions are the
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characteristics of each sample point, each sample can be transformed into the total sample
quantity dimension after processing by the Gaussian kernel function, which expands the
dimension and the diversity of data.

It is natural to notice that LSSVM’s classification accuracy is closely related to the
penalty factor and parameter σ of the kernel functions. If the kernel function is too small,
there will be an over-fitting phenomenon in the classification; otherwise, there will be an
under-fitting phenomenon. Similarly, the larger the penalty factor, the more likely it is to
overfit; and the smaller the penalty factor is, the more likely it is to underfit. Thus, in order
to improve the accuracy of fault diagnosis for industrial systems, an optimized approach,
named WMPSO-LSSVM, is proposed in the next section.

3.2. WMPSO-Based Parameters Optimization of LSSVM

As mentioned above, the regularization parameter and kernel functions play an
important role in LSSVM. Thus, in this paper, we adopt the proposed WMPSO algorithm to
optimize the parameters and establish a desirable model with high classification accuracy.
Firstly, the basic model of PSO is as follows:

Ci = m × Ci + c1 × rand × (gbest − σi) + c2 × rand × (qbest − σi) (19)

σi = σi + Ci (20)

where Ci is the regulation parameter of the LSSVM as well as the current velocity of PSO,
and σi is the kernel function of the LSSVM as well as the location of particles in PSO. m
indicates the weight coefficient, c1 and c2 are learning factors, and rand is a random number
between 0 and 1. Meanwhile, gbest and qbest store the optimal values corresponding to the
penalty coefficient C and the kernel parameter σ, respectively.

Suppose there is a group of particle swarms S = (S1, S2, . . . , Sn) in an n-dimensional
space; C and σ can be presented as follows:

C = (C1, C2, . . . , Ci) (21)

σ = (σ1, σ2, . . . , σi) (22)

In this paper, the wavelet function μ∗ is used to conduct a random perturbation of all
the dimensions of the contemporary optimal value Qm

g (t) particles, and the perturbation
result is taken as the position of the particles. The calculation model is given as follows:

σ̄m(t) = μ∗Qm
g (t) (23)

For the sake of the accuracy of the WMPSO algorithm, the Morlet function was selected
as the wavelet base in this study, as shown in Figure 2.

The Morlet wavelet has more accurate and high-resolution spectral estimation, and has
thus been widely used. Compared with the Gaussian and Cauchy variations often used in
particle swarm optimizations, the Morlet wavelet searches more effectively in the solution
space because there is an equal probability of producing positive and negative numbers.

In addition, the Morlet wavelet function changes the local solution more frequently in
the solution space, and it is easier to obtain the optimal solution in the local optimization.
The Morlet wavelet function can fine-tune the particle, so it is a remarkable choice to select
the Morlet wavelet for mutation.

Thus, the wavelet function value applied is expressed as follows:

μ∗ = 1√
a

e−
(

ϕ∗
a∗

)2
/2 cos

(
5
(

ϕ∗

a∗

))
(24)
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Meanwhile, the scale parameter a∗ is calculated by Formula (25):

a∗ = e− ln(g)×(1− t
T )

γωm
+ ln(g) (25)

where γωm is the shape parameter, t is the current iteration number, T is the maximum
number of iterations, and g is the limit of a∗.

Figure 2. Morlet-wavelet function.

Therefore, after the perturbance by using the wavelet mutation function, the new posi-
tions of the particles are σ̄m =

(
σ̄m

1 , σ̄m
2 , . . . , σ̄m

n
)
. Once the position and kernel parameter σ

are determined, the regularization factor C can be confirmed according to Formula (19).
The optimization process for the parameters in this study is given in Algorithm 1:

Algorithm 1 The process of the WMPSO parameters’ optimization

Initialize σi \\ σi is the position of the ith particle
Calculate fitness function \\ Individual extreme values of particles can be calculated by
fitness function
while i <= T do \\ T is the maximum number of iterations performed by the algorithm
i = i + 1

for j = 1 to n do
Update velocity Ci based on Equation (19)
Update position σi based on Equation (20)
if pm > rand then

Calculate a∗ based on Equation (25)
ϕ∗ = 2.5 ∗ a∗ ∗ rand(1, 30)
Calculate μ∗ based on Equation (24)
Update position σi based on Equation (23)

end if
Calculate fitness function
Update Qi and Qg

end for
end while
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3.3. Design of WMPSO-LSSVM-Based Fault Diagnosis Scheme for Industrial Systems

Based on the above analysis, the WMPSO-LSSVM-based data-driven fault diagnosis
approach is designed as follows:

1. Decompose the composite fault data of industrial systems based on the orthogonal
wavelet packet algorithm and extract the fault characteristics;

2. Take the extracted characteristics as the input to the WVPSO-LSSVM identification
model, training to obtain the regularization coefficient C and kernel parameter σ. The
training process is summarized as follows:

• Initialize the following parameters: the evolution algebra of the particles, the
learning factors c1 and c2, the regularization factor C, the kernel parameter σ,
and the historical optimal kernel parameter Qσ;

• Calculate the new information of the C and σ, and update a new generation of
the particles;

• Calculate the fitness value of the particles according to the fitness function, and
update the individual and global optimal values of C and σ on this basis;

• Evaluate whether the maximum number of iterations or searching boundaries
has been reached. If so, store the C and σ, and construct the WMPSO-LSSVM-
based identification model;

3. Take the extracted characteristics as the input to the WVPSO-LSSVM identification
model, testing to obtain the classification result.

The corresponding flowchart is presented in Figure 3.
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Data pre-processing scheme
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parameters of the PSO
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Input

Fault diagnosis 
results and 
precision

Output

Figure 3. The flowchart of the proposed WMPSO-LSSVM algorithm.

4. Experimental Applications for Industrial Systems Based on WMPSO-LSSVM

The effectiveness and superiority of this study for industrial systems are evaluated
on a database taken from the Guangdong Provincial Key Laboratory of Petrochemical
Equipment Fault Diagnosis of China. Meanwhile, some comparative experiments are used
to further prove the fault diagnosis performance of the proposed method.

As shown in Figure 4, the industrial system studied in this section is the main fan motor
of a steam turbine, and the specific research object of this system is the gearbox containing
the rolling bearings. The actual data of the gearbox and bearings are obtained from the
intelligent fault diagnosis system, which consists of an acceleration sensor, a preamplifier
(PMP), an explosion-proof BOX (BOX), a data collector (butylated hydroxytoluene), and a
server (PC-1).
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Generator Gear box Main fan Flue gas 
turbine

Figure 4. Schematic diagram of the main fan system.

In addition, the acceleration sensor is installed on the generator to obtain the vibration
signals; the role of the BOX is to protect the preamplifier; the preamplifier is installed in
the BOX for signal amplification; the data collector is installed in the steam turbine of the
main fan for signal acquisition and processing; and the server is used for data storage and
management.

The accelerometer used to measure the vibration acceleration mainly contains the fol-
lowing information. The highest amplitude is 50 g, the channel number is 6, the maximum
transmission distance is 300 m, the working power supply is 18–30 VDC, and the working
current is constant (2–10 mA). The actual industrial system operation environment and
data collection situation are shown in Figures 5–8.

Figure 5. The on-site industrial environment.

Figure 6. The local-data acquisition system.
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Figure 7. The data acquisition base station.

Figure 8. The data acquisition platform.

The data collected by the intelligent fault diagnosis system mainly include seven
states, which are different fault combinations of gears and bearings. Their fault modes
and corresponding indicators are shown in Table 1, and the waveforms of the part of the
original vibration signals are shown in Figures 9–12.

Figure 9. The original signals of the inner race fault of the bearings and the tooth loss of gear-box.
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Figure 10. The original signals of the outer race fault of the bearings and the tooth loss of the gear-box.

Figure 11. The original signals of balls that are missing bearings and the abrasion of the gear-box.

Figure 12. The original signals of balls that are missing bearings and the tooth loss of the gear-box.
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Table 1. Seven fault states of the key components for entire systems.

Description of Seven States Vibration Index Impulsion Index Tolerance Index Peak Index Kurtosis Index

State 1: missing gear teeth and 1.1975 2.5531 2.9015 2.1319 3.0860
outer ring wear of right bearing 1.3132 6.8919 8.2115 5.3947 4.1036
State 2: missing gear teeth and 1.2293 3.1451 3.6689 2.5414 2.7140

lack of balls on left bearing 1.2920 4.9894 5.9483 3.9279 3.5757
State 3: missing gear teeth and 1.2657 4.3240 5.1791 3.3671 3.4370
outer ring wear on left bearing 1.3558 7.5935 9.1797 5.7598 5.4632
State 4: missing gear teeth and 1.2438 3.2264 3.7968 2.5912 2.8526

inner ring wear on right bearing 1.3082 5.6916 6.8665 4.3945 4.3278
State 5: wear of gear and 1.2252 2.2448 2.6442 1.8041 2.3961

inner ring wear on left bearing 1.3433 4.2110 4.9972 3.3652 4.6594
State 6: wear of gear and 1.2257 2.6885 3.3278 2.4035 2.7392

lack of balls on left bearing 1.3227 5.3905 6.7998 4.1221 8.0007
State 7: wear of gear and 1.3007 4.3120 5.1996 3.3152 3.6755

outer ring wear on left bearing 1.3742 7.4453 9.0964 5.5460 5.4385

The numbers in bold in the table represent the time domain index of the faulty
component. Look at the numbers in the table. If the data in the table appears to be
significantly asynchronous, this can be used to distinguish component failures. Taking the
waveform indicator as an example,1.2920 is obviously out of sync with all the numbers in
the second row of the waveform column, and 1.3007 is also out of sync with the numbers
in the first row of the waveform column, so it can be used as the basis for division.

Therefore, according to the indicators in bold in Table 1, the following analysis can be
obtained.

• States 2 and 7 can be distinguished via the vibration index;
• States 3 and 5 can be distinguished via the impulsion and tolerance indices;
• States 5 and 7 can be distinguished via the impulsion and tolerance indices;
• States 3 and 5 can be distinguished via the peak index;
• States 2 and 7 can also be distinguished via the kurtosis index, as can states 2 and 3.

Then, the original signals are decomposed into three layers using the wavelet packet
decomposition algorithm, and the node coefficients are calculated according to Formula (5).
The corresponding results are given in Figure 13. In addition, the wavelet packet coefficients
of the third layer, consisting of nodes 7 to 14 and calculated according to Formula (6), are
shown in Figure 14.

The spectral distributions of the non-stationary vibration signals of the gearbox and
bearings are closely related to their characteristic structures. Therefore, the energy distri-
butions in the wavelet packet space of the original vibration signals decomposed by the
wavelet packet are the fault features of the gears and bearings to be extracted. The parts of
the characteristic extraction results are shown in Figure 15.

Finally, by using 75% of the extracted fault features as the input to establish the optimal
WMPSO-LSSVM and by inputting the test samples into the model, the classification results
can be obtained. The experimental results of LSSVM, PSO-LSSVM, and WMPSO-LSSVM
are given in Figures 16–18, respectively.
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Figure 13. The decomposition results of the vibration signals.

Figure 14. The node coefficients of the wavelet-packet algorithm.
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Figure 15. The fault characteristic extraction results of the gear-box and bearings.
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Figure 16. The classification results of LSSVM.
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Figure 17. The classification results of PSO-LSSVM.
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Figure 18. The classification results of WMPSO-LSSVM.

In order to further verify the superiority of the WVPSO-LSSVM classification model
for key components of industrial systems, ELM and the traditional BP network are used for
comparison purposes; the experimental results are shown in Table 2 and Figures 19–22.
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Figure 19. Fault diagnosis results based on ELM (1).
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Figure 20. Fault diagnosis results based on ELM (2).
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Figure 21. Training performance of the neural-networks.

Figure 22. Training state of the neural-netwoks.
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Table 2. This table contrasts the results of the three mechanisms.

Classification Method BP ELM LSSVM PSO-LSSVM WMPSO-LSSVM

Classification accuracy (%) 64.29 86.50 84.17 90.00 95.71

To evaluate the performance of the WMPSO-LSSVM classification model, the confusion
matrices of the WMPSO-LSSVM and ELM are presented, respectively, in Figures 23 and 24.

In the Figures 23 and 24, the blue square represents the number of correctly classified
samples, while the pink square represents the number of incorrectly classified samples. For
example, in Figure 23, there is only one incorrectly classified sample for the second type,
and the remaining nine are correctly classified. The more diagonally distributed samples
in the matrix, the better the performance of the model. And according to the results, the
WMPSO-LSSVM has a higher precision than ELM.

In order to further verify the effectiveness of the proposed algorithm, the correspond-
ing WVPSO-LSSVM regression model for the bearings and gearbox is established, and the
composite fault characteristic trend is predicted. The comparative results are shown in
Figures 25–28 and Table 3.

Figure 23. The confusion matrix of the WMPSO-LSSVM model.

Figure 24. The confusion matrix result of the ELM model.
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Figure 25. Bearing inner ring wear and gear tooth loss.

Figure 26. Bearing outer ring wear and gear tooth loss.

Figure 27. Bearing missing balls and gear tooth loss.
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Figure 28. The state of seven types of faults.

Table 3. Comparison between the WMPSO-LSSVM regression model and the linear regression model.

Fault Types

Method
WMPSO-LSSVM Linear Regression

Bearing inner ring wear and gear tooth loss 0.0707154 0.411682
Bearing outer ring wear and gear tooth loss 0.00146932 0.2976
Bearings missing balls and gear tooth loss 0.00260635 0.545191

Seven types of fault features 0.0224879 0.304906

Since the weight and the deviation of ELM are randomly generated, the inconsistent
networks generated each time will eventually lead to a large performance difference,
although the learning speed of ELM is fast and its generalization performance is good.
Furthermore, because the BP neural network is a gradient descent method, its optimized
objective function is extremely complex, and there will be a zig-zag phenomenon in the
training process, which makes the BP algorithm inefficient. The accuracy of the BP neural
network also depends largely on the sample size, and the number of fault samples obtained
from industrial systems is small. Thus, it is not suitable for limited fault data of complex
industrial systems.

In addition, it can be seen from the comparative experimental results that the WMPSO-
LSSVM model has strong performance. The introduction of the Gaussian kernel function
in WMPSO-LSSVM can expand the diversity and dimension of limited data and solve the
defect of traditional neural networks’ unsuitability for small samples. At the same time,
the model can not only classify complex fault data effectively, but can also predict the
complex fault characteristic trend, which has good applicability to complex fault data in
industrial systems.

5. Conclusions

In this research, aiming to address the difficulty of the low precision of fault diagnosis
methods for industrial systems, a new fault diagnosis methodology, named WMPSO-
LSSVM, is proposed. Based on the decomposition of fault signals for feature extraction, the
gearbox and bearings derived from the composable components are taken as the specific
objects, and the vibration can be decomposed without information loss based on WPT.
By comparing the proposed method with the existing pattern recognition methods, the
results show that the WMPSO-LSSVM method can achieve higher classification accuracy
for multiple fault modes in industrial systems.

In addition, PSO optimized by the wavelet mutation is combined with the LSSVM
algorithm to realize the further optimization of the regularization parameter and kernel
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function in the LSSVM, thereby improving the fault diagnosis accuracy. Particles that jump
out of the local extreme value through the wavelet mutation algorithm will seek the optimal
solution of parameters in the global space, so the optimal hyperplane of the LSSVM model
can be established. As demonstrated via the comparative experiments, the accuracy of the
WMPSO-LSSVM is almost 12% higher than that of the LSSVM, and is 9% higher than the
ELM; moreover, the average error of the regression is 0.365 less than that of the traditional
linear regression model, implying the potency of this scheme.

However, how to better select the parameters in the wavelet mutation function adap-
tively is not yet resolved in this work. Further research on the optimization of parameters
in wavelet mutation is warranted.

In summary, the WMPSO-LSSVM proposed in this paper can significantly improve
the fault diagnosis accuracy for complex industrial systems, and therefore, it offers better
operability and scalability in the actual industrial environment.
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Notations

L2(R) square-intergrable space
Wj wavelet subspace
ψ(t) wavelet function in wavelet packet algorithm
Vj scale subspace
Un

j Hilbert space
un(t) orthogonal wavelet packet basis
h(k) low-pass filter coefficients
g(k) high-pass filter coefficients
φ(t) scale function in wavelet packet
f (n) original signal
p f (n, j, k) a sequence of transformation coefficients in wavelet packet
E(j, n) energy distribution
w the perpendicular vector in LSSVM
b an offset of the hyperplane in LSSVM
C regularization parameter in LSSVM
ζ the fluctuations of the error in LSSVM
α Lagrange multiplier of the original problem
λ Lagrange multiplier of the additional slack variables

K
(

xi, xj

)
kernel function

Ci the velocity of the ith particle
σi the position of the ith particle
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σ kernel parameter of the Gaussian kernel function
m weight coefficient in PSO
c1 learning factor in PSO
c2 learning factor in PSO
rand random number uniformly distributed in [0, 1]
gbest the best particle that indicates the global best
qbest the best particle that indicates the local best
S particle swarm
μ∗ wavelet function in the mutation wavelet algorithm
a∗ scale parameter in the mutation wavelet algorithm
γwm shape parameter
t the current iteration number
T the maximum number of iterations
g limit of scale parameter
σ̄m the new position of the disturbed particle
pm the mutation rate
Qm

g (t) the global best of the ith particle
ϕ∗ wavelet function basis in Morlet
Qg the best particle that indicates the global best of the disturbed particle
Qi the best particle that indicates the individual best of the disturbed particle
Qσ the historical optimal kernel parameter
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Abstract: Traditional fault diagnosis methods are limited in the condition detection of shore bridge
lifting gearboxes due to their limited ability to extract signal features and their sensitivity to noise.
In order to solve this problem, an adaptive fusion convolutional denoising network (AF-CDN) was
proposed in this paper. First, a novel 1D and 2D adaptive fused convolutional neural network
structure is built. The fusion of both 1D and 2D convolutional models can effectively improve the
feature extraction capability of the network. Then, a gradient updating method based on the Kalman
filter mechanism is designed. The effectiveness of the developed method is evaluated by using
the benchmark datasets and the actual data collected for the shore bridge lift gearbox. Finally, the
effectiveness of the proposed algorithm is proved through the experimental validation in the paper.
The main contributions of this paper are described as follows: the proposed AF-CDN can improve
the diagnosis accuracy by 1.5–9.1% when compared with the normal CNN methods. The robustness
of the diagnostic network can be significantly improved.

Keywords: gearbox fault diagnosis; convolution fusion; state identification

1. Introduction

With the further development of globalization, automated container terminals (ACTs)
are increasingly widespread. The automatic loading and unloading of containers by ACTs
ensure the orderly flow of goods. This plays an important role in the globalization of the
economy. As an integral part of the ACT, the reliable working condition of the port crane
ensures the efficient operation of the entire terminal. The gearbox of the port crane, as
an important power component, works for long periods of time and under heavy loads.
A reliable condition monitoring and fault diagnosis system for the port crane gearbox is
essential for a port crane [1,2]. The failure of a port crane can lead to port blockages and
unnecessary economic losses or even cause injury or death. Therefore, it is essential to
ensure that it works safely and securely. In practical scenarios, it is usually experienced
experts or engineers who perform the maintenance of the equipment through their previous
experience. For example, an experienced expert can determine the status of a device by
tapping on it and locating faults according to the feedback signal characteristics. However,
some critical equipment requires effective online monitoring so that faults can be detected
and handled as soon as they occur.

The development of sensors such as vibration sensors, acoustic sensors, temperature
sensors, pressure sensors, etc., can provide an effective means of obtaining information
for such equipment [3–5]. This provides an effective means of detecting equipment in
real time. Traditional analysis methods are mainly based on manual feature extraction of
the collected signals. The methods of feature extraction for signals include time domain
features, frequency domain features, and time–frequency domain features. Common
features of the time domain include the mean value, standard deviation, root mean square
value, peak value, shape indicator, skewness, kurtosis, crest indicator, clearance indicator,
impulse indicator, etc., [6]. Frequency domain features usually refer to feature signals
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extracted from the frequency spectrum, mainly including the mean frequency, frequency
center, root mean square frequency, the standard deviation of frequency, etc. [7]. Frequency
signals often better represent some of the hidden features of the signal than the time
domain. The time–frequency domain features include energy entropy, which is usually
extracted by wavelet transform (WT), wavelet package transform (WPT), or empirical
model decomposition (EMD) [8–13].

With the development of artificial intelligence technology [14,15], machine learning
methods are used to identify faults based on the features extracted, such as expert sys-
tems, ANN, and SVM [16,17]. The intelligent algorithms of the fault diagnosis model
have a strong nonlinear fitting capability [18,19]. With a provided training target and an
optimization algorithm, the intelligent algorithm often achieves a good diagnosis result
after continuous iteration of the optimal search. However, the efficiency of signal feature
extraction may have a significant impact on the diagnostic accuracy of these methods

In this paper, a 1D and 2D adaptive fusion convolutional neural network structure
is proposed, while the parameters are integrated with a Kalman filter during the iterative
training process. AF-CDN converts raw data into 2D data and uses the fast Fourier
transform (FFT) technique to extract features from the signal. Then, the two signals are
adaptively fused. At the same time, the use of Kalman filter technology can effectively
eliminate the influence of noise in the raw data on the diagnostic results. The network
has excellent diagnostic accuracy, while the robustness is greatly improved. Based on the
historical data, we built an online condition monitoring system for port crane gearboxes.
We also test our proposed algorithm on a public bearing dataset from Case Western Reserve
University, and the results show that AF-CDN is well suited for different situations.

The main contributions of this paper are summarized as follows:

(1) A 1D and 2D adaptive convolutional approach is proposed, through which the feature
extraction capability of the network can be greatly enhanced. We design a 1D and 2D
fused convolutional signal extraction layer (perception layer). First, the FFT-processed
1D information is fed into the 1D convolution input, and then the sequence of the
original signal is aligned and fed into the 2D convolution input.

(2) A Kalman filter-based method for updating network parameters is proposed. Im-
provements are made to the minibatch stochastic gradient descent (MSGD) method.
The information within the minibatch is effectively integrated based on the Kalman
filter mechanism.

The subsequent sections of this manuscript are organized as follows: Section 2 presents
the preliminary work. Section 3 describes the method proposed in detail. Section 4 designs
experimental validation for the proposed algorithms. Section 5 presents the conclusion and
provides suggestions for future work

2. Preliminary Work

2.1. Convolutional Neural Networks

Convolutional neural networks are an important branch of neural networks [20].
However, unlike back propagation (BP) neural networks, convolutional neural networks
have a strong feature extraction capability. After the convolutional operation, the network
can perform feature extraction on the signal fed into the network.

A CNN has a convolutional layer, a pooling layer, and a full connection layer. Since the
proposal of the convolutional neural network, a rich variety of CNN structures have been
developed over the decades, including LeNET, AlexNET, VGG, GoogleLeNET, ResNET,
DenseNET, etc. A typical convolutional neural network structure is shown in Figure 1.
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Figure 1. Typical convolutional neural network structure.

The forward computation of a CNN can be expressed as follows.

G(X) = g(L)(. . . g(2)(g(1)(X, θ(1)), θ(2)) . . . , θ(L)). (1)

G is the mapping equation of the network. g is the nonlinear function of each layer
inside the network. θ is the connection parameters of each layer and L is the number of
layers of the neural network. X =

{
x1, x2 . . . xp . . . xQ

}
is the input to the network, which

can be one- or two-dimensional. Q is the number of data in the dataset.
The convolutional layer of a CNN consists of a convolution core and a bias. After the

input of the network has been convolved, the bias of the layer is added, and, finally, the
output of the network is obtained by passing through the nonlinear layer. The equation for
the convolution layer is shown as follows [20].

O(l)
i = g(l−1)

⎛⎝n(l−1)

∑
j = 1

w(l)
ij ∗ X(l−1)

j + b(l)i

⎞⎠. (2)

In the formula, O(l) is the output of the lth layer. i = 1, 2 . . . n(l), n(l) is the output
size of the lth layer. j = 1, 2 . . . n(l−1), n(l−1) is the output size of the (l−1)th layer. w is the
value of the convolution core. b is the value of bias. The pooling layer is used to further
extract the information from the convolutional output. The pooling operation can be max
pooling, down pooling or average pooling. After the pooling operation, the representative
features in the local area are further extracted. Taking down pooling as an example, it takes
the smallest value inside the pooling size range and generates a new output. As shown in
Equation (3), let the pooling size be p × p.

xijl = min(oi′ j′ l : i ≤ i′ < i + p, j ≤ j′ < j + p). (3)

The input information to the network is passed through a number of convolution, pooling,
and nonlinear computations. Then, the output value of the last pooling layer is reshaped, and
this value is fed into the full connecting layer. Finally, the diagnosis result is provided after a
softmax layer. We assume that the network output has K classes. Y =

{
y1, y2 . . . yq . . . yQ

}
is the output set of the dataset. Q is the number of data in the dataset. If yq ∈ {1, 2 . . . k . . . K},
the predicted output of the network is shown as Equation (4):

ŷ(ŷq = k
∣∣∣o(L−1); w(L) ) =

ew(L)
k o(L−1)

K
∑

i = 1
ew(L)

i o(L−1)
. (4)

where w(L) is the network parameter for the softmax layer. Ŷ =
{

ŷ1, ŷ2 . . . ŷq . . . ŷQ
}

.
The network parameters are updated using the minibatch stochastic gradient descent

method after the network has completed forward propagation. J is the loss function of
the network, which can be mean square error (MSE) or cross-entropy, etc. After each
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forward calculation is completed, the output of the network is updated by iterating back-
ward derivation. The network parameters are updated by Equations (5) and (6). γ is the
learning rate.

W = W − γ
∂J(W, B; X, Ŷ)

∂W
. (5)

B = B − γ
∂J(W, B; X, Ŷ)

∂B
. (6)

2.2. CNN-Based Fault Diagnosis

Convolutional neural networks are widely used in data-based fault diagnosis ap-
plications. Based on the different types of convolutional kernel operations, they can be
divided into 1D-CNNs and 2D-CNNs. The 1D convolutional structure is proposed mainly
in response to the fact that the neural network often requires manual feature extraction
of the raw signal when performing recognition. One-dimensional convolutional neural
networks can use the raw data directly as an input to the neural network. For example, Eren
et al. proposed an adaptive 1D convolution method that can extract data features directly
from the raw time-domain data [21]. An online diagnostic network based on 1D-CNN was
designed for the effective diagnosis of a gearbox, where vibration sensors cannot be used,
and the signal was collected by a rotary encoder [22]. A deep convolutional structure, Deep
Inception Net with Atrous Convolution (ACDIN), was designed in [23] based on 1D-CNNs,
which improved the feature extraction ability of the network by adding an inception layer.
The 1D convolution was improved by Atrous convolution. This led to a significant increase
in the diagnostic capability of the network. To address the problem of uneven distribution
of samples in the dataset, Jia et al. proposed a 1D-CNN with normalized weights for one-
dimensional input data [24]. Jiang et al. designed a multi-scale signal resolution method
using one-dimensional convolution for signal feature extraction, which achieved a positive
result [25]. Appana et al. proposed the extraction of the raw signal by CNN for the case of
multiple faults and environmental influences [26]. One-dimensional CNNs have excellent
environmental adaptability and can effectively resist interference.

The main issue that needs to be solved when 2D convolutional neural networks are
used for fault diagnosis is how to convert the acquired 1D raw signal into 2D data that can
be fed into the network. A number of approaches have been proposed to solve this problem.
Guo et al. used the residual processed short-time Fourier transform (STFT)-transformed
image of the original signal as the input into the CNN [27]. Long et al. proposed a
signal to image conversion mechanism to transform the raw time domain signal into 2D
grey images [28]. This enables feature extraction of the collected vibration signals in a
similar manner to picture recognition. Han proposed a spatiotemporal convolutional
neural network (ST-CNN), which extracts spatiotemporal features via the spatiotemporal
pattern network (STPN) and then makes a diagnosis based on the CNN [29]. In [30], Yu
et al. used a pseudo-color map to represent the data extracted by STFT and then fed
the images into a CNN for training recognition. Sun et al. used the dual-tree complex
wavelet transform method to extract features from the raw data, and the DTCWT wavelet
sub-bands were used as multiple rows of a matrix so that a 2D signal was formed and sent
to 2D convolution for processing [31]. Similarly, the Hilbert envelope demodulation spectra
(HEDS) of reconstructed signals in each frequency band were also spliced into the 2D signal
matrix [32]. The HEDS of the reconstructed signal for each frequency band were stitched
into a 2D signal matrix to produce a 2D signal. The time domain signals were arranged row
by row to form a 2D input matrix as the network input for diagnostics. Min et al. arranged
the time domain signals row by row to form a 2D input matrix as the network input for
diagnostics [33].
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3. The Proposed Method

3.1. Adaptive Fusion Convolutional Denoising Network

The proposed AF-CDN structure diagram is shown in Figure 2. Firstly, the equipment
data are collected by vibration sensors. Then, the 1D data are obtained by FFT and fed into
the 1D channel of the perception layer. The raw data are arranged in order to obtain 2D
data. These data are then fed into the 2D channel of the perception layer. After feature
extraction in the perception layer, all feature values are flattened and then pooled. The
features then go through two more inception and pooling layers. The output values are fed
to the auxiliary classifier for classification after each pooling layer. The final pooling layer
output is combined with the output of the auxiliary classifier to provide the final diagnosis
result. The loss value is calculated from the output, and if the predetermined loss condition
is satisfied, then the training is stopped; if not, then training continues.

Figure 2. AF-CDN structure diagram.

Numerous research results in the field of CV have favorably illustrated the importance
of 2D convolution for the accurate recognition of valuable information in 2D images. As
shown in Section 2.2, the development of convolutional neural networks in the field of fault
diagnosis also started with 1D-CNNs, and then researchers successively proposed various
methods to convert 1D data into 2D data, thus enabling 2D-CNNs to be widely used in the
field of fault diagnosis. The schematic diagram of the data processing is shown in Figure 3.
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After the original data are FFT-transformed, the positive half-axis frequency data are taken
and arranged sequentially to obtain 1D data. Two-dimensional data, on the other hand, are
arranged with the raw data starting from the first row of the matrix, followed by the second
row, until the entire matrix is filled. During the 2D conversion, the signals are arranged
sequentially, so the time-series property of the signals is preserved.

Figure 3. One-dimensional and two-dimensional data transform.

The algorithm flow chart of AF-CDN is shown in Figure 4. The main steps of the
proposed algorithm are described as Algorithm 1.

 

Figure 4. Algorithm flow chart of AF-CDN.
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Algorithm 1: AF-CDN

Input: Network G, Training epoch N, Input data X =
{

x1, x2 . . . xp . . . xQ
}

and
Y =

{
y1, y2 . . . yq . . . yQ

}
Output: Trained G tr

1. Initialize network parameters
2. For i = 1, 2, . . . N do

3. Feed raw data into the network
4. Send the data to the perception layer to calculate 1D data and 2D data, respectively
5. Flatten and pool the 1D and 2D features of the perception layer output. The values after
pooling are fed into classifier1 and inception layer, respectively
6. The values of the inception layer are pooled and fed into classifier2 and the next inception layer,
respectively
7. The values of inception layer are pooled and fed into classifier3
8. Classifier3 combines the values of classifier1 and classifier2 to give the predicted output.
9. Calculate the loss value. Stop training if the training target is met, otherwise step forward.
10. Calculate the gradients and use the fusion algorithm to update the gradient value.
11. End

3.2. Gradient Fusion Algorithm

Ma et al. proposed a Kalman-filter-based fusion method for network parameters
updating [6]. Based on this theory, we performed some improvements when we used the
MSGD algorithm to calculate the updating gradients. Considering that after the sensor has
been selected and the measurement position has been determined, noise in the acquired
signal cannot be avoided. Therefore, we considered further analysis of the gradients
during the gradient updating process. Signal noise is assumed to be hidden in the gradient
information of each sample. Thus, the gradient information is fused inside the minibatch
using a Kalman filter.

When calculating the gradient inside the batch, we fuse the gradient information using
the Kalman filter on each of the batch size gradients.

We use k and k−1 moments as an example, and the Kalman filter-based gradient
fusion process is described as follows.

w(k) = Fw(k − 1) + δ(k). (7)

z(k) = H(k)w(k) + γ(k). (8)

w(k) is the network parameter at the moment k. F is the state transfer matrix. δ(k)
is the state error, γ(k) is the measurement error and δ(k), γ(k) conform to a Gaussian
distribution. Then according to the Kalman filter formula [34], the follow-up process in the
iterative process is as follows.

First, an a priori estimate of the gradient is calculated.

ŵ−(k) = Fŵ(k − 1) + δ(k). (9)

ŵ−(k) is an a priori estimate of the moment k. ŵ(k − 1) is the optimal estimate at
moment k − 1. Next, we update the a priori estimated covariance.

P−(k) = FP(k − 1)FT + Q(k). (10)

P−(k) is the a priori estimated covariance, which will be used when calculating the Kalman
gain. P(k − 1) is the posterior estimated covariance at moment k − 1. Q(k) = δ(k)δT(k) is
the covariance of the state error. The measured value at the k moment is calculated according to
Equation (8), and then the Kalman gain is updated [6].

K(k) = P−(k)H(k)T [H(k)P−(k)H(k)T + R(k)]
−1

. (11)
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R(k) = γ(k)γT(k) is the covariance of the measurement error. Then, the optimal
estimate of the gradient at moment k can be found.

ŵ(k) = ŵ−(k) + K(k)[z(k)− H(k)ŵ−(k)]
= [1 − K(k)H(k)]ŵ−(k) + K(k)z(k).

(12)

[1 − K(k)H(k)] is the confidence level of the estimate. K(k) is the confidence level of
the measured value.

Finally, the posterior estimated covariance is updated.

P(k) = [I − K(k)H(k)]P−(k). (13)

In specific applications, let the batch size be NB, so k = {1, 2 . . . NB}.
w(k) is the updated gradient value corresponding to the NB samples. F is the state

transfer matrix, it is set to I in the paper.
H(k) is the measurement matrix with the measurement values matching the state

values. H(k) is set to I. We update the Kalman gain as in Equation (14).

K(k) = P−(k)[P−(k) + R(k)]−1

= [P(k − 1) + Q(k)][P(k − 1) + Q(k) + R(k)]−1.
(14)

In practical terms, the value of R can be set to a smaller value if the measurement error
of the sensor is small, which means that we are more likely to believe that the gradient of
each sample is the true value. Conversely, the value of R(k) can be increased appropriately.
The value of Q(k) is adjusted according to the range of the gradient values during actual
optimization.

4. Experimental Verification

In order to verify the effectiveness of the algorithm proposed in this paper, in Case
One, data acquisition, fault classification, and diagnosis results are introduced in detail on
the port crane built by NetCMAs. The feasibility of AF-CDN is verified. In Case Two, we
verify the algorithm on the open-source rolling bearing fault dataset from Case Western
Reserve University. AF-CDN can achieve excellent diagnostic results. The universality of
the proposed algorithm is illustrated. The experiments in this paper were implemented
on an Intel(R) Core (TM) i7-8550U CPU PC (1.80 GHz, 8 GB RAM) NVIDIA Geforce MX
150 GPU (4 GB) 64 Bit Windows 10 operating system in a Python environment.

4.1. Case One
4.1.1. Dataset Preparation and Parameter Settings

The NetCMAs system is installed with vibration sensors, stress sensors, temperature
sensors, etc., which can effectively detect the status of the whole port crane system in
real time. The whole system has 32 sampling channels, and sampling information points
are distributed in the T frame of the upper beam area, beam rod load area, lifting motor,
gearbox, car motor, etc. The collection positions of the gearbox are as follows, V-directional
and H-directional vibration on the left side of the high-speed shaft, the temperature on
both the left and right side of the high-speed shaft, and V-directional vibration on the left
side of the low-speed shaft. The sampling frequency of the detection system is 2.5 kHz.
The sampling time is 0.8 s, and the sampling interval is 10 s. In order to avoid continuous
data transmission and storage consumption, the valid values of each sampling period are
calculated and saved. Figure 5 shows the driving part of the port crane lifting mechanism.
Figure 6 shows the reduction gearbox and bearings. Figure 7 shows the installation position
of the vibration sensor and the damaged bearing.
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Figure 5. Lifting mechanism of port crane.

  
(a) (b) 

Figure 6. Gear box of lifting mechanism of port crane. (a) Drive gear set for installation. (b) Gear
bearing.

  
(a) (b) 

Figure 7. Experimental settings. (a) Installation position of vibration sensor. (a) Installation position
of vibration sensor.
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The dataset used in this case comprises four years of data on the No. 8114 lifting bridge
of a port crane. The data were recorded from the time when the gearbox was first equipped
until the time of failure. Due to extremely large volumes of data, only representative data
are shown in Figure 8. It can be seen that there are some shock components in the wave.
According to our practical application experience, all data are classified into four categories:
healthy (H), sub-healthy (SH), failure (F), run-in period (R), and health (H).

Figure 8. V-direction vibration waveform of the gearbox.

After each new gearbox is re-installed, it will run through a run-in period of time
before it enters into a healthy state. After a period of operation, the equipment will be in a
sub-healthy state due to the occurrence of wear of the equipment. Eventually, the damage
was so significant that the equipment entered a fault state. Table 1 describes in detail the
label and quantity information of the four state data in the experiment. Sample labels are
onehot encoded, and each state contains 100 samples. The dimension of each sample is
1600, so the dimensions after the 2D conversion are 40 × 40. In order to ensure the speed of
iteration, the batch size is set to between 20 and 40.

Table 1. Four types of fault status information.

Fault Type Fault Diameter (inch) Label Sample Size

H Healthy 0001 100
SH Sub-Healthy 0010 100
F Failure 0100 100
R Run-in 1000 100

4.1.2. Experiment and Analysis

In order to demonstrate the effectiveness of AF-CDN, a simulation comparison is
performed. Table 2 shows the comparison between the algorithm proposed in this paper
and the 1D-CNN algorithm extracted by the FFT signal, and the 2D-CNN algorithm based
on raw data.
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Table 2. Comparison of accuracy.

Number of
Experiments

1D-CNN Rawdata-CNN AF-CDN

1 91.25% 96.75% 100.00%
2 89.58% 98.75% 99.25%
3 92.50% 98.5% 99.00%
4 90.83% 98.25% 100%
5 93.75% 98.75% 100%
6 89.58% 98.50% 99.50%
7 89.17% 98.00% 100.00%
8 93.75% 98.75% 99.75%
9 90.83% 98.75% 100.00%
10 88.33% 98.50% 99.00%

Mean accuracy 90.56% 98.35% 99.65%

As can be seen from the results of the 10 experiments in the table, AF-CDN provides
better diagnostic results than both the algorithm that performs signal spectral analysis alone
and the algorithm based on raw signal feature extraction. Figure 9 shows the statistical
information of 10 experimental results. It can be seen that AF-CDN can not only effectively
improve the diagnosis accuracy but also can greatly reduce the error of each diagnosis result.
The performance of AF-CDN is 10.09% higher than that of FFT alone and is 1.3% higher
than that of original signal feature extraction. The average execution time of AF-CDN
was 0.196 s. The 1D-CNN was 0.083 s and Rawdata-CNN was 0.154 s. The improvement
in accuracy compared to 1D-CNN is significant, so the computational consumption is
worthwhile. Compared to Rawdata-CNN, the computational consumption is 0.042 s higher.
In a practical scenario, the computational complexity can be significantly reduced by
using a high-performance GPU device, so it is worthwhile to increase the computational
consumption slightly.

 
Figure 9. Results of the 10 experiments.

Figure 10 uses T-SNE visualization technology to visually display the experimental
classification results. In Figure 10a,c the visualization and error matrix of the AF-CDN
are presented, respectively. In Figure 10b,d the visualization and error matrix of 1D-CNN
algorithm are presented, respectively.
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Figure 10. Visualization of classification results and error matrix: (a) visualization of AF-CDN;
(b) error matrix of AF-CDN; (c) 1D-CNN visualization; (d) 1D-CNN error matrix.

At the same time, it should be pointed out that, compared with the method of feature
extraction based on raw data for diagnosis, the AF-CDN in this paper demonstrates great
improvement in reducing the probability of two kinds of misdiagnosis. This is also intuitive
in the visualization and error matrix. The main reasons for this result can be summarized
as follows: (1) compared with the single FFT signal or the original 2D signal, and the
AF-CDN fuses the two signals. (2) Compared with SGD, the gradient fusion algorithm
based on the Kalman filter has a stronger parameter integration ability in feature fusion
of gradient information. In this way, the diagnostic ability of the network can be better
improved. As can be seen from the visual figures of the two algorithms, there are more
cases of misdiagnosis between H and SH and between S and F. At the same time, it should
be pointed out that compared with the method of feature extraction based on original data
for diagnosis, the AF-CDN provides a great improvement in reducing the probability of
misdiagnosis.

4.2. Case Two
4.2.1. Dataset Preparation and Parameter Settings

The AF-CDN is also verified on the CWRU Bearing Dataset [33]. CWRU set up a vari-
ety of fault types on motor drive equipment. The vibration signals of the different positions
of the drive end were collected by vibration sensors under different load conditions.

According to the different fault locations, the fault can be divided into three categories:
the ball fault (BF), inner ring fault (IF), and outer ring fault (OF). Each type of fault can
be further subdivided into three different fault levels according to different fault severity.
Therefore, a total of nine types of faults were set up in this experiment, and the sampling
method was carried out according to the paper [6,35]. For details about fault information,
see Table 3. The size of each sample is 400, so the dimensions after the 2D conversion are
20 × 20. In order to ensure the speed of iteration, the batch size is set to between 20 and 40.

The continuous time signal collected by the vibration sensor is shown in Figure 11.
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Table 3. Status information of 9 types of fault.

Fault Type Fault Diameter(inch) Label Sample Size

BFI 0.007 000000001 300
BFII 0.014 000000010 300
BFIII 0.021 000000100 300
IFI 0.007 000001000 300
IFII 0.014 000010000 300
IFIII 0.021 000100000 300
OFI 0.007 001000000 300
OFII 0.014 010000000 300
OFIII 0.021 100000000 300

Figure 11. Continuous time signal diagram of 9 kinds of faults.

4.2.2. Experiment and Analysis

The AF-CDN is compared with some popular methods at present. As summarized
in the previous chapter, the existing methods are mainly based on two signal extraction
methods. One involves performing frequency domain transformation in the original time-
continuous signal to obtain frequency domain features. The other mainstream approach is
based on raw signals.

In this case, the existing methods and AF-CDN are compared in detail. The processing
methods in the frequency domain mainly include wavelet transform, wavelet packet
transform, statistical locally linear embedding, and other methods. Raw signal processing
involves converting raw signals into 2D images and establishing Spectrogram methods.

Table 4 shows the comparison of experimental results between the existing mainstream
methods and AF-CDN.
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Table 4. Comparison of diagnostic accuracy of different methods.

Means of Classification Features Accuracy Rate

KNN [9] HOCs and WT 91.2%

SVM [8] WP 62.5–98.7%

ANN [10] DWT (Morlet) 96.7%

ANN [10] DWT (Daubechies 10) 93.3%

SVM [11] Statistical Locally Linear Embedding 77.8–94.1%

2D-CNN [7] Raw data 98.35%

2D-CNN [12] Spectrogram 98.1–99.5%

AF-CDN FFT + Raw data 99.44–99.78%

Compared with the traditional diagnosis methods, the proposed algorithm effectively
integrates the frequency domain characteristics of vibration signals and their original signal
characteristics. The accuracy of network diagnosis is further improved.

The main feature extraction methods used in the signal-based feature analysis ap-
proach include WP, WT, DWT, and statistical methods based on these. After obtaining these
frequency features, KNN, SVM, ANN, etc., can be used for analysis. As shown in Table 4,
such diagnosis methods based on “frequency domain signals + neural networks” have a
diagnostic accuracy of 62.5–98.7%. The accuracy of the analysis method based on the raw
signal is 98.1% to 99.5%. The diagnostic accuracy of the proposed method is 99.44–99.78%.
The average execution time of AF-CDN is about 0.115 s. Compared with the traditional
diagnosis methods, AF-CDN effectively integrates the frequency domain characteristics
of vibration signals and their raw signal characteristics. The feature extraction capability
of the network is excellent compared to the rest of the network structure. As analyzed in
Case One, AF-CDN combines information on the frequency domain characteristics of the
signal with the raw time domain information. Thus AF-CDN is able to have an excellent
diagnostic result. The accuracy of network diagnosis is further improved.

5. Conclusions

This paper presents an adaptive fusion convolutional denoising network for the health
monitoring of port crane speed gearboxes. At the same time, a Kalman filter is used to
update the network parameters during the training process. Compared with traditional
diagnosis methods, the main advantages of the method proposed in this paper are that the
accuracy of diagnosis is improved greatly. The robustness of the diagnostic network can be
significantly improved. Monitoring the status of port cranes’ gearbox systems provides
support for equipment health care. When the equipment is in the running-in state and sub-
health state, workers can perform maintenance on bearing equipment in a timely manner
so that the service time of the equipment can be effectively delayed. At the same time,
once the equipment is in a sub-health state, it is necessary to monitor the system state at all
times; once the system indicators reach the fault state, it is necessary to immediately shut
down and perform the maintenance. This ensures the safety and reliability of the entire
port machine. The results show that AF-CDN also has excellent diagnostic performance on
public data sets. However, the shortcomings of this paper are that we have not integrated
the other sensors well, including temperature sensors and vibration signals from other
locations that the hardware system contains.

The system we have built in this paper is a four-stage bearing diagnosis system based
on a single vibration sensor. In future work, we will further study the fusion of stress,
temperature, and multi-directional vibration signals collected from multiple locations of the
whole system so as to extract the accurate overall health status of the crane and fuse it with
multi-sensor signals. This makes it possible to establish a whole health management system
and enables effective real-time monitoring of the full lifecycle of a port crane. Secondly,
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a whole life cycle inspection system for the equipment should be established based on
the multi-sensor information fusion technology described above. Meanwhile, distributed
learning techniques will be focused on in order to fuse the data from the multi-location
port machines. Meanwhile, distributed learning techniques will be focused on in order to
fuse the data from the multi-location port machines.

Author Contributions: Conceptualization, R.Z.; Data curation, X.H.; Formal analysis, R.Z.; Funding
acquisition, X.H.; Methodology, R.Z.; Supervision, X.H.; Writing—original draft, R.Z.; Writing—
review and editing, R.Z. and X.H. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was funded by the National Natural Science Foundation of China grant
number 31300783.

Institutional Review Board Statement: No applicable.

Informed Consent Statement: No applicable.

Data Availability Statement: The original data contributions presented in the study are included in
the article; further inquiries can be directed to the corresponding authors.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Xu, L.; Chatterton, S.; Pennacchi, P. A Novel Method of Frequency Band Selection for Squared Envelope Analysis for Fault
Diagnosing of Rolling Element Bearings in a Locomotive Powertrain. Sensors 2018, 18, 4344. [CrossRef] [PubMed]

2. Lei, Y.; Yang, B.; Jiang, X.; Jia, F.; Li, N.; Nandi, A.K. Applications of machine learning to machine fault diagnosis: A review and
roadmap. Mech. Syst. Signal Process. 2020, 138, 106587. [CrossRef]

3. Li, H.; Liu, J.; Wu, K.; Yang, Z.; Liu, R.W.; Xiong, N. Spatio-Temporal Vessel Trajectory Clustering Based on Data Mapping and
Density. IEEE Access 2018, 6, 58939–58954. [CrossRef]

4. Gao, K.; Han, F.; Dong, P.; Xiong, N.; Du, R. Connected Vehicle as a Mobile Sensor for Real Time Queue Length at Signalized
Intersections. Sensors 2019, 19, 2059. [CrossRef] [PubMed]

5. Wu, M.; Tan, L.; Xiong, N. A Structure Fidelity Approach for Big Data Collection in Wireless Sensor Networks. Sensors 2014, 15,
248–273. [CrossRef]

6. Ma, X.; Wen, C.; Wen, T. An Asynchronous and Real-Time Update Paradigm of Federated Learning for Fault Diagnosis. IEEE
Trans. Ind. Inform. 2021, 17, 8531–8540. [CrossRef]

7. Xia, M.; Li, T.; Xu, L.; Liu, L.; De Silva, C.W. Fault Diagnosis for Rotating Machinery Using Multiple Sensors and Convolutional
Neural Networks. IEEE/ASME Trans. Mechatron. 2017, 23, 101–110. [CrossRef]

8. Hu, Q.; He, Z.; Zhang, Z.; Zi, Y. Fault diagnosis of rotating machinery based on improved wavelet package transform and SVMs
ensemble. Mech. Syst. Signal Process. 2007, 21, 688–705. [CrossRef]

9. Yaqub, M.F.; Gondal, I.; Kamruzzaman, J. Inchoate Fault Detection Framework: Adaptive Selection of Wavelet Nodes and
Cumulant Orders. IEEE Trans. Instrum. Meas. 2011, 61, 685–695. [CrossRef]

10. Konar, P.; Chattopadhyay, P. Bearing fault detection of induction motor using wavelet and Support Vector Machines (SVMs).
Appl. Soft Comput. 2011, 11, 4203–4211. [CrossRef]

11. Wang, X.; Zheng, Y.; Zhao, Z.; Wang, J. Bearing Fault Diagnosis Based on Statistical Locally Linear Embedding. Sensors 2015, 15,
16225–16247. [CrossRef] [PubMed]

12. Verstraete, D.; Ferrada, A.; Droguett, E.L.; Meruane, V.; Modarres, M. Deep Learning Enabled Fault Diagnosis Using Time-
Frequency Image Analysis of Rolling Element Bearings. Shock Vib. 2017, 2017, 5067651. [CrossRef]

13. Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [CrossRef]
14. Chen, H.; Chen, Z.; Chai, Z.; Jiang, B.; Huang, B. A Single-Side Neural Network-Aided Canonical Correlation Analysis With

Applications to Fault Diagnosis. IEEE Trans. Cybern. 2021, 1–13. [CrossRef]
15. Chen, H.; Li, L.; Shang, C.; Huang, B. Fault Detection for Nonlinear Dynamic Systems With Consideration of Modeling Errors: A

Data-Driven Approach. IEEE Trans. Cybern. 2022, 1–11. [CrossRef]
16. Haykin, S. Neural networks expand SP’s horizons. IEEE Signal Process. Mag. 1996, 13, 24–49. [CrossRef]
17. Guyon, I.; Weston, J.; Barnhill, S.; Vapnik, V. Gene Selection for Cancer Classification using Support Vector Machines. Mach. Learn.

2002, 46, 389–422. [CrossRef]
18. Huang, S.; Liu, A.; Wang, T.; Xiong, N.N. BD-VTE: A Novel Baseline Data Based Verifiable Trust Evaluation Scheme for Smart

Network Systems. IEEE Trans. Netw. Sci. Eng. 2020, 8, 2087–2105. [CrossRef]
19. Yang, P.; Xiong, N.N.; Ren, J. Data Security and Privacy Protection for Cloud Storage: A Survey. IEEE Access 2020, 8, 131723–131740.

[CrossRef]

103



Machines 2022, 10, 424

20. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86,
2278–2324. [CrossRef]

21. Eren, L.; Ince, T.; Kiranyaz, S. A Generic Intelligent Bearing Fault Diagnosis System Using Compact Adaptive 1D CNN Classifier.
J. Signal Process. Syst. 2018, 91, 179–189. [CrossRef]

22. Jiao, J.; Zhao, M.; Lin, J.; Zhao, J. A multivariate encoder information based convolutional neural network for intelligent fault
diagnosis of planetary gearboxes. Knowl. Based Syst. 2018, 160, 237–250. [CrossRef]

23. Chen, Y.; Peng, G.; Xie, C.; Zhang, W.; Li, C.; Liu, S. ACDIN: Bridging the gap between artificial and real bearing damages for
bearing fault diagnosis. Neurocomputing 2018, 294, 61–71. [CrossRef]

24. Jia, F.; Lei, Y.; Lu, N.; Xing, S. Deep normalized convolutional neural network for imbalanced fault classification of machinery and
its understanding via visualization. Mech. Syst. Signal Process. 2018, 110, 349–367. [CrossRef]

25. Jiang, G.; He, H.; Yan, J.; Xie, P. Multiscale Convolutional Neural Networks for Fault Diagnosis of Wind Turbine Gearbox. IEEE
Trans. Ind. Electron. 2018, 66, 3196–3207. [CrossRef]

26. Appana, D.K.; Prosvirin, A.; Kim, J.-M. Reliable fault diagnosis of bearings with varying rotational speeds using envelope
spectrum and convolution neural networks. Soft Comput. 2018, 22, 6719–6729. [CrossRef]

27. Guo, D.; Zhong, M.; Ji, H.; Liu, Y.; Yang, R. A hybrid feature model and deep learning based fault diagnosis for unmanned aerial
vehicle sensors. Neurocomputing 2018, 319, 155–163. [CrossRef]

28. Wen, L.; Li, X.; Gao, L.; Zhang, Y. A New Convolutional Neural Network-Based Data-Driven Fault Diagnosis Method. IEEE Trans.
Ind. Electron. 2017, 65, 5990–5998. [CrossRef]

29. Han, T.; Liu, C.; Wu, L.; Sarkar, S.; Jiang, D. An adaptive spatiotemporal feature learning approach for fault diagnosis in complex
systems. Mech. Syst. Signal Process. 2018, 117, 170–187. [CrossRef]

30. Xin, Y.; Li, S.; Cheng, C.; Wang, J. An intelligent fault diagnosis method of rotating machinery based on deep neural networks and
time-frequency analysis. J. Vibroengineering 2018, 20, 2321–2335. [CrossRef]

31. Sun, W.; Yao, B.; Zeng, N.; Chen, B.; He, Y.; Cao, X.; He, W. An Intelligent Gear Fault Diagnosis Methodology Using a Complex
Wavelet Enhanced Convolutional Neural Network. Materials 2017, 10, 790. [CrossRef] [PubMed]

32. Cao, X.-C.; Chen, B.-Q.; Yao, B.; He, W.-P. Combining translation-invariant wavelet frames and convolutional neural network for
intelligent tool wear state identification. Comput. Ind. 2019, 106, 71–84. [CrossRef]

33. Case Western Reserve University Bearing Data Center Website. Available online: http://csegroups.case.edu/bearingdatacenter/
home (accessed on 15 March 2017).

34. Arulampalam, M.S.; Maskell, S.; Gordon, N.; Clapp, T. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian
tracking. IEEE Trans. Signal Process. 2002, 50, 174–188. [CrossRef]

35. Chen, H.; Chai, Z.; Dogru, O.; Jiang, B.; Huang, B. Data-Driven Designs of Fault Detection Systems via Neural Network-Aided
Learning. IEEE Trans. Neural Netw. Learn. Syst. 2021, 1–12. [CrossRef] [PubMed]

104



Citation: Lu, Z.; Zhang, C.; Xu, F.;

Wang, Z.; Wang, L. Fault Detection

for Interval Type-2 T-S Fuzzy

Networked Systems via

Event-Triggered Control. Machines

2022, 10, 347. https://doi.org/

10.3390/machines10050347

Academic Editor: Ahmed Abu-Siada

Received: 27 March 2022

Accepted: 6 May 2022

Published: 8 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machines

Article

Fault Detection for Interval Type-2 T-S Fuzzy Networked
Systems via Event-Triggered Control

Zhongda Lu 1,2, Chunda Zhang 1, Fengxia Xu 1,2, Zifei Wang 1 and Lijing Wang 1,2,3,*

1 School of Mechanical and Electrical Engineering, Qiqihar University, Qiqihar 161006, China;
luzhongda@163.com (Z.L.); 2019911186@qqhru.edu.cn (C.Z.); xufengxia_hit@163.com (F.X.);
2019911187@qqhru.edu.cn (Z.W.)

2 Collaborative Innovation Center of Intelligent Manufacturing Equipment Industrialization of Heilongjiang
Province, Qiqihar University, Qiqihar 161006, China

3 School of Electrical and Electronic Engineering, Harbin University of Science and Technology,
Harbin 150080, China

* Correspondence: vipjing1002@163.com

Abstract: This paper investigates the event-triggered fault diagnosis (FD) problem for interval type-2
(IT2) Takagi–Sugeno (T-S) fuzzy networked systems. Firstly, an FD fuzzy filter is proposed by
using IT2 T-S fuzzy theory to generate a residual signal. This means that the FD filter premise
variable needs to not be identical to the nonlinear networked systems (NNSs). The evaluation
functions are referenced to determine the occurrence of system faults. Secondly, under the event-
triggered mechanism, a fault residual system (FRS) is established with parameter uncertainty, external
disturbance and time delay, which can reduce signal transmission and communication pressure.
Thirdly, the progressive stability of the fault residual system is guaranteed by using the Lyapunov
theory. For the energy bounded condition of external noise interference, the performance criterion is
established using linear matrix inequalities. The matrix parameters of the target FD filter are obtained
by the convex optimization method. A less conservative fault diagnosis method can be obtained.
Finally, the simulation example is provided to illustrate the effectiveness and the practicalities of the
proposed theoretical method.

Keywords: fault diagnosis; event-triggered control; interval type-2 Takagi–Sugeno fuzzy model;
nonlinear networked systems; filter

1. Introduction

The networked systems have been widely used because of these many advantages,
their simple physical structure, reduced integration costs, resource sharing, suitable for
installation, expansion and maintenance [1,2]. In order to satisfy the development of
aerospace and smart manufacturing, the networked systems have increasingly strong non-
linearity, uncertainty and complexity [3,4]. New challenges are brought to the control field
to deal with problems such as delay, data packet loss and network bandwidth limitation
caused by network introduction [5–9]. With the development of nonlinear networked
systems, it needs new performance indexes including standard interface modularization,
high reliability, high stability, and so on [10,11].

Fuzzy control is an effective tool for solving nonlinear problems linearization [7,12].
Fault diagnosis (FD) technology plays a vital role in improving the reliability and safety
of complex engineering systems [13,14]. The task of fault diagnosis of the networked
system is to transmit the input and output data of the system to the fault diagnosis unit
through the network, so as to ensure that the stable operation of the system without
fault occurs [6]. The FD methods of networked systems are proposed based on the fuzzy
model [7,15,16]. However, there are bad situations under time-triggered FD such as un-
necessary data transmission, increased network burden, data loss, and greater network
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delay [8]. The event-triggered mechanism has irreplaceable advantages in the network
resource-constrained system. The research on fault diagnosis technology of networked sys-
tems with event-triggered mechanisms has received extensive attention from international
scholars, which has become a hot research issue in the academic community of automatic
control and produced many valuable research results [8,9,15–32].

Different event triggering methods are studied such as the adaptive event-triggering
mechanism [5,10,22,23,27,29,32], the dynamic event triggering mechanism containing inter-
nal dynamic variables [19,28,31], the event triggering mechanism designed by improving
constant thresholds [8,15,16,20,21,25,26]. The fault filtering problem of NCSs with interval
time-varying time lags is studied by using the fuzzy fault detection filter with a generic
structure [17]. The authors in [22] propose a novel adaptive event-triggered fault detection
approach for Markov jump systems, wherein the transition probabilities are not required to
be fully known. The problem of troubleshooting networked systems subject to multiple
factors is discussed [21,23,25,28,30]. The problem of fault detection for stochastic nonlin-
ear generalized networked systems is studied, which is subject to network delay, packet
loss, and asynchronous premise variables [23]. Fault diagnosis problems of NNSs with
communication channels are subject to limited bandwidth and random data loss are inves-
tigated. Time-varying delay, dynamic event triggering mechanism, random nonlinearity
and simultaneous packet loss are considered in building a unified fault detection dynamic
model moment, which is used to solve the fault detection problem [28]. The dissipative
stabilization problem is solved by considering the delay and external disturbance [30].

The existing research has been extensive. However, the complexity of real systems
can no longer be described by simple models. For instance, the membership functions
approaches have been proposed based on the restriction that the membership functions
of the descriptive model of the systems [15,16,21]. When this issue is considered, the
general T-S fuzzy modeling scheme cannot achieve the desired results [15]. The IT2 fuzzy
model was developed because of its good proxy for nonlinear systems with parameter
uncertainty [29–37]. The problem of the FD filtering method is proposed with event-based,
which is the application in IT2 fuzzy theory under the framework of networked time-
delay control systems [29]. Event-triggered dissipation-based control is investigated by
using the IT2 T-S fuzzy theory to describe uncertain nonlinear networked systems [30].
The nonlinear networked system with parameter uncertainty is studied under the event-
triggered mechanism with adaptive discrete H∞ fuzzy filtering described by IT2 T-S fuzzy
model [32]. In [33–38], the FD fighting design, impulse control and discrete control based on
the IT2 fuzzy model are studied. Interval two-type theory is being recognized and studied
by more and more scholars [39,40]. Expanding the application scope of event-driven
technology in the IT2 fuzzy control system is the first motivation for writing this paper.

Then, the FD methods for fuzzy systems have been proposed without considering
the problems of nonlinear perturbation and transmission-limited [13,14]. Reducing the
conservativeness of existing results and redundancy in design is a difficult issue of academic
concern. In summary, solutions to event-driven FD problems are important for NNSs
subject to uncertainties, perturbation, and network-induced delays. The main contributions
of the paper as follows:

(1) A new FD fuzzy filter is designed by using IT2 T-S fuzzy model for generating a
residual signal, which means that the designed FD filter premise variable could be
different from NNSs.

(2) A fault residual system is established by integrating the IT2 fuzzy theory, external
disturbance, event-triggered scheme, time delays and parameter uncertainty.

(3) The stability conditions and the existence conditions of the FD filter are derived
by the form of linear matrix inequalities, as a result of the Lyapunov–Krasovskii
generalized function method providing the basis. Matrix decoupling implements the
transformation of the filter existence conditions with stability analysis.

The rest of this paper is structured as follows. An IT2 fuzzy fault residual system is
given based on the IT2 fuzzy networked control system model, event-triggered scheme,
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and fault diagnosis mechanism in Section 2. Section 3 is the focus of the article and is
intended to discuss and clarify the stability analysis and the design of the filter for the
fault residual system. Section 4 conducts simulations and discusses the validity of the
proposed method. The full paper is summarized, and further research directions are given
in Section 5.

Table 1 shows the abbreviations and notations used in this paper.

Table 1. Explanation of abbreviations and notations.

Symbols Explanatory Notes

FD fault diagnosis
IT2 interval type-2
T-S Takagi–Sugeno
NNSs nonlinear networked systems
FRS Fault Residual System
LMIs Linear matrix inequalities
ZOH Zero-order hold
Rn n-dimensional Euclidean space
P−1 The inverse of matrix P
PT Transpose of matrix P
P < 0(≤ 0) Negative (semi-negative)-definite matrix
P > 0 (≥ 0) Positive (semi-positive)-definite matrix
diag{P, Q, R} Diagonal matrix of P, Q and R
∗ Symmetric term in the matrix
‖·‖ Euclidean norm
L2[0, ∞) The space of square summable infinite vector sequences

2. Problem Formulation

2.1. IT2 T-S Nonlinear Networked Systems

An NNSs is modeled by IT2 T–S fuzzy rules by using state-space representation, its
parameter uncertainty and external perturbations are described.

Plant rule i: IF ι1(x(t)) is G̃i1, ι2(x(t)) is G̃i2, . . . . . . , and ιp(x(t)) is G̃ip, THEN{ .
x(t) = Aix(t) + Biω(t) + Bf i f (t)
y(t) = Cix(t) + Diω(t)

(1)

In the IT2 T-S NNSs, Ai, Bi, Bf i, Ci, and Di are system matrices. Separately, x(t) ∈ Rnx ,
y(t) ∈ Rny , f (t) ∈ Rn f represents the state vector, measured output, and the fault signal
waiting to be detected, in particular, ω(t) ∈ Rnω is the external disturbance which belongs
to L2[0, ∞). Define ι(x(t)) =

[
ι1(x(t)), ι2(x(t)), . . . , ιp(x(t))

]T stands for premise variable,
the number of fuzzy sets is p, the IT2 fuzzy set is described as G̃iα, where i = 1, 2, . . . , r, and
α = 1, 2, . . . , p, the firing strength of ith rule is defined as follows [39]:

Wi(x(t)) = [�i(x(t)),
_
�i(x(t))] (2)

where �i(x(t)) =
p
Π

α=1
μ

G̃iα
(ια(x(t))) ≥ 0,

_
�i(x(t)) =

p
Π

α=1

_
μG̃iα

(ια(x(t))) ≥ 0,
_
μG̃iα

(ια(x(t))) ≥
μ

G̃iα
(ια(x(t))) ≥ 0,

_
�i(x(t)) ≥ �i(x(t)) ≥ 0. We can get the IT2 fuzzy model after weight-

ing, as follows: ⎧⎪⎪⎨⎪⎪⎩
.
x(t) =

r
∑

i=1
ρ̃i(x(t))[Aix(t) + Biω(t) + Bf i f (t)]

y(t) =
r
∑

i=1
ρ̃i(x(t))[Cix(t) + Diω(t)]

(3)
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where ρ̃i(x(t)) = ρi(x(t)�i(x(t)) + ρ
i
(x(t))�i(x(t)) ≥ 0, meanwhile

r
∑

i=1
ρ̃i(x(t)) = 1,

ρ
i
(x(t)) and ρi(x(t)) are greater than zero, which represent the weighting functions

and satisfying:
ρ

i
(x(t)) + ρi(x(t)) = 1 (4)

Obviously, in the process of NNSs modeling, we define a fuzzy set for the membership
function to describe its uncertainty, which provides a basis for the subsequent design of a
low conservation fault diagnosis filter.

2.2. Event-Triggered FD Filter

Next, an event-triggering mechanism is introduced within the system, which is be-
tween the considered system and FD Filter as shown in Figure 1.

tω f t

y t

y t

−

+

er t

Fr t

ky i h
ky t h

Figure 1. Framework of IT2 T-S NNSs with event-triggered scheme.

The current sampled signal must reach the trigger threshold of the event monitoring
terminal before it can be transmitted to the next node. Similar to [34], we can define the
event-triggering mechanism as:

ek
T(t)Λek(t) > εyT(ikh)Λy(ikh) (5)

where ε ∈ [0, 1), ek(t) is the threshold error, which is the key factor that determines whether
the event trigger mechanism occurs, and is obtained by subtracting current sampled data
y(tkh) from the latest transmitted data y(ikh). Λ denotes the positive triggering parameters.

ZOH provides information about the last transmitted data continuously, the input
signal received by the filter can be described as

y(tkh) = y(tkh), t ∈ [tkh + τtk , tk+1h + τtk+1) (6)

The system can be transformed into a new time lag system, which can be directly
analyzed with time lag system theory. Without loss of generality, the holding region of
ZOH is expressed as:

Ω =
[
tkh + τtk , tk+1h + τtk+1

)
=

m∪
0

Ωl (7)⎧⎨⎩
Ω0 =

[
tkh + τtk , tkh + h + τ

)
Ωi = [tkh + ih + τ, tkh + (i + 1)h + τ), i = 1, 2 . . . , m − 1
Ωm =

[
tkh + mh + τ, tk+1h + τtk+1

) (8)

Define τ(t) = t − ikh, where ikh = tkh + lh, l = 0, 1, . . . , m, and then we can obtain:

0 < τm ≤ τ(t) ≤ h + τ = τM (9)
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Based on the above, y(t) can be rewritten as:

y(tkh) = [y(t − τ(t))− ek(t)] (10)

Remark 1. The introduction of the event triggering mechanism (5) reduces redundant transmission
data and saves network resources.

Summarizing the previous discussion, the IT2 fuzzy FD filter is modeled by IT2 T–S
fuzzy rules:

Filter Rule j: IF ϕ1(x(t)) is Õj1, ϕ2(x(t)) is Õj2, . . . . . . , and ϕq(x(t)) is Õjq, THEN{ .
xF(t) = ÂjxF(t) + B̂jy(t)
rF(t) = ĈjxF(t) + D̂jy(t)

(11)

in which, Âj, B̂j, Ĉj, and D̂j are FD filter gain matrices. xF(t) ∈ Rnx , y(t) ∈ Rny , and
rF(t) ∈ Rnr represent the state vector, the output, and residual output vector of the event-
triggered FD filter. The fuzzy set is Õjβ, j = 1, 2, . . . , s, β = 1, 2, . . . , q, q is the number of

fuzzy sets. ϕ(x(t)) =
[
ϕ1(x(t)), ϕ2(x(t)), . . . , ϕq(x(t))

]T are the premise variables. The
firing strength of jth rule is expressed by interval sets:

Kj(x(t)) = [κ j(x(t)), κ j(x(t))] (12)

with κj(x(t)) =
q
Π

β=1
μ

Õjβ
(ϕβ(x(t))) ≥ 0, κj(x(t)) =

q
Π

β=1
μÕjβ

(ϕβ(x(t))) ≥ 0, μÑjλ
(ϕλ(x(t))) ≥

μ
Ñjλ

(ϕλ(x(t))) ≥ 0, κj(x(t)) ≥ κj(x(t)) ≥ 0, κj(x(t)) and κj(x(t)) represent, the bounds of

membership, where μ
Ñjλ

(ϕλ(x(t))) and μÑjλ
(ϕλ(x(t))) represent the bounds of the mem-

bership function, respectively. The event-triggered FD filter is designed as:⎧⎪⎪⎨⎪⎪⎩
.
xF(t) =

r
∑

j=1
φ̃j(x(t))[ÂjxF(t) + B̂jy(t)]

rF(t) =
r
∑

j=1
φ̃j(x(t))[ĈjxF(t) + D̂jy(t)]

(13)

where φ̃j(x(t)) = φ
j
(x(t))κ j(x(t)) + φj(x(t))κ j(x(t)) ≥ 0,

r
∑

j=1
φ̃j(x(t)) = 1, while

φj(x(t)) ≥ 0 and φ
j
(x(t)) ≥ 0 are nonlinear functions used to represent the uncertainty of

the FD filter, satisfying
φ

j
(x(t)) + φj(x(t)) = 1 (14)

For the convenience of the following writing, using ρ̃i, φ̃j instead of ρ̃i(x(t)), φ̃j(x(t)).

Remark 2. The FD filter (13) proposed has two advantages. Firstly, the model has higher accuracy
by using IT2 T-S fuzzy theory to describe uncertainty effectively. Secondly, the FD filter is more
general as the object’s affiliation function and the fuzzy rules are not shared with the FD filter.

2.3. Fault Residual System (FRS)

In this section, the fault residual system is developed based on models (3) and (13).
The fault diagnosis problem is simplified to the problem of asymptotic tracking of resid-
uals and faults. Combination the ETS (5), and defining with ξ(t) =

[
xT(t) xT

F (t)
]T ,
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ω(t) =
[

ωT(t) f T(t) ωT(t − d(t))
]T , re(t) = rF(t)− f (t), the FRS can be represented

as: ⎧⎪⎪⎨⎪⎪⎩
.
ξ(t) =

r
∑

i=1

r
∑

j=1
ρ̃iφ̃j

[
Aijξ(t) + BijHξ(t − τ(t)) + Bωijω(t)− Beijek(t)

]
re(t) =

r
∑

i=1

r
∑

j=1
ρ̃iφ̃j

[
Cijξ(t) + Dij Hξ(t − τ(t)) + Dωijω(t)− Deijek(t)

] (15)

Aij =

[
Ai 0
0 Âj

]
, Bij =

[
0

B̂jCi

]
, Bωij =

[
Bi Bf i 0
0 0 B̂jDi

]
, Beij =

[
0
B̂j

]
,Cij =

[
0 Ĉj

]
,

Dij =

[
D̂jCi

0

]
, Dωij =

[
0 −I D̂jDi

]
, Deij = D̂j, H =

[
I 0

]
.

The target of this section is to design the FD filter (13) and triggering mechanism (5)
such that the FRS (15) satisfies asymptotically stable with the H∞ performance indicators.
In the meantime, the following conditions are satisfied:

(1) When ω̃(t) = 0, the FRS (15) is considered to be asymptotically stable.
(2) Under the condition of zero initial, re(t) contents ‖re(t)‖2 < γ‖ω̃(t)‖2, where γ > 0

bring about H∞ performance level.

2.4. FD Mechanism

Define the following FD mechanism.

J(t) =
{∫ t

0 rT
F (s)rF(s)ds

} 1
2

Jth = sup
w∈L2, f=0

{∫ Td
0 rT

F (s)rF(s)ds
} 1

2
(16)

where J(t) is the residual evaluation function, and Jth is the threshold, Td represents the
limited length of evaluation time. The fault detection mechanism is as follows:{

J(t) > Jth ⇒ with f aults ⇒ alarm
J(t) ≤ Jth ⇒ no f aults.

(17)

Lemma 1. (Schur complement) [41] For the given matrix S =

[
S11 S12
S21 S22

]
< 0, where

S ∈ Rr∗r,S21 = ST
12, the following three sets of conditions and inequalities hold and are equivalent:

(1) S < 0;
(2) S11 < 0, S22 − ST

12S−1
11 S12 < 0;

(3) S22 < 0, S11 − ST
12S−1

22 S12 < 0.

Lemma 2. [42] For real matricesZ, X, Y with appropriate dimensions, in which the is symmetric,
then

Z + XK(t)Y + YTK(t)XT < 0 (18)

for all KT(t)K(t) ≤ I, there exists ε > 0, such that:

Z + εXXT + ε−1YTY < 0

Lemma 3. [43] Given a symmetric and positive matrix R̃, inequality (18) holds:

−
∫ t

t−τ

.
θ

T
(s)W̃

.
θ(s)ds ≤ 1

τ

⎡⎣ θ(t)
θ(t − τ(t))

θ(t − τ)

⎤⎦T⎡⎣ −R̃ R̃ 0
∗ −2R̃ R̃
∗ ∗ −R̃

⎤⎦⎡⎣ θ(t)
θ(t − τ(t))

θ(t − τ)

⎤⎦ (19)
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Remark 3. It is worth noting that the fault residual system is built via IT2 T-S fuzzy model,
considering the event-triggered communication mechanisms, disturbances and network time delays.
In the existing work, there is less research on the IT2 T-S fuzzy network control system FD filtering
with event triggering, which is one of the innovative points in this section.

3. Main Conclusion

3.1. Stability Analysis

In this subsection, the following improvements will be made in the stability analysis
process to reduce the system conservativeness. First, a new Lyapunov–Krasovskii function
with fourfold integration is constructed; second, Wirtinger’s inequality is applied to process
the integral term, which is in the time derivative of the Lyapunov–Krasovskii function;
third, a relaxation matrix is introduced to deal with the premise variable mismatch problem.

Theorem 1. For given scalars 0 < ε < 1, 0 < τm ≤ τM, γ > 0, and the membership
functions satisfying w̃j − ψjm̃j ≥ 0(0 < ψj ≤ 1), if IT2 FRS (15) is asymptotically stable,
and achieving the expected H∞ performance level γ, then there exists parameter matrix P > 0,
Qi (i = 1, 2), Si > 0 (i = 1, 2), Ri > 0 (i = 1, 2, 3), Ti > 0 (i = 1, 2), Λi > 0 (i = 1, 2),
Âj, B̂j, Ĉj, D̂j and Wi > 0, (i = 1, 2, . . . , r), meanwhile, the following inequalities exist in the
appropriate dimensions:

Ξij − Wi < 0 (20)

ψiΞii − ψiWi + Wi < 0 (21)

ψjΞij + ψiΞji − ψiWj − ψjWi + Wi + Wj < 0, i < j (22)

for Ξij =

[
Ξ11

ij Ξ12
ij

∗ Ξ22
ij

]
,

in which Ξ11
ij =

[
Φ11

ij Φ12
ij

∗ Φ22
ij

]
, where Φ11

ij =

⎡⎢⎢⎢⎢⎣
Φ11 HT R1 0 0 HT R3
∗ −2R1 R1 0 0
∗ ∗ Φ33 R2 0
∗ ∗ ∗ −2R2 0
∗ ∗ ∗ ∗ −2R3

⎤⎥⎥⎥⎥⎦,

Φ12
ij =

⎡⎢⎢⎢⎢⎣
0 PBij −PBeij −PBωij
0 0 0 0
0 0 0 0

R2 0 0 0
R3 0 0 0

⎤⎥⎥⎥⎥⎦, Φ22
ij =

⎡⎢⎢⎣
Φ66 0 0 0
∗ εCT

i Λ2Ci 0 Φ79
∗ ∗ −Λ1 0
∗ ∗ ∗ Φ99

⎤⎥⎥⎦,

Φ11 = PAij + AT
ij P + HT(Q1 + Q2)H − HT(R1 + R3)H, Φ33 = −Q1 − R1 − R2, Φ66 = −Q2 − R3,

Φ79 = εCT
i Λ2

[
0 0 Di

]
, Δτ = τM − τm,Φ99 = −γ2 I + ε

[
0 0 Di

]TΛ2
[

0 0 Di
]
,

Ξ12
ij =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

τm√
2

ST
1 ϕ1

Δτ√
2

ST
2 ϕ1 τmRT

1 ϕ1 ΔτRT
2 ϕ1 τMRT

3 ϕ1
τ2

m√
6

TT
1 ϕ1

Δτ2√
6

TT
2 ϕ1 Cij

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

τm√
2

ST
1 ϕ2

Δτ√
2

ST
2 ϕ2 τmRT

1 ϕ2 ΔτRT
2 ϕ2 τMRT

3 ϕ2
τ2

m√
6

TT
1 ϕ2

Δτ2√
6

TT
2 ϕ2 Dij

− τm√
2

ST
1 ϕ3 − Δτ√

2
ST

2 ϕ3 −τmRT
1 ϕ3 −ΔτRT

2 ϕ3 −τMRT
3 ϕ3 − τ2

m√
6

TT
1 ϕ3 −Δτ2√

6
TT

2 ϕ3 −Deij

τm√
2

ST
1 ϕ4

Δτ√
2

ST
2 ϕ4 τmRT

1 ϕ4 ΔτRT
2 ϕ4 τMRT

3 ϕ4
τ2

m√
6

TT
1 ϕ4

Δτ2√
6

TT
2 ϕ4 Dωij

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Ξ22

ij = diag
{ −S1 −S2 −R1 −R2 −R3 −T1 −T2 −I

}
,

ϕ1 = HAij, ϕ2 = HBij, ϕ3 = HBeij, ϕ4 = HBωij.
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Proof. For the FRS (15), construct the following Lyapunov–Krasovskii function:

V(t) = V1(t) + V2(t) + V3(t) + V4(t) + V5(t) (23)

where
V1(t) = ξT(t)Pξ(t),

V2(t) =
∫ t

t−τm
ξT(s)HTQ1Hξ(s)ds +

∫ t
t−τM

ξT(s)HTQ2Hξ(s)ds,

V3(t) = τm
∫ t

t−τm

∫ t
s

.
ξ

T
(v)HT R1H

.
ξ(v)dvds + (τM − τm)

∫ t−τm
t−τM

∫ t
s

.
ξ

T
(v)HT R2H

.
ξ(v)dvds

+τM
∫ t

t−τM

∫ t
s

.
ξ

T
(v)HT R3H

.
ξ(v)dvds

,

V4(t) =
∫ 0
−τm

∫ 0
θ

∫ t
t+λ

.
ξ

T
(s)HTS1H

.
ξ(s)dsdλdθ +

∫ −τm
−τM

∫ 0
θ

∫ t
t+λ

.
ξ

T
(s)HTS2H

.
ξ(s)dsdλdθ,

V5(t) = τm
∫ 0
−τm

∫ 0
θ

∫ 0
λ

∫ t
t+k

.
ξ

T
(s)HTT1H

.
ξ(s)dsdkdλdθ

+(τM − τm)
∫ −τm
−τM

∫ 0
θ

∫ 0
λ

∫ t
t+k

.
ξ

T
(s)HTT2H

.
ξ(s)dsdkdλdθ

.

and P = PT > 0, Qi > 0, Si > 0, Ti > 0, i = 1, 2, Rj > 0, j = 1, 2, 3.
Along the trajectory of the FRS (15), the time derivative of V(t) is:

.
V(t) =

.
V1(t) +

.
V2(t) +

.
V3(t) +

.
V4(t) +

.
V5(t) (24)

where
.

V1(t) = 2ξT(t)P
.
ξ(t),

.
V2(t) = ξT(t)HT(Q1 + Q2)Hξ(t)− ξT(t − τm)HTQ1Hξ(t − τm)− ξT(t − τM)HTQ2Hξ(t − τM),
.

V3(t) =
.
ξ

T
(t)HT

[
τ2

mR1 + (τM − τm)
2R2 + τ2

MR3

]
H

.
ξ(t)− τm

∫ t
t−τm

.
ξ

T
(s)HT R1H

.
ξ(s)ds

−(τM − τm)
∫ t−τm

t−τM

.
ξ

T
(s)HT R2H

.
ξ(s)ds − τM

∫ t
t−τM

.
ξ

T
(s)HT R3H

.
ξ(s)ds

,

.
V4(t) = τ2

m
2

.
ξ

T
(t)HTS1H

.
ξ(t) + (τM−τm)2

2

.
ξ

T
(t)HTS2H

.
ξ(t)− ∫ 0

−τm

∫ t
t+θ

.
ξ

T
(s)HTS1H

.
ξ(s)dsdθ

−∫ −τm
−τM

∫ t
t+θ

.
ξ

T
(s)HTS2H

.
ξ(s)dsdθ

,

.
V5(t) = τ4

m
6

.
ξ

T
(t)HTT1H

.
ξ(t) + (τM−τm)4

6

.
ξ

T
(t)HTT2H

.
ξ(t)

−τm
∫ 0
−τm

∫ 0
θ

∫ t
t+λ

.
ξ

T
(s)HTT1H

.
ξ(s)dsdλdθ − (τM − τm)

∫ −τm
−τM

∫ 0
θ

∫ t
t+λ

.
ξ

T
(s)HTT2H

.
ξ(s)dsdλdθ

.

The integral term in
.

V3(t), which we treat by applying Lemma 3, yields

− τm

∫ t

t−τm

.
ξ

T
(s)HT R1H

.
ξ(s)ds ≤

⎡⎣ Hξ(t)
Hξ(t − τ1(t))
Hξ(t − τm)

⎤⎦T⎡⎣ −R1 R1 0
∗ −2R1 R1
∗ ∗ −R1

⎤⎦⎡⎣ Hξ(t)
Hξ(t − τ1(t))
Hξ(t − τm)

⎤⎦ (25)

− (τM − τm)
∫ t−τm

t−τM

.
ξ

T
(s)HT R2H

.
ξ(s)ds ≤

⎡⎣ Hξ(t − τm)
Hξ(t − τ2(t))
Hξ(t − τM)

⎤⎦T⎡⎣ −R2 R2 0
∗ −2R2 R2
∗ ∗ −R2

⎤⎦⎡⎣ Hξ(t − τm)
Hξ(t − τ2(t))
Hξ(t − τM)

⎤⎦ (26)

− τM

∫ t

t−τM

.
ξ

T
(s)HT R3H

.
ξ(s)ds ≤

⎡⎣ Hξ(t)
Hξ(t − τ3(t))
Hξ(t − τM)

⎤⎦T⎡⎣ −R3 R3 0
∗ −2R3 R3
∗ ∗ −R3

⎤⎦⎡⎣ Hξ(t)
Hξ(t − τ3(t))
Hξ(t − τM)

⎤⎦ (27)

Furthermore, in a bid to obtain stability conditions with low conservativeness, the
following slack matrix is introduced:

r

∑
i=1

r

∑
j=1

m̃i(m̃j − w̃j)Wi = 0, Wi = WT
i , (i = 1, 2, . . . , r) (28)
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From (23) to (28), we can obtain
r
∑

i=1

r
∑

j=1
m̃iw̃jΞij

=
r
∑

i=1

r
∑

j=1
m̃i(m̃j − w̃j + ψjm̃j − ψjm̃j)Wi +

r
∑

i=1

s
∑

j=1
m̃iw̃jΞij

=
r
∑

i=1
m̃2

i (ψiΞii − ψiWi + Wi)

+
r−1
∑

i=1

r
∑

j=i+1
m̃im̃j(ψjΞij − ψjWi + Wi + ψiΞji − ψiWj + Wj) +

r
∑

i=1

r
∑

j=1
m̃i(w̃j − ψjm̃j)(Ξij − Wi)

(29)

under w̃j − ψjm̃j ≥ 0 for all j. Combined with the event-triggering mechanism (5), we can
derive

.
V(t) + rT

e (t)re(t)− γ2ω̃T(t)ω̃(t) ≤
r

∑
i=1

r

∑
j=1

m̃iw̃jζ
T(t)Ξijζ(t) (30)

where
ζT(t) =

[
η1(t) η2(t)

]
, ζ1(t) =

[
ξT(t) ξT(t − τ1(t)) ξT(t − τm)HT ξT(t − τ2(t))

]
,

ζ2(t) =
[

ξT(t − τ3(t)) ξT(t − τM)HT ξT(t − τ(t))HT eT
k (t) ω̃T (t)

]
.

By using Schur complement, Ξij ≤ 0, hence, we have

.
V(t) + rT

e (t)re(t)− γ2ω̃T(t)ω̃(t) ≤ 0 (31)

Integrating from 0 to ∞ simultaneously on the left and right sides of (30), we can
obtain: ∫ ∞

0
rT

e (t)re(t)dt < γ2
∫ ∞

0
ω̃T(t)ω̃(t)dt (32)

Equation (32) representative ‖re(t)‖2 < γ‖ω̃(t)‖2 holds for any nonzero ω̃(t) ∈
L2[0, ∞). Thus, the FRS (15) is under the restriction of Theorem 1 is asymptotically stable
and satisfies the given H∞ performance index γ. �

Remark 4. The Lyapunov–Krasovskii function (23) constructed contains multiple integrals, such
as triple, quadruple integrals. The more system and time delay information are considered, and the
amplification of the integral term processing is avoided effectively. Convergence of global asymptotic
stability is guaranteed. Moreover, more recently, the introduction of the relaxation matrix (28)
makes the obtained stability criterion with less conservative.

3.2. Fault Diagnosis Filter Design

In this section, solving the parameters of the FD filter is transformed into the prob-
lem of matrix convex optimization, which can be solved by MATLAB. Using the matrix
transformation and deformation, the proposed filter design method is implemented.

Theorem 2. For given scalars 0 < ε < 1, 0 < τm ≤ τM, γ > 0, and the membership functions
satisfying w̃j − ψjm̃j ≥ 0, (0 < ψj ≤ 1), if the IT2 FRS (15) is asymptotically stable and meets the
expected H∞ performance level γ, then there exists parameter matrix P > 0, Qi > 0 (i = 1, 2),
Si > 0 (i = 1, 2), Ri > 0 (i = 1, 2, 3), Ti > 0 (i = 1, 2), Λi > 0 (i = 1, 2), Ãj, B̃j, C̃j, D̃j and
W̃T

i = W̃i have suitable dimensions satisfying the following inequality:

Ξ̃ij − W̃i < 0 (33)

ψiΞ̃ii − ψiW̃i + W̃i < 0 (34)

ψjΞ̃ij + ψiΞ̃ji − ψiW̃j − ψjW̃i + W̃i + W̃j < 0, i < j (35)
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for Ξ̃ij =

[
Ξ̃

11
ij Ξ̃

12
ij

∗ Ξ̃
22
ij

]
,

in which Ξ̃
11
ij =

[
Φ̃

11
ij Φ̃

12
ij

∗ Φ̃
22
ij

]
, where Φ̃

11
ij =

⎡⎢⎢⎢⎢⎢⎣
Φ̃11 Φ̃12 R1 0 0 R3
∗ Φ̃22 0 0 0 0
∗ ∗ −2R1 R1 0 0
∗ ∗ ∗ Φ̃44 R2 0
∗ ∗ ∗ ∗ −2R2 0
∗ ∗ ∗ ∗ ∗ −2R3

⎤⎥⎥⎥⎥⎥⎦,

Φ̃
12
ij =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 B̃jCi −B̃j P1Bi P1Bf i B̃jDi
0 B̃jCi −B̃j YBi YBf i B̃jDi
0 0 0 0 0 0
0 0 0 0 0 0

R2 0 0 0 0 0
R3 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, Φ̃

22
ij =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Φ̃77 0 0 0 0 0
∗ Φ̃88 0 0 0 Φ̃812
∗ ∗ −Λ1 0 0 0
∗ ∗ ∗ −γ2 I 0 0
∗ ∗ ∗ ∗ −γ2 I 0
∗ ∗ ∗ ∗ ∗ Φ̃1212

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

Φ̃11 = P1 Ai + P1ΔA + AT
i P1 + AT

i ΔP + Q1 + Q2 − R1 − R3, Φ̃12 = AT
i Y + Ãj + ΔATY,

Φ̃22 = Ãj + ÃT
j , Φ̃44 = −Q1 − R1 − R2, Φ̃77 = −Q2 − R3, Φ̃88 = εCT

i Λ2Ci,

Φ̃812 = εCT
i Λ2Di, Φ̃1212 = −γ2 I + εDT

i Λ2Di.

Ξ12
ij =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

τm√
2

S1 Ai
Δτ√

2
S2 Ai τmR1 Ai ΔτR2 Ai τMR3 Ai

τ2
m√
6

T1 Ai
Δτ2√

6
T2 Ai 0

0 0 0 0 0 0 0 C̃j
0
...
0

⎫⎪⎬⎪⎭5

0
...
0

⎫⎪⎬⎪⎭5

0
...
0

⎫⎪⎬⎪⎭5

0
...
0

⎫⎪⎬⎪⎭5

0
...
0

⎫⎪⎬⎪⎭5

0
...
0

⎫⎪⎬⎪⎭5

0
...
0

⎫⎪⎬⎪⎭5

0
...
0

⎫⎪⎬⎪⎭5

0 0 0 0 0 0 0 D̃jCi
0 0 0 0 0 0 0 −D̃j

τm√
2

S1Bi
Δτ√

2
S2Bi τmR1Bi ΔτR2Bi τMR3Bi

τ2
m√
6

T1Bi
Δτ2√

6
T2Bi 0

0 0 0 0 0 0 0 −I
0 0 0 0 0 0 0 D̃jDi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Ξ̃
22
ij = diag

{ −S1 −S2 −R1 −R2 −R3 −T1 −T2 −I
}

.
Based on the above condition for the establishment of linear matrix inequality, the

filter parameter matrix is obtained as follows

Âj = Y−1 Ãj, B̂j = Y−1B̃j, Ĉj = C̃j, D̂j = D̃j. (36)

Proof. On the basis of Theorem 1, we set P =

[
P1 P2
∗ P3

]
, J1 = diag

{
I, P2P−1

3

}
, J2 =

diag{J1, I . . . I}

18

}.

Then, we have to multiply the left and right sides of Equations (20)–(22) by J2 and JT
2 .

It yields that
Ξ̃ij − Wi + ΣT

1 Δ f Σ2 + ΣT
2 Δ f Σ1 < 0 (37)

The application of Lemma 2 achieves the conversion of (37) to (38).

Ξ̃ij − Wi + ε−1
1 ΣT

1 δ2Σ1 + ε1ΣT
2 Σ2 < 0 (38)

To facilitate the simplification and operation of the matrix, the following expression is
made:

W̃i = J2Wi JT
2 , Y = P2P−1

3 PT
2 ,
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Ãj = P2 ÂjP−1
3 PT

2 , B̃j = P2B̂j, C̃j = ĈjP−1
3 PT

2 , D̃j = D̂jP−1
3 PT

2 .

Bringing them into Equations (20)–(22), we can obtain Equations (33)–(35).
By using Schur Complement Lemma, the matrix P is equivalent to P1 − P2P−1

3 PT
2 =

P1 − Y > 0. Furthermore, equivalently under transformation PT
2 P3x f (t), the parameters of

the fault detection filter can be yielded as follows:

Âj = P−T
2 P3(P−1

2 ÃjP−T
2 P3)P−1

3 PT
2 = Y−1 Ãj, B̂j = P−T

2 P3(P−1
2 B̃j) = Y−1B̃j,

Ĉj = (C̃jP−T
2 P3)P−1

3 PT
2 = C̃j, D̂j = (D̃jP−T

2 P3)P−1
3 PT

2 = D̃j.

According to Theorem 2, we determine the FD filter parameters by solving the convex
optimization problems:

min γ subject to the inequalities (33)–(35).
The proof is completed. �

4. Simulation

In this section, we provide several examples to illustrate the usefulness of the designed
IT2 fuzzy FD approach and to compare it with the existing results in [44,45] to show the
advantages of our method.

Two rules have been considered in the following IT2 fuzzy system (system parameters
are borrowed from [46])⎧⎪⎪⎨⎪⎪⎩

.
x(t) =

2
∑

i=1
ρ̃i(x(t))[Aix(t) + Biω(t) + Bf i f (t)]

y(t) =
2
∑

i=1
ρ̃i(x(t))[Cix(t) + Diω(t)]

(39)

with A1 =

[ −1 0.2
−0.9 0.15

]
, A2 =

[ −0.4 0.2
−0.8 −1.10

]
, B1 =

[
0.1
0.2

]
, B1 =

[
0.4
0.9

]
, Bf 1 =[ −0.1

0.01

]
, B1 =

[ −0.1
0.01

]
, C1 =

[
0.1 0.1

]
, C2 =

[
0.1 0.2

]
, D1 = D2 = 0.01. The

membership functions of the plant and fault detection filter are depicted in Table 2. The
nonlinear functions are chosen as, i.e., ρ

i
(x1(t) = sin(x2

1(t)), ρi(x1(t) = 1 − sin(x2
1(t)),

i = 1, 2, and φ
j
(x(t)) = φj(x(t)) = 0.5 for j = 1, 2.

Table 2. Membership functions for plant and filter.

The Upper Membership Function The Lower Membership Function

�1(x1(t)) =
0.27−0.01x2

1(t)
0.27

�2(x1(t)) =
x2

1(t)
9

�1(x1(t)) =
0.27−0.03x2

1(t)
0.27

�2(x1(t)) =
x2

1(t)
27

κ1(x1(t)) = exp
(
− x2

1(t)
8

)
κ2(x1(t)) = 1 − κ1(x1(t))

κ1(x1(t)) = exp
(
− x2

1(t)
4

)
κ2(x1(t)) = 1 − κ1(x1(t))

In order to derive the gain matrices of the FD filter in (7), we assume the parameter
sets (τm, τM, ε, �l , �2) = (0.01, 0.1, 0.5, 0.7, 0.5). Then by solving the conditions in Theorem
2, we can obtain

Â1 =

[ −1.6738 0.1545
−0.5992 −0.3587

]
, Â2 =

[ −0.6885 −0.1969
0.8140 −2.3963

]
,

B̂1 =

[ −2.8318 × 10−12

9.3801 × 10−13

]
, B̂2 =

[ −1.7555 × 10−12

−9.6037 × 10−13

]
,
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Ĉ1 =
[

0.1087 −0.0306
]
, Ĉ2 =

[
0.0980 −0.0180

]
,

D̂1 = 1.2609 × 10−12, D̂2 = 1.6357 × 10−12, Λ = 5.3637 × 10−12.

Besides, the H∞ performance is calculated as γ = 2.4227. According to the FD
mechanism, we set the fault signal as

f (t) =
{

2, 20 < t < 30
0, others

(40)

and the external disturbance ω(t) is stochastic noise that belongs to standard normal
distribution. Let the initial states be x0 = x̂0 =

[
0 0

]T . Then, we can derive Figures 2–4.
Specifically, Figure 2 depicts the actual transmission instants and intervals under the
event-triggered scheme. In the simulation time (50 s) and sampling period (0.1 s), only
20.0% of sampled data are transmitted over the wireless network. Clearly, it saves many
communication resources. Figures 3 and 4, respectively, show the trajectories of the error
re(t) without/with fault.
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Figure 2. Transmission instants and intervals.

Figure 3. The trajectories of re(t) without fault.
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0 5 10 15 20 25 30 35 40 45 50
Time(s)

-2.5

-2

-1.5

-1

-0.5

0

0.5

Figure 4. The trajectories of re(t) with fault.

Moreover, the threshold Jth can be calculated without fault, i.e., Jth = 4.0711 × 10−13.

Then, it is not hard to obtain that J(t) =
{∫ 24.9

0 rT
F (s)rF(s)ds

} 1
2
= 4.0826 × 10−13 > Jth.

This means that the fault can be detected after 4.9 s. Further, Figure 5 illustrates the fault
detection results demonstrating that the proposed FD approach is effective.
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Time(s)

0
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3.5

J(
t)

10-12

Figure 5. The trajectories of evaluation function with/without fault.

Following the above steps, considering the different types of faults, we performed
three sets of simulations. Then, we produced Table 3 and derived Figures 6 and 7.
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Table 3. Verification for different types of faults.

System
Parameters

Fault Signal Trigger
Mechanism

Comparison of
Trigger Rate

Comparison of
Detection Time

(Triggering Times)

Exp a [44] f (t) =
{

2 sin(t), 30 < t < 60
0, others

cycle trigger 100% 23.9%
0.5 s 0.3 s(1000) (239)

Exp b [45] f (t) =
{

1, 1.5 < t < 2.3
0, others

adaptive
Trigger

31% 26%
0.19 s 0.13 s(31) (26)

Exp c [47] f (t) =
{

20 sin(t − 2)(1 − e
−t+2

4 ), 10 < t < 30
0, others

cycle trigger 100% 26.3%
* 0.6 s3000 789

* This is not explicitly stated in [47].

  
(a) (b) (c) 

Figure 6. Transmission instants and intervals for experiment (a–c).

   
(a) (b) (c) 

Figure 7. The trajectories of evaluation function with/without fault for experiment (a–c).

Experiment a uses the same system parameters and fault types as those the in the
literature [44]. During the simulation time (100 s) with the sampling period (0.1 s), the
cycle triggering time is 1000, and the events triggering time is 239. Simultaneously, the
results show that the proposed method obtains a faster detection time. In experiment b, the
step signal is used to represent the sudden fault. The final time is 10 s, and the sampling
period is 0.1 s. With the same experimental conditions, the proposed method has fewer
triggers and a faster detection speed. It can be seen that the structure of the event triggering
mechanism we used is simpler. More recently, in order to discuss the effectiveness of the
method for time-varying faults. Experiment c was performed by considering an inverted
pendulum on a cart. It readjusts that the experimental time is 30 s and sampling period is
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0.01 s, and only 26.3% of sampled data is transmitted over the wireless network. In Figure 7,
one can see that the fault can be detected after 0.6 s.

5. Conclusions

The event-triggered FD problem of IT2 T-S fuzzy nonlinear networked systems has
been studied in this paper. A fault residual system is established by integrating the IT2
fuzzy theory, external disturbance, event-triggered scheme, time delays and parameter
uncertainties. In particular, the designed FD filter premise variable could be different from
NNSs. The stability conditions and performance criterion have been proposed with the aid
of the Lyapunov theory. At last, the validity has been verified by simulation experiments.
The results illustrate that the proposed FD method can achieve rapid detection of faults, and
the event-triggered scheme reduces the transmission rate and saves wireless communication
resources. The responsiveness to different types of faults highlights its low conservativeness.
The event-triggered FD problem of NNSs with random cyberattacks and packet losses will
be further investigated.
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Abstract: In current research of complex system health assessment with evidential reasoning (ER) rule,
the relationship between the indicators reference grades and pre-defined assessment result grades
is regarded as a one to one correspondence. However, in engineering practice, this strict mapping
relationship is difficult to meet, and it may degrease the accuracy of the assessment. Therefore, a new
ER rule-based health assessment model for a complex system with a transformation matrix is adopted.
First, on the basis of the rule-based transformation technique, expert knowledge is embedded on
the transformation matrix to solve the inconsistent problems between the input and the output,
which keeps completeness and consistency of information transformation. Second, a complete health
assessment model is established via the calculation and optimization of the model parameters. Finally,
the effectiveness of the proposed model can be validated in contrast with other methods.

Keywords: evidential reasoning rule; system modelling; information transformation; parameter
optimization

1. Introduction

A complex system, for instance, control system [1], servo system [2], energy storage
system [3], is widely used in aviation, aerospace, electronics and other fields. Due to
the complex structure and poor working environment, the system performance can be
degraded, which affects the operation reliability of the system. Therefore, it is crucial to
assess the health status of the complex system to provide decisions for management and
maintenance [4].

In the current research of health assessment, there are mainly three methods called the
data-based method, the qualitative knowledge-based method, and the semi-quantitative
information-based method. The data-based methods assess the system performance by
fitting the nonlinear relationship between the input and output of the system based on
observation data, such as deep learning, neural network [5–7]. Since it is a pure black-box
modelling, the assessment results cannot be explained, and there is a problem of overfitting.
The qualitative knowledge-based methods provide interpretable assessment progress
based on the operation mechanism of the system and expert knowledge, for example, fuzzy
reasoning, belief rule base [8,9]. Due to the subjectivity of expert knowledge, the model
assessment accuracy is poor. The semi-quantitative information-based methods provide
both qualitative knowledge and quantitative data concurrently, providing interpretable
and accurate assessment results [10]. Therefore, the health assessment based on semi-
quantitative information is basically concentrated in this paper.

The evidential reasoning (ER) rule [11], as a representative semi-quantitative information-
based method, originated from the Dempster-Shafer (DS) evidence theory [12], and is regard
as a generalized Bayesian inference process [11]. DS evidence theory is regarded as a special
case of ER, when the indicator reliability is equal to 1 [13]. In the ER rule, the quantitative data
and qualitative knowledge can be effectively integrated by adopting the orthogonal operations.
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Reference value is introduced to divide the input information status, then the initial evidence
can be generated. To deal with the data uncertainty, the evidence weight and reliability are
introduced. Particularly, the weight reflects the relative importance of multiple pieces of
evidence in the aggregation of evidence. The reliability reflects the ability of the information
sources to provide correct information. The reliability is influenced by the performance of
the information source and external noise [14]. By clearly differentiating the two concepts,
the ER rule is widely used in many fields, such as multi-attribute decision-making [15], fault
diagnosis [16], health assessment [17], etc.

When using the ER rule to assess the health status of a complex system, a set of
mutually exclusive and collectively exhaustive assessment result grades need to be settled in
advance. First, health assessment indicators are selected, and the indicators are equivalent
to evidence. Then, input indicator reference grades are introduced to conveniently collect
the initial evidence pointed to the assessment grades. Finally, the initial evidence, evidence
weight and reliability are integrated based on the ER rule, and the health assessment
results of the complex system can be obtained. Therefore, as an important part of the
assessment, indicator reference grades determine the belief distribution of initial evidence,
which directly affected the assessment results.

The above assessment process determines that the input indicator reference grades
and output assessment result grades strictly correspond to each other. However, in practice,
the assessment result grades are determined in advance, which leads to the disaccord
with input indicator reference grades. For example, the input indicator reference grades
can be easily divided into “normal” and “fault” based on industry-standard, but health
assessment result grades are predetermined as “health”, “subhealth”, “fault”.

In the process of health assessment, the relationship between input indicator references
grades and assessment result grades does not exactly correspond to each other. Therefore,
for the sake of dealing with this problem, there are two methods to solve it. First, regarding
the relationship as a one-to-one correspondence [18,19], then the input indicator references
grades can be matched with assessment result grades. Second, based on expert knowledge,
adding the reference grades to realize an input and output in accordance [4,8]. However, the
first method neglects the consistent relationship in engineering practice, and the accuracy
of the assessment results is influenced. The second method violates the prior mapping
relationship, resulting in randomness and no standard of the assessment result.

To deal with the mentioned issues, a new health assessment model for a complex
system based on the ER rule is proposed. First, the transformation matrix is determined
according to the expert’s knowledge. The input information can be converted into the
initial belief distribution with regard to assessment result grades by using the rule-based
information transformation technique. Thus, a general information transformation frame-
work is constructed. Second, the evidence weight and reliability are determined by expert
knowledge and the synthesis of static and dynamic characteristics separately. Then, the
health assessment model of a complex system based on ER rule is constituted. Finally, to
further enhance the model precision, an objective function is established to optimize the
model parameters. In this paper, there are two innovations as follows:

(1) Based on transformation matrix, the mapping relationship between the antecedents
and the consequent of the assessment model is established, which solves the inconsistent
problem between the indicators reference grades and pre-defined assessment result grades
in the engineering practice. Due to the subjectivity and limitations of the expert’s knowl-
edge, the initial values of transformation matrix may deviate from real status, hence the
need to build a optimization model to further optimize the values of transformation matrix.

(2) On the basis of parameters calculation, the optimization algorithm is employed
to enhance the assessment result accuracy. Then, a complete health assessment model for
complex system is constituted.

This paper is organized as follows. The framework and related problems of the health
assessment model are described in Section 2. In Section 3, the health assessment model
based on ER for a complex system is proposed. The optimization of model parameters is
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presented in Section 4. In Section 5, the bus of control system and the engines are taken
as examples to validate the effectiveness of the proposed model. Conclusions and future
work are defined in Section 6.

2. Problem Formulation

The status of a complex system is mainly reflected by some indicators, called health
status indicators. The observation information of these indicators can be obtained by
placing the corresponding sensors or simulating them in the computers. Here, the health
assessment of the complex system model is constructed as shown in Figure 1.

Figure 1. The structure of the health assessment model.

It can be seen from Figure 1 that the model mainly includes three parts: the first
part establishes the mapping function to transform the input information into the initial
evidence. The second part constitutes a complete assessment framework based on the
calculation of parameters. Finally, the assessment model parameters need to be optimized
in the third part.

The specific parameters of Figure 1 are as follows:
(1) xi denotes the ith health status indicator of the complex system, where i = 1, 2, . . . , L;
(2) L denotes the number of assessment indicators;
(3) Ai denotes the mapping function between the ith input indicator reference grades

and assessment grades;
(4) wi denotes the weight of the ith indicator;
(5) ri denotes the reliability of the ith indicator;
(6) ei denotes the initial evidence of the ith indicator.
According to the model established in Figure 1, the following two problems need to

be solved in the health assessment of complex system:
(1) When assessing the health status of a complex system, the input indicators reference

grades do not correspond to the assessment results grades. Therefore, Formula (1) is mainly
to establish the following mapping relationship.

(D1, D2, . . . , DN) = Ai
(

H1,i, H2, . . . , HNi

)
(1)

where {Dn|n = 1, 2, . . . , N } denotes N assessment result grades, {Hn,i|n = 1, 2, . . . , Ni }
denotes ith input indicators Ni reference grades.
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(2) The assessment model part parameters, such as indicator reference value and
weight, are given by experts, which may decrease the accuracy of the assessment. Therefore,
it is necessary to build an optimization model to improve the accuracy of assessment results
as follows.

Ψ = Ψ(w, H, A, D) (2)

where w, H, A, D denote the indicator weight, indicator reference, transformation matrix,
and assessment result grades respectively.

3. Health Assessment Method Based on the ER Rule with a Transformation Matrix

In this section, an assessment model with a transformation matrix based on the ER
is adopted. The transformation of input information is conducted in Section 3.1. The
calculation of model parameters is introduced in Section 3.2. The aggregation of indicators
is given in Section 3.3.

3.1. Transformation Method of Input Indicators

First, it is necessary to establish an indicator system of health assessment, when
assessing a complex system. There are N assessment result grades, L indicators and the
numbers of ith input indicator reference grades are denoted by Ni, as shown in the Figure 2.

Figure 2. The transformation between the input and output.

Suppose Hi =
{

H1,i, H2,i, . . . , HNi ,i
}

and D = {D1, D2, . . . , DN} are sets of mutually
exclusive and exhaustive propositions. Thus Hi and D are regarded as frames of discern-
ment, called the discernment frame 1 and the discernment frame 2, respectively. In order
to realize the transformation from discernment frame 1 to discernment frame 2, there are
process of transformation as follows:

First, the mapping relationship between the kth reference grade of the ith indicator
Hk,i and assessment result grades {D1, . . . , DN} can be described as a “if-then” rule:

Rk,i : if xi = Hk,i, then
{
(D1, a1,k), . . . , (Dn, an,k), . . . , (DN , aN,k)

}
,

(
N

∑
n=1

an,i = 1, 0 ≤ an,i ≤ 1,

)
(3)

where an,k denotes the belief degree to which Dn is regard as the consequent if, input xi is
Hk,i. Rk,i denotes kth rule of the ith indicator. Then, the mapping relationship between the
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discernment frame 1 and the discernment frame 2 can be established by Ni rules. It can be
described as a matrix:

H1,i H2,i · · · Hk,i · · · HNi ,i

Ai =

D1
D2
...

Dn
...

DN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1,1 a2,2 · · · a1,k · · · a1,Ni
a2,1 a2,2 · · · a2,k · · · a2,Ni

...
...

. . .
...

...
...

an,1 an,2 · · · an,k · · · an,Ni
...

...
...

...
. . .

...
aN,1 aN,2 · · · aN,k · · · aN,Ni

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4)

where Ai denotes N × Ni transformation matrix, whose Ni columns are the Ni rules.

Remark 1. The transformation matrix is established based on Formula (3), where the belief degree
is allocated to any individual assessment grades and there is no ignorance left. It can be proved that
transformation matrix retains the integrity and consistency of information transformation. The
details of proof can be seen in the paper [20]. In other words, a belief distribution with no ignorance
will not be transformed to a belief distribution with ignorance, and vice versa.

Second, according to rule-based information transformation technique, the input infor-
mation can be transformed as a belief distribution under discernment frame 1 as follows.

Si(xi
∗) =

{
(Hk,i, γk,i), k = 1, 2, . . . , Ni; (HΘ, γΘ,i)

}
(5)

with 0 ≤ γn,i ≤ 1 (n = 1, . . . , Ni, i = 1, . . . , L), where x∗i denotes input information of the
ith indicator. Hk,i denotes the kth reference grade of the discernment frame 1, γk,i denotes
the belief degree allocated to any individual reference grade of discernment frame 1, which
can be calculated as follows.⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

γk,i =
Hk+1,i−xi

∗
Hk+1,i−Hk,i

, Hk,i ≤ x∗ ≤ Hk+1,i

γk+1,i= 1−γk,i , Hk,i ≤ x∗ ≤ Hk+1,i

γm,i= 0, m= 1, . . . , Ni, m �= k, k + 1

(6)

where Hk,i and Hk+1,i denote the reference values of two adjacent input indicators reference
grades. If there are other information transformation techniques or qualitative indicators,
the degree of global ignorance denoted by γΘ,i may exist.

Finally, based on transformation matrix Ai, the input information of ith indicator can
be transformed as a belief distribution under discernment frame 2, as follows:

S̃i(xi
∗) = { (Dn,i, βn,i), n = 1, 2, . . . , N; (DΘ, βΘ,i)} (7)

with 0 ≤ βn,i ≤ 1 (n = 1, . . . , N, i = 1, . . . , L), βΘ,i = 1 − N
∑

n=1
βn,i, where βn,i and

βΘ,i denote belief degree allocated to nth individual assessment result grades and global
ignorance, respectively, which can be calculated as follows:

bi = Ai × ri (8)

βΘ,i = 1 −
N

∑
n=1

βn,i = γΘ,i (9)
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where, bi = [β1,i, β2,i, . . . , βN,i] is the belief degree under the discernment framework
2,ri =

[
γ1,i, γ2,i, . . . , γNi ,i

]
is the belief degree under the discernment framework 1, Ai

denotes the transformation matrix corresponding to the ith indicator.

Remark 2. Compared with Yang’s work [20], there are two contributions of this work. (1) In Yang’s
work, the elements of transformation matrix are only determined by the decision-makers’ knowledge
and experience, which may decrease the assessment accuracy. In the proposed model, the expert
knowledge is used to give the initial values of the transformation matrix, and the accurate values
are obtained by optimizing based on the observation data. (2) Actually, the transformation matrix
makes the adjustment between different discernment frameworks realized. More importantly, this
paper inherits the basic work of Yang and extends it to the field of refined health assessment.

3.2. Calculation of Model Parameters

The indicator weight is the subjective concept that reflects the relative importance
among the indicators [11,21]. Thus, the indicator weight is determined by the experts’
preference to the assessment results grades. Differently, the indicator reliability is the
objective concept, affected by inherent disturbance or noise when measured, resulting in
the unreliability of observation data [22]. Therefore, the method that the synthesis of static
and dynamic reliability is adopted, can effectively combine the expert knowledge and
observation data [23].

Suppose ri
s and ri

d denote the statics reliability and dynamic reliability respectively.
Then the indicator reliability ri is determined as

ri = δri
s + (1 − δ)ri

d, 0 ≤ δ ≤ 1 (10)

where, δ denotes the weighting factor given by experts. ri
s can be determined by expert

experience and industry standards. ri
d can be calculated via the method of distance,

as follows.
First, the average of the ith indicator observation data is:

xi =
1
ki

ki

∑
t=1

xi(k), k = 1, 2, · · · , ki (11)

The distance between the ith indicator observation data and average can be expressed as:

di(xi(k), xi) = |xi(k)− xi| (12)

Then, the average distance can be calculated as:

Di =
1
ki

ki

∑
k=1

|xi(k)− xi| (13)

The dynamic reliability is represented as:

ri
d =

Di
maxdi(xi(k), xi)

(14)

Remark 3. On the one hand, the weights reflect the relative importance of indicators in the evidence
aggregation process. Further, the value of the weight is strongly dependent on the decision maker.
Thus, the weights can be adjusted according to actual needs. On the other hand, since the expert
knowledge is limited, the initial values of the weight given by the expert may not be accurate. Thus,
the weight needs to be optimized based on observation data. However, the reliability is an objective
attribute of evidence, so it does not need to be optimized.
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3.3. Aggregation of Initial Evidence

Once the mapping relationship from input indicator grades to assessment grades
is established based on transformation matrixes, the indicator observation data can be
converted into initial evidence in the form of belief degree. The indicator weight is defined
by the expert, and the indicator reliability is calculated by the above method in Section 3.2.
Then, multiple indicators can be aggregated by using ER rule to obtain the health assessment
results as follows:

βn,e(L) =

μ

[
L
∏
i=1

(
ω̃iβn,i + 1 − ω̃i

N
∑

n=1
βn,i

)
− L

∏
i=1

(
1 − ω̃i

N
∑

n=1
βn,i

)]
1 − μ

L
∏
i=1

(1 − ω̃i)

(15)

βΘ,e(L) =

μ

[
L
∏
i=1

(
1 − ω̃i

N
∑

n=1
βn,i

)
− L

∏
i=1

(1 − ω̃i)

]
1 − μ

L
∏
i=1

(1 − ω̃i)

(16)

μ =

[
N

∑
n=1

L

∏
i=1

(
ω̃iβn,i + 1 − ω̃i

N

∑
n=1

βn,i

)
− (N − 1)×

L

∏
i=1

(
1 − ω̃i

N

∑
n=1

βn,i

)]−1

(17)

ω̃i = ωi/(1 − ωi − ri) (18)

where, L denotes the number of evidence; N denotes the number of assessment grades; ω̃i
denotes the mixed weight considering the reliability and weight of evidence; βn,i denotes
the initial belief degree allocated to assessment grades. βn,e(L) denotes the belief degree of
the assessment result Dn. The residual support is allocated to the assessment framework,
denoted by βΘ,e(L).

The aggregated belief distribution can be expressed as follows.

O =
{
(Dn, βn,e(L)), (DΘ, βΘ,e(L)), n = 1, 2, . . . , N

}
(19)

In practical application, to obtain numerical output, the belief distribution of aggre-
gated results can be transformed into the expected utility. Assuming that the expected
utility values u(Dn) of all assessment grades are determined. If the aggregated belief
distribution is complete (βΘ,e(L) = 0), then the expected utility of aggregated assessment
result can be expressed as:

y =
N

∑
n=1

βn,e(L)u(Dn) (20)

If the aggregated belief distribution is incomplete (βΘ,e(L) �= 0), the global ignorance
can be allocated to any assessment grades. The maximum, minimum, and average of the
expected utility of aggregated assessment result can be expressed as follows:

ymax =
N−1

∑
n=1

βn,e(L)u(Dn) + (βΘ,e(L) + βN,e(L))u(DN) (21)

where ymax denotes maximum of the expected utility of aggregated assessment result,
when βΘ,e(L) is allocated to the most preferred assessment grades Dn.

ymin = (βΘ,e(L) + β1,e(L))u(D1) +
N

∑
n=2

βn,e(L)u(Dn) (22)
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where, ymin denotes minimum of the expected utility of aggregated assessment result,
when βΘ,e(L) is allocated to the least preferred assessment grades D1.

yaverage =
ymax + ymin

2
(23)

where yaverage denotes the average of the expected utility of aggregated assessment result.
{u(Dn), |n = 1, 2, . . . , N } cannot be given accurately, which needs to be adjusted by the
optimization algorithm.

4. Parameters Optimization

In this section, the optimal model is constructed to solve the second problem. The
optimization of model parameters is conducted in Section 4.1. The detailed implementation
process of the whole model is introduced in Section 4.2.

4.1. Optimization of Model Parameters

Due to the initial values of the evidence weight, indicator reference grades, expected
utility, and transformation matrixes in the assessment model are given by experts. Thus, to
obtained accurate assessment results, these parameters need to be optimized based on the
observation data. The optimization process is shown as Figure 3.

Figure 3. Optimization process of model parameters.

It should be noted that the assessment of true value of overall health is set based
on experts’ overall judgment in prior. According to the observation data, combined with
the method of expert scoring, expert panels are set to determine the health status of the
research object. The optimization objective function of the health status model is established
as follows.

min. RMSE(Ψ) =

√
(y − ŷ)2 (24)

where, y denotes the real health condition of the complex system, ŷ denotes the assessment
model output, Ψ =

{
H1,i, . . . , HNi ,i, ω1, . . . , ωl , A1, . . . , Al , u(D1), . . . , u(DN)

}
is the param-

eter in the optimal model, and RMSE denotes the root mean square error, which is used to
measure the difference between the model output and the actual output.

To ensure the accuracy of the assessment results without changing the physical mean-
ing of the optimization parameters, the optimization range of parameters is designed
according to expert knowledge, as follows.

bk,i < Hk,i < ck,i (25)

dj,k ≤ aj,k ≤ f j,k, ∑
j

aj,k = 1 (26)

ei < ωi < gi (27)

pj < u(Dj) < qj j = 1, 2, . . . , N, k = 1, 2, . . . , Ni, i = 1, 2, . . . , L (28)
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where, Hn,i denotes the indicator reference of the ith Ni indicator; cn,i and bn,i denote the
indicator reference upper and lower bounds; aj,k denotes the elements in row j and column
k of the transformation matrix Ai; dj,k and f j,k denote respectively the lower and upper
bounds; ωi denotes evidence weight; fi and di denote the weight upper and lower bounds;
u(Dn) denotes the utility of the nth assessment grade; en and gn denote the assessment
grade upper and lower bounds.

4.2. Process of Health Assessment Based on the ER Rule

The specific steps of health assessment using the ER assessment model proposed are
as follows, shown in Figure 4.

Figure 4. The implementation process of the assessment model.

Step 1: The health assessment indicator system of a complex system is established
based on expert knowledge and observation data.

Step 2: Transformation matrixes are determined, then input information can be trans-
formed into the form of initial evidence.

Step 3: The evidence weight and static reliability are given according to industry
standards and expert knowledge, and the dynamic reliability is calculated based on the
observation data. Then, the reliability is determined by the weighting of static reliability
and dynamic reliability.

Step 4: The ER rule is employed to aggregate the initial evidence, evidence weight,
and reliability, to obtain the health assessment results. The expected utility u(Dn) of the
assessment result grades is introduced to obtain the expected utility of the assessment result.

Step 5: The optimization of the assessment model is constituted to improve the
accuracy of assessment results.

5. Experimental Research

In this section, bus of control system and engine are taken as examples to illustrate
the validity of the proposed model. The health assessment of bus of control system is
introduced in Section 5.1. In Section 5.2, the health assessment of engine is conducted. The
result analysis is presented in Section 5.3.
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5.1. Example 1—Health Assessment of the Bus of Control System
5.1.1. Background Description

The bus of control system, controlling the transmission of the test data and control
instruction between the bus control (BC) and received terminal (RT), is wildly applied in
rocket, missile, and other aerospace fields [24]. With the demand for rapid information
transmission rate and large bandwidth, optical fiber communication technology is largely
used in the bus of control system. To demonstrate the effectiveness of the proposed model,
a type of the bus of control system based on a passive optical network (PON) is taken as
an example. Passive optical networks are named as containing a large number of optical
passive devices, such as optical fiber, optical fiber connector, and optical splitter. Because the
passive optical devices in PON can be easily influenced by severe operation environment,
the health status of the bus of control system can be degraded, resulting in the degradation
of communication quality. Therefore, it is crucial to assess the health status of the bus of
control system.

In this experiment, due to the shortage of the test data, the topology of the bus of
control system is simulated based on the Optisystem software shown as Figure 5. According
to the real status and fault mode analysis of the bus of control system, the different degrees
of fault of the bus of control system is simulated in the simulation model. The q factor (Q)
of eye diagram and received optical power (O) are selected as health status indicators [25].
The eye diagram is used to measure the signal-to-noise ratio of the signal, and q factor
is one of the important parameters of the eye diagram [26]. The received optical power
denotes the optical power at the optical receiver. When the received optical power is lower
than the minimum received optical power of the optical receiver, the optical signal cannot
be transmitted.

Figure 5. Simulation model of bus of control system.

As shown in Figure 6, the value of O ranges from −22.65 dBm to −17.84 dBm while
Q ranges from 2.81 to 7.53. Both the curves of O and Q descended from high to the low.
It can be seen in Figure 7 that the health status grades are denoted by y-axis. Meanwhile,
as the failure degree of the bus of control system increases gradually, its health status can
be concluded as four stage in the sequence. It is “Health” at first, followed by “Subhealth”
and “Slight fault”, finally “Severe fault”.
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Figure 6. Observation data of O and Q.

Figure 7. The health status of the bus of control system.

133



Machines 2022, 10, 250

5.1.2. The Procedures of Health Assessment

In this subsection, the implementation process of the proposed model is conducted as
the following steps:

Step1: the transformation of input information
According to the real health status of the bus of control system, assessment result

grades can be defined as four parts as D = {D1, D2, D3, D4} = {Health, Subhealth, Slight
f ault, Severe f ault}. However, because “subhealth” has a vague and random status,
which is deduced by conjunction of multiple indicators, its reference value cannot be
found in the individual indicator, resulting in the disaccord between the input and out-
put grades. Thus, the input indicator reference grades are introduced as three parts as
H = {H1, H2, H3} = {High, Medium, Low} = {H, M, L}. The reference values corre-
sponding the reference grades are determined based on experts shown in Table 1.

Table 1. The inference values of input indicators.

Indicators H M L

Received optical power [−18.5, −17] [−21.5, −19.5] [−26, −21.5]
Q factor [8, 10] [3, 6] [0, 3]

Remark 4. In Table 1, expert gives the intervals of reference values corresponding to reference
grades, and the initial reference values are selected from the intervals. The reference values need to
be optimized within intervals.

Once the antecedents and consequent parameters of the rule are determined, the
transformation matrixes can be constructed in Table 2 based on Formula (3). It should be
noted that there is no ignorance in the transformation matrix.

Table 2. The parameters of transformation matrixes.

No. Indicators Reference Grades {D1, D2, D3, D4}

1 Received optical power −17.5 (0.8, 0.15, 0.05, 0)
2 −20 (0.05, 0.15, 0.5, 0.3)
3 −26 (0.05, 0.15, 0.2, 0.6)
4 Q factor 8 (0.8, 0.15, 0.05, 0)
5 4 (0.05, 0.05, 0.7, 0.2)
6 1 (0, 0, 0.2, 0.8)

Based on Table 2, the values of transformation matrixes A1 and A2 can be introduced
as follows.

A1 =

⎡⎢⎢⎣
0.8 0.05 0.05

0.15 0.15 0.15
0.05 0.5 0.2

0 0.3 0.6

⎤⎥⎥⎦, A2 =

⎡⎢⎢⎣
0.8 0.05 0
0.15 0.05 0
0.05 0.7 0.2

0 0.2 0.8

⎤⎥⎥⎦ (29)

Based on Formulas (5)–(9), the input information can be translated into initial evidence
as Figures 8 and 9.
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Figure 8. Belief distribution of O.

Figure 9. Belief distribution of Q.
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It can be seen from Figures 8 and 9 that the belief distributions of two indicators are
transformed from input information. The belief degree of two indicators of “Health” are
both over 0.5 on the 0–100 sets of data, gradually decreasing to zero with the furthering of
fault degree. The belief degree of “subhealth” transformed from input information is little
in O and Q, as the belief degree allocated to “Subhealth” is small given by expert in Table 2.
The belief degree of “slight fault” or “severe fault” is increasing as the fault continues
aggravating, and reaching the greatest finally. Totally, in both figures, the declining trend
of health status is conformed with real status in Figure 7.

Step2: Calculation of model parameter
The evidence weights of the two indicators are set as 0.75 and 0.95 respectively. The

statistic reliabilities of the two indicators are determined as 0.7 and 0.8 respectively, based
on industry standards. The dynamic reliabilities are calculated as 0.4 and 0.5 separately.
Based on (11)–(14). The weighting factors δ are set to be 0.8 and 0.9 separately. Then, the
reliabilities of the two indicators are 0.68 and 0.86 separately.

Step 3: Aggregation of two indicators
Based on (14)–(17), ER rule can be used to aggregate initial evidence, and the dis-

tributed health assessment results can be obtained, shown as Figure 10.

Figure 10. The aggregated health status.

It can be seen in Figure 10 that the belief degree of the “health” is clearly divided into
four stages. At first, the belief degree is closed to 1, then floats around 0.5 and 0.2, and
finally approaches to 0. Because the belief degree of the “subhealth” of O and Q is little in
Figures 7 and 8, the aggregated belief degree is near to 0. The belief degree of “slight fault”
and “severe fault” increases, which is caused by the belief distribution of O and Q.

By introducing the expected utility, the belief distribution can be transformed into
numerical output. Define the utility of assessment result grades D1, D2, D3, D4 as u(D1) = 12,
u(D2) = 7, u(D3) = 1, u(D4) = 0, respectively. Then, the assessment result of the initial
model is shown in Figure 11. It shows that the simulated status fluctuates near the real status
of the bus of control system in the first three status and deviates from the real health status
in forth status. This basically matches to distributed assessment results in the Figure 10. In
fact, the deviation of real status partly reflects the uncertainty of observation data and the
limitation of expert’s knowledge. Therefore, initial assessment model needs to be optimized
based on quantitative data.
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Figure 11. The comparison between initial and real status.

5.1.3. Parameters Optimization and Comparative Study

The optimization model is constructed based on Formula (24), as follows

min(RMSE(Ψ)) (30)

To ensure high accuracy, maintaining the interpretability of the assessment results,
constraints of the model parameters are determined by expert as follows. The constraints
of indicators reference values are given as:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−18.5 < H1,Power < −17
−21.5 < H2,Power < 19.5
−26 < H3,Power < −21.5
8 < H1,q < 10
3 < H2,q < 6
0 < H3,q < 3

(31)

The constraints of weight are given as:{
0.5 < ωPower < 0.8
0.8 < ωq < 1

(32)

The constraints of expected utility are given as:⎧⎪⎪⎨⎪⎪⎩
10 < u(D1) < 15
7 < u(D2) < 10
3 < u(D3) < 5
0 < u(D4) < 1

(33)

The constraints of the transformation matrixes are given as:⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 ≤ ai,j ≤ 1

ai−1,j < ai,j < ai+1,j
N
∑

j=1
ai,j = 1

(34)

The above model can be optimized by the Fmincon algorithm. Fmincon algorithm is
employed to find the minimum value of the objection function under nonlinear constraints.
Total of 200 sets of training data are selected alternately from the 400 sets of data, and the
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400 sets of data are determined as test data. The optimized parameters are obtained, as
shown in Tables 3 and 4.

Table 3. The optimized transformation matrixes.

No. Indicator Weight
Reference

Values
{D1, D2, D3, D4}

1 optical power 0.76 −17.421 {0.699, 0.209, 0.067, 0.025}
2 −21.083 {0.060, 0.060, 0.545, 0.335}
3 −26.523 {0.045, 0.121, 0.165, 0.669}
4 Q factor 0.92 7.814 {0.648, 0.266, 0.049, 0.037}
5 4.821 {0.032, 0.053, 0.586, 0.329}
6 2.790 {0.028, 0042, 0.056, 0.874}

Table 4. The optimized expected utility.

Expected Utility u(D1) u(D2) u(D3) u(D4)

Value 14.517 9.162 3.858 0.499

Remark 5 . By carefully comparing Tables 2 and 3, it can be found that reference values of indicators
are not significantly changed. There are two reasons to illustrate this phenomenon:

(1) Reference values are not quite important compared to other parameters, such as expected
utility and transformation matrix.

(2) The initial values of reference values given by expert are relatively consistent with the real
status of the of bus of control system, and the optimization is a mild adjustment.

The optimized model is compared with the initial model, as follows. It is shown in
Figure 12 that the optimized simulated status is closer to the real status than the initial
status, especially in the “Severe fault” status, in which the optimized simulated status
fluctuates less than the initial simulated status. To further illustrate the effectiveness of the
proposed method, the following comparative study is conducted.

Figure 12. The comparison between the optimized model and initial model.
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(1) The comparison under the ER rule framework

In this part, the traditionary ER rule (model l) and DS evidence theory (model 2) under
the ER rule framework are employed to compare with the proposed model. It needs to be
guaranteed the consistency between the input and output grades in the model 1 and model 2.
Therefore, First, indicator reference grades are added to make it consistent with the assessment
result grades. The initial reference value of “Subhealth “is given as an average value between
the “Health” and “Slight fault”. The reference values of both model 1 and model 2 are given
in Table 5. The reliabilities are set same as the proposed model in model 1.

Table 5. The reference values of input indicators.

Reference Grades H1 H2 H3 H4

Received
optical power −17.5 −19 −20 −26

Q factor 8 6 4 1

The constraints of indicators reference values are given as Formula (35), and the con-
straints of weight, expected utility are settled same as Formulas (32) and (33). Constraints
are given same in model 1 and model 2, except that and reliability are set to be 1 in model 2.
The same training data are used to optimize model parameters, the whole sets of data are
employed as test data. ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−18.5 < H1,Power < −15
−20.5 < H2,Power < −19.5
−21.5 < H3,Power < −20.5
−26 < H4,Power < −21.5
8 < H1,q < 10
6 < H2,q < 8
3 < H3,q < 6
1 < H4,q < 3

(35)

The comparison result between the actual and simulated results are shown in Figure 13.
It can be seen that the proposed model is fluctuating smaller and much closer to the real
status in contrast with model 1 and model 2, especially in the “Health” status. To further
compare the accuracy of different models, the root means square error can be calculated
as Table 6. As can be seen from Table 6, the assessment accuracy of the proposed model is
highest. Compared with the model 1, model 2 has improved 23.13%, 27.48%. In the view of
the above analysis, it can be proved that the proposed model is more accurate than other
methods under the ER rule framework.

Figure 13. The comparison under ER rule framework.
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Table 6. Comparison of assessment accuracy under ER framework.

Model The Proposed Model ER (Model 1) DS (Model 2)

RMSE 0.3500 0.4553 0.4826

(2) The comparison with data-based models

In this part, a comparative study is implemented by adopting the data-based method,
including backpropagation (BP) neural network and support vector regression (SVR). Some
details of BP model parameters are shown in Table 7. The same training data and test data
are utilized. The comparison results between the simulated and actual status are shown in
Figure 14.

Table 7. The parameters of the BP models.

Method Detail

BP
Neural

network

Type Feedforward neural network
Learning rate 0.001

The number of layers 3
The time of training 500

The training goal 0.0001

Figure 14. The comparison of data-based models.

It can be seen in Figure 14 and Table 8, the proposed model has high accuracy, which
is second only to the BP model, and the accuracy of the proposed model is improved by
6.52% compared with the SVR.

Table 8. Comparison of assessment accuracy of data-based model.

Model The Proposed Model BPNN SVR

RMSE 0.3500 0.3144 0.3965

At the same time, to further compare and analyze the proposed model and BP model,
10%, 25%, 50%, and 60% of the whole data sets are randomly selected as the training set,
and the whole sets of data are selected as the test set. The comparative accuracy of proposed
model is calculated as follows.
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As shown in Table 9, when the training set randomly selects 10% and 25% of the data
set, the accuracy of the proposed model is higher than that of the BP model. While the
training set randomly selects 50% and 60% of the data set, the accuracy of ER model is
worse than that of the BP model. It shows that the proposed model can achieve accurate
health assessment by aggregating expert knowledge and observation data in the case of
less observation data and sufficient prior knowledge.

Table 9. Comparative accuracy of proposed model and BP model.

Training Data RMSE (Proposed Model) RMSE (BP)

10% 0.4174 0.4448
25% 0.3811 0.4162
50% 0.3500 0.3144
60% 0.3170 0.2887

(3) The comparison with knowledge-based models

Belief rule base (BRB) and fuzzy reasoning (FR) are the typical qualitative knowledge-
based methods. In this part, BRB and FR are implemented to compare with the proposed
model. Same training data and test data are selected. The initial parameters of BRB are
determined by expert’ knowledge shown in Table 10, and the part parameters of fuzzy
reasoning are demonstrated in Table 11.

Table 10. The initial parameters of BRB model.

No.
Rule

Weight

Factors Belief Distribution
of Health StatusO Q

1 1 H H (0.75, 0.10, 0.05, 0)
2 1 H M (0.55, 0.45, 0.05, 0)
3 0.1 H L (0.90, 0.10, 0, 0)
4 1 M H (0.60, 0.30, 0.10, 0)
5 1 M M (0.05, 0.30, 0.60, 0.05)
6 1 M L (0, 0.15, 0.35, 0.5)
7 0.1 L H (0.90, 0.10, 0, 0)
8 1 L M (0, 0.05, 0.45, 0.50)
9 1 L L (0, 0.05, 0.20, 0.75)

Table 11. The parameters of FR model.

Method Detail

Fuzzy
reasoning

Initial fuzzy matrix [0.5, 0.3, 0.2, 0; 0, 0.6, 0.3, 0.1; 0, 0, 0.5, 0.5]
optimized fuzzy matrix [0.75, 0.1, 0.05, 0; 1, 0, 0, 0; 0, 0.2, 0.3, 0.5]

It is shown in Figure 15 that the assessment results of FR and BRB are relatively
scattered and far from the real status. Comparing with BRB and FR, the accuracy of the
proposed model is improved by 19.28% and 16.25% respectively, as shown in Table 12.
It is concluded that the proposed model is most accurate compared to the qualitative
knowledge-based models.
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Figure 15. Comparison of qualitative knowledge-based models.

Table 12. Comparison of assessment accuracy of knowledge-based model.

Model The Proposed Model BRB FR

RMSE 0.3500 0.4179 0.5058

5.2. Example 2—Health Assessment of Engine

In this subsection, the WD615 model engine is taken as a case to verify the effectiveness
of the proposed model for complex system. The background description is introduced in
Section 5.2.1. The implement progress of the proposed model is carried out in Section 5.2.2.
In Section 5.2.3, the comparative study is conducted.

5.2.1. Background Description

In order to monitor the operation status of engine, vibration sensors are set up for
amassing the vibration signal of engine [27]. Then, the vibration signal can be processed to
get the time-domain characteristics, as shown as Figures 16–18. The mean, variance, and
kurtosis, which reflect the center, degree of dispersion, and degree of convex of signal, are
selected as the health status indicators of the engine [28]. The real status of the engine is
shown in Figure 19. The assessment result grades of engine are defined as three statuses
according to the different gap between the crankshaft and bearing connecting rod: First,
a gap of 0.08 mm to 0.1 mm belongs to “Health”; a gap of 0.18 mm to 0.2 mm belongs to
“Fault”; a gap of 0.32 mm to 0.34 mm belongs to “Failure”. Thus, a frame of discernment Φ
is defined as follows.

Φ= {Health, Fault, Failure} = {D 1, D2, D3} (36)
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Figure 16. The mean of vibration signal.

Figure 17. The variance of vibration signal.

Figure 18. The kurtosis of vibration signal.
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Figure 19. The health status of engine.

There are 150 sets of data, including the status of “Health”, “Fault”, and “Failure”. The
mean of vibration signal ranges from 0.802 to 0.1761. The variance of vibration signal
ranges from 0.0038 to 0.0191, and the kurtosis of vibration signal ranges from 2.2159 to
7.6801 as shown in Figures 16–18, respectively.

5.2.2. Construction and Optimization of Assessment Model

To construct a health assessment model of engine, first the indicators reference grades
are determined as follows.

Hmean = Hvariance = {Small, Medium, Slight large, Large} = {S, M, SL, L} (37)

Hkurtosis = {Average, High} = {A, H} (38)

where Hmean, Hvariance, and Hkurtosis denote the reference grades of mean, variance, and kurtosis.
Due to the reference grades are disaccord with assessment result grades, transfor-

mation matrixes are introduced to transform input information, and the initial values of
transformation matrix and reference values are determined based on expert’s knowledge
in Table 13.

Table 13. The initial values of transformation matrix.

No. Indicators Reference Values
Belief

Distribution

1 Mean 0.08 (0.90, 0.10, 0.00)
2 0.10 (0.85, 0.10, 0.05)
3 0.14 (0.15, 0.45, 0.40)
4 0.18 (0.05, 0.15, 0.75)
5 Variance 0.003 (0.70, 0.25, 0.05)
6 0.01 (0.35, 0.50, 0.15)
7 0.013 (0.05, 0.20, 0.75)
8 0.020 (0.00, 0.25, 0.75)
9 Kurtosis 2 (0.70, 0.20, 0.10)
10 8 (0.00, 0.30, 0.70)

The Table 13 can be expressed as a form of matrix as Formulas (39) and (40). Then, the
initial evidence is given by using the rule-based transformation technique. According to the
implement process of example 1 in Section 5.1, the optimized simulated status is introduced
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in Figure 18. In the process of optimization, 75 sets of data are selected alternately from
150 sets of data as training data, and the whole sets of data are taken as test data.

A1 =

⎡⎣ 0.9 0.85 0.15 0.05
0.1 0.1 0.45 0.15
0 0.05 0.4 0.75

⎤⎦ (39)

A2 =

⎡⎣ 0.7 0.35 0.05 0
0.25 0.5 0.2 0.25
0.05 0.15 0.75 0.75

⎤⎦, A3 =

⎡⎣ 0.7 0
0.2 0.3
0.1 0.7

⎤⎦ (40)

It is shown in Figure 20 that contrasting with the optimized simulated status, the error
between the initial status and real status is rather large, especially in the first and third
stages. By calculating the root mean square, the accuracy of the optimized status is 41.7%
higher than the initial status. The optimized and calculated model parameters are given in
Tables 14 and 15.

Figure 20. The comparison between the initial and optimized status.

Table 14. The parameters of optimized model parameters.

Parameters Values

indicators Mean Variance Kurtosis
weight 0.7329 0.7950 0.922

reliability 0.8491 0.835 0.935
Health status Health Fault Failure

Expected utility 10.123 4.893 0.277
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Table 15. The optimized transformation matrix.

No. Indicators
Reference

Values
Belief

Distribution

1 Means 0.0801 (0.959, 0.040, 0.001)
2 0.116 (0.972, 0.027, 0.001)
3 0.131 (0.106, 0.327, 0.567)
4 0.178 (0.129, 0.212, 0.659)
5 Variance 0.0031 (0.527, 0.466, 0.070)
6 0.0090 (0.503, 0.496, 0.001)
7 0.0126 (0.060, 0.275, 0.665)
8 0.0193 (0.010, 0.451, 0.539)
9 Kurtosis 1.758 (0.679, 0.224, 0.096)
10 7.720 (0.002, 0.423, 0.575)

5.2.3. Comparative Study

In this subsection, based on the same training data and test data, several kinds of
qualitative knowledge-based models and data-based models are employed to compare
with the proposed model.

It can be seen in the Figures 21–23 that the performance of the proposed model is better
than other methods, and its assessment accuracy is improved by 10.4%, 20.6%, 8.9%, 14.4%,
15.9%, and 27.6% compared to ER, DS, BP, SVR, BRB, and FR, respectively shown in Table 16.

Figure 21. The comparison under ER framework.
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Figure 22. The comparison with data-based models.

Figure 23. The comparison with knowledge-based models.

Table 16. Comparison of different models.

Model
The Proposed

Model
ER DS BP SVR BRB FR

RMSE 0.3730 0.4162 0.4695 0.4098 0.4355 0.4436 0.5154

5.3. Result Analysis

In the above two examples, the health status of the bus of control system and engine
is assessed by the proposed model, where the input indicators reference grades disac-
cord with the assessment result grades are fully considered, and include three situations:
(1) the indicators reference grades are more than the assessment result grades, (2) the
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input indicators reference grades are less than the assessment result grades, (3) above cases
exist simultaneously. According to the above comparative research, it can be proved that
the proposed method is able to combine the advantage of both data-based methods and
qualitative knowledge-based method, providing an interpretable and accurate assessment
result for decision-makers.

In fact, those two examples provide a general process to solve the inconsistent problem
between input and output. More importantly, the proposed method can not only be applied
in these two cases, but also can be extended to the dynamic assessment and other multiple
indicators of health assessment.

6. Conclusions

An ER rule-based health assessment model for a complex system is proposed, where
the transformation matrix is considered. In addition, case study of the bus of control
system and the engine is investigated to demonstrate the validity and practicality of the
proposed method.

There are mainly two contributions of this paper. First, the transformation matrix is
employed to solve the disaccord problem between the input indicator reference grades and
assessment result grades, which keeps the consistency and completeness of the possession
of the input information transformation. Second, the calculation methods of indicator
weight and reliability are conducted, where the qualitative knowledge and quantitative
information are fully used. Then, the optimization method of the model is conducted, and
a complete health assessment model is constructed.

According to the proposed model, the future research work can be summarized into
the following two points:

(1) In engineering practice, the forms of health status threshold can be various, and the
forms are not only numerical, but can also be in interval form or normal distribution form.
Therefore, how to solve the disaccord problem between the indicators reference grades and
assessment result grades under the different forms of threshold should be addressed.

(2) The integration model between deep learning and ER rule can be established based
on the good uncertainty processing ability and interpretability of ER rule.
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Abstract: This paper constructs a spatiotemporal feature fusion network (STNet) to enhance the
influence of spatiotemporal features of signals on the diagnostic performance during motor fault
diagnosis. The STNet consists of the spatial feature processing capability of convolutional neural
networks (CNN) and the temporal feature processing capability of recurrent neural networks (RNN).
It is used for fault diagnosis of motor vibration signals. The network uses dual-stream branching
to extract the fault features of motor vibration signals by a convolutional neural network and
gated recurrent unit (GRU) simultaneously. The features are also enhanced by using the attention
mechanism. Then, the temporal and spatial features are fused and input into the softmax function
for fault discrimination. After that, the fault diagnosis of motor vibration signals is completed. In
addition, several sets of experimental evaluations are conducted. The experimental results show
that the vibration signal processing method combined with spatiotemporal features can effectively
improve the recognition accuracy of motor faults.

Keywords: spatiotemporal feature fusion; convolutional neural network; gated recurrent unit; attention
mechanism; fault diagnosis

1. Introduction

The asynchronous motor is the most widely used mechanical drive equipment in
industrial production and has become an important component in fields such as machin-
ery manufacturing [1–3] and intelligent transportation [4,5]. Due to the harsh working
environment, overload, and complex electromagnetic relationships, the motor is prone
to stator winding inter-turn short circuit, broken rotor strips, air gap eccentricity, and
bearing wear [6–8]. During operation, the failure of asynchronous motors may cause huge
economic losses and casualties. Therefore, it is very important to evaluate the working state
of the motor and detect potential faults to prevent mechanical accidents. Fault diagnosis of
motors plays an important role in equipment maintenance, which can improve the quality
of machines and reduce maintenance costs.

The common way of motor fault diagnosis is to use vibration signals for analysis. Vibra-
tion signals can be collected using acceleration transducers. Abnormal vibration signals can
characterize equipment faults, such as asymmetry of the shaft system [9], a loose connection
of components [10], and damaged rotor bearings [11]. Therefore, the acquisition and analysis
of vibration signals have also become a common fault diagnosis scheme in the field of rotating
machinery [12,13]. Fault diagnosis methods based on vibration signals [14,15] mainly include
two stages: feature extraction and pattern recognition. The key to the asynchronous motor
fault diagnosis technique is extracting feature information from non-smooth vibration signals
with time-varying characteristics. In the time domain, some works [15,16] acquired amplitude,
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root mean square, and kurtosis for the analysis and diagnosis of vibration signals. However, it
was susceptible to environmental noise and the methods have limitations. Some works [17,18]
used Fourier transform to convert the signal from the time domain to the frequency domain.
But the frequency characteristics of the vibration signal over time cannot be extracted ef-
fectively. The time-frequency domain analysis was performed by wavelet transform [19],
short-time Fourier transform [20,21], and empirical mode decomposition [22,23], which ex-
tracted both time-domain and frequency-domain features. But the above methods are only
effective for specific features and have poor adaptivity and robustness.

With the rise of deep learning, some neural networks have been introduced into the field
of fault diagnosis [24–26]. The vibration characteristics of the signal can be obtained adaptively
by learning the nonlinear mapping between the hidden layers in the network. Deep learning-
based methods are less interpretable [27] but have high recognition accuracy. Such methods
overcome the disadvantages of traditional methods that require manual feature extraction and
have poor adaptability. Shi et al. [28] used a long short-term memory neural network (LSTM)
to extract the temporal features of bearing vibration signals. However, the local information
of the signal in the spatial dimension was ignored and the full key information could not be
maintained when the data sequence is too long. Gao et al. [29] combined one-dimensional
convolution and adaptive noise cancellation techniques to suppress the strong interference
components in the one-dimensional time series of gearboxes. However, the time-series feature
of the vibration signal was not fully utilized due to the limitation of the convolutional neural
network field of perception. Zhu et al. [30] reconstructed the one-dimensional time-domain
sequence into a two-dimensional data format and used two-dimensional convolution to
capture the spatial features of the vibration signal. However, the dependencies between the
positions of the spatial features were ignored, resulting in some important features not playing
a significant role. Due to the convolutional stride and weight connection, the convolutional
neural networks [31,32] cannot accurately obtain the temporal features of the vibration signal.
In contrast, recurrent neural networks [33] can handle the temporal features of the signal but
do not consider the information of the spatial dimension.

At present, motor fault diagnosis only uses the temporal features or spatial features
of vibration signals for analysis. In this paper, spatial features and temporal features are
combined to construct a spatiotemporal feature fusion network (STNet). The network
solves the problem of accuracy loss caused by excessively long signal sequences and the
lack of dependencies of each position. STNet is constructed for fault diagnosis of motor
vibration signals. The main contributions of this paper are listed as follows.

1. The STNet utilizes the spatial feature extraction capability of a CNN and the temporal
feature extraction capability of a GRU to construct a dual-stream network. The
network combines temporal and spatial features for fault diagnosis of vibration
signals instead of a single temporal or spatial feature.

2. The time series of vibration signals is much longer than the text in natural language
processing. Recurrent neural networks do not preserve all the critical information.
Therefore, a GRU with an attention mechanism is designed to extract temporal features
and effectively synthesize the state and vibration features at different moments.

3. When the CNN extracts the spatial information of vibration signals, channel and
position attention make the network capture the dependencies of each position. The
attention mechanism obtains rich contextual features to enhance diagnostic accuracy.

The structure of this paper is as follows. Section 2 presents the attention-based mecha-
nism for the GRU to capture the temporal features of vibration signals. Section 3 enhances
the data by local mean decomposition and extracts the spatial features of vibration signals
using a CNN with channel and position attention. Section 4 proposes a spatiotemporal
feature fusion network. Section 5 validates the model by experiments.

2. Temporal Feature

When BP neural networks process data, there is no interrelationship between the
front and back inputs of the network. However, the vibration signal of a motor is a one-
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dimensional time series, and the temporal relationship between each sampling point has
an important impact on the performance of the diagnosis. A recurrent neural network
introduces memory units to interconnect the neurons in this layer based on the ordinary
neural network. The state of the hidden layer is related to the input at this moment
and the state of the hidden layer at the previous moment. Therefore, the relationship of
the time dimension can be extracted from the original vibration sequence by recurrent
neural networks.

2.1. Gated Recurrent Unit

The spatiotemporal feature fusion network extracts the temporal features of motor
vibration signals through the variant (gated recurrent unit) of the recurrent neural network.
A gated recurrent unit introduces a gating mechanism to improve recurrent neural networks.
A GRU can selectively forget some unimportant information while memorizing the state of
the previous moment. A GRU alleviates the gradient disappearance of recurrent neural
networks and solves the problem of untimely update of network parameters. The GRU
controls the input, output, and state information of the hidden layer by the update gate zt
and the reset gate rt. The internal structure is shown in Figure 1.

× 

× 

× 

ht-1

xt

ht

rt zt
th

ht

Figure 1. The GRU’s internal structure.

The update gate zt takes the current moment xt and the previous moment information
ht−1 by the weighting operation. Then the value between [0, 1] is obtained by the sigmoid
function The value controls the effect of historical information on the state of the hidden
layer at the current moment. The equation is as follows

zt = σ(Wtz · [ht−1, xt] + bz) (1)

where σ is the sigmoid function, Wtz, and bz are the weights, ht−1 is the output at the
previous moment, and xt is the input at the current moment.

The reset gate rt operates the current moment xt and the previous moment information
ht−1 with different weights, so that the model selectively forgets historical information that
is irrelevant to the results. The equation is as follows

rt = σ(Wtr · [ht−1, xt] + br). (2)
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The status of the node at this moment is

h̃t = tanh(W · [rt × ht−1, xt] + b). (3)

The final output of the hidden layer ht is the sum of the information to be kept at the
current moment and the information to be kept at the previous moment

ht = (1−zt)× ht−1 + zt × h̃t. (4)

2.2. GRU Temporal Module Based on Attention Mechanism

The length of time series of motor vibration signals is much longer than the length
of text in natural language processing. Although the GRU solves the problem of gradient
disappearance in long sequence learning of recurrent neural networks, it still cannot retain
all the key information when the time sequence is too long. Therefore, this paper not only
selects the state output of the last moment of the GRU but also combines the state features
of each moment of the GRU. Moreover, the attention mechanism is introduced to assign a
weight coefficient to the output of the GRU at each moment. It makes the neural network
pay attention to the data features of the output at different moments adaptively. The GRU
temporal module based on the attention mechanism is shown in Figure 2.

×× ×

Xt

Gt

Figure 2. GRU temporal module based on an attention mechanism.

During the analysis of the vibration sequence, the output state of the GRU at the final
moment determines the result of the fault diagnosis. However, the states of other moments
also have many positive effects on the performance of the network. Therefore, the network
not only relies on the output of the final moment but also considers the states of each
moment in a comprehensive manner. The vibration signal Xt is fed into the GRU, which
captures the vibration characteristics of the signal at each moment. The GRU outputs the
state Gt at each moment as

Gt = GRU(Xt). (5)

However, each momentary output of the GRU has a different degree of influence on
the diagnosis results for different types of motor faults. Therefore, the states at each moment
of the GRU are selected by the attention mechanism. The states with high relevance are
kept and the states with low relevance are weakened. Then the weights of each moment
state are obtained by the fully connected layer (FC) and sigmoid function. The weight
parameters w1 are

w1 = σ(w(Gt)+b). (6)
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Finally, the output of GRU at each moment is multiplied by the weight parameter to
obtain the output result O

O = weight × Gt (7)

3. Spatial Features

The GRU extracts the temporal features of vibration signals but ignores the spatially
located information. This paper performs a time-frequency analysis of the vibration signal
by local mean decomposition (LMD). The spatial features of the vibration signal after local
mean decomposition are extracted by the convolutional neural network.

3.1. Local Mean Decomposition

The motor vibration signal is nonlinear and non-smooth. LMD adaptively decomposes
the original vibration sequence into multiple instantaneous frequencies with physically
meaningful product functions (PF). Each PF component is the product of a pure frequency
modulation signal and an envelope signal, which can express the time-frequency distribu-
tion of the signal energy on the spatial scale. Then the vibration signal matrix is constructed
and the original data is enhanced. The process of LMD for vibration signal processing is
shown in Figure 3.

x(t)

ui(t)=x(t)

mi= ni+ni+1
mij

hij(t) uij(t) mij(t)
sij(t) hij(t) aij(t)

ai= ni-ni+1

aij

Ai(t) aij(t)
PFi(t) ai(t)sij(t)

ui`(t) ui(t) PFi(t)

sij(t)

ui`(t) 

Figure 3. Local mean decomposition.

The original vibration signal x(t) is decomposed by LMD and the mean value mi of
the adjacent local mean points is calculated. The curve is smoothed by the sliding average
method to obtain the mean function mij. Then the envelope function aij is calculated. The
mean function is separated from the original vibration signal to obtain hij(t). Additionally,
hij(t) is demodulated to obtain sij(t). If sij(t) is a pure frequency modulation signal, the PF
component PFi(t) and the residual signal ui

′(t) are calculated based on the instantaneous
amplitude function ai(t). If ui

′(t) is a monotonic function, the decomposition ends and all
PF components are obtained. The results of data decomposition are shown in Figure 4,
where the original data X(t) is decomposed into five PF components by LMD.
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Figure 4. LMD motor vibration signal decomposition.

Convolutional neural networks are often used to process two-dimensional image
signals, while the motor vibration signal X(t) is a one-dimensional time-series signal,
as follows

X(t) = [x1, x2, x3, · · ·, xt]. (8)

Therefore, the vibration signal is converted into a two-dimensional matrix
X′(t) ∈ RM×N

X′(t) =

⎡⎢⎢⎣
x11 x12 · · · x1n
x21 x22 · · · x2n
· · · · · · · · · · · ·
xm1 · · · · · · xmn

⎤⎥⎥⎦. (9)

Each PF component is converted into two-dimensional data as shown in Figure 5.
The PF components are concatenated with the two-dimensional data X′(t) of the original
vibration signal in the channel dimension. The final input matrix of the convolutional neural
network is obtained. The method enhances the feature representation of the vibration signal
in the spatial dimension.

3.2. CNN Module Based on Attention Mechanism

The convolutional neural network takes the multidimensional matrix of the motor
vibration signal as input and adaptively extracts the spatial features of the signal. The
different features have different effects on the fault diagnosis results. As shown in Figure 5,
the same vibration signal decomposes with different PF components. It leads to huge
differences between the different channels of the input 3D matrix Xin ∈ Rc×M×N. The
different channels have different effects on the diagnosis results for different fault types.
Therefore, the attention mechanism is added to the channel dimension to make the model
adaptively extract different channel features.
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(a) X (t) (b) PF1 (t) (c) PF2 (t) 

  
(d) PF3 (t) (e) PF4 (t) (f) PF5 (t) 

Figure 5. Two-dimensional vibration matrix visualization. (a) is the original vibration signal.
(b–f) are the PF components.

The structure of the channel attention is shown in Figure 6, where the input matrix Xin
is convolved to obtain x ∈ Rc×m×n and ⊗ represents element-by-element multiplication.

x = wi ⊗ Xin + bi (10)

× ×

×

Figure 6. Channel attention module.

Then the m × n dimensions are compressed to 1 × 1 by global average pooling. The
global feature distribution of the input matrix in the channel dimension is captured to
obtain the feature map

map =
1

m × n

m

∑
i=1

n

∑
j=1

x(i, j) (11)

The feature maps are adjusted nonlinearly by the fully connected layer (FC). The module
uses the sigmoid function to obtain the attentional weights of the channel dimensions Catte

Catte = σ(ws · (Relu(wr · map + br)) + bs) (12)

Finally, the input features Xin are multiplied with the channel weights to rescale the
features in the channel dimension.

The channel dimension completes the rescaling of the original features, and the channel
attention adjusts the different channel features. However, there are also large differences
in the data of different fault types of vibration signals in the same channel, as shown in
Figure 7. Convolutional neural networks also need to consider the influence of different
location features on the diagnosis results when extracting features. Therefore, this paper
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makes the network focus on the features of vibration signals in spatial dimensional features
by position attention.

Figure 7. Data visualization of different fault types in the same channel.

The structure of the position attention is shown in Figure 8. The input features
x ∈ Rc×m×n are computed separately for max pooling and average pooling to obtain feature
maps fmax ∈ R1×m×n and favg ∈ R1×m×n. Then the feature maps are concatenated in the
channel dimension. Finally, the feature maps adopt convolutions and a sigmoid activation
function to obtain the position attention Patten

Patten = σ(conv(concat( fmax, favg))). (13)

Figure 8. Position attention module.

4. Spatiotemporal Feature Fusion Network

The structure of the spatiotemporal feature fusion network is shown in Figure 9. The
STNet uses a GRU to extract the temporal features of one-dimensional vibration signals. The
GRU branch introduces the attention mechanism to synthesize the effect of each moment
state on the performance in the long sequence signal. Meanwhile, the original vibration
sequence is decomposed by LMD for time-frequency analysis. The original vibration data
and each PF component are converted into multidimensional matrices as the input of the
CNN. The CNN branch adaptively extracts the spatial features of the input matrix by
convolutions. Meanwhile, considering the channel features and the influence of different
fault features, the CNN branch adds channel attention and position attention to selectively
enhance the spatial features of the signal. The attention mechanism acquires rich contextual
information. Finally, the spatial and temporal features of the vibration signal are fused, and
the softmax layer classifies the fused features.
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Figure 9. Spatiotemporal feature fusion network.

STNet is a dual-stream network consisting of a GRU branch and CNN branch. The
specific network layers are shown in Table 1, where Conv-BN denotes the convolution
layer and batch normalization layer, and FC is the fully connected layer. The input of the
CNN branch is the vibrational signal matrix with the size of 6 × 32 × 32. The network
uses the convolution kernel with the size of 3 × 3 to extract features. The padding type of
the convolution kernel is “SAME”. Then, the kernel is normalized by the BN layer with
a Relu activation function. The CNN branch recalibrates the original features by channel
attention and position attention. The spatial resolution of the feature map at each stage
becomes half that of the previous stage, and the number of channels becomes twice that of
the previous stage. The network obtains a feature map with the size of 128 × 8 × 8 by three
stages of feature extraction. The captured features are then fed into the fully connected
layer with 1024 neurons. The input of the GRU branch is the original vibration signal with
1024 sampling points. The network obtains the temporal features through the 2-layer GRU
attention unit, and the features are fed into the fully connected layer with 128 neurons.
The fully connected layers of the CNN branch and GRU branch are concatenated, and the
number of neurons is 1152. The network is nonlinearly adjusted by two fully connected
layers. Finally, the diagnosis results of eight faults are output by the softmax function.

When the STNet extracts features, there are significant differences between the spatial
features extracted by the CNN and the temporal features extracted by the GRU. Therefore,
the CNN auxiliary loss function and GRU auxiliary loss function are added respectively
during the training process. The auxiliary loss function supervises the temporal features
and spatial features extracted by the network separately to reduce the generation of invalid
information. The auxiliary loss function not only promotes the backpropagation of the
network but also enhances the canonical representation of temporal and spatial features.
The final loss function (Ltotal) of the network is shown as follows

L =
1
N ∑

i
Li = − 1

N ∑
i

M

∑
c=1

yic log(pic) (14)

Ltotal = αLCNN + βLGRU + Lloss (15)

where M is the number of categories; yic is the symbolic function; pic is the probability that
sample i belongs to c; α and β are the weights of the auxiliary loss function.
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Table 1. The STNet’s structure.

Layer Node Stride Output Size Layer Node Stride Output Size

CNN Branch GRU Branch

6 × 32 × 32 1024
Conv-BN 32 2 32 × 16 × 16 FC 990 - 990

Channel-Position Attention - 1 32 × 16 × 16 GRU 330 - 330
Conv-BN 64 2 64 × 8 × 8 Attention - - 330

Channel-Position Attention - 1 64 × 8 × 8 GRU 110 - 110
Conv-BN 128 2 128 × 8 × 8 Attention - - 110

Channel-Position Attention - 1 128 × 8 × 8
FC 128 - 128FC 1024 - 1024

Concat (1152)
FC (512)-FC (128)

Softmax (8)

5. Experiments

5.1. Data

The main types of faults in the experimental motor vibration data are inter-turn
short circuit, air gap eccentricity, rotor broken strips, bearing seat damage, bearing wear,
etc. There are 8 kinds of samples, the number of samples is 8000, and the number of
sampling points per second is 1024, as shown in Table 2. The deep learning framework
is PaddlePaddle 1.8.4. The CPU of the training platform is Intel Xeon Gold 6171C. The
GPU is Nvidia Tesla V100 (16G). GPU acceleration is performed by CUDA 10.1, and the
experimental dataset is divided into training and test sets (7:3).

Table 2. Fault types.

Label Types Numbers

0 Normal 1000
1 2 turns short circuit 1000
2 4 turns short circuit 1000
3 8 turns short circuit 1000
4 Air gap eccentricity 1000
5 Broken rotor strip 1000
6 Bearing seat damage 1000
7 Bearing wear 1000

5.2. Experiment Analysis

When the network extracts features using the GRU, only the features in the time
domain of the vibration signal are captured. However, the vibration signal also contains
rich features in the frequency domain. Therefore, the original vibration data is decomposed
by LMD. The decomposition results of each fault type are shown in Figure 10. When
abnormal vibration occurs in the accelerometer, each PF component can show the amplitude
modulation and frequency modulation signals of the abnormal vibration. The vibration
signal is enhanced so that the CNN extracts the vibration features by the original vibration
sequence and each PF component.
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(a) (b) 

(c) (d) 

(e) (f) 

(g)  (h) 

Figure 10. Visualization of local mean decomposition of fault signals. (a) normal; (b) 2 turns short
circuit; (c) 4 turns short circuit; (d) 8 turns short circuit; (e) air gap eccentricity; (f) broken rotor strip;
(g) bearing seat damage; (h) bearing wear.

A convolutional neural network has unique superiority in two-dimensional image
recognition due to the special structure of local weight sharing and the presence of the local
perceptual field. The visualization results of each fault signal transformed into the two-
dimensional matrix are shown in Figure 11. The original vibration signal is 1024 sampling
points, and the size of the transformed 2D matrix is 32 × 32. Similarly, each PF component
is also transformed into a two-dimensional matrix and connected to the two-dimensional
matrix of the original vibration signal in the channel dimension. Finally, the input size of
the CNN branch is 6 × 32 × 32. The visualization results of the two-dimensional matrix
show that the PF component matrices of different faults have large differences in different
dimensions, and the fault features extracted by the CNN would have a positive effect on
the performance of diagnosis.
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Figure 11. Two-dimensional matrix visualization of fault data. (a) normal; (b) 2 turns short circuit;
(c) 4 turns short circuit; (d) 8 turns short circuit; (e) air gap eccentricity; (f) broken rotor strip;
(g) bearing seat damage; (h) bearing wear.
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The input size of the CNN branch is 6 × 32 × 32, and the sequence length of the GRU
branch input is 1024. The number of network training epochs is 100. The batch size is 600.
The model parameters are updated using the Adam optimization algorithm. The learning
rate adjustment strategy is “Poly”, with an initial learning rate of 0.001 and a power of
0.9. The loss function is the cross-entropy loss function. The weight of the CNN network
auxiliary loss function is 0.1. The weight of the GRU network auxiliary loss function is 0.9.
The evaluation index is the accuracy rate. The loss and accuracy curves of the training set
and test set with the number of epochs are shown in Figure 12.

Figure 12. Training process loss and accuracy variation.

The test set loss increases sharply in the first 10 rounds of training, but the training set
and test set losses gradually decrease with the increase of iterations. It indicates that the
model is converging and approaching 0. After 60 epochs, the training set loss and test set
loss are close to overlapping. The waveforms do not have large fluctuations and there are
no overfitting problems.

The model is validated for each type of fault after training, and the results are shown
in Table 3. The number of error samples for inter-turn short circuit fault is three, and the
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number of error samples for bearing seat damage is three. The recognition accuracy of each
type of fault is above 99%. The model has high recognition accuracy.

Table 3. The result of each category of fault identification.

Label Types Accuracy

0 Normal 100%
1 2 turns short circuit 99.67%
2 4 turns short circuit 99.33%
3 8 turns short circuit 100%
4 Air gap eccentricity 100%
5 Broken rotor strip 100%
6 Bearing seat damage 99%
7 Bearing wear 100%

To verify the performance of each module in the STNet, five ablation experiments are set
up. The results are shown in Table 4. The accuracy of the temporal features extracted from the
vibration signal using the GRU is 98.58%, while the accuracy of the spatial features captured
from the vibration signal using the CNN is 98.83%. The CNN + GRU model with the fusion
of temporal and spatial features improves the accuracy by 0.39% and 0.04%, respectively.
Compared with the single branch, it indicates that both temporal and spatial features of the
vibration signal are indispensable parts for fault diagnosis. The CNN + GRU + attention
model with the attention module on the CNN branch and GRU branch improves the accuracy
by 0.59% compared to the model without attention. The attention mechanism considers the
importance of different features and makes the important features play a significant role in the
network. The final accuracy of the STNet with auxiliary loss function is 99.75%. The auxiliary
loss function facilitates the network backpropagation to update the parameters and enhances
the feature representation of each branch.

Table 4. Ablation experiments.

Model Accuracy

GRU 98.58%
CNN 98.83%

CNN + GRU 98.97%
CNN + GRU + Attention 99.56%

CNN + GRU + Attention + Auxiliary Loss 99.75%

To further investigate the effect of the attention module on the network performance,
the attention matrices of the GRU branch and the CNN branch are visualized. Figure 13a
represents the channel attention for the three-stage feature extraction in the CNN branch
with channel dimensions of 32, 64, and 128. The shallow layer of the CNN branch requires
sufficient feature extraction of the vibration signal to preserve all feature information as
much as possible. Therefore, the attention varies from 0.48 to 0.51, which is not a large range.
Due to the number of network layers increasing and the number of channels increasing, the
redundant features are increased. The network needs to suppress the redundant channels,
while the effective channel features are enhanced. So, the range of variation of channel
attention increases. Figure 13b represents the position attention of the three-stage feature
extraction in the CNN branch with dimensions of 16 × 16, 8 × 8, and 8 × 8. The position
attention becomes more and more focused because the local features of the convolutional
neural network are extracted. Figure 13c represents the attention of the output features of
the second GRU in the GRU branch. The GRU module outputs the prediction results of
multiple time series. The output represents the impact of each moment on the diagnostic
results. It retains the results with high relevance by the attention mechanism, so the GRU
attention does not fluctuate greatly.
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To further verify the fault diagnosis capability of the STNet, it is compared with BP,
1D-CNN, multichannel-CNN, and inception-LSTM models. The experimental results are
shown in Table 5. The BP network diagnoses the fault types by nonlinear mapping without
considering the temporal and spatial features of the signal. Therefore, the recognition
accuracy is only 96.12%. The 1D-CNN model uses 1D convolution to obtain the abstract
features and local features of the vibration signal. The 1D-CNN model improves the
accuracy by 2.12% compared to the BP network. The multichannel-CNN model weights
different receptive fields and captures contextual information at different scales. The
inception-LSTM model extracts temporal information under several different receptive
fields with an accuracy of 99.34%. Compared with BP, 1D-CNN, multichannel-CNN, and
inception-LSTM models, the STNet obtains the highest accuracy of 99.75%. The STNet
combines spatial features and temporal features instead of single features, compared with
BP, 1D-CNN, and multichannel-CNN models. Compared with the inception-LSTM model,
STNet uses the attention mechanism to select features adaptively. Therefore, both temporal
and spatial features have a positive impact on the performance of diagnosis during the
analysis of vibration signals. The number of parameters of STNet is 9.2876 M and the
number of floating-point operations (FLOPs) is 0.02 G.

Table 5. Model comparison experiments.

Model Accuracy

BP 96.12%
1D-CNN 98.24%

Multichannel-CNN 99.17%
Inception-LSTM 99.34%

STNet 99.75%

(a) 

Figure 13. Cont.
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(b) 

(c) 

Figure 13. Attention visualization. (a) CNN branching channel attention visualization; (b) CNN
branching position attention visualization; (c) GRU branch attention visualization.

6. Conclusions

In the paper, the fault diagnosis for motor vibration signals has been investigated
based on spatiotemporal feature fusion. The method has used gated recurrent units and
convolutional neural networks to extract the temporal and spatial features of vibration
signals. Since the time series of vibration signals were too long to retain all the key
information, a GRU has extracted the temporal features by an attention mechanism to
effectively synthesize the states of different time series and the vibration features at different
moments. When extracting spatial features, the one-dimensional time-domain signal has
been converted into a two-dimensional matrix using local mean decomposition and matrix
transformation to extend the data dimensionality. The CNN model based on the attention
mechanism adaptively has extracted the channel and location features of the signal. In the
experimental evaluation of eight different vibration signals, the vibration signal processing
method combined with spatiotemporal feature fusion has obtained 99.75% recognition
accuracy. The method has improved the diagnostic performance effectively, which is
important for the safe detection and stable operation of the system.
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Abstract: With the continuous development of large-scale aluminum reduction cells, the problem
of the uniform distribution of alumina concentration in the cell has become more and more serious
for the reduction process. In order to achieve the uniform distribution of the alumina concentration,
a data-driven distributed subspace predictive control feeding strategy is proposed in this paper.
Firstly, the aluminum reduction cell is divided into multiple sub-systems that affect each other
according to the position of the feeding port. Based on the subspace method, the prediction model
of the whole cell is identified, and the prediction output expression of each sub-system is deduced
by decomposition. Secondly, the feeding controller is designed for each aluminum reduction cell
subsystem, and the input and output information can be exchanged between each controller through
the network. Thirdly, under consideration of the influence of other subsystems, each subsystem
solves the Nash-optimal control feeding quantity, so that each subsystem realizes distributed feeding.
Finally, the simulation results show that, compared with the traditional control method, the proposed
distributed feeding control strategy can significantly improve the problem of the uniform distribution
of alumina concentration and improve the current efficiency of the aluminum reduction cell.

Keywords: aluminum reduction process; alumina concentration; subspace identification; distributed
predictive control

1. Introduction

In order to improve labor productivity and reduce investment costs, large-capacity pre-
baked reduction cells are currently used in various enterprises. Due to their high efficiency
and low energy consumption, pre-baked cells of 400–600 kA have gradually become the
mainstream cell type in China’s aluminum electrolytic industry [1]. The capacity of the
reduction cell is continuously increasing, while the auxiliary facilities and the intelligent
control technology of aluminum electrolytic are relatively backward. Thus, the problems of
the local anode effect and local precipitation in the large reduction cell have increasingly
become the main factors of instability in the production process [2], which has caused
serious economic losses and some casualties. The main cause of these problems is the
uneven distribution of alumina concentration in the anode bottom surface of the large
aluminum reduction cell [3]. Through some studies and experiments, it is known that
the concentration of alumina is generally controlled between 1.5% and 3.5%. Currently,
the change of groove resistance and the concentration of alumina is basically linear and
easy to identify, and the current efficiency is also the highest [4]. If the concentration of
alumina is excessively high, there will be problems such as increased energy consumption,
fluctuation of aluminum liquid layer, etc., and even induced precipitation at the bottom of
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the cell and crusting on the cell side which reduce the service life of the reduction cell [5].
An excessively low concentration of alumina will lead to frequent anode effects in the
reduction cell. Once the anode effect occurs, the cell voltage rises sharply. Meanwhile,
Moxnes et al. [6] found that when the alumina concentration distribution is more uniform,
the current efficiency of the reduction cell is higher, and the probability of abnormal cell
conditions such as the anode effect is lower. Therefore, adjusting the feeding interval of each
feeder of the large-scale aluminum reduction cell and accurately controlling the amount
of alumina feeding to make the alumina concentration evenly distributed has become a
general concern and urgent issue that has extremely important practical significance for
the further development of large and super large aluminum electrolytic technology [5].

The uniform distribution of alumina concentration plays a vital role in the stable
operation and efficient production of large aluminum electrolysis. In order to achieve
this goal, many scholars have carried out in-depth research on alumina. In [7], a method
combining fuzzy control theory and expert experience was proposed to control the alumina
concentration by changing the feeding interval. In [4], by improving the crust breaking
and feeding device and control system of the reduction cell, the feeding interval was set
separately for each feeding point, and the single-point precise feeding control is achieved.
However, for large aluminum reduction cells with multiple feeders, single-point feeding
control method cannot effectively control the uniform distribution of the alumina concen-
tration. With the development of soft measurement technology [8,9] and distributed data
measurement technology, more and more scholars have begun to try to apply soft-sensing
the aluminum electrolysis industry. The least squares support vector machine method
for the alumina concentration soft measurement model is established in [10]. In [11], in
order to obtain more accurate results, a soft-sensor model of alumina concentration was
proposed that introduces time series to optimize the input parameters of a deep belief
network (DBN). In [12], a KPI was developed through a probabilistic soft sensing based
on maximizing the coefficient of determination to estimate the alumina concentration.
An improved Kalman filter for the soft sensing of alumina concentration is presented
in [13]. Therefore, intelligent control methods based on the soft measurement model of
the alumina concentration emerge endlessly. The generalized regression neural network
(GRNN) was adopted to identify the alumina concentration model and a fuzzy cerebellar
model neural network (FCMAC) controller was proposed for the feeding equipment to
control the alumina concentration in [14]. A data-driven intelligent control system based
on the least squares support vector machine alumina concentration soft sensing model was
proposed in [15]. An extended Kalman filter (EKF) was used to estimate the local alumina
concentration to design a multivariable blanking control strategy in [16]. However, these
control methods ignore the influence of each feeding port on the alumina concentration
near other feeding ports due to the flow of electrolytes during the aluminum reduction
process, and only consider the overall parameters such as cell voltage and cell resistance,
and do not fully utilize important distribution parameters. In order to fully understand
the distribution of an alumina concentration in aluminum reduction cells, the dissolution
and diffusion of alumina were studied in [17–20]. In [21], a multi-coupling distributed
alumina simulation model was constructed by ANSYS, and the uniform distribution of
alumina concentration was achieved through the simulation model. However, it is still very
difficult to establish an accurate model through mechanism analysis. Some scholars have
studied the production process using a large amount of data. At present, the most advanced
technology was that the relationship between the distributed current and the feeding rate
was established using random forest, and the stability of the aluminum reduction cell was
maintained by controlling the distributed current to be consistent in [22]. However, the
final simulation results did not verify the uniform distribution of alumina concentration.

In order to solve the problem of the uneven distribution of alumina concentration
and adapt to the aluminum electrolysis process with difficulty in mechanism modeling, a
distributed subspace predictive control data-driven method is applied to large aluminum
reduction cells, and the subsystem model is established by fully using distributed data.
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The distributed control algorithm is used to realize the distributed feeding of multiple
feeders in large electrolytic cell considering the influence of each feeder, and the simulation
is carried out in MATLAB. The simulation results show that the application of this method
in a large aluminum reduction cell is feasible, and it has important guiding significance for
realizing the uniform distribution of alumina concentration in a large aluminum reduction
cell in industrial processes.

Compared with the existing research on alumina concentration control strategy, the
contributions of this paper are as follows:

(1) The large aluminum reduction cell is divided into several subsystems according to the
position of the feeder. Compared with the work in [14,15], the difference is that this
paper considers the influence of each feeding port caused by the flow of the electrolyte
between subsystems on the alumina concentration near other feeding ports.

(2) Inspired by the work of [22], this paper designs the controller by establishing a
prediction model between the feed rate and alumina concentration in each subsystem,
and the input and output information can be exchanged between each subsystem
through the network.

(3) Compared with the traditional timing grouping feeding strategy, a new distributed
control feeding strategy is designed in this paper, so that each feeding device is
controlled by an independent controller. Each feeder works in coordination with the
influence of other subsystems’ feeding, realizing on-demand distributed feeding, and
improving the control performance of each subsystem [23].

The rest of this paper is organized as follows. In Section 2, a distributed feeding
control strategy for aluminum electrolysis is proposed. Section 3 introduces the distributed
subspace predictive control algorithm and discusses the implementation of the proposed
algorithm in aluminum electrolysis in detail. In Section 4, the feasibility of the algorithm is
verified by MATLAB simulation. In Section 5, relevant conclusions are given.

2. Design of Distributed Feeding Control Scheme for Aluminum Electrolysis

The top view of a 400 kA large aluminum reduction cell in an aluminum plant is shown
in Figure 1. FD1, FD2, FD3, FD4, FD5, and FD6 are the six feed ports of the cell. Twenty-four
anode guides are on the B side. Due to the flow of electrolytes caused by carbon dioxide
and carbon monoxide gas produced by anode, electromagnetic field, temperature and
concentration difference, when feeding at any feeding port, the alumina concentration
in other regions will be affected to some extent. Taking the six feeding ports as centers,
the aluminum reduction cell is divided into six subsystems. For aluminum electrolysis,
which is a complex large system composed of multiple mutually influencing subsystems,
distributed control cannot only better consider the impact of feeding between subsystems
but the computation complexity is greatly reduced compared to centralized control. As
predictive control has been widely used in engineering applications and has high control
accuracy, distributed model predictive control has received more attention from scholars.

 
Figure 1. Top view of 400 kA large aluminum reduction cell.

The main idea of the distributed predictive control algorithm is to transform a large-
scale online optimization problem into a small-scale distributed optimization of each
subsystem, and at the same time, each subsystem communicates and shares information
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through the network, thereby improving the control performance of the system. For the
general distributed model predictive control method, the design of the controller must be
based on accurate modeling. Due to the complexity of the aluminum reduction process,
there are many difficulties in the research on the multi-point distributed feeding control of
the aluminum electrolysis process. Firstly, the aluminum reduction process is a dynamic
system with complex physical and chemical reactions, multi-coupling and large delay [24].
Secondly, it is difficult to establish a precise distributed multi-point feeding mechanism
model due to the extremely complex environment such as high temperature and strong
corrosion in industrial aluminum reduction cells. Finally, it is difficult to obtain the coupling
relationship between each subsystem. The subspace identification method is not limited
to the prior structure information and mechanism model of the system but directly uses
the historical input and output data to solve the prediction model [25,26], and can obtain
the prediction model of each subsystem through parameter decomposition. This method
is more suitable for complex large systems composed of multiple subsystems and it is
difficult to establish an accurate mechanism model [27,28]. Therefore, the data-driven
subspace identification method and predictive control are designed in a control system
design framework, which is applied to the aluminum electrolysis system with model
uncertainty and has better control performance [29–31].

For large aluminum reduction cells, since the distributed alumina concentration data
cannot be obtained in real-time, the development of distributed current measurement tech-
nology provides the basis for its soft measurement. According to the relevant mechanism
of an aluminum reduction cell, there is a close relationship between the distributed alumina
concentration and distributed current. This research group has also conducted in-depth
research on the soft measurement of distributed alumina concentration [32,33]. Therefore,
the distributed alumina concentration data required in this paper can be obtained by using
the soft sensing model, to carry out the follow-up work.

For the 400 kA aluminum reduction cell, the structure of the predictive control prin-
ciple of one of the subsystems is shown in Figure 2. It is mainly composed of a subspace
prediction model and distributed controller.

  

Figure 2. Predictive control diagram of aluminum electrolysis subsystem.

The subspace prediction model is a model of the entire system identified by the
input and output data. After parameter decomposition, the prediction model of the
subsystem can be obtained. The prediction model of each subsystem includes the influence
of other subsystems on itself. The aluminum electrolysis system shown in Figure 1 can
be described as due to the flow of electrolyte, whilst other subsystems cause changes
in alumina concentration to a subsystem. Each subsystem has a separate controller to
control the feeder responsible for supplying the alumina powder, and a distributed control
algorithm is designed under the condition that the subsystems can communicate with each
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other. At each moment, each subsystem solves the optimal control signal of its system
when the optimal control signals of other subsystems are known, and the global optimality
is also guaranteed in the case of achieving local optimality. For the aluminum electrolysis
system, the advantage of this method is that the six feeding ports can change the original
group feeding or timing feeding strategy so that the six feeding ports can consider the
influence of other feeding ports. The purpose of distributed feeding is to make the alumina
concentration distribution more uniform, reduce the occurrence of local precipitation and
local anode effect, ensure the stable and efficient operation of the entire cell, and improve
the production efficiency of the aluminum plant.

3. Distributed Subspace Predictive Control

The basic idea of the data-driven distributed subspace predictive controller design is to
first obtain the input and output data of length n, then use these data to solve the distributed
prediction model, and finally use the obtained distributed prediction model to design the
controller [24]. According to the actual data collection situation on-site, the input variable
u1, u2, · · · , um(m = 6) is determined as the alumina feeding amount of the six subsystems,
and the output variable y1, y2, · · · , ym(m = 6) is determined as the alumina concentration
for the six subsystems. Among them, the alumina feeding amount data are obtained by
combining the dissolution and consumption mechanism of alumina and the feeding interval.
According to the relevant mechanism of an aluminum reduction cell, there is a close
relationship between the distributed alumina concentration and distributed current [22].
The soft sensor model of the distributed current and distributed alumina concentration
is established by using the current data of a single anode guide rod and the alumina
concentration data of different areas collected by field test. The alumina concentration data
and alumina discharge data of six subsystems with n = 1000 can be obtained.

3.1. Data-Driven Distributed Prediction Model

For an aluminum reduction cell with six subsystems, the output prediction model
can be described as: at time k, the relationship between the output prediction vector

ŷt(k) = [ŷf−1(k)
T, · · · , ŷf−m(k)

T]
T

composed of the alumina concentration prediction values
of each subsystem and the input and output data is [30]:

ŷf(k) = Lw·wp(k) + Lu·uf(k) (1)

where Lw ∈ RmN×2mN and Lu ∈ RmN×mN are the unknown parameter matrix, which is
obtained by subspace identification, N is the length of the prediction window, uf(k) is the
input vector composed of the future alumina feeding amount of each subsystem, and wp(k)
is the vector composed of the past input and output data, respectively, defined as follows:

wp(k)
Δ
=

⎡⎢⎣ wp−1(k)
...

wp−m(k)

⎤⎥⎦; uf(k)
Δ
=

⎡⎢⎣ uf−1(k)
...

uf−m(k)

⎤⎥⎦; wpi(k)
Δ
=

[
upi(k)

T ypi(k)
T
]T

;

up−i(k)
Δ
=

⎡⎢⎣ ui(k − N)
...

ui(k − 1)

⎤⎥⎦; ŷp−i(k)
Δ
=

⎡⎢⎣ yi(k − N)
...

yi(k − 1)

⎤⎥⎦; uf−i(k)
Δ
=

⎡⎢⎣ ui(k)
...

ui(k + N − 1)

⎤⎥⎦; ŷf−i(k)
Δ
=

⎡⎢⎣ ŷi(k)
...

ŷi(k + N − 1)

⎤⎥⎦.

where i = 1, 2, . . . , 6, the subscripts “p” and “f” represent the past and the future, respectively.
In order to realize distributed feeding control, a distributed prediction model needs to

be established. Equation (1) is decomposed into the following form:
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⎛⎜⎜⎜⎝
ŷ1(k)
ŷ2(k)

...
ŷm(k)

⎞⎟⎟⎟⎠ =

⎡⎢⎢⎢⎣
Lw(1)
Lw(2)

...
Lw(m)

⎤⎥⎥⎥⎦·wp(k) +

⎡⎢⎢⎢⎣
Lu(1,1) Lu(1,2) · · · Lu(1,m)

Lu(2,1) Lu(2,2) · · · Lu(2,m)
...

...
...

...
Lu(m,1) Lu(m,2) · · · Lu(m,m)

⎤⎥⎥⎥⎦·
⎛⎜⎜⎜⎝

u1(k)
u2(k)

...
um(k)

⎞⎟⎟⎟⎠ (2)

Based on this decomposition, the alumina concentration prediction model of each
subsystem can be obtained:

ŷi(k) = Lu(i,i)ui(k) +

m

∑
j=1,j �=i

Lu(i,j)uj(k)︸ ︷︷ ︸
E f f ects o f other subsystems, i = 1, 2, . . . , 6

+Lw(i)·wp(k) (3)

Each prediction model includes the influence of the feeding number of other subsys-
tems on itself.

3.2. Design of Distributed Predictive Controller for Aluminum Reduction Cell System

The control target of the distributed aluminum reduction cell system is to control the
alumina concentration to track the reference value. After certain research and experiments,
the reference alumina concentration value of each subsystem can be obtained:

Rre f =
[

r1 r2 · · · rm
]T (4)

The control strategy of the distributed aluminum reduction cell system is shown in
Figure 2. According to Equation (3), predicting the output of any subsystem requires
knowing the input and output data of all subsystems at the previous time [28]. Therefore,
the controller of each subsystem must have a communication function to transmit its infor-
mation to other subsystems. The difference between distributed control and centralized
control is that the global performance index can be expressed as the sum of the performance
indexes of all subsystems [34]:

J =
m

∑
i=1

Ji (5)

then the performance index of the ith subsystem can be expressed as

min
uf− i (k)

Ji =
[

ˆyf− i (k)− ri(k)
]T

Qi

[
ˆyf− i (k)− ri(k)

]
+ uf− i (k)

TRiuf− i (k) (6)

where ri(k) is the reference input signal vector of the subsystem; and Qi and Ri are the
positive definite weighting matrixes. Substituting Equation (3) into Equation (6), we
can obtain:

Ji = [Lw(i)wp − ri(k) +
m
∑

j=1
Lu(i,j)·uj(k)

]TQi[
Lw(i)wp − ri(k)+

m
∑

j=1
Lu(i,j)·uj(k)

]
+ uf− i (k)

TRiuf− i (k)
(7)

Differentiate the objective function to find the extremum:

∂Ji
∂uf− i (k)

= 0 (8)

The controller for each subsystem can be obtained

174



Machines 2022, 10, 220

:

uf− i (k) = −
[

Ri + LT
u(i,i)QiLu(i,i)

]−1
LT

u(i,i)Qi

[
Lw(i)wp(k)− ri(k) +

m

∑
j=1,j �=i

Lu(i,j)·uf− j(k)

]
(9)

In actual control, we only put uf− i the first component of the controlled input into
the future input data matrix and pass this matrix to other subsystems. When performing
predictive control iteration and rolling optimization in the above steps, the optimal control
quantity is always calculated. Therefore, the actual output alumina concentration of
each subsystem of aluminum electrolysis can be synchronized with the reference alumina
concentration to achieve the control target.

3.3. Determination of Parameters of Aluminum Reduction Cell Prediction Model and Design of
Data-Driven Distributed Predictive Control Algorithm

In order to obtain the prediction model of Equation (3), the above input and output
data of n = 1000 are used to solve the parameter matrix Lw and Lu in Equation (1). The
prediction step N is set to 5. Input data at time (0, 1, · · · , N − 1) and output data at time
(0, 1, · · · , 2N − 1) are used to predict the output at time (N, N + 1, · · · , 2N − 1) according
to Equation (1), as shown in Figure 3. After that, we move the time window and the input
data at time (1, 2, · · · , 2N) and output data at time (1, 2, · · · , N) are used to predict the
output at time (N + 1, N + 2, · · · , 2N) according to Equation (1), as shown in Figure 4.

Figure 3. Output predictions (N = 5).

Figure 4. Step 2: Output prediction.

In order to solve the parameter matrix Lw and Lu, Equation (1) is rewritten into the
Hankel matrix:

Yf = Lw·Wp + Lu·Uf =
[

Lw Lu
][ Wp

Uf

]
(10)

where Yf, Wp and Uf are the Hankel matrix composed of input and output data, defined
as follows:

Ŷf =

⎡⎢⎣ Ŷf−i
...

Ŷf−m

⎤⎥⎦; Uf =

⎡⎢⎣ Uf−i
...

Uf−m

⎤⎥⎦; Yp =

⎡⎢⎢⎣
Yp−i

...
Yp−m

⎤⎥⎥⎦; Up =

⎡⎢⎣ Up−i
...

Up−m

⎤⎥⎦; Wp =

⎡⎢⎣ Wp−i
...

Wp−m

⎤⎥⎦
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Wp−i
Δ
=

[
UT

p−i YT
p−i

]T ∈ R2N×M

Up−i
Δ
=

⎡⎢⎢⎢⎣
ui(0) ui(1) · · · ui(M − 1)
ui(1) ui(2) · · · ui(M)

...
... · · · ...

ui(N − 1) ui(N) · · · ui(N + M − 2)

⎤⎥⎥⎥⎦; Uf−i
Δ
=

⎡⎢⎢⎢⎣
ui(N) ui(N + 1) · · · ui(N + M − 1)

ui(N + 1) ui(N + 2) · · · ui(N + M)
...

... · · · ...
ui(2N − 1) ui(2N) · · · ui(2N + M − 2)

⎤⎥⎥⎥⎦;

Yp−i
Δ
=

⎡⎢⎢⎢⎣
yi(0) yi(1) · · · yi(M − 1)
yi(1) yi(2) · · · yi(M)

...
... · · · ...

yi(N − 1) yi(N) · · · yi(N + M − 2)

⎤⎥⎥⎥⎦; Ŷf−i
Δ
=

⎡⎢⎢⎢⎣
ŷi(N) ŷi(N + 1) · · · ŷi(N + M − 1)

ŷi(N + 1) ŷi(N + 2) · · · ŷi(N + M)
...

... · · · ...
ŷi(2N − 1) ŷi(2N) · · · ŷi(2N + M − 2)

⎤⎥⎥⎥⎦
The problem is solved by least squares method:

min
Lw ,Lu

‖Yf −
[

Lw Lu
][ Wp

Uf

]
‖

2

F
(11)

This problem can be solved by orthogonal projection. According to the subspace
projection theorem, Yf projects to the column space of Wp and Uf:

Ŷf = Yf/
[

Wp
Uf

]
= Yf

[
Wp
Uf

]T
([

Wp
Uf

] [
Wp
Uf

]T
)+[

Wp
Uf

]
(12)

where the symbol “+” stands for pseudo-inverse; “/” stands for data space projection, then:

[
Lw Lu

]
= Yf

[
Wp
Uf

]T
([

Wp
Uf

][
Wp
Uf

]T
)†

(13)

substituting Equation (13) into Equation (2), we obtain:

Ŷf = Yf

[
Wp
Uf

]†[ Wp
Uf

]
(14)

QR decomposition of matrix

⎡⎣ Wp
Uf
Yf

⎤⎦ is shown as

⎡⎣ Wp
Uf
Yf

⎤⎦ = RTQT =

⎡⎣ R11 0 0
R21 R22 0
R31 R32 R33

⎤⎦QT (15)

then, Equation (12) can be rewritten as

Ŷf =
[

R31 R32 R33
]
QT

[[
R11 0 0
R21 R22 0

]
QT

]†

·
[

Wp
Uf

]
=

[
R31 R32 R33

]
QTQT+

[
R11 0 0
R21 R22 0

]†

·
[

Wp
Uf

]
=

[
R31 R32

][ R11 0
R21 R22

]+[
Wp
Uf

] (16)

comparing Equations (2) and (16), we obtain the solution of Lw and Lu:

[
Lw Lu

]
=

[
R31 R32

][ R11 0
R21 R22

]+
(17)
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furthermore, we obtain:

Lw =

⎡⎢⎢⎢⎣
Lw(1)
Lw(2)

...
Lw(m)

⎤⎥⎥⎥⎦; Lu =

⎡⎢⎢⎢⎣
Lu(1,1) Lu(1,2) · · · Lu(1,m)

Lu(z,1) Lu(2,z) · · · Lu(z,m)
...

...
. . .

...
Lu(m,1) Lu(m,2) · · · Lu(m,m)

⎤⎥⎥⎥⎦ (18)

where Lw is a 30 × 60 matrix, Lu is a 30 × 30 matrix, then after decomposition, we obtain
Lw(i) and Lu(i,j):

Lw(i) = Lw(i : m : mN − m + i, :)

Lu(ij) = Lu(i : m : mN − m + i, j : m : mN − m + j)

where i = 1, 2, · · · , m, j = 1, 2, · · · , m, m = 6, N = 5. The prediction model of six subsystems
of an aluminum reduction cell is further obtained.

The Nash optimal method is used to design the distributed control algorithm. The
definition of Nash optimal is as follows.

For a complex large system with m subsystems, if there is a vector solution that
uN =

(
uN

1 , · · · , uN
i , · · · , uN

m
)

satisfies the following inequalities for all subsystems
ui(i = 1, 2, · · · , m) [35]:

Ji
(
uN

1 , · · · , uN
i , · · · , uN

m
)
�

Ji
(
uN

i , · · · , uN
i−1, ui, uN

i+1, · · · , uN
m
) (19)

then, the vector is uN =
(
uN

1 , · · · , uN
i , · · · , uN

m
)

called the optimal Nash solution of the
system. This solution optimizes the control performance of the entire large system, and all
subsystems will not change this control decision.

As mentioned in the algorithm introduction above, in distributed predictive control,
each subsystem must know the optimal control signal of other subsystems before solving
its own optimal control signal, but each controller solves the optimal control signal at every
moment simultaneously. In order to make all subsystems optimal at the same time, the
iterative method is usually adopted. At each sampling moment, an iterative calculation is
carried out to obtain the optimal control input signal of each subsystem at the sampling
moment and determine whether it satisfies the Nash optimal solution. At the same time,
the control signal is transmitted to other subsystems. When the iterative values of all
subsystems meet the conditions, the iteration ends, so the global optimization of a complex
large system is realized. The detailed steps of the iterative algorithm are as follows:

• Step 1 At the k sampling time, take the initial value of the control input variable of
each subsystem

(
u0

1, u0
2, . . . , u0

m
)

and pass the initial value to other subsystems, so that
the iteration ordinal l = 0;

• Step 2 Use the last iteration value
{

u1(k)
l , u2(k)

l , · · · , um(k)
l
}

calculate the value of

iteration ui(k)
l+1 l + 1 for the ith subsystem;

• Step 3 Pass the calculation result ui(k)
l+1 to other subsystems through the network;

• Step 4 If the Nash optimality is satisfied for all subsystems ‖ui(k)
l+1 − ui(k)

l‖ � εi or
the maximum number of iterations is reached, the iteration is ended, otherwise, return
to the second step;

• Step 5 Each subsystem executes the optimal control signal
{

uN
1 , uN

2 , · · · , uN
m
}

and uses
it as the initial value at the next moment;

• Step 6 End the calculation of this sampling time, and wait for the next sampling time
k + 1.

Flowchart is shown in Figure 5:

177



Machines 2022, 10, 220

Figure 5. Flow chart of distributed predictive control algorithm.

4. Simulation Experiments

Based on the actual data of an aluminum plant, this section compares the control effect
of the traditional feeding control method and the distributed subspace predictive control
method through simulation results. The simulation includes the control effect under the
condition of no interference and inaccurate feed quantity.

4.1. Data Acquisition

The on-site collection situation of an aluminum plant is shown in Figure 6. The
actual working area of modern aluminum electrolysis is shown in Figure 6a. The data
collected in the field include a feeding interval, distributed alumina concentration and
distributed current. In Figure 6b, the data of the feeding interval were obtained using a
stopwatch recording each feeding time. In Figure 6c, the distributed alumina concentration
is scooped out by the field workers, cooled, bagged, and sent to the laboratory for analysis.
The distributed current was obtained by a data collector installed on the anode guide
rod, as shown in Figure 6d. Using the data collected in the field, 1000 sets of data for
simulation mentioned in Section 2 can be obtained. The simulation parameters are: the
input constraints of the six subsystems U = [0 0.1], and the error accuracy ε = 0.05, and each
subsystem expects an output setpoint r(k) of 2.5.

4.2. Control Effect without Any Interference

Under the premise that there is no model mismatch and external interference in the
aluminum reduction cell, as shown in Figure 7, the first 1000 s is the control effect of the
traditional control strategy, and the control effect of the control strategy in this paper is
after 1000 s. The traditional control strategy is based on the relationship between the cell
resistance and the concentration to drive the six feeding devices’ group timing feeding:
FD1, FD3, FD5 are a group of simultaneous feeding, FD2, FD4, and FD6 are a group of
simultaneous feeding, and each group of feeding is staggered by half the feeding cycle.
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(a) (b) 

  

(c) (d) 

Figure 6. Field collection diagram: (a) actual working area of modern aluminum electrolysis; (b) data
acquisition diagram of feeding interval; (c) scoop out the electrolyte diagram; and (d) distributed
current acquisition diagram.

 
(a) (b) 

Figure 7. Variation of alumina concentration: (a) subsystems 1–3; and (b) subsystems 4–6.

In the first 1000 s of Figure 7, the concentration of the six subsystems is distributed
very unevenly, although it is roughly in the appropriate range after feeding for a period
using the traditional control strategy. After 1000 s, the distributed subspace predictive
control method proposed in this paper is used to control the aluminum reduction cell. Each
feeder is distributed as needed under the influence of other feeders, so that the variation of
the alumina concentration is greatly reduced in space and time, and the concentration of
the six areas is well controlled near the set value, the alumina concentration distribution in
the entire cell is more uniform. The continuous feeding amount of each feeder in Figure 8.
Since alumina is dumped in discrete 1.8 kg batches each time during the actual operation
on site, the actual feeding interval is calculated according to the theoretical consumption
rate of alumina in Figure 9. It can be seen from Figure 9 that the control method proposed
in this paper can make the six feeders of the aluminum electrolysis cell distribute according
to the demand, considering the influence of other feeders. The distribution of alumina
concentration throughout the cell is more uniform and can be effectively controlled within
the set value.
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(a) (b) 

Figure 8. Distributed feeding quantity control: (a) subsystems 1–3; (b) subsystems 4–6.

 

(a) (b) 

Figure 9. Distributed feeding interval control: (a) subsystems 1–3; (b) subsystems 4–6.

4.3. The Control Effect when the Feeding Amount of the Feeder Is Inconsistent with the Actual
Set Value

In practice, the feeder may be blocked or overloaded. Therefore, the disturbance of
inaccurate feed quantity is introduced to test the stability of the proposed control method.
As shown in Figure 10, after the second 500 s, the inaccurate feeding amount was simulated
for the feeding ports of subsystem 2 and subsystem 6, and the control effects were increased
by 15% and decreased by 15%, respectively.

  
(a) (b) 

Figure 10. Variation of the alumina concentration: (a) subsystems 1–3; and (b) subsystems 4–6.

As can be seen from Figure 10, after the simulation of a 15% increase and 15% decrease
in feeding port 2 and feeding port 6, the concentration of subsystem 2 will increase for a
short time, and the alumina concentration of subsystem 6 will decrease for a short time. Due
to the flow of electrolyte in the reduction cell, the alumina concentration of other subsystems
will also be affected, but the controller can quickly stabilize the alumina concentration of
each subsystem, indicating that the controller designed in this paper has a good stability.
The continuous feeding amount of each feeder is shown in Figure 11. Since 1.8 kg alumina
is discretely dumped each time during the actual operation on site, the actual feeding
interval is calculated according to the theoretical consumption rate of alumina in Figure 12.

180



Machines 2022, 10, 220

  
(a) (b) 

Figure 11. Distributed feeding quantity control: (a) subsystems 1–3; (b) subsystems 4–6.

  
(a) (b) 

Figure 12. Distributed feeding interval control: (a) subsystems 1–3; (b) subsystems 4–6.

It can be seen from Table 1 that the control method in this paper can still maintain a
small error in the presence of interference. The main reason is that the method proposed in
this paper considers the influence of adjacent subsystems on itself so that each feeder can
act independently to control the local alumina concentration to maintain the setpoint while
making the concentration of the entire cell uniformly distributed, which is conducive to the
stable operation of the cell.

Table 1. Mean squared error (MSE) of the actual concentration and set concentration when distur-
bance occurs.

Subsystem MSE without Interference MSE with Interference

Subsystem 1 0.0309 0.0387
Subsystem 2 0.0306 0.0667
Subsystem 3 0.0140 0.0203
Subsystem 4 0.0156 0.0161
Subsystem 5 0.0414 0.0475
Subsystem 6 0.0421 0.0633
Subsystem 1 0.0309 0.0387

Average 0.0291 0.0421

5. Conclusions

This paper proposes a multi-point feeding strategy for aluminum reduction cell based
on distributed subspace predictive control. This method combines the subspace method
with the idea of distributed model predictive control using process data and designs
a distributed controller through the input and output data. Therefore, it overcomes the
shortcomings of centralized control and decentralized control and achieves the performance
optimization of the entire complex large system at a lower cost. Compared with traditional
methods, the proposed control strategy has the following advantages:

(1) Each feeding device is controlled by an independent controller, and the distributed
control method which combines the advantages of centralized and decentralized
control is adopted, overcoming their shortcomings.
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(2) The mutual influence between the various subsystems and the influence of sudden
interference are considered. For example, when the feeding amount is inaccurate, the
controller can also control the concentration of alumina well to ensure the stability of
the reduction cell.

Compared with traditional control strategies, the method developed in this paper
can control the uniform distribution of alumina concentration more effectively, improve
the production efficiency of aluminum plants and save production costs. However, in the
actual production process, with the passage of time, the change of aluminum reduction
cell health status will affect the accuracy of the prediction model and further affect the
control accuracy. Therefore, combining the distributed subspace predictive control with the
adaptive idea and improving the adaptability of the method by updating the parameters of
the predictive model are the key avenues of research future.
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Abstract: In the fault diagnosis of the flywheel system, the input information of the system is
uncertain. This uncertainty is mainly caused by the interference of environmental factors and the
limited cognitive ability of experts. The BRB (belief rule base) shows a good ability for dealing with
problems of information uncertainty and small sample data. However, the initialization of the BRB
relies on expert knowledge, and it is difficult to obtain the accurate knowledge of flywheel faults
when constructing BRB models. Therefore, this paper proposes a new BRB model, called the FFBRB
(fuzzy fault tree analysis and belief rule base), which can effectively solve the problems existing in
the BRB. The FFBRB uses the Bayesian network as a bridge, uses an FFTA (fuzzy fault tree analysis)
mechanism to build the BRB’s expert knowledge, uses ER (evidential reasoning) as its reasoning
tool, and uses P-CMA-ES (projection covariance matrix adaptation evolutionary strategies) as its
optimization model algorithm. The feasibility and superiority of the proposed method are verified by
an example of a flywheel friction torque fault tree.

Keywords: flywheel fault diagnosis; belief rule base; fuzzy fault tree analysis; Bayesian network;
evidential reasoning

1. Introduction

The flywheel [1] system is a key actuator for spacecraft attitude control, which is
widely used in the aerospace field. The normal operation of a flywheel system is very
important for spacecraft. However, the spacecraft environment where the flywheel system
is located has a harsh operating environment and complex structure. Once a failure occurs,
it will pose a great threat to space safety. Therefore, to ensure the reliability and orderly
operation of the flywheel system, it is of great significance to diagnose the faults of the
flywheel system quickly and accurately.

Many scholars have carried out a lot of research on the fault diagnosis of flywheel
systems. Changrui Chen et al. [2] proposed a 3D associated dimension diagnosis method,
it is improved by K-Medoids clustering technology for different typical states of satellite
flywheel bearings and verified the feasibility of the method through experiments. Xinchang
Zhang et al. [3] developed a set of methods for inputting correct premises, and based on
consistency test results, presented a fault diagnosis model based on finite state machines,
which could locate and diagnose some faults. Junweir Lin et al. [4] proposed a new fault
diagnosis scheme for linear analog circuits. The author constructs a diagnostic evaluator,
which can diagnose faults through digital signals and diagnose media after analyzing and
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modeling the components. Bo Chen et al. [5] studied the distributed fault diagnosis tech-
nology and combined it with software technology, computer network, artificial intelligence
and fault diagnosis to improve the self-fault diagnosis function of an expert system. Zijian
Qiao et al. [6] proposed a second-order stochastic resonance method based on fractional
derivative enhancement, which uses strong background noise to enhance the weak fault
characteristics. It is used for mechanical fault diagnosis. Wenjun Sun et al. [7] studied a
deep neural network based on a sparse self-code device for induction motor fault diagnosis.
This method is used in the sparse automatic process to add noise encoding using the sparse
automatic learning feature, which is the unsupervised feature learning that is required to
measure the data without marking. Yao Cheng et al. [8] studied a set of combined fault
diagnoses based on observer redundancy in the background of a satellite attitude control
system. The modified scheme can solve actuator and sensor faults that are difficult to solve
by traditional methods.

It can be seen from the above, most of the existing flywheel fault diagnosis schemes
are designed on the basis of the data-driven method [9]. However, the current flywheel
fault diagnosis still lacks an effective diagnosis scheme for the following two problems:
First, the model accuracy cannot be guaranteed under small sample data. It is difficult to
obtain accurate diagnosis results by using small sample data in actual fault diagnosis. This
is because in the system life cycle, it is difficult to obtain a large number of flywheel fault
samples, and more difficult to obtain fault samples under different fault modes; second,
the black box model has the disadvantage of unexplainable diagnostic processes.

BRB (belief rule base) is a general rule-based reasoning method proposed by Yang
Jianbo et al. [10] on the basis of evidentiary reasoning, which has important applications in
mechanism analysis [11], health status assessment [12,13] and fault diagnosis [14]. BRB is
suitable for flywheel systems, mainly reflected in three aspects: First, BRB can effectively
describe the uncertainty of flywheel systems; second, the BRB modeling method is suitable
for flywheel systems. It uses expert knowledge for modeling and data for model training;
third, BRB has shown to be a good treatment effect for small sample problems. However,
applying BRB to the actual fault diagnosis of the flywheel system cannot solve problems
such as the difficulty in constructing an expert knowledge base, the unclear logical rela-
tionship between the flywheel fault events and the unclear fault index. FFTA (fuzzy fault
tree analysis) [15,16] enables the logical relationship between different events to be clearly
expressed. This is because FFTA can present the cause of failure and events caused by this
cause in the form of a fault tree from the perspective of the fault mechanism. At the same
time, FFTA makes the occurrence probability of each event in the fault tree better describe
the uncertainty, because it introduces the theory of fuzzy mathematics. The combination
of FFTA and BRB not only enables the fault index to be clearly established and the event
fuzziness to be better described, but also enables the advantages of BRB to be applied in the
fault diagnosis of the flywheel system, which makes comprehensive use of the advantages
of the two. Therefore, this paper establishes the FFBRB (fuzzy fault tree analysis and belief
rule base) model, which makes full use of the FFTA and BRB’s advantages.

The main contributions of the FFBRB model proposed in this paper are as follows: (1)
The way FFTA is used to build the initial BRB model. In this paper, the FFTA mechanism
is used to expand the BRB knowledge base and solve the problem of constructing an
expert knowledge base of complex flywheel system; (2) A new flywheel fault diagnosis
model based on BRB is proposed. This model can obtain relatively accurate data even
with a small number of samples and has higher applicability. It uses expert knowledge to
construct the initial parameters of the model and uses training samples to optimize the
model parameters.

The main structure of this paper is as follows: In the first part, the fault diagnosis
model of the original flywheel system is analyzed and discussed. On the basis of revealing
the shortcomings of the original model, the fault diagnosis model of the FFBRB flywheel
system is proposed; In the second part, it describes the problems that need to be solved in
the process of flywheel system modeling and gives the general solution diagram; In the
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third part, it defines and describes the fault diagnosis model of FFBRB flywheel system,
and describes its transformation mechanism and inference optimization process in detail;
In the fourth part, this paper uses a concrete example to verify the method in this paper
and gives the experimental conclusion; In the fifth part, it gives the summary of this thesis.

2. Problem Description

This section describes the problems and solutions encountered in the fault diagnosis
of the flywheel system, and puts forward and introduces the FFBRB model.

2.1. Clarifying Questions

Constructing the FFBRB flywheel system fault diagnosis model needed a solution to
the following problems:

Problem 1. How to use the FFTA mechanism and integrate it into the BRB knowledge base was the
first problem to be solved. In the BRB, the relationship between the input and output is described
by a series of belief rules, and belief rules are built based on expert knowledge. However, when the
BRB is applied to the practical flywheel system, expert knowledge is difficult to embed into the fault
diagnosis model of the flywheel system (see Section 3.2.).

To realize the FFTA to BRB conversion, it is necessary to describe the correspon-
dence between FFTA logic gates and BRB belief rules, and the correspondence between
FFTA events and BRB input and output. The function to solve this problem is denoted
as CovBridge(∗) and � is the set of parameters in this process, then the process can be
described by the following expression:

BRB(BeliefRule, input/output) = CovBridge (FFTA(LogicGate, event), �) (1)

This is a nonlinear mapping. It is not executed in a specific software language. With
CovBridge(∗), logic gates in the FFTA were converted into belief rules in the BRB, and
events in the FFTA were converted into inputs and outputs in the BRB. The inputs of the
CovBridge(∗) function were logic gates, events, and parameter sets in the FFTA, and the
outputs were belief rules and their inputs and outputs in the BRB.

Problem 2. How to build a reasonable and complete FFBRB model was the second problem to
be solved. In order to solve the problem of how to diagnose various faults in the actual flywheel
system, it is necessary to design the reasoning process and optimization process of the FFBRB model
reasonably and establish a reasonable and accurate model (See Section 3.3).

The function to solve this problem is denoted as FFBRB(∗). ζ is the set of parameters
in this process, y then the process can be described by the following expression:

y = FFBRB (x, ζ) (2)

This is a nonlinear mapping. x is the failure probability of the bottom event in the FFTA,
and y is the output utility value of the BRB, corresponding to the occurrence probability of
the top event. ζ is the set of parameters in this process.

Remark 1. In order to solve the problem of small sample size, it could usually take two solutions.
First, sample data with similar characteristics to the research question should be sought to expand
the sample data volume, such as transfer learning [17,18]. Second, through the analysis of the model
mechanism to expand the amount of information input. The BRB belongs to the second type of
method, which can expand the model information input through expert knowledge, so as to realize
model training under small samples.
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2.2. Overview of FFBRB Fault Diagnosis Model Principle

To solve the above problems, the FFBRB flywheel fault diagnosis model is proposed
in this paper. In this model, the existing FFTA is used to construct the initial belief rules of
BRB, and the transformation rules from FFTA to BRB are given. The model used the ER
(evidential reasoning) algorithm to give the reasoning process of the model. In this model,
the P-CMA-ES (projection covariance matrix adaptation evolutionary strategies) algorithm
was used to optimize the parameters of the model, which improved the accuracy of the
model. Figure 1 shows the overall transformation process of the model.

Figure 1. Fault diagnosis schematic diagram of FFBRB model.

Remark 2. The similar learning ability of the BRB and neural networks was noted in the litera-
ture [19]. Therefore, the fault diagnosis of complex systems could be achieved through constructing
deep BRB or hierarchical BRB models [20].

3. Construction and Inference of the FFBRB Model

This section mainly introduces three parts:

• The basic structure of the FFTA flywheel system. In this part, fuzzy fault tree analysis
is carried out for the flywheel system (see Section 3.1);

• The process of constructing the BRB model is based on FFTA. This part mainly de-
scribes the conversion process from FFTA to BRB (see Section 3.2);

• Reasoning and optimization process of the FFBRB model. This part is actually the
reasoning and optimization process of BRB (see Section 3.3).

3.1. Basic Structure of the FFTA Flywheel System

In a practical flywheel system, FFTA analysis mainly depends on how the probability
of each event in a fuzzy fault tree is calculated and expressed, and how to apply them to
BRB. The overall fuzzy fault tree analysis structure is shown in Figure 2.
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Figure 2. FFTA structure diagram of flywheel.

The fuzzy fault tree graph of the flywheel system is mainly composed of logic gates
and related events, and its faults include sensor faults and system faults. The complete
flywheel system fault tree [21] is shown in Figure 3 below:

. 

Figure 3. Graph of flywheel system fault tree.

3.2. The Process of Constructing the BRB Model Based on the FFTA
3.2.1. Analysis of Conversion Mechanism between FFTA and BRB

FFTA and BRB have differences in inputs and outputs. The input and output in BRB
are mainly described by a series of belief rules, whereas the input and output in the FFTA
are mainly described by logic gates and events. Therefore, it needed a bridge to enable the
transition and transformation between the FFTA and BRB. The fault tree established in FFTA
can sort out the relationship between fault events and clarify the context of different events.
Bayesian networks describe the state of a part of the modeled thing and are associated with
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probability, also known as reliability networks. There is a certain mapping relationship
between fuzzy fault tree and Bayesian network, which is expressed as follows [22]:

• Nodes in Bayesian networks correspond to events in FFTA. Specifically, all the top
events of FFTA correspond to all the leaf nodes in the Bayesian network, and all the
basic events of FFTA correspond to all the root nodes in the Bayesian network.

• Conditional probability distribution of nodes in Bayesian networks is represented by
logic gates in FFTA.

• The direction of node arrows in the Bayesian network also represents the logical
relationship of events in the FFTA, that is, the relationship between input and output
of logic gates.

In order to describe the correspondence between FFTA and Bayesian networks, an
example is listed in Figure 4 for reference.

 

Figure 4. The corresponding expression graph between FFTA and Bayesian network graph.

BRB consists of three important parts: knowledge base, inference machine and op-
timization method. BRB’s knowledge base is composed of a series of belief rules, which
represent the relationship between input and output. ER, as the reasoning machine of BRB,
is an evidential reasoning method [23]. The literature proves that the Bayesian inference
can be extended to ER, where ER has weighted reliable inaccurate information, and the
relationship between Bayes rules and ER rules can be revealed. The literature comes to the
following conclusion: when each event is independent of the other, conditional probability
is equivalent to belief degree. Therefore, it can be concluded that the Bayesian inference can
be transformed into ER inference. ER [24], as the inference machine of BRB, is a part of BRB.
Therefore, Bayesian inference can be transformed into BRB inference. The corresponding
relationship between BRB and Bayesian network [25–27] is as follows:

• The input of the BRB corresponds to the parent node in the Bayesian network;
• The belief of the BRB can be transformed from conditional probability in the Bayesian

network;
• Bayesian inference can be transformed from the ER to BRB inference.

Thus, as can be seen from the above analysis, it can conclude the complete FFTA to
BRB conversion process, and the schematic conversion diagram from the FFTA to BRB is
shown in Figure 5:

• The three numbers in the triangular fuzzy number of FFTA’s base event failure proba-
bility are divided into three groups corresponding to the root node of the Bayesian
network, respectively, which are used as the input of BRB;
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• The three numbers in the triangle fuzzy number of FFTA intermediate event occurrence
probability are divided into three groups corresponding to the root leaf nodes of the
Bayesian network, respectively, which serve as the input and output of BRB;

• The three numbers in the triangular fuzzy number of FFTA top event occurrence
probability are divided into three groups of night nodes corresponding to the Bayesian
network, respectively, which are used as the output of BRB.

Figure 5. Schematic conversion diagram from FFTA to BRB.

3.2.2. Conversion Rules from FFTA to BRB

It can be seen from the above that the logic gate in FFTA corresponds to the conditional
probability distribution of the corresponding node in the Bayesian network. Different
logic gate pairs should have different transformation rules, and this section defines the
transformation process.

Probability Representation of Transformation Space Condition Corresponding to Different
Logic Gates

xi is used to represent the i-th base event in FFTA, then the conditional probability
rule in the Bayesian network corresponding to the logic gate of type “and” in FFTA can
be described as expression 3, and the conditional probability rule in the Bayesian network
corresponding to the logic gate of type “or” can be described as expression 4.

p(Top|x1, x2, . . . , xn) =
n

∏
i=1

xi (3)

p(Top|x1, x2, . . . , xn) =
n

∑
i=1

xi (4)

The Belief Rule and Rule Activation Weight Representation of the BRB Corresponded to
the Logic Gate

Attribute importance withdrawal in BRB is the weight of attribute, and the importance
of rules is the weight of rules. In this section, this paper defined different transformation
rules for different logic gates, which also correspond to different rule activation weights.

The set of input reference values in FFTA below, that is, the set of reference values of
the base event is represented by Ai. Top1, Top2, . . . , Topn represents n results; under the k
belief rule, the corresponding belief degree of each result is determined by βi(i = 1 · · · N),
N indicates the number of results; this paper used δi(i = 1 . . . M) which represents the
attribute weight of each premise attribute, M represents the number of attributes, and θk
represents the rule weight of the belief rule in the article k, K is the number of belief rules.
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• Under the condition of “and” logic gates, the BRB’s belief rules [28] can be described
as follows:

BeliefRulek :
If x1 is A1 ∧ x2 is A2 ∧ . . . ∧ xn is An

Then result is {(Top1, β1), (Top2, β2), . . . , (Topn, βN)}
with rule weight θ1, θ2, . . . , θK

and attribute weight δ1, δ2, . . . , δM

(5)

where ak
i represents the rule matching degree under rule k (the adaptability of input

sample and belief rule), l indicates two adjacent activation rules, two rules are activated
when the input falls between them, and the rule activation weight calculation under
the “and” gate condition is as follows:

ωk =

θk
M
∏
i=1

(ak
i )

δi

K
∑

i=1
θl

M
∏
i=1

(al
i)

δi

(6)

ak
i =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Al+1

i −xi

Al+1
i −Al

i
k = l, Al

i ≤ xi ≤ Al+1
i

1 − ak
i k = l + 1

0 k = 1 · · · K, k �= l, l + 1

(7)

• Under the condition of “or” logic gates, the BRB’s belief rules could be described as
follows:

If x1 is A1 ∨ x2 is A2 ∨ . . . ∨ xn is An

Then result is {(Top1, β1), (Top2, β2), . . . , (Topn, βN)}
with rule weight θ1, θ2, . . . , θK

and attribute weight δ1, δ2, . . . , δM

(8)

where ak
i represents the rule matching degree (the adaptability of input sample and

belief rule), the rule activation weight calculation under the “and” gate condition is as
follows:

ωk =

θk
M
∑

i=1
(ak

i )
δi

K
∑

l=1
θl

M
∑

i=1
(ak

i )
δi

(9)

The calculation of the rule matching degree is the same as the above “and” logic gate
condition.

3.3. Establishment of the FFBRB Model and Inference Optimization

The FFBRB flywheel system fault diagnosis model established in this paper is shown
in Figure 6.
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Figure 6. FFBRB flywheel system fault diagnosis model diagram.

3.3.1. Analysis of Reasoning Process from FFTA to BRB

The reasoning process of the FFBRB model, which is actually the reasoning process of
the BRB, is shown in Figure 7.

 
Figure 7. Diagram of FFBRB model inference process.

In particular, this model uses the triangle fuzzy number FFTA in the probability of
events, from the upper and lower bounds of the triangular fuzzy number representation
and event probability values are divided into three groups, respectively, after dealing with
the BRB, can go through BRB to optimize the processing of the top event probability triangle
fuzzy number, see FFTA analysis of the fitting effect of the result of the probability of the
top event.

FFBRB model makes the FFTA knowledge mechanism embedded in the BRB expert
knowledge base, which solves the problem that it is difficult to embed BRB expert knowl-
edge. The FFBRB model uses BRB to train a series of sample data, which further improves
the accuracy of the data and solves a considerable part of the uncertainty problems of the
flywheel model. This section mainly introduces the reasoning process of FFBRB model
fault diagnosis, that is, the reasoning process of BRB.
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The specific fault diagnosis process of the FFBRB model is as follows:
Step 1: Data preprocessing. This paper first normalized the data samples and limited

the data within the range of 0–1 to characterize the probability, so as to better describe the
problem.

Step 2: Fuzzy fault tree analysis. Firstly, the logical relationship between events is
sorted out and the fault tree graph of the fault diagnosis model is drawn. Then, this paper
used a triangle fuzzy number to represent the failure probability of the FFTA basic event,
introduce a fuzzy interval operator, calculate the triangle fuzzy number of occurrence
probability of the middle event and top event and divide the data into three groups. For
example, a triangle fuzzy number is used to represent the failure probability of a base event
x1(a1, m1, b1) and base event x2(a2, m2, b2), and interval fuzzy operator formula is used to
obtain the occurrence probability of an intermediate event or top event (a, m, b). In order to
facilitate subsequent data processing, this paper divided these data into three groups (a1,
a2, a), (m1, m2, m), (b1, b2, b).

Step 3: Taking the Bayesian network as a bridge, FFTA is mapped to BRB. The equiv-
alence of FFTA logic gate input and output and BRB input and output was explained
through the bridge of the Bayesian network. According to the mapping rules mentioned
above, fault tree graphs are mapped to the Bayesian network graphs and then BRB analysis
is carried out, respectively, according to the graphs.

Step 4: Input the sample data integrating FFTA fault mechanism knowledge into BRB
and use BRB for fault diagnosis. There are four steps to achieve concrete reasoning:

• Rule matching is calculated, that is, the degree of adaptation between input sample
and belief rule. The calculation formula is shown in Formula (7).

• According to the activation weight formulas of different rules corresponding to differ-
ent logic gates above (Formulas (6) and (9)), the activation weight of activation rules is
calculated.

• ER analytic algorithm is used to synthesize rules and obtain the belief degree output of
BRB. L indicates the number of activation rules. The calculation process is as follows:

βn =

μ ×
[

L
∏
i=1

(
ωl βn,l + 1 − ωl

N
∑

i=1
βi,l

)
− L

∏
l=1

(
1 − ωl

N
∑

i=1
βi,l

)]
1 − μ ×

[
L
∏
l=1

(1 − ωl)

] (10)

μ =
1

N
∑

n=1

L
∏
l=1

(
ωl βn,l + 1 − ωl

N
∑

i=1
βi,l

)
− (N − 1)

L
∏
l=1

(
1 − ωl

N
∑

i=1
βi,l

) (11)

• Utility calculation, the final output.

y =
N

∑
n=1

u(Topn)βn (12)

Step 5: BRB optimization. In this step, the optimization algorithm is used to process
the parameters to make the BRB output more accurate.

3.3.2. Optimization of the FFBRB Fault Diagnosis Model

This section describes the optimization process of the FFBRB model, as shown in
Figure 8 below:
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Figure 8. Optimization process flow chart.

In this model, the data generated by fuzzy fault tree analysis are still uncertain after
BRB processing. In order to reduce the error between the parameters processed by the
initial BRB and the real data and complete the optimization of parameters, an optimization
mechanism is introduced in this model. P-CMA-ES [29] algorithm is used. The optimization
function can be described as follows:

min MSE(ς)

s.t.
N
∑

n=1
βn,k = 1, k = 1 · · · K

0 ≤ βn,k ≤ 1

0 ≤ θk ≤ 1

(13)

In the upper form, the actual output of the square error is used by the MSE(ς), ς is the
parameter that appears in the process and this paper used the lower formula to represent
the average error of the output of the prediction:

MSE(ς) =
1
K

K

∑
k=1

(y∗ − y)2 (14)

In the above expression, y represents the actual output, y∗ represents the predicted
output, and the number of training samples is expressed by K. The realization process of
the P-CMA-ES algorithm is described in detail below:

• Set initial parameters. The number of solutions is defined as Num in the population,
Pn in the optimal subgroup, the dimension of the problem is defined as D, the optimal
subgroup is defined as μ, the weight of the optimal subgroup is defined as ωi;

μ

∑
i=1

ωi =1, ω1 ≥ ω2 ≥ · · · ≥ ωμ ≥ 0 (15)

• Sampling. The mean value of the optimal subgroup solution is the desired output
value, and the population is normally distributed. The calculation process is as follows:

ςh+1
i = averageh + ηh H(0, Toh) (16)

In the population of generation h + 1, the i(0 < i < Num) solution is represented to
ςh+1

i ; averageh is the average of optimal subgroup solutions in the population; ηh is h the
generation of evolutionary steps; H(∗) is the normal distribution function representation
of data; population h generation covariance matrix is represented by Toh;
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• Projection. The process of performing a projection operation for each equality con-
straint can be described as follows:

ςh+1
i (1 + m × (τ − 1) : m × τ)

= ςh+1
i (1 + m × (τ − 1) : m × τ)− QT × (Q × QT)

−1

×ςh+1
i (1 + m × (τ − 1) : m × τ)× Q

(17)

The m = (1 . . . M), expression of the number of variables can be expressed as m in
the equality constraint, m = (1 . . . M), M represents the solutions in each equality
constraint, and τ = (1 . . . M + 1), when the constraints are equal, its quantity can be
expressed by τ. In addition, Q = [1, 1, . . . , 1]1×N is the way to represent parameter
vectors;

• Select and reorganize. Select the optimal subgroup and calculate the solution set of
the mean. In the optimal subgroup, the weight of the i − th(i=1 . . . Pn) solution can be
expressed as hi, which is calculated as follows:

averageh+1 =
Pn

∑
i=1

hiς
h+i
i ,

Pn

∑
i=1

hi = 1 (18)

• Update the covariance matrix. The specific calculation process is as follows:

Toh+1 = (1 − e1 − ePn)Th + e1sh+1
c (sh+1

c )
T
+ ePn

Pn

∑
i=1

hi(
ςh+1

i − averageh

ηg )× (
ςh+1

i − averageh

ηg )

T

(19)

sh+1
c = (1 − ec)sh

c +

√√√√ec(2 − ec)(
Pn

∑
i=1

h2
i )

−1

× averagehaverageh+1

ηg (20)

ηh+1 = ηh exp(
eη

oη
(

∣∣∣∣∣∣sh+1
ξ

∣∣∣∣∣∣
||H(0, J)|| − 1)) (21)

sh+1
η = (1 − eη)sh

η +

√√√√ec(2 − ec)(
Pn

∑
i=1

h2
i )

−1

× Toh− 1
2 × averageh+1 − averageh

ηh (22)

In the above calculation expression, the learning rate is expressed as e1,ePn,ec,eη ; The
hth evolutionary step is expressed as sh

η , sh
η = 0; The evolution path of the hth covariance

matrix is expressed as sh
c , sh

c = 0. In addition, J is used to represent the identity matrix, and
the damping coefficient is denoted by oη , Normal distribution of mathematical expectation
H(o, Toh) use F ‖ N(o, I) ‖.

The above steps describe the specific calculation process of the P-CMA-ES algorithm.
This algorithm was an improvement of the CMA-ES (projection covariance matrix adapta-
tion evolutionary strategies) algorithm, which successfully solved the equality constraint
problem in the BRB and was suitable for the fault diagnosis model proposed in this paper.

4. Case Study

The sub-tree of friction torque fault was the research object selected in this paper.
The drop of voltage and current would slow down the speed of the flywheel, which
would lead to a friction torque fault. The friction torque fault is also directly related
to the shaft temperature (source used in this article from NASA). There were voltage,
current, speed, shaft and friction moment data in this. One group of them could be chosen
for the experiment. After selecting the data, they needed to be preprocessed. After the
normalization of the data, fuzzy operator formula and ER fusion were used to obtain the
data as the real value.
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The fault diagnosis principle of the FFBRB flywheel system proposed in this paper
included four parts: First, this paper normalized the collected data to make the data more
accurate in practical application. Second, the normalized data were input into the fuzzy
fault tree of the flywheel system, and the fuzzy probability of the intermediate event and the
top event is calculated according to the corresponding formula. Third, this paper mapped
the fuzzy fault tree to the BRB through the transformation space of the Bayesian network,
so that the analysis process of the fuzzy fault tree corresponded to the inference process of
BRB, and the input and output of the fuzzy fault tree correspond to the input and output of
BRB, respectively. Finally, the data were handed over to the BRB for processing to realize
the one-to-one correspondence between the BRB optimized value and the real value.

4.1. Construction of the FFBRB Fault Diagnosis Model
4.1.1. The Fault Tree of the Friction Torque Fault of the Flywheel System Is Constructed

In the following description, the fault tree of the flywheel friction torque fault is
preliminarily constructed to sort out the logical relationship between each fault event and
determine the cause of the fault. The friction torque fault tree is shown in Figure 9:

 
Figure 9. Friction torque fault tree.

In the fuzzy fault tree graph of the case, the triangle fuzzy number is marked to limit
the probability of each event within a range. This paper marked the meanings of each
symbol in the fault tree below in advance to better describe the problem. The meanings of
specific symbols are shown in Table 1.

Table 1. FFTA indicates the letters in the fault tree.

Id Letters Meaning

1 X1 Shaft temperature rise high

2 X2 Stepping down of voltage

3 X3 Electric current reduce

4 y Speed slow

5 Top Increase in friction moment
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4.1.2. FFTA Is Mapped to the BRB Using the Bayesian Network as a Bridge

After the establishment of the fault tree, this paper used the bridge of the Bayesian
network to map the fault tree of FFTA to several different BRBS, so that the transformation
from FFTA to BRB is perfectly realized, and the FFBRB model can be initially established.
The relationship between the transformed Bayesian network graph and BRB is shown in
Figure 10.

 
Figure 10. FFTA to BRB Bayesian network transformation diagram.

4.1.3. Determining the Fuzzy Number of Occurrence Probability of Bottom Event and
Top Event

This step first needed to determine the trigonometric fuzzy number of the occurrence
probability of the bottom event, and then calculate the trigonometric fuzzy number of the
occurrence probability of the top event by using the formulas of fuzzy operators under
different logic gates. The failure probability of the bottom event corresponds to the input of
the BRB, and the occurrence probability of the top event corresponds to the output of the
BRB, which is ready for the subsequent processing of the BRB program.

According to the previous introduction, corresponding data are divided into three
groups (a1, a2, a), (m1, m2, m) and (b1, b2, b) according to the rules before. The data of the
three groups are carried into the subsequent BRB, respectively, for fault diagnosis.

Triangulation fuzzy numbers of event probability in the BRB2 experiment are listed in
Table 2 for reference.

Remark 3. Each event in the above table only captures the data listed in article 10, from the data
in the floating range there is a probability value of 10% of the incident left and if the interval data
value is less than zero, the table is down to zero, if the data interval right value is greater than 1, the
table down to 1, so the data that are limited to 0 to 1 can better describe probability.

4.1.4. Built Initial Belief Rules

If x1 is A1 ∧ x2 is A2

Then result is {(Top1, β1), (Top2, β2), (Top3, β3), (Top4, β4)}
with rule weight θ1, θ2, . . . , θK

and attribute weight δ1, δ2

(23)

The initialization of BRB requires belief rule construction. In this case, the belief rule
construction of BRB is as above.
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Table 2. Trigonometric fuzzy number of event probability in FFTA.

Event Ai Mi Bi

Base Event 1

0.3000 0.3333 0.3667
0.0000 0.0000 0.0000
0.9000 1.0000 1.0000
0.0000 0.0000 0.0000
0.0600 0.0667 0.0733
0.7200 0.8000 0.8800
0.4800 0.5333 0.5867
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000
0.0000 0.0000 0.0000

Base Event 2

0.9000 1.0000 1.0000
0.0600 0.0667 0.0733
0.1200 0.1333 0.1467
0.0600 0.0667 0.0733
0.6000 0.6667 0.7333
0.4200 0.4667 0.5133
0.3000 0.3333 0.3667
0.6600 0.7333 0.8067
0.8400 0.9333 1.0000
0.2400 0.2667 0.2933

Top Event

0.9300 1.0000 1.0000
0.0600 0.0667 0.0733
0.9120 1.0000 1.0000
0.0600 0.0667 0.0733
0.6240 0.6889 0.7529
0.8376 0.8933 0.9416
0.6360 0.6889 0.7382
0.6600 0.7333 0.8067
0.8400 0.9333 1.0000
0.2400 0.2667 0.2933

4.1.5. Set Reference Points and Values

In the BRB, it needed to set the reasonable reference values for the program to work
properly. In this case, this paper set four reference points and reference values for each
attribute, noting that the first reference value is an upper bound and the last reference value
is a lower bound. The setting of reference values in BRB is shown in Table 3 above. The
four numbers from left to right indicate the Very High(G), High(H), Middle(M), and Low(L)
possibility of an event. The reference setting of BRB is shown in Table 3.

Table 3. Reference value of data in BRB.

BRB_id Base Event 1 Base Event 2 Top Event

BRB 1 [1.0, 0.6, 0.3, lim
x11→0

(x11)]
[1.0, 0.8, 0.4, lim

x12→0
(x12),

lim
x12→0

(x12)]
[1.0, 0.3, 0.2, 0.0]

BRB 2 [1.0, 0.8, 0.4, lim
x21→0

(x21)]
[1.0, 0.5, 0.3, lim

x22→0
(x22),

lim
x22→0

(x22)]
[1.0, 0.8, 0.6, 0.0]

Remark 4. When the median value of triangle fuzzy number interval of event occurrence probability
is 0, the reference value of the lower bound of the interval is set as a number approaching 0, because
the probability of an event cannot be negative.
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4.2. Training and Optimization of the FFBRB Model
4.2.1. Optimized Parameters and Results

Data show the optimized data of BRB2 (b1, b2, b), and the optimized parameters in
BRB are shown in Table 4.

In Tables 4–6, the optimized rule weights are expressed as RuleWF and the optimized
output belief degree is expressed as BeliefF. The results of the optimization of the upper
and lower bounds of the interval and the median of the interval are listed.

Table 4. Optimized parameters table in BRB2r.

BRB2r_id Attribute1 Attribute2 RuleWF BeliefF

1 L L 0.1771 (0.0733, 0.4983, 0.2373, 0.1910)
2 L M 0.0709 (0.2110, 0.5779, 0.0343, 0.1768)
3 L H 0.0062 (0.2813, 0.3703, 0.1696, 0.1788)
4 L G 0.8472 (0.9886, 0.0137, 0.0000, 0.0000)
5 M L 0.0396 (0.0315, 0.7699, 0.1906, 0.0080)
6 M M 0.5838 (0.8332, 0.0979, 0.0702, 0.0000)
7 M H 0.9296 (0.2924, 0.4950, 0.1712, 0.0414)
8 M G 0.5178 (0.0923, 0.2010, 0.2374, 0.4694)
9 H L 0.8063 (0.9973, 0.0000, 0.0000, 0.0075)
10 H M 0.8488 (0.4543, 0.0084, 0.2880, 0.2493)
11 H H 0.4081 (0.1555, 0.1741, 0.4458, 0.2246)
12 H G 0.2917 (0.0619, 0.3106, 0.0903, 0.5372)
13 G L 0.0002 (0.5614, 0.4062, 0.0150, 0.0174)
14 G M 0.1367 (0.0560, 0.0149, 0.1501, 0.7790)
15 G H 0.2903 (0.0047, 0.0063, 0.3829, 0.6062)
16 G G 0.5334 (0.0000, 0.0102, 0.0000, 0.9960)

Table 4 is the optimal value of the upper bound of the interval, Table 5 is the optimal
value of the ideal value of the interval, and Table 6 is the ideal value of the lower bound of
the interval.

Table 5. Optimized parameters table in BRB2m.

BRB2m_id. Attribute1 Attribute2 RuleWF BeliefF

1 L L 0.6018 (0.2020, 0.2635, 0.3770, 0.1575)
2 L M 0.3155 (0.2320, 0.0685, 0.3231, 0.3764)
3 L H 0.6173 (0.1893, 0.2777, 0.2197, 0.3133)
4 L G 0.5771 (0.3145, 0.0551, 0.2492, 0.3811)
5 M L 0.2627 (0.3164, 0.4002, 0.2218, 0.0616)
6 M M 0.9665 (0.2234, 0.0333, 0.5372, 0.2061)
7 M H 0.1127 (0.0023, 0.3528, 0.5186, 0.1263)
8 M G 0.3443 (0.5425, 0.0730, 0.0759, 0.3085)
9 H L 0.5466 (0.5419, 0.0308, 0.1200, 0.3073)
10 H M 0.6745 (0.1283, 0.2672, 0.1916, 0.4129)
11 H H 0.8846 (0.0487, 0.0797, 0.5155, 0.3561)
12 H G 0.5213 (0.0568, 0.0764, 0.3596, 0.5072)
13 G L 0.3741 (0.1902, 0.0219, 0.4706, 0.3173)
14 G M 0.7260 (0.1378, 0.1024, 0.1934, 0.5663)
15 G H 0.3316 (0.1201, 0.1004, 0.0978, 0.6817)
16 G G 0.8969 (0.0382, 0.1119, 0.0657, 0.7842)

To avoid data redundancy, only four bits of data are reserved in Tables 4–6. As the
same, the optimized rule weights are expressed as RuleWF and the optimized output belief
degree is expressed as BeliefF.
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Table 6. Optimized parameters table in BRB2l.

BRB2l_id Attribute1 Attribute2 RuleWF BeliefF

1 L L 0.5453 (0.2353, 0.1349, 0.5162, 0.1137)
2 L M 0.5036 (0.1352, 0.3365, 0.4205, 0.1078)
3 L H 0.1688 (0.1922, 0.0713, 0.4822, 0.2543)
4 L G 0.9502 (0.1944, 0.2135, 0.0504, 0.5417)
5 M L 0.7318 (0.2970, 0.3715, 0.1161, 0.2154)
6 M M 0.6618 (0.3590, 0.0935, 0.3166, 0.2310)
7 M H 0.3964 (0.1935, 0.2580, 0.2173, 0.3313)
8 M G 0.6569 (0.3582, 0.1651, 0.2443, 0.2324)
9 H L 0.3200 (0.1115, 0.3012, 0.5681, 0.0192)
10 H M 0.6779 (0.2005, 0.1247, 0.2703, 0.4044)
11 H H 0.9339 (0.1083, 0.2752, 0.1753, 0.4412)
12 H G 0.3865 (0.2076, 0.0799, 0.1489, 0.5635)
13 G L 0.3149 (0.2779, 0.1064, 0.1853, 0.4304)
14 G M 0.8496 (0.0266, 0.2361, 0.2723, 0.4650)
15 G H 0.3898 (0.0570, 0.0798, 0.0547, 0.8085)

4.2.2. Experimental Fitting Images

The fitting images of experimental results and real results of interval lower bound (a1,
a2, a), interval median (m1, m2, m) and interval upper bound (b1, b2, b) are listed below.
In this paper, the fitting images of the three groups are drawn, respectively, as shown
in Figure 11. The results of the three groups were processed by BRB, respectively, and
compared with the real value to obtain the error, and finally unified analysis and summary.

Figure 11. Cont.
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Figure 11. Fitting diagram right of experimental results and real values.

It can be seen that the results of the three groups of experiments fit well with real
data. It could obtain the accuracy of each group through experiments, and then obtain
the fluctuation range of experimental accuracy of the case. Then, this paper performed
10 experiments to find out the accuracy and, in this experiment, the accuracy of the three
groups was 97.98%, 98.99% and 100.00%, the average accuracy of this experiment is 98.99%.
It can be concluded that the accuracy of this experiment fluctuates in the range of 97.98% to
100%. In general, the FFBRB model established in this paper has a good processing effect.
The experimental diagnosis results are shown in Figure 11.
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4.2.3. Other Comparative Experiments

In this paper, ELM and BP neural networks, as the other two comparison methods of
this experiment, are also used in flywheel fault diagnosis. This paper also drew the fitting
images of the two control experiments, and it can be seen that the ELM and BP neural
network methods are feasible, but still not as accurate as the FFBRB scheme. Among them,
the difference between ELM and FFBRB schemes is relatively large, and the difference
between BP neural network and FFBRB is not very large.

Two other groups of comparison experiments were conducted in this paper to compare
with the FFBRB model method used in this paper, and the experimental results are shown
in Figure 12 below.

Figure 12. Cont.
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Figure 12. Fitting diagram of experimental results by BP method.

Figure 13 shows the diagnosis results obtained in ELM mode.

Figure 13. Cont.

204



Machines 2022, 10, 73

Figure 13. Fitting diagram of experimental results by ELM method.

In this experiment, the accuracy of 10 groups of data is taken, and the average of
their probability is taken as the final result. The floating line chart of the accuracy of these
10 groups is shown in Figure 14.

In the three groups of the BP method, the average accuracy of the experimental fault
diagnosis value compared with the real value is 85.90%, 91.30% and 85.50%, respectively.
In the three groups of the ELM method, the average accuracy of the experimental fault
diagnosis value obtained by us compared with the real value is 54.40%, 63.20% and 65.50%,
respectively.
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Figure 14. Comparison of experimental accuracy of different methods.

In the three groups of the FFBRB method, the average accuracy of the experimental
fault diagnosis value obtained by us compared with the real value is 99.7%, 98.18% and
99.39%, respectively. This paper took the total average accuracy of the three groups of the
three methods, and after calculation, the average accuracy of the BP method is 87.57%, the
ELM method is 61.03%, the FFBRB method is 99.09%.

To facilitate intuitive observation, this paper sorted these data into a table, as shown
in Table 7 below:

Table 7. Comparison of results of different methods.

BP ELM FFBRB

Ave_Group_left 85.90% 54.40% 99.70%
Ave_Group_middle 91.30% 63.20% 98.18%

Ave_Group_right 85.50% 65.50% 99.39%
Average_times_group 87.57% 61.03% 99.09%

4.3. Experimental Conclusion

The experiment verifies the feasibility of the FFBRB model proposed in this paper, and
it can be seen from the experimental results that the FFBRB model experiment is superior
to the other two methods.

In particular, the BP neural network method is used to obtain the experimental diag-
nosis value and the real value of the image fitting, high accuracy, but there is still a little
gap compared with the FFBRB method, and the BP method cannot explain its process.
The experimental results obtained by the ELM method are much different from the real
values, the image fitting effect of the experimental results is relatively poor, the accuracy is
relatively low, and there is a big gap compared with the FFBRB scheme. The FFBRB fault
diagnosis scheme in this paper is relatively optimal among the three, and its experimental
results have a good image fitting effect and high accuracy, showing advantages compared
with the other two schemes.
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5. Conclusions

Based on BRB, a new fault diagnosis model (FFBRB) based on fuzzy fault tree analysis
theory is proposed. The FFBRB model expands the expert knowledge base of BRB based
on the FFTA mechanism, uses the improved BRB as a fault diagnosis tool, and incorporates
an optimization algorithm to further reduce the influence of uncertain factors in the model.
The model has the following characteristics:

The FFBRB model has a stronger ability to acquire expert knowledge. The FFBRB
model integrates an FFTA mechanism analysis into the BRB expert knowledge base, which
makes the model more capable of describing problems.

The FFBRB model has stronger analytical and reasoning ability. By training and
optimizing the sample data, the model further improves the accuracy of the data, and thus
makes the model more accurate.

The FFBRB model has high accuracy. Compared with traditional data-driven methods
the FFBRB processing results have higher accuracy.

The feasibility of the FFBRB model is verified by experiments, and its advantages
are compared with the other two methods. Based on the FFBRB model proposed in this
paper, the following two aspects can be further studied in the future: (a) the theoretical
transformation of the FFTA and interval BRB; (b) other methods could be used to expand
the expert knowledge base in the flywheel fault diagnosis; (c) the BRB is an interpretable
modeling method, which provided an effective support for the construction of interpretable
deep learning models. How to effectively construct a fault diagnosis model based on a
deep BRB will be the main work in the next step.
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Abstract: This paper introduces a new intelligent fault diagnosis method based on stack pruning
sparse denoising autoencoder and convolutional neural network (sPSDAE-CNN). This method pro-
cesses the original input data by using a stack denoising autoencoder. Different from the traditional
autoencoder, stack pruning sparse denoising autoencoder includes a fully connected autoencoding
network, the features extracted from the front layer of the network are used for the operation of
the subsequent layer, which means that some new connections will appear between the front and
rear layers of the network, reduce the loss of information, and obtain more effective features. Firstly,
a one-dimensional sliding window is introduced for data enhancement. In addition, transforming
one-dimensional time-domain data into the two-dimensional gray image can further improve the
deep learning (DL) ability of models. At the same time, pruning operation is introduced to improve
the training efficiency and accuracy of the network. The convolutional neural network model with
sPSDAE has a faster training speed, strong adaptability to noise interference signals, and can also
suppress the over-fitting problem of the convolutional neural network to a certain extent. Actual ex-
periments show that for the fault of unmanned aerial vehicle (UAV) blade damage, the sPSDAE-CNN
model we use has better stability and reliable prediction accuracy than traditional convolutional
neural networks. At the same time, For noise signals, better results can be obtained. The experimental
results show that the sPSDAE-CNN model still has a good diagnostic accuracy rate in a high-noise
environment. In the case of a signal-to-noise ratio of −4, it still has an accuracy rate of 90%.

Keywords: intelligent fault diagnosis; stacked pruning sparse denoising autoencoder; convolutional
neural network; anti-noise

1. Introduction

UAVs are very suitable for performing tasks in spacious indoor and outdoor environ-
ments, such as personnel search and rescue, material transportation, military patrol and
surveillance, pesticide spraying, crop seeding, etc. Due to the increasing complexity of the
tasks performed by drones, the sensors and actuators on the drone are becoming more
and more complex, and the reliability requirements of the drone are getting higher and
higher during the mission. Once the drone has a serious fault in flight, it will cause more
serious property losses, and in more serious cases, it may cause casualties [1]. During the
flight of the drone, any minor fault can easily cause the drone itself to malfunction, thereby
affecting the sensors, actuators, and other related equipment on the drone. Therefore, the
safety and reliability of UAVs is now an issue worthy of study and discussion. At the same
time, we also need to specifically consider the different types of faults of different types of
UAV [2].
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For various faults on the drone, the drone control system can respond to the faults
on the drone only when the system identifies and diagnoses each fault, respectively, so
as to minimize the loss of personnel and property in the case of UAV faults. One of the
main issues is the identification of faults in drones. The identification of faults is mainly
divided into knowledge-based fault methods, model-based fault diagnosis methods, and
data-based fault diagnosis methods.

The main knowledge-based fault diagnosis methods are symbolic expert systems [3],
symbolic directed graph (SDG) methods, and fault tree methods. In [4], the symbolic
directed graph is introduced, the symbolic directed graph is mainly a graphical model
based on causality. In [5], the fault diagnosis method based on the fault tree is mainly
introduced, the fault tree uses a graphical method for fault diagnosis. A fault tree is formed
by connecting the fault in the system and the cause of the system fault. When the system
fails, the cause of the system fault is deduced from the current fault state of the system
from the bottom to the top. As a knowledge-based fault diagnosis method, the diagnosis
model is simple, and the diagnosis results are easier to apply in practical engineering.
However, because knowledge-based fault diagnosis requires learning the types of faults
to be diagnosed, when a fault that is not in the knowledge base occurs in the system, the
system will not be able to provide the correct diagnosis result.

The model-based fault diagnosis method [6] is based on the accurate mathematical
model of the system. In the analytical model of the system, the residual signal between the
input and output of the system is obtained by observation and measurement. By analyzing
the residual signal in the system, the difference between the actual output and the expected
output of the system can be obtained. Therefore, the system can be diagnosed based on these.

The data-driven fault diagnosis method is to classify and identify all the non-faulty and
faulty data of the system, so the system’s fault diagnosis can be realized without obtaining
the precise mathematical model of the system. Data-based fault diagnosis methods mainly
include machine learning methods [7], signal processing methods [8], information fusion
methods [9], rough set methods [10], multivariate statistical analysis methods [11], etc.
Because the data-based fault diagnosis method does not rely on the accurate model of
the system for diagnosis, it is better to use the data-based method for fault diagnosis for
complex high-level systems that are difficult to accurately model. However, because the
data-based fault diagnosis method does not depend on the internal structure of the system,
the interpretability of the results of system fault diagnosis is not very good [12].

At present, many intelligent fault diagnosis methods have been proposed in various
research fields. In literature [13,14], the bearing is taken as the research object to study the
relationship between the data collected by the bearing in different types of damage; in
article [15,16], the fault diagnosis of drill is realized by analyzing the thermal image and
vibration data of drill; in [17,18], the researchers took the battery pack as the research object
and applied the intelligent fault diagnosis algorithm proposed by themselves to the actual
battery system to diagnose the battery pack; in the research field of gearbox and high-speed
train, a large number of fault diagnosis methods have also been proposed; in [19,20], it was
studied how to judge the fault type through the collected signal when the gearbox fails;
several new intelligent fault diagnosis methods are mainly proposed in [21–23], and good
results have been achieved in the fault diagnosis of high-speed trains. Although many
fault diagnosis methods have been proposed, there are still few intelligent fault diagnosis
methods for UAVs. Therefore, we choose the quad-rotor UAVs as the research object in
this paper.

During the operation of the quad-rotor UAV, the actuator or structure of the drone
malfunctioned due to the operation problem of the pilot or due to some non-human
reasons. In the literature [24], the researchers collected the vibration signal of the aircraft
frame through the analysis of these data to diagnose whether the motor is malfunctioning.
In [25], the researchers artificially damaged the rotor of the drone, and then collected the
noise of the drone during the flight, and used the deep learning method to analyze and
process the noise to realize the fault diagnosis of the system. The collection of sound
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signals has strict requirements on the environment, so this method cannot be applied in
practice. In the literature [26], the author introduced the convolutional neural network with
a wide convolution kernel into the fault diagnosis method, and diagnosed the bearing data
through the convolutional neural network. A wide convolution kernel can improve the
anti-interference ability of convolutional neural network to some extent. In reference to the
problem of inaccurate diagnosis results for data with large noise signals, the literature [27]
proposed to denoise the data based on the stack denoising autoencoder, and achieved good
results, but due to the introduction of a new network structure, the convergence speed of
the training network has been adversely affected to a large extent. Most of the existing
fault diagnosis algorithms need to preprocess the data to eliminate the noise interference
in the data, thereby improving the accuracy of classification, but there are few methods to
directly classify the original noisy data and obtain a good classification accuracy.

In response to the above-mentioned problems, we adopted a method called Stacked
Pruning Sparse Denoising Autoencoder and Convolutional Neural Network (sPSDAE-
CNN) to identify and classify the actuator damage fault of the UAV. The main contribution
of this paper is as follows:

1. We use a new and improved convolutional neural network method, which can be
directly applied to the original UAV data collected in practice. Compared with the
traditional method, it does not require separate data preprocessing. The comparison
is shown in Figure 1;

2. The method uses a stack denoising autoencoder as the first layer of the convolutional
neural network, which is very robust against data with much noise in the data, and
still has a relatively high fault diagnosis accuracy rate under high noise conditions;

3. Directly convert the sensor data collected by the drone into a gray sampling map.
Expanding the dimensionality of the sample can further improve the feature extraction
ability of the DL model;

4. This method is aimed at the problem that enough data cannot be collected during
neural network training. We use a one-dimensional sliding window for overlapping
sampling to enhance the data, increase the data scale, and improve the generalization
of the neural network ability;

5. We use the feature maps learned by visualizing sPSDAE-CNN to explore the actual
feature learning and classification mechanism of the sPSDAE-CNN model. At the
same time, the pruning operation is introduced to speed up the training of SDAE.

sPSDAE-CNN

Noise Reduction 
Cleaning

A

B

C

Figure 1. Three kinds of intelligent fault diagnosis framework. (A) The feature extraction of unsuper-
vised learning [28]. (B) The traditional method. (C) The method used in this article.

At present, there is much research on sensor fault and actuator fault of four-rotor
UAVs. In article [29,30], it is mainly studied to diagnose the actuator fault of four-rotor
UAV by using the traditional model class method, including hybrid observer and adaptive
neural network observer. In [31], Kalman filter is mainly used to process the sensor data
of UAV and then to diagnose the possible sensor faults. In [32], researchers proposed
a disturbance observer to observe the faults in the system and then realized diagnosis and
fault-tolerant control through sliding mode control method.
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However, there is little research on the fault of UAV blade damage. In the process of
a UAV mission, when the UAV blade is damaged to a certain extent, when the damage
does not exceed the threshold, the UAV may still be able to perform the mission in the
environment of small interference. However, at this time, the stability of the UAV has been
greatly damaged, and there may be some risks during the mission. Therefore, we need to
evaluate the blade damage of UAV through the proposed method, and timely evaluate the
health state of UAV, so as to prevent UAV crashes. At the same time, we also introduce
a sparse pruning stack noise reduction autoencoder to improve the adaptability of the
model to high noise data. In addition, pruning operation is added to improve the algorithm
complexity of the model. At present, most fault diagnosis methods for four-rotor UAVs
are verified by numerical simulation. This paper collects experimental data on the actual
aircraft and verifies the algorithm, which has good practicability.

There is not a simple linear relationship between the damage of the drone blades and
the sensor data of the drone. Therefore, the sensor data of the drone blades under different
damage conditions are analyzed by using the deep learning method, and a deep learning
model about the relationship between the sensor data of the drone and the damage degree
of the blades is obtained, and the model is optimized.

The remaining organizational structure of this article is as follows: Section 2 briefly in-
troduces the convolutional neural network and the stack denoising autoencoder. Section 3
introduces the intelligent fault diagnosis method based on sPSDAE-CNN. In Section 4, we
use experiments to verify the sPSDAE-CNN method, and compare and analyze it with
some commonly used methods. At the end of Section 5, we draw conclusions and propose
future work by summarizing the work.

2. Introduction to the Convolutional Neural Network and Stack
Denoising Autoencoder

2.1. A Brief Introduction to Convolutional Neural Networks

In this part, we will briefly introduce the convolutional neural network and the stack
denoising autoencoder. For more details about the neural network, please refer to the
literature [33]. Convolution neural network is a multilevel deep neural network [34]. Its
basic structure consists of the input layer, convolution layer, activation layer, pooling
layer, full connection layer, and output layer. Generally, there are several convolution
layers and pooling layers, and the general structure is a convolution layer connected with
a pooling layer. Each neuron in the input is locally connected to the input, and the weighted
summation with the local input through the corresponding connection weight and the bias
is added to obtain the input of the neuron. This process is equivalent to the convolution
process, so it is called a convolutional neural network.

2.1.1. Convolutional Layer

The convolutional layer uses a convolution kernel to perform convolution operations
on our input data or local regions of features, and extract relevant features from the data.
Figure 2 shows the structure diagram of the convolutional layer and the pooling layer. The
top layer is the pooling layer, the middle is the convolutional layer, and the bottom is the
input layer [34]. In Figure 2, convolution neurons are organized into feature planes, and
each neuron in the convolution layer is locally connected to the feature surface in its input
layer. The output of each neuron in the convolution layer can be obtained by passing the
local weighting and transfer to the activation function.

An important feature of convolutional neural networks is weight sharing. The weights
of convolutional neural networks in the plane of the same input feature and the same output
feature are shared. Weight sharing also reduces the complexity of the network model to
a certain extent. It also avoids the over-fitting problem caused by too many parameters. In
actual operations, most of the related operations can be replaced by convolution operations,
which can avoid the problem of reversing the convolution kernel during backpropagation.
The formula for convolution operation is shown in (1):
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yk+1
i (j) = κk

i × χk(j) + bk
i , (1)

where κk
i and bk

i respectively represent the weight and bias of the kth filter kernel of the ith
layer of the neural network, and use χk(j) to represent the jth local region of the kth layer.
Where × is used to calculate the inner product of the kernel and the local area, and yk+1

i (j)
represents the input of the j neuron in the frame i of the k + l layer.

  ...

...

...
Figure 2. Schematic diagram of the convolutional layer and the pooling layer structure.

2.1.2. Activation Layer

After the convolutional layer, we need to use the activation function to introduce
nonlinear modeling capabilities to our neural network, eliminate redundant data in the
data, and enhance the learning ability of the neural network, so that the features in the
data can be further processed for segmentation. The commonly used activation functions
mainly include sigmoid function, tanh function, ReLu function, ELU function, etc. For
details, please refer to the literature [35]. In our convolutional neural network, we choose
to use the ReLu function as the activation function. Its main feature is compared with linear
functions. ReLu has better expression ability compared with nonlinear functions, as ReLu
does not have the problem of gradient disappearance and can maintain the convergence
rate of the model in a stable state. The ReLu function is expressed as follows (2):

αk+1
i (j) = ReLu(yk+1

i (j)) = max{0, yk+1
i (j)}, (2)

where yk+1
i (j) represents the output of the first convolutional layer, and αk+1

i (j) represents
the result of yk+1

i (j) activated by ReLu.

2.1.3. Pooling Layer

The pooling layer is also one of the most common and basic mechanisms of convolu-
tional neural networks. It is actually a form of downsampling, and there are many forms
of nonlinear pooling functions in convolutional neural networks. Max pooling function
is the most common one. The principle of this mechanism is that when a feature of data
is discovered, its exact location is far less important than its relative location with other
features. Pooling reduces the size of the data space by constantly reducing the number of
network parameters and the amount of computation. Overfitting can also be suppressed to
some extent. The max-pooling operation can be expressed as shown in Figure 3:

The expression is (3):

ak
(nh,nw,c) = max(ak−1

(nh×stride:nh×stride+ f ,nw×stride:nw×stride+ f ,c)), (3)

where nh represents the height in the current pixel, nw represents the width of the current
pixel, and c represents the channel, f represents the size of the pooling core, and stride
represents the step size of the pooling core movement.

213



Machines 2021, 9, 360

Figure 3. Maximum pooling operation.

2.1.4. Batch Normalization

Batch standardization was proposed in [36] to accelerate the training speed of deep
neural networks by reducing the transfer of internal covariates. The batch normalization
layer is usually added after the convolutional layer or the fully connected layer, and before
the activation layer. Given p-dimensional data into the BN layer X = (x(1), . . . , x(p)) the
operation of the BN layer can be expressed as the following expression (4):

x̂(i) =
x(i) − E(x(i))√

Var[x(i)]

y(i) = γ(i) x̂(i) + β(i),

(4)

where y(i) represents the p-dimensional output of the BN layer, and γ(i) and β(i) are the
scaling and bias that the BN layer needs to learn, which need to be learned in the neural
network training.

2.2. Stacked Denoising Autoencoder

The encoder is a commonly used learning model in deep learning. The structure of
this model is shown in Figure 4. The stack noise reduction autoencoding network is based
on the encoder. The encoder must learn to obtain noise-free input from the noisy data.
Unlike the supervised learning model CNN and Recurrent Neural Networks (RNN) [34], it
combines unsupervised data feature extraction with supervised overall fine-tuning, and it
can mainly realize the noise reduction and dimensionality reduction of the features of high-
noise information. The structure is shown in Figure 5. Stack noise reduction autoencoder
and encoder are mainly composed of encoder and decoder, which can be used to extract
hidden features of samples and reconstruct input.

Xn

Figure 4. The structure of the encoder.
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Assuming that C(x|x̂) represents the error between the original data x and the noisy
data x̂ the DAE parameters are optimized and adjusted by using back propagation and
gradient descent methods. After training DAE, the hidden layer can be regarded as the
input of the next DAE, and this multiple DAE can form the model of the stack denoising
autoencoder [37].

Figure 5. The structure of the denoising autoencoder.

3. Proposed Convolutional Neural Network with Stacked Pruning Sparse
Denoising Autoencoder

In this paper, an intelligent quadrotor UAV fault diagnosis method based on stacked
pruning sparse noise reduction autoencoder and convolutional neural network is pro-
posed. We mainly use sPSDAE as the first layer of the neural network to reduce noise
and dimensionality of the original data. The introduction of stack pruning sparse noise
reduction autoencoder can improve the model generalization ability of the neural network
and suppress the over-fitting problem. Secondly, convolutional neural network (CNN) is
used to extract and classify system features. The algorithm model is shown in Figure 6:

sPSDAE CNN

Figure 6. sPSDAE-CNN algorithm model.

Firstly, collect the flight data of the drone. In order to simulate the damage of the
blades of the drone in the actual flight, we collect the drone data by artificially damaging
the blades of the quadrotor rotor drone in a laboratory environment. The individual blades
of the UAV are set to have different degrees and types of damage. The main types and
degrees of damage are shown in Table 1 below:

Table 1. Main types and degrees of damage.

Types of Damage to the Blades Damage Degree of the Blade

No damage 0%
Broken blade 5%
Broken blade 10%
Broken blade 15%
Broken blade 20%
Blade crack Slightly deformation
Blade crack General deformation
Blade crack Severely deformation

Eight different types and degrees of damage to the blades are shown in Figure 7:
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Figure 7. Eight different types of blade damage.

This paper chooses to use a quad-rotor drone with pixhawk4 flight control as the main
control board for data collection. We let quad-rotor drones conduct flight experiments in
different health states, collect data, and convert the collected data into a two-dimensional
grayscale image. The paper selects the output of the four actuators in the flight log of
the drone, the quaternion representing the attitude of the drone, the angular velocity on
the three coordinate axes of the drone, and the position information, velocity information
and acceleration information of the flight on the three coordinate axes of XYZ. Taking
20 sampling periods as a data state, a 20 × 20 two-dimensional matrix is formed, which is
converted into a 20 × 20 grayscale image. As shown in Figure 8.

Figure 8. Converting one-dimensional time-domain signals to two-dimensional gray-scale images.

3.1. Proposed sPSDAE-CNN Model Structure

We convert the drone flight data after batch normalization (BN) into a grayscale
image. Using stacked pruning sparse denoising autoencoders to reduce the dimensionality
and denoising of the original data, it can also initially extract data features. The data
processed by the sparse noise reduction autoencoder will be directly used as the input of the
convolutional neural network. On the whole, the structure of the sPSDAE-CNN proposed
in this paper is roughly the same as the structure of the traditional convolutional neural
network. The main difference is that the stack noise reduction autoencoder is introduced,
but the introduction of the noise reduction encoder further increases the complexity of the
network and increases the computational cost, so the sparse pruning operation is added
to reduce the complexity of the network. The noise reduction autoencoder improves the
adaptability of the network to high-noise data, and the pruning operation greatly improves
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the calculation efficiency of the encoder. The specific structure of sPSDAE-CNN is shown
in Figure 9.

 
...

400

Input Output

Figure 9. The specific structure of sPSDAE-CNN.

Finally, in the classification stage of the model, the softmax function is used to perform
logit transformation on the classification results, and eight different four-rotor UAV health
state probability distributions are obtained (5).

q(zj) =
ezj

8
∑
k

ezk

, (5)

where z represents the logical value of the jth neuron.

3.2. Construction of Sparse Noise Reduction Autoencoding Network

In order to explore the deep-level features in the time-domain sequence signal, we con-
vert the one-dimensional time-domain sequence signal into a two-dimensional gray-scale
image by using a matrix transformation method. Figure 9 shows the structure of a stacked
noise reduction autoencoder with four hidden layers. Since each layer of a traditional
stacked noise reduction encoder has an impact on its subsequent network levels, we use
the pruning method to cut off the layers that have no effect on the training of the next layer
of the network, while ensuring the maximum information flow in the network. Therefore,
the latter layer can obtain the maximum effective information of the previous layer, which
improves the training speed and feature extraction performance. The schematic diagram of
constructing the stacked pruning sparse denoising autoencoder(sUPSDAE) fully connected
network model based on the DAE model is shown in Figure 10:

21 3 n...

Figure 10. Schematic diagram of sUPSDAE fully connected network model.
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sUPSDE adopts the feature fusion method for information sharing, which reduces the
loss of information and broadens the transmission level of the network. As the number of
training layers increases, the number of network calculations will increase sharply, and
it is also prone to the problem of overfitting. We reduce the amount of calculation by
introducing sparse pruning operations while suppressing overfitting.

In Figure 10, we can get that the model of the ith layer, which is related to the first
i unit nodes when it is trained. In order to introduce sparse operations into sUPSDEA,
this paper randomly selects some features of the input layer in the training loop, and uses
Formula (6) [38] to randomly discard it, and then periodically introduce sparse operations
in subsequent node training until all units have been trained.

υ = Berboulli(1 − p1)

βi
∗ = υ × βi ,

(6)

where p1 represents the probability of the current training unit being discarded, and
βi represents the input matrix before discarding. βi

∗ is the input matrix after random
discarding in one cycle.

After the sUPSDEA training is over, backpropagation is performed by using Back
Propagation Neural Network (BPNN) [39], and the parameters and weights of the network
are fine-tuned. In this process, the discarded units are added through Equation (7) to
further reduce the possible overfitting of the model.

τ = Berboulli(1 − p2)

Xi
∗ = τ × Xi ,

(7)

where p2 is the probability of discarding irrelevant nodes in the fine-tuning process, Xi is
the output of the network in the fine-tuning process, and Xi

∗ is the input data randomly
discarded in one cycle of the fine-tuning process.

3.3. The Influence of Various Parts of the Model on the Results
3.3.1. The Effect of Sparse Pruning and Noise Reduction Autoencoder on the Results

The stack sparse noise reduction autoencoder transforms the original two-dimensional
20 × 20 grayscale images into 10 × 10 grayscale images by dimensionality reduction,
which dramatically reduces the computational cost of the subsequent convolutional neural
network. At the same time, the noise signal contained in the data can be filtered out, which
also realizes the prediction of the original signal of the signal destroyed by the noise. By
training the model parameters of the model, the model can finally achieve an accurate
prediction of the original signal and eliminate the interference of noise to the original signal
to a large extent, which can effectively improve the final diagnosis effect of the model.

3.3.2. The Effect of Convolutional Neural Networks on Results

The convolutional neural network uses the output of the dimensionality reduction
of the stack sparse noise reduction autoencoder as the input of the convolutional neural
network, and uses the convolutional neural network to extract the characteristics of the
data collected by the drone. By combining the high-dimensional input data, the feature is
mapped to the low-dimensional UAV health status, which can easily convert the original
data into the UAV health status. At the same time, it has a very good non-linear fitting
ability, which is very beneficial to the fault diagnosis of the quad-rotor UAV, which improves
the adaptive ability of the model to a certain extent.

3.4. Data Augmentation

In order to recognize images using in-depth learning, a large amount of image data
needs to be prepared for model training, especially when using neural network model
algorithms. For example, most common data collections in in-depth learning contain a large
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amount of image data, including 60,000 training data and 10,000 test set data in the Mixed
National Institute of Standards and Technology (MNIST) dataset. There are 60,000 color
images in the Canadian Institute For Advanced Research-10 (CIFAR-10) dataset, of which
50,000 are training data and 10,000 are test data. Therefore, in order to train our own neural
network model, we need to prepare a large amount of experimental data for the training
model. However, the experimental data cannot meet the actual training requirements of
the neural network, and data enhancement methods need to be introduced to increase
the amount of sample data. In the field of computer vision, data enhancement is usually
achieved by introducing operations such as flip, rotation, clipping, distortion, scaling, etc.
However, such methods cannot be used in time domain sequence signals. We enhanced
the data in fault diagnosis by introducing a fixed-length sliding window to slice sequential
time-domain signals in turn, as shown in Figure 11.

Figure 11. Sliding window for data enhancement.

Using this method, we will get 79,980 training samples from 80,000 original data
collected by UAV. This method can effectively solve the problem of insufficient training
samples in actual training, but this method has been ignored in many articles [40–43],
because they do not use overlapping sampling methods for data enhancement. As a re-
sult, there are only hundreds or thousands of training samples during model training.
At the bottom of the article, we will verify the necessity of data enhancement through
actual experiments.

4. Validation of the sPSDAE-CNN Model

4.1. Data Description

The training of a neural network model requires a lot of data to be collected from
a laboratory P200 quad-rotatory UAV. The main control panel of the UAV is pixhawk4, which
is also equipped with jeson tx2, binocular camera, and other sensors, As shown in Figure 12.

Figure 12. P200 drone.

Over 90,000 data were collected in flight, of which 80,000 were valid. The training
data is pre-processed and divided into four datasets, of which there are eight types of
pre-defined faults, and eight types are considered to be the eight states of the UAV. The
actual experimental data are shown in the Table 2.
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Table 2. Description of UAV datasets.

Types of Damage to the Blades No Damage Broken Blade Blade Crack

Data Set 0 5% 10% 15% 20% slightly
deformation

General
deformation

Severely
deformation

A Train 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000
Test 200 200 200 200 200 200 200 200

B Train 14,000 14,000 14,000 14,000 14,000 14,000 14,000 14,000
Test 280 280 280 280 280 280 280 280

C Train 18,000 18,000 18,000 18,000 18,000 18,000 18,000 18,000
Test 360 360 360 360 360 360 360 360

D Train 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000
Test 400 400 400 400 400 400 400 400

4.2. Experimental Settings

This paper compares our methods with traditional convolution neural networks,
SVM [44] and traditional unsupervised learning stack autoencoders. Consider the impact of
different size datasets on the performance of the neural network, then compare the changes
of the performance of the neural network before and after sparse pruning operation. Finally,
experiments are carried out in different noise levels to compare and analyze the anti-noise
ability of the sPSDAE-CNN model.

4.2.1. Parameters of the Proposed Network

The sPSDAE-CNN network model proposed by this paper consists of an sPSDAE
sparse pruning noise reduction autoencoder and a convolution neural network. The sPS-
DAE consists of one input layer, one output layer, and four hidden layers. The specific
structure is shown in Figure 9, The specific structural parameters of convolutional neural
networks are shown in Table 3.

Table 3. Structural parameters of convolutional neural networks.

No Layer Type KernelSize Stride Output Size (Width × Depth) Padding

1 Convolution1 4 × 4/1 10 × 10 × 8 Yes
2 Pooling1 4 × 4/1 3 × 3 × 8 No
3 Convolution2 2 × 2/1 6 × 6 × 8 No
4 Pooling2 3 × 3/1 3 × 3 × 8 Yes
5 Convolution3 1 × 1/1 3 × 3 × 16 No
6 Pooling3 2 × 2/1 3 × 3 × 16 Yes
7 Fully-connected 144 144 × 1 /
8 Softmax 8 8 /

The introduced pruning operation also improves the training speed of the network.
The output of sPSDAE is used as input of CNN. The main structure of a convolution
network is three convolution layers and pooling layers. Then there is a hidden layer
of full connection layer. Finally, the output layer is reached by a softmax layer. The
convolution cores of the system select small convolution cores to convolute, the pooling
layer chooses maximum pooling, and the activation function of the neural network chooses
RELU function. In order to improve the performance of the network, a batch normalization
operation is added behind each convolution layer and the full connection layer. The batch
normalization operation can accelerate the convergence speed of the training of the neural
network and suppress the over-fitting phenomenon in the network. The convolution and
pooling parameters of convolution neural networks are detailed in Table 3.

4.2.2. Hyperparameter Optimization of the Proposed Network

We use PyTorch, a deep learning framework developed by an American company
called Facebook, to conduct our actual experiment. To minimize our loss function, this pa-
per uses the random gradient descent method to optimize our convolution neural network
model. In the actual experiment, we choose the Adam optimizer as the final hyperparame-
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ter optimization method. The Adam optimizer combines the advantages of AdaGrad and
RMSProp algorithms, and calculates the update step by step, comprehensively considering
the first-order moment estimation and the second-order moment estimation of the loss
function. Adam has the advantages of simple implementation, high computational effi-
ciency, and low requirement of memory. In addition, the parameter update of this method
is not affected by the scaling transformation of gradient, and it is also very suitable for the
application of large-scale data and parameters in practice. Finally, it has good performance
even in the case of large gradient noise. We set the learning rate of Adam’s optimizer to
0.001. At the same time, the cross-entropy loss function is trained as the objective function.
Reference in detail [45].

4.2.3. The Effect of the Number of Training Data on the Results

As a type of convolution network, there are a large number of parameters in the
sPSDAE-CNN model that need to be determined during the training process of the model.
In order to improve the recognition accuracy of the network and suppress over-fitting in
the system, a large amount of experimental data is needed to train the network. To study
the training results of the neural network under different training samples, the number
of training data of the neural network is set to 100, 200, 300, 900, 1500, 3000, 6000, 12,000,
15,000, and 20,000 training samples to study the performance of sPSDAE-CNN. In deep
learning, there are balanced and unbalanced data collections. In Table 2, our data is fully
balanced, so accuracy can still be used to evaluate the algorithm.

Because the data set is completely balanced, the data samples of UAVs under each
fault condition are the same. In the actual experiment, the first three datasets do not use
the sliding window method to enhance and expand the data. To reduce the influence of
the random initial values of the neural network on the training results of the network,
30 repeated experiments were performed on each sample to calculate the average value.
The paper uses AMD Ryzen™ 5 4600H processor, NVIDIA GTX1650 graphics card, and
16GB of memory. The test data collection is tested using DataSet D in Table 3, and the test
results are shown in Figure 13.

Figure 13. Diagnostic results for different data volumes.

In Figure 13, it is clear that the accuracy of the test dataset increases significantly as
the training data goes from a smaller number of samples to a more significant number
of samples. When the training data increases from 100 to 300, the accuracy of the test
set data increases by about 20%. With the increase of training data, the accuracy of the
neural network gradually approaches and converges to 100%. When the training data is
increased from 100 to 300, the accuracy of the test set data is improved by about 20%. As
the training data increases, the accuracy of the neural network approaches and converges
to 100%, and the standard deviation converges to 0. Secondly, we can observe that the
average time of a signal diagnosed by the training model of the neural network is 4 ms,
which meets the requirements of test data. By comparing the training time of different test

221



Machines 2021, 9, 360

sets, we can find that the increase of the number of training data has little effect on the test
time. In Figure 14, the points of different colors represent that the blades of the UAV are in
different fault states. In the beginning, due to the small number of training samples, it is
not easy to segment the characteristics between different types of data. With the increase
of the number of training samples of the model, the data in the same fault situation begin
polymerization, and the characteristics of different types of fault data become easier to
segment. At the same time, this shows that by using the data enhancement method to
enhance the original data collected by UAV, we can greatly increase the data scale and data
diversity of neural network training samples, which can further improve the generalization
ability of the model. Therefore, in subsequent experiments, this paper selected as many as
20,000 samples as possible for training.

Figure 14. Visualizing test samples from the last hidden fully connected layer with t-SNE under
different training data numbers.

In the subsequent model training, we choose 20,000 training samples. The parameters
in the neural network model are determined through the training set, and then we use
t-SNE visualization to make the t-SNE diagram of the neural network of each layer, as
shown in Figure 15. It can be seen from the figure that the separability of different features
in the unprocessed original data is very poor. After successively passing through each
layer of the neural network, different features in the data begin to separate. In the last layer
of the neural network, we can clearly see that different types of features in the data have
been completely separated. Finally, different types of faults of UAV are diagnosed through
the softmax layer.

In order to evaluate the accuracy of the model for different types of fault diagnosis,
we introduce the Confusion Matrix. The Confusion Matrix can evaluate the performance of
the classification model by counting the number of correct and wrong classifications. The
Confusion Matrix of the model is shown in Figure 16. It can be seen from the figure that
the accuracy of unmanned fault diagnosis of different types of four rotors remains basically
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the same, At the same time, the final model can be obtained through the Confusion Matrix,
and the accuracy of fault diagnosis for four rotor UAV can reach about 98%, which can
meet the needs of our actual projects and experiments.

Figure 15. t-SNE Visualization of each layer of neural network.

Figure 16. Confusion Matrix of the proposed model.

4.2.4. Training Speed of sPSDAE-CNN

Because this paper adds a stack denoising autoencoder in the front part of the neural
network, it will not only improve the performance of the neural network, but also increase
the time and cost of model training. Pruning operation is proposed for the stack denoising
autoencoder, which not only introduces the noise reduction performance of stack denoising
autoencoder, but also reduces the time cost of neural network training as much as possible.
In the training of the model, we can find that under the same amount of data, the training
speed of the neural network with pruning operation is basically the same as that without
stack noise reduction encoder, but its training speed is much better than that without
pruning operation. The specific network training speed is shown in Figure 17.
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Figure 17. Comparison of training time required by different neural network models under different
data scales.

4.2.5. Performance under Different Noise Interferences

Taking the collected UAV data as the original data, the drone may be disturbed by
various signals during the execution of relevant tasks, so as to introduce noise signals
to the data of sensors of the drone. It is impossible to obtain all the noisy data through
experiments, so Gaussian white noise is artificially added to the original collected data to
simulate the noise interference signals that may appear in the actual drone, and the signals
with different signal-to-noise ratios are obtained. SNR is defined as follows (8):

SNRdb = 10log10(
Psignal

Pnoise
), (8)

where Pnoise and Psignal represent the energy of signal and noise, respectively. It can be seen
in Figure 18 that the UAV data collected in the laboratory environment is ideal and contains
relatively little noise. In order to simulate the flight data under different interference in the
actual flight environment, Gauss white noise of different degrees is added to the data, because
Gauss white noise is the most common noise signal in nature. Therefore, we obtain aircraft
data with different sizes of Gaussian white noise, that is, data with different signal-to-noise
ratios. Finally, it can be seen from Figure 18 that the data after adding Gaussian white noise
is closer to the UAV data in the actual flight environment. We evaluate the performance
of the proposed model in different noise environments by studying the performance of the
algorithm model with a signal-to-noise ratio of −4 dB to 10 dB.

In order to verify the efficiency of our proposed algorithm, we use the same test data
to test the performance of CNN, SVM ,and SDAE, as shown in Figure 19:

As can be seen from Figure 19 that, firstly, because the sparse pruning noise reduction
autoencoding convolutional neural network proposed by us has good noise reduction
characteristics, it can be clearly seen that when the noise in the signal is considerable, the
fault diagnosis effect of the model is obviously better than several other intelligent fault
diagnosis methods. Secondly, due to the introduction of sparse pruning operation in the
stack noise reduction autoencoder, this operation can improve the computational efficiency
of the network to a certain extent, and make our proposed model still have very good
performance in the case of low noise.
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Figure 18. Original UAV data, noise data to be added, and final synthesized data containing Gaussian
white noise.

Figure 19. Comparison of accuracy of different fault diagnosis algorithms under different noise levels.

The experimental conditions are mainly flight experiments outdoors, and fault di-
agnosis is carried out by using the UAV data collected and saved by pixhawk4 flight
control board. We artificially add different degrees of Gaussian white noise signals to the
collected data to simulate the actual noise signals, and obtain the experimental data with
different degrees of noise. SVM is used for classification. The 20 × 20 gray image obtained
from UAV data processing is transformed into a feature vector with a length of 400. Multi
classification support vector machine is used, in which the radial basis function (RBF)
kernel function is selected as the kernel function. Gamma is set to the best value of 0.001
through many experiments. Finally, the experimental results in this paper are obtained.
Secondly, in the use of convolutional neural network, we directly use the convolutional
neural network proposed in the article, add a convolution layer to the previous layer of
convolutional neural network to extract the data features, reduce the dimension, convert
the original 20× 20 graphics into 10× 10 gray images, and carry out subsequent operations
and classification. When DEA is used for recognition and classification, DAE is used for
dimensionality reduction and optimization of the original data. BCE error is used in the
training process. Adam optimizer is used, and then convolutional neural network is used
for data feature extraction and classification.
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5. Conclusions

In this paper, we adopt a new intelligent fault diagnosis method based on sPSDAE-
CNN. Through a matrix transformation of the data collected from the UAV flight experi-
ment, the one-dimensional time-series signal is transformed into two-dimensional gray
image data, which expands the dimension of the sample and enhances the processing
ability of the DL model. Secondly, by introducing a sparse pruning stack noise reduction
autoencoder, the accuracy of a fault diagnosis algorithm in a high noise environment can be
improved, and the input dimension of CNN data can also be reduced. In addition, pruning
operation is used to reduce the complexity of the encoder, which can make the encoder
converge quickly when minimizing the loss function. The combination of sPSDAE and
the convolutional neural network can greatly improve the robustness and generalization
ability of the fault diagnosis model. In order to verify the effectiveness of the model,
this paper chooses CNN, SVM, and SDAE to compare. The experimental results show
that under the condition of normal experimental data, sPSDAE-CNN has good results
compared with other algorithms, but when the noise signal in the signal gradually begins
to increase, the performance of other algorithms decreases significantly. Among them,
when the signal-to-noise ratio reaches −4 dB, sPSDAE-CNN still has an accuracy of about
90%, the accuracy of the other three algorithms decreased to less than 80%, and SVM is less
than 60%. Therefore, the fault diagnosis sPSDAE-CNN algorithm used in this paper can be
used as a fault diagnosis method of four-rotor UAV in an actual high noise environment.

The method proposed in the article first converts a one-dimensional time-domain
signal into a two-dimensional grayscale image, which expands the dimensionality of the
data and can improve the ability of subsequent algorithms to extract features from the
data. Secondly, the method of resampling was used to enhance the flight data of the
quad-rotor UAV, which greatly improved the problem of the insufficient data set. Finally,
the sparse pruning noise reduction autoencoder is introduced to perform noise reduction,
dimensionality reduction, and feature extraction on the data. After processing, the noise
in the original data can be filtered to a large extent, and the pruning operation can also
improve the model—the calculation efficiency and noise reduction performance. All the
data used in the article are balanced data sets. In the actual environment, it is impossible
for all data to be unbalanced data sets. In the follow-up research, the application scope of
unbalanced data sets will be further expanded.

In addition, in this paper, balanced data sets are used, but during the actual UAV
mission, the data we collect can not be completely balanced data sets. Therefore, in future
research, we will improve and expand the application scope of the algorithm based on the
performance of sPSDAE-CNN on unbalanced data sets.

Secondly, the data used in this paper are all offline data collected at the end of the
UAV flight. At present, it is not possible to collect the data of four-rotor UAV in real-time in
the actual flight process to realize fault diagnosis. In future research, we can try to diagnose
the fault of UAV in real-time and online with the algorithm used in this paper; this problem
needs to be further studied and solved.
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Abstract: Aiming at the characteristics of dynamic correlation, periodic oscillation, and weak dis-
turbance symptom of power transmission system data, this paper proposes an enhanced canonical
variate analysis (CVA) method, called SLCVAkNN, for monitoring the disturbances of power trans-
mission systems. In the proposed method, CVA is first used to extract the dynamic features by
analyzing the data correlation and establish a statistical model with two monitoring statistics T2 and
Q. Then, in order to handling the periodic oscillation of power data, the two statistics are recon-
structed in phase space, and the k-nearest neighbor (kNN) technique is applied to design the statistics
nearest neighbor distance DT2 and DQ as the enhanced monitoring indices. Further considering the
detection difficulty of weak disturbances with the insignificant symptoms, statistical local analysis
(SLA) is integrated to construct the primary and improved residual vectors of the CVA dynamic
features, which are capable to prompt the disturbance detection sensitivity. The verification results
on the real industrial data show that the SLCVAkNN method can detect the occurrence of power
system disturbance more effectively than the traditional data-driven monitoring methods.

Keywords: canonical variate analysis; disturbance detection; power transmission system; k-nearest
neighbor analysis; statistical local analysis

1. Introduction

With the increasing demand on the power energy in the modern industry, power
transmission systems are becoming more and more large-scale and complicated [1,2]. Due
to the system complexity, anomalies and disturbances are often unavoidable in real power
systems. If these unexpected events are not handled timely, they may cause huge accident
risks and even the widespread power outages, which are companied by the huge economic
loss and severe life inconvenience. Therefore, it is of great value to detect the abnormal
events quickly and maintain the safe running of power systems [3]. In recent years,
the wide area measurement system (WAMS) based on synchronous phaser technology
has been successfully applied in the power industry. The phasor measurement units in
WAMS provide the basic data support for the real-time dynamic monitoring of the power
system [4]. Accordingly, safety monitoring and disturbance detection of power systems
based on the measurement data analysis has been a hot topic in academic and engineering
fields [5–7].

Aiming at the power system disturbance detection task, researchers have conducted a
lot of studies, which can be roughly divided into two categories: time/frequency domain
analysis and multivariate statistical analysis. The time/frequency domain analysis inves-
tigates the power system changes from the perspective of the signal processing, which
involves the time domain, frequency domain, or time-frequency domain. In consideration
of the good time-frequency localization property, Huang et al. [8] discussed the application
of the Morelet wavelets method in power system disturbance detection. The Hilbert Huang
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Transform is another time-frequency signal analysis tool. Manglik et al. [9] applied it to
the disturbance detection for the electric power system. Ghaderi et al. [10] proposed the
time-frequency analysis method assisted by current waveform energy and normalized
joint time-frequency moment and demonstrated its performance in the high-impedance
ground fault detection. Salehi et al. [11] designed a morphological edge detection filter to
obtain the transient features of fault signals. Liu et al. [12] used the wavelet packet Tsallis
singularity entropy algorithm for disturbance detection. In general, the time/frequency
domain analysis methods mainly analyze the single signal and fail to fully consider the
correlation between different parameters. In response to this shortcoming, some scholars
started their work by applying multivariate statistical analysis. Multivariate statistical anal-
ysis (MSA) methods can realize the simultaneous detection of multiple parameter changes
and have outstanding advantages in the complex industrial systems. However, most of
the present MSA studies focus on the system modeling and disturbance detection in the
chemical process, steel industry, and high-train system [13–17], but MSA’s application to
power system monitoring is very rare. Barocio et al. [18] first introduced the principal com-
ponent analysis (PCA) method into the field of power system monitoring and discussed the
detection and visualization of power system disturbances based on PCA. Guo et al. [19]
built a transmission line fault detection method by combining PCA and support vector
machine. Considering the masking influence caused by the oscillation trend and strong
noise of power system data, Cai et al. [20] further proposed a PCAkNN method, which
is superior to the basic PCA method in the numerical model testing and New England
power system model data. These research articles point out that the multivariate statistical
analysis has great application potential in the field of power system monitoring.

Although PCA and PCAkNN methods have achieved significant success in the power
system monitoring field, they have some shortcomings deserving further studies. On the
one hand, these methods do not take into account the dynamic characteristics of power
system data, which easily leads to a high missing detection rate. Different from the other
industrial process data with the steady operation mode, the power system data, such as
the voltage and current, are with obvious dynamic trends. On the other hand, the present
methods do not consider how to enhance the detection of weak disturbances. In real
applications, some disturbances may be with small amplitudes, slow changes, unclear
disturbance characteristics, and are easy to be covered by noises [21,22]. How to enhance
the detection capability on these weak disturbances is one challenging task.

Aiming at the aforementioned problems, this paper proposes a SLCVAkNN-based
disturbance detection method for power transmission system monitoring by combining
canonical variate analysis (CVA), kNN, and statistical local analysis (SLA). Compared with
the traditional PCA-based power system monitoring methods, CVA has a stronger dynamic
feature extraction ability [23–25], which provides a new and powerful tool for power system
data analysis. Referring to the present PCAkNN method, the CVAkNN statistical model is
developed to deal with the dynamic periodic oscillation signals. Furthermore, in order to
enhance the detection of weak faults, SLA is integrated for SLCVAkNN modeling, which
mines the local statistical information for better weak disturbance monitoring.

The rest of the paper’s content is arranged as follows. The principle of the proposed
SLCVAkNN methodology is given in the Section 2, while the corresponding disturbance
detection procedure is detailed in Section 3. One case study on the actual industrial data is
used to verify the effectiveness of the proposed method.

2. The Proposed Methodology

This section clarifies the proposed SLCVAkNN-based power system disturbance
detection method. The whole methodology involves three parts: dynamic system modeling
using canonical variate analysis, monitoring index construction based on kNN, and weak
disturbance detection by statistical local analysis.
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2.1. CVA Monitoring Model

A power system is a classical dynamic process [26,27], where the measurement data
demonstrate the clear trend along the sampling time. The measured three-phase electric
field and current waveform change with time, and the current data point has a certain
correlation with the historical samples. Therefore, it is more reasonable to apply the
dynamic data analysis tool to extract the process features.

Canonical variate analysis (CVA) is an effective dynamic data analysis tool, which
has been applied to the model identification and control in the multivariate dynamic
system [28,29]. This paper introduces it to deal with power system data. For a certain
power transmission line, the data points under normal system operation have a fixed
correlation along the time dimension. When a disturbance occurs, this correlation may
be destroyed. By monitoring the correlation among the time series data, CVA can find
the system disturbance effectively. When CVA is applied to data modeling, the training
data are firstly divided into the historical data set and the future data set, and the CVA
optimization problem is designed to find the maximum correlation between these two data
sets for describing the data dynamic features. The algorithm details are clarified as follows.

For the power system measurement data vector xh ∈ Rm at the h-th sampling instant,
its corresponding historical data vector ph and future data vector fh are constructed as

ph = [xT
h , xT

h−1, · · · , xT
h−l+1]

T ∈ RM (1)

fh = [xT
h+1, xT

h+2, · · · , xT
h+l ]

T ∈ RM (2)

where M = m × l, and l represents the time lag order.
Given the projection vectors a and b, they are used to transform the historical and

future vectors into their respective projections d = aT ph and v = bT fh. CVA is to optimize
the vector pair a and b so that the correlation between d and v is maximized, which are
also called canonical variates. This can be described by the mathematical expression as⎧⎪⎪⎪⎨⎪⎪⎪⎩

max
a,b

ρ(d, v) = aTΣp f b

s.t. var(d) = aTΣppa = 1

var(v) = bTΣ f f b = 1

(3)

where Σp f represents the cross-covariance matrix of the historical and future data vectors, and
Σpp, Σ f f denote the covariance matrix of the historical and future data vectors, respectively.

Suppose that the training data set includes n samples as X = [xT
1 , xT

2 , · · · , xT
n ]

T ∈
Rn×m, then the historical and future data matrix can be expressed by

P = [pT
l , pT

l+1, · · · , pT
n−l ]

T ∈ RN×M (4)

F = [ f T
l , f T

l+1, · · · , f T
n−l ]

T ∈ RN×M (5)

where N = n − 2l + 1 is the sample number of the historical and future data matrix. Then
the covariance matrices defined in Equation (3) can be calculated by

Σp f =
1

N − 1
PT F (6)

Σpp =
1

N − 1
PTP (7)

Σ f f =
1

N − 1
FT F (8)
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Solving the optimization problem described by Equation (3) leads to a singular value
decomposition on the matrix Ξ = Σ−1/2

pp Σp f Σ−1/2
f f , which is expressed by

Ξ = UΛV T (9)

The solution of Equation (9) is further used to build the a series of the projection
vectors ai and bi(1 ≤ i ≤ M), which are computed by

ai = Σ−1/2
pp U(:, i), bi = Σ−1/2

f f V(:, i), (10)

where (:, i) represents the i-th column of the matrix. The vectors ai and bi are ordered by the
corresponding correlation degree, which is given in the diagonal elements of matrix Λ, also
meaning the correlation coefficients. The first s pairs of projection vectors {ai, bi, 1 ≤ i ≤ s}
describe the stronger correlation and indicate the close relationship between the historical
data and the future data. Therefore, a projection matrix As = [a1a2 · · · as] is defined to
extract the canonical variate vector dh as

dh = AT
s ph. (11)

which describes the main dynamic features of process data. Here, s is determined so that
the corresponding canonical variate vectors describe a cumulative percentage of 90% of
correlation coefficients.

As As only involves the first s projection directions, it cannot cover all the data
information. The rest information in the CVA model can be described by the CVA residual
vector eh as

eh = (I − As AT
s )ph (12)

Based on the canonical variate vector and CVA residual vector, two monitoring
statistics T2 and Q are often used to judge the process state. The T2 statistic describes
the changes of principal dynamic states, while the Q statistic monitors the changes of the
residual information. For the h-th sample, the statistics are written by

T2
h = dT

h dh (13)

Qh = eT
h eh (14)

In the normal operation, these two statistics should satisfy T2
h ≤ T2

h,lim and Qh ≤ Qh,lim,
where T2

h,lim and Qh,lim are the corresponding confidence limits. In some literature, the con-
fidence limits of these two statistics can be obtained by assuming the prior distribution [30].
However, these distribution assumptions are often difficult to satisfy. Therefore, this paper
applies the data-driven kernel density estimation to determine the confidence limit [31,32].

2.2. CVAkNN Model Based on kNN Monitoring Index

As the measurement data of power transmission systems have the periodic fluctua-
tion characteristic, the traditional CVA monitoring statistics T2 and Q behave unsteadily
with the periodic changes. In this case, disturbance detection by directly monitoring the
amplitudes of monitoring statistics cannot discover the disturbance signals effectively and
may lead to a high disturbance missing rate.

In order to overcome this defect, this paper introduces the k-nearest neighbor analysis
(kNN) to enhance the basic monitoring statistics. kNN is one effective multimodal data
analysis tool and does not depend on the amplitude changes before and after the distur-
bance. In the literature [33,34], kNN was introduced and adapted for real-time detection
of system disturbances. By combining the CVA model and the kNN-based monitoring
statistics, the improved method, which is called CVAkNN, has a stronger capability of
dealing with the periodic oscillation data property. The main idea of CVAkNN is to first
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reconstruct the monitoring statistic in the phase space and then build the monitoring index
based on the distance between the reconstructed statistic vector and its k-nearest neighbor.

Phase space reconstruction is a good method to deal with time series analysis. This
method regards one-dimensional time series as the result of nonlinear dynamic system
motion and constructs the phase vectors by re-arranging the time series. This theory has
been successfully applied in the fields of chaotic time series prediction and equipment
failure data analysis [35,36]. Here it is introduced to deal with the CVA monitoring statistics
for the further kNN analysis.

For the training data set with n samples x1, x2, . . . , xn, the corresponding statistics
vectors are obtained by the CVA modeling as

T2 = [T2
l T2

l+1 · · · T2
n ] (15)

Q = [Ql Ql+1 · · · Qn] (16)

Further, the phase reconstruction statistics matrix can be formulated as follows:

MT2 =

⎡⎢⎢⎢⎣
T2

l · · · T2
l+L−2 T2

l+L−1
T2

l+1 · · · T2
l+L−1 T2

l+L
...

...
...

...
T2

n−L+1 · · · T2
n−1 T2

n

⎤⎥⎥⎥⎦ (17)

MQ =

⎡⎢⎢⎢⎣
Ql · · · Ql+L−2 Ql+L−1

Ql+1 · · · Ql+L−1 Ql+L
...

...
...

...
Qn−L+1 · · · Qn−1 Qn

⎤⎥⎥⎥⎦ (18)

where L is the embedding dimension defining the length of the reconstructed phase vector.
Based on the results of the phase space reconstruction, the dynamic behavior of the statistics
can be better described, which is conducive to the detection of power system disturbances.

In the online monitoring stage, a new testing sample xt is collected at the t-th sampling
instant. Then the monitoring statistics can be computed by applying Equations (13) and (14),
and the reconstructed phase vectors are described as

NT2
t =

[
T2

t−L+1 · · · T2
t−1 T2

t

]
(19)

NQt = [Qt−L+1 · · · Qt−1 Qt] (20)

To determine whether the test data xt is normal, it is necessary to compare the similar-
ity between NT2

t , NQ2
t , and the reconstructed statistics matrix in Equations (17) and (18).

If the reconstructed statistics NT2
t , NQ2

t are strongly similar to one column of the training
statistics vectors in Equations (17) and (18), then the test data xt describe the normal work-
ing condition. Otherwise, it means that some faults occur in the power transmission system.
Therefore, the key is how to perform this similarity comparison. This paper introduces
the k-nearest neighbor (kNN) analysis to construct a kNN-based distance measurement
indicator: statistical nearest neighbor distance (SNND).

The idea of SNND is to find the first k-th nearest neighbors of the test vector in the
given matrix data and compute the distance between the test vector and the k-th nearest
neighbors as a disturbance detection criterion. The SNND index for NT2

t is defined as

DT2
t =

∣∣∣∣∣∣NT2
t − MT2(jk, :)

∣∣∣∣∣∣, (21)
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where MT2(jk, :) represents the jk-th row in the MT2 matrix, which corresponds to the
k-th nearest neighbor of NT2

t , and ||.|| represents the L2 norm calculation. By analogy, the
SNND indicator of NQt can be established as

DQt = ||NQt − MQ(jk, :)||. (22)

Under normal operating conditions, the above two indicators should fluctuate within
a relatively small range. That means DT2

t ≤ DT2
lim and DQt ≤ DQlim for the normal

running status. Once the threshold is exceeded, it means that there is a system disturbance.
The threshold can be obtained by the kernel density estimation method.

2.3. SLCVAkNN Model Assisted by Statistical Local Analysis

In the power transmission system, some weak disturbances are often difficult to detect,
such as the high-impendence single-phase ground fault. When this kind of disturbance
occurs, the changes reflected by the measure voltage and current variables are very small.
Further, considering the influence of modeling error and process noise, this kind of distur-
bance may be concealed and viewed as the normal process changes. Therefore, enhacning
the weak disturbance detection is of great value to ensure the safety of power transmission
systems. In this paper, we integrate the statistical local analysis (SLA) with CVAkNN
and propose an improved SLCVAkNN monitoring model for better weak disturbance
monitoring performance.

SLA was originally proposed by Basseville [37] for inspecting the process parameter
changes. In recent years, some researchers have introduced it into the chemical process
fault detection and demonstrated its effectiveness [38–40]. In this paper, we will perform
the statistical local analysis on the CVA model. To look back into the CVA monitoring
statistics in Equations (13) and (14), it is found that the monitoring statistics used to indicate
the process status are composed of the canonical variate vector dh and the CVA residual
vector eh. Therefore, if we attempt to improve the weak disturbance monitoring of CVA
statistics, the vectors dh and eh must be improved with stronger disturbance sensitivity.

According to the statistical local analysis theory, given the system observation zj and
the system parameter ϑ, a primary residual vector ϕ(zj, ϑ) can be defined for disturbance
detection if it meets the following conditions: [37,38]

• E{ϕ(zj, ϑ)} = 0, if ϑ = ϑ0;
• E{ϕ(zj, ϑ)} �= 0, if ϑ is in the neighborhood of ϑ0, but ϑ �= ϑ0;
• ϕ(zj, ϑ) is differentiable with ϑ;
• ϕ(zj, ϑ) exists for ϑ in the neighborhood of ϑ0.

Here ϑ0 represents the parameters under the normal condition.
By investigating the i-th element in the vector dh, which is denoted as dh,i, it is easily

derived by Equation (11) that dh,i = aT
i ph. Naturally, the variance of dh,i can be computed as

E{d2
h,i} = aT

i E{ph pT
h }ai (23)

For the statistical samples, E{ph pT
h } is factually equal to the covariance matrix Σpp.

Further combining the first constraint on the vector a in Equation (3), it is known that
aT

i E{ph pT
h }ai = 1. Therefore, we build the SLA primary residual of the canonical variate as

ϕdh,i
= d2

h,i − 1. (24)

which meets the condition E{ϕdh,i
} = 0 in the normal condition.

Similarly, we analyze the variance of eh,i to obtain

E{e2
h,i} = Ar(i, :)E{ph pT

h }Ar(i, :)T (25)
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As Ar can be obtained in the model training procedure, the above expression must be
equal to a fixed value, which is denoted as σi = Ar(i, :)E{ph pT

h }Ar(i, :)T . Therefore, the
SLA primary residual of the CVA residual can be built as

ϕeh,i = e2
h,i − σi. (26)

which meets the condition E{ϕeh,i} = 0 for the normal data.
For a more sensitive disturbance detection, the SLA improved residual is applied in a

moving window with the width of w, which is expressed by

ψdh,i
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1√
h

h
∑

j=1
ϕd−j,i, h < w

1√
w

h
∑

j=h−w+1
ϕdj,i

, h ≥ w
(27)

ψeh,i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1√
h

h
∑

j=1
ϕej,i , h < w

1√
w

h
∑

j=h−w+1
ϕej,i , h ≥ w

(28)

Up to now, we can obtain the SLA improved residual vectors ψd,h = [ψdh,1
ψdh,2

· · · ψdh,s
]T

and ψe,h = [ψeh,1 ψeh,2 · · · ψeh,M ]T . These residual vectors are used to replace the original
CVA features dh and eh so that the monitoring model is modified to the SLCVAkNN model.

With the SLA improved residual vectors, the monitoring statistics are constructed
as follows:

T2
h = ψT

d,hψd,h (29)

Qh = ψT
e,hψe,h (30)

3. Disturbance Detection Procedure Based on SLCVAkNN

Power transmission system disturbance detection based on SLCVAkNN method is di-
vided into two stages: offline modeling stage and online detection stage. The corresponding
flowchart is shown in Figure 1.

Stage 1: offline modeling stage

1. Acquire the normal condition data to constitute the training data set X =

[xT
1 , xT

2 , · · · , xT
n ]

T ∈ Rn×m and perform data normalization processing. Here,
the mentioned normal condition data mean the data from a section of transmis-
sion line between two adjacent nodes. For different lines, the corresponding
modelings are needed separately.

2. Construct historical data sets P and future data sets F according to Equations (4)
and (5), calculate the covariance matrices by Equations (6)–(8), and solve the
CVA optimization by the SVD as Equation (9).

3. Extract the canonical variate vector dh and the CVA residual vector eh, as shown
in Equations (11) and (12).

4. Perform Equations (24) and (26) to obtain the SLA primary residual vectors and
further calculate the SLA improved residual vectors by Equations (27) and (28).

5. Compute the monitoring statistics T2
h and Qh for all the training samples accord-

ing to Equations (29) and (30).
6. Construct the statistics matrix in the phase space according to Equations (17)

and (18).
7. Calculate the SNND monitoring indices DT2 and DQ for all the training samples and

determine the 95% confidence limits DT2
lim and DQlim by kernel density estimation.
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Stage 2: online detection stage

1. Obtain online new data xt and normalize it with the training data.
2. Construct the corresponding historical vector pt and project the pt to the CVA

model and obtain the canonical variate vector dt and et according to Equations (11)
and (12).

3. Apply Equations (24), (26)–(28) to compute the SLA primary residual vector and
the improved residual vector orderly.

4. Compute the monitoring statistics T2
t and Qt for the online new sample xt

according to Equations (29) and (30).
5. Construct the phase space statistics vector NT2

t and NQ2
t , and calculate the

SNND index DT2
t and DQ2

t by Equations (21) and (22).
6. Compare the SNND indices with the corresponding confidence limits DT2

lim and
DQlim. If any one exceeds the confidence limit, a disturbance sample is indicated.

Here, it is pointed out that the local neighborhood standardization (LNS) [41] may be
used to enhance the traditional z-score standardization. Compared with the traditional
z-score method, LNS has better capability to deal with the non-steady data with the
periodic oscillations.

Figure 1. Flow chart of disturbance detection by SLCVAkNN.

4. Case Analysis

In order to verify the advantages of the SLCVAkNN method in the power transmission
system disturbance detection, this section gives the case study on the real industrial
data collected from the actual power transmission system. For method comparison, four
methods, including the proposed SLCVAkNN method and three other methods of PCA,
PCAkNN, and CVAkNN, are all applied to build the monitoring models for disturbance
detection. The PCA method has two monitoring statistics T2 and Q, while the other three
methods are with the kNN-based statistics DT2 and DQ. When these methods are used,
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they indicate the system status by the monitoring charts, where the monitoring indices of
normal and faulty samples are given by black and blue solid lines, respectively, while the
detection threshold, that is the 95% confidence limit of the monitoring index, is plotted by
the red dashed line. One evaluation index, called the disturbance detection rate (DDR), is
used to evaluate the different monitoring methods. DDR is the percentage of the abnormal
samples exceeding the detection threshold over all the abnormal samples.

The used real industrial data are collected from the seven transmission lines in a power
supply station in August 2018. These lines are radially connected. Their data are collected
because all of them involve the ground fault. The data acquisition units, designed by
Qingdao Topscomm Communication CO. LTD, are used to collect the electric field intensity
and current. Here, the real line voltage is up to 110 KV so that the existing equipment can
not directly measure it. Therefore, the electric field intensity is applied to reflect the voltage
trend. For each transmission line, one corresponding data set is recorded that involves the
normal state and the abnormal state. The data set has the length of about 1300 samples,
where the disturbance starting time (DST) is different in different transmission lines. The
detailed information about the acquired data sets are listed in Table 1, where DST data
record the sample number corresponding to the disturbance starting time. A demonstration
of the collected data for the DATA-A is given in Figure 2, where six measured variables,
including the electric field intensities of phase A, B, and C, and the currents of phase A,
B, and C, are involved. Due to the existence of the harmonic load, the current sine wave
distortion can be seen in these curves.

Table 1. The collected industrial data sets.

No. Description DST

DATA-1 Data set collected from line 904 exit 446
DATA-2 Data set collected from line 906, pole 116-3 456
DATA-3 Data set collected from line 906, pole 90-2 445
DATA-4 Data set collected from line 906, pole 151-5 458
DATA-5 Data set collected from line 906, pole 97-1 452
DATA-6 Data set collected from line 906 exit 493
DATA-7 Data set collected from line 907 exit 420

(a) (b)

Figure 2. Data waveform collected from 904 line exit. (a) Three-phase electric field intensity; (b) Three-phase current.

Taking the data set DATA-2 as one example, it is collected from the pole 116-3 of the line
906. This data set includes 1312 samples. To investigate it with the help of on-site engineers,
it is known that the disturbance occurs from the 456th sample. Although engineers can
find this disturbance by careful analysis, this manual way is very time-consuming and
inefficient, so it is difficult to implement in large-scale transmission system monitoring.
Therefore, building an automatic multivariate data analysis tool is very necessary. In
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this section, we apply four MSA methods, which are PCA, PCAkNN, CVAkNN, and
SLCVAkNN, to perform the automatic fault detection. When the statistical models are
developed, the model parameters are set as follows: k = 3, L = 10, l = 2, w = 20. For the
data set DATA-2, the first 320 sampling point are considered to be in a normal operating
state, they can be utilized as the training data set for model development, while monitoring
charts of PCA, PCAkNN, CVAkNN, and SLCVAkNN are demonstrated in the Figures 3–6,
respectively. By the PCA monitoring results shown in Figure 3, it can be seen that the
disturbance cannot be detected very effectively. The DDR of PCA T2 is 4.43%, while the Q
is a little better with the DDR of 29.52%. When PCAkNN is used, the DT2 has a similarly
poor detection rate, but the DQ statistic achieves clear improvement with the DDR of
57.76%. These results demonstrate that the PCAkNN method proposed by Cai et al. [20]
can deal with the power system data with oscillation characteristic effectively. However,
from these figures, the monitoring statistics do not exceed the confidence limits significantly.
This may lead to the uncertain judgement on the occurrence of disturbance. When the
CVAkNN is applied in Figure 5, the DQ statistic performs a little better with the DDR of
49.71%. However, its DT2 indicator clearly improves the DDR to 92.51%, which means a
significant detection rate improvement of about 70% in contrast with the PCAkNN’s DQ
index. The best monitoring results on this data set is provided by SLCVAkNN, which
are shown in Figure 6. By this figure, it is observed that the disturbance is detected very
clearly with the DDRs of 97.25% and 96.80% for DT2 and DQ, respectively. This case
gives a comprehensive comparison on the four methods of PCA, PCAkNN, CVAkNN, and
SLCVAkNN. The applications show that PCAkNN does better than PCA due to the use of
kNN, while SLCVAkNN further prompts the disturbance detection performance with the
integration of CVA and SLA.

Figure 3. PCA monitoring results on the DATA-2 case.

Figure 4. PCAkNN monitoring results on the DATA-2 case.
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Figure 5. CVAkNN monitoring results on the DATA-2 case.

Figure 6. SLCVAkNN monitoring results on the DATA-2 case.

Another example on the data set DATA-6 is illustrated, which corresponds to the
line 906 exit. The modeling procedure is similar to the above case. Here we only give the
monitoring charts of CVAkNN and SLCVAkNN, as shown in the Figures 7 and 8. With the
consideration of system dynamics, the CVAkNN DT2 monitoring chart gives a higher DDR
of 88.51%. Compared with the CVAkNN method, which has only one effective monitoring
statistic, SLCVAkNN has two well-behaved monitoring statistics. The DT2 and DQ have
the DDRs of 97.37% and 97.25%, respectively. The testing results on DATA-6 further verify
the advantage of the proposed method over the CVAkNN method.

Figure 7. CVAkNN monitoring results on the DATA-6 case.

The summary of disturbance detection rates for all seven data sets are shown in Table 2.
From this table, it is shown that the faults in DATA-2 and DATA-4 are difficult to detect
by PCA, whose DDRs are all lower than 30%. By the use of PCAkNN, these two faults
are detected with higher DDRs, which are 57.76% and 26.78%, respectively. By contrast,
CVAkNN does better on the two faults. In particular, its DT2 statistic gives the DDR higher
than 90%. When SLCVAkNN is used, its two monitoring statistics have the higher DDRs
than 95%. For the sets of DATA-1, DATA-3, DATA-6, and DATA-7, PCA can detect these
faults with about 70-80% DDR on one statistic. That means PCA can alarm these faults, but
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the alarm degree is not very sufficient. The PCAkNN and CVAkNN improve the DDR to
about 90%. Further combining the SLA technique, SLCVAkNN achieves higher DDR than
CVAkNN on these four sets. As to DATA-5, all these four methods give a similarly good
performance with the DDRs higher than 95%. Considering all seven of these data sets, we
observe that the average detection rates of CVAkNN outperforms the PCA and PCAkNN
method, while the ones of SLCVAkNN statistics can reach 97.46% and 96.29%, which are
the highest among these four methods.

Figure 8. SLCVAkNN monitoring results on the DATA-6 case.

Table 2. The disturbance detection rate of PCA, PCAkNN, CVAkNN, and SLCVAkNN for the tested
data sets.

NO.
PCA PCAkNN CVAkNN SLCVAkNN

T2 Q DT2 DQ DT2 DQ DT2 DQ

DATA-1 7.50% 70.47% 26.18% 90.89% 96.76% 64.39% 96.83% 89.48%
DATA-2 4.43% 29.52% 3.85% 57.76% 92.51% 49.71% 97.25% 96.80%
DATA-3 5.99% 83.06% 19.93% 97.81% 100.00% 100.00% 97.85% 97.97%
DATA-4 5.15% 10.18% 8.54% 26.78% 96.60% 51.93% 97.36% 96.79%
DATA-5 48.78% 96.05% 82.81% 99.54% 100.00% 100.00% 98.06% 98.29%
DATA-6 4.39% 77.44% 5.49% 92.20% 88.51% 41.20% 97.37% 97.25%
DATA-7 7.95% 84.99% 11.09% 95.97% 93.49% 55.33% 97.47% 97.47%
Average 12.03% 64.53% 22.56% 80.13% 95.41% 66.08% 97.46% 96.29%

To sum up, the applications on real industrial data verify the effectiveness of the
proposed SLCVAkNN in the power transmission system monitoring. All the tested faults
are about the ground faults. Although this paper does not provide the results on the other
disturbances such as 1,3-phase short circuits, overvoltages, the presented algorithm is also
suitable for these cases because they similarly lead to the changes of voltage and current.
However, one related issue should be noted. In this article, this method detects all the
occurred disturbances, including normal disturbances such as load power variations. To
judge whether the disturbance is a fault or a normal disturbance is a further job. In fact, as
to this issue, one solution is to enrich the modeling data with different normal changes. As
the kNN used in this method can deal with the multimodal data case, the trained model
can distinguish the faults and normal disturbances effectively when the normal changing
data are considered in the model training procedure.

5. Conclusions

This paper proposes a power transmission system disturbance detection method
based on SLCVAkNN. The real industrial data collected from the field transformer station
are applied to verify the proposed method. By investigating the application results, we can
draw the following conclusions.
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• CVA-based monitoring method can provide better dynamic information mining.
The dynamic data analysis tool CVA is introduced to deal with the power transmission
system data. By observing the application results, we find that CVAkNN has a higher
detection rate than PCAkNN.

• The statistical local analysis can further enhance the disturbance monitoring. Con-
sidering that many high-impendence ground faults in the real power systems are with
insignificant symptoms, the weak disturbance detection methods are very important
in improving the disturbance detection sensitivity. By focusing on the statistical local
information of CVA features, the proposed SLCVAkNN method outperforms the
CVAkNN method.

Author Contributions: Conceptualization, S.W. and X.D.; methodology, S.W. and Y.T.; software,
Y.T. and X.D.; validation, Y.T. and L.W.; formal analysis, S.W. and Y.T.; investigation, Y.T. and P.S.;
resources, L.W. and Q.C.; data curation, Y.T., L.W., and Q.C.; writing—original draft preparation,
Y.T. and P.S.; writing—review and editing, S.W. and X.D.; visualization, L.W. and Q.C.; supervision,
X.D.; project administration, X.D.; funding acquisition, X.D. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was funded by the Shandong Provincial Natural Science Foundation (Grant
No. ZR2020MF093), the Major Scientific and Technological Projects of CNPC (Grant No. ZD2019-183-
003), and the Fundamental Research Funds for the Central Universities (that is, the Opening Fund of
National Engineering Laboratory of Offshore Geophysical and Exploration Equipment, Grant No.
20CX02310A).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

CVA canonical variate analysis
MSA multivariate statistical analysis
SLA statistical local analysis
WAMS wide area measurement system
As projection matrix
dh canonical variate vector
DQt SNND monitoring index
fh future data vector at the h-th sample instant
MT2 phase reconstruction statistics matrix
NT2

t reconstructed statistics vector
ph historical data vector at the h-th sample instant
Qh monitoring statistic at the h-th sample instant
xh data vector at the h-th sample instant
φdh,i

SLA primary residual of canonical variate
ψdh,i

SLA improved residual of canonical variate
Σ Covariance matrix
kNN k-nearest neighbor
PCA principal component analysis
SNND statistical nearest neighbor distance
a projection vector
b projection vector
DT2

t SNND monitoring index
eh residual vector at the h-th sample instant
F future data matrix
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MQ phase reconstruction statistics matrix
NQt reconstructed statistics vector
P historical data matrix
T2

h monitoring statistic at the h-th sample instant
X data matrix
φeh,i SLA primary residual of CVA residual
ψeh,i SLA improved residual of CVA residual
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Abstract: This paper focuses on the nonlinear system identification problem, which is a basic premise
of control and fault diagnosis. For Hammerstein output-error nonlinear systems, we propose an
auxiliary model-based multi-innovation fractional stochastic gradient method. The scalar innovation
is extended to the innovation vector for increasing the data use based on the multi-innovation
identification theory. By establishing appropriate auxiliary models, the unknown variables are
estimated and the improvement in the performance of parameter estimation is achieved owing to
the fractional-order calculus theory. Compared with the conventional multi-innovation stochastic
gradient algorithm, the proposed method is validated to obtain better estimation accuracy by the
simulation results.

Keywords: hammerstein output-error systems; auxiliary model; multi-innovation identification
theory; fractional-order calculus theory

1. Introduction

The accuracy of a system model affects the performance and safety of industrial
control systems [1–5], and system identification is a theory and method for constructing
mathematical model of systems and has been widely implemented in practice [6–9]. The
behavior of most modern industrial control systems and synthetic systems are nonlinear by
nature. Presently, an important research field in modern signal processing is the research of
parameter identification for nonlinear systems, in which the block-structure systems, such
as the Hammerstein model, are among the most current nonlinear systems due to their
efficiency and accuracy to model complex nonlinear systems [10–12]. The representative
feature of a Hammerstein model is that its architecture consists of two blocks: a static
nonlinear model followed by a linear dynamic model. The simplicity in structure makes it
provide a good compromise between the accuracy of nonlinear systems and the tractability
of linear systems, and thus promoting its use in different nonlinear applications such as
automatic control [13–15], fault detection and diagnosis [16–18], and so on.

Recently, several new system identification methods and theories have been developed
for nonlinear models in the literature, including the least squares methods [19], the gradient-
based methods [20], the iterative methods [21],the subspace identification methods [22], the
hierarchical identification theory [23], the auxiliary model and the multi-innovation (MI)
identification theories [24]. One well-known algorithm is the stochastic gradient (SG) algo-
rithm, which has lower computational cost and complexity than the recursive least squares
algorithm, whereas slow-convergence phenomena are often observed. Therefore, different
modifications of the SG algorithm were developed to enhance its performance [25–30]. In
particular, by extending scalar innovation into innovation vectors, the MI identification
theory was proposed to improve the convergence speed and estimation accuracy in [31],
and the fractional-order calculus method was introduced to show that it can achieve more
satisfactory performance in [32,33].
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To the best of our knowledge, different fractional-order gradient methods have been
produced [34–36]. For example, in [37], a fractional-order SG algorithm was designed to
identify the Hammerstein nonlinear ARMAX systems by an improved fractional-order
gradient method. Based on the MI theory and the fractional-order calculus, an MI fractional
least mean squares identification algorithm was presented for the Hammerstein controlled
autoregressive systems, where the update mechanism was composed of the first-order
gradient and the fractional gradient [38]. However, the above-discussed papers only
consider the Hammerstein equation-error systems, and the cross-products between the
parameters in the linear block and nonlinear block can lead to many redundant parameters.
When the dimensions of parameter vectors are large, it will cause high computational
complexity and deteriorate the identification accuracy.

In this work, we study the identification problem of the Hammerstein output-error
moving average (OEMA) systems, which have been less studied due to the difficulty in
identification [39,40]. To avoid estimating the redundant parameters, the Hammerstein
model is parameterized using the key-term separation principle [41]. Furthermore, based
on the identification model, the fractional-order SG algorithm is extended to the identifi-
cation of Hammerstein OEMA systems and an auxiliary model-based multi-innovation
fractional stochastic gradient (AM-MIFSG) algorithm is presented by the auxiliary model
identification idea. The proposed algorithm can generate higher estimation accuracy than
the common multi-innovation stochastic gradient (MISG) algorithm, with fewer parameters
required to be estimated.

The paper is structured as follows. Section 2 gives a description for Hammerstein
OEMA systems. Section 3 introduces the multi-innovation identification theory and drives
an auxiliary model-based multi-innovation stochastic gradient (AM-MISG) identification
algorithm for a comparison purpose. Section 4 presents the AM-MIFSG identification
algorithm for the Hammerstein OEMA systems. Section 5 gives the convergence analysis
of the proposed AM-MIFSG algorithm. Section 6 verifies the results in this paper using a
simulation example. Finally, concluding remarks are given in Section 7.

2. The System Description

Consider the Hammerstein OEMA systems shown in Figure 1,

yk =
B(z)
A(z)

ūk + D(z)vk, (1)

ūk = c1 f1(uk) + c2 f2(uk) + · · ·+ cm fm(uk), (2)

where {uk} and {yk} are the input and output sequences of the system, {ūk} is the output se-
quence of the nonlinear block, and it can be represented as a linear combination of a known
basis f (uk) := [ f1(uk), f2(uk), · · · , fm(uk)] with unknown coefficients ci (i = 1, 2, · · · , m),
{vk} is a stochastic white noise sequence with zero mean and variance σ2, A(z), B(z) and
D(z) are the polynomials in the unit backward shift operator z−1 [z−1yk = yk−1], and
defined as

A(z) := 1 + a1z−1 + a2z−2 + · · ·+ ana z−na ,

B(z) := 1 + b1z−1 + b2z−2 + · · ·+ bnb z−nb ,

D(z) := 1 + d1z−1 + d2z−2 + · · ·+ dnd z−nd .

Assume that the orders of these polynomials na, nb and nd are known and uk = 0,
yk = 0 and vk = 0 for k � 0.
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Figure 1. The Hammerstein OEMA systems.

Define the intermediate variables xk and wk as follows:

xk :=
B(z)
A(z)

ūk

= [1 − A(z)]xk + B(z)ūk

= ūk −
na

∑
i=1

aixk−i +
nb

∑
i=1

biūk−i, (3)

wk := D(z)vk

=
nd

∑
i=1

divk−i + vk. (4)

Take the first variable ūk on the right-hand side of (3) as a separated key-term. Based
on the principle of key-term separation [42,43], substituting ūk in (2) into (3) gives

xk =
m

∑
i=1

ci fi(uk)−
na

∑
i=1

aixk−i +
nb

∑
i=1

biūk−i. (5)

Define the following related parameter vectors:

θ :=
[

θs
d

]
∈ R

n, n := na + nb + nd + m,

θs := [aT, bT, cT]T ∈ R
na+nb+m,

a := [a1, a2, · · · , ana ]
T ∈ R

na , b := [b1, b2, · · · , bnb ]
T ∈ R

nb ,

c := [c1, c2, · · · , cm]
T ∈ R

m, d := [d1, d2, · · · , dnd ]
T ∈ R

nd ,

and the information vectors:

ϕk :=
[

ϕs,k
ϕn,k

]
∈ R

n,

ϕs,k := [−xk−1,−xk−2, · · · ,−xk−na , ūk−1, ūk−2, · · · , ūk−nb
, f (uk)]

T ∈ R
na+nb+m,

ϕn,k := [vk−1, vk−2, · · · , vk−nd
]T ∈ R

nd .

From (1)–(5), we have

yk = xk + wk

= ϕT
s,kθs +ϕT

n,kd + vk

= ϕT
kθ+ vk. (6)

Equation (6) is the identification model of the Hammerstein OEMA system. Please
note that the parameter vector θ contains all the parameters of the system in (1)–(2), and the
parameters in the linear and nonlinear blocks are separated. This means there is no need to
identify redundant parameters. This paper aims to present an AM-MIFSG algorithm for
Hammerstein OEMA systems to improve the parameter estimation accuracy.
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3. The AM-MISG Algorithm

In this section, we introduce the auxiliary model and multi-innovation identification
theories briefly, and derive the AM-MISG algorithm for the Hammerstein OEMA system.

Let θ̂k denote the estimate of θ. Based on the search principle of negative gradient,
defining and minimizing the cost function

J(θ) :=
1
2

k

∑
j=1

[yj −ϕT
j θ]

2,

the following SG algorithm can be obtained for estimating the parameter vector θ:

θ̂k = θ̂k−1 − μ1
∂J(θ)

∂θ
= θ̂k−1 +

ϕk
sk

ek, (7)

ek = yk −ϕT
kθ̂k−1, (8)

sk = sk−1 + ‖ϕk‖2. (9)

where μ1 is the step size for the SG algorithm, which is taken as μ1 = 1
sk

, and s0 = 1.
However, it is worth noting that the variables xk−i, ūk−i and vk−i in ϕk are unknown,

and thus the algorithms in (7)–(9) cannot be implemented directly. The solution is to use the
idea of the auxiliary model to build the following auxiliary models based on the parameter
estimate θ̂k:

x̂k = ϕ̂T
s,kθ̂s,k,

ˆ̄uk = ĉ1,k f1(uk) + ĉ2,k f2(uk) + · · ·+ ĉm,k fm(uk),

v̂k = yk − ϕ̂T
kθ̂k,

and use the outputs x̂k−i, ˆ̄uk−i and v̂k−i of the auxiliary models instead of the unknown
variables xk−i, ūk−i and vk−i to construct the estimates of the information vectors:

ϕ̂k =

[
ϕ̂s,k
ϕ̂n,k

]
,

ϕ̂s,k = [−x̂k−1,−x̂k−2, · · · ,−x̂k−na , ˆ̄uk−1, ˆ̄uk−2, · · · , ˆ̄uk−nb
, f (uk)]

T,

ϕ̂n,k = [v̂k−1, v̂k−2, · · · , v̂k−nd
]T.

The SG algorithm update the parameter estimate using the current data information,
thus its computational complexity is low, but estimation accuracy needs to be improved.
Based on the multi-innovation identification theory [44,45], a slide window of length p
(i.e., innovation length) is built to improve the estimation performance of the SG algorithm,
which contains the data information from the current time k to k − p + 1, i.e.,

Ep,k =
[
yk − ϕ̂T

kθ̂k−1, yk−1 − ϕ̂T
k−1θ̂k−2, · · · , yk−p+1 − ϕ̂T

k−p+1θ̂k−p
]T. (10)

Define the stacked output vector Y p,k and information matrix Φ̂p,k as

Y p,k := [yk, yk−1, · · · , yk−p+1]
T ∈ R

p,

Φ̂p,k := [ϕ̂k,ϕ̂k−1, · · · ,ϕ̂k−p+1] ∈ R
n×p.

In principle, the estimate θ̂t−1 is closer to the optimal value θ than θ̂t−i for i = 2, · · · , p,
then Equation (10) can be approximated by

Ep,k = Y p,k − Φ̂
T

p,kθ̂k−1.
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In summary, we can obtain the AM-MISG algorithm as follows:

θ̂k = θ̂k−1 +
Φ̂p,k

sk
Ep,k, (11)

Ep,k = Y p,k − Φ̂
T

p,kθ̂k−1, (12)

sk = sk−1 + ‖ϕ̂k‖2, s0 = 1, (13)

Y p,k = [yk, yk−1, · · · , yk−p+1]
T, (14)

Φ̂p,k = [ϕ̂k,ϕ̂k−1, · · · ,ϕ̂k−p+1], (15)

ˆ̄uk = f (uk)ĉk, (16)

x̂k = ϕ̂T
s,kθ̂s,k, (17)

v̂k = yk − ϕ̂T
kθ̂k, (18)

f (uk) = [ f1(uk), f2(uk), · · · , fm(uk)], (19)

ϕ̂k =

[
ϕ̂s,k
ϕ̂n,k

]
, (20)

ϕ̂s,k = [−x̂k−1,−x̂k−2, · · · ,−x̂k−na , ˆ̄uk−1, ˆ̄uk−2, · · · , ˆ̄uk−nb
, f (uk)]

T, (21)

ϕ̂n,k = [v̂k−1, v̂k−2, · · · , v̂k−nd
]T, (22)

θ̂k =

[
θ̂s,k
d̂k

]
, (23)

θ̂s,k = [âT
k, b̂

T

k, ĉT
k]

T. (24)

Please note that the AM-MISG algorithm will reduce to the auxiliary model-based
stochastic gradient (AM-SG) algorithm when p = 1.

4. The AM-MIFSG Algorithm

This section deduces an AM-MIFSG algorithm to improve the parameter estimation
performance of above AM-MISG identification algorithm.

In (7), the first-order gradient is used to update the parameter vector. In contrast to the
integer order, for the quadratic objective function, the derivative of a fractional-order near
a point is uncertain, so its essential property is nonlocal. This excellent property enables the
fractional-order gradient method to jump out of local optimum and reach global minimum
point more quicker. Here, we propose to add the fractional-order gradient in addition to
the first-order gradient, and the final update relation is written as:

θ̂k = θ̂k−1 − μ1
∂J(θ)

∂θ
− μα

∂α J(θ)
∂θ

, (25)

where μα is the step size for the factional order derivative ∂α. According to the Caputo
and Riemann–Liouville definition [46,47], the fractional derivation of a power function
f (t) = tn (n > −1)is defined as:

Dα
t tn =

Γ(n + 1)
Γ(n + 1 − α)

tn−α, (26)

where Dα
t is the fractional derivative operator of order α and Γ is the gamma function

which defined as Γ(n) = (n − 1)!.
According to (26), the fractional-order gradient in Equation (25) can be written

as follows:

∂α J(θ)
∂θ

= −ϕk

(
∂αθ

∂θ

)
= −ϕk

(
Γ(2)

Γ(2 − α)
θ1−α

)
, (27)
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where Γ(2) = 1. Then Equation (25) can be approximated as follows:

θ̂k = θ̂k−1 +
ϕk
sk

ek +
ψk
sα,k

ek, 0 < α < 1, (28)

sα,k = sα,k−1 + ‖ψk‖2, sα,0 = 1, (29)

ψk =
diag(ϕk)(|θ|1−α

k−1 )

Γ(2 − α)
. (30)

Please note that the absolute value of θ is used to avoid complex values, this is a
common way of dealing with fractional-order gradient [38]. The introduction of fractional-
order parameter α provides additional degrees of freedom and increases the flexibility of
the parameter estimation.

Similar to the AM-MISG algorithm in Section 3, expanding the information vector ψk
to the information matrix

Ψp,k = [ψk, ψk−1, · · · , ψk−p+1],

and applying the auxiliary model identification idea, we can obtain the following AM-
MIFSG algorithm:

θ̂k = θ̂k−1 +

(
Φ̂p,k

sk
+

Ψ̂p,k

sα,k

)
Ep,k, (31)

Ep,k = Y p,k − Φ̂
T

p,kθ̂k−1, (32)

sk = sk−1 + ‖ϕ̂k‖2, s0 = 1, (33)

sα,k = sα,k−1 + ‖ψ̂k‖2, sα,0 = 1, (34)

Y p,k = [yk, yk−1, · · · , yk−p+1]
T, (35)

Φ̂p,k = [ϕ̂k,ϕ̂k−1, · · · ,ϕ̂k−p+1], (36)

Ψ̂p,k = [ψ̂k, ψ̂k−1, · · · , ψ̂k−p+1], (37)

ψ̂j =
diag(ϕ̂j)(|θ̂|1−α

k−1 )

Γ(2 − α)
, j = k, k − 1, · · · , k − p + 1, (38)

ˆ̄uk = f (uk)ĉk, (39)

x̂k = ϕ̂T
s,kθ̂s,k, (40)

v̂k = yk − ϕ̂T
kθ̂k, (41)

f (uk) = [ f1(uk), f2(uk), · · · , fm(uk)], (42)

ϕ̂k =

[
ϕ̂s,k
ϕ̂n,k

]
, (43)

ϕ̂s,k = [−x̂k−1,−x̂k−2, · · · ,−x̂k−na , ˆ̄uk−1, ˆ̄uk−2, · · · , ˆ̄uk−nb
, f (uk)]

T, (44)

ϕ̂n,k = [v̂k−1, v̂k−2, · · · , v̂k−nd
]T, (45)

θ̂k =

[
θ̂s,k
d̂k

]
, (46)

θ̂s,k = [âT
k, b̂

T

k, ĉT
k]

T. (47)

Here, the above AM-MIFSG algorithm reduces to the auxiliary model-based fractional
stochastic gradient (AM-FSG) algorithm when p = 1.

Remark 1. In general, as the innovation length p increases, the collected data are being used more
fully, and therefore the estimation accuracy is gradually improved. However, the computational
amount increases at the same time. How to choose optimal innovation p is an open problem to be
solved. In practice, we often choose p < n.
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Remark 2. The differential order α is chose in the range of (0,1). The orders may show different
characteristics for different systems, and can be adjusted during the procedure as needed.

The implementation of the AM-MIFSG algorithm is listed as follows.

1. Choose p, α and initialize: let k = 1, θ̂0 =

[
θ̂s,0
d̂0

]
= 1n/p0 , s0 = 1, sα,0 = 1, and

set x̂i = 1/p0, ˆ̄ui = 1/p0 and v̂i = 1/p0 for i � 0, p0 = 106, and give the base
function fi(·).

2. Collect the input-output data uk and yk, form the basis function vector f (uk) by (42),
and the information vectors ϕ̂k by (43), ϕ̂s,k by (44) and ϕ̂n,k by (45).

3. Compute ψ̂j by (38). Form the stacked output vector Y p,k by (35), the information
matrices Φ̂p,k and Ψ̂p,k by (36) and (37).

4. Compute the innovation vector Ep,k by (32), sk by (33) and sα,k by (34).
5. Update the parameter estimate θ̂k by (31), compute the estimates ˆ̄uk by (39), x̂k

by (40), v̂k by (41).
6. Increase k by 1, go to step 2.

The algorithm obtained above combined with the method in [48–53] can cope with
linear and nonlinear systems with different disturbances. Furthermore, prediction models
or soft sensor models can be obtained with the assistance of other parameter estimation
algorithms [54–59] and can be applied to process control and other fields [60–65].

5. Convergence Analysis

Theorem 1. For the system in (1)–(2) and the AM-MIFSG algorithm in (31)–(47), assume that
the noise sequence {vk} satisfies

(A1) E[vk|Ft] = 0, a.s., E[v2
k |Ft] � σ2 < ∞, a.s.,

and there exist an integer Nk and a positive constant � independent of k such that the following
persistent excitation condition holds,

(A2)
Nk

∑
i=0

Φ̂
T

α,p,k+iΦ̂α,p,k+i

sk+i
� �I, a.s., (48)

where Φ̂α,p,k = [ϕ̂k � θα,ϕ̂k−1 � θα, · · · ,ϕ̂k−p+1 � θα], θα := 1n + θ̂
1−α
k−1 , � denotes an element-

by-element multiplication of vectors. Then the parameter estimation error given by the AM-MIFSG
algorithm satisfies limk→∞ E[‖θ̂k − θ‖2] → 0.

Proof. Define the parameter estimation error θ̄k = θ̂k − θ ∈ R
n. To simplify the proof,

assuming sα,k = sk/Γ(2 − α). Inserting (32) into (31) and rearranging, we have

θ̄k = θ̄k−1 +
Φ̂p,k

sk

[
Y p,k − Φ̂

T

p,kθ̂k−1

]
� θα

= θ̄k−1 +
Φ̂p,k

sk

[
ΦT

p,kθk−1 + V p,k − Φ̂
T

p,kθ̂k−1

]
� θα

=: θ̄k−1 +
Φ̂p,k

sk

[
μp,k − ςp,k + V p,k

]
� θα, (49)

where

μq,t := [Φp,k − Φ̂p,k]
Tθ ∈ R

p, ςq,t := Φ̂
T

p,kθ̄k−1 ∈ R
p,

V p,k := [vk, vk−1, · · · , vk−p+1] ∈ R
p.
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Pre-multiplying (49) by θ̄
T

k gives

θ̄
T

kθ̄k = θ̄
T

k−1θ̄k−1 +
2
sk

θ̄
T

k−1Φ̂α,p,k[μp,k − ςp,k + V p,k]

+
1
r2

k
[μp,k − ςp,k + V p,k]

TΦ̂
T

α,p,kΦ̂α,p,k[μp,k − ςp,k + V p,k].

The rest can be proved in a similar to the way in [66].

6. Examples

Consider the following Hammerstein OEMA system:

yk =
B(z)
A(z)

ūk + D(z)vk,

A(z) = 1 + a1z−1 + a2z−2 = 1 + 0.45z−1 + 0.56z−2,

B(z) = 1 + b1z−1 + b2z−2 = 1 + 0.25z−1 − 0.35z−2,

D(z) = 1 + d1z−1 = 1 − 0.54z−1,

ūk = c1uk + c2u2
k + c3u3

k = 0.52uk + 0.54u2
k + 0.82u3

k ,

θ = [a1, a2, b1, b2, c1, c2, c3, d1]
T = [0.45, 0.56, 0.25,−0.35, 0.52, 0.54, 0.82,−0.54]T.

In this example, the input {uk} is a persistently excited signal sequence and {vk}
is a white noise sequence with zero mean and variances σ2 = 0.802. The data length is
taken as L = 4000, where the first 3500 samples are assigned for system identification
and the remaining 500 samples are assigned for prediction and validation. The details are
as follows.

1. Firstly, applying the AM-MISG algorithm and the AM-MIFSG algorithm with
α = 0.94 to estimate the parameters of considered system. Tables 1 and 2 show the
parameter estimates and their errors with p = 1, 2, 4 and 6. Figures 2 and 3 indicate the
parameter estimation errors δ := ‖θ̂k − θ‖/‖θ‖ versus k.
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Figure 2. The AM-MISG estimation error δ versus k with p = 1, 2, 4 and 6 and the AM-MIFSG
estimation error δ versus k with p = 2 and 6.
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Figure 3. The AM-MIFSG estimation error δ versus k with p = 1, 2, 4 and 6.

Table 1. The AM-MISG estimates and errors p = 1, 2, 4 and 6.

p k a1 a2 b1 b2 c1 c2 c3 d1 δ(%)

1 100 0.03695 0.23553 −0.03327 −0.20875 0.27338 0.03195 0.49278 −0.31825 61.82507
200 0.07113 0.34613 −0.03653 −0.29482 0.32261 0.07100 0.59507 −0.37276 52.41770
500 0.10951 0.42150 −0.04098 −0.34040 0.35083 0.10812 0.64790 −0.39006 46.76773
1000 0.13632 0.46020 −0.03759 −0.36082 0.36386 0.12852 0.67688 −0.39765 43.71611
2000 0.16601 0.49396 −0.03164 −0.38052 0.37629 0.14894 0.70178 −0.40765 40.77833
3000 0.18127 0.50703 −0.02857 −0.38630 0.38212 0.15952 0.71245 −0.41028 39.42179

2 100 0.08718 0.45055 −0.02857 −0.34926 0.38250 0.12367 0.64113 −0.44165 45.20563
200 0.21252 0.53700 −0.00743 −0.40687 0.43140 0.19230 0.74170 −0.46339 34.63613
500 0.27602 0.53381 0.01178 −0.39497 0.44676 0.23408 0.76740 −0.46163 29.78555
1000 0.29539 0.53658 0.03287 −0.38875 0.45350 0.26006 0.78181 −0.45922 27.12588
2000 0.31601 0.54589 0.05191 −0.39039 0.45935 0.28327 0.79322 −0.46058 24.67852
3000 0.32385 0.54810 0.06104 −0.38751 0.46189 0.29484 0.79696 −0.46005 23.55543

4 100 0.27486 0.60968 0.03978 −0.39097 0.50049 0.23079 0.79164 −0.50729 28.18166
200 0.37933 0.57741 0.09918 −0.37644 0.52086 0.30714 0.83586 −0.48517 19.67676
500 0.38912 0.54069 0.13209 −0.34877 0.51837 0.35074 0.82239 −0.48274 16.01070
1000 0.38933 0.54894 0.15511 −0.34580 0.51921 0.37894 0.82425 −0.48325 13.73325
2000 0.40081 0.55745 0.17376 −0.34949 0.51943 0.40309 0.82417 −0.48612 11.58755
3000 0.40202 0.55950 0.18102 −0.34717 0.51845 0.41433 0.82086 −0.48675 10.74226

6 100 0.35169 0.61755 0.08824 −0.35474 0.53581 0.30223 0.83886 −0.52654 20.81443
200 0.40866 0.59002 0.16182 −0.34923 0.53654 0.37953 0.84693 −0.50426 13.13328
500 0.42035 0.54952 0.18298 −0.32811 0.52821 0.42093 0.81930 −0.50377 9.82957
1000 0.41823 0.56425 0.20204 −0.33346 0.53010 0.44667 0.82367 −0.50609 7.80786
2000 0.42981 0.56613 0.21766 −0.34005 0.52962 0.46847 0.82213 −0.50962 5.89007
3000 0.42678 0.56730 0.22265 −0.33911 0.52764 0.47733 0.81677 −0.51053 5.32836

True values 0.45000 0.56000 0.25000 −0.35000 0.52000 0.54000 0.82000 −0.54000
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Table 2. The AM-MIFSG estimates and errors with p = 1, 2, 4 and 6.

p k a1 a2 b1 b2 c1 c2 c3 d1 δ(%)

1 100 0.15708 0.59506 −0.10818 −0.36395 0.38627 0.08191 0.73420 −0.36577 46.47154
200 0.27641 0.58549 −0.07338 −0.37468 0.42517 0.13842 0.81526 −0.37310 38.73219
500 0.29432 0.55031 −0.03625 −0.35604 0.43184 0.17816 0.82178 −0.37342 34.99604
1000 0.29755 0.54549 −0.01005 −0.35097 0.43470 0.20499 0.82736 −0.37378 32.70875
2000 0.30878 0.55280 0.01095 −0.35501 0.43788 0.22916 0.83306 −0.37827 30.47638
3000 0.31387 0.55453 0.02109 −0.35366 0.43918 0.24158 0.83382 −0.37952 29.40027

2 100 0.35829 0.62744 0.15273 −0.37663 0.55109 0.23357 0.78715 −0.59971 23.46638
200 0.42746 0.58770 0.19005 −0.36598 0.56024 0.31456 0.81037 −0.55565 16.12428
500 0.43121 0.55375 0.20459 −0.34652 0.55703 0.35970 0.79703 −0.54665 12.87485
1000 0.42642 0.56004 0.21858 −0.34550 0.55880 0.38789 0.80138 −0.54408 10.92266
2000 0.43305 0.56476 0.22928 −0.34967 0.55890 0.41208 0.80204 −0.54336 9.22414
3000 0.43194 0.56535 0.23216 −0.34777 0.55770 0.42315 0.79911 −0.54236 8.52773

4 100 0.37614 0.62528 0.15435 −0.35937 0.56108 0.31419 0.83373 −0.62653 18.87062
200 0.43032 0.60035 0.22302 −0.36272 0.55406 0.42250 0.82836 −0.56139 9.08948
500 0.44845 0.55152 0.22616 −0.33881 0.54491 0.46286 0.79775 −0.55411 6.00591
1000 0.44218 0.56900 0.23948 −0.34615 0.55133 0.48607 0.81308 −0.55361 4.43982
2000 0.44975 0.56313 0.24931 −0.35057 0.55048 0.50632 0.81111 −0.55405 3.24848
3000 0.44202 0.56473 0.25018 −0.34923 0.54786 0.51266 0.80477 −0.55341 3.01322

6 100 0.37154 0.63684 0.14344 −0.33325 0.54734 0.38404 0.84946 −0.62029 15.86854
200 0.43128 0.61835 0.23888 −0.36493 0.53142 0.48850 0.83328 −0.55888 5.77068
500 0.45536 0.55467 0.23160 −0.34012 0.52315 0.50947 0.79826 −0.55434 3.08071
1000 0.44922 0.57123 0.24453 −0.35088 0.53625 0.52484 0.82763 −0.55500 2.04837
2000 0.45296 0.55918 0.25378 −0.35400 0.53417 0.53985 0.82120 −0.55601 1.49579
3000 0.44123 0.56369 0.25237 −0.35328 0.53073 0.54151 0.81199 −0.55532 1.53252

True values 0.45000 0.56000 0.25000 −0.35000 0.52000 0.54000 0.82000 −0.54000

2. Secondly, to validate the influence of the fraction order α, in the AM-MIFSG
algorithm, we take p = 5 and 6, and α =0.80, 0.90 and 0.92, respectively, the simulation
results are shown in Tables 3 and 4, and Figures 4 and 5.

3. In the end, a different data set (Le = 500 samples from k = 3501 to 4000) and the
estimated model obtained by the AM-MIFSG algorithm with p = 6 and α = 0.92 are used
for model validation. The predicted output and true output are plotted in Figure 6 from
k = 3501 to 3700 and Figure 7 from k = 3501 to 4000, where the average predicted output
error is

δe =
1
Le

[
4000

∑
k=3501

[ŷk − yk]
2

]1/2

= 0.0658,

and the dots line is the output ŷk of the estimated model and the solid line is the true
output yk.

From Tables 1–4 and Figures 2–7, we can draw the following conclusions: (1) with
the innovation length p increases, both the AM-MISG and the AM-MIFSG algorithm can
give higher parameter estimation accuracy; (2) in general, the AM-MIFSG algorithm has
a faster convergence rate than the AM-MISG algorithm in the same situation, and the
introduction of the fractional-order can improve the parameter estimation accuracy; (3) the
convergence rate of the AM-MIFSG increases as the fractional-order α increases, the α
within the range of [0.90, 0.95] seems to be an appropriate choice which can give better
estimation results for the Hammerstein output-error systems; (4) the estimated model
obtained by the AM-MIFSG algorithm can well capture system dynamics.
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Table 3. The AM-MIFSG estimates and errors with α = 0.80, 0.90 and 0.92 (p = 5).

α k a1 a2 b1 b2 c1 c2 c3 d1 δ(%)

0.80 100 0.23581 0.59985 0.09673 −0.40126 0.35249 0.17777 0.82055 −0.48512 32.54342
200 0.43614 0.59824 0.19561 −0.40423 0.39862 0.34638 0.91657 −0.45204 18.57503
500 0.44156 0.53689 0.21507 −0.35179 0.39149 0.42275 0.86423 −0.46396 13.37312

1000 0.43930 0.56210 0.23408 −0.35731 0.40462 0.46695 0.88603 −0.47323 11.19137
2000 0.44866 0.55624 0.24854 −0.35742 0.40774 0.49743 0.88189 −0.48368 9.82294
3000 0.43832 0.56284 0.25029 −0.35452 0.40630 0.50670 0.87138 −0.48769 9.37582

0.90 100 0.25965 0.58762 0.16306 −0.43464 0.41011 0.32565 0.75782 −0.62289 23.25864
200 0.43757 0.58825 0.25570 −0.43466 0.45124 0.46639 0.85201 −0.55254 9.35233
500 0.46161 0.53207 0.24689 −0.37626 0.45338 0.49568 0.83323 −0.55019 6.10290

1000 0.45443 0.55626 0.25376 −0.37420 0.46646 0.51604 0.85868 −0.55042 5.04977
2000 0.45629 0.55114 0.25927 −0.36918 0.46731 0.53246 0.85369 −0.55163 4.58180
3000 0.44425 0.55646 0.25785 −0.36480 0.46517 0.53551 0.84496 −0.55137 4.29344

0.92 100 0.36347 0.63518 0.16075 −0.38255 0.49377 0.31352 0.84459 −0.60486 18.82927
200 0.44017 0.60438 0.24641 −0.38609 0.49205 0.43973 0.85042 −0.53959 8.24557
500 0.45824 0.54625 0.24047 −0.35090 0.48640 0.47823 0.81880 −0.53739 4.87871

1000 0.45085 0.56619 0.25046 −0.35726 0.49783 0.50209 0.84203 −0.53918 3.35483
2000 0.45508 0.55783 0.25789 −0.35824 0.49792 0.52152 0.83812 −0.54161 2.43473
3000 0.44406 0.56191 0.25685 −0.35603 0.49533 0.52624 0.82969 −0.54185 2.13756

True values 0.45000 0.56000 0.25000 −0.35000 0.52000 0.54000 0.82000 −0.54000

Table 4. The AM-MIFSG estimates and errors with α = 0.80, 0.90 and 0.92 (p = 6).

α k a1 a2 b1 b2 c1 c2 c3 d1 δ(%)

0.80 100 0.26215 0.64436 0.06610 −0.35700 0.41270 0.26270 0.84456 −0.55007 27.25073
200 0.42892 0.61731 0.19706 −0.36999 0.43708 0.42526 0.90034 −0.50010 12.53946
500 0.44308 0.55154 0.21290 −0.33527 0.42696 0.47865 0.84239 −0.50720 8.39876

1000 0.44126 0.56985 0.23379 −0.34728 0.44327 0.50887 0.87299 −0.51449 6.95024
2000 0.44893 0.55908 0.24812 −0.35102 0.44420 0.53026 0.86479 −0.52163 6.06418
3000 0.43731 0.56558 0.24875 −0.35051 0.44213 0.53393 0.85338 −0.52364 5.87107

0.90 100 0.32475 0.62263 0.16067 −0.40949 0.45832 0.35530 0.80222 −0.63261 18.70725
200 0.44220 0.60427 0.26639 −0.41415 0.47360 0.48866 0.84739 −0.55477 7.38987
500 0.46480 0.54124 0.24811 −0.36447 0.47263 0.50941 0.82077 −0.55289 4.30671

1000 0.45622 0.56250 0.25474 −0.36674 0.48814 0.52662 0.85226 −0.55350 3.52333
2000 0.45641 0.55356 0.25988 −0.36364 0.48753 0.54148 0.84452 −0.55464 3.17023
3000 0.44318 0.55972 0.25723 −0.36073 0.48473 0.54283 0.83450 −0.55411 2.90188

0.92 100 0.38062 0.64556 0.16445 −0.36053 0.51634 0.33828 0.85954 −0.61558 17.41472
200 0.44313 0.61605 0.25735 −0.38049 0.50254 0.46548 0.84460 −0.54615 6.92261
500 0.46199 0.55073 0.24347 −0.34802 0.49615 0.49609 0.80967 −0.54393 3.60595

1000 0.45377 0.56875 0.25282 −0.35650 0.51054 0.51672 0.83983 −0.54582 2.32078
2000 0.45586 0.55746 0.25944 −0.35758 0.50944 0.53419 0.83334 −0.54795 1.60509
3000 0.44334 0.56272 0.25702 −0.35604 0.50628 0.53692 0.82365 −0.54786 1.35745

True values 0.45000 0.56000 0.25000 −0.35000 0.52000 0.54000 0.82000 −0.54000
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Figure 4. The AM-MIFSG estimation error δ versus k with α = 0.80, 0.90 and 0.92 (p = 5).
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Figure 5. The AM-MIFSG estimation error δ versus k with α = 0.80, 0.90 and 0.92 (p = 6).
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Figure 6. The predicted output ŷk and true output yk from k = 3501 to 3700.
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Figure 7. The predicted output ŷk and true output yk from k = 3501 to 4000.

7. Conclusions

This paper derives an AM-MIFSG estimation algorithm for Hammerstein output-error
systems based on the key-term separation principle and auxiliary model identification
idea. By means of the key-term separation principle, all the parameters in the linear and
nonlinear blocks are separated, and the unknown variables in the identification model are
replaced by the outputs of the auxiliary models. The analysis of the simulation results
shows that the proposed algorithm obtains better parameter estimation performance than
the AM-MISG algorithm. However, there also exist many topics that need to be further
discussed. For example, is this algorithm still effective for systems with missing data?
And is the performance of the algorithm can be improved by introducing a time-varying
differential order α? These topics remain as open problems for future studies.
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Abstract: Due to the ubiquitous dynamics of industrial processes, the variable time lag raises great
challenge to the high-precision industrial process monitoring. To this end, a process monitoring
method based on the dynamic autoregressive latent variable model is proposed in this paper. First,
from the perspective of process data, a dynamic autoregressive latent variable model (DALM) with
process variables as input and quality variables as output is constructed to adapt to the variable time
lag characteristic. In addition, a fusion Bayesian filtering, smoothing and expectation maximization
algorithm is used to identify model parameters. Then, the process monitoring method based on
DALM is constructed, in which the process data are filtered online to obtain the latent space distri-
bution of the current state, and T2 statistics are constructed. Finally, by comparing with an existing
method, the feasibility and effectiveness of the proposed method is tested on the sintering process of
ternary cathode materials. Detailed comparisons show the superiority of the proposed method.

Keywords: process monitoring; dynamics; variable time lag; dynamic autoregressive latent variables
model; sintering process

1. Introduction

To ensure production safety and product quality, process monitoring technology
has become an indispensable ingredient for industrial processes in recent years. It is
commonly divided into model-based methods and data-driven methods. Compared with
the former ones, the later ones can take advantage of the routine measurement and do not
rely on process prior knowledge and precise mechanism models, which are unavailable
or cost-intensive to obtained at times [1,2]. Therefore, they are widely used in modern
industrial process.

During the past decades, many data-driven process monitoring methods have been
published [3–6]. Kim et al. [7] proposed a probabilistic PCA to monitoring industrial
processes, which firstly extracts redundant information from the variables and constructs fea-
ture distribution for monitoring, but it only extracts features of the input space. Zhao et al. [8]
proposed the probabilistic PLSR process monitoring method to monitor quality-related
faults, which can simultaneously consider the fault characteristics of the input and output
spaces for monitoring. Furthermore, Chen et al. [9] proposed a probability-related PCA
method for detecting incipient faults, which can greatly improve the detection ability of
minor faults. Probabilistic framework modeling can overcome process noise [10]. However,
the process monitoring methods currently proposed are all static methods, and the actual
production processes are dynamical featured with variable time lag [11,12].

Process dynamics could refer to the mutual influence before and after the current
sampling [13]. To deal with the dynamics of process, Ku et al. [14] built an augmented

Machines 2021, 9, 229. https://doi.org/10.3390/machines9100229 https://www.mdpi.com/journal/machines261
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matrix and extended the static PCA model to the dynamic PCA (DPCA) for process
monitoring. However, the introduction of augmented matrix increases the parameter
dimensions called the curse of dimensionality [15]. Motivated by DPCA, Li et al. [16]
proposed a dynamic latent variable model for monitoring the Tennessee Eastman process.
In this model, the autoregressive model is used to extract data dynamic information, and
PCA is performed to reduce redundancy between variables. It divides variable order
reduction and dynamic information extraction into two stages, which makes the system
complex and not easy to tune. In addition, compared with process variables, quality
variables also contain useful fault information [17]. For this reason, Ge et al. [18] proposed
a supervised linear dynamic system model process monitoring method. This method uses
a first-order autoregressive equation to simulate the first-order dynamic [19] but does not
take the variable time lag into account.

Variable time lag refers to the delay between the effects of variables [20]. The existing
monitoring methods considering time lag are usually divided into two categories [21]. One
is to find the time lag between variables and translate the data to eliminate the time lag
and then establish a static process monitoring model for the processed data. For example,
Wang et al. [22] proposed a spatial reconstruction method to identify system time lag, then
aligned the data and established a monitoring model, but the alignment operation will
destroy the data structure and cause data loss. The other idea is to use time lag as an
unknown parameter of the process monitoring model and identify the parameters through
a data-driven method. For example, Huber et al. [23] proposed to take the time lag as a
parameter of a high-order state space system model and then solve it uniformly with the
model parameters, but this method relies on the setting of the time lag parameter and the
parameter identification method.

From the above discussions, it can be observed that the variable time lag characteristic
of a process makes the previous work unfavorable. However, this characteristic is common
in industrial processes [24,25]. To deal with this problem, this paper proposes a process
monitoring method based on a dynamic autoregressive latent variable model. Firstly, from
the data point of view, a linear dynamic model is constructed between process variables
and quality variables, and the dynamic information of process input and process output is
compressed to latent variables, and then a dynamic autoregressive latent variable model
(DALM) is constructed for latent variables to extract variable time lag information. In
addition, a fusion Bayesian filtering, smoothing and expectation maximization algorithm is
used to identify model parameters. Then, the DALM is applied to the industrial monitoring
process. The process variables are filtered through improved Bayesian filtering technology
to obtain the latent space distribution of the current state, and the T2 statistics of the latent
space are constructed and monitored [26] to realize the process monitoring task. The
main contribution can be concluded as (1) a process monitoring method based on dynamic
autoregressive latent variable model is proposed in this paper; (2) a dynamic autoregressive
latent variable model (DALM) is developed to extract variable time lag information; (3) a
fusion Bayesian filtering, smoothing and expectation maximization algorithm is improved
to identify model parameters; (4) based on the DALM, the T2 statistics of the latent space
are constructed to realize the process monitoring task.

The main structure of the paper is arranged as follows. In the second section, a
dynamic autoregressive latent variable model is proposed, and the parameter identification
algorithm of the model is derived in detail. A process monitoring method based on DALM
is proposed in the third chapter. The fourth section uses the monitoring method to monitor
the sintering process of the ternary cathode material to verify the monitoring performance
of the proposed method. Finally, the last section concludes.

2. Modeling Method Based on Dynamic Autoregressive Latent Variable Model

This section proposes a dynamic autoregressive latent variable modeling method for
the accurate modeling of dynamical industrial processes. Bayesian filtering and smoothing
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inference were used to obtain the spatial distribution of latent variables, and the parameters
of the model were identified by combining with the EM algorithm.

2.1. Dynamic Autoregressive Latent Variable Model Structure

In order to consider the dynamic characteristics of the process, the traditional proba-
bility latent variable model [27] establishes the relationship between the current moment
and the previous moment data, as shown in (1).

zt = Azt−1 + ηz
t ,

xt = Bxzt + ηx
t ,

yt = Byzt + η
y
t ,

(1)

where the structure consists of a linear Gaussian dynamic equation and two linear Gaussian
observation equations, zt is the latent variable of the process state at time t; xt and yt are
the process variable and quality variable at time t, respectively; A, Bx and By are their own
load matrix. The Gaussian dynamic equation is used to describe the dynamic relationship
of the process data. The observation equation compresses the information of the process
data into low-dimensional latent variables. Therefore, an accurate mathematical model can
be established for the dynamic process, but the structure does not consider the time lag
characteristics of the process.

In order to further consider the characteristics of process time lag, on the basis of
dynamic probabilistic latent variable model (DPLVM) [13], the trend similarity analysis
algorithm [22] was first used to obtain the time lag coefficient L of the current process,
and then an autoregressive equation was constructed for the latent variables to describe
the variable time lag information. Among them, the autoregressive equation models
the process dynamics and time lag characteristics, and the linear observation equation
models the cross-correlation of data. The probability graph model of the model is shown in
Figure 1, and the mathematical expression is shown in (2).

zt = Aht−1 + ηz
t ,

xt = Bxzt + ηx
t ,

yt = Byzt + η
y
t ,

(2)

where zt ∈ Rd represents the latent variable of the process state at time t, ht−1 =

[ zt−1
T zt−2

T · · · zt−L
T ]

T ∈ RdL is the augmented state variable containing the la-
tent variables at time L in the past, xt ∈ Rv is the observed value of the process variable
at time t, yt ∈ Rk is the observed value of the quality variable at time t and d, v, k, re-
spectively, correspond to the dimensions of latent variables, process variables and quality
variables. A ∈ Rd×dL is the state transition matrix, L is the time lag value of the process, and
Bx ∈ Rv×d, By ∈ Rk×d are the state divergence matrices. ηz

t ∈ Rd, ηx
t ∈ Rv, and η

y
t ∈ Rk

are Gaussian noise terms of latent variables, process variables and quality variables, respec-
tively. Assuming that the noises are independent of each other, the distributions obeyed are
ηz

t ∼ N(0, Σz), ηx
t ∼ N(0, Σx) and η

y
t ∼ N(0, Σy), respectively. Latent variables represent

the current state of the process, and this model is an extension of the traditional DPLVM.

Lz − Lz − z z z t Lz + − t Lz + − tz − tz tz +

x y x y ty − ty ty +t Lx+ − t Ly + − t Ly + −t Lx + − tx − tx tx +  
Figure 1. Probability graph model of dynamic autoregressive latent variable model.
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2.2. Parameter Identification Based on EM Algorithm

Since only xt and yt can be observed in the process, and latent variables are abstracted
to describe the state of the process and are unobservable, the EM algorithm was used to
identify the parameters of the model [28]. Each iteration of the EM algorithm consisted
of two steps: E step, seeking expectation (exception); M step, seeking maximization
(maximization). This section uses Bayesian filtering and smoothing to infer the spatial
distribution of latent variables, so as to solve the difficult problem of calculating latent
variable statistics.

Under the framework of probability, the model assumed that the latent variables at
the initial moment obeyed a Gaussian distribution with mean u0 and variance V0, that is,
z0, z−1, · · · , z1−L ∼ N(u0, V0). From the knowledge of probability theory [16], it is easy
to get that the distribution of the latent variable zt, the process variable xt and the quality
variable yt obey the Gaussian distribution, as shown in (3).

zt|zt−1, zt−2, · · · , zt−L ∼ N(A1zt−1 + A2zt−2 + · · ·+ ALzt−L, Σz),

xt|zt ∼ N(Bxzt, Σx),

yt|zt ∼ N(Byzt, Σy).

(3)

The parameters that needed to be identified were denoted as Θ =
{

A, Bx, By, u0, V0, Σz, Σx ,
Σy

}
, of which A = [A1, A2, · · · , AL]. According to the naive what you see is what you get

thought, the parameter identification problem was transformed into the maximum ob-
servation data x1:T , y1:T . The log-likelihood function on the parameter Θ is shown in (4),
where x1:T represents the observation sequence of the process variable x1, x2, · · · , xT , y1:T
represents the observation sequence y1, y2, · · · , yT of the quality variable, where T is the
total number of training samples, namely,

Θnew = arg max
Θ

log P(x1:T , y1:T |Θ). (4)

The EM algorithm [29] was used to solve the optimization problem of Equation (4). In
the E step of the EM algorithm, the log-likelihood function log P(x1:T , y1:T , z1−L:T |Θ) of the
complete data had to be calculated with respect to the conditional expectation of the latent
variable z1−L:T to obtain the objective cost function (Q function), as shown in (5).

Q
(

Θ|Θold
)
= Ez1−L:T | (x1:T ,y1:T ,Θold){log P(x1:T , y1:T , z1−L:T |Θ)}. (5)

Actually, the likelihood function can be formulated by the application of the product
rule of probability. From the model structure, the log-likelihood function of the complete
data was expanded, as expressed by (6).

log P
(

x1:T , y1:T , z(−L+1):T |Θ
)

= log
{

P(z0, z−1, · · · , z−L+1)
T
∏

t=1
P(zt|zt−1, zt−2, · · · , zt−L)P(xt|zt)P(yt|zt)

}
= log P(z0, z−1, · · · , z−L+1) +

T
∑

t=1
log P(zt|zt−1, zt−2, · · · , zt−L) +

T
∑

t=1
log P(xt|zt)

+
T
∑

t=1
log P(yt|zt).

(6)

For clear writing, we denote EzT ( f (xt, yt, zt)) = Ez1−L:T | (x1:T ,y1:T ,Θold)( f (xt, yt, zt)), then
the expectation of the complete data likelihood function log P(x1:T , y1:T , z(−L+1):T |Θ) with
respect to the latent variable distribution P(z(−L+1):T |x1:T , y1:T , Θold) is shown in (7).
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Q
(

Θ|Θold
)
= EzT{log p(x1:T , y1:T , z1−L:T |Θ)}

= − 1
2

⎧⎪⎪⎨⎪⎪⎩log |V0|+ EzT

⎛⎜⎜⎝
⎡⎢⎣ z0

...
z−L+1

⎤⎥⎦
T

V−1
0

⎡⎢⎣ z0
...

z−L+1

⎤⎥⎦
⎞⎟⎟⎠− 2EzT

⎛⎜⎜⎝
⎡⎢⎣ z0

...
z−L+1

⎤⎥⎦
T⎞⎟⎟⎠V−1

0 u0 + uT
0 V−1

0 u0

⎫⎪⎪⎬⎪⎪⎭
− 1

2

⎧⎪⎪⎨⎪⎪⎩T log |Σz|+
T
∑

t=1

⎧⎪⎪⎨⎪⎪⎩EzT

(
zT

t Σ−1
z zt

)− 2EzT

⎛⎜⎜⎝
⎡⎢⎣ zt−1

...
zt−L

⎤⎥⎦
T

ATΣ−1
z zt

⎞⎟⎟⎠+ EzT

⎛⎜⎜⎝
⎡⎢⎣ zt−1

...
zt−L

⎤⎥⎦
T

ATΣ−1
z A

⎡⎢⎣ zt−1
...

zt−L

⎤⎥⎦
⎞⎟⎟⎠

⎫⎪⎪⎬⎪⎪⎭
⎫⎪⎪⎬⎪⎪⎭

− 1
2

{
T log |Σx|+

T
∑

t=1

{
xT

t Σ−1
x xt − 2EzT

(
zT

t
)
Bx

TΣ−1
x xt + EzT

(
zT

t Bx
TΣ−1

x Bxzt
)}}

− 1
2

{
T log |Σy|+

T
∑

t=1

{
yT

t Σ−1
y yt − 2EzT

(
zT

t
)
By

TΣ−1
y yt + EzT

(
zT

t By
TΣ−1

y Byzt

)}}
+ cons tan t.

(7)

Appendix A provides a detailed update of all parameters at step M. From (7), the related

statistics of latent variables in the Q function include EzT (zt), EzT

(
ztz

T
t
)

and EzT

(
ztz

T
t−i

)
, where

t = 0, 1, · · · , T, i = 1, 2, · · · , L, in fact, these statistics can be passed. The posterior probability
distribution of the latent variables obtained in the E step of the EM algorithm was obtained. The
calculation results of these statistics are shown in (8). The detailed derivation process is shown in
Appendix B.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

EzT (zt) = E
(

zt|x1:T , y1:T , Θold
)
= m1

t

EzT

(
ztz

T
t
)
= E

(
ztz

T
t |x1:T , y1:T , Θold

)
= M11

t + m1
t
(
m1

t
)T

EzT

(
ztz

T
t−i

)
= E

(
ztz

T
t−i|x1:T , y1:T , Θold

)
= M

1(i+1)
t + m1

t

(
m

(i+1)
t

)T

EzT

(
ztz

T
t−L

)
= E

(
ztz

T
t−L|x1:T , y1:T , Θold

)
=

L
∑

i=1
Ai

(
MiL

t−1 + mi
t−1

(
mL

t−1
)T

)
, (8)

where mt and Mt are the mean and covariance of the posterior probability distribution of the latent
variable. Therefore, through E step and M step iterative update until the parameters converge, the
optimized parameter set Θopt =

{
A, Bx, By, u0, V0, Σz, Σx, Σy

}
can be obtained.

3. Process Monitoring Method Based on Dynamic Autoregressive Latent
Variable Model

In this section, the established dynamic autoregressive latent variable model is used for indus-
trial process monitoring. At first, DALM was used to model the process data so that the current state
information was reflected in the latent variables, and then the latent space at the current time was
obtained by filtering the process data distribution, constructing statistics and monitoring them. Let
us introduce the monitoring process in detail below.

Although the latent space was unobservable, the establishment of a data-driven DALM model
based on the characteristics of the process data extracted the information of the process variables
to the spatial distribution of the latent variables. The process input X = [x1, x2, · · · , xN ] and output
Y = [y1, y2, · · · , yN ] needed to be pre-processed by the normalization method, as shown in (9).

Xq = (x − ux)·std−1
x ,

Yq = (y − uy)·std−1
y ,

(9)

where ux and uy are the means of the variables X and Y, stdx and stdy are the variances of the
variables X and Y. Preprocessed data were filtered through the filtering algorithm to obtain the
spatial distribution of the latent variables, as shown in (10).

zt
q, zt−1

q, · · · , zt−L+1
q|x1:t

q, y1:t
q ∼ N(ut

q, Vt
q) = N

⎛⎜⎜⎝
⎡⎢⎣ u1

t
q

...
uL

t
q

⎤⎥⎦,

⎡⎢⎢⎣
V11

t
q · · · V1L

t
q

...
. . .

...

V
(L)1
t

q · · · VLL
t

q

⎤⎥⎥⎦
⎞⎟⎟⎠. (10)
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Among them, ut
1q and Vt

11q are the mean and variance of the latent space distribution, respec-
tively, which were obtained from (11). The detailed derivation process is shown in (A12)–(A16).

ut
1q = g1

t +
[

G
1(L+1)
t G

1(L+2)
t

][ G
(L+1)(L+1)
t G

(L+1)(L+2)
t

G
(L+2)(L+1)
t G

(L+2)(L+2)
t

][
xt − gL+1

t
yt − gL+2

t

]
,

Vt
11q =

[
G11

t · · · G1L
t

]− [
G

1(L+1)
t G

1(L+2)
t

][ G
(L+1)(L+1)
t G

(L+1)(L+2)
t

G
(L+2)(L+1)
t G

(L+2)(L+2)
t

]−1
⎡⎢⎢⎣

G
1(L+1)
t G

1(L+2)
t

...
...

G
L(L+1)
t G

L(L+2)
t

⎤⎥⎥⎦
T

.

(11)

It can be seen from (A24) that the information of the data Xt
q = [x

q
1, x

q
2, · · · , x

q
t ] and Yt

q =

[y
q
1, y

q
2, · · · , y

q
t ] at the current and previous moments was filtered into the current latent variable, and

the latent variable distribution at the current moment is shown in (12).

zt
q|x1:t

q, y1:t
q ∼ N(u1

t
q, V11

t
q). (12)

Because the latent space contains the current state of the process dynamics and variable time
lag information, the process statistic T2 was constructed for the current latent variable at time t, as
shown in (13).

T2
t,q = E(zt

q|x1:t
q, y1:t

q)Tcovariance(zt
q|x1:t

q, y1:t
q)−1E(zt

q|x1:t
q, y1:t

q). (13)

Among them, the mathematical expectation and variance of the latent variables on the observa-
tion data at the current moment are shown in (14).

E(zt
q|x1:t

q, y1:t
q) = u1

t
q,

covariance(zt
q|x1:t

q, y1:t
q) = V11

t
q.

(14)

The probability of the latent variable obeyed the Gaussian distribution. Therefore, according
to the definition of chi-square distribution, this statistic obeyed the chi-square distribution χ2

α(d)
after data preprocessing. Then, combining to the latent variable dimension d of the model and the
significance level α required by the industry, the control threshold T2

lim of the process monitoring
method was obtained, and then the statistics of each time data were calculated online and compared
with the control threshold, to determine whether the process deviated from the normal state. The
process monitoring logic is determined by (15).

T2
t,q < T2

lim = χ2
α(d). (15)

Too large an α value will lead to a high false alarm rate, and too low an α will lead to a high false
alarm rate; therefore, in practice, it is a balance between false alarms and missed alarms. This paper
chose α as 0.01, which means that the false positive rate of normal data was 0.01. If T2

t,q < T2
lim, the

system was in a normal state. Otherwise, the process located in a fault state, and further diagnosis
and identification of the fault was required for process maintenance. The process of DALM modeling
and online process monitoring is shown in Figure 2.

The main steps of the process monitoring method based on the DALM model were as follows:
Step 1: Collect process data, divide the training and test data sets and standardize them.
Step 2: Use the training data set to learn the parameters of the DALM model.
Step 3: Build the model and determine the control threshold.
Step 4: Filter the process data online to get the latent space distribution at the current moment.
Step 5: Calculate statistics and compare with the control threshold to determine whether the

process is abnormal.
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Figure 2. Flowchart based on DALM process monitor.

4. Case Study on the Sintering Process of Ternary Cathode Materials

In this section, the proposed process monitoring method based on the dynamic autoregressive
latent variable model is used to monitor the sintering process of ternary cathode materials to verify
the effectiveness of the method. First the sintering process technology of the ternary cathode material
was introduced, then the model structure and parameter determination were introduced in detail,
and finally the performance of the model was evaluated.

4.1. Introduction to the Sintering Process of Ternary Cathode Materials
The rapid development of the new energy industry has led to an extremely urgent demand

for high-quality ternary cathode materials, and the sintering process of battery materials is the core
and key process of battery preparation. This process consists of a series connection of a heating
section, a constant temperature section and a cooling section, as shown in Figure 3. The optimal
production state of a single temperature section cannot guarantee that the product performance
indicators of the entire sintering process are within the optimal range; at the same time, changes
in the sintering process, such as environmental humidity or temperature, also affect the stability of
product performance indicators. In order to ensure the stability of product performance indicators as
much as possible, while reducing energy consumption and material consumption, it is necessary to
adjust the sintering parameters of the kiln according to the sintering state in real time, which leads to
many variables in each temperature zone and series coupling, which makes the process data present
complex process characteristics [29].
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Figure 3. Structure diagram of sintering furnace for battery sintering.

The temperature field in the sintering process has a significant effect on the material properties.
Over-firing will cause changes in the material morphology and internal structure, and under firing
will not provide sufficient activation energy for chemical reactions. However, the decomposition
reaction that occurs in the heating section is an endothermic process and requires sufficient heat
supply, otherwise a reverse reaction will occur, resulting in inefficient water removal, which will
affect the subsequent oxidation reaction. Therefore, the state of the heating section is very important
to the sintering process. At the same time, the residual lithium content can directly reflect the quality
of the product. In order to monitor the process status in real time, a monitoring model is established
for the temperature and residual lithium content of the heating section.

Huang et al. [30] established a temperature field monitoring model based on the PBF equip-
ment equation to monitor the dynamic sintering process of parts, but this method requires precise
grinding tool structure parameters and can only monitor uniformly distributed temperature fields.
Egorova et al. [31] tried to combine neural networks and PCA diagnosis method monitor and di-
agnose the sintering process. This method can locate the fault and diagnose the cause of the fault.
However, the introduction of neural networks increases the time and space complexity of the system
and ignores the system dynamic and time lag problems.

Due to the severe temperature interval coupling, the process variables exhibit complex charac-
teristics, making the traditional static monitoring methods unable to achieve accurate monitoring
results. The dynamic autoregressive latent variable model proposed in this section considers the
dynamic and time lag information of the process at the same time, so it is more in line with the
sintering process.

4.2. Determination of Model Parameters
This section establishes a monitoring model for the temperature and product quality in the

heating section of the sintering process. The heating section contained seven temperature zones, and
each temperature zone had two upper and lower temperature measuring points, but the temperature
changes in the 4th to 7th temperature zones were not obvious. The temperature of the first three
temperature zones was selected as the process variable xt of the model. At the same time, the residual
lithium content of the product reflects the quality of the battery, as does the quality variable yt of the
model, Table 1 lists the physical meaning of these variables.

Table 1. Selected variables in the sintering process.

No. Measured Variables

1 Below temperature of 1st zone
2 Upper temperature of 1st zone
3 Below temperature of 2nd zone
4 Upper temperature of 2nd zone
5 Below temperature of 3rd zone
6 Upper temperature of 3rd zone
7 Lithium loss coefficient

To test the monitoring effect of the model under different faults, a total of 2200 continuous time
data samples were collected on site with a sampling period of five minutes. The process included
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a total of three types of faults such as over-temperature, under-temperature and shutdown. For
detailed status information, see Table 2.

Table 2. Process data description.

Date Types Data Description Time Durations

Normal Normal data 1st–1000th

Fault 1 Normal samples in 1001st–1200th and abnormal samples of 3rd zone
temperature rise in 1201st–1400th 1001st–1400th

Fault 2 Normal samples in 1401st–1600th and abnormal samples of 3rd zone
temperature drop in 1601st–1800th 1401st–1800th

Fault 3 Normal samples in 1801st–2000th and abnormal samples of
downtime fault in 2001st–2200th 1801st–2200th

First, analyze the dynamics of the data and the time lag characteristics of the variables from the
data point of view. Figure 4 shows the autocorrelation and cross-correlation diagrams of process data.

Figure 4. Correlation plots for the first four process variables.

Figure 4 shows the correlation and cross-correlation between the first four process variables.
The value at time 0 in each figure represents the cross-correlation between variables; the value at
non-zero time shows the autocorrelation between variables under different time lags. It is worth
mentioning that the cross-correlation index can measure the redundancy of variable information, and
the autocorrelation index can indirectly measure the dynamic and time delay information between
variables. It can be seen that the cross-correlation performance between the variables was above 0.5,
indicating that there was strong redundant information between the variables. At the same time,
even if there was a difference of 10 sampling times, the autocorrelation between the variables was
still very high, indicating that there were time lags and dynamic characteristics between the variables.
Therefore, the establishment of a DALM model for the process can be considered. The emission
equation of the model extracts the redundant information of the data, and the autoregressive equation
of the model extracts the dynamic and time lag information of the variables. This paper uses the
trend similarity algorithm, which constructs the trend similarity function according to the time lag
feature and solves it, to determine the time lag coefficient, that is, L = 3.

To verify the rationality of the time lag coefficient, under different time lag coefficients, a
dynamic autoregressive latent variable monitoring model was established respectively. Note: In order
to avoid the latent variable dimension from interfering with the selection of the time lag coefficient the
latent variable dimension selected by Akaike information criterion (AIC) was temporarily used [32].
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The false alarm rate (false alarm rate, FAR) and fault detection rate (fault detection rate, FDR) were
defined to evaluate and monitor performance indicators, as defined in (16).

FAR =
NFAR

Nn
FDR =

NFDR
Nf

. (16)

NFAR represents the number of normal samples that were mistakenly detected as abnormal by
the monitoring method, and Nn is the number of all normal samples. NFDR represents the number
of fault samples correctly monitored by the monitoring method, Nf is the number of all abnormal
samples. Therefore, the closer the FAR is to the significance level, the better, and the closer the FDR is
to 1, the better. The significance level of this work was set to 0.01.

The first 1000 normal samples were selected to train the model, and the data type fault 1 was
used to test the monitoring effect of the model. Table 3 shows the indicators of the monitoring results
of the new method under different time lag coefficients.

Table 3. FAR and FDR under different time lag.

Time Lag 2 3 4 5

FAR 0.165 0.050 0.270 \
FDR 0.665 1.000 0.905 \

The model did not converge when the time lag coefficient was 5, and when the model time lag
coefficient was 3, the error and false alarm rate of the model were the best. Therefore, when the time
lag coefficient was 3, the model gave the best performance. In order to visually see the monitoring
results of the model, Figure 5 shows the monitoring T2 diagram when the model’s time lag coefficient
was 2, 3 and 4.

Figure 5. Monitoring performance under different time lag. (a) Monitoring result at order 2; (b) monitoring result at order 3;
(c) monitoring result at order 4.

It can be seen from Figure 5 that when the model time lag coefficient was 2 and 4, it was easy to
misclassify the sample. Especially in the fault interval of 201st–400th: the divided normal samples
and abnormal samples were close to the monitoring threshold, which shows that the robustness of
the model with this time lag is low; when the model had a time lag coefficient of 3, it is insensitive to
the noise and the false alarms are the smallest. Hence, its NFAR and NFDR were the best. Therefore,
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the time lag coefficient obtained by the trend similarity identification algorithm enabled the model to
obtain a better monitoring effect.

Next, the latent variable dimension was determined. The latent variable dimension is the result
of comprehensively considering the complexity and accuracy of the model. The root mean square
error (RMSE) is an indicator to measure the accuracy of the model. The expression is shown in (17).

RMSE =

√√√√ N

∑
i=1

|yi − ŷi|
N

, (17)

where N is the number of test samples, ŷi is the prediction of the true value yi and yi is the mean
value of the true value of the test sample. Samples from the 1st to the 600th were used to train the
model, and samples from the 601st to the 1000th were used as the test set. Table 4 shows the root
mean square error of model prediction under different latent variable dimensions.

Table 4. RMSE under different latent variable dimensions.

Number of Latent Variables 1 2 3 4 5

RMSE 0.123 0.08 0.045 0.042 0.042

Table 4 shows that the prediction performance of the model tends to be stable after the latent
variable dimension increased to 3, which was the balance point between model complexity and
accuracy. It is worth mentioning that under the time lag coefficient, the latent variable dimension
selected by the AIC algorithm was also 3, so the latent variable dimension was determined to be 3.

4.3. Model Performance Test
This section verifies the effect of the proposed monitoring method, and constructs a first-order

dynamic process monitoring method: DPLVM [18] and static process monitoring method: PPLSR [33],
which were used to compare with the proposed method. The latent variable dimensions of the model
were adjusted to 3.

The first 1000 normal samples were used to train the parameters of the model, and the trained
model was monitored for three types of different fault samples. In order to distinguish between
normal and abnormal samples, the first 200 samples of each type of failure test set were normal
samples, and the last 200 samples were their respective failure samples. Table 5 shows the FAR and
FDR of different monitoring methods under different failure test sets, and the last line calculates the
average value of different indicators.

Table 5. FAR and FDR of the three methods under different fault cases.

Faults
PPLSR DPLVM DALM

FAR FDR FAR FDR FAR FDR

Fault 1 0.240 0.120 0.210 0.795 0.050 1.000
Fault 2 0.100 0.350 0.155 0.810 0.045 1.000
Fault 3 0.315 0.980 0.080 0.770 0.045 1.000

Average 0.218 0.483 0.148 0.792 0.047 1.000

It can be seen from Table 5 that the monitoring performance of the proposed method was
better than that of the static model PPLSR and the first-order dynamic model DPLVM. Therefore,
the detection performance was greatly improved after the autoregressive equation was added to
the model to extract the dynamic and time lag information. Compared with the basic first-order
dynamic DPLVM fault detection method, DALM considered the time lag characteristics, so the model
performance was further improved. The detailed monitoring results of the three methods for the
three types of faults are shown in Figures 6–8.
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Figure 6. Monitoring results of fault 1. (a) T2 of PPLSR in fault 1; (b) T2 of DPLVM in fault 1; (c) T2 of
DALM in fault 1.

Figure 7. Monitoring results of fault 2. (a) T2 of PPLSR in fault 2; (b) T2 of DPLVM in fault 2; (c) T2 of
DALM in fault 2.

For each type of fault test set, the first 200 samples were in a normal state, and the last
200 samples were fault samples. It can be seen from Figure 8 that the static model PPLSR eas-
ily mistakenly classified normal samples into faulty samples, and it also easily classified faulty
samples into normal samples. The error rate of the first-order dynamic model DPLVM was reduced a
lot. Furthermore, the FAR based on the DALM fault detection method proposed in this paper was
close to the significance level and the FDR was close to 1, verifying that its monitoring performance
was greatly improved.
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Figure 8. Monitoring results of fault 3. (a) T2 of PPLSR in fault 3; (b) T2 of DPLVM in fault 3; (c) T2 of
DALM in fault 3.

5. Conclusions

A process monitoring method based on the dynamic autoregressive latent variable model was
proposed in this paper. Compared with the traditional DPLVM monitoring method, this method
not only considered the dynamic characteristics of the process but also considered the complex time
lag characteristics, integrated the time lag information into the model, and greatly improved the
monitoring performance of the model in the time lag process. First, from the point of data, this
method established a dynamic autoregressive latent variable model to adopt the characteristics
of dynamics and variable time lag. Then a fusion Bayesian filtering, smoothing and expectation
maximization algorithm was used to identify model parameters. Then, on the basis of the identified
model, the improved Bayesian filtering technique was used to infer the latent variable distribution of
the process state, and the T2 statistic was constructed for the latent space and online monitoring is
performed. Finally, the proposed method was applied to the monitoring of the sintering process of
ternary cathode materials. Through industrial case studies, the modeling and monitoring results of
the proposed method show that the DALM model was better than the static and first-order dynamic
modeling process monitoring methods.

An important issue for process monitoring application in industrial processes is the multi-
sampling rate problem. The method proposed in this paper assumed that the input and output
data had the same sampling rate. If the sampling rate was inconsistent, some data were deleted by
down-sampling. However, a more worthwhile way to try would be to combine semi-supervised
learning methods, which can train data on unbalanced input and output data, thereby improving
data utilization. Another practical problem is the non-linear relationship between process data,
which is very common in industrial processes. How to effectively deal with this problem is worthy
of further research in the near future to make the monitoring method more applicable.

Author Contributions: Conceptualization, N.C. and W.G.; methodology, F.H. and J.C.; software, F.H.
and Z.C.; validation, J.C.; writing—review and editing, N.C., F.H., J.C., Z.C. and X.L.; supervision,
N.C., Z.C. and W.G.; project administration, W.G. and X.L. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was funded in part by the Key Program of the National Natural Science Foun-
dation of China (62033014) and in part by the Application Projects of Integrated Standardization and
New Paradigm for Intelligent Manufacturing from the Ministry of Industry and Information Technol-
ogy of China in 2016 and in part by the Fundamental Research Funds for the Central Universities
of Central South University(2021zzts0700), in part by the Project of State Key Laboratory of High
Performance Complex Manufacturing (#ZZYJKT2020-14).

Institutional Review Board Statement: Not applicable.

273



Machines 2021, 9, 229

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available upon request from the
first author. The data are not publicly available due to intellectual property protection.

Acknowledgments: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Detailed Derivation of the M-Step

According to the EM algorithm, all the parameters of the DALM model can be updated in M

steps. By maximizing the cost function Q
(

Θ|Θold
)

, the estimated value Θnew of the next iteration
parameter was determined, which is shown in (A1).

Θnew = argmax
Θ

Q(Θ|Θold). (A1)

The Q function was applied to the partial derivative of the model parameters and the derivative
was set to zero.

∂Q(Θ|Θold)

∂Θ
= 0. (A2)

The updated value of the model parameter Θnew was obtained, as shown in (A3)–(A10).

unew
0 = EzT

⎛⎜⎝
⎡⎢⎣ z0

...
z−L+1

⎤⎥⎦
⎞⎟⎠, (A3)

Vnew
0 = EzT

⎛⎜⎜⎝
⎡⎢⎣ z0

...
z−L+1

⎤⎥⎦
⎡⎢⎣ z0

...
z−L+1

⎤⎥⎦
T⎞⎟⎟⎠− EzT

⎛⎜⎝
⎡⎢⎣ z0

...
z−L+1

⎤⎥⎦
⎞⎟⎠EzT

⎛⎜⎝
⎡⎢⎣ z0

...
z−L+1

⎤⎥⎦
⎞⎟⎠

T

, (A4)

Anew =
T

∑
t=1

EzT

⎛⎜⎜⎝zt

⎡⎢⎣ zt−1
...

zt−L

⎤⎥⎦
T⎞⎟⎟⎠

⎡⎢⎢⎣ T

∑
t=1

EzT

⎛⎜⎜⎝
⎡⎢⎣ zt−1

...
zt−L

⎤⎥⎦
⎡⎢⎣ zt−1

...
zt−L

⎤⎥⎦
T⎞⎟⎟⎠

⎤⎥⎥⎦
−1

, (A5)

Σnew
z =

1
T

T

∑
t=1

⎛⎜⎜⎝EzT

(
ztz

T
t

)
− 2AnewEzT

⎛⎜⎝
⎡⎢⎣ zt−1

...
zt−L

⎤⎥⎦zT
t

⎞⎟⎠+ AnewEzT

⎛⎜⎜⎝
⎡⎢⎣ zt−1

...
zt−L

⎤⎥⎦
⎡⎢⎣ zt−1

...
zt−L

⎤⎥⎦
T⎞⎟⎟⎠AnewT

⎞⎟⎟⎠, (A6)

Bnew
x =

T

∑
t=1

xtEzT

(
zT

t

)[ T

∑
t=1

EzT

(
ztz

T
t

)]−1

, (A7)

Bnew
y =

T

∑
t=1

ytEzT

(
zT

t

)[ T

∑
t=1

EzT

(
ztz

T
t

)]−1

, (A8)

Σnew
z =

1
T

T

∑
t=1

(
xtx

T
t − 2Bnew

x EzT (zt)x
T
t + Bnew

x EzT

(
ztz

T
t

)
Bnew

x
T
)

, (A9)

Σnew
y =

1
T

T

∑
t=1

(
yty

T
t − 2Bnew

y EzT (zt)y
T
t + Bnew

y EzT

(
ztz

T
t

)
Bnew

y
T
)

. (A10)

The updated parameter set Θnew =
{

Anew, Bnew
x , Bnew

y , unew
0 , Vnew

0 , Σnew
z , Σnew

x , Σnew
y

}
, E steps

and M steps were iterated until the parameter Θ matrix converged, that is, satisfied (A11), where ς is
a sufficiently small constant, and the model parameter identification was completed.

||Θnew − Θold|| < ς. (A11)
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Among them, Θold is the parameter of the last iteration, and Θnew is the parameter after this
round of iteration. Only when the parameters obtained by two adjacent identifications converged
did the algorithm stop calculating. Therefore, the parameter convergence can be guaranteed by the
EM algorithm itself.

Appendix B. Detailed Derivation of the E-Step

In order to determine the statistics EzT (zt), EzT

(
ztz

T
t
)

and EzT

(
ztz

T
t−i

)
, the forward and back-

ward algorithm were employed. This is an iterative calculation method, which includes the forward
filtering and backward correction step.

In the Bayesian filtering stage, the goal was to calculate the posterior probability of the latent
variable [zt, zt−1, · · · , zt−L+1] with respect to the variable x1:t, y1:t at time t, given the posterior distri-
bution zt−1, zt−2, · · · , zt−L|x1:t−1, y1:t−1 ∼ N(ut−1, Vt−1) of the latent variable [zt−1, zt−2, · · · , zt−L]
at the previous time t − 1 on the variable x1:t−1, y1:t−1, as shown in (A12) where 1 ≤ t ≤ T,

zt, zt−1, · · · , zt−L+1|x1:t, y1:t ∼ N(ut, Vt) = N

⎛⎜⎝
⎡⎢⎣ u1

t
...

uL
t

⎤⎥⎦,

⎡⎢⎣ V11
t · · · V1L

t
...

. . .
...

VL1
t · · · VLL

t

⎤⎥⎦
⎞⎟⎠. (A12)

The joint probability distribution of the latent variables [zt, zt−1, · · · , zt−L+1] and xt, yt with
respect to the variable x1:t−1, y1:t−1 is shown in (A13).

zt, zt−1, · · · , zt−L+1, xt, yt|x1:t−1, y1:t−1 ∼ N(gt, Gt)

= N

⎛⎜⎜⎝
⎡⎢⎢⎣

g1
t
...

gL+2
t

⎤⎥⎥⎦,

⎡⎢⎢⎣
G11

t · · · G
1(L+2)
t

...
. . .

...

G
(L+2)1
t · · · G

(L+2)(L+2)
t

⎤⎥⎥⎦
⎞⎟⎟⎠.

(A13)

The parameters of (A13) can be calculated by (A15)⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

g1
t = E

(
zt|x1:t−1, y1:t−1

)
= Aut−1

gi
t = E

(
zt−i+1|x1:t−1, y1:t−1

)
= ui−1

t−1

gL+1
t = E

(
xt|x1:t−1, y1:t−1

)
= Cg1

t

gL+2
t = E

(
yt|x1:t−1, y1:t−1

)
= Pg1

t

, (A14)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G11
t = cov

(
zt, zt|x1:t−1, y1:t−1

)
= Aut−1AT + Σz

G1i
t = cov

(
zt, zt−i+1|x1:t−1, y1:t−1

)
= A

⎡⎢⎢⎣
V

1(i−1)
t−1

...

V
L(i−1)
t−1

⎤⎥⎥⎦
Gi1

t =
(

G1i
t

)T

G
ij
t = cov

(
zt−i+1, zt−j+1|x1:t−1, y1:t−1

)
= V

(i−1)(j−1)
t−1

G
(L+1)k
t = cov

(
xt, zt−k+1|x1:t−1, y1:t−1

)
= BxG1k

t

G
(L+1)k
t =

(
G

k(L+1)
t

)T

G
(L+2)k
t = cov

(
yt, zt−k+1|x1:t−1, y1:t−1

)
= ByG1k

t

G
(L+2)k
t =

(
G

k(L+2)
t

)T

G
(L+1)(L+1)
t = cov

(
xt, xt|x1:t−1, y1:t−1

)
= BxG11

t Bx
T + Σx

G
(L+1)(L+2)
t = cov

(
xt, yt|x1:t−1, y1:t−1

)
= BxG11

t By
T

G
(L+2)(L+1)
t =

(
G

(L+2)(L+1)
t

)T

G
(L+2)(L+2)
t = cov

(
yt, yt|x1:t−1, y1:t−1

)
= ByG11

t By
T + Σy

, (A15)
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where i = 2, 3, · · · , L; j = 2, 3, · · · , L; k = 1, 2, · · · , L, therefore, according to the knowledge of
conditional probability [34] and Appendix C, the mean value and variance of the latent variable filter
distribution zt, zt−1, · · · , zt−L+1|x1:t, y1:t ∼ N(ut, Vt) were calculated as shown in (A16).

ut =

⎡⎢⎣ g1
t
...

gL
t

⎤⎥⎦+

⎡⎢⎢⎣
G

1(L+1)
t G

1(L+2)
t

...
...

G
L(L+1)
t G

L(L+2)
t

⎤⎥⎥⎦
[

G
(L+1)(L+1)
t G

(L+1)(L+2)
t

G
(L+2)(L+1)
t G

(L+2)(L+2)
t

]−1[
xt − gL+1

t
yt − gL+2

t

]
,

ut =

⎡⎢⎢⎣
G11

t · · · G1L
t

...
. . .

...
GL1

t · · · GLL
t

⎤⎥⎥⎦−

⎡⎢⎢⎣
G

1(L+1)
t G

1(L+2)
t

...
...

G
L(L+1)
t G

L(L+2)
t

⎤⎥⎥⎦
[

G
(L+1)(L+1)
t G

(L+1)(L+2)
t

G
(L+2)(L+1)
t G

(L+2)(L+2)
t

]−1
⎡⎢⎢⎣

G
1(L+1)
t G

1(L+2)
t

...
...

G
L(L+1)
t G

L(L+2)
t

⎤⎥⎥⎦
T

.

(A16)

In the Bayesian smoothing stage, the goal was to calculate the posterior probability
zt+1, zt, · · · , zt−L+2|x1:T , y1:T ∼ N(mt+1, Mt+1) of the latent variable [zt+1, zt, · · · , zt−L+2] with
respect to the variable x1:T , y1:T at time t + 1 to calculate the posterior probability of the latent variable
[zt, zt−1, · · · , zt−L+1] with respect to the variable x1:T , y1:T at time t, as shown in (A17).

zt, zt−1, · · · , zt−L+1|x1:T , y1:T ∼ N(mt, Mt) = N

⎛⎜⎝
⎡⎢⎣ m1

t
...

mL
t

⎤⎥⎦,

⎡⎢⎣ M11
t · · · M1L

t
...

. . .
...

ML1
t · · · MLL

t

⎤⎥⎦
⎞⎟⎠, (A17)

where 0 ≤ t ≤ T, T, there is mT = uT , MT = VT . In order to calculate the distribution, first, the
posterior distribution of the latent variable [zt+1, zt, · · · , zt−L+1] was calculated with respect to the
variable x1:t, y1:t, as shown in (A18).

zt+1, zt, · · · , zt−L+1|x1:t, y1:t ∼ N(dt, Dt) = N

⎛⎜⎜⎝
⎡⎢⎢⎣

d1
t
...

dL+1
t

⎤⎥⎥⎦,

⎡⎢⎢⎣
D11

t · · · D
1(L+1)
t

...
. . .

...

D
(L+1)1
t · · · D

(L+1)(L+1)
t

⎤⎥⎥⎦
⎞⎟⎟⎠. (A18)

The parameter calculation of (A18) is shown in (A19)–(A20).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d1
t = E(zt+1|x1:t, y1:t) = Aut

di
t = E(zt−i+2|x1:t, y1:t) = ui−1

t

D11
t = cov(zt+1, zt+1|x1:t, y1:t) = AVtA

T + ΣQ

D1i
t = cov(zt+1, zt−i+2|x1:t, y1:t) = A

⎡⎢⎢⎣
V

1(i−1)
t

...

V
L(i−1)
t

⎤⎥⎥⎦
Di1

t =
(

D1i
t

)T

D
ij
t = cov

(
zt−i+2, zt−j+2|x1:t, y1:t

)
= V

(i−1)(j−1)
t

, (A19)

where i = 2, 3, · · · , L + 1; j = 2, 3, · · · , L + 1, and then the following distribution was calculated.

P(zt−L+1|zt+1, zt, · · · , zt−L+2, x1:T , y1:T) = P(zt−L+1|zt+1, zt, · · · , zt−L+2, x1:t, y1:t) = N(rt, Rt). (A20)
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According to the knowledge of conditional probability [34] and Appendix C. The calculation of
its mean and variance is shown in (A21).

rt = dL+1
t +

⎡⎢⎢⎣
D

1(L+1)
t

...

D
L(L+1)
t

⎤⎥⎥⎦
T⎡⎢⎢⎢⎣

D11
t · · · D11

t
...

. . .
...

DL1
t

... DLL
t

⎤⎥⎥⎥⎦
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t

...
zt−L+2 − dL

t

⎤⎥⎥⎦,
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(L+1)(L+1)
t −
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D

1(L+1)
t

...

D
L(L+1)
t
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T⎡⎢⎣ D11

t · · · D11
t

...
. . .

...
DL1

t · · · DLL
t

⎤⎥⎦
−1⎡⎢⎢⎣

D
1(L+1)
t

...

D
L(L+1)
t

⎤⎥⎥⎦.

(A21)

The posterior probability of the latent variable [zt+1, zt, · · · , zt−L+1] was obtained with respect
to the variable x1:T , y1:T as shown in (A22).

P(zt+1, zt, · · · , zt−L+1|x1:T , y1:T)

= P(zt+1, zt, · · · , zt−L+2|x1:T , y1:T)P(zt−1|zt+1, zt, · · · , zt−L+2, x1:T , y1:T)

= N(ht, Ht) = N

⎛⎜⎜⎝
⎡⎢⎢⎣
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t
...

hL+1
t

⎤⎥⎥⎦,

⎡⎢⎢⎣
H11

t · · · H
1(L+1)
t

...
. . .

...

H
(L+1)1
t · · · H

(L+1)(L+1)
t

⎤⎥⎥⎦
⎞⎟⎟⎠.

(A22)

The mean and variance of the distribution were calculated as shown in (A23).

ht =
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D11
t · · · D11

t
...

. . .
...

DL1
t

... DLL
t

⎤⎥⎥⎥⎦
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.

(A23)

According to the Bayesian smoothing rule [31], the smooth distribution of the latent variable
was obtained, as shown in (A24).

zt, zt−1, · · · , zt−L+1|x1:T , y1:T ∼ N(mt, Mt). (A24)

The calculation of its mean and variance is shown in (A25).

mt =

⎡⎢⎢⎣
h2

t
...

hL+1
t

⎤⎥⎥⎦ Mt =

⎡⎢⎢⎣
H22

t · · · H
2(L+1)
t

...
. . .

...

H
(L+1)2
t · · · H

(L+1)(L+1)
t

⎤⎥⎥⎦. (A25)

Appendix C. Properties of Gaussian Distribution

Definition A1. (Gaussian distribution) A random variable x ∈ Rn has a Gaussian distribution with mean
m ∈ Rn and covariance P ∈ Rn×n if its probability density has the form.

N(x|m, P) =
1

(2π)n/2|P|1/2
exp

(
−1

2
(x − m)TPT(x − m)

)
, (A26)

where |P| is the determinant of the matrix P.

Lemma A1. (Joint distribution of Gaussian variables) If random variables x ∈ Rn and y ∈ Rm have the
Gaussian probability distributions.

x ∼ N(m, P),
y|x ∼ N(Hx + u, R).

(A27)
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then the joint distribution of x,y and the marginal distribution of y are given as (A28).(
x

y

)
∼ N

((
m

Hm + u

)
,
(

P PHT

HP HPHT + R

))
,

y ∼ N(Hm + u, HPHT + R).
(A28)

Lemma A2. (Conditional distribution of Gaussian variables) If the random variables x and y have the joint
Gaussian probability distribution.(

x

y

)
∼ N

((
a

b

)
,
(

A C

CT B

))
. (A29)

then the marginal and conditional distributions of x and y are given as follows:

x ∼ N(a, A),

y ∼ N(b, B),

x|y ∼ N(a + CB−1(y − b), A − CB−1CT),

y|x ∼ N(b + CTA−1(x − a), B − CTA−1C).

(A30)
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