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Abstract

Degradation Modeling and Remaining Useful Life Estimation: From

Statistical Signal Processing to Deep Learning Models

Ali Al-Dulaimi, Ph.D.

Concordia University, 2020

Aging critical infrastructures and valuable machineries together with recent catas-

trophic incidents such as the collapse of Morandi bridge, or the Gulf of Mexico oil

spill disaster, call for an urgent quest to design advanced and innovative prognostic

solutions, and efficiently incorporate multi-sensor streaming data sources for indus-

trial development. Prognostic health management (PHM) is among the most critical

disciplines that employs the advancement of the great interdependency between sig-

nal processing and machine learning techniques to form a key enabling technology to

cope with maintenance development tasks of complex industrial and safety-critical

systems. Recent advancements in predictive analytics have empowered the PHM

paradigm to move from the traditional condition-based monitoring solutions and pre-

ventive maintenance programs to predictive maintenance to provide an early warning

of failure, in several domains ranging from manufacturing and industrial systems to

transportation and aerospace. The focus of the PHM is centered on two core di-

mensions; the first is taking into account the behavior and the evolution over time

of a fault once it occurs, while the second one aims at estimating/predicting the re-

maining useful life (RUL) during which a device can perform its intended function.

The first dimension is the degradation that is usually determined by a degradation

model derived from measurements of critical parameters of relevance to the system.

Developing an accurate model for the degradation process is a primary objective in

prognosis and health management. Extensive research has been conducted to develop

new theories and methodologies for degradation modeling and to accurately capture

the degradation dynamics of a system. However, a unified degradation framework

has yet not been developed due to: (i) structural uncertainties in the state dynamics

of the system and (ii) the complex nature of the degradation process that is often

non-linear and difficult to model statistically. Thus even for a single system, there

is no consensus on the best degradation model. In this regard, this thesis tries to
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bridge this gap by proposing a general model that able to model the true degrada-

tion path without having any prior knowledge of the true degradation model of the

system. Modeling and analysis of degradation behavior lead us to RUL estimation,

which is the second dimension of the PHM and the second part of the thesis. The

RUL is the main pillar of preventive maintenance, which is the time a machine is

expected to work before requiring repair or replacement. Effective and accurate RUL

estimation can avoid catastrophic failures, maximize operational availability, and con-

sequently reduce maintenance costs. The RUL estimation is, therefore, of paramount

importance and has gained significant attention for its importance to improve sys-

tems health management in complex fields including automotive, nuclear, chemical,

and aerospace industries to name but a few. A vast number of researches related to

different approaches to the concept of remaining useful life have been proposed, and

they can be divided into three broad categories: (i) Physics-based; (ii) Data-driven,

and; (iii) Hybrid approaches (multiple-model). Each category has its own limitations

and issues, such as, hardly adapt to different prognostic applications, in the first

one, and accuracy degradation issues, in the second one, because of the deviation

of the learned models from the real behavior of the system. In addition to hardly

sustain good generalization. Our thesis belongs to the third category, as it is the most

promising category, in particular, the new hybrid models, on basis of two different

architectures of deep neural networks, which have great potentials to tackle complex

prognostic issues associated with systems with complex and unknown degradation

processes.
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Chapter 1

Thesis Overview

1.1 Introduction

In the era of smart manufacturing and the Industrial Internet of Things (IIoT), there

is an increased global demand and strategic urgency for the development of advance,

smart, and reliable prognostic health management technologies to cope with the

maintenance needs of industrial complex systems and safety-critical infrastructures.

Prognostic Health Management (PHM) is an enabling discipline in several industrial

and manufacturing applications where monitoring the reliability of the underlying

complex engineering infrastructure is of paramount importance. Within the PHM

context, one key objective is to improve maintenance effectiveness, safe operability,

and provide enhanced performance. Maintenance refers to a combination of different

technical, managerial, and administrative activities that meant to ensure the best

functionality status of a system. It has been reported in the literature [1] that 15-

40% of manufacturing expenses across different industrial sectors are attributable to

maintenance management decisions. This is of particular importance in the capi-

tal and energy-intensive industries such as Cyber-Physical Energy Systems (CPES).

Such systems are, typically, designed by the integration of control, communication,

and computation technologies for reliable and real-time monitoring and management

of the underlying infrastructure.

Recent advancements in communication and sensor technologies have paved the

way for the deployment of a large number of sensor nodes for condition monitoring in

CPESs, resulting in exceptional growth in practical implementations and opportunis-

tic applications of such systems. The rapid growth of CPESs has introduced a surge
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Figure 1.1: The Percentages of Maintenance Types [4].

of interest in issues related to low-cost health monitoring systems and integrated pre-

dictive maintenance frameworks of such systems. Most of the maintenance decisions

are taken either based on the traditional “run-to-failure” strategy or based on the

degradation process trend during a specific period of time. However, these types of

maintenance can not efficiently prevent tragic accidents that may cause partial or full

system failure. There are many cases where unplanned downtime has led to incidents

with significant losses. According to analyst firm Aberdeen Research [2] over the

past three years, 82% of companies have encountered unplanned downtime, and the

average cost across all businesses was $260,000 per hour. Furthermore, the cost is far

greater in some sectors such as the auto industry, where the downtime cost can go up

to $50,000 per minute, which equals to $3 million per hour [3]. On the other hand,

recently, several catastrophic events occurred mainly due to a lack of proper PHM

considerations resulting in considerable loss of human lives as well as serious/major

environmental damages. Examples of such catastrophic events are the 2010 Macondo

blowout and explosion in the Gulf of Mexico; the 2009 Caribbean petroleum refining

tank explosion and fire, and; Collapse of the Morandi bridge in the Italian city of

Genoa in 2018. Such accidents and many others could have been prevented if proper

maintenance procedures were implemented.

Fig. 1.1 shows the commonly used maintenance strategies [4]. It is interesting to

note that about 59% of the companies utilize the reactive maintenance approach, i.e.,

some type of corrective action will be carried out once the failure has occurred. This

is the easiest strategy for maintaining equipment as it follows the “run-to-failure”
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concept, i.e., the failed item/part is fixed or replaced. The reactive maintenance ap-

proach has the advantage of minimizing the involved costs, which is achieved by using

equipment without maintenance interruption until failure. However, a key drawback

of a reactive maintenance strategy is unpredictable failures resulting in increased

equipment downtime. On the other hand, 76% of the companies follow a preven-

tive maintenance approach, which is the most popular type of maintenance, where

maintenance usually occurs over frequent periods of time, regardless of the actual

equipment conditions. This strategy, however, leads to situations where companies

conduct unnecessary maintenance actions resulting in higher maintenance costs. A

key advantage of the preventive maintenance strategy is achieving improved overall

safety and stability, which is significant especially for a company that runs heavy

machinery.

Although the preventive maintenance approach is currently considered the most

popular approach, there is a paradigm shift by the leading companies to adopt smart

maintenance strategies based on accurate prediction of future failure occurrences.

Consequently, there has been a recent surge of interest in “Predictive Maintenance”

that anticipates maintenance needs and only perform service when it is really nec-

essary. Future failure monitoring enables predictive maintenance techniques to be

conducted at the right time it is needed, rather than too early when the equipment

still has life, or too late, when the equipment has already failed. The predictive main-

tenance uses condition-monitoring by employing different measurement technologies

such as vibration analysis, infrared thermography, oil analysis, and acoustic monitor-

ing to monitor the equipment’s real-time condition to identify imminent failures, and

proactively schedule the required maintenance actions..

The main pillar of predictive maintenance is “Remaining Useful Life (RUL) Esti-

mation”, which is defined as the time a machine is expected to work before requiring

repair or replacement. Accurate RUL estimation could have significant impacts on

the decision making process in different application domains including automotive,

nuclear, chemical, and aerospace industries to name but a few. In this context,

the inter-relation between “Condition Based Maintenance (CBM), prognostics, and

system health management”, at one hand and “reliability, degradation process mod-

eling, and RUL estimation”, on the other hand, can provide vital information on

the system’s failure behaviour. In practice, the failure time of a system is, typically,

determined from a degradation model derived from measurements made across the
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(a) (b)

Figure 1.2: (a) An illustrative example of degradation-threshold failure. (b) The concept
of Remaining Useful Lifetime (RUL).

system’s lifetime. Due to the diverse nature of industrial and manufacturing systems,

and the hidden behavior of the degradation process, developing an accurate model

for the degradation process is a key challenge especially with the increase in volume,

velocity, and variety of data collected in CPES. Hence, timely detection of faults and

failures, through the implementation of an effective reliability framework, enables the

decision makers to schedule appropriate maintenance actions to prevent catastrophic

incidents.

This thesis’ research work has been motivated based on the above discussion. In

brief, capitalizing on the importance of implementing innovative, advanced, and smart

predictive maintenance strategies, the following two interrelated research directions

were pursued:

(i) Proposing a general degradation-modeling framework that can cover a wide

range of potential degradation scenarios, and;

(ii) Proposing an accurate framework for RUL estimation.

Next, the aforementioned two research directions are briefly outlined.

1.1.1 Generalized Degradation Modeling

The degradation, which can be regarded as damage to a system, accumulates over

time and eventually leads to a product failure when the accumulated damage reaches
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a failure limit (failure threshold), either randomly or by industrial norms. Fig. 1.2(a)

shows an example of a degradation-threshold failure. Thus, the degradation-threshold

failure mechanism forms a natural link between the degradation process and product

failures, which leads to assess product reliability by making use of degradation anal-

ysis. As a result, the failure time distribution and its parameters can be determined

through the analysis of the degradation mechanism. At the core of degradation mod-

eling is development of “accurate” probability models capable of describing the un-

derlying degradation phenomenon. Generally speaking, there are two broad classes of

degradation models, i.e., stochastic process models, such as (Wiener process, Gamma

process, or Inverse Gaussian process), and general path models. These are the most

popular degradation models considered in the existing literature. There are, how-

ever, other models available for degradation modeling in the literature that cannot

be classified into these two categories. Such models include time-delay model, shock

models, continuous-time Markov models, and data-driven approaches [5]. The focus

of the thesis in this context is mainly on the degradation models developed based on

stochastic processes, as will be discussed comprehensively in Chapter 2.

1.1.2 Accurate RUL Estimation

In this research direction, the thesis shifts focus from the diagnostic stage (degradation

analysis) to the prognostic level (RUL prediction), where prognostic is used to handle

risks resulting from unexpected failure of machinery. RUL prediction is an enabling

discipline in several industrial applications where monitoring the reliability of the

underlying complex engineering infrastructure is of paramount importance. RUL

estimation has emerged as a key enabling technology to provide an early warning of

failure.

Generally speaking, the RUL is defined as a time window that a machine is prob-

able to function properly without requiring repair or replacement actions. In other

words, the residual lifetime during which a device can perform its intended func-

tion [6]. Fig. 1.2(b) illustrates the RUL concept. RUL estimation is, therefore, es-

sential in a variety of engineering industries, including aerospace, medical instrumen-

tation, civil infrastructure, automobiles, and power plants. Many tools and methods

have been introduced for failure prognostics and RUL estimation [6–11]. It seems

that the prognostic techniques usually vary based on the type of the considered ap-

plication, whereas the implemented tools are primarily determined based on the type
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of available data and knowledge. Moreover, these methods and tools can be classified

into three categories; (i) Physics-based; (ii) Data-driven, and; (iii) Hybrid approaches

(multiple-model) [12]. The focus of the thesis in this context is mainly on the category

(iii), which is hybrid RUL prediction models, as will be discussed comprehensively in

Chapter 2.

1.2 Thesis Contributions

In what follows, the main contributions of the thesis are outlined:

� Chapter 3 : General Degradation-modeling Frameworks.

(1) Introducing a new category for degradation modeling.

(2) Introducing a new degradation framework referred to as the Multiple-

Model Degradation Path (MMDP) estimation. The proposed MMDP

framework takes into consideration a set of candidate models for the degra-

dation path, performs degradation prediction based on each model in par-

allel, and then combines the outputs of localized filters adaptively and

in an intelligent fashion to form the overall estimate of the degradation

process over time.

(3) The proposed MMDP is a generalized hybrid non-linear filtering framework

that is capable of simultaneously handling different linear and non-linear

degradation models.

(4) The proposed MMDP framework provides near-optimal results without

having any prior knowledge of the true degradation model of the system.

(5) Introducing a new degradation modeling framework referred to as Interac-

tive Multiple Model Particle Filter (IMMPF) estimation, which considers

a set of candidate models for the degradation path, localized estimates of

the degradation states are then collapsed, in an intelligent fashion, to form

the overall estimate of the degradation states adaptively over time.

(6) A Gaussian IMMPF is developed, where each mode-matched filter forms

a Gaussian approximation of its local particles, which is then used in the

collapsing and interaction steps.

(7) Similar to the MMDP approach, the proposed IMMPF framework provides

precise results without having any prior knowledge of the true degradation

model of the system.
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� Chapter 4 : HDNN: A Multiple-Model and Hybrid Deep Neural Network

Model for Remaining Useful Life Estimation.

(1) Proposing the first parallel hybrid deep neural network framework for

RUL estimation, referred to as the Hybrid Deep Neural Network Model

(HDNN). The proposed HDNN framework consists of two parallel paths

(one Long Short Term Memory (LSTM) and one Convolutional Neural

Network (CNN)) followed by a fully connected multilayer neural network,

which combines (fuses) the output of each path to form the target RUL.

(2) Proposing three other hybrid deep neural network frameworks for RUL

estimation based on different deep neural network architectures (BLSTM,

GRU, BGRU and CNN).

(3) Utilizing Monte Carlo simulations to evaluate the effectiveness and robust-

ness of the proposed methods over all the datasets FD001 to FD004 based

on different levels (30, 25, and 20)dB of Signal to Noise Ratio (SNR). The

results show remarkably stable performance of the proposed models.

� Chapter 5 : NBLSTM: Noisy and Hybrid CNN and BLSTM-based Deep Ar-

chitecture for Remaining Useful Life Estimation

(1) Proposing a hybrid deep learning framework developed for RUL estimation

that, for the first time, integrates noisy Bidirectional Long Short Term

Memory (NBLSTM) and noisy Convolutional Neural Network (NCNN) in

a parallel fashion.

(2) Proposing the first noisy hybrid deep learning model for RUL estimation,

based on noisy training and at the same time tested on noisy datasets.

(3) Three other structures, noisy LSTM (NLSTM), noisy GRU (NGRU) and

noisy BGRU (NPBGRU), are also incorporated within the proposed frame-

work providing comparable results. To the best of our knowledge, such

noisy structures are used for the first time within the domain of RUL

estimation.

(4) Utilizing different styles and values of noisy training and evaluating their

effects on the proposed models.

(5) Utilizing Monte Carlo simulations to evaluate the effectiveness and ro-

bustness of the proposed methods. The results show remarkably stable

performance of the proposed models.
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� Chapter 6: Multipath Parallel Hybrid Deep Neural Networks.

(1) Proposing, for the first time, a multi-path parallel noisy hybrid framework

that integrates different noisy deep neural network techniques for RUL

estimation.

(2) Employing the concept of collecting more informative features to achieve

better results.

(3) Utilizing different styles of noisy training and evaluating the effects of them

on the proposed models.

(4) Employing the batch normalization technique with BGRU for the first time

to improve the RUL estimation.

(5) Utilizing Monte Carlo simulations to evaluate the effectiveness and ro-

bustness of proposed methods. The results show remarkably stable perfor-

mance of the proposed models.

1.3 Organization of the Report

Chapter 1 (this chapter) provided an overview and a summary of important contri-

butions made in the thesis. The rest of thesis is organized as follows:

� Chapter 2 presents an introduction to the problem at hand, and thoroughly

reviews the relevant literature to each topic. This chapter also encapsulate the

required technical background for following developments of the thesis.

� Chapter 3 develops state-space model of different degradation paths and presents

the proposed Multiple-Model Degradation Path (MMDP) estimation and the

Interactive Multiple Model Particle Filters (IMMPF) estimation frameworks.

� Chapter 4 Proposing hybrid deep neural network frameworks for RUL estima-

tion (HDNN, BiLSTM, GRU and BiGRU), describing the constituent compo-

nents of the proposed models, developing the different deep learning paths, also

describing the used datasets (C-MAPSS), evaluation metrics, operating condi-

tions and fault modes, showing the effects of different time window size, and

presents the performance evaluation with additive noise.

� Chapter 5 Presenting Noisy Hybrid Deep Neural Network Models for Remain-

ing Useful Life Estimation (NBLSTM, NLSTM, NGRU, and NPBGRU), pre-

senting the network structures and developing the two parallel noisy paths for

each model, developing the noisy training and at the same time noisy testing,
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evaluation the effects of the operating conditions and fault modes, showing the

effects of different time window size, presenting the performance evaluation with

additive noise, and displaying the performance comparison of 7 methods with

the proposed methods.

� Chapter 6 Proposing Multipath Parallel Hybrid Deep Neural Network models

(NMPM, TDHA, MPHD, NPHM) based on the integration of three different

parallel paths, introducing the network structures and developing the differ-

ent parallel noisy paths, in addition to the noisy fusion center, developing the

different styles of noisy training, introducing the use of batch normalization

technique to improve the RUL estimation task.

� Chapter 7 Finally, Chapter 7 concludes the thesis and provides some directions

for future work.
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Chapter 2

Preliminaries and Literature

Review

As stated previously, the bases of the research work reported in this thesis are built

based on the following two interrelated dimensions:

(i) Proposing a general degradation-modeling framework that can cover a wide

range of potential degradation scenarios, and;

(ii) Proposing accurate frameworks for RUL estimation.

The main objective of this chapter is to provide the basic definitions and the key con-

cepts required for the development of this thesis. In what follows, first, fundamentals

of modeling the degradation process is presented in Section 2.1. Different aspects of

the RUL estimation problem is then described comprehensively in Section 2.2.

2.1 The Degradation Modeling

Degradation refers to the process of lowering the rank, status, or grade of an engi-

neering system leading to a less successful performance level. Developing an accurate

model for the degradation process is a primary objective in the prognosis and health

management. Degradation models are, typically, derived from measurements related

to the critical parameters of relevance to the system. The degradation modeling plays

a defining role to improve the decision-making process due to its ability to track the

underlying conditions of the system over time [13]. The main objective of degradation

modeling is to define the asset’s future condition and conduct the maintenance activi-

ties in an optimal fashion before the actual system failure occurs. Hence, degradation
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modeling is a key task of the diagnosis process, as it provides essential information

about the health status of the system.

Diagnostics, is the set of activities performed to recognize a specific fault and its

cause in an operating component/system [14]. In other words, diagnostic techniques

are designed to determine when equipment is in a deficient condition, thus mainte-

nance activities must be conducted. Therefore, the decision-making of the diagnostic

is sensitive to the condition of the asset, because replacement or repair occurs when

the asset has reached some pre-determined degradation stage. No prediction or es-

timation is made in most diagnostic techniques. In other words, the diagnosis is an

evaluation stage based on observed symptoms to assess the system’s current and past

health state [15].

The existing degradation modeling methods can be classified into two broad cat-

egories, i.e., stochastic process models such as the Wiener process, Gamma process,

Inverse Gaussian process, and Inverse Gamma process, and; general path models [5].

These models are the most common and the main models used in the existing litera-

ture.

2.1.1 Stochastic Process Models

In this approach, degradation is assumed to follow a stochastic process. Developing a

statistical model for degradation data is to identify a probability distribution model

(e.g., Wiener process, Gamma process, Inverse Gaussian process, etc.) to represent

the measurements at each observation time [16]. In other words, physical or mathe-

matical models are needed to formulate the degradation process using a specific shape

of the degradation path, as a function of the variable measuring the lifetime of a unit

(i.e., time in service, cycles, or other mounts of use) [17].

In stochastic process modeling, the degradation signal {X(k), k ∈ T} is assumed

to have stationary independent increments, which means for any time k and ∆k > 0,

the increment ∆X(k) = X(k + ∆k) − X(k) only depends on ∆k and some other

parameters. Generally speaking, ∆X(k) follows a distribution, which has additivity

property. As far as stochastic process models are concerned, three types of com-

mon and well-exploited degradation models are Wiener process, Gamma process, and

inverse Gaussian process. Next, these models are described in more detail.
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2.1.1.1 Wiener Process (Brownian Motion)

Wiener process, also called Brownian motion is a continuous-time stochastic process

with independent, real-valued increments and decrements that randomly projects the

degradation based on the drift and shift parameter of the wiener process over time. It

is basically a sequence of normally distributed random variables, and for later times,

the variances of these normally distributed random variables increase to reflect the

fact that estimating the value of the method over a longer period of time becomes

more uncertain. Wiener processes are appropriate for non-monotonous degradation

processes resulting from minor repair, self-healing, or reduced use intensity, which

are frequently found in practice. The process can provide a satisfactory and robust

description of degradation signals for the unit/system including bearings and rotating

machinery, lumen degradation data, bridge beam degradation, light emitting diode

(LED) lamps, and batteries [18], to name but a few. The Wiener process is widely

used for modeling degradation processes due to its useful mathematical properties and

physical interpretations, in addition to its ability to capture the inherent uncertainty

associated with the progression of degradation over time [19].

Pan et al. [20] introduced a degradation modeling and reliability estimation ap-

proach by modeling the degradation process of the deteriorating system using a wiener

process with truncated normal distribution to characterize the unit-to-unit variability.

Pan et al. [21] proposed an approach based on a time-transformed Wiener process

with jointly considering temporal variability, measurement errors, and unit-to-unit

heterogeneity. Tsai et al. [22] proposed a model for the lumen degradation of LED

via a wiener diffusion process. Hao and Su [23] proposed a general random effect

wiener process to characterize the population degradation path. The proposed model

can capture the sources of uncertainty including unit-to-unit variation and time cor-

related structures for some laser devices. Jin et al. [24] utilized the Wiener process

with random drift, measurement error, and diffusion coefficient to identify the off-line

population degradation of secondary battery capacity. Such a model is developed

to capture several sources of uncertainty including unit-to-unit variation, stochastic

correlation, and time uncertainty.

In addition to these electronic devices, wiener processes can be used to model the

mechanical structural degradation processes and some electromechanical operations.

For example, Li et al. [25] used failure modes, mechanisms, and effects analysis, to

establish a degradation model. This reliability modeling and life estimation approach
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is based on a Wiener process with the random effects for the momentum wheel used

in satellites. Mishra and Vanli [26] combined Wiener process degradation modeling

and principal component regression to introduce a new approach that predicts the

RUL of a structure from Lamb wave sensor data. Wang et al. [27] used the Wiener

process to model the degradation process of an axial piston pump. Recently, Cheng

et al. [28] proposed a new model by integrating a double-Wiener process model with

Monte Carlo algorithms to provide a new solution to the degradation modeling and

reliability prediction of machinery with multiple degradation characteristics. More

recently, Dong et al. [29] proposed a two-stage degradation model to deal with the

rail track geometry degradation issue, where a correlated bivariate Wiener process

and a univariate Wiener process are adopted to model the degradation levels of the

system in the first stage and the second stage, respectively.

Although Wiener processes have been employed to model the degradation behavior

in many fields and applications, they are not appropriate for modeling monotonic

degradation processes such as wear or cumulative damage processes. The degradation

under the Wiener process for the non-monotonous degradation system is given by

φτ = τ0 + ητ + σBτ , (2.1.1)

where τ0 = φ(0) ∈ R is the initial degradation value, η ∈ R is the drift parameter,

σ denotes the variance parameter, and Bτ with B0 = 0 is the standard Brownian

motion.

2.1.1.2 Gamma Process

The Gamma process is a stochastic model with independent, non-negative increments

having a gamma distribution with an identical scale parameter. The Gamma process

is appropriate to model gradual damage monotonically accumulating over time in a

sequence of tiny increments [30]. The Gamma process has been proven to be an effec-

tive tool for modeling such degradation behavior because the required mathematical

calculations and the physical interpretation are fairly straightforward. Moreover, it is

also capable of modeling the temporal variability of the degradation process [31]. On

the other hand, as it is strictly applicable to monotonic processes, that may limit its

application for certain degradation processes, for example, wear, corrosion, fatigue,

erosion, crack growth, creep of materials, consumption, and degrading health index,
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to name but a few. The common use of the gamma process to model uncertain degra-

dation in a wide variety of applications encourages the researchers to introduce new

algorithms based on the gamma process.

Pan et al. [32] proposed an approach by using the Gamma process to model degra-

dation processes, which is a product fatigue crack in some engineering systems. Qiu

et al. [33] utilized a two-stage Gamma process that is one is normal and the other

is a defective stage, to investigate the optimal mission abort policy on an unmanned

aerial vehicle (UAV). Sun et al. [34] introduced a method to find the reliability and

the storage lifetime for O-rings of gas steering engine at different temperature by inte-

grating the Gamma stochastic process with the traditional accelerated model. Zhang

et al. [35] proposed a reliability demonstration method by applying the Gamma pro-

cess to describe the monotonic degradation process of alloy products. Duan et al. [36]

examined the optimal design problems for constant-stress accelerated degradation

test for carbon film resistor based on gamma processes with fixed effect and random

effect. Cholette et al. [37] presented an approach to handle the degradation of boiler

heat exchangers due to erosion by combining a physical erosion model and a Gamma

process to account for the uncertainties in the thickness degradation process. In ad-

dition to these applications that belong to many fields, the Gamma process has been

applied to model various types of degradation processes in the management of civil in-

frastructure assets. such as, Edirisinghe et al. [38] developed a model that considered

the Gamma process to be used for predicting building element deterioration because

of the associated temporal variability of degradation. Also, Mahmoodian et al. [39]

presented a stochastic gamma process model to account for temporal variability and

corrosion-related uncertainties in concrete sewer pipes that usually increase the risk of

pipe aging failure. Zhang et al. [40] adopted the gamma process model to investigate

the time-dependent reliability of carbonation behavior in recycled aggregate concrete

(RAC).

A Gamma distribution with shape parameters α > 0 and scale parameter β > 0

has a probability density function given by

Gamma(x|α, β) =
βαxα−1e−βx

Γ(α)
, (2.1.2)

where the Gamma function for α > 0 is Γ(α) =
∫∞
z=0

zα−1e−zdz.
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2.1.1.3 Inverse Gaussian Process (IG)

Is another important stochastic model for degradation modeling aside from the Wiener

and Gamma process models. Which is similar to the Gamma process in terms of the

monotone degradation path with independent, non-negative increments, however, it

has an important practical advantage over the gamma process, which is the closed

form of its first-time passage distribution, moreover, the flexibility in dealing with

random effects and covariates [41]. IG has received more attention in degradation

modeling due to its clear physical interpretation and nice mathematical properties.

Noteworthy, there is an inverse relationship between Wiener and IG processes that

makes it possible to apply many of the Wiener process properties to the IG process.

These advantages of IG made it more suitable and capable in a range of degradation

analysis applications where the two processes (Gamma and Wiener) mentioned earlier

have failed, such as the GaAs laser degradation analysis [42]. It has also been demon-

strated that the IG process is applicable to a number of different applications such as

energy pipelines, crack growth, corrosion, fatigue, and contamination [43], to name

but a few examples. It is important to notice that the path of an inverse Gaussian

process is strictly monotone, thus, the IG is no longer valid when the degradation

path is not monotonous [42].

The researchers have shown great interest in modeling the degradation behavior

through the inverse Gaussian process. For example, Ye et al. [41] investigated the

use of IG processes in modeling laser device degradation. Also, Peng et al. [43] pro-

posed a general Bayesian framework for degradation analysis using Gaussian process

models. Qin et al. [44] used the IG process to model the degradation process of en-

ergy pipelines. Yeet al. [45] proposed a model to examine the optimal constant-stress

accelerated degradation tests plan based on the IG process model in an electrical

connector. Chen et al. [46] introduced the IG process with skew-normal distribution

as a random effect to represent unit-to-unit variability of the degradation rate in alu-

minum alloy specimens. Xuet al. [47] presented random effects model using the inverse

Gaussian process for Integrated circuit device degradation, where the mixture nor-

mal distribution has been used to account for both unit-specific and subpopulation-

specific heterogeneities. et al. [48] proposed an improved Bayesian framework by con-

sidering the IG process degradation models with constant, monotonic, and S-shaped

degradation rates, for analyzing the degradation of heavy machining tool’s spindle

system.
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The probability density function (PDF) with shape parameter µΛ(k) and scale

parameter λΛ2(k) when µ > 0 , λ > 0 and monotonic increasing function of time k,

where the mean of IG(k) is µΛ(k), and its variance is µ3Λ(k) / λΛ(k). Then the

probability density function (PDF) is given by

f(x|µ, λ) =

√
λΛ2(k)

2πx3
e

[
− λ

2x
(
x

µ
− Λ(k))2

]
(2.1.3)

As our research is mainly focused on stochastic process models, we will

not consider the other models with details.

2.1.2 General Path Models

Statistical models for continuous degradation data, where the degradation process

is defined as a function of time, possibly with two sets of parameters fixed-effects

and random-effects parameters [5]. Many extensions of the general path model were

introduced by examining various types of statistical modeling methods for different

applications [17]. The simplicity and ability to model continuous processes have in-

creased the popularity of the general path model however, sometimes these models

may not well represent the actual process of deterioration due to the oversimplifi-

cation of the nature of that process. Moreover, general path models assume that

the underlying deterioration to be deterministic and therefore capturing a product’s

time-varying behavior is an issue [49]. Based on reference [50] the model can be

represented as

Dij = D(kij;ϕ θi) + εij, (2.1.4)

where D(·) denotes the actual degradation of the ith unit at time kij. ε is the vector

of fixed-effects parameters (common for all units), θi is the vector of random-effects

parameters representing the characteristics of theith unit, and εij is associated random

error of the ith unit at time kij which is assumed to be ε ∼ N (0, σ2) with zero mean

and variance σ2. General path models have been considered with more detail by

many references [5, 17,49,50].
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2.1.3 Existing Work on Degradation Modeling

The extensive research on degradation modeling has led to many diagnostic/prognostic

tools and techniques aid in developing an accurate and generalized model for the

degradation process. The degradation modeling designs have been built based on dif-

ferent directions and resulting in many classes. For example references [19,20,22,25–

27] have considered a single bivariate degradation model based on Wiener process,

while the references [35–38, 51, 52] have followed the same direction but using the

Gamma process to model the degradation behavior. In this line of research, another

group of methods [53–57] has been proposed to follow the Inverse Gamma processes.

On the other side, [21,23,28,29,58], [33,59,60], and [43,47,61] have introduced an-

other category of techniques which considered multiple degradation measures by as-

suming that all degradation paths statistically follow one specific type of distribution

(Wiener, Gamma, and IG, respectively). Whilst [46,62,63] extended the degradation

modeling approaches to incorporate two different statistical distributions to model

system degradation.

Similarly [16, 64–69], have utilized multiple-path degradation models where the

underlying statistics for each of the degradation model is either the same or different

in each approach, however, these approaches represented another class of degrada-

tion models (referred to as the copula-based approaches) and that because of uti-

lizing the copula technique that has an important role in identifying the complex

interdependence structure among the degradation modes [70]. Another class of al-

gorithms [70–77], based on Kalman Filter (KF) and Particle Filter (PF) and their

extensions, have proven to be robust in this field.

It can be observed that all the aforementioned degradation models have mainly

two issues, (i) first; most of these works deal with one specific degradation path, which

is developed based on the assumption that a particular type of statistical distribution

governs the degradation process (e.g., Wiener, or Gamma distribution,. . . etc.). In

practice, a system may consist of multiple components or a component may have

multiple degradation measures that require simultaneous consideration of multiple

degradation paths. While few attempts have made toward developing multi-path

degradation models, incorporation of several degradation path models simultaneously

have rarely been considered in the literature. (ii) The second issue is that the models

are built based on prior knowledge of the true degradation model of the system, which

is often unable to comply with the time-varying degradation characteristics of the real
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system. In other words, all the aforementioned algorithms whether they are based on

single or multiple degradation paths, they built their algorithms based on an implicit

assumption of the degradation model.

Another important class of algorithms [78–83], that based on data-driven methods,

has made a big change in degradation modeling as it does not follow the traditional

mechanisms of molding the degradation behavior, but it has its own way by using the

field data to construct empirical models of degradation. Technically, these approaches

use data mining and machine learning techniques to learn the system behaviors di-

rectly from the collected condition monitoring data. The learned knowledge is then

employed to determine the health state, acquire the degradation trend [84]. These

methods can be integrated with other algorithms such as KF or PF [72, 85–87] to

achieve the same task. Although most of the recent studies have considered the

data-driven class and its extensions for degradation modeling applications, these ap-

proaches have their limitations. For example, there exist two main deficiencies in

using data-driven methods. First, they are highly dependent on the quantity and

quality of the collected degradation data. Second, some of them can hardly maintain

good generalization performance across various prognostic scenarios, especially when

this model is well configured for a certain scenario.

The Integration of PF with powerful approaches such as multiple-model (MM)

or multiple model adaptive estimation (MMAE) (as a special case of the MM) and

interacting multiple models (IMM) (as an improved version of the MM) has intro-

duced a new class of algorithms. As mentioned earlier, the PF based approaches

have been widely used for prognostic applications [74–77,85–87], On the other hand,

multiple models (MM) or multiple model adaptive estimation (MMAE) filtering have

been studied as powerful approaches ranges from target tracking to fault detection

and isolation [88–95]. Despite the fact that these approaches are powerful, they still

suffering from the previously mentioned limitations of the other classes of algorithms.

The PF integrated with IMM, is widely used in the target tracking literature,

however, few studies such as [96] has proposed interacting multiple particle filters for

fault diagnosis, but depended on linear system model assumptions and Gaussian noise

and disturbances. And [97] has proposed interacting multiple particle filters for fault

diagnosis but considered only sharp degradations. While [98] has introduced a new

approach using a state augmented particle filtering integrated with IMM considering

different degradation mechanisms, however, the degradation mechanism was very
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limited and particularly designed for the “Crack growth degradation problem”. This

class of algorithms which was based on the integration of PF and MM or IMM was

the primary motive behind the development of the proposed degradation modeling in

this thesis as we will see in Chapter 3.

2.1.4 The Basic Definitions and the Key Concepts for the

Proposed Degradation Modeling

2.1.4.1 The Particle Filter (PF)

Is an effective and powerful technique for sequential signal processing with a broad

variety of science and engineering applications. It is a Monte Carlo based method

particularly useful in dealing with nonlinear and non-Gaussian problems. The particle

filter is also known as the bootstrap filter, condensation algorithm, and survival of

the fittest [99]. The underlying principle of particle filters is that any probability

density function (pdf) can be represented as a set of samples (particles) based on

the concept of sequential importance sampling and the use of Bayesian theory [100].

The main advantage of the particle filter is that It does not depend on any local

linearization technique but rather approximations in the representation of the desired

distributions by discrete random measures [100]. The main part of the particle filter

is the sequential importance sampling (SIS) that is built based on the importance

sampling.

Importance Sampling (IS) Importance sampling is a form of approximation, rather

than sampling, and it used to generate random variables from complicated densities.

Let us use the Importance Sampling (IS) to evaluate the following integration

Ep(x|z)
{
h(x)

}
=

∫
h(x)p(x|z)dx, (2.1.5)

where E
{
·
}

represents the expectation. To avoid this type of integration in the

Bayesian statistics, Ns random samples Xi, for (1 ≤ i ≤ Ns), drawn from the proba-

bility distribution p(x|z), then by evaluation the function h(x) on these samples, we

can estimate their mean as follows

E
{
h(x)

}
≈

Ns∑
i=1

h(Xi)p(Xi|z). (2.1.6)
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Since sampling from the true posterior p(x|z) is generally unavailable, or difficult,

it is common to derive the particles from a proposal distribution denoted by q(x|z),

hence, the integration form in Eq. (2.1.5) can be written in terms of the proposal

distribution as follows

E
{
h(x)

}
=

∫
h(x)

p(x|z)

q(x|z)
q(x|z)dx, (2.1.7)

as a result the statistical mean in Eq. (2.1.8) will be as follows

E
{
h(x)

}
≈

Ns∑
i=1

h(Xi)W ip(Xi|z), (2.1.8)

where W i = p(Xi|z)
q(Xi|z) , for (1 ≤ i ≤ Ns), represents the weights related to the vector

particles Xi.

Sequential importance sampling (SIS) Now, let us consider the following dy-

namic state-space form, where the discrete time state equation and the observation

equation of the nonlinear systems are given as follows

xk = f(xk−1) +wk, (2.1.9)

and zk = h(xk) + vk, (2.1.10)

where functions f(·) and h(·) in Eqs. (2.1.9) and (2.1.10) represent the state and

observation models, respectively. xk ∈ Rnx is the state vector for the system, k

denotes the time instant, zk ∈ Rnz is the observation vector, wk and vk are the

system noise and the observation noise, respectively. The posterior distribution of

initial state can be represented as p(x0) based on the Bayes theorem. Then xk can

be speculated as p(xk|xk−1) and zk can be speculated as p(zk|xk). In general, the

assumptions are also made for the system that xk subjects to the first-order Markov

process and zk is conditionally independent of previous observation (z1, z2, .....zk−1)

given xk.

Using x0:k = {x0, . . . xk} and z1:k = {z1, . . . zk} to denote the sequences of states

and observations, respectively. Thus, using the framework of Bayes theorem, the

posterior distribution of the hidden states xk can be written as

P (x0:k|z1:k) = p(x0:k−1|z1:k−1)
p(zk|xk)p(xk|xk−1)

p(zk|z1:k−1)
, (2.1.11)

21



since p(zk|z1:k−1) is a normalizing constant then Eq. (2.1.11) can be simplified as

P (x0:k|z1:k) ∝ p(x0:k−1|z1:k−1)p(zk|xk)p(xk|xk−1), (2.1.12)

where ∝ means being proportional to. For the nonlinear systems Eq. (2.1.9) and

Eq. (2.1.10), the posterior distribution p(x0:k|z1:k) is difficult to obtain because of the

complicated integral calculation [101].Instead of that, PF approximates it with a mass

of particles xi0:k i ∈ (1, . . . Ns), in which i represents the serial number of particles,

and Ns is the sum total of them. The initial particles i.e., Xi
0 are drawn from p(x0).

Then the importance distribution is chosen as

q(x0:k|z1:k) = q(x0:k−1|z1:k−1)q(xk|x0:k−1, z1:k). (2.1.13)

And every particle is given a weight W i
k, then according to Eq. (2.1.11) to Eq. (2.1.13),

the weight can be formulated as

W i
k =

p(z0:k|z1:k)

p(x0:k|z1:k)
∝ W i

k−1

p(zk|Xi
k)p(Xi

k|Xi
k−1)

q(Xi
k|Xi

0:k, z1:k)
, (2.1.14)

where W i
k is the importance weight. Denote the normalized W i

k as W̄ i
k that can be

found as

W̄ i
k =

W i
k∑N

i=1 W
i
k

, (2.1.15)

then, the posterior distribution p(x0:k|z1:k) can be approximated by particles as

P (x0:k|z1:k) ≈
N∑
i=1

W̄ i
kδ(x0:k − Xi

0:k), (2.1.16)

where δ(·) is the Dirac delta measure. In the case that the importance distribution

satisfies

q(xk|x0:k−1, z1:k) = q(xk|xk−1, z1:k), (2.1.17)

then

W i
k ∝ W i

k−1

p(zk|Xi
k)p(Xi

k|Xi
k−1)

q(Xi
k|Xi

k−1, zk)
(2.1.18)
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Commonly, the PF chooses the transitional distribution probability as importance

distribution, that can be written as

q(Xi
k|Xi

k−1, zk) = p(Xi
k|Xi

k−1), (2.1.19)

then

W i
k ∝ W i

k−1p(zk|Xi
k). (2.1.20)

then the posterior distribution p(xk|z1:k) can be written as

P (xk|z1:k) ≈
N∑
i=1

W̄ i
kδ(xk − Xi

k). (2.1.21)

With the approximated p(xk|z1:k), the states xk can be estimated by the corresponding

methods, such as MMSE (Minimum Mean Square Error) [102].

x̂k =
N∑
i=1

W̄ i
kXi

k. (2.1.22)

Up to this point, the above procedures are known as sequential importance sampling

(SIS), which is a basic form of PF. The SIS algorithm thus consists of recursive propa-

gation of the weights and support points as each measurement is received sequentially.

Fig. 2.1 presents the main idea of the SIS algorithm.

A common problem with the SIS particle filter is the degeneracy phenomenon,

where after a few iterations, the weights of particles concentrate on the minority in

the PF algorithm and the majority of particles will have negligible weight. It has

been shown that the variance of the importance weights can only increase over time,

and thus, it is impossible to avoid the degeneracy phenomenon [103]. This degeneracy

indicates a significant computational effort to update particles whose contribution to

the approximation to p(xk|z1:k) is almost zero. In this case, the collection of particles

are not able to express the actual posterior distribution accurately. The particle

degeneracy degree can be evaluated by the effective sample size Neff [104], which is

given by

Neff =
1∑N

i=1(W̄ i
k)

2
. (2.1.23)
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Figure 2.1: The SIS diagram.

The smaller the effective sample size is, the more degeneracy the particles will present.

In order to solve the problem of particle degeneration, the resampling technique is

introduced to improve the general PF. Resampling is used to sample the particles

some times by means of the posterior probability density function, and thus obtain a

new particles collection, so the main idea of resampling is a scheme that eliminates

particles with small weights and replicates particles with large weights. During the

past decades, many resampling techniques have been constructed such as, multinomial

resampling (which is the most popular one), stratified/systematic resampling, and

residual Resampling [105]. The following is the most popular and straightforward

resampling technique, which is the multinomial resampling, and the procedures of

that as follows

Perform the following three steps for i = 1, . . . N

(i) Generate a random number ui from the uniformly distribution over(0, 1]

(ii) Search the variable j ∈ {1, . . . N} which satisfies

j−1∑
m=1

W̄ i
k < ui ≤

j∑
m=1

W̄ i
k. (2.1.24)

(iii) Store the Xi
k as a offspring particle

After the resampling, the particles with small weights are eliminated, and many

offsprings are created for the particles with large weights. The posterior distribution
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Figure 2.2: The PF diagram.

p(xk|z1:k) can be approximated by these offspring particles as

P (xk|z1:k) ≈
1

N

N∑
i=1

N i
kδ(xk − Xi

k), (2.1.25)

where N i
k is the number of offsprings for the parent particle Xi

k. The resampling

technique can reduce the degradation of particles effectively. However, it also brings

some negative effects.The large-weight particles will become the major choice in the

samples, and the sampling results contain a host of repeated points with the increase

of the number of iterations, leading to the loss in the diversity of the particles. This

then generates another problem which is the particle impoverishment phenomenon. In

the procedure of resampling, the small-weight particles are eliminated and the large-

weight particles are selected as the parent particles. This leads to the loss of the

diversity of the offspring particles. Offspring particles are not included in the region

of the posterior distribution and they have no contribution to the approximation

of posterior distribution. In general, we can increase the number of particles to

solve the problem of particle impoverishment, but the computation load will also be

increased [106]. Fig. 2.2 presents the main steps of the PF.
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Figure 2.3: The Structure of MM estimator.

2.1.4.2 The Multiple Model (MM)

Multiple model estimation is one of the most reliable and efficient approaches that is

a more likely way to hybrid estimation. This approach has been designed based on a

collection of multiple models used to cover the possible patterns of system behavior

(called modes), These models represented by a bank of filters, that run in parallel

at every time, each based on a unique model in the collection [107]. Then, the

algorithm fuses the output from the running filters to generate the overall estimates.

The literature includes many applications of the MM method ranging from target

tracking to fault detection and isolation [88–95]. Although MM approaches have

played a major role in many fields, they had many limitations and challenges that

need to be improved as we mentioned earlier in section. 2.1.3.

The efficiency of an MM algorithm largely depends on several factors, where the

major one is the set of models used and their associated filters, more specifically, the

number, types, parameters, and designs of the filters and then the models. Another

important factor is the fusion of the estimates from the elemental filters. Fig. 2.3

demonstrates the main idea of the MM estimator, where x̂
(i)
k|k denotes the estimate

of xk that obtained from the filter of model i at time k, x̄
(i)
k−1|k−1 is the equivalent

estimate at k − 1 and the input to filter i for kth time cycle, and x̂k|k is the overall

estimate. While P
(i)
k|k, P̄

(i)
k−1|k−1, and Pk|k are the associated covariances.

Since this approach was first introduced more than 50 years ago [108] has been im-

proved and developed by many researchers and scientists. Today there are different
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improved versions of the MM among the most successful once of them are (i) The Mul-

tiple Model Adaptive Estimation (MMAE) and (ii) The Interactive Multiple Model

(IMM).

2.1.4.3 The Multiple Model Adaptive Estimation (MMAE)

An attractive class of adaptive estimators that represents one of the successful ver-

sions of the multiple model approach. It has received wide attention and achieved

significant progress in handling problems with model uncertainty [108]. The key idea

underlying the multiple model adaptive estimation is combining dynamic hypotheses

evaluating concepts with linear or nonlinear estimators leading to an algorithm for

system identification. Where this approach is composed of a parallel bank of filters,

each one of them corresponds to a model in the model set that constructed to iden-

tify a particular fault status or the uncertainty model of the system. When the set

of models utilized by the MMAE approach doesn’t change, it is called a fixed set of

models, which represents an impractical estimator when handling partial failures or

simultaneous failures, as the number of models needed to cover all expected failures

can be large [109]. To address this problem, different methods have been proposed,

for example [110] suggested using a hierarchical structure, while [111–113] utilized

a moving-bank MMAE algorithm, in order to reduce the required number of filters.

However, all these methods can not accommodate more than two faults simultane-

ously. Recently, [114] proposed the selective reinitialization algorithm based on the

Unscented Kalman Filter (UKF) for reducing the size of the model set.

The estimation of the MMAE is based on collecting the residuals (the difference

between the predicted measurements and sensor measurements) from the bank of

filters to determine the respective model weights (probabilities of the models being

the correct one) and the final state estimation is provided by the weighted sum of

each filter’s estimate. The explanation for this is that the most accurate filter is

the one that provides the state estimation that has the highest probability [115].

Almasri et al. [116] proposed a model to accurately identify and isolate four wheel

block faults in a robot model, by integrating Multiple model Adaptive Estimation

(MMAE) and the Extended Kalman Filter (EKF). While Lu et al. [117] proposed the

MMAE approach based on (UKF) for tracking and compensating sensor and actuator

failures in aircraft flight control systems. Moreover, Vaezi and Izadian [118] utilized

MMAE based on Kalman Filters that representing specific operating conditions, to
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Figure 2.4: The Block Diagram of the MMAE Approach.

estimate the state of a nonlinear hydraulic wind power transfer system subject to

different operating regimes that are caused by external factors such as variations in

wind speed. Also, Lu et al. [119] proposed MMAE based on a bank of Kalman Filters

for fault detection in nuclear power plants. In addition, Renwick et al. [120] presented

a reinforcement learning based MMAE supervisor to perform fault detection for either

accelerometer failure or pitot tube in the simulation of the flying fish autonomous

unmanned seaplane. Fig. 2.4 presents the block diagram of the MMAE approach.

Where z denotes the vector of measurement, a represents the control input, x̂k is

the state estimate at sample step k, γk is the vector of innovations, pk represents the

conditional probability, and finally “ff” means fault free.

All the aforementioned approaches have shown various outcomes in terms of ac-

curacy, generality, robustness, and efficiency, however, all of them have used either

the KF or one of its extensions (EKF and UKF), also, the approaches that aimed to

model the degradation behavior, were designed based on prior knowledge about the

real degradation models.

2.1.4.4 The Interactive Multiple Model (IMM)

The IMM is the algorithm that firstly proposed by (Bar-Shalom and Blom) [121]

and has been the most successful, powerful, and cost-effective multiple model method

for addressing multi-behavior issues in several areas such as target tracking, fault
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detection, and isolation and many other problems. What distinguishes IMM from

MMAE is the interaction of the associated filters with each other resulting in better

performance in the state estimation. The IMM is a version of the MM, and then it

comprises of a bank of parallel filters each of them representing a separate model of

the system under consideration. For each filter, at the beginning of each cycle, the

initial estimate is a mixture of all recent estimates from a specific model. This mixing

allows the IMM to take full account of the history of the modes, leading to faster and

more reliable estimation for the changed system states. The switching probabilities

and the likelihood of each of the models are controlling the interaction between the

models, then the IMM result is a combined state vector which is the sum of the state

vectors for each of the modes weighted by their model probabilities [122].

Although the IMM is an improved and powerful approach, it’s sharing the same

problem of missing the model representing the true behavior of a system. Few meth-

ods have been proposed to overcome this issue. Li and Jilkov [123]. proposed the

expected-mode augmentation to manage the model set, however, this method needs

an extra feature to be added to the IMM design. Ru and Li [109] suggested utilizing

a maximum likelihood estimator for estimating the extent of the faults after deter-

mining a fault using the IMM, which again ends with the same problem that is a

larger model set.

The flexibility, cost-effective, and exceptional tracking ability, have made the IMM

to be widely adopted approach in many fields, such as target tracking, traffic control,

human tracking [124]., In addition to the PHM applications [98]. For the PHM field,

Zhang and Li et al. [125] Introduced an integrated framework that used the IMM with

a bank of KF.s, to detect single and double faults of both sensors and actuators of an

aircraft, in addition to the superior ability of diagnosis, and state estimation. Kim

et al. [126] introduced a new fault detection and diagnosis algorithm by integrating

the fuzzy logic and the IMM (based on KF) to handle the failure of the aircraft

actuator. Zhao et al. [95] proposed recursive fault detection and diagnosis algorithm

for the ball-and-tube system, by utilizing a KF based IMM to overcome the problem

of inaccurate transition probabilities. Yan et al. [124] proposed a general Prognostic

framework using a KF based IMM to determine the system health by a health index,

and then estimating the RUL from the division of the current health value on the

degradation rate of the health index at that moment. Ru et al. [109] proposed an

integrated framework for fault detection, identification, and state estimation, for the
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Actuator Failures of B747 aircraft. This approach has been built based on using

KF based IMM for fault detection and identification in addition to the maximum

likelihood estimator for estimating the extent of failure. Vianna and Yoneyama et

al. [122] proposed an integration of IMM with a filter bank of extended Kalman filters

that contain augmented state-space models in order to model both the dynamics of

the valve and the dynamics of the degradation. Zhao et al. [127] Introduced a new

fault-detection and diagnosis approach for the stochastic hybrid system taking into

account the uncertainty of the model parameter, where all the possible behaviors of

the quadruple water tank system (normality, single fault, and multiple faults) have

been considered by using a suitable set of modes, and at each time step, the most

likely mode is selected. Judalet et al. [128] utilized an adapted IMM algorithm based

on different banks of filters (EKF, UKF, and the first-order divided differences filter

(DD1)), for detecting and isolating the failures of sensor and actuator in a drive-by-

wire road vehicle.

All the aforementioned approaches were employed the IMM algorithm integrated

with the bank of either the KF or one of its extensions (EKF and UKF). Additionally,

the methods intended at modeling the degradation behavior were built on the basis

of prior knowledge of the actual degradation models, and many other assumptions.

Furthermore, a few approaches have utilized the IMM based on particle filters bank,

for PHM applications. The details will be in chapter 3. The IMM estimator is a

recursive algorithm, where four steps are carried out in each cycle.

(i) Model Mixing/ Interaction.

(ii) Filtering.

(iii) Model Probability Update.

(iv) Overall Estimation.

Fig. 2.5 presents the block diagram of the MMAE approach. Where x̂
(j)
k−1|k−1 is the

estimated state at time k − 1, P
(j)
k−1|k−1 is the associated covariance matrices, for j

(degradation modes) (1 ≤ j ≤ N), µ
(i)
k−1 is the probability of a model m(i) being in

effect at the time step (k − 1) for (1 ≤ i ≤ N), Λk denotes the likelihood function,

and x̂k|k represents the overall state estimate.
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Figure 2.5: The Block Diagram of the IMM Approach.

2.2 Remaining Useful Life Estimation

The second direction of our research is based on finding an accurate framework to

estimate the RUL, which means we are moving from a stage that deals with the past

and current states of the system that is the diagnostic stage, to a different stage

that able to predict the future health states of the system. This shift represents the

new stage, which is the prognosis that fosters transition from a strict reliance on

the scheduled activities to accurate prediction of future failure occurrences. Though

diagnostic exhibits a retrospective nature, a predictive methodology is Prognostics.

Prognostics is used to predict the likelihood of future failures and provide early

warnings by determining the failure patterns and factors that could affect industrial

operations [129]. In other words, it is used to estimate the future health states of the

system, often with a temporal estimation of the time of when the system will no longer

be operational. This implies that the field of prognostic is not only interested in pre-

dicting the effects of known failure modes on asset life but also how these may initiate
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other failure modes. Prognostics has the potential to deliver real enhancements over

more traditional maintenance approaches by adopting intelligent predictive mainte-

nance, that can offer an invaluable competitive advantage by enabling companies

to discern problems in early stages instead of following “run-until-failure” ideology.

Consequently, this type of maintenance is called (predictive maintenance). Predic-

tive maintenance is considered the new face of the PHM that provides result-oriented

guidance for analytical operations and maintenance actions. Remaining useful life

(RUL) is the key metric for predictive maintenance solutions. In order to build an

effective maintenance strategy, maximize machine uptime, and minimize maintenance

costs an accurate RUL prediction is considered a substantial task. Therefore, existing

RUL prediction solutions need to be continually developed and strengthened.

Remaining useful life estimation (RUL) is the length of time a machine is prob-

able to function before repair or replacement is required. in other words, the residual

lifetime during which a device can perform its intended function [6]. It has many

synonyms from different fields of research such as residual life, remanent life, time to

failure, etc.

Here, one important aspect to be highlighted, the prognostic techniques, in gen-

eral, are in two directions, either based on predicting the RUL or predicting the

health state of the system/component. The emphasis in our thesis will be on predic-

tive RUL techniques, however, the importance of the RUL prediction over the health

state evaluation will be discussed as follows. RUL prediction is a more Informative

type of prediction, which is sometimes related to but still different from health state

prediction, where in some cases RUL prediction needs to predict the health state.

The key concept of the health state prediction is based on assigning a specific value

as an indicator (Health Index HI, or threshold value) to distinguish if the system is

healthy or not [130]. The HI is extracted from the raw condition monitoring data,

which can be a unique system/component feature or a combination of features [131].

There is no doubt that RUL prediction provides intensive knowledge of the future

condition of a particular asset for predictive maintenance purposes than the predicted

health state that conveys ambiguous details about the severity of the condition.

As shown in Fig. 2.6, that system (a) is closer to the threshold value than system

(b), so by adopting the health state prediction mechanism, we can tell that system

(a) is going to be in an unhealthy state sooner than system (b), and as a result,

will fail faster than system (b), but what if the degradation rate in the system (b)
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(a) (b)

Figure 2.6: RUL prediction more informative than Health state prediction.

is faster than the one in (a), then the obtained conclusion from the HI method was

misleading. On the opposite, the RUL prediction always considering the progression

of the degradation pattern, offers a more direct estimator, which can be used more

effectively for decision-making. Succinctly, the health state prediction method does

not have the potential to transform the maintenance management concept from the

conventional perspective of being reactive to being predictive. Therefore, adopting

prognostic methods based on the RUL prediction is essential to distinguish the PHM

from the traditional maintenance approaches.

2.2.1 Classification of RUL prediction approaches

RUL estimation is very essential in a variety of engineering industries, including

aerospace, medical instrumentation, civil infrastructure, automobiles, and power plants.

Many tools and methods have been introduced for failure prognostic and RUL

estimation [6–11], and It seems that the prognostic techniques usually vary based on

the type of the considered application, whereas the implemented tools count primarily

on the type of the of available data and knowledge. Moreover, these methods and tools

can be classified into three categories; (i) Physics-based approaches; (ii) Data-driven

approaches, and; (iii) Hybrid approaches (multiple-model) [12].

2.2.1.1 Physics-based Category

It involves the development of a dynamic model representing the behavior of the

system and incorporating the degradation mechanism of the monitored system to
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identify model parameters and to predict the RUL [12]. Many methods have been

introduced based on this category [132–136]. The solutions in this category are specific

to a particular industrial system under consideration and not easily extendible to

other systems due to their dependence on the behavior of the specific considered

system. They also require a solid understanding of the physical mechanism of failure,

comprehensive experimentation, specialist knowledge, and model verification, which

may be challenging and sometimes impossible for complex systems [137]. However,

model based methods are the most common methods as they are very reliable once

the model is built [138].

2.2.1.2 Data-driven Category

Data-driven approaches model the degradation characteristics based on historical

measurements obtained from sensors embedded in the manufacturing systems and

make predictions based on the learned models. So, these data-driven methods tend

to extract machinery degradation processes from measuring signals rather than con-

structing physical models based on that need human expertise. Such approaches use

models of artificial intelligence and machine learning to characterize the degradation

conduct of the monitored systems or components. These models can access a broad

range of data types and exploit variations in the data that cannot be detected by

models based approaches. The key assumption of data-driven methods is the avail-

ability of run-to-failure data [139], for this reason, the prediction accuracy of these

methods depends on the quality and the quantity of the used dataset. Data-driven

prediction methods usually require two steps: training and predicting [140], during

the first step the predictor is trained based on a common training strategy considering

the recurrence relationship between the input variables and the target value. After

the training step, the predictor is assumed to have learned the degradation behavior,

in order to estimate the RUL.

Many data-driven algorithms have been proposed in recent years and good prog-

nostic results have been achieved such as the artificial neural network (ANN), hidden

Markov models (HMMs), support vector machines (SVM), relevance vector machines

(RVM), and neuro-fuzzy systems (NFs), to name but a few [139,141–143].
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2.2.1.3 Artificial Neural Networks (ANNs)

Artificial Neural Networks (ANNs) are nonlinear mapping mechanisms constructed

based on human brain functions, with a certain number of central processing units

known as neurons, interconnected through unidirectional signal channels known as

connecting weights [144]. The neural network is a machine learning approach (ML)

that presents an important and useful alternative to traditional methods as they can

handle the most complex situations that are not well specified for executing deter-

ministic algorithms. Artificial neural networks provide an impressive mathematical

mechanism to tackle nonlinear issues [145], and that due to its essential property

that allows the approximation of any continuous non-linear relationship using a neu-

ral network with appropriate architecture and weight parameters. Furthermore, the

artificial neural networks have many attractive properties such as, the ability of learn-

ing functional dependencies of data, the self-learning ability to internally mapping the

functional relationships that represent the process, having high computation rates,

and large input error tolerance, in addition to the ability of filtering out the noise,

and handling correlations as well [144–146]. Neural networks have been implemented

in a wide variety of fields including aerospace, manufacturing, engineering, defense,

medical, oil, and gas industry, finance, securities, transportation, telecommunica-

tions, environment, and more importantly in fault diagnosis and prognosis fields to

overcome modeling and classification problems [140,145,146].

One of the most remarkable trends in the world of machine learning is the precip-

itous growth of what has been called ”Deep Learning”. Deep learning has triggered

a revolution in the study and applications of neural networks. As deep learning is a

cluster based on different architectures of ANNs, then any multilayer artificial neural

networks could be an example of deep learning and we call it deep neural networks

(DNNs), where each layer can handle complex operations such as representation and

abstraction that make sense of sound, images, and text. Then, the depth indicates the

number of used layers in that network, that is why we used the term ‘deep learning’

because the neural networks have multiple (deep) layers which allow learning [147].

The deep learning approaches have many advantages over the traditional ML in terms

of feature learning, model construction, and model training [148]. Deep learning al-

lows for the automated processing of data through extremely nonlinear and complex

abstraction of features across a cascade of multiple layers to find the complicated

inherent structures, rather than handcrafting the optimal representation of data with
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domain knowledge. Deep learning allows machines to solve complex problems even

though they use very diverse, interconnected, and unstructured data, so, the more the

model is learning, the better is achieving. It is important to note, that the ML has

many different types of learning, but they can generally be divided into four groups

according to their intended purpose:

(i) Supervised learning: This technique is used when the actual output with in-

formation is available, where the learning algorithm receives a set of inputs

besides the desired outputs. This output can be discrete/categorical (a specific

color, an animal picture, a car model,..etc.), or even real value. The learning

process comes from comparing the actual output with the current output to

find errors and then modifies the model accordingly by implementing different

methods such as classification and regression [149]. All the proposed models in

our thesis belong to this category.

(ii) Unsupervised Learning: It is a way of extracting all the valuable information

that a specific dataset has for further processing and analysis, without hav-

ing any supervision from domain experts or ground truth information (labels).

Such a method has two directions; either by discovering interesting patterns

using cluster analysis or by finding out some very useful relationships between

parameters of a large dataset using association analysis [150].

(iii) Semi-supervised Learning: This method used whenever we have a mix of labeled

and unlabeled data for training, usually a limited amount of labeled data with a

large volume of unlabeled data, as the unlabeled data is inexpensive compared

with the labeled one [149]. This type of learning can be used for the same

applications of the supervised type, also it is possible to utilize the unsupervised

technique for predicting the labels, in order to use it with the supervised method.

This method is particularly appropriate for image datasets where not all images

are usually labeled [151].

(iv) Reinforcement Learning: The reinforcement learning structure is based on an

agent that learns by interacting with its environment, where the agent needs

to choose actions to increase the expected reward over a specified period. By

following a good policy the agent can hit the target much faster, therefore, in this

type of learning the goal is to identify the optimal policy. The main components

in this type of learning are: The agent or the learner, the environment, and the

actions of the agent [149]. The reinforcement learning is specific to particular
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problems such as gaming, robotics, and navigation. In addition, it follows

either one of the following strategies, value function methods, or policy search

methods, or both to resolve the reinforcement tasks [152].

A broad range of structures was built based on the ANN notion, which differs in

architecture nature, data processing (input-output), and learning process. Among

many, one can distinguish the most popular techniques, which were the main pillars

of deep learning that is the new cluster of ANNs. These techniques are:

(i) Multilayer Perceptron Networks (MLP).

(ii) Convolutional Neural Networks (CNN).

(iii) Recurrent Neural Networks (RNN).

Deep learning techniques have shown superior performance to tackle complex prognos-

tic issues with many systems whose degradation processes are tough to be interrelated

by means of other methodologies. These architectures are designed to model high

level representations of data and predict/classify patterns stacking multiple layers of

information processing modules in hierarchical structures [153]. In addition, it was

applied to hundreds of problems, within manufacturing and industrial systems and

has exceeded expectations in terms of performance and the distinguished results in

the application of prognostic health management [154]. In particular fault detection,

diagnosis, and RUL prediction for many systems such as high speed CNC machine,

induction motor, gearboxes, air compressor, and aircraft engine to name a few. The

following subsections will provide an overview of the aforementioned architectures.

2.2.1.4 Multilayer Perceptron Networks (MLP)

MLP is among the most widely used neural networks, as it forms the basis for all

neural networks [155]. Typically, it used either as a part of more advanced and

complex neural architectures, to be the last layers of the CNN or RNN, or it used

as a stand-alone model [156], as we will see. MLP is a feed forward artificial neural

network architecture, as it does not contain any cycles and the performance of the

network (Output) depends only on the present input instance [157]. It is composed of

three main parts: an input layer, an intermediate layer (one or more), and an output

layer, where each layer is fully connected to the following layer of nodes, in other

words, this multi-layered perceptron consist of interconnected neurons that transmit

information among themselves, similar to the human brain [155], and each layer is
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connected with the adjacent layer by a set of connections, each connection is equipped

by a weight. Fig. 2.7 shows the structure of an MLP with three layers, i.e., input

layer, one hidden layer, and the output layer, where, x ∈ Rk is the input vector

that is directly moved to the next layer which is the first hidden layer h ∈ Rn, and

then producing the output where yo ∈ Ro. Then the output from each layer can be

calculated as follows:

h = ϕ(1)(W1x+ b1) (2.2.1)

yo = ϕ(o)(Woh+ bo), (2.2.2)

where W1 ∈ Rn×k, Wo ∈ Ro×n, b1 ∈ Rn, and bo ∈ Ro are the weights and corre-

sponding bias of each layer, respectively. ϕ(·) denotes the activation function.

Activation functions are mathematical equations that nonlinearly describe the re-

lations between input and output. The activation function has a role in each neuron,

by identifying whether to consider this neuron as activated “fired” or not, and this is

dependent on whether the input of each neuron is significant for the model’s predic-

tion or not, by determining the weighted sum and adding bias to it [158], which will

add non-linearity to the neuron’s output. This is an important property as most of

the real world data have nonlinear nature. The activation functions can be as basic

as a step function that controls the neuron output to be on and off based on specific

rules or limits. On the other hand, they can be non-linear activation functions, which

can enable the network to handle data that are more complex, learn, and compute

almost any data-related feature and deliver precise predictions [158].

There are some common and famous activation functions such as:

(i) Sigmoid or Logistic function: It is one of the most popular activation functions

that has the following form

sigmoid(x) =
1

1 + e−x
(2.2.3)

It takes real input values that are in the domain of R and transforms (normal-

izes) them to outputs in a range (0,1).

(ii) Hyperbolic Tangent function (tanh): Another activation function that is quite

similar to the previous one, however it has the following form

tanh(x) =
1− e−2x

1 + e−2x
(2.2.4)
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(a)

(b)

Figure 2.7: The structure of an MLP with 3 layers.

and its output between −1 and 1 which means it is a zero centered, thats why

it is often preferred over Sigmoid function.

(iii) Rectified Linear units (ReLu): It is the most important and popular activation

function that takes real input values R and then transforms the negative val-

ues to zero, while the positive values rise linearly, where the function has the

following form

ReLu(x) = max(0, x) (2.2.5)

MLP often applied to supervised learning models, which employ the back-propagation

method to train the network. During the training, there is always an error that

represents the difference between the outputs and the expected values that are already

known. The function that quantifies this error known as the cost function. Minimizing

this function is the target of supervised learning in order to optimize the correlation

of the model to the system that it is seeking to represent [159]. The backpropagation

algorithm is based on using a technique called gradient descent (or other techniques

that have the same objective) to determine the minimum value of the cost function
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within weight space [160]. The weights that achieve this target will be considered as

the optimal solution to the current learning problem. To be more specific the idea of

the gradient descent is computing the derivative of the cost function with respect to

the weights in the network as follows

∂Error

∂W1

=
∂Error

∂yo

∂yo
∂Wo

∂Wo

∂h

∂h

∂W1

, (2.2.6)

where the term Error represents the error measured by the cost function. In other

words, the concept is simple: change the weights and biases across the network to get

the necessary output in the output layer. For more details about the backpropagation

algorithm see [159,160].

MLP has been used in a broad range of fields, like Handwritten Recognition [161],

classification of healthcare data [162], Index of Industrial Production [163], Image

Classifications [164], and Stock market analysis [165], to name just a few. In PHM

applications, MLP has shown an impressive success, and a wide range of approaches

have been proposed such as Huang et al. [166] proposed an integrated approach for

investigating the whole life cycle of ball bearing. The minimum quantization error

has been used as a degradation indicator and then monitoring the degradation period

which is defined by fluctuating signal that rises from the beginning of the defect till

the failure of the component, and then based on the NN and the weight application to

failure times, the remaining useful life has been predicted. Kim et al. [167] presented

an approach to estimate the state of health of Lithium-ion battery using the MLP

network. Jedlinski et al. [168] utilized the MLP network to evaluate the technical

condition of a gearbox and to detect the fault as early as possible. Huet al. [169]

employed the MLP approach to diagnosing the amount as well as the location of

mass imbalance on aircraft engines, and the results were superior compared with

other solutions. Almeidaet al. [170] proposed an architecture based on MLP network

to handle the basic classification job besides the fault identification, by utilizing the

features of vibration signals in time-domain for bearings in both normal and defective

cases. Geramifard et al. [171] used the MLP network for monitoring and predicting

the health condition of a cutter, more specifically the wearing status in terms of

the features or measured data. Loboda et al. [172] utilized the MLP to propose a

diagnostic technique for fault identification and classification in a real gas turbine.

Zolfaghari et al. [173] Integrated the wavelet analysis and the MLP network to propose

an intelligent approach that combines the strength of both frequency domain analysis
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Figure 2.8: The CNN Architecture.

and time scale, for automatic diagnosis of fault severity during the life of a motor.

Heidari et al. [174] proposed an approach by combining the MLP, wavelet support

vector machine, and continuous wavelet for diagnosing different types of fault in the

gearbox.

2.2.1.5 Convolutional Neural Networks (CNN)

The basic concepts of CNNs were firstly proposed by LeCun [175]. It is a multi-stage

neural network, which is composed of two stages: (i) a feature extractor module that

is composed of input and convolutional layers, in addition to the pooling layers, and;

(ii) fully connected layers to perform the classification task [176] as in Fig. 2.8. It

is a powerful feature extraction mechanism widely applied in many industrial and

research fields, as it has an exceptional ability to capture the spatial and temporal

dependencies. CNNs were originally designed to be used in image processing and

computer vision, where the input usually organized as a two-dimensional (2D) array.

Every image is represented by a matrix of pixel values at the coordinate indices x

and y (horizontal and vertical), while for color images an additional ‘depth’ field to

be added to the input data, changing the input to be in (3D) [177]. The raw pixel

data of an image are the input to the CNN, which then learns how to identify useful

observation or a specific pattern (The features) from the input and finally, conclude

what object they represent. As earlier stated that CNN has two stages, consequently,

the input has to pass through different steps to reach the output stage.

Convolution layer: It is a core component of the features extraction stage in the

CNN architecture. Which usually consisting of an integration of linear and nonlinear

processes, that is the convolution and activation function [178].

Convolution: It is a special type of linear mathematical operation used to combine

two information sets, which are the input image matrix (input feature map) and the
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Figure 2.9: The 5× 5 Input image matrix, and the 3× 3 Filter matrix .

Figure 2.10: The 3× 3 Convolution process.

convolution filter (also called a kernel). To show the convolution process, the following

example is given. Consider (5 × 5) as an input image matrix, and filter matrix of

(3× 3), as shown in Fig. 2.9. The convolution process is achieved by sliding the filter

over the input matrix, and the element-wise product is calculated at each position

and then sum the result to get a single value that will represent an element in the new

matrix that is the output feature map as shown in Fig. 2.10. It can be clearly seen

that the most important hyperparameters that identify the convolution operation are

two; The size and the number of the used kernels.

From this example, we can see that every convolution layer implicitly includes

several filters trained to recognize a particular form of features. Each filter is applied

sequentially to all suitable locations where it overlaps entirely with the input image

resulting in a smaller feature map that defines the input regions where a particular

feature has been observed. After implementing multiple filters, we end with a number

of feature maps that are then passed to the next layer. Stacked convolutional layers are

used (also pooling layers can be used, as we will see) for size reduction of the extracted

feature maps. It is important to highlight that the first convolutional layers recognize

the simple or the basic features, whereas the layers that are deeper have the ability to

handle more complex patterns and structures [179]. Each layer can be seen as a new

interpretation of the input image, represented in terms of patterns that are broader

and even more abstract than those in the previous layer. Passing the Input image
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through a sequence of layers, in this regard, it is similar to the MLP network, but the

layer’s structure is quite different, as the MLP uses fully connected layers where the

output vector’s elements are dependent on the input vector’s elements. While CNNs

use convolutional layers that benefit from the spatial locality, where every output

element belongs to a small image region and depends only on the input values from

this region. As a result, the number of parameters that describe each layer will be

greatly reduced. Furthermore, the convolutional layers presume that the parameters

for each local area of the image are the same, which renders the number of layer

parameters independent from the image size. What it really needs to learn is a single

kernel that determines how output features are measured from any local area of the

image [179]. This local area is usually very small, maybe around 5 by 5 pixels [180],

then the number of parameters to be learned is 25 times the output features’ number

for each area. This is a small number comparing to the fully connected Layer which

makes CNNs significantly easier and smoother to train than MLPs.

Nonlinear activation function: The CNN applies a nonlinear activation function

(sigmoid, tanh, and ReLu) after each convolution operation for introducing a nonlin-

earity into the model.

Pooling layer: The primary goal of the pooling layer is to progressively reduce the

size of the feature maps by selecting certain features through a summarized version

of the detected features. In a word, the CNN in this stage is down-sampling the

convolved features. As a result, the pooling leads to reducing the number of model

parameters, simplifying the computational complexity of the network, and avoiding

the over-fitting issue [154]. The most common types of pooling operations are max

pooling, average pooling, and sum Pooling. Just like the process of convolution

conducted above, the pooling layer takes a sliding window through the data, which

turns the values into representative values, either by taking the maximum value, the

average of the values, or the summation of the values, from the observed values in

the window. It is worth noting that in any of the pooling layers there is no learnable

parameter [154].

Fully connected layer (FC): The last stage of the CNN network is the FC layers

(dense layers) that received the flattened (converted from matrix to vector) output

feature maps from the last convolution or pooling layer. The FC layers then use an

activation function to construct the desired outputs either through classification or

regression task.
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Figure 2.11: Illustration of the 1D convolution operation utilized in the CNN.

2.2.2 One Dimensional Convolution

For the proposed RUL approaches in our research, the time sequence and the selected

number of features represent the 2D structure of the input data for the CNN. However,

as the extracted features are collected from many different sensors in the prognostic

problem of our research, there exists an unnoticeable relationship among spatially

distributed features obtained from the samples [181]. Thus, although the input and

the associated feature maps have 2D, the designed convolution filters in our proposed

models are in the 1D format as shown in Fig. 2.11. Let the vector xt represent the

1D input sequence at time t, the xtl:l+D−1 represents the concatenated vector, and w

∈ RD×1 denotes a kernel with D size, then the convolution operation is given by

xtl:l+D−1 = xtl ⊕ xtl+1 ⊕ . . .⊕ xtl+D−1, (2.2.7)

where xtl:l+D−1 represents a window of length D that starts from the lth point and ⊕
concatenates each data sample into a vector. The convolution operation is defined by

zl = ϕ(w>xtl:l+D−1 + b), (2.2.8)

where superscript > denotes the transpose operator and {b, ϕ} are, respectively, the

bias and non-linear activation function. Consider zl representing the learned feature
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of the kernel w on the sub-sequence xtl:l+D−1, then by sliding the filtering window

from the first point to the last point in the sample data, the feature map of the jth

kernel can be captured and is expressed as follows

ztj = [z1
j , z

2
j , . . . , z

L−D+1
j ]>. (2.2.9)

For the pooling layer, it operates independently on each feature map ztj and resizes

it spatially using a specific operation such as (max, average, and summation). As an

example, for max pooling, if k is the filter size then the output feature max pooling

vector is given by

p = [p1, p2, . . . , pL−D+1
k

], (2.2.10)

where pi = max(zki−(k−1), . . . , z(ki−2), zki−1, zki). The Outstanding capability of the

CNN in identifying spatial and temporal dependencies, made the CNN as one of the

most powerful feature extraction tool, and it has been effectively utilized in a broad

range of applications such as, computer vision [182], natural language processing [183],

biomedical applications [184], speech recognition [185], face recognition [186], visual

tracking [187] and health informatics [188], to mention just a few.

CNN has been impressively effective in PHM applications and a wide variety of

solutions have been suggested. For instance Chen et al. [189] has introduced a deep

learning technique based on CNN for fault pattern diagnosis of gearboxes, where

the feature representations are selected as the input parameters of CNN. Similarly,

Lee et al. [190] used CNN to achieve high classification accuracy in bearing fault

detection on a signal dataset consisting of univariate and bivariate time series. Wang

et al. [191] proposed a wavelet-based CNN for machinery fault diagnosis. Babu et

al. [192] proposed a deep CNN based regression approach for estimating the RUL,

where time window technique is employed for sample preparation in order to provide

better feature extraction by CNN, and then the associated RUL value is estimated

based on the learned representations. Sun et al. [193] developed a Convolutional

discriminative feature learning method (CDFL) for induction motor fault diagnosis by

using an unsupervised CNN to extract features directly from raw data to characterize

different working conditions, followed by a support vector machine (SVM) classifier

to classify the learned features for induction motor fault diagnosis. Li et al. [156]

introduced a prognostic approach based on CNN, where time window strategy is

45



Figure 2.12: The Recurrent Neural Networks Concept.

adopted for the data preparation to ensure better feature extraction by deep CNN.

In addition, the Dropout technique is used to avoid the overfitting problem. Ren et

al. [194] proposed a prediction technique for bearing RUL based on deep CNN. A

new method of feature extraction named spectrum-principal-energy-vector has been

used to obtain the eigenvectors, to be provided as input to the deep CNN in order

to get a series of eigenvectors, then deep neural network model is used for regression

prediction to obtain the RUL of the bearing. Similarly, Phamet al. [195] proposed

a fully automatic diagnosis approach for a bearing system by employing the wavelet

packet spectral subtraction for converting the vibration signals to high resolution

images, and then utilize the CNN to automatically extracts informative features in

order to identify the current health status of the system. Maior et al. [196] employed

the CNN for predicting the RUL of bearings with accelerated degradation by utilizing

a real vibration time-series.

2.2.2.1 Recurrent Neural Networks (RNN)

RNN is an important and prominent class of artificial neural network architectures

that among the most popular techniques in sequential modeling [197]. RNNs are

intended to recognize sequential data characteristics and use trends and patterns in

order to predict the next probable scenario. RNNs are different from the existing

feedforward neural networks approaches, an RNN has an internal memory, which

makes it possible to recall historical information and interpret current events accord-

ingly [198]. When it comes to the traditional neural networks, all inputs and outputs

are considered to be independent of one another, which is not the case for RNNs,
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Figure 2.13: The relationship structures of input and output data.

where the term “recurrent” is used, since they conduct the same process for each se-

quence element, with the performance depending on the previous calculations. RNN

functions on the idea of saving a specific layer’s output and feeding it back into the

input to predict the layer’s output as in Fig. 2.12. RNNs have many structures that

show the various input and output relationships. Fig. 2.13 illustrates five different

styles for input and output relationships. The followings are the main three different

categories [198]:

� Many-to-one: When the input data is a sequence, while the output is not a

sequence but a vector of a fixed dimension. The sentiment classification is the

typical example for many-to-one, where the input is text based sequence and

the output is a specific label, such as positive or negative, etc.

� One-to-many: When the output is a sequence but the input is not. Image

captioning is an example of this category, by inputting an image and receiving

a sentence of words at the output.

� Many-to-many: This category can also be divided according to whether or not

the input and output are synchronized, where both the input and output are

sequences. The video classification task is an example of a synchronized many-

to-many. While translating a language to another one is an example of the

unsynchronized many-to-many.

Although the RNNs have demonstrated their impressive performance in many fields,

these networks have their limitations such as, not considering any future contribution

to the current state. That was the reason behind the improved version of the RNN
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Figure 2.14: The Bidirectional Recurrent Neural Networks.

which is the bidirectional recurrent neural networks, that utilizes two time directions

at the same time, input data from the past and future of the current timeline to

calculate the same output [199], where the first direction is the forward states and

the second one is the backward states as shown in Fig. 2.14.

In addition to that, the RNNs suffer from other main problems which are the van-

ishing and exploding gradients. As the RNNs are also used backpropagation during

the training (learning), where the weight matrices are adjusted using the gradient.

Throughout the backpropagation process, gradients are determined via continuous

multiplications of derivatives (as stated earlier) and there is a high possibility that

these derivative values become very small as we are going through the network, as

a result, the gradient becomes smaller and smaller till the stage when it is almost

zero when we call it the “vanish” stage, or “vanishing gradient problem” [197]. The

gradients hold information that is used in updating the RNN parameters (weights

and biases) and when the gradient is very small, updating the parameter is negligible

which means that there is no real learning is performed. In particular, the initial lay-

ers’ parameters (weights and biases) will not be effectively updated in every training

session (as the gradient value is vanishing), and as these initial layers are essential for

the identification of the core elements of the input data, this may contribute to the

complete inaccuracy of the entire network [197,198]. On the contrary, the exploding

gradients happened when the large error gradients accumulate and resulting in really

large updates to the weights of the neural network model during the training. The

training process is perfectly working when those updates are small but controlled,

Otherwise, it may lead to poor predictive results or even a model that doesn’t reveal

anything useful what ever [197,198]. Researchers have built more sophisticated types

of RNNs over the years to resolve some of the mentioned limitations of the RNN

model, these types are:
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Figure 2.15: Block diagram of LSTM.

(i) The Long Short-Term Memory (LSTM).

(ii) The Bidirectional Long Short-Term Memory (BLSTM).

(iii) The Gated Recurrent Unit (GRU).

(iv) The Bidirectional Gated Recurrent Unit (BGRU).

2.2.2.2 The Long Short-Term Memory (LSTM)

The Long Short-Term Memory Networks (LSTMs) are considered as the state-of-the-

art technique for sequence learning. The LSTM was first introduced by Hochreiter

and Schmidhuber and were further refined and popularized in the following years by

different works such as References [200] and [201]. The LSTMs as a special form

of RNN, it has been designed to overcome the long-term dependency, in addition to

the vanishing and exploding gradient problems of the traditional RNNs. This was

achieved through a mechanism known as cell states, that is built on a gating system

to provide a memory-based structure. The latter is used to control reading, writing,

and removing (forget) the written information from the memory state [202].

The central idea of LSTM is based on employing the cell state and the gating

system. In principle, the cell state will hold relevant information during the sequence

processing. Thus even details from earlier time steps will make it possible to take

later steps, minimizing the impact of short-term memory. Adding or removing the

information from the cell state is controlled by the gating system. This gating system

includes 3 types of gates that during training will learn what information is important

to keep or forget. These gates are, a forget gate, input gate, and output gate [203].

Fig. 2.15 presents the LSTM architecture with ht∈ RM and ct∈ RM representing

its hidden state vector also known as output vector of the LSTM unit, and the cell

state vector at time t, while M denotes the number of nodes (hidden units).

The input to LSTM will be the sensor data xt, in addition to ht−1 and ct−1 coming
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from time (t− 1). The information flow of the internal cell unit is controlled by the

gating system which is an internal mechanism working based on the following gates:

(i) Forget gate: A forget gate denoted by f t∈ RM , that decides on the contents to

be maintained or forgotten [204]. The current input and the previous hidden

state are the input to this gate then multiplied by the weight matrices and a

bias is added, after this the result passed through the sigmoid function that

generates a vector with values between 0 and 1, corresponding to every number

in the cell state. Basically, it is the responsibility of the sigmoid function to

decide which values to hold and which ones to throw away. So, The closest to

0 means forgetting, and the closest to 1 means holding.

(ii) Input Gate: An input gate it∈ RM , that controls the cell state updating proce-

dure based on ht−1 and xt [204]. Similar to the forget gate, the current input,

and the previous hidden state are input to the sigmoid function for deciding

the important (1) and the unimportant once (0). In addition, the current input

and the previously hidden state pass into tanh function (output values from -1

to +1) for creating a vector with all possible addable values to the cell state.

Then by multiplying both sigmoid and tanh outputs, the sigmoid will finally

decide which information to keep from the output of the tanh, and finally, these

useful updates will be added to the cell state.

(iii) Output Gate: An output gate denoted by ot∈ RM , that computes the next value

of the hidden state [204]. Using tanh function on the cell state for creating a

vector with values between -1 and +1, then the current input and the previous

hidden state are input to the sigmoid function for regulating the output values

of the vector (from the tanh). Then by multiplying the previous output to the

vector (resulted from tanh), will get the output and the hidden state for the

next cell.
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At each step t, the LSTM cells are implemented based on the following set of equa-

tions [205]:

it = σ(Wix
t + Uih

t−1 + bi), (2.2.11)

ot = σ(Wox
t + Uoh

t−1 + bo), (2.2.12)

f t = σ(Wfx
t + Ufh

t−1 + bf ), (2.2.13)

at = tanh(Wcx
t + Uch

t−1 + bc), (2.2.14)

ct = f t ◦ ct−1 + it ◦ at, (2.2.15)

ht = ot ◦ tanh(ct), (2.2.16)

where terms Wi, Wo, Wf , and Wc ∈ RM×L together with terms Ui, Uo, Uf , Uc ∈ RM×M

constitute the weight matrices; Terms bi, bo, bf , bc∈ RM represent biases; L represents

the number of input features; Term σ(·) denotes the sigmoid non-linear function;

Operator “◦” represents an entry-wise product operation, which is performed by

element-wise multiplication of two vectors, and; finally, tanh(·) denotes the activation

function. The LSTMs have been successfully applied in wide range of applications,

including speech recognition [206,207], natural language processing [208–210], human

action recognition [211], handwriting recognition [212], and image captioning [213] to

name a few.

The LSTM was remarkably successful in PHM applications and its fields, thus,

a wide range of approaches have been proposed. For example: Zheng et al. [214]

have introduced LSTM based model for RUL estimation, which utilizes multiple lay-

ers of LSTM cells along with standard feed forward layers to detect hidden patterns

and learn complex features within the sensor and operational data with multiple op-

erating conditions, fault, and degradation models. Wu et al. [215] have used vanilla

LSTM neural networks, which is an effective technique in the field of natural language

processing, to build a model for RUL estimation. In addition to vanilla LSTM neu-

ral networks, a dynamic difference methodology is proposed to extract new features

from raw health monitoring data. Malhotra et al. [216] introduced the Long Short

Term Memory based Encoder-Decoder (LSTM-ED) technique for estimating the un-

supervised health index (HI) of a system (from which the RUL can be estimated)

based on multi-sensor time-series data. The LSTM-ED is trained to reconstruct the

multivariate time-series corresponding to the healthy state of a system, then the re-

construction error is used to compute the HI which is then used for RUL estimation.
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Lei et al. [205] presented a fault diagnosis for wind turbines by employing the Long

Short-term Memory (LSTM) technique to effectively learn features from multivari-

ate time-series data then capture long-term dependencies via the recurrent actions

and gate mechanism. Zhou et al. [217] proposed an approach for supercapacitor life

prediction by utilizing the LSTM to capture long-term dependencies of a degraded

supercapacitor. Liu et al. [218] used the LSTM to propose a method for proton ex-

change membrane fuel cell RUL prediction. This method is also used the locally

weighted scatterplot smoothing and regular interval sampling for reconstruction and

smoothing of the data. Wang et al. [219] extracted feature parameters from three

different domains; time domain, frequency domain, and time–frequency domain, and

then by selecting the parameters that could best describe the bearings degradation

behavior and creating a feature set based on time factor. The LSTM employed this

feature set for training and then predicting the RUL of the rolling bearing. Wu et

al. [220] proposed a deep long short-term memory for predicting turbofan engine’s

RUL. The proposed approach combines time series signals from multiple sensors and

identifies the hidden long-term dependencies among the sensors readings for RUL

prediction. In addition, the grid search strategy has been adopted to find the best

model parameters.

2.2.2.3 The Bidirectional Long Short-Term Memory (BLSTM)

To capture the temporal dependencies between extracted features and fully take ad-

vantage of the input information in the past and future of a specific time frame [199],

the BLSTM is developed as a modified version of the conventional LSTM. It has been

demonstrated that the bidirectional networks are significantly better than unidirec-

tional ones in many fields [201,221]. The BLSTM comprises of two LSTM layers to be

applied in both directions of the hidden sequences, i.e., forward
−→
h t and backward

←−
h t,

which are then joined to calculate the output sequence. Fig. 2.16 presents the block

diagram of the BLSTM network. At each time step t, the BLSTM model calculates

both directions (
−→
h t, &

←−
h t) separately, and then concatenates the outputs to form

the BLSTM output denoted by htbi.

The corresponding hidden layer functions of the BLSTM architecture, which are

exactly the same as in Eqs. (2.2.11)-(2.2.16) but now implemented in two different
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Figure 2.16: Block diagram of the BLSTM.

directions, are defined as

−→
i t = σ(

−→
Wi
−→x t +

−→
Ui
−→
h t−1 +

−→
bi ), (2.2.17)

−→o t = σ(
−→
Wo
−→x t +

−→
Uo
−→
h t−1 +

−→
bo), (2.2.18)

−→
f t = σ(

−→
Wf
−→x t +

−→
Uf
−→
h t−1 +

−→
bf ), (2.2.19)

−→a t = tanh(
−→
Wc
−→x t +

−→
Uc
−→
h t−1 +

−→
bc), (2.2.20)

−→c t =
−→
f t ◦ −→c t−1 +

−→
i t ◦ −→a t, (2.2.21)

−→
h t = −→o t ◦ tanh(−→c t), (2.2.22)

and

←−
i t = σ(

←−
Wi
←−x t +

←−
Ui
←−
h t+1 +

←−
bi ), (2.2.23)

←−o t = σ(
←−
Wo
←−x t +

←−
Uo
←−
h t+1 +

←−
bo), (2.2.24)

←−
f t = σ(

←−
Wf
←−x t +

←−
Uf
←−
h t+1 +

←−
bf ), (2.2.25)

←−a t = tanh(
←−
Wc
←−x t +

←−
Uc
←−
h t+1 +

←−
bc), (2.2.26)

←−c t =
←−
f t ◦←−c t+1 +

←−
i t ◦←−a t, (2.2.27)

←−
h t = ←−o t ◦ tanh(←−c t). (2.2.28)

Then, the concatenated output vector htbi is given by

htbi =
−→
h t⊕
←−
h t. (2.2.29)

Effectiveness of the BLSTM has been proven in many fields such as phoneme classifica-

tion [201], speech recognition [221], human activity recognition [222], healthcare [223],

Infrastructure quality [224]. The BLSTM has achieved noticeable success in PHM
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applications and its subsequent fields, for example, Wang et al. [225] proposed an

approach by utilizing the BLSTM network for predicting the RUL of aircraft engine

based on simulator data. The model can detect hidden patterns from sensor data

under different working conditions, degradation model, and fault patterns. Wilson

et al. [226] introduced robust classifiers based on BLSTM for rapid fault detection

in marine hydrokinetic turbine in order to reduce the cost of both operation and

maintenance of this turbine. The proposed model has been validated using simulated

time-series sensor data from the turbine simulation platform.

Li et al. [227] presented a new model of tool RUL prediction by employing limited

data. Firstly, the process of the tool wear has been tracked using an adaptive time

window, then in the second stage, a deep BLSTM to detect the past and future

contexts relationships. Bian et al. [228] utilized the BLSTM to design a model for

the state of charge estimation in lithium-ion batteries, by capturing the temporal

information of the battery in both directions (forward and backward) and outline

the long-term dependencies (from both past and future). Moreover, stacked layers

of BLSTM empower the model to define the non-linear and dynamic relationship

between the input measurements of the battery and the output state of charge on

a layer by layer basis. Wang et al. [229] proposed a model by employing a BLSTM

with an attention mechanism for predicting the voltage degradation of the Proton

exchange membrane fuel cells. The model inputs have been extracted using random

forest regression. Qiu et al. [230] proposed a fault diagnosis method for a rolling

bearing by employing the BLSTM. Time-frequency feature with a combination of

different wavelet packet transform, collected from the original vibration data, then

by using the BLSTM that utilizes only the long-term memory to handle the rolling

bearing data and then conduct the fault diagnosis. Li et al. [231] constructed a

model of fault diagnosis for early gear pitting, by using the BLSTM that employs

the raw vibration signals to extract the informative features for evaluating the faults

degree of the early gear pitting. Wu et al. [232] introduced a model for tool wear

prediction, by utilizing a singular value decomposition and BGRU. The Hankle matrix

is used for reconstructing the raw cutting force signal, then the extracted signal

features are done by the singular value decomposition of the reconstructed matrix.

The current sampling extracted features as well as the previous four sampling periods

are considered as the input and then the predicted value of the tool wear at the present

time is achieved using BiLSTM. Cao et al. [233] introduced a new intelligent approach
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Figure 2.17: Block diagram of the GRU.

for fault diagnosing of wind turbine based on BLSTM, where ten common time-

domain features are input to the BLSTM for fault diagnosing, which removes the need

to manually identify the correct features and enhances the training time. The efficacy

of the proposed approach is checked by three vibration signals of accelerometers in

the drivetrain test rig of the wind turbine.

2.2.2.4 The Gated Recurrent Unit (GRU)

GRU is the optimized structure and the newer generation of recurrent neural networks

(RNNs) proposed more recently by Cho et al. [234] in 2014. Similar to the Long Short-

Term Memory network (LSTM), GRU is designed to introduce a gating mechanism

for better control of the flow of the information through the various time-steps and

to handle sequential data with its ability to encode temporal information and learn

representations. And the main concept behind this design is solving the long-term

dependency problem while mitigating the vanishing/exploding gradient issues [235].

Unlike the LSTM, the GRU fully exposes its memory at each time step and does not

have separate memory cells. Moreover, each GRU has two gates (a) an update gate

ut that comes from combining (the forget gate with the input gate in the LSTM),

and (b) a reset gate ct, while the LSTM has three gates (i.e., input, output, and

the forget gate). Therefore, activations of the gates in the GRU only depend on the

current input and previous output, which in general makes the GRU faster than the

LSTM [234]. In short, the GRU has comparable advantages to LSTM units while

being simpler. As shown in Fig. 2.17, there are two gates in GRU (an update gate

ut and a reset gate ct) to control if information needs to be updated or forgotten. In

particular, the update gate decides how much of the past information can be passed
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along to the future, and the reset gate specifies how much of the past information to

forget [235].

(i) Reset Gate: The reset gate denoted by ct, where the current input and the

previous hidden state are used to derive and calculate this gate, by multiplying

them with their respective weights and then summing the results to be passed

through a sigmoid function for enabling the gate to differentiate between the

less important (0) and more valuable information (1) in the subsequent steps.

After training the entire network through back-propagation, the weights will be

updated and the network will learn to maintain only those valuable features.

And then again the previous hidden state will be multiplied by the trainable

weights and an element-wise multiplication will be held with the reset vector.

This procedure will determine the information that should be held from the

previous time steps along with the new inputs. Simultaneously, the current

input will be multiplied by the trainable weights and then summed with the

above product results, and then the result will pass through a tanh nonlinear

activation function to form the new estimated candidate memory content [234,

236].

(ii) Update Gate: The update gate denoted by ut is similar to the reset gate where

the current input and the previous hidden state are used to derive and calculate

the gate. The first part of the process will be the same as in the reset gate

however, the multiplied weights are different to each gate (unique) as a result

the vectors will be different. Then an element-wise multiplication between the

update vector and the previous hidden state. The update gate here is aimed at

helping the model decide how much of the past information held in the previous

hidden state needs to be preserved for the future [234,236].

Based on Fig. 2.17, at time step t, the state ht of the jth GRU is computed as

ht = (1− ut)ht−1 + utĥt, (2.2.30)

where ht−1 and ĥt represent the previous memory content and the new candidate

memory content, respectively. The update gate, the reset gate, the new memory

content, and updated hidden state are computed based on the previous hidden states
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ht−1 and the current input xt as follows

ut = σ(Wux
t + Uuh

t−1)

ct = σ(Wcx
t + Uch

t−1)

ĥt = tanh(Whx
t + ct ◦ Uhht−1)

ht = ut ◦ ht−1 + (1− ut) ◦ ĥt,

 (2.2.31)

where σ(·) denotes the sigmoid activation function of both gates; Wu, Wc, Wh, Uu,

Uc, Uh are weight matrices; Operator “◦” denotes the Hadamard product (entry-wise

multiplication), while; tanh(·) represents element-wise hyperbolic tangent activation

function.

GRU’s effectiveness in solving difficult sequence problems has been proven in

a wide variety of applications such as speech recognition [237], machine transla-

tion [238], handwriting recognition [239], in addition to video captioning tasks, and

financial sequence prediction [235]. The GRU has demonstrated exceptional perfor-

mance in machine health monitoring, RUL prediction, and the other applications of

PHM, therefore many approaches have been proposed in order to handle such prob-

lems. For example, Jinglong et al. [235] proposed RUL prediction approach of non-

linear degradation process for aero-engines based on simulated data. The proposed

method used the kernel principal component analysis to extract nonlinear features,

and then the GRU to estimate the RUL. Xu et al. [240] presented an approach for

tool condition monitoring, that utilized the GRU to predict the wear in gun drilling.

The efficiency of the proposed GRU model has been compared with existing mod-

els based on support vector regression and multi-layer perceptron, and the results

of the GRU model outperforms the other models. Li et al. [241] proposed a model

for rolling bearing health index and RUL prediction. The model utilized both kernel

principal component analysis and exponentially weighted moving average for design-

ing a modified health index and then stacked layers of GRU used for estimating both

future health index and RUL. Xu et al. [242] used the GRU to propose a multi-stage

tool condition monitoring for two main tasks, i.e., tool wear regression as well as,

tool state classification. Firstly, the GRU as a classifier is estimating the stage of

the tool condition. Then, training for different models based on each stage is con-

ducted, in order to estimate the tool condition. To validate the performance of the

proposed model, a gun-drilling experiment is conducted under various cutting con-

ditions. Zhong et al. [243] proposed an exhaust gas temperature prognostic model
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Figure 2.18: Block diagram of the BGRU.

based on the GRU network that simultaneously tackles the time series and nonlinear

characteristics. To improve the prediction performance, the GRU design was defined

by contrast experiments, where GRU stacked layer number, look-back timestamps,

and output dimension were defined. Xiao et al. [244] employed the GRU network to

propose an accurate method for state of charge estimation of lithium-ion batteries.

The GRU learning process (training) has been improved and managed by utilizing two

optimization techniques, i.e., the Nadam and AdaMax optimizers. Similarly, Yang et

al. [245] employed the GRU to predict the battery state of charge from determining

voltage, current, and temperature signals. The proposed approach utilizes the pre-

ceding state of charge and observations for providing better estimation efficiency. In

addition, the proposed model is robust against the uncertain initial state of charge

measures.

2.2.2.5 The Bidirectional Gated Recurrent Unit (BGRU)

The core idea of BGRU is simply to process the sequence input in two directions

including forward and backward ways, which is contrary to the GRU that is a unidi-

rectional RNN. Therefore, the BGRU employs two individual hidden layers (GRUs)

as shown in Fig. 2.18, each one of them can jointly capture past (forward direction)

and future (backward direction) [246]. Thus, we are able to compute the updated

hidden vectors out of the forward (
−→
h t) and backward (

←−
h t) processes as follows

−→
h t =

−→
H(xt,

−→
h t−1) (2.2.32)

←−
h t =

←−
H(xt,

←−
h t+1), (2.2.33)
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where −→ and←− denote forward and backward process, respectively, and, function

H is defined by Eq. (2.2.31). Then, the overall output sequence of the BGRU (de-

noted by htbi) is computed by using an element-wise concatenation of the forward and

backward hidden states at time step t, by

htbi =
−→
h t⊕
←−
h t. (2.2.34)

Effectiveness of the BGRU has been proven in many fields such as object classifica-

tion, speech recognition [247,248], Biometrics human identification [249], power load

forecasting [250, 251], text classification [252], pathology detection [253], multimodal

object classification [254], human activity recognition [255], to mention just a few.

For machine health monitoring, RUL estimation, and other prognostic health

management related fields, the BGRU is an effective and important tool especially

when it combined with another technique in a hybrid model, however, it has some

PHM applications as a stand alone model such as Yu et al. [256] proposed two steps

approach for RUL estimation. The first step of this method is based on training the

BGRU based autoencoder using an unsupervised way for converting high-dimensional

multi-sensor readings that collected from multiple units of the same system, as his-

torical run-to-failure readings, to low dimensional to be used for constructing the one

dimensional health index to present different patterns of health deterioration of the

instances. While in the second step, a comparison between the test HI curve that is

derived from online sensor readings, and deterioration patterns developed in the of-

fline period, using the technique of matching curves based on similarities. Rengasamy

et al. [257] an approach has been introduced to improve the efficacy of machine prog-

nostics and diagnostics. The improvement has been done by adopting two different

weighted loss functions, the first one by creating a weight map based on the expected

value and error acquired for each instance. In addition to the focal loss technique

which is designed to predict the probabilistic outputs. The BGRU used with the pre-

vious techniques for predicting the RUL of a gas turbine engine and for fault detection

in the air pressure system of heavy trucks. Remadna et al. [258] proposed an approach

for RUL prediction of aircraft engine based on simulated data (C-MAPSS dataset).

The proposed method comprises of two primary stages, where the first stage is based

on using the principal component analysis and truncated singular value decompo-

sition, for reducing the data dimensions without sacrificing relevant and important

information. The second stage is by employing the BGRU to estimate the expected
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engine behavior and its RUL.

Despite the fact, that all the aforementioned methods, generally have achieved

good results in different PHM areas, still there are many of the data-driven based

approaches that have an accuracy issue because of the deviation of the learned models

from the real behavior of the system. In addition, they can hardly sustain good

generalization, and that boosted the importance of developing advanced techniques

that are able to handle all the issues and limitations of the previous approaches and

at the same time to cope in view of the ever-growing requirements. On that basis,

the third category was developed.

2.2.2.6 Hybrid (Multiple-Model) Approaches

Hybrid solutions have recently gained prominence due to their ability to overcome

weaknesses and limitations of individual approaches. The key goal of the hybrid

methods is to optimize the predictive potential by taking advantage of unique features

and benefits of different approaches coupled to form the hybrid model [259]. To this

aim, many researchers [260–270] have defined the hybrid model as an integration of

both the data-driven and the physics based approaches. On the other side, many more

researchers [271–284] have described the hybrid model using a more broad definition,

which is: the integration of any two or more techniques that are combined to overcome

the limitations of an individual method. Hence, they have implemented many hybrid

model types (two or more of: different data-driven techniques, or different DNN

techniques, etc.) that their designs built by this (second) definition and not on the

traditional one (the data-driven and the physics). Both definitions are interrelated

however, the second one is more inclusive in the sense that it applies to, includes, and

covers all possible hybrid model types besides the first definition models. Aside from

all of the above, we proposed a slight modification for the second definition of the

hybrid model to become “the combination of any two or more various techniques that

are integrated to form a new model to maximize the robustness and to minimize the

limitations of the individual techniques” and this what we implemented and followed

within this thesis.

The patterns of all the involved parameters and the characteristics of underlying

data in the real applications of prognostic processes, are diversified and difficult to be

predicted, in addition, different levels of data processing are conducted such as extrac-

tion, analysis, and modeling. This leads to the fact that one model cannot address all
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the previous challenges, and this derives the need for the hybrid model. More specifi-

cally, the hybrid models that are designed based on utilizing the DNN techniques, as

the exceptional success and the diversity of the deep learning techniques have made

them an integral part of the modern maintenance solutions [154] yielded significant

performance improvements that changed the prognostic health management to be

centered on deep learning architectures. These hybrid models are divided into two

main classes: series and parallel.

Series hybrid approach is well known in PHM literature especially for the (data-

driven and physics based) type, it is usually, a physics-based model with prior knowl-

edge about the process, combined with a data-driven model that handles the pa-

rameters estimation job for updating model parameters as new data becomes avail-

able [261, 283]. Many approaches with different styles for the series hybrid models

have been proposed [285–288]. The series hybrid approaches are not the focus of our

thesis, as all the proposed RUL estimation models in our thesis belong to the parallel

hybrid model, as we will see later.

The parallel hybrid approach is the most promising category that genuinely re-

flects the objectives of the hybrid models especially when it comes to the hybrid of the

DNN techniques. Using the parallel hybrid will ensure avoiding the shortcomings and

constraints of individual approaches, in addition to compensating for their imperfec-

tions, This is achieved by utilizing the inherent design and mechanism of the parallel

style as all the integrated models will receive the same input and each model then

process the data in a specific way and consequently the results from all the models

will be fused to form the desired output. For such style, in the case if, for any reason,

missing information and/or a glitch occurred in one of the parallel models, then the

other models will compensate. In contrast, the series hybrid model does not have this

advantage where the input of the second stage is based on the output of the first one.

In the case, if for any reason, missing information and/or a glitch occurred in one of

the models, then it will propagate till the end.

Furthermore, the parallel hybrid design with multiple types of DNN (The focus of

our thesis) will enable the model to collect more informative features, as each DNN

technique has the ability to capture specific patterns from the input data resulting

in different features, and advantages, that will be aggregated to enhance predictive

efficiency [259]. Such parallel hybrid model capabilities allow for the abstraction of

complex issues and allow for advanced precision in fault diagnosis and prognosis.
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Figure 2.19: The classification of hybrid category.

It is worth mentioning that all the proposed approaches for the RUL estimation

in our thesis belong to this category, and our proposed models (HDNN), (NBLSTM),

(NPBGRU), (NPHM), and (MPHD) are the first parallel hybrid deep neural network

model, the first noisy hybrid deep neural network models, the first multipath hybrid

model, and the first noisy multipath hybrid deep neural network model, respectively

for RUL estimation in the literature, as we will see in Chapters 4 5, and 6. Fig. 2.19

shows the classifying of the existing work on RUL estimation.

The exceptional performance and versatility of the deep learning hybrid models

have made them essential tools in many areas such as natural language process-

ing [289], waste classification, and recycling [290], speech recognition [291], human

action recognition [292], video classification [293], age, and gender classification [294],

and face verification [295], to name just a few. To the best of our knowledge, the

following researches are the only few attempts that have been made towards the

development of hybrid solutions for RUL estimation using deep neural networks.

For instance, Hinchi et al. [296] have introduced a series model through the in-

tegration of a CNN layer and an LSTM layer for bearing RUL estimation. Song et

al. [279] proposed a hybrid model to improve the accuracy of RUL prediction for

turbofan engines. This goal is achieved by combining an auto-encoder as a feature

extractor, and bidirectional LSTM (BLSTM) to capture the bidirectional long-range

dependencies of features. Zhao et al. [297] proposed a deep learning approach to deal

with tool wear estimation issues. This is achieved by integrating a CNN architecture
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in series with a bi-directional LSTM. Fully connected layers in addition to the linear

regression layer are then used for the prediction task. Zhao et al. [246] combined the

GRU and Bi-directional GRU (BGRU) architectures to build a hybrid model for ma-

chine health monitoring. Yu et al. [298] has employed vanilla LSTM and Restricted

Boltzmann Machine (RBM) to explore the impact of unsupervised pre-training in

residual lifetime estimation, by employing a setup of semi-supervised. Jayasinghe et

al. [299] employed integration of temporal convolution layers and LSTM layers along

with data augmentation for RUL estimation. Kong et al. [300] proposed a hybrid

DNN framework that employed the CNN and LSTM integrated with health indicator

(HI), for extracting different classes of features to effectively prognostication. Pan et

al. [301] integrated one-dimensional CNN with LSTM to form a model for bearing

fault diagnosis. The CNN output is the input of the LSTM to classify the fault types

of the bearings. Li et al. [284] used one-dimensional CNN trained by using acoustic

emission signals, and GRU networks trained by using vibration signals, for diagnosing

the gear pitting faults problem. Liu et al. [302]utilized the feature-attention mecha-

nism for weighting the input features in a way to distinguish the important features

by getting higher weights than the others get and consequently improve the prediction

performance. The next stage is based on using the BGRU for extracting the long-

term dependencies from the input data (already weighted), then multilayer CNN is

utilized for exploiting the sequence data local features. Finally, multilayer fully con-

nected networks is employed for decoding the above abstractive features in order to

estimate the RUL. Rao et al. [303] proposed two stages model, where the first one is

utilized the many-to-many BLSTM in order to learn the speed related information

from signals of vibration in forward and backward directions. Then, the final speed

is derived consecutively by using the LSTM stage from the extracted information of

the BLSTM. And finally, Li et al. [304] have used a parallel combination of CNN and

LSTM for feature extraction. Extracted features are then combined and are provided

as input to another LSTM followed by fully connected layers to predict the RUL. It

is worth noting that the last reference is the only parallel hybrid model, however, it

was proposed just after our proposed HDNN approach.
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Chapter 3

General Degradation Modeling

Frameworks

During the last two decades, many researchers have focused on modeling the degra-

dation process of mission critical systems. In this regard, a wide range of models

has been developed in the literature to analyze the degradation path, to capture

the degradation dynamics of the underlying system, and consequently to support

the decision making tasks. As discussed in Chapter 2, despite recent advancements

in this context, most of the existing degradation works basically deal with one spe-

cific model, which is developed based on the assumption that a particular type of

statistical distribution (e.g., Normal, Wiener, or Gamma distribution) governs the

degradation process. However, a system may consist of multiple components or a

component may have multiple degradation measures that require simultaneous con-

sideration of multiple degradation paths. Needless to say that randomly applying a

model with a certain path can be risky as every model is designed for a certain appli-

cation. Such an approach becomes even more risky and complicated when multiple

degradation measures are involved. To bridge the aforementioned gap, in this chap-

ter general state-space modeling frameworks are proposed that cover a wide range of

degradation scenarios. More specifically, in this chapter we propose the following two

approaches:

(i) The Multiple Model Degradation Path (MMDP) estimation [305] framework,

presented in Section 3.1, which takes into consideration a set of candidate mod-

els for the degradation path. Degradation prediction is then performed based
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on each model in parallel. Finally, the outputs of localized filters are com-

bined adaptively and in an intelligent fashion to form the overall estimate of

the degradation process over time.

(ii) The second proposed approach (IMMPF) [306], presented in Section 3.2, which

is based on implementing a combination of interactive multiple model and par-

ticle filters that run in parallel but with different stochastic characteristics mod-

eling different potential degradation paths.

It is worthwhile to mention that our modes are capable of simultaneously handling

different linear and non-linear degradation models without having any prior knowl-

edge of the true degradation model of the system. Different simulation experiments

are performed to evaluate the performance of the proposed MMDP and IMMPF

frameworks. Simulation results are presented in Section 3.3.

3.1 Multiple-Model Degradation Path (MMDP)

Estimation Framework

We consider the following state space model representing the underlying of CPESs.

xk = f(xk−1,µk) +wk (3.1.1)

zk = h(xk) + vk, (3.1.2)

where x ∈ Rnx is the state variable, k denotes the time instant, µ denotes the degra-

dation state variable, and zk ∈ Rnz is the observation vector. It is worth mentioning

that in the above state-space model, the degradation process is considered a hidden

process because it cannot be measured online directly. In other words, any change

of the degradation variable can affect the state vector directly while it impacts the

measurement vector indirectly that is why µ is not appearing in Eq. (3.1.2). If the

degradation process is connected with the change of the performance variable φ then

the influence on the state is given by µk = u(φk), where u(·) provides a function φk.

The degradation path plays a major role in modeling and analyzing the degradation

data in order to reliably estimate the state of CPESs and predict the failure mech-

anism of the system. The proposed MMDP is based on the following hybrid state
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space model

xk = f (j)
(
xk−1,u(φ

(j)
k−1)

)
+w

(j)
k , (3.1.3)

φ
(j)
k = g

(
φ

(j)
k−1

)
+ ν

(j)
k , (3.1.4)

and zk = hk(xk) + vk, (3.1.5)

where superscript j ∈ {1, . . . nf} is the index representing the discrete state (or the

degradation mode); f
(j)
k (·) and g

(j)
k (·) are, respectively, the state transition and degra-

dation models corresponding to the degradation mode j, and; w
(j)
k and vk are, re-

spectively, the zero-mean state and observation noises with covariance matrices Q
(j)
k

and Rk. Term ν
(j)
k represents the uncertainty in the degradation model j. De-

pending on the selected model, ν
(j)
k follows a specific predefined distribution. The

proposed MMDP estimation algorithm is based on the state-space model developed

in Eqs. (3.1.3)- (3.1.5) and consists of a bank of nf degradation-matched filters each

corresponding to one of the candidate models in the model set. The overall state

estimate x̂k|k is then computed from a weighted sum of nf degradation-conditioned

state estimates x̂
(j)
k|k, for (1 ≤ j ≤ nf ), obtained from each of the model degradation

filters. More precisely, the global state estimate x̂k|k at iteration (k ≥ 1) is defined

as the expected value of the posterior distribution p(xk|z1:k) computed as

x̂k|k = E
{
xk|z1:k

}
=

∫
xkp(xk|z1:k)dxk

=

∫
xk

nf∑
j=1

p
(
xk|z1:k,m

(j)
k

)
p
(
m

(j)
k |z1:k

)
dxk, (3.1.6)

where m
(j)
k denotes the event that the degradation mode of the system at time k is

mode j, for (1 ≤ j ≤ nf ), andM = {m(j)} denotes the set of all degradation models

at all times. Eq. (3.1.6) can be expressed as a function of the degradation-conditioned

state estimates as

x̂k|k =

nf∑
l=1

x̂
(j)
k|kp
(
m

(j)
k |zk

)
dxk, with x̂

(j)
k|k =

∫
xkp
(
xk|zk,m(j)

k

)
dxk (3.1.7)

the degradation-conditioned state estimate computed by assuming that the degrada-

tion mode of the system at iteration k is m
(j)
k . The degradation-conditioned state

estimate x̂
(j)
k|k is obtained from the filter matched to mode j. Before describing the
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estimation algorithm based on Eqs. (3.1.6) and (3.1.7), first we develop a couple of

candidate degradation models (i.e., Wiener process and Gamma process) to be incor-

porated in the degradation set M = {m(B),m(G)}, i.e., nf = 2, where, m(B) refers to

the mode that the hidden degradation path follows the Wiener process, while m(G)

corresponds to the scenario where the Gamma process governs the underlying degra-

dation path. It is very important to mention that the proposed hybrid state-space

model and its corresponding estimation algorithm is general and can accommodate

any number of candidate models.

3.1.1 Wiener Process (Brownian Motion)

As as we have mentioned earlier in 2.1.1.1 this model of the degradation path is a

continuous-time Markov process with independent increments resembling a Brownian

motion with drift, which is widely used for modeling random degradation behavior

as it evolves over time [5]. The degradation path based on the Winner process can

be expressed as

φτ = τ0 + ητ + σBτ , (3.1.8)

where τ0 = φ(0) ∈ R is the initial degradation value, η ∈ R is the drift parameter,

σ denotes the variance parameter, and Bτ with B0 = 0 is the standard Brownian

motion. To identify the state-space representation of the degradation process, we

discretize Brownian motion using the properties of the Brownian motion with drift,

i.e., θ(τ) ∼ N (η0 + ητ, σ2τ) and ∆θ ∼ N (η∆τ, σ2∆τ). Consequently, the hidden

degradation path based on the Winner process is given by θk = θk−1 + ηT +ωk where

θ0 = η0 with θk = θkT the value of the performance variable at time kT , and the

error sequence ωk ∼ N (0, σ2T ), for k ≥ 0. As the result, the modal state model

corresponding to the Brownian motion m(1) can be described as follows

xk = f (B)
(
xk−1,u(θk−1)

)
+w

(B)
k , (3.1.9)

and θk = θk−1 + ηT + ωk. (3.1.10)
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3.1.2 Gamma Process

This second model of the degradation path as we stated earlier in 2.1.1.2 is a stochas-

tic process with independent, non-negative increments following a Gamma distribu-

tion with an identical scale parameter [30]. Intuitively speaking, the Gamma pro-

cess corresponds to gradual degradation that monotonically accumulates over time.

The Gamma process has been used in a wide range of applications in degrada-

tion analysis due to its monotonic nature. To develop the degradation path gov-

erned by the Gamma process, we use {G(t), t ≥ 0} which represents the degra-

dation path with shape parameters α > 0 and scale parameter β > 0 such that

∆G(t) ∼ Gamma(α∆t, β). Now by using the tabulated formulas for the mean and

variance of a gamma distribution, we obtain the moment-matching normal approxi-

mation ∆G(t) ∼ N (α/β∆t, α/β2∆t). Then the hidden degradation process can be

described as Gk = Gk−1 + α/βT + νk. Consequently, the degradation state-space

corresponding to the Gamma process is given by

xk = f (G)
(
xk−1,u(Gk−1)

)
+w

(G)
k , (3.1.11)

and Gk = Gk−1 +
α

β
T + νk. (3.1.12)

In the next sub-section, we combine the Wiener process with the Gamma process to

develop the multiple model adaptive estimation framework.

3.1.3 The main steps of the proposed (MMDP)

(1) Computing Degradation-Matched State Estimate: For a non-linear sys-

tem, given by Eqs. (3.1.3)-(3.1.5), we use the particle filter to compute each degradation-

matched state estimate. More precisely, each degradation-matched particle filter is

developed based on the following optimal Bayesian filtering recursions

P (j)(xk|z1:k−1) =

∫
P (xk−1|z1:k−1)P (j)(xk|xk−1)dxk−1, (3.1.13)

and P (j)(xk|z1:k) =
P (zk|xk)P (j)(xk|z1:k−1)

P (zk|z1:k−1)
, (3.1.14)

where P (j)(xk|xk−1) denotes the transitional density function matched to degradation

mode m(j) and is computed based on Eqs. (3.1.3) and (3.1.4). After computation of

the state estimate matched to degradation mode j, for (1 ≤ j ≤ nf ), the next step
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is to compute the corresponding weights for each mode-matched filter and form the

fused estimate which is described next.

(2) Hypothesis Test (Weight Update): The goal of the weight update step is

to determine the conditional probability density function p(m
(j)
k |z1:k) corresponding

to mode m
(j)
k , for (1 ≤ j ≤ nf ), given all the observations z1:k up to the current

time, i.e., p
(
m

(j)
k |z1:k

)
After applying the Bayes’ rule, p

(
m

(j)
k |z1:k

)
can be expressed

as

µ
(j)
k , p

(
m

(j)
k |z1:k

)
=
p
(
zk, z1:k−1,m

(j)
k

)
p
(
zk, z1:k−1

) =
p
(
zk|z1:k−1,m

(j)
k

)
p
(
z1:k−1,m

(j)
k

)
p
(
zk, zk−1

) .(3.1.15)

The second term in the nominator of Eq. (3.1.15) is factorized as follows

p
(
z1:k−1,m

(j)
k

)
= p
(
m

(j)
k |z1:k−1

)
p
(
z1:k−1

)
, (3.1.16)

which results in the following conditional density function

µ
(j)
k =

p
(
zk|z1:k−1,m

(j)
k

)
p
(
m

(j)
k |z1:k−1

)
p
(
z1:k−1

)
p
(
zk|z1:k−1

)
p
(
z1:k−1

) =
p
(
zk|z1:k−1,m

(j)
k

)
p
(
m

(j)
k |z1:k−1

)
p
(
zk|z1:k−1

)
=

p
(
zk|z1:k−1,m

(j)
k

)
p
(
m

(j)
k |z1:k−1

)∑nf

j=1 p
(
zk|z1:k−1,m(j)

)
p
(
m(j)|z1:k−1

) , (3.1.17)

where the denominator is a normalizing factor to ensure that p(m
(j)
k |z1:k) is a proper

probability density function (PDF). In the numerator of Eq. (3.1.17), term p(zk|z1:k−1,m
(j)
k ),

is the likelihood function corresponding to mode j which is computed from the particle

filter matched to this degradation model.

(3) Computing the Overall State Estimate: The final step of the MMDP state

estimation approach is to update the global state estimate x̂k|k and its corresponding

error covariance matrix Pk|k from the available nf mode-matched state estimates. It

is performed on the basis of the following expressions

x̂k|k =

nf∑
j=1

µ
(j)
k x̂

(j)
k|k and Pk|k =

nf∑
j=1

µ
(j)
k

[(
x̂

(j)
k|k − x̂k|k

)(
x̂

(j)
k|k − x̂k|k

)T]
.

(3.1.18)

This completes the proposed MMDP framework. Next, we present our simulation

example to evaluate its performance.
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3.2 Interactive Multiple Model Particle Filters (IMMPF)

Framework

We consider the following state space model representing the CPESs, which is the

same state space model as in section 3.1.

xk = f(xk−1,µk) +wk (3.2.1)

and zk = h(xk) + vk, (3.2.2)

The degradation path plays a major role in modeling and analyzing the degradation

data in order to reliably estimate the state of CPESs and predict the failure mech-

anism of the system. The proposed IMMPF is based on the following hybrid state

space model

xk = f (j)
(
xk−1,u(φ

(j)
k−1)

)
+w

(j)
k , (3.2.3)

φ
(j)
k = g

(
φ

(j)
k−1

)
+ ν

(j)
k , (3.2.4)

and zk = hk(xk) + vk, (3.2.5)

The proposed IMMPF estimation algorithm consists of a bank of nf degradation-

matched filters, each corresponding to one of the candidate models in the model set.

In our approach three particle filters are implemented and run in parallel based on

the following set of candidate degradation models: Gamma DP; Brownian DP; and

Inverse Gaussian DP. and provide filtering results for different dynamic models and

mix the outputs based on their mixing probabilities.

Before describing the estimation algorithm, first we develop the group of candidate

degradation models (i.e., Wiener process, Gamma process and Inverse Gaussian pro-

cess.) to be incorporated in the degradation set M = {m(B),m(G),m(IG)}, where,

m(B) represents the hidden degradation path based on the Wiener process, m(G) for

the Gamma process, and m(IG) for Inverse Gaussian process.

The Wiener Process (Brownian Motion) and Gamma Process are used as the first

two degradation paths, as briefly described below:

Wiener Process (Brownian Motion): The degradation path based on the Winner

process can be expressed as

φτ = τ0 + ητ + σBτ , (3.2.6)
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Consequently, the modal state model for the Brownian motion m(1) can be described

as follows

xk = f (B)
(
xk−1,u(θk)

)
+w

(B)
k , (3.2.7)

and θk = θk−1 + ηT + ωk. (3.2.8)

Gamma Process: The degradation state-space corresponding to the Gamma process

is given by

xk = f (G)
(
xk−1,u(Gk−1)

)
+w

(G)
k , (3.2.9)

and Gk = Gk−1 +
α

β
T + νk. (3.2.10)

More details on the Wiener Process and Gamma Process are provided in Sections 3.1.1

and 3.1.2.

3.2.1 Inverse-Gaussian Process

As we stated earlier 2.1.1.3 it is similar to the Gamma process in terms of the mono-

tone degradation path with independent, non-negative increment that follows an IG

distribution. Compared with the Gamma process, the IG process has many useful

properties and it is very flexible in incorporating covariates and random effects [41].

Its flexibility comes from the inverse relation between the Wiener process and IG

process. The later has been used in a range of applications in degradation anal-

ysis where the two previously mentioned processes have failed, such as the GaAs

laser degradation analysis [42]. To develop the degradation path governed by the

IG process, we use {IG(k), k ≥ 0} with IG(0) = 0, which represents the degra-

dation path with shape parameter µΛ(k) and scale parameter λΛ2(k) such that

∆IG(k) ∼ IG(µΛ(k), λΛ2(k)). When µ > 0 , λ > 0 and monotonic increasing

function of time k with Λ(0) =0, where Λ(k) = kq, where (q > 0) and using dif-

ferent values of q in this power law function will lead to modeling various patterns

of degradation process [43]. The mean of IG(k) is µΛ(k). Its variance is µ3Λ(k)
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/ λΛ(k). Consequently, the degradation state-space corresponding to the Inverse-

Gaussian process is given by

xk = f (IG)
(
xk−1,u(IGk−1)

)
+w

(IG)
k (3.2.11)

and IGk = IGk−1 + νk. (3.2.12)

Below we combine the three modes to describe the IMMPF framework. The proposed

hybrid state-space model and its corresponding estimation algorithm is general and

can incorporate any number of candidate modes.

3.2.2 The IMMPF Algorithm

For the non-linear system (3.2.3)-(3.2.5), we use the particle filter to compute the

estimate of the degradation states for each mode. More precisely, each degradation-

matched particle filter is developed based on the optimal Bayesian filtering recursion.

P (j)(xk|z1:k−1) =

∫
P (xk−1|z1:k−1)P (j)(xk|xk−1)dxk−1 (3.2.13)

and P (j)(xk|z1:k) =
P (zk|xk)P (j)(xk|z1:k−1)

P (zk|z1:k−1)
, (3.2.14)

where P (j)(xk|xk−1) denotes the transitional density function matched to degradation

mode m(j) and is computed using Eqs. (3.2.3)-(3.2.5). Please refer to 2.1.4.1 for

further details on the particle filters. After computing the state estimates for three

degradation modes j, (1 ≤ j ≤ nf ), the next step is to combine three state estimates

through localized Gaussian approximation. Considering that the filter is in steady

state, the associated estimates, i.e., (µ
(i)
k−1, x̂

(i)
k−1|k−1, P

(i)
k−1|k−1), for (1 ≤ i ≤ nf ), are

computed for iteration (k − 1). Iteration k for the mixing stage is outlined below:

(1) Interaction/Mixing Stage: Let pij denote the (3 × 3) model transition prob-

ability from model i to model j, (1 ≤ i, j ≤ 3). Suppose µ
(i)
k−1 is the probability of

model m(i) being in effect at the time step (k − 1), then the mixing probability µ
(i|j)
k

for models m(i) and m(j) is computed as

c̄k
(j) =

nf∑
i=1

pijµ
(i)
k−1 and µ

(i|j)
k =

1

c̄k(j)
pijµ

(i)
k−1, (3.2.15)

where c̄k
(j) is the normalization factor. As state estimates x̂

(j)
k−1|k−1 and associated
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covariance matrices P
(j)
k−1|k−1 are known from the previous step, we can compute the

initial state vector and associated covariance matrix for mode j in the current iteration

as follows

x̂
(0j)
k−1|k−1 =

nf∑
i=1

µ
(i|j)
k x̂

(i)
k−1|k−1 (3.2.16)

P
(0j)
k−1|k−1 =

nf∑
i=1

µ
(i|j)
k

{
P

(i)
k−1|k−1 +

[
x̂

(i)
k−1|k−1 − x̂

(0j)
k−1|k−1

][
x̂

(i)
k−1|k−1 − x̂

(0j)
k−1|k−1

]T}
.

(3.2.17)

where j ∈ {1, . . . nf} refers to the model number.

(2) Particle Filter Stage: For (1 ≤ j ≤ nf ), filter j generates Np particles from the

initial state vector x̂
(0j)
k−1|k−1 and covariance matrix P

(0j)
k−1|k−1 based on the Gaussian

distribution as follows

X(i,j)
k ∼ N (x̂

(0j)
k−1|k−1,P

(0j)
k−1|k−1) |Np

i=1|
Nm=nf

j=1 . (3.2.18)

Given the particles X(i,j)
k , ( i ∈ {1, . . . Np}), the corresponding weights W

(i,j)
k are

updated by

W
(i,j)
k ∝ p

(
zk
∣∣X(i,j)

k ) = N (zk − h(X(i,j)
k ), R). (3.2.19)

The weights are normalized as W̄
(i,j)
k = W

(i,j)
k /

∑Np

i=1 W
(i,j)
k . Consequently, the

posterior is approximated with the particle set { X(i,j)
k , W

(i,j)
k }Np

i=1 → N (x
(j)
k ,P

(j)
k ).

The state estimate for mode m
(j)
k is given by

x̂
(j)
k|k =

Np∑
i=1

W̄
(i,j)
k X(i,j)

k (3.2.20)

and P̂
(j)
k|k =

Np∑
i=1

W̄
(i,j)
k (X(i,j)

k − x̂(j)
k|k)(X

(i,j)
k − x̂(j)

k|k)
T (3.2.21)

(3) Hypothesis Test (Weight Update): The goal of the adaptive weight update

step is to find the conditional probability density function p(m
(j)
k |z1:k) corresponding

to mode m
(j)
k , for (j ∈ {1, . . . nf} ), given all the observations z1:k up to the current
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time, i.e., p
(
m

(j)
k |z1:k

)
which can be expressed as

µ
(j)
k , p

(
m

(j)
k |z1:k

)
=

µ
(j)
k−1p

(
zk|xk, z1:k−1,m

(j)
k

)∑nf

j=1 µ
(j)
k−1p

(
zk|xk, z1:k−1,m

(j)
k

) . (3.2.22)

Taking into account the Markov transition probability pij from mode i to mode j, i.e.,

(p
(
m

(i)
k |m

(j)
k−1

)
= pij for i, j ∈M). In this case, p(m

(j)
k |z1:k−1) =

∑nf

i=1 pijp(m
(j)
k−1|z1:k−1),

therefore, the corresponding weight for the filter matched to mode m
(j)
k , for (1 ≤ j ≤

nf ), is given by

µ
(j)
k = p

(
zk|xk, z1:k−1,m

(j)
k

) ∑nf

i=1 pijµ
(i)
k−1∑nf

j=1 p
(
zk|xk, z1:k−1,m

(j)
k

)
pijµ

(i)
k−1

. (3.2.23)

As the adaptive weight of each mode-matched filter is found, then we can combine

the local state estimates and form the global state estimate as described in the next

step.

(4) Computing Overall State Estimate: The final step of the IMMPF state

estimation approach is to update the global state estimate x̂k|k and its corresponding

error covariance matrix Pk|k from the available nf mode-matched state estimates. It

is performed using the following expressions

x̂k|k =

nf∑
j=1

µ
(j)
k x̂

(j)
k|k (3.2.24)

and Pk|k =

nf∑
j=1

µ
(j)
k

[(
x̂

(j)
k|k − x̂k|k

)(
x̂

(j)
k|k − x̂k|k

)T]
. (3.2.25)

This completes the proposed IMMPF framework. Next, results from Monte Carlo

simulations are presented.

3.3 Simulations

In this section, different simulation results are presented to evaluate the proposed

MMDP and IMMPF frameworks.

74



Figure 3.1: The complete structure of the three-tank DTS200 Model.

3.3.1 Evaluation of the MMDP Framework

For the proposed degradation modelings, we considered the following three-tank

model called DTS200 that was developed and provided by a German company called

Amira Automation [307].

3.3.1.1 The Three Tank DTS200 Model

As shown in Fig. 3.1 the DTS200 model is a closed system comprised of three cylin-

drical tanks T1, T2, and T3 having the same cross section area A (m2). These tanks

are connected together through cylindrical pipes of Sk (m2) cross section area. An

outflow valve with a circular cross section Sk (m2) located on the right side of T2.

The system’s outflowing liquid is stored in a reservoir under the three tanks. Two

pumps P1and P2 are there to control the inflow to tank T1 and T2, respectively.

These pumps are supplied through the reservoir with a liquid that returns to the sys-

tem, and they are automatically switched off when the T1or T2 liquid level reaches

a specified upper limit. In addition, the system has five more valves, two of them to

control the characteristic of the flow between the neighboring tanks, while the other

three valves are at each tank’s bottom to drain any tank manually if needed. The

process input signals are the pumps flow rates denoted by Q1 and Q2 (m3/s), while

the output signals are the levels of the tanks T1 and T2.
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The following equations illustrate the dynamic mechanism of the water tank sys-

tem [307] to evaluate the proposed MMDP

x1,k = x1,k−1 + ∆T
(Q1 −Q13

A

)
+ w1, (3.3.1)

x2,k = x2,k−1 + ∆T
(Q2 +Q32 −Q20

A

)
+ w2, (3.3.2)

and x3,k = x3,k−1 + ∆T
(Q13 −Q32

A

)
+ w3, (3.3.3)

where Q13, Q32 and Q20 are unknown quantities computed based on

q = azSksign(∆x)
√

(2g|∆x|) (3.3.4)

as follows

Q13 = az1Sksign(x1,k − x3,k)
√

(2g|x1,k − x3,k|), (3.3.5)

Q32 = az2Sksign(x3,k − x2,k)
√

(2g|x3,k − x2,k|), (3.3.6)

and Q20 = az2Sk

√
(2gx2,k) (3.3.7)

with x1,k, x2,k, and x3,k denoting the state variables (tanks water levels); az1, az2, and

az3 are the outflow coefficients (dimensionless, real values ranging from 0 to 1; Q13,

Q32 and Q20 the flow rates (m3/s); g the earth acceleration (m/s2). The observation

models are given by

y1,k = x1,k + v1,k, (3.3.8)

y2,k = x2
2,k + v2,k, (3.3.9)

and y3,k = x3,k + v3,k (3.3.10)

where the states x1 and x3 are directly measured with Gaussian noises (v1,k, v3,k) while

state x2 is indirectly measured with non-Gaussian noise (v2,k) [307]. In our model,

the hidden degradation process is related to the decrease of the flow coefficient az1,

which indicates that the connection pipe between tank 1 and tank 3 is jammed. Then

the degradation path function can be described using Eqs. (3.1.8) and (3.1.12).

In our simulations, the degradation process follows the Wiener process (Brownian

motion), which is used to generate the degradation data. Our proposed approach does

not have any a priori knowledge of the degradation model. Fig. 3.2 (a) illustrates the
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(a)

(b)

Figure 3.2: (a) Adaptive weights associated with the Brownian and Gamma models. (b)
The RMSE results obtained based on the proposed MMDP framework, and stand-alone
Gamma and Browning matched filters.

adaptive weight corresponding to each of the constituent models. Fig. 3.2(a) shows

that the evolution of the adaptive weight for the Brownian path, which varies over

time initially but converges to 1 after some iterations. On the other hand, the adap-

tive weight for the Gamma path starts with some initial value picked at random

and evolves to 0 over time. The proposed filter, therefore, successfully recognizes

the hidden degradation process. Fig. 3.2 (b) illustrates the Root-Mean-Square Error

(RMSE) results obtained based on three implemented filters as follows: (i) The pro-

posed MMDP filter; (ii) Stand-alone particle filter matched to Brownian degradation

model, and; (iii) Stand-alone particle filter where the degradation path is matched

to the Gamma process. All the filters start from the same initial value equal to the

starting point of the true state. Fig. 3.2 (b) shows how the error evolves over time
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for the Brownian path, Gamma path, and also for the proposed MMDP model. For

the Brownian model as well as the proposed model, the error converges to zero. For

the Gamma path, the error continues to increase. Similar results were achieved for

several numbers of Monte Carlo runs.

3.3.2 Evaluation of the IMMPF Framework

The results of the MMDP approach developed in Section 3.1 were remarkable; how-

ever, there is some limitation with this approach, where, the approach can accurately

find the right degradation path without any prior knowledge even if the system may

consist of multiple components or a component may have multiple degradation mea-

sures. Nevertheless, once the approach has found the degradation path then it will

continue considering the same degradation path, while the behavior of degradation

may alter over time, thus in this section, we proposed the IMMPF Framework in Sec-

tion 3.2 that can tackle this issue and bridge the gap. To test the performance of the

IMMPF framework, we consider the same tank system as in 3.3.1 by using the dis-

cretized version of the commonly used three-vessel water tank system DTS200 [308],

designed by Amira automation corporation, Germany. The system dynamics are

given by

x1,k = x1,k−1 + ∆T
(Q1 −Q13

A

)
+ w1, (3.3.11)

x2,k = x2,k−1 + ∆T
(Q2 +Q32 −Q20

A

)
+ w2, (3.3.12)

and x3,k = x3,k−1 + ∆T
(Q13 −Q32

A

)
+ w3, (3.3.13)

where {Q13, Q32, Q20} are unknown quantities computed using

Q13 = az1Sksgn(x1,k − x3,k)
√

2g|x1,k − x3,k|, (3.3.14)

Q32 = az2Sksgn(x3,k − x2,k)
√

2g|x3,k − x2,k|, (3.3.15)

and Q20 = az2Sk
√

2gx2,k, (3.3.16)
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Table 3.1: Specifications of the experimental setup based on the three-vessel water
tank system, DTS200 [308].

Variables Description Values

az1, az2, az3 Outflow coefficients 0.4904, 0.6114, 0.4502
Q13, Q32, Q20 Flow rates in m3/s ——

Q1,Q2 Supplying flow rates 4.0× 10−5, 1.4× 10−5m3/s
A Cross sectional area of water tank 1.54× 10−2m2

Sk Cross sectional area of connection pipe 5.0× 10−5m2

g Acceleration due to gravity 9.81m/s
T Sampling interval 1s

with {x1,k, x2,k, x3,k} denoting the state variables. The observation model is given by

y1,k = x1,k + v1,k, (3.3.17)

y2,k = x2
2,k + v2,k, (3.3.18)

and y3,k = x3,k + v3,k (3.3.19)

The degradation path is modeled as in Eqs. (3.2.6), (3.2.10)and (3.2.12).

In our simulations, the system is simulated 600 time steps, and the active model

during the steps (1-100) and (301-400) is set to model 1 (Brownianpath), and dur-

ing the steps (101-200) and (401-500) is for model 2 (InverseGaussianpath), while

during the steps (201-300) and (5001-600) is for model 3 (Gammapath), The purpose

of forcing the model transitions instead of simulating them randomly is to demon-

strate the properties of IMM-filter. It also reflects the fact that in real problems we

cannot determine the model transition probability matrix accurately. Our proposed

approach does not have any prior knowledge of the degradation model. Fig. 3.3(a)

shows the filtered estimate for the probability of model 1 (Brownianpath) in each

time step, which is almost zero in the following periods (101-200), (201-300), (401-

500) and (5001-600), but its probability is almost 1 during (101-200) and (401-500),

while Fig. 3.3(b) displays the desired results of model 3 (theGammapath) for the

designated time interval. The proposed filter, therefore, successfully recognizes the

hidden degradation process. Fig. 3.3(c) shows how the RMSE error evolves to infin-

ity over time for each stand-alone filter (Brownian path, Inverse Gaussian path, and

Gamma path) while bounded for our proposed model IMMPF.
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(a)

(b)

(c)

Figure 3.3: Descriptioin of the figure goes here.(a) The Probability for model 1 (
Brownian). (b) The Probability for model 3 ( Gamma). (c) The Root-Mean-Square
Error for stand-alone filters and the proposed IMMPF.

3.4 The Summary

In this chapter, the multiple model adaptive estimation framework (MMAE), and the

interacting multiple model (IMM) have been utilized coupled with a set of candidate
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degradation models for the degradation path, to perform degradation prediction based

on each model in parallel. Each degradation model is used to perform a spectrum

reliability analysis of the system. The innovations and likelihoods of the various

models are integrated to compute adaptive weights for the degradation models. The

local predictions obtained from the degradation models are combined based on the

computed weights to establish a single degradation estimate for that time instant.

For a future time, the process is iterated to model the dynamic nature of the system’s

degradation.
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Chapter 4

Hybrid Parallel Deep Neural

Network Models for RUL

Estimation

This chapter and the following chapters focus on the second dimension considered in

the thesis, i.e., the RUL estimation problem. The leading industrial and manufac-

turing companies try to use the advancements in predictive analytics and machine

learning to come up with new data science methodologies and sophisticated algo-

rithms to move from showing what happened (the traditional CBM solution and Pre-

ventive Maintenance) to predicting what will happen in the future (now performing

Predictive Maintenance). In Chapter 2, we presented different categories of the RUL

prediction models, and we discussed the benefits and potentials of hybrid modeling

(in particular the one designed based on different deep neural network architectures)

as an upcoming and promising category. Although several multiple model solutions

have been introduced for RUL estimation, most of such approaches are developed

based on the same deep neural network architectures. Although limited research

works utilized different deep neural network architectures for the development of hy-

brid models, the thesis proposes the first parallel hybrid deep neural network models

designed for RUL estimation. The proposed models establish a new important cate-

gory in this field that utilizes the most successful techniques of the DNN in a parallel

fashion and based on different architectures. In this chapter, we present four different

hybrid parallel models using many DNN techniques, which are CNN, LSTM, GRU,

FC, BLSTM, and BGRU architectures. The proposed approaches have achieved the
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Figure 4.1: A simplified diagram of the simulation engine in C-MAPSS [311].

best results among all the existing methods, especially in complex situations where

different operating conditions and fault mods are involved.

4.1 NASA C-MAPSS Data Set

The proposed approaches are implemented and evaluated based on the degradation

datasets of the turbofan engine provided in References [309] and [310]. The NASA

C-MAPSS dataset is the most popular simulated dataset for RUL prediction, which

was produced on the Commercial Modular Aero-Propulsion System Simulation (C-

MAPSS). Fig. 4.1 shows a simplified diagram of the simulation engine in C-MAPSS.

The C-MAPSS is a software for simulating several scenarios of the degradation be-

havior and the faults impact of the main five rotating components (fan, Low Pressure

Compressor, High Pressure Compressor (HPC), High Pressure Turbine, and Low

Pressure Turbine) found in a large commercial turbofan engine, throughout different

combinations of operating conditions and failure modes.

According to these operating conditions and failure modes, the dataset can be di-

vided into four sub-datasets (referred to as the FD001 to FD004) each sub-dataset is

further divided into training and test subsets. The datasets are outlined in Table 4.1.

The datasets are arranged in an N -by-26 matrix, where N corresponds to the number

of data points in each dataset. Each row is a snapshot of data taken during a single

operating time cycle, which includes 26 columns and each column represents a dif-

ferent variable. The 26 columns of data consist of two index values representing the

engine number and the current operational cycle number, three operational settings

that have a substantial effect on engine performance, as well as 21 sensor values, as
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Table 4.1: Data Set Details (Simulated From C-MAPSS) [312].

Dataset
C-MAPSS

FD001 FD002 FD003 FD004
Train Trajectories 100 260 100 249
Test Trajectories 100 259 100 248
Conditions 1 6 1 6
Fault Modes 1 1 2 2

shown in Table 4.1, details of which can be found in [311]. Each trajectory within

the datasets simulates the lifetime of an engine. While each engine is simulated with

different initial conditions, the operational status of each engine is healthy in the early

stage and begins to degrade as time progresses until a failure occurs. For each engine

trajectory within the training sets, the last data entry corresponds to the moment the

engine is declared unhealthy. While trajectories in the test sets terminate at some

time prior to failure and the target is to predict the number of cycles until the end

of product life for each engine commonly referred to as the RUL. The actual RUL

values of the test trajectories for the C-MAPSS dataset was made available to the

public.

4.1.1 Operating Conditions and Fault Modes

The data points are grouped into different clusters according to the impact of dif-

ferent factors such as various operating conditions and fault modes on a unit’s per-

formance [309]. Firstly, clustering based on the operating conditions leads into two

different groups, i.e., (FD001 and FD003), which are simulated only under the single

condition of operating at the sea level. On the other hand, we have (FD002 and

FD004), which are simulated based on various (six to be exact) conditions. Now,

based on the other factor (i.e., fault modes), we end up with different groups, where

(FD001 and FD002) are formed using a single degradation factor (the HPC), whilst,

(FD003 and FD004) are simulated based on two degradation factors, i.e., fan and

HPC degradations, which means more complex and difficult scenarios for the RUL

estimation.

4.1.2 Data Normalization

As stated previously, C-MAPSS dataset contains time-series measurements from 21

sensors that used to monitor engine performance. Nonetheless, some sensor readings

are not considered to be informative for RUL estimation, since they have almost
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(a) (b)

Figure 4.2: The illustration of the data from the 14 selected sensors of FD004 before
and after normalization. (a) Raw sensor data (before). (b) Normalized sensor data
(after).

constant outputs in the engine’s lifetime. Thus, a group of 14 sensor outcomes has

been selected following Reference [313]. Due to having different ranges for collected

sensor measurements, a normalization phase is required prior to any testing and

training, to unify the values to be within a specific range and to provide unbiased

involvement from the readings of each sensor. In this regard, to provide a standard

range across all the features, the Min-Max normalization was employed, i.e.,

x̄i =
2(xi −min xi)

max xi −min xi
− 1, (4.1.1)

where xi represents the time sequence for ith sensor measurements, and x̄i represents

the normalized data. The normalization help to provide equal participation from

all features associated with all operating conditions [314]. Fig. 4.2 is an illustrative

example to visualize the need for normalization and to show the effects of data nor-

malization. More specifically, Fig. 4.2 presents the readings from different sensors

obtained from the FD004 dataset when normalization is applied and in the absence

of normalization. Note that the normalized data is distributed within the [−1, 1]

range.
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4.1.3 Performance Evaluation

In this research, to evaluate the performance of the proposed RUL models and pro-

vide comparisons with their counterparts, two objective performance measures, i.e.,

Scoring function, and Root Mean Square Error (RMSE), are adopted. The considered

performance measures are briefly outlined below:

(1) Scoring Function: It is a performance measure defined by the PHM community

at the International Conference on Prognostics and Health Management in 2008

and is given by

S =
Mte∑
i=1

si, where si =

e−
hi
13 − 1 for hi < 0

e
hi
10 − 1 for hi ≥ 0,

(4.1.2)

where S is the computed score, Mte is the total number of testing data samples,

and hi = RULi − RULi (estimated RUL - true RUL, with respect to the ith

data point).

(2) The RMSE : A common metric that is widely used as a performance measure

for evaluating the estimation accuracy of the RUL estimation. The formulation

of the RMSE is given by

RMSE =

√√√√ 1

Mte

Mte∑
i=1

h2
i . (4.1.3)

Fig. 4.3(a) demonstrates comparisons of the RMSE and the score function. It should

be noted that the scoring function favors early predictions (i.e., the estimated RUL

value is smaller than the actual RUL value) more than late predictions (i.e., the

estimated RUL value is larger than the actual RUL value), as it penalizes late pre-

dictions more than early ones. Whilst, the RMSE assigns equal weights to both early

and late predictions. The lower the evaluation metrics are, the better performance

the proposed method can achieve.

4.1.4 RUL Target Function

For the training of neural networks, the output (ground truth) corresponding to the

input data should be precisely known. In prognostic health management applications,
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(a) (b)

Figure 4.3: (a) The comparison of scoring function and RMSE function. (b) Illustration
of piece-wise linear RUL target function.

however, accurate knowledge of the target RUL used for training the network is typ-

ically not available and is estimated based on a physics-based model [313]. Different

solutions [156, 192, 214–216, 313, 315–318] have been proposed to address this issue.

Among these solutions, references [156, 192, 214, 313, 316, 318] have used a piece-wise

linear degradation model for determining the target RUL. The intention behind this

approach is that the system is healthy during the initial stage of its operation. Degra-

dation increases when the system approaches its “end-of-life”. For this reason, it is

reasonable to model the RUL as a constant value when the system is relatively new.

It degrades linearly with the passage of time. For this dataset, the piece-wise linear

degradation model has been validated to be effective [156,192,214,313,316,318,319].

It has a constant RUL phase with a value of 125 estimated from the observed data

during the degradation phase, the system degrades linearly (Fig. 4.3(b)). The piece-

wise linear RUL target function has the advantage of preventing the algorithm from

overestimating the RUL. Moreover, the linear degradation model is the most natural

choice to be used in cases where prior knowledge of a suitable degradation model is

not available. This completes the description of the C-MAPSS dataset.
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4.2 The General Settings of the Proposed Frame-

works

In this chapter, all the proposed frameworks consist of two parallel paths, the first path

usually based on (one, multiple, or mixed) of the following DNN techniques (LSTM,

GRU, BLSTM, and BGRU). The second path is based on the CNN technique. The

two parallel paths are followed by fully connected multilayer neural networks (fusion

layers), acting as the fusion center combining the extracted features from each of the

two parallel paths in order to estimate the targeted RUL. In these approaches, we

consider the RUL prediction of a system/subsystem (like the engine of an airplane)

with N units based on run-to-fail maintenance strategy or any particular event mea-

surements defining the end-life of the unit. The number of sensors L attached to

each component of the system is used to collect information that serves as features

for RUL estimation. For each unit n, where (1 ≤ n ≤ N), the observation vector is

defined as xt = [xt1, . . . , x
t
L]T ∈ RL×1 at t > 0. The collected data from the sensors

corresponding to unit n are represented in the following matrix form

Xn = [x1,x2, . . . ,xt, . . . ,xTn ] ∈ RL×Tn , (4.2.1)

where superscript T denotes transpose operation, and Tn is the failure time of a

specific unit (n). The RUL estimation is an example of the multi-variate time series-

based problems, and as the temporal sequence data offers more informative features

than a multivariate sample [320], a sliding window technique is adopted to prepare

samples to use the temporal multivariate information for better feature extraction. In

this regard, first, consider rtw denoting the size of the sliding window, and rf as the

number of selected features. Then (rf × rtw) represents the 2D input matrix to the

proposed models. In particular, the 2D matrix (rf × rtw) is supplied as an input into

the CNN path. At the same time, each column of the matrix will simultaneously be

fed as an input into the other parallel path at each time moment. Different lengths

(30 & 15) of rtw were examined and tested with sliding step size of 1. Fig. 4.4(a)

shows data samples of length 15 time window for 14 selected sensors. Fig. 4.4(b)

describes the complete procedures of the proposed approaches.
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(a) (b)

Figure 4.4: (a) Training sample of 15 time window (14 selected features). (b) Flowchart
of the proposed models.

4.3 Frameworks of The Proposed Networks

In this section, the key structures used to develop the proposed frameworks are pre-

sented. Fig. 4.5 presents the proposed parallel hybrid model referred to as the Hybrid

Deep Neural Network Model (HDNN) [321,322]. The proposed HDNN framework is
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the first parallel hybrid deep neural network model designed for RUL estimation.

The exceptional results of this approach, its simple design, the reduced number of

involved parameters, and its impressive performance in handling complex datasets

consisting of several operating conditions and fault modes, opened the door for the

development of other parallel hybrid models for RUL estimation. In this regard, the

thesis proposed three alternative approaches shown in Figs. 4.6, 4.7, and 4.8. In what

follows, we describe different components used in developing the three paths of the

proposed frameworks.

4.3.1 The First Parallel Path

As stated previously, the first parallel path in each of the proposed models is designed

uniquely based on different DNN architectures. For the first proposed model, i.e.,

the“HDNN”, the first path is designed based on the LSTM architecture to overcome

the vanishing and exploding gradient problem of the traditional RNN. Additionally,

the LSTM architecture can learn order dependence in sequence prediction problems,

which is achieved by employing a memory state mechanism with a special gating

system (see Section 2.2.2.2). The LSTM takes each measurement sequence (formed

based on a time window with a fixed length) and then models the whole sequence

based on the targeted RUL value. The structure of the incorporated LSTM is many-

to-one as shown in Fig. 2.13. Three LSTM layers are stacked in the LSTM path of

the HDNN model for the extraction of temporal features. Each of the first two layers

is defined by 32 cell structures, while the third layer is based on the 64 cell structure.

Repeated cells within the LSTM layer have the same structure and parameter values.

The first path in the second proposed approach [83], shown in Fig. 4.6, is based

on the BLSTM and LSTM architectures. The BLSTM is the modified and extended

version of the LSTM architecture. As illustrated in Fig. 2.16, the BLSTM model

consists of two LSTM layers included to process the sequence input in two directions

(i.e., forward and backward directions). The intuitive rationale behind such a design

is to utilize all available information from the past and future of a specific time

frame. This path begins with a BLSTM layer defined by a 32-cell structure with

return sequences and a dropout rate of 0.3. The output is to be concatenated and

then fed to the next LSTM layer. The BLSTM layer followed by two LSTM layers

which are defined using 32 and 64 cell structures, respectively. The associated setting

values for the repeating cells are considered to be the same.
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Figure 4.5: The proposed hybrid deep neural network (HDNN) framework.

In the third proposed approach [323,324], shown in Fig. 4.7, the GRU architecture

is used to design the first parallel path. GRU is an optimized and a newer generation

of RNNs that has been inspired by the LSTM design. As shown in Fig. 2.17, the

GRU architecture transfers information only using the hidden state without the in-

corporation of the cell state. Moreover, it has only two gates, the reset gate and the

update gate making the GRU faster than LSTM but with comparable performance

and a somewhat more streamlined version (see Section 2.2.2.4). In this path, we

utilized two stacked GRU layers to extract the temporal features. In this regard, 32

and 64 cell structures with return sequences are adopted for the first and the second

GRU layers, respectively. In addition, dropout is used with a rate of 0.3 value. The

same cell configuration, in terms of parameter values and structure, is used within

this layer.

Finally, as shown in Fig. 4.8, in the fourth proposed approach [323,324], we utilized

the BGRU to design the first parallel path. The BGRU processes the sequence input

in two directions including forward and backward ways, which is different from the

GRU that uses a unidirectional RNN. The BGRU, therefore, employs two individual

hidden layers (GRUs) as shown in Fig. 2.18, each one of them can jointly capture

past (forward direction) and future (backward direction) [325]. We used 32 and 64

cell structures, respectively, with return sequences for the two BGRU layers in this

path, used for extracting temporal features. Furthermore, the dropout of 0.3 is used.

4.3.2 The CNN Path (The Second Parallel Path)

The proposed methods have a common design for the second parallel path, which

is based on using the CNN technique, as shown in Figs. 4.5 - 4.8. This path is

employed as another powerful feature extraction mechanism, that extracts another
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Figure 4.6: The proposed hybrid deep neural network (BiLSTM) framework.

Figure 4.7: The proposed hybrid deep neural network (GRU) framework.

Figure 4.8: The proposed hybrid deep neural network (BiGRU) framework.

class of features as compared with the first parallel path. This path comprises three

CNN layers, the first two of which are followed by max pooling layers. 10 filters of the

same configurations, each one with the size of (9× 1) are applied for the convolution

layers, and a filter of size is (2 × 1) is selected for the max pooling layers. The last

layer within the CNN path consists of one CNN filter of (3 × 1) dimensions. The

first two approaches used tanh as an activation function, while the third and fourth

approaches used the Rectified Linear Unit (ReLU) as the activation function for all

the layers. Fig. 4.9 shows the detailed architecture of the CNN path for the proposed

approaches for RUL estimation.
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Figure 4.9: The detailed architecture of the CNN path.

4.3.3 The Fusion Path (The Third Path)

This path represents the fusion center that integrates the extracted features from

the previous parallel paths to perform the regression task for generating the targeted

output of the RUL prediction. The input of this path is vector constructed based on

the flattened output of the CNN path (to be in 1D) concatenated with the output

features of the first parallel path.

This path in all the proposed methods consists of three fully connected layers.

In the first proposed model “HDNN”, each of the first two fusion layers has 100

neurons and uses a tanh activation function, similarly, for the second proposed model

“BLSTM” the first two FC layers based on 103 neurons with tanh activation function.

While in both models the third FC layer is designed based on a 1 neuron and the

utilized activation function is the Rectified Linear Unit (ReLU).

For the third and the fourth proposed models (“GRU” & “BiGRU”), the first and

the second FC layers are built using 87 and 107 neurons, respectively. The last FC

layer has a 1 neuron and all the layers in both models have used the (ReLU) activation

function. A dropout rate of 0.3 has been used in all the proposed approaches. This

completes the description of the different paths and components of the proposed

frameworks.

4.3.4 The Overfitting Issue

One of the main problems in deep neural networks is overfitting. This occurs when

the model, instead of learning a mapping from inputs to outputs and learning the

general distribution of the training data, starts to: (i) Memorize the training dataset;

(ii) Learn the associated noise patterns, and; (iii) Learn the predicted outcomes for

each data point [326].

In contrast, underfitting occurs when the model is not powerful enough for cap-

turing the underlying patterns of neither the training data nor new data. In this case,
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the model has to be improved or modified in such a way to be able to handle the

complexity of the dataset. There are several different methods for handling overfit-

ting, the most important methods are Dropout and Early Stopping [327] as described

below.

4.3.5 The Dropout Technique

Dropout is a simple and effective form of regularization approach. Dropout is, typ-

ically, used to reduce data overfitting during the training stage. The term dropout

comes from randomly dropping out neurons as well as all of its connections (its incom-

ing and outgoing weights) temporarily during the training step [326]. The remaining

neurons will handle the required job of the missing neurons, consequently, the network

is less responsive to specific neuronal weights. This potentially leads to better gener-

alization, more resistance to overfitting to the training data, and prevents repeated

extraction of the same features in some cases [156].

4.3.6 The Early Stopping Technique

Dividing a training dataset into a training set and a validation set is a common prac-

tice to use the validation set for evaluating the model performance after each epoch

(training iteration). Early stopping is a method to monitor and avoid overfitting in

NN models by stopping the training at the moment where the overfitting starts. As

shown in Fig. 4.10, the early stopping technique is implemented by monitoring the

model’s efficiency during the training step, and the best way to measure that is by

computing the error or the loss function value during the training. The error is com-

puted repeatedly for both the training and the validation sets throughout the entire

training cycle. As time goes on, the error/loss of both training and validation data

will decrease as the model learns. Nevertheless, this will no longer be the case if the

model is being trained too long, where the computed error on the training set will

continue to decline, but eventually, the computed error on the validation set would

increase again [328]. This is the point at which the overfitting starts as well as the

early stopping works. In addition, at this stage, we have the best generalization for

both training and validation sets.
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Figure 4.10: The Early Stopping Technique.

4.3.7 Training Process

The objective of the training process is to obtain optimal parameters (weights and bi-

ases) so that the cost function is minimized [329]. In other words, the training involves

determining the most suitable values for the weights and biases in the network for

enabling the model to solve a particular problem. As stated earlier in Section 2.2.1.3,

there are several types of training, in this thesis, the adopted type is supervised train-

ing because the desired outputs (actual RUL) of the data are already provided in the

dataset. Then the network analyses and processes the input data, and compares

their corresponding outputs to the desired values. In the proposed approaches, each

training dataset was randomly divided into 85 percent and 15 percent, respectively,

as training and validation sets. For the training set, all the available measurement

data points of the engines are utilized as samples for the training, and each one of

them is associated with the related RUL label as the targeted value. The piecewise

degradation method is employed to determine the RUL label for every training sam-

ple. For each training iteration (epoch), the training dataset is randomly divided into

small batches of samples called mini batches, and the batch size is set equal to 512

in all the proposed models. Backpropagation and mini batch gradient decent [330]

are used for training the networks, as they are working on finding the weights that

minimize the loss function, as well as for deciding how much amount each network

weight needs to update, after the comparison of the estimated output with the de-

sired one. In addition to that, the adaptive moment estimation (Adam) is used as
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the optimization technique for updating the weights and minimizing the model error

rate [331]. The maximum number of training epochs is 250. The used learning rate

is 0.001. The Mean Squared Error (MSE) is adopted as the loss function which is

given by

MSE =
1

Mtr

Mtr∑
i=1

h2
i , (4.3.1)

where Mtr is the total number of training data samples, and hi = RULi−RULi, i.e.,

the difference between the estimated RUL and the true RUL with respect to the ith

data point. The early stopping technique and the dropout have been used to avoid

overfitting problems.

4.4 Simulations

In this section, we evaluate the performance of the proposed frameworks by employing

the C-MAPSS dataset with all the settings and details of section 4.1.

4.4.1 Results

In this subsection, we present various experimental results to evaluate the performance

of the proposed frameworks for RUL estimation.

4.4.1.1 The RUL Estimation Results

Samples of the RUL prediction results over the four datasets (i.e., FD001-FD004)

from the proposed models are presented in Figs. 4.11, and 4.12. For better visualiza-

tion of the results, in Figs 4.11(a)-(d) testing engines are sorted in ascending order

(from small to large). Figs. 4.11(a)-(d) show the prediction results associated with

the last recorded data point over the four datasets. It is worth mentioning that the

number of test cases in each dataset is different ranging from, 100 testing engines in

FD001 and FD003 to 256 and 248 engines in FD002 and FD004, respectively. It is

observed that the predicted RUL values closely follow their ground truth. Two key

points can be highlighted: (i) First, it can be observed that the accuracy for engines

with smaller RUL is noticeably higher. This is particularly important as smaller RUL

translates to the closeness of a potential failure, where better accuracies are required
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Table 4.2: The results of 30 time window size.

TW=30
HDNN BiLSTM GRU BiGRU

FD001
Score 245 252.915 262.656 234.406
RMSE 13.017 12.848 12.831 12.108

FD002
Score 1282.42 1184.925 1070.5771063.415
RMSE 15.24 16.384 16.182 16.233

FD003
Score 287.72 257.857 292.329 231.727
RMSE 12.22 12.972 12.006 12.217

FD004
Score 1527.42 1467.793 1889.5971735.845
RMSE 18.156 18.171 19.015 18.67

to perform maintenance actions at optimum times to avoid catastrophic failures, and;

(ii) The results shown in Figs. 4.11(b) and (d) are significantly interesting as these

are corresponding to the most complex scenarios and typically most of the existing

solutions fail to provide reliable results for these two cases.

Figs. 4.12(a)-(d) predicted RUL values for a sample unit of each dataset (selected at

random). First, we would like to point out that as the complete failure history of

each testing engine is not available for prognostic performance evaluation, the last

parts of the engine units lifetime are not included in the figures. The actual RUL

values are provided in the dataset, therefore, their associated RUL labels can be

computed accordingly. In par with our previous results, it is observed that the pro-

posed frameworks perform well across all four datasets, specially FD002 and FD004

(Figs. 4.12(b) and (d)), which are considered extremely complex scenarios. More

interestingly, the proposed frameworks manage to provide accurate RUL estimates

values closely following their ground truth when the units are close to failure.

4.4.1.2 The Results with Different Time Window Size

The time window size has a major role in collecting informative features, where the

larger the time window size, the more amount of information can be covered, which

is the foundation for further feature extraction. In other words, the larger the time

window size, the better the RUL prediction. (30) window size is the common value of

the window size used in most of the RUL estimation studies that employed C-MAPSS

datasets. Table 4.2 shows the results obtained from the proposed frameworks using

30 time window size for FD001 to FD004. In particular, both the RMSE and the

score values for FD002 and FD004 are significantly better than the values reported in

the literature. To further show the efficiency of our proposed frameworks, we examine

the effects of the window size on the results. As such, we used a smaller window size

of 15. Table 4.3 shows that the results obtained from smaller time window size are
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(a) (b)

(c) (d)

Figure 4.11: The prediction for the last recorded data point of different testing engine units
in FD001-FD004. (a) Prediction for the 100 testing engine units in FD001 for the BiGRU
model. (b) Prediction for the 256 testing engine units in FD002 for BiLSTM model (c)
Prediction for the 100 testing engine units in FD003 for the HDNN model. (d) Prediction
for the 248 testing engine units in FD004 for the GRU model.

Table 4.3: The results of 15 time window size.

TW=15
HDNN BiLSTMGRU BiGRU

FD001
Score 849.517 647.688 770.360 637.495
RMSE 17.095 16.92 17.223 17.005

FD002
Score 1966.415 1824.353 1511.5471489.844
RMSE 17.411 19.715 19.048 19.060

FD003
Score 752.363 884.505 841.322 657.177
RMSE 16.078 18.160 17.526 17.824

FD004
Score 2549.64 2805.5553183.081 3004.6
RMSE 20.265 20.22 21.399 20.769

again superior. It is worth mentioning that as expected the score and RMSE results

obtained using a smaller window size of 15 (Table 4.3) are increased as compared to

a larger window size of 30 (Table 4.2).
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(a) (b)

(c) (d)

Figure 4.12: Different examples of lifetime RUL prediction for a sample engine unit of each
dataset. (a) The testing engine Unit 77 in FD001 for the HDNN model. (b) The testing
engine Unit 162 in FD002 for the BiGRU model. (c) The testing engine Unit 92 in FD003
for the GRU model. (d) The testing engine Unit 202 in FD004 for the BiLSTM model.

Table 4.5: Performance comparison with 4 methods that do not use the piece-wise
linear degradation model with the proposed frameworks

Dataset
HDNN BiLSTM GRU BiGRU ResCNN Semi-S BiLSTM-ED Rulclipper

[334] [335] [256] [315]

FD001
Score 245 252.915 262.656 234.406 212.48 231 273 216
RMSE 13.017 12.848 12.831 12.108 12.16 12.56 14.74 13.27

FD002
Score 1282.42 1184.925 1070.577 1063.415 2087.77 3366 3099 2796
RMSE 15.24 16.384 16.182 16.233 20.85 22.73 22.07 22.89

FD003
Score 287.72 257.857 292.329 231.727 180.76 251 574 317
RMSE 12.22 12.972 12.006 12.217 12.01 12.10 17.48 16

FD004
Score 1527.42 1467.793 1889.597 1735.845 3400 2840 3202 3132
RMSE 18.156 18.171 19.015 18.67 24.97 22.66 23.49 24.33

4.4.1.3 Comparison with Existing Methods

In the previous section, we have presented the results obtained from implementing the

proposed frameworks. Here, to better position the reported results within the existing
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literature we present comprehensive comparison results with existing state-of-the-art

RUL estimation solutions. Most of such existing studies on the RUL estimation

problem have used the C-MAPSS datasets for evaluation and comparison, which

is the same dataset used in our proposed models. Table 4.4 illustrates the results

reported by the latest researches and is compared with the proposed frameworks.

The solutions included for comparison purposes are ranging from simple deep learning

structures using one type of deep learning architecture such as CNN in [156, 333] or

LSTM in [214] to more complex designs such as BLSTM in [225] or others that are in

the same level of complexity such as the approach in [304], in addition to some other

different techniques as in [299, 332]. Although some of our proposed architectures

might appear more complicated in design than some of the aforementioned techniques,

they are not intricate to a degree beyond which our comparison might not easily prove

to be relevant and fair. In other words, the number of parameters involved in the

design of the proposed architectures is much less than some of the approaches included

in our comparison (the number of parameters involved in our designs is ranging from

about 48, 000 in the GRU approach to around 88, 000 in BiGRU , while about 85, 000

and more than 2 million parameters are utilized in [225] and [299], respectively).

Furthermore, when comparing our results to the others, one may think that our

applied improvement did not conclude the best outcomes, however, with regard to

our pioneer “HDNN” model by the time it was published, its results were the best in

the sense that it was the first published hybrid parallel model with almost the best

achieved results in the literature. While the other approaches we are comparing ours

with did not conclude as good results as ours except two approaches of them [304,332]

which came up with close results to ours. It is worth mentioning here that these two

approaches were published (submitted and accepted) several months after ours.

As for the other three approaches of ours (BiLSTM, GRU, and BiGRU) even

though, they were published as supportive approaches besides the main ones within

different research papers, they achieved great results when compared with their coun-

terparts. In addition, our comparison was designed to be simple and similar to those

used in the literature [156,192,214,225,299,313,336], regardless of other designs and

various complexity degrees. Furthermore, for an equitable comparison, we classified

the RUL prediction approaches into two categories: (i) The piece-wise linear degra-

dation approaches, as it is still the natural common choice in the literature, and;
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(ii) Solutions developed without using the piece-wise linear degradation model. Ta-

ble 4.4 displays the RUL prediction results obtained from techniques that employ the

piece-wise linear degradation model. Table 4.5 compares the results of the proposed

models with methodologies that use alternative approaches to the piece-wise linear

degradation model. The proposed methods achieve competitive results across most

of the datasets. Despite the good results of (ResCNN) method, it is important to

note that (ResCNN) has a number of limitations as compared with the piece-wise

linear degradation method, such as lacking the imbalance of signal data, that affects

the prediction accuracy [334].

4.4.1.4 Monte Carlo Simulations with Additive Noise

Effectiveness and robustness of proposed methods on RUL prediction are further

evaluated through Monte Carlo (MC) simulations. In particular, 100 MC runs are

performed where at each run, sensor measurements are contaminated by additive

stochastic noise based on a specific level of signal to noise ratio (SNR). From the

four proposed models, we selected two models to evaluate using MC simulations.

Table 4.6 presents the MC simulation results obtained from the proposed HDNN

framework using noisy sensor measurements (based on different SNR values which

are 30, 25, and 20 dB). While table 4.7 presents the MC simulation results obtained

from the proposed BiGRU framework using noisy sensor measurements (based on

different SNR values which are 30, 25, and 20 dB). It is noteworthy that our proposed

approaches are the only approaches in the literature that fully evaluated using MC

simulations based on different levels of SNR. The achieved RMSE and the score values

show a remarkably stable performance of the proposed models. It can be clearly noted

that the algorithms’ performance degrades as the value of the SNR reduces especially

below 20dB since the training model is based on clean data (not noisy) and hence the

model sees fewer variations in the data during training which makes the model not

stable enough to deal with a high rate of noise ( low SNR values). This motivates

further research to improve the proposed models.
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Table 4.6: Monte Carlo simulation results of (HDNN) model: (a) The results under SNR
=30 dB. (b) The results under SNR =25dB. (c) The results under SNR =20 dB.

Table 4.7: Monte Carlo simulation results of (BiGRU) model: (a) The results under SNR
=30 dB. (b) The results under SNR =25dB. (c) The results under SNR =20 dB.

4.5 The Summary

In this chapter, a new important category in the field of RUL estimation models has

been introduced, which is the parallel hybrid design with multiple types of DNNs.

The proposed models have been designed based on two parallel paths of different

NN techniques. Both paths receive the same input data, and each one of them then

processing the data in a specific fashion. Consequently, the results from both parallel
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paths are fused by the third path that acts as a fusion center designed based on fully

connected layers to find the RUL. Four different approaches are proposed by integrat-

ing CNN, LSTM, GRU, BLSTM, and BGRU architectures. The proposed methods

have been tested on NASA’s C-MAPSS dataset that simulates the degrading health

of a commercial aero engine. Comparisons with several state-of-the-art methodologies

have been conducted and the results demonstrate the outstanding performance of the

proposed methods.
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Chapter 5

The Noisy and Hybrid Deep

Neural networks for Remaining

Useful Life Estimation

The RUL estimation frameworks proposed in the previous chapter (Chapter 4) con-

siderably outperformed their state-of-the-art counterparts. There are, however, po-

tential venues to further improve the performance of the proposed frameworks, i.e.,

to improve on the robustness and the generalization behavior of the models. In other

words, the achieved results can be improved by enhancing the learning capabilities

of the models (through enhanced training) considering robustness and generalization

by design [337]. However, improving the training step to ensure better performance

and generalization behavior for a model is a challenging task. This is the case as

the training usually introduces issues such as memorizing the training dataset rather

than learning the general mapping from inputs to outputs. Furthermore, if the train-

ing step is performed based on a small dataset, there is a less chance to properly

identify the structure of the input space and its relation to the output. These issues

during the training stage can lead to either having an “underfit model” when fewer

data points are provided preventing the model to sufficiently learn the problem (i.e.,

unlearnable mapping function). Alternatively, we can have an “overfit model” which

happens when the model memorizes the training dataset. Several approaches have

been proposed to address these issues and ensure the robustness and the generaliza-

tion behavior. For example, regularization [337], weight decay [338] pruning meth-

ods [339], information minimization [340], constructive methods [341], dropout 4.3.5,
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early stopping 4.3.6, and adopting noisy training, to mention but a few.

Among the aforementioned solutions to improve the training stage, adopting noisy

training or adding random noise is an effective approach to increase the robustness

of the network. Several studies [337,342–350] have shown that adding small amounts

of noise during the training step contributes to a better generalization behaviour and

improved learning capabilities. What makes noisy training one of the most effective

techniques, is that it possesses the following unique characteristics: It has a regular-

ization effect [349]; It can be considered as some form of data augmentation [344],

and; It can reduce generalization error and reduce the over-fitting problem [337].

Although the most common and widely studied approach is adding noise to the in-

puts, random noise can be considered during the training phase in other parts of the

model, e.g., noise can be added to the weights (adopting weight noise). This strategy

is considered as equivalent to the traditional form of regularization, encouraging the

stability of learning the general mapping from inputs to outputs [337]. It has also

been shown that adopting the weight noise can improve the learning rate [351]. How-

ever, some researchers [352] have argued that the weight noise is less effective than the

input noise for regression problems, while they showed to have similar effects for the

classification problems. Alternatively, noise can be added to the gradients (injecting

gradient noise) focusing more on robustness of the optimization process. Injecting

gradient noise has shown to be effective to avoid the over-fitting issue and can mini-

mize the training loss by enabling better parameter space exploration. The latter is

essential in case of optimizing several layers within a complex structured NN [345].

Finally, noise can be added to the activations and to the outputs [353].

In this chapter, we will employ different noise injecting strategies to further im-

prove the approaches proposed in Chapter 4. The proposed approaches in this sec-

tion will be evaluated and tested using the same C-MAPSS dataset (described in

Sections 4.1- 4.3).

5.1 The Noise Injection Strategy

Noise injection during the training stage is a generic strategy that can be implemented,

no matter what type of NN is utilized. Many researches have investigated and shown

that injecting noise is an effective and successful method to improve the performance

of different NN architectures (including MLP, LSTM, GRU, and CNN). Murray and
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Edwards [354] have investigated and analyzed the effect of adding noise to the MLP

and shown that this method has enhanced the learning ability, generalization, and

the network’s fault tolerance. Many other studies [355, 356] have shown the same

results. Along the same direction, it was shown [237, 357–359] that injecting noise

to the RNN in general or the LSTM and BLSTM, will improve their efficiency and

increase their learning ability throughout the training process. CNN is no different

from the other approaches, where References [360–362] have adopted noise injection

and demonstrated potential improvements that can be achieved resulting in state-of-

the-art outcomes.

It is worth mentioning that noise injection can be applied regardless of the problem

type being tackled. Hence, adding noise to models that handle problems of classifica-

tion or regression is acceptable. However, some noise injection ways are more effective

than others for specific data or problem types [352,353].

Gaussian Noise Layer: Gaussian noise is the most common form of noise used

throughout the training stage in the literature. The Gaussian noise can be provided

by using a pseudorandom number generator, however, in our proposed approaches,

the noise injection is performed via an alternative and effective technique, which is

the inclusion of Gaussian noise layers. A Gaussian noise layer applies additive zero-

centered Gaussian noise as a stand alone layer to accomplish the noise injection task.

A noise layer’s output should be in the same form as that of the input, the only

change is the addition of noise to the values.

The Gaussian noise layer can be added and used in different ways and locations

of the model. An example is the traditional use of noise when a noise layer is used as

an input layer for adding the noise directly to the input variables. In addition, the

Gaussian noise layer can be added between the hidden layers within the model. In

this case, it could be included before the activation function, or after that to form

some sort of noisy activation function. The injection of noise is necessary to have a

consistent effect on the neural network model, and this can be done by standardizing

input variables or by normalizing them prior to adding the noise [353]. Moreover, the

amount of noise injection (standard deviation) is a dynamic hyperparameter. A very

small amount of noise does not have any effect, while too much noise leads to poor

learning for the mapping function.
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Figure 5.1: The NLSTM framework.

Figure 5.2: The NBLSTM framework.

Figure 5.3: The NGRU framework.

5.2 Frameworks of The Proposed Networks

In this section, structures of the proposed frameworks are presented, the presented

methods as shown in Figs. 5.1- 5.4, make use of three integrated paths, i.e., the first

two paths are in parallel and they are constructed based on several DNN architectures

along with different noisy layers. Their combined output is then fed into the third

path (fusion center) to integrate the obtained features of the parallel paths to find

the RUL. The proposed models can be classified into two groups, based on the way

of adopting the noise layers, where the first and the second approaches (NLSTM &

NBLSTM) [83] as shown in Figs. 5.1 and 5.2 are using the noise layer as an input

layer to the first parallel path, while as input layer and between the hidden layers of

the CNN path. The other two approaches (NGRU & NPBGRU) [323,324] as shown

in Figs. 5.3 and 5.4 are using fully noisy architectures as we adopted the noise layer

in all the integrated paths. In the following subsections, the main components of the

three paths of the proposed frameworks are presented.
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Figure 5.4: The NPBGRU framework.

5.2.1 The First Parallel Path

In the second proposed approach, as shown in Fig. 5.2, the first path is similar to the

previous approach as it has three layers for temporal features extraction, preceded by

a noisy layer contaminated with zero-mean Gaussian noise with a standard deviation

of (0.01). However, the first layer followed the noisy layer, is a BLSTM layer defined

by a 32-cell structure with return sequences, a dropout rate of 0.3, and output to

be concatenated and then fed to the next LSTM layer. The following layers are

two LSTM layers defined by 32 and 64 cell structures, respectively. The associated

setting values for the repeating cells used within the LSTM layers are considered to

be the same. The third proposed approach, as shown in Fig. 5.3, has utilized two

GRU layers for extracting temporal features, each one preceded by a Gaussian noisy

layer with zero-mean and standard deviation of (0.01 & 0.1) respectively. 32 and

64 cell structures are adopted for the first and the second GRU layers, respectively.

Furthermore, the dropout of 0.3 is used. The related parameter values are assumed

to be the same for the repeated cells used in the GRU layers.

Finally, the fourth proposed approach, as shown in Fig. 5.4, has followed the design

of the third method, but based on using BGRU. More specifically, the fourth model

has two Gaussian noise layers each one followed by one BGRU for extracting temporal

features. The BGRU layers are defined by 32 and 64 cell structures, respectively, with

return sequences. Furthermore, the dropout of 0.3 is used. The related parameter

values are assumed to be the same for the repeated cells used in the BGRU layers.

5.2.2 The Noisy CNN Path (The Second Parallel Path)

The proposed methods have a common design for the second parallel path, which is

based on using the CNN technique, as shown in Figs. 5.1- 5.4. The CNN path is

employed for extracting another class of features as compared with the first parallel

path. This path consists of three CNN layers, the first two of which are both preceded

109



by Gaussian noise layers that have zero mean and (0.01, 0.1) standard deviations,

respectively. In addition, they are followed by max pooling layers. 10 filters of the

same configurations, each one with the size of (9× 1) are applied for the convolution

layers, and a filter of size is (2 × 1) is selected for the max pooling layers. The last

layer within the CNN path consists of one CNN filter of (3 × 1) dimensions. The

first two approaches used tanh as an activation function, while the third and fourth

approaches used the Rectified Linear Unit (ReLU) as the activation function for all

the layers.

5.2.3 The Fusion Path (The Third Path)

This path is designed based on three different fully connected layers, used as a fusion

center to conduct the regression task to estimate the RUL. For the first two proposed

approaches (NLSTM & NBLSTM) we have not adopted noise injection in this path.

The first two FC layers have 100 neurons and use tanh activation function in the

first approach, while, 103 neurons with tanh activation function in the second one.

In both models, the third FC layer is designed based on a 1 neuron and the utilized

activation function is the Rectified Linear Unit (ReLU).

For the third and the fourth proposed models (NGRU & NPBGRU) one Gaussian

noisy layer with zero mean and 0.01 standard deviation is injected between the first

two FC layers, and these FC layers are built using 87 and 107 neurons, respectively.

The last FC layer has a 1 neuron in both models and all the layers have used the

(ReLU) activation function. A dropout rate of 0.3 has been used in all the proposed

approaches.

5.3 Noisy Training

. As we have already shown, that adopting noise injection during the training has

an effective impact to improve deep neural networks in terms of performance, gen-

eralization, and robustness. Additionally, noise injection can be applied regardless

of the problem type (classification or regression) being tackled. However, only a few

research works have employed noisy training for the problem of RUL estimation. For

instance, Chen et al. [363] have employed Gaussian noises during the training phase

to overcome the issue of over-fitting and enhance the robustness and generalization

ability of the network for rolling bearing fault severity identification.
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The proposed models, to the best of our knowledge, are the first parallel hybrid

DNN models for RUL estimation, that adopting the Gaussian noise layer in the way

that we proposed. More specifically, other than using the traditional method of adding

noise at the input stage of the model, we proposed two different ways of applying the

noise throughout the use of the noise layer. The first way is for the first two proposed

models (NLSTM & NBLSTM) as we applied the Gaussian noise layer at the input of

each parallel path (First & CNN paths) in addition to another Gaussian noise layer

between the first and the second CNN layers in the CNN path. The second way, we

called it, a fully noisy training, which is achieved by applying Gaussian noise layers

to each of the proposed (NGRU & NPBGRU) models’ paths. The injected noise level

has a clear effect on the training process and the generalization capability offered by

the noisy training [347]. Different combinations of noise levels are investigated during

the training and the results on the test data are provided in Section 5.4.1.4.

To train the proposed models, each training set was randomly divided into 85

percent and 15 percent, respectively, as training and validation sets. The validation

set was used in each training epoch to assess the model performance. The mean

squared error (MSE) is the loss function. The other settings are the same as in

Sections 4.2 and 4.3.7.

5.3.1 Grid Search Technique

Machine learning involves data prediction and classification, and to do that, different

machine learning models have been employed according to the used datasets. Machine

learning models are parameterized to adapt their behavior to a particular problem.

These models can have several parameters (internal configuration parameters) and

hyperparameter (external configuration parameters). Finding the best combination

of parameters can be treated as a search problem. In a machine learning model,

“parameters” are the model’s internal configuration variables, the values of which

are estimated from the given data [364, 365]. During the training process, model

parameters are learned from historical training data by optimizing a loss function

using certain methods such as gradient descent. Examples of these parameters include

the weights and biases in an ANN and the coefficients in linear regression or logical

regression.

On the other hand, “Hyperparameters” are considered as the model’s external

configuration values that cannot be estimated from the training data, but they need
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to be defined prior to the training process [366]. Hyperparameters used to optimize

the model’s performance by affecting the speed and accuracy of the model’s learning

process. Then, different systems require a different number of hyperparameters. In

brief, the hyperparameters are like an algorithm’s settings that can be adjusted to

improve the model’s outcomes. Learning rate, batch-size, number of hidden nodes

and layers, and activation function, are examples of the hyperparameters. Knowing

the best values of the hyperparameters is not a straightforward process and there is

no standard mechanism to do so. However, there are different hyperparameter opti-

mization algorithms among which the grid search, described below, is the commonly

used approach.

Grid Search is the most widely used strategy that aims to identify a suitable set

of hyperparameters for a specific model. The key idea of the grid search is simply

building a model for each possible combination of different hyperparameters and

then evaluating those models on the validation dataset in order to select the model

that provides the best results [366]. To understand the grid search method, let us

consider the following example. Suppose, we have a machine learning model M with

hyperparameters x1, x2, and x3. Using the grid search, firstly one needs to define

a specific range for the values of all the hyperparameters (x1, x2, and x3). Then,

the grid search approach will develop different versions of the underlying model using

all the possible combinations of the hyperparameter. This range of values for the

hyperparameter is called the “grid”. Therefore, if we define the grid as follows:

x1 = [10, 20, 30, 40, 50]

x2 = [100, 200, 300, 400, 500]

x2 = [15, 25, 45, 65, 85],

then the grid search will start with the combination of [10, 100, 15], and ends with

[50, 500, 85]. The search will be through all the combinations between those sets,

which shows one of the main disadvantages of this technique that is computationally

intensive and consequently needs a longer time. That would lead to seeking different

strategies, however, it is always a good idea to start with a grid search for any problem,

as it has the ability to provide strong initial speculations [367].
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Table 5.1: Details of the incorporated dataset from C-MAPSS [312].

Dataset
C-MAPSS

FD001 FD002 FD003 FD004
Train Trajectories 100 260 100 249
Test Trajectories 100 259 100 248
Conditions 1 6 1 6
Fault Modes 1 1 2 2

5.3.2 Hyperparameters Optimization

For the choice of the hyperparameters such as the number of RNN layers, number of

the cells in each layer, number of CNN layers, number of FC layers, and the number

of neurons in each layer, batch size, standard deviation value, and dropout rate, we

followed two strategies: (i) Grid search, which has a simple concept as we previously

explained and easy to implement [368]. During the search, we fix some values such

as the number of the RNN layers, CNN layers, FC layers while searching for the rest.

The choice of the fixed hyperparameters was based on two objectives: (1) The frame-

work must be minimal in terms of the number of trainable parameters, and; (2) The

performance metrics (Section 4.1.3) must be minimized. (ii) The second strategy,

which is a common practice in the design of deep neural techniques, and many re-

searches called it “trial-and-error” strategy [369,370]. As there are no absolute rules

for selecting the hyperparameters that function for each dataset and any problem,

the values of the hyperparameters have to be determined by trial and error for each

specific problem. And that has been achieved by performing several experiments on

the train set and observing the results of the approach on the validation set, and the

hyperparameters with the best validation prediction performance are considered.

5.4 Simulations

In this section, we evaluate the performance of the proposed frameworks by employ-

ing the C-MAPSS dataset with all the settings and details as in section 4.1. Various

experiments and comparison results are conducted and the results are reported. Ta-

ble 5.1 shows the details of the incorporated dataset from C-MAPSS.
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(a) (b)

(c) (d)

Figure 5.5: The prediction for the last recorded data point of different testing engine units
in FD001-FD004. (a) Prediction for the 100 testing engine units in FD001 for the NLSTM
model. (b) Prediction for the 256 testing engine units in FD002 for NBLSTM model (c)
Prediction for the 100 testing engine units in FD003 for NGRU model. (d) Prediction for
the 248 testing engine units in FD004 for the NPBGRU model.

5.4.1 Results

In this subsection, results of different experimental scenarios is reported.

5.4.1.1 The RUL Estimation Results

Figs. 5.5, and 5.6 illustrate the results of the RUL estimation through all the available

datasets (i.e., FD001 to FD004) from the proposed models. In Figs. 5.5(a)-(d), In

order to analyze the prediction of all engine units of the 4 datasets, we summarize the

last recorded measurement sample of all of them, and to better represent the results,

sorting is performed in ascending order. Accurate prediction of the RUL is clear, i.e.,

the blue lines (predicted RUL) are almost overlapping with the red lines (true values).
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(a) (b)

(c) (d)

Figure 5.6: Different examples of lifetime RUL prediction for a sample engine unit of each
dataset. (a) The testing engine Unit 35 in FD001 for the NLSTM model. (b) The testing
engine Unit 164 in FD002 for the NBLSTM model. (c) The testing engine Unit 92 in FD003
for the NGRU model. (d) The testing engine Unit 151 in FD004 for the NPBGRU model.

Furthermore, the prediction accuracy for engines with a smaller RUL can be observed

to be significantly higher due to the fact that it is at that point the engine units are

close to a possible failure. This is a very important point to be observed for health

management in industrial applications, resulting in increased operating performance

and safety.

Fig. 5.6 presents RUL prediction results of engine units (35, 164, 92, and 151)

selected randomly from each of the 4 datasets in the proposed models. It is noted

that the predicted RUL values precisely follow the actual values, which is pointing to

the prediction quality of the proposed model.
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Table 5.2: Performance results obtained based on window size of length 30.

TW=30
NLSTM NBLSTM NGRU NPBGRU

FD001
Score 247.01 238.34 255.02 191.80
RMSE 13.231 12.321 12.629 10.44

FD002
Score 1206.255 1056.629 988.216 899.762
RMSE 16.293 15.038 16.528 14.651

FD003
Score 276.514 226.482 217.452 197.463
RMSE 12.782 11.364 11.404 10.59

FD004
Score 1434.832 1357.20 1873.684 1306.5
RMSE 17.474 17.752 18.868 16.78

Table 5.3: Performance results obtained based on the window size of length 15.

TW=15
NLSTM NBLSTM NGRU NPBGRU

FD001
Score 641.563 626.77 711.642 572.828
RMSE 17.36 16.353 17.238 15.63

FD002
Score 1838.621 1645.566 1510.261 1277.886
RMSE 19.29 18.358 18.63 17.296

FD003
Score 919.541 794.115 658.102 577.831
RMSE 17.805 16.014 17.442 15.622

FD004
Score 2800.148 2705.716 3006.851 2631.909
RMSE 19.047 19.755 21.196 19.611

5.4.1.2 The Effects of Different Time Window Size

The main pillar of a high quality prediction model is to extract more informative

features, thus using a larger size of time window leads to more precise RUL estimation.

Table 5.2 shows the results achieved by the proposed approach using a window size

of (30), which is used in most C-MAPSS-based RUL estimation studies. To further

investigate the efficacy of the proposed frameworks and the impact of the window

size on them, a smaller window size of 15 is utilized, with excellent results as shown

in Table 5.3. It should be noted that these results are even better than most of those

reported in the literature for the 30 window size.

5.4.1.3 Effects of Operating Conditions and Fault Modes on RUL Esti-

mation Results

Fig. 5.7 illustrates the distribution histogram of the test engines prediction error for

the 4 datasets using NPBGRU model, where the error between the predicted RUL

and the actual RUL, represented by x-axis, while the y-axis represents the number of

engines in the error region. From Fig. 5.7, it can be noted that the error periods of

FD001 and FD003 datasets are smaller than those of the FD002 and FD004 datasets.

The prediction error associated with FD001 and FD003 is distributed between [-20,

20], whilst, the prediction errors were concentrated between [-40, 40] for the other
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(a) (b)

(c) (d)

Figure 5.7: Distribution histogram of prediction error for NPBGRU. (a)FD001 Dataset.
(b) FD002 Dataset. (c) FD003 Dataset. (d) FD004 Dataset.

two datasets. The reason behind this behavior is that the FD002 and FD004 datasets

are simulated based on six operating conditions making them more complex than the

other two datasets, leaving it more challenging to predict the RUL. Finally, it is

worth noting that we can conclude from the previous observations that the number

of operating conditions has a greater impact than the number of fault modes on the

reliability of the results.

5.4.1.4 Effects of Training based on Different Noise Levels

It has been shown [347, 371] that noisy training can lead to improvements in terms

of performance and generalization of the neural network, especially in the case of

conditions mismatching between the training and testing data (e.g., training based

on clean data while the test data are noisy [347]). However, adding a large amount

of noise will cause the mapping function to be too challenging to learn and then
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Table 5.4: The Effects of Training based on Different Noise Levels.

Sub-datasets
NBLSTM (0.01) NBLSTM (0.1)NPBGRU (0.01)NPBGRU (0.1)

FD001
Score 238.34 250.934 191.80 209.604
RMSE 12.321 13.708 10.44 12.014

FD002
Score 1056.629 1151.866 899.762 1048.117
RMSE 15.038 16.049 14.651 15.972

FD003
Score 226.482 253.42 197.463 229.415
RMSE 11.364 11.728 10.59 11.52

FD004
Score 1357.20 1782.54 1306.5 1849.184
RMSE 17.752 18.815 16.78 18.666

Table 5.5: The Effects of Increasing the Noise Level From (0.01 to 0.1).

NBLSTM (%) NPBGRU (%)

FD001
Score 5.284 9.286
RMSE 11.257 15.077

FD002
Score 9.013 16.49
RMSE 6.723 9.016

FD003
Score 11.894 16.181
RMSE 3.203 8.782

FD004
Score 31.340 41.537
RMSE 5.988 11.24

can yield information loss. It is worthy of note that the proposed models have been

trained based on two different Gaussian noise levels (0.01, 0.1). More specifically,

the adopted noise levels of the training were (0.01 for the input layers of the parallel

paths, and the second layer of FC path) in addition to (0.1 to the second layers of

the two parallel paths). Then to show the stability of the proposed model, the noise

level (for the input layers of the parallel paths, and the second layer of the FC path)

is increased to 10 times (0.1) and the test results were highly competitive.

Table 5.4 and Fig. 5.8 show the effects of adopting different noise levels on the

results of (NBLSTM & NPBGRU proposed models), they displayed that increasing

the noise has affected mostly on FD004 and approximately in the same level on FD002,

which was expected due to the complexity inherent in having six operating conditions

and two fault modes. In addition to that, the effects of increasing the noise in the

NPBGRU proposed model were clearly more than those in the proposed NBLSTM

model as in Table 5.5, and that due to adopting what we called it, the fully noisy

training in NPBGRU. One important point to highlight, based on Reference [372],

is that most of the publications (70%) used only FD001 dataset to validate their

algorithms since it is the easiest and the basic scenario among the rest. This fact raises

a big question mark about their actual performance on more challenging datasets such

as FD004, not to mention FD004 with additional noise as is the cases of our proposed

methods.
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(a)

(b)

Figure 5.8: The Effects of Training Different Noise Levels. (a) On the Results of NBLSTM
Model. (b) On the Results of NPBGRU Model.

5.4.1.5 Comparison with the Proposed Models of Chapter 4

The proposed models of this chapter are the improved models of chapter 4, where

we adopted two different styles of noisy training to improve the proposed models of

the previous chapter. The first style was by using the noise layers within the parallel

paths as in Fig. 5.2, while the second noisy style was by adopting the noise injection

in every path (Fully Noisy) as in Fig. 5.4.

Table 5.6 shows the results of two proposed models before and after adopting the

noisy training and the percentages of the improvements. It can be clearly seen that

the improvements with the fully noisy style are better than the other noisy training

style, however the fully noisy is more sensitive to the change of the noise level as we

stated earlier in Subsection 5.4.1.4.
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Table 5.6: Comparison with the Proposed Models of Chapter 4: (a) The results of BiLSTM
and the NBLSTM. (b) The results of BiGRU and the NPBGRU.

5.4.1.6 Comparison with State-of-The-Art Methodologies

A comprehensive comparative study is conducted to validate the effectiveness and

superiority of the proposed approaches along with other state-of-the-art RUL predic-

tion methods reported in the literature. In particular, we compare against a group of

models that reported the best results in the literature and they followed various styles

in the design of their structures. Table 5.7 demonstrates the results that prove that

adopting the noisy training can improve the prediction ability, where the proposed

models (NPBGRU) and (NBLSTM) have shown impressive outcomes specifically in

complex situations such as (FD002 & FD004). More specifically, the NPBGRU pro-

posed model achieved the best reported results within the existing literature in all

different cases (FD001- FD004). With regards to the RMSE values, the results are

improved as follows 12.71%, 10.12%, 9.56%, and 11.5% for the datasets from FD001

to FD004, respectively. Likewise, with regard to the score value, the proposed meth-

ods have shown improvements as follows 14.6%, 26.83%, 30.42%, and 50.24% for the

datasets from FD001 to FD004, respectively.

Furthermore, the results of the other proposed models (NBLSTM, NGRU, and

NLSTM) were competitive, and in most cases, they were better than the other ap-

proaches. Also when it comes to methods that employ techniques other than the

piece-wise linear model, the proposed methods achieve remarkably better than most

of the available approaches. Table 5.8 particularly shows the comparison between the

proposed NPBGRU model and another 4 models that utilized different ways than

the piece-wise linear degradation method.
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Table 5.8: Comparing performance obtained from four approaches that exclude the need
for utilization of the piece-wise linear degradation model with the proposed NBLSTM model
based on the C-MAPSS datasets.

Dataset
NPBGRU ResCNN Semi-S BiLSTM-ED Rulclipper

[334] [335] [298] [315]

FD001
Score 191.80 212.48 231 273 216
RMSE 10.44 12.16 12.56 14.74 13.27

FD002
Score 899.762 2087.77 3366 3099 2796
RMSE 14.651 20.85 22.73 22.07 22.89

FD003
Score 197.463 180.76 251 574 317
RMSE 10.59 12.01 12.10 17.48 16

FD004
Score 1306.5 3400 2840 3202 3132
RMSE 16.78 24.97 22.66 23.49 24.33

Table 5.9: Noisy testing results of (NPBGRU).

SNR=30dB
Metrics

RMSE (mean ± std) Score (mean ± std)
FD001 10.48± 0.0301 192.63± 1.602
FD002 15.937± 0.506 1125.103 ± 150.779
FD003 10.591 ± 0.043 197.912 ± 1.814
FD004 17.488 ± 0.54 1781.951 ± 258.866

5.4.1.7 Performance Evaluation with Additive Noise

When it comes to evaluating the effects of noise and uncertainty in predictive mod-

eling, Monte Carlo simulations are considered as the gold standard. Thus, it has

been utilized to produce noisy data with a particular value of Signal-to-Noise Ratio

(SNR) to be added to the test data, in order to verify the robustness and the stabil-

ity of the proposed methods. It must be noted that adding noise during the testing

phase may rarely exist in the literature, to the best of our knowledge, there are only

two studies that have provided thorough results considering noisy testing for all the

datasets [321,322]. The conducted results in Tables 5.9-5.12 (NPBGRU & NBLSTM

were selected as sample) prove the robustness of the proposed models against noise,

as the RMSE and the score values show exceptional stability for different noise sce-

narios (SNR of 30 & 20) across all the datasets. Nevertheless, the efficiency of the

models against the noise was less in cases of FD002 and FD004, as they are more

complex than others. Finally, it is also noteworthy and important to mention that

the conducted results even with 20 SNR are still uncommonly stable and better than

the majority of the published results for free noise testing.
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Table 5.10: Monte Carlo simulation results of (NBLSTM).

SNR=30dB
Metrics

RMSE (mean ± std) Score (mean ± std)
FD001 12.325± 0.0343 238.682± 1.96
FD002 16.779 ± 0.539 1293.753 ± 224.666
FD003 11.37 ± 0.043 226.765 ± 2.1
FD004 18.125 ± 0.551 1824.109 ± 264.905

Table 5.11: Noisy testing results of (NPBGRU).

SNR=20dB
Metrics

RMSE (mean ± std) Score (mean ± std)
FD001 10.5± 0.11 193.75± 5.09
FD002 18.87 ± 1.614 2417.305 ± 434.161
FD003 10.609 ± 0.106 201.356 ± 5.087
FD004 18.705 ± 1.271 2837.086 ± 483.844

Table 5.12: Monte Carlo simulation results of (NBLSTM).

SNR=20dB
Metrics

RMSE (mean ± std) Score (mean ± std)
FD001 12.35± 0.11 240.415± 6.201
FD002 19.222 ± 1.783 2538.112 ± 463.042
FD003 11.42 ± 0.156 228.928 ± 6.691
FD004 20.831 ± 1.312 2885.596 ± 488.744

5.5 The Summary

In this chapter, the approaches proposed in Chapter 4 have been improved by adopting

effective noisy training techniques. The main objective is to ensure that the network is

less likely to memorize the training dataset and learn the general mapping from inputs

to outputs instead. This will in turn result in improved network stability and thus

less generalization error, high robustness, and faster learning. To achieve the noisy

training, the noise injection strategy has been implemented by adding Gaussian noise

layers in all the paths of the proposed approaches in different styles and levels. The

proposed models are experimentally validated using NASA’s C-MAPSS dataset, and

many experiments based on different scenarios are conducted, such as investigating

the effects of operating conditions and fault modes, training based on different noise

levels, different time window sizes (15 and 30), and experimenting the effects of adding

noise during the testing phase. The proposed models are also compared with state-

of-the-art prognostic approaches and exhibited outstanding results with remarkable

stability and high robustness against potential uncertainties.
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Chapter 6

Multipath Parallel Hybrid Deep

Neural Networks

As discussed in Chapters 4 and 5, the proposed parallel hybrid models of different

deep neural network architectures achieved significantly appreciable performances in

the field of RUL estimation. The success of these models stemmed from a profound

concept [353], i.e., “the more informative features that you collect, the better the

results you will achieve,” as extracted features represent the characteristics of an

observed phenomenon and characterize the underlying problem from the available

data. The effectiveness of all machine learning algorithms literally depends on how

you present the data. Hence, the purpose of extracting more features is to provide

more knowledge about the available data and then enhance the learning process of

the data attributes in addition to learn the features themselves. Capitalizing on these

concepts and to achieve better prediction results, this chapter goes beyond the con-

ventional structure of hybrid models with two parallel paths and develops/proposes

integrated multipath parallel hybrid frameworks. In this regard, we capitalize on the-

sis developments in Chapters 4 and 5 and construct the multipath frameworks based

on the most successful classes of the artificial neural networks. The models proposed

in this chapter consist of three parallel paths and the outputs of these paths are then

combined by a fusion center to find the RUL.
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Figure 6.1: The NMPM framework.

Figure 6.2: The MPHD framework.

Figure 6.3: The NPHM framework.

Figure 6.4: The TDHA framework.

6.1 Frameworks of The Proposed Networks

In this section, we present the overall structure of the proposed multipath frame-

works. As shown in Figs. 6.1- 6.4, the proposed multipath models make use of four

integrated paths, i.e., the first three paths are in parallel and constructed based on

different DNN architectures along with different noisy layers. Their combined output

is then fed into the fourth path (fusion center) to integrate the extracted features to

form the RUL predictions. The fusion path is designed similarly across the proposed
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multipath frameworks. Furthermore, the uses of the injected noise are different in

these models, especially in the proposed NPHM and TDHA frameworks. In the fol-

lowing subsections, we elaborate on the main components of the four paths of the

proposed multipath frameworks.

6.1.1 The First Parallel Path

In each proposed model, different DNN architectures along with specific settings have

been utilized. As can be seen in Fig. 6.1, in the first proposed model, referred to as

the NMPM, the first parallel path is designed based on the following four layers:

� The first layer is a Gaussian noise layer that has a zero-mean and standard

deviation of (0.01).

� The second layer is the BLSTM layer defined by a 16-cell structure with return

sequences.

� The third and the fourth components are two LSTM layers each defined by a

10 cell structure.

The repeating cells within the LSTM layers have the same structure and parameter

values.

The MPHD Framework: As shown in Fig. 6.2, the proposed MPHD approach has

the first path started with a noisy layer contaminated with zero-mean Gaussian noise

with a standard deviation of (0.01). The noisy layer is followed by two LSTM layers

defined by a 10 and 28 cell structure, respectively. The associated setting values for

the repeating cells used within the LSTM layers are considered to be the same.

The NPHM Framework: Fig. 6.3 shows the proposed NPHM framework. The first

path of the NPHM architecture, similar to the NMPM approach, has three layers for

temporal features extraction, preceded by a noisy layer contaminated with zero-mean

Gaussian noise with a standard deviation of (0.01). The three layers started with

a BLSTM layer defined by a 16-cell structure with return sequences. The BLSTM

component is followed by two LSTM layers each defined by 10 cell structure. The

repeating cells within the LSTM layer have the same structure and parameter values.

The TDHA Framework. As shown in Fig. 6.4, the first parallel path in the TDHA

framework is designed based on the following four layers:

� The first layer is a Gaussian noise layer that has a zero-mean and standard

deviation of (0.01).
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� The second layer is a BGRU layer defined by a 16-cell structure with return

sequences.

� The third and the fourth components are two GRU layers each one defined by

10 cell structures. The repeating cells within the GRU layer have the same

structure and parameter values.

Finally, a batch normalization layer is used within the TDHA framework for acceler-

ating and improving the learning process [373]. This completes the description of the

first path of the proposed four multipath frameworks.

6.1.2 The Second Parallel Path

The NMPM and TDHA methods have a common design for the second parallel path,

which is based on the MLP technique. As shown in Figs. 6.1 and 6.4, the MLP

path is employed for extracting another class of features as compared to the first

parallel path. This path consists of three MLP layers, in addition to one noisy layer

contaminated with zero-mean Gaussian noise and a standard deviation of (0.01). In

the NMPM model, this path starts with the noisy layer, while in the TDHA model,

the path starts with the MLP layer followed by the noise layer. All the MLP layers

in both models are designed based on the same settings, which are 30, 27, and 10

respectively. A dropout rate of 0.15 and ReLU activation function is used in both

models.

The second path in the MPHD and NPHM models is developed based on the GRU

and the BGRU architectures, respectively. In both models, the path starts with a

Gaussian noise layer of zero mean and a standard deviation of 0.01. The noisy layer

is then followed by two GRU layers defined by a 10 and 28 cell structure, respectively,

in the MPHD model (Fig. 6.2). In the NPHM framework, after the noisy layer, two

BGRU layers defined by a 20 and 20 cell structure, respectively, are incorporated as

shown in Fig. 6.3.

6.1.3 The Third Parallel Path

In all the models, CNN architecture is used to construct the third parallel path. The

rationale behind using CNN in all the four models is its exceptional capability to

extract spatial and temporal features.

127



In the NMPM approach, the third path starts with a Gaussian noise layer of zero

mean and (0.01) standard deviation. This layer is followed by a CNN layer that has

10 filters of size (11 × 1), and then one max pooling layer that has (2 × 1) filter is

utilized. A second CNN layer is then incorporated that has 100 filters of size (11×1).

The last layer of this path is a global average pooling layer. The ReLU is used as the

activation function for all the CNN layers.

In the MPHD framework, the first four layers of the third parallel path have the

same settings and design as those in the NMPM model. However, the path ends

with two layers (one max pooling layer that has (2 × 1) filter, and one CNN layer of

1 filter of size (3 × 1). The third parallel path in both NPHM and TDHA models

has a common design based on two CNN layers, two Gaussian noise layers, one max

pooling layer, and one global average pooling layer. Where, the path starts with a

Gaussian noise layer of zero mean and (0.01) standard deviation followed by a CNN

layer of 10 filters with the size of (11 × 1). Afterward, we have a max pooling layer

that has (2 × 1) filter, followed by another Gaussian noise layer of zero mean and

(0.1) standard deviation. This is then appended by another CNN layer that is built

based on 40 filters of size (11 × 1). The ReLU is the activation function for all the

CNN layers. Finally, the last layer of the third path in NPHM and TDHA models is

a global average pooling layer.

6.1.4 The Fusion Path (The Fourth Path)

This path is designed to be a fusion center to conduct the regression task for the

RUL estimation. All the proposed models have a common design that is based on

three fully connected layers and one Gaussian noisy layer with zero mean and 0.01

standard deviation that is injected between the first two FC layers. The first two

FC layers are built in both (NMPM and NPHM) by using 100 and 101 neurons,

respectively. While, 111 and 111 for the proposed MPHD, in addition to 117 and 117

in the proposed TDHA. The last FC layer in all the proposed models has a 1 neuron.

All the layers have used the (ReLU) activation function. A dropout rate of 0.3 has

been used in all the proposed approaches.
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6.2 Noisy Training

For the training, the same “Noisy Training” technique based on the concept of noise

injection is utilized as introduced in Section 5.3. We have implemented the noisy

training for all of the four proposed approaches. For training the fourth approach,

the TDHA framework, batch normalization [373, 374] is used additionally and has

improved the outcomes. For the values of the hyperparameters, we adopted the same

strategies as described in Section 5.3.

6.2.1 Batch Normalization

Batch normalization is one of the most successful technological developments in the

area of deep learning [374] that allows deep neural networks to be trained more

efficiently and stably. The basic concept behind batch normalization is to normalize

each layer’s input in the network and not just the input layer [375]. This is performed

in addition to the re-parametrization of the underlying optimization problem such

that it is more stable and smoother. The objective is to make the gradients more

reliable and predictive by enabling the training algorithm to take larger steps without

running the risk of facing vanishing gradient issue (which can result in unexpected

changes) or the exploding gradients problem [374]. Hence, the batch normalization

has many advantages for training deep neural networks including:

(a) Stabilizing the learning process and reducing the number of training epochs

needed to train the model. This in turn results in accelerating the training

process [353].

(b) Adding robustness to various hyperparameter settings such as the learning rate

and initialization scheme.

(c) Preventing the exploding and vanishing gradients problems.

(d) Reducing the generalization error.

It is worthwhile to mention that the batch normalization may not work perfectly with

all deep learning architectures due to certain factors such as the model design layout,

batch size, and learning type (online learning vs. batch learning) [376–378]. In the

proposed TDHA model, the batch normalization layer has been utilized between the

BGRU layer (the second layer) and the first GRU layer (the third layer).
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Figure 6.5: The Global Average Pooling Technique.

Table 6.1: Details of the incorporated dataset from C-MAPSS [312].

Dataset
C-MAPSS

FD001 FD002 FD003 FD004
Train Trajectories 100 260 100 249
Test Trajectories 100 259 100 248
Conditions 1 6 1 6
Fault Modes 1 1 2 2

6.2.2 Global Average Pooling

Generally speaking, pooling layers are downsampling approaches that summarize the

available features in patches of the feature map. Similar to max pooling layers, the

global average pooling layers are used to minimize the overfitting issues. However, the

global average performs a special type of dimensionality reduction by downsampling

the entire feature map to a single value, which is the average output of each feature

map in the previous layer [379]. Let the feature map dimensions to be (h × w × d)

then the global average pooling will reduce the size to (1×1×d) dimensions as shown

in Fig. 6.5. The global average pooling layers reduce each (h × w) feature map to a

single value by taking the average of all h×w values. The global average pooling does

not have any trainable parameters to optimize, therefore, overfitting at this layer is

avoided.

6.3 Simulations

In this section, we use the same dataset (details of which is shown in Table 6.1) as

described in Chapters 4 and 5 to evaluate the proposed multipath frameworks.
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(a) (b)

(c) (d)

Figure 6.6: The prediction for the last recorded data point of different testing engine units
in FD001-FD004. (a) Prediction for the 100 testing engine units in FD001 for TDHA model.
(b) Prediction for the 256 testing engine units in FD002 for MPHD model (c) Prediction
for the 100 testing engine units in FD003 for the NPHM model. (d) Prediction for the 248
testing engine units in FD004 for NMPM model.

6.3.1 Results

In this section, different comparisons and results are reported to evaluate the proposed

multipath frameworks. In the computation of the following reported results, we use

data normalization, evaluation metrics, and RUL target function similar to the ones

described in Chapters 4 and 5.

6.3.1.1 The RUL Estimation Results

As stated earlier, the main objective of this research is to demonstrate the frame-

work’s capability to perform highly accurate prognostic. Figs. 6.6, and 6.7 illustrate

the results of the RUL estimation through all the available datasets (i.e., FD001 to

FD004). Applying the same procedures of chapters 4 and 5, Figs. 6.6(a)-(d), show

131



(a) (b)

(c) (d)

Figure 6.7: Different examples of lifetime RUL prediction for a sample engine unit of each
dataset. (a) The testing engine Unit 32 in FD001 for TDHA model. (b) The testing engine
Unit 162 in FD002 for the MPHD model. (c) The testing engine Unit 78 in FD003 for the
NPHM model. (d) The testing engine Unit 151 in FD004 for NMPM model.

the prediction results corresponding to the last recorded measurement sample based

on all the available 4 datasets (sorting in ascending order is performed for better

visualization of the results). It could be noted that the predicted RUL values closely

follow their corresponding truth values, and the results reflected the capabilities of

the developed multipath hybrid models to deliver excellent prognostic performance,

especially, in the region where the RUL value is small when the engine unit is working

close to failure and the accurate prognostic is highly needed. It is important to high-

light that the results are shown in Figs. 6.6(b) and (d) are noteworthy, as they belong

to the two challenging complex datasets (FD002 & FD004) where reliable outcomes

are not commonly reported in the literature for these two scenarios.

Furthermore, Figs. 6.7(a)-(d) illustrate the predicted RUL values from sample
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Table 6.2: Performance results obtained based on the window size of length 30.

TW=30
MPHD NPHM NMPM TDHA

FD001
Score 177.824 182.597 188.63 180.71
RMSE 10.003 10.272 10.315 10.118

FD002
Score 798.021 846.083 876.16 793.064
RMSE 13.856 14.164 14.322 14.009

FD003
Score 176.366 179.851 189.381 177.092
RMSE 10.376 10.226 10.441 10.233

FD004
Score 1148.19 944.514 962.403 939.270
RMSE 16.436 15.979 16.156 14.90

Table 6.3: Performance results obtained based on the window size of length 15.

TW=15
MPHD NPHM NMPM TDHA

FD001
Score 473.011 480.643 485.3 471.436
RMSE 13.374 13.772 13.866 13.436

FD002
Score 1003.406 1058.44 1103.801 1039.251
RMSE 15.395 15.855 15.891 15.548

FD003
Score 441.91 459.029 466.733 447.082
RMSE 14.024 13.711 14.001 13.883

FD004
Score 2031.952 1687.331 1759.477 1655.608
RMSE 18.637 17.841 18.158 17.418

units (32, 162, 78, and 151) selected in a random fashion from each of the 4 available

datasets, and the results are inline with our previous results and the proposed models

clearly perform well over all four datasets.

6.3.1.2 The Effects of Different Time Window Size

The size of the time window plays an important role in predicting insightful outcomes,

it has been proved that the longer the sliding window becomes, the more information it

contains [156,316], which is the foundation for further feature extraction, that leads to

lower scores and RMSE. As mentioned earlier in the previous chapters, (30) window

size is the common value of the window size used in most of the RUL estimation

studies that used the C-MAPSS datasets. Table 6.2 presents the results achieved by

the proposed frameworks using a 30-time window size. To further, demonstrate the

effectiveness and efficiency of the proposed frameworks we investigate the window

size effects on the outcomes. As such, we test a smaller window size of 15. Table 6.3

displays that the results from smaller time window size were again superior.

6.3.1.3 The Effect of Training based on Different Noise styles

Table 6.4 shows the effect of adopting noisy training. The performance and the accu-

racy of the proposed models have been remarkably improved after implementing the
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Table 6.4: The Effect of Noisy Training

Dataset
MPHD WMPHD NPHM WNPHM NMPM WNMPM TDHA WTDHA

FD001
Score 177.824 223.83 182.597 236.483 188.63 236.87 180.70 232.63
RMSE 10.003 11.66 10.272 12.52 10.315 12.08 10.118 12.1

FD002
Score 798.021 989.59 846.083 1071.3 876.16 1098.68 793.064 1004.06
RMSE 13.856 15.44 14.164 16.17 14.322 16.23 14.009 15.88

FD003
Score 176.366 211.05 179.851 216.75 189.38 226.97 177.092 212.81
RMSE 10.376 12.17 10.226 12.061 10.441 12.21 10.233 12.02

FD004
Score 1148.19 1569.15 944.514 1304.08 962.403 1310.4 939.270 1329.05
RMSE 16.436 18.547 15.979 18.308 16.156 18.11 14.90 17.14

Figure 6.8: The Improvement percentages for adopting noisy training.

effective noisy training technique, and the reason behind that is the powerful abil-

ity to enhance network robustness by eliminating the memorization effect of a deep

neural network which in turn leads to boost the exploration performance of the learn-

ing algorithms [347]. Where (WMPHD, WNPHM, WNMPM, and WTDHA) denote

the proposed models but without using the noise. Fig. 6.8 shows the improvement

percentages after adopting the noisy training.

6.3.1.4 The Effects of Multiple Parallel Paths

There is no doubt that the features in the used dataset will have a direct impact

on the predictive models and the achieved results, where the success of the machine

learning algorithms depends on several interrelated factors and properties, however,

the most important part in that is how to present the data in order to extract more

informative features that describe the inherent structures of the used data, and finally

resulting in better accuracy of the proposed model on the unseen data. Up to the
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Table 6.5: The Effects of Multiple Parallel Paths.

Dataset
NPHM OBiGRU OBiLSTM TDHA OBiGRU1 OMLP

FD001
Score 182.592 200.33 227.404 180.70 203.552 199.638
RMSE 10.272 11.46 11.851 10.118 11.51 11.50

FD002
Score 846.083 997.868 1061.46 793.064 972.003 964.89
RMSE 14.164 15.23 15.35 14.009 15.206 14.91

FD003
Score 179.851 198.41 212.316 177.092 199.824 200.79
RMSE 10.226 10.863 11.18 10.233 11.077 10.98

FD004
Score 944.514 1289.76 1347.92 939.270 1196.881 1186.714
RMSE 15.979 16.905 17.52 14.90 16.685 16.233

time when this thesis was written, the best achieved results in the literature were

obtained using one or two of some of the most common/ successful techniques in the

field of RUL estimation (CNN, LSTM, BLSTM, GRU, BGRU, and MLP) within this

thesis new different models have been introduced using, for the first time three of

those techniques in parallel for each model. The purpose of using three techniques

for each model was to ensure the best investment of them in terms of extracting as

much informative, relevant, and nonredundant features. Hence, the use of multiple

parallel paths based on different DNNs architectures in these newly proposed mod-

els improved the models performance, increased their efficiency, and consequently

introduced effective solutions that achieved the best results in the literature.

To demonstrate the effectiveness of the proposed methods, we examined the effects

of implementing the three parallel paths using different combinations compared with

the proposed methods. For each combination, the CNN path was fixed while the

other two paths were added alternately. It is worthwhile to mention here that the

settings for each path were fixed for each trail following the same settings of the

proposed original model. Tables 6.5 shows a sample of the recorded outcomes of two

models (NPHM & TDHA) the outcomes show clearly that the best achieved results

were those of the models which used three parallel paths.

6.3.1.5 Performance Evaluation with Additive Noise

Monte Carlo simulation has been implemented to produce noisy data based on a

specific level of signal-to-noise ratio (SNR) to be added to the test data, in order

to evaluate the robustness of the three parallel paths proposed models for the RUL

estimation mission. Two different SNR levels, i.e., 30, and 20 dB, are considered each

based on 100 Monte Carlo runs. Tables 6.6-6.9 display the results obtained from the

proposed (NPHM) & (TDHA) models (were selected as sample) based on 30, and 20

dB of SNR. It can be clearly observed that the multipath parallel models are stable
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Table 6.6: Noisy testing results of (NPHM).

SNR=30dB
Metrics

RMSE (mean ± std) Score (mean ± std)
FD001 10.309 ± 0.0288 183.117 ± 1.277
FD002 15.218 ± 0.41 1036.55 ± 128.639
FD003 10.231 ± 0.036 180.189 ± 1.109
FD004 16.368 ± 0.42 1374 ± 208.953

Table 6.7: Noisy testing results of (TDHA).

SNR=30dB
Metrics

RMSE (mean ± std) Score (mean ± std)
FD001 10.215± 0.017 182.343 ± 1.087
FD002 14.924 ± 0.33 913.836 ± 104.9
FD003 10.26 ± 0.028 180.02 ± 1.0
FD004 15.857 ± 0.366 1240 ± 198.77

Table 6.8: Monte Carlo simulation results of (NPHM).

SNR=20dB
Metrics

RMSE (mean ± std) Score (mean ± std)
FD001 10.313 ± 0.106 184.07 ± 4.11
FD002 17.518 ± 1.35 1794.27 ± 384.66
FD003 10.54 ± 0.097 184.68 ± 4.709
FD004 18.15 ± 1.24 2197.877 ± 401.9

Table 6.9: Monte Carlo simulation results of (TDHA).

SNR=20dB
Metrics

RMSE (mean ± std) Score (mean ± std)
FD001 10.242 ± 0.1 183.79 ± 3.85
FD002 17.18 ± 1.314 1688.98 ± 381.7
FD003 10.51 ± 0.097 181.902 ± 4.488
FD004 17.8 ± 1.15 2113.62 ± 394.545

and robust against noise, where the RMSE and the score values show remarkable

stability especially with FD001 and FD003, where the (std) values did not exceed

0.106 and 0.097 in terms of RMSE, respectively, in addition to 4.11 and 4.709 in

terms of the score values, respectively. However, the model was more sensitive to

noise in cases of FD002 and FD004, and that was expected and it is logical to happen

as we deal with six different operating conditions for FD002 and FD004, which would

increase the level of noise. Moreover, the achieved results for FD002 and FD004 when

SNR is set to 20 are still remarkably stable and better than most of the reported

results for normal testing without any noise.

136



Table 6.10: Comparison with the Proposed Models of Chapter 5: (a) The results of MPHD,
TDHA, NPBGRU, and NBLSTM at TW=30. (b) The results of MPHD, TDHA, NPBGRU,
and NBLSTM at TW=15.

6.3.1.6 Comparison with the Proposed Models of Chapter 5

Although the proposed models of the previous chapter (chap. 5) were successful and

effective, the new proposed approach of utilizing three parallel paths plays an impera-

tive role in improving the RUL perdition models in terms of accuracy, generalization,

and robustness.

Tables 6.10 (a & b) illustrate the impact of using three parallel paths on the pre-

diction performance, in which TW is set to 30 and then to 15. The improvements

ranged from (7.29%) to (37.09%) in terms of the score values, and from (3.37%) to

(11.2%) in terms of the RMSE values. It is important to highlight that the improve-

ment percentages when the (TW=15) are notable which gives a clear indication that

the extracted features in the case of three parallel paths are more informative than

approaches of the previous chapter, however, the TW is small.

Tables 6.11 (a & b) prove how the three parallel paths models are stable and

robust to noise than the models of chapter 5, where two levels (30 & 20)dB of SNR

have been used and the standard deviation has been reduced between (11.78%) to

(51.49%) in terms of score values and from (8.49%) to (63.46%) in terms of the RMSE

values. Finally, the most remarkable point is that the number of involved parameters

in the proposed three parallel paths models is around (42000) which is almost half of

the number of involved parameters in the proposed models of chapter 5.

137



T
ab

le
6.

11
:

C
om

p
ar

is
on

w
it

h
th

e
P

ro
p

os
ed

M
o
d

el
s

of
C

h
ap

te
r

5:
(a

)
T

h
e

re
su

lt
s

of
M

P
H

D
,

T
D

H
A

,
N

P
B

G
R

U
,

a
n

d
N

B
L

S
T

M
a
t

S
N

R
=

30
.

(b
)

T
h

e
re

su
lt

s
of

M
P

H
D

,
T

D
H

A
,

N
P

B
G

R
U

,
an

d
N

B
L

S
T

M
at

S
N

R
=

20
.

138



6.3.1.7 Comparison with Existing Methods

To illustrate and evaluate the efficiency of the proposed three parallel paths solutions,

the prediction results of these models are compared with seven different published

studies, which are: CapsNet [332], DAG [304], CNNTW [333], DBiLSTM [225], D-

LSTM [214], DCNN [156]and TEMPCO [299]. These studies represent the latest

and most successful solutions in the literature. Table 6.12 presents the performance

comparison results of the proposed multipath models and the other seven approaches.

It can be easily noted that the proposed solutions have the highest prediction accuracy

across all methods by achieving the lowest score and the lowest RMSE values, which

implies that the proposed methods are performing significantly better in the RUL

prediction of turbofan engines. Here, two points can be highlighted: (i) achieving

lower score values represents the earlier prediction of RUL, which promotes more

efficiency, effectiveness, and safety in real life PHM applications, where, the score

function measure has a higher penalty for late estimation) [311], (ii) the models have

achieved these outstanding outcomes with only 42000 parameters.

The results of the score values have been improved as follows; 20.67%, 35.51%,

37.86%, and 64.23% for FD001, FD002, FD003, and FD004, respectively. While, in

terms of the RMSE values, the proposed models achieved 16.36%, 14.99%, 12.67%,

and 21.41% improvements for FD001, FD002, FD003, and FD004, respectively.

All the aforementioned approaches have employed the piece-wise linear degrada-

tion model. However group of different approaches have utilized alternative ways

for modeling the degradation behavior. Table 6.13 compares the results of the pro-

posed multipath with other methodologies that use different models other than the

piece-wise linear degradation model. The proposed methods consistently achieve sig-

nificantly better results across most of the datasets, i.e., 17.74%, 33.54%, 14.85%,

and 34.25% in terms of the RMSE value for FD001, FD002, FD003, and FD004,

respectively. While about 16.31%, 62.01%, 2.43%, and 66.93% in terms of the score

value for FD001, FD002, FD003, and FD004, respectively.

6.4 The Summary

In this chapter, the principle of collecting different classes of informative features has

been intensively invested by the design of multipath hybrid RUL estimation frame-

works. In particular, three parallel paths are constructed based on different DNN
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Table 6.13: Comparing performance obtained from four approaches that exclude the
need for utilization of the piece-wise linear degradation model with the proposed three
parallel paths models based on the C-MAPSS datasets.

Dataset
MPHD NPHM NMPM TDHA ResCNN Semi-S BiLSTM-ED Rulclipper

[334] [335] [298] [315]

FD001
Score 177.824 182.597 188.63 180.71 212.48 231 273 216
RMSE 10.003 10.272 10.315 10.118 12.16 12.56 14.74 13.27

FD002
Score 798.021 846.083 876.16 793.064 2087.77 3366 3099 2796
RMSE 13.856 14.164 14.322 14.009 20.85 22.73 22.07 22.89

FD003
Score 176.366 179.851 189.381 177.092 180.76 251 574 317
RMSE 10.376 10.226 10.441 10.233 12.01 12.10 17.48 16

FD004
Score 1148.19 944.514 962.403 939.270 3400 2840 3202 3132
RMSE 16.436 15.979 16.156 14.90 24.97 22.66 23.49 24.33

architectures (i.e., LSTM, BLSTM, GRU, BGRU, MLP, and CNN) along with dif-

ferent noisy layers. Their combined output is then fed into the fourth path (fusion

center) to incorporate the obtained features to compute estimates of the RUL. Differ-

ent settings, different styles of noisy training, and different effective techniques such as

(the global average pooling and batch normalization) are employed to design and pro-

pose four different multipath frameworks, i.e., NMPM, MPHD, NPHM, and TDHA.

Moreover, several experiments have been conducted to examine the effects of having

multiple (more than two) parallel paths based on different DNNs architectures. The

proposed models are evaluated and tested by utilizing the (C-MAPSS) dataset, which

is provided by NASA. The proposed multipath models outperform previous studies

especially in cases where the datasets are obtained from complex environments.
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Chapter 7

Contributions and Future Research

Directions

Generally speaking, Prognostic Health Management (PHM) consists of the following

two main pillars: (i) Diagnostics, which is an evaluation stage based on observed

symptoms to asses a system’s current and past health state. Assessments are then

utilized to recognize and isolate faults/failures, and; (ii) Prognostic, which is an esti-

mation stage to forecast future health states of the system. Prognostic, typically, also

involves estimation of the time when the system will no longer be operational. The

prognostic, beside predicting the impact of known failure modes on assets’ life, also

focuses on how other failure modes can be initiated by the known failure modes. It

is worth mentioning that diagnostics are crucial for effective and accurate prognostic

since a successful prognostic approach starts with robust diagnostics, as the uncer-

tainties of the current system condition influence any possible predictions. However,

no prediction or estimation is made in most diagnostic techniques.

In light of the above introduction, the objective of this thesis was to develop ef-

ficient and powerful models to identify and capture the degradation dynamics of a

manufacturing/industrial system. Moreover, the thesis focused on designing innova-

tive algorithms capable of handling different datasets to effectively obtain as much

information as possible from the available datasets. In this regard, we focused on im-

plementation of novel data-driven models to learn general mappings from inputs to

outputs leading to better network stability, less generalization error, high robustness,

and faster learning.
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7.1 Summary of Contributions

The following is a brief overview of the key contributions provided by this thesis.

� Multiple Model Degradation Path (MMDP) Estimation [305]: Despite

the recent advances in degradation modeling of mission critical systems, most

of the proposed models for predicting the degradation process are based on the

assumption that a particular type of statistical distribution governs the degra-

dation process (e.g., Normal, Wiener or Gamma). In practice, a system may

consist of multiple components or a component may have multiple degrada-

tion measures that require simultaneous consideration of multiple degradation

paths. To bridge this gap, we introduced a new category for degradation mod-

eling by proposing a generalized hybrid non-linear filtering framework that is

capable of simultaneously handling different linear and non-linear degradation

paths. The proposed generalized hybrid approach covers a wide range of sce-

narios based on the state-space modeling, without having any prior knowledge

of the true degradation model of the system. The proposed model (MMDP)

combines the Multiple Model Adaptive Estimation Framework (MMAE) with

particle filtering, to derive a degradation model optimized to the dynamics of

the system under consideration. A set of candidate models for the degrada-

tion path are taken into consideration, the MMDP then performs degradation

prediction based on each model in parallel, and then combines the outputs

of localized filters adaptively to form the overall estimate of the degradation

process over time. In this study, only two models (degradation paths) are de-

veloped, however, the proposed hybrid state-space model and its corresponding

estimation algorithm is general and can accommodate any number of candidate

models. Although the proposed MMDP represents a new successful category

for degradation modeling that provides near-optimal results, this approach has

some limitations. For example, once the approach has found the degradation

path then it will continue considering the same degradation path over time,

however, the behaviour of the degradation process may alter over time. We

have, therefore, introduced a new approach in Chapter 1 that can resolve this

problem and bridge the gap.
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� Interactive Multiple Model Particle Filters (IMMPF) Framework [306]:

The proposed IMMPF estimation algorithm consists of a bank of parallel par-

ticle filters each of them representing a separate model of the system under

consideration. In other words, three particle filters are implemented and run in

parallel based on the following set of candidate degradation models: Gamma

Degradation Path (DP); Brownian DP; and Inverse Gaussian DP. It is worth

noting that the aforementioned three models are selected as proof of concept,

the proposed IMMPF can accommodate any number of candidate models. For

each filter, at the beginning of each cycle, the initial estimate is a mixture of

all recent estimates obtained from available models. This mixing mechanism

allows the IMMPF to take full account of the history of the modes, leading

to faster and more reliable estimation for the changed states. The switching

probabilities and the likelihood of each model control the interactions between

the models. The IMMPF result is a combined state vector, which is the sum of

the state vectors for each of the modes weighted by their model probabilities.

The proposed framework provides precise results without requiring any prior

knowledge of the true degradation model of the system.

� Hybrid Parallel Deep Neural Network Models for RUL Estimation [83,

321–324]:Remaining Useful Life (RUL) is a crucial measure used in the main-

tenance domain within manufacturing and industrial systems. Accurate RUL

estimation enables improved decision-making for operations and maintenance.

Capitalizing on the recent success of multiple-model (also referred to as hybrid

or mixture of experts) deep learning techniques, the thesis proposed four (i.e.,

HDNN, BiLSTM, GRU, and BiGRU) hybrid deep neural network frameworks

for RUL estimation. All the proposed frameworks consist of two parallel paths,

one of them is based on three CNN layers combined with two max pooling

layers and has common settings among all the models. The second path used

three stacked LSTM layers, one BLSTM layer and two LSTM layers, two GRU

layers, and two BGRU layers, for the HDNN, BiLSTM, GRU, and BiGRU,

respectively. In each model, the parallel paths are followed by a third path rep-

resenting the fusion center that integrates the extracted features to perform the

regression task for generating the targeted output of the RUL prediction. The

fusion path in all the proposed methods consists of three fully connected layers

based on different settings and activation functions in addition to 0.3 dropout
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rate. Different techniques have been used to train the models such as piece-

wise degradation method; Backpropagation and mini batch gradient descent,

and; Adaptive moment estimation (Adam). The adopted loss function was the

mean squared error (MSE). All the proposed models have been tested and eval-

uated using the NASA C-MAPSS dataset. Although the prediction results of

the proposed models were superior to state-of-the-art results, still there were

some issues to be solved and improved such as robustness and the generalization

behavior of the models.

� The Noisy and Hybrid Deep Neural networks for Remaining Useful

Life Estimation [83,323,324]: One approach to improve deep neural networks

in terms of performance, generalization, and robustness, is to add random noise

during the training stage. Such an approach (adding noise/noisy training) is

one of the most effective techniques to address the aforementioned issues be-

cause: It has regularization effects [349]; introduces some form of data aug-

mentation [344]; has the ability to reduce generalization error, and; has the

potentials to reduce over-fitting problems. Four models have been proposed

by utilizing different noise injection strategies to improve the previously pro-

posed approaches. The proposed models can be classified into two main cat-

egories (i.e., partial noisy training and fully noisy training) based on the way

of adopting the noise layers. The first and the second approaches (NLSTM &

NBLSTM) [83] used partial noisy training as they have a noise layer as an input

layer to the first parallel path and have no additional noise layers within the

fusion center. On the other hand, the other two approaches (NGRU & NPB-

GRU) [323,324] use fully noisy architectures as we adopted the noise layer in all

the integrated paths. However, the CNN path in all the proposed models used

a fully noisy style. The grid search strategy is used to identify a suitable set

of hyperparameters for each model. The results of the proposed models after

investigating different effects such as the effects of different time window size,

the effects of operating conditions and fault modes, and the effects of training

based on different noise levels, have shown the effectiveness of adopting the noise

injection strategy. The proposed models have achieved state-of-the-art results

and performed remarkably in all different cases. With regards to the RMSE val-

ues, the results are improved between (2.31% to 13.78%) and between (5.76%

to 24.73%) in terms of the score values.
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� Multipath Parallel Hybrid Deep Neural Networks [380–382]: Enhanc-

ing the learning ability (training) of the prediction model is always the target

to achieve the main objective of the neural network, which is generalizing the

good performance from the training dataset to any new data the model would

use to make predictions. There is no doubt that extracting more informative

features will translate to achieving better results [353]. Four new models have

been proposed by implementing the following effective strategies: (i) Utilizing

the most successful classes of the artificial neural networks, which are LSTM,

BLSTM, GRU, BGRU, MLP, and CNN; (ii) Using the most promising category

of RUL estimation, which is the hybrid solution, and; (iii) Using the parallel ar-

chitecture to ensure collecting different features from constituent DNNs. All the

proposed models (NMPM, MPHD, NPHM, and TDHA) were designed based

on three parallel paths and the outputs of these paths are then combined by

a fusion center to form the RUL estimates. To develop the proposed method-

ologies, the following techniques have been incorporated: (a) Different styles of

noisy training are used to show the effectiveness of the proposed models; (b)

Global average pooling is employed to minimize overfitting issues and improve

the training, and; (c) The batch normalization is used to stabilize the learning

process of the proposed TDHA. Different experiments have been conducted to

examine the effects of having multiple (more than two) parallel paths based on

different DNNs architectures. The proposed models achieved the best results in

the literature.

7.1.1 Summary of Achieved Results

For the diagnostic part of the thesis, the following two approaches are proposed:

� Multiple Model Degradation Path (MMDP) Estimation: The model

was successful to recognize and find the right hidden degradation process with-

out having any prior knowledge about the degradation model. The results have

been illustrated in two ways. First, by using the adaptive weight corresponding

to each of the constituent models, where the adaptive weight for the right degra-

dation path converged to 1 after some iterations while the others converged to

0 over time. Second, by using the Root-Mean-Square Error (RMSE) measure

for the involved filters in addition to the proposed MMDP model, where the

error associated with the right path and the proposed model has converged to
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zero, while it continued to increase for the rest of the paths.

Cons: The proposed MMDP is based on a set of candidate models for the degra-

dation path, performs degradation prediction based on each model in parallel,

and involves state-space modeling. Thus, we have a challenge in state-space

modeling design and design of the degradation process model (degradation

path). Another limitation is scenarios where the degradation process has an

unknown structure, i.e., non of the degradation paths matches the degradation

of the system. Finally, the main issue is that, once the approach has found the

degradation path then it will continue considering the same degradation path

over time, while the behavior of degradation may change over time.

� Interactive Multiple Model Particle Filters (IMMPF) Framework:

The proposed model can effectively recognize and fetch the right hidden degra-

dation process in each time step, without having any prior knowledge about the

degradation model. The proposed model is superior to the MMDP approach,

in the sense that the model will keep tracking the changes in the degradation

process over time.

Cons: The main issue with this design is that the model can only fetch and

handle one degradation path at a time. Another limitation is that if the degra-

dation process doesn’t have any match in the candidate degradation-matched

filters. In addition to the challenge of the state space model design.

For the prognostic part of the thesis, 12 approaches have been proposed as outlined

below:

� Parallel Hybrid Deep Neural Networks Models: With regards to the pro-

posed models for RUL estimation, Table 7.1 shows the increasing improvements

achieved from the first proposed model (HDNN) to the last proposed model,

which reflects the effectiveness and evolution of our adopted model designing

techniques. It is worth mentioning that Table 7.1 also shows improvement per-

centages in terms of score and RMSE values. The score value improvements

are between 27.42% to 38.7%, and between 9.08% to 23.15% in terms of the

RMSE values. Furthermore, there was an impressive improvement in terms of

the involved parameters, as it was around (77,000) in the first proposed model

(HDNN) and only (42,000) involved parameters in the new proposed multipath

models.
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Cons: The proposed approaches are based on some assumptions that need to

be improved in the future as discussed in the next section.

7.2 Future Research Directions

In continuation of the research works presented in the thesis, the following potential

directions could be followed:

� One direction for future research in the proposed (IMMPF) framework, is to

improve the model to be able to fetch and handle multiple degradation paths

at a time and investigate different scenarios such as the involving of many

degradation paths based on different percentages of involvement. Furthermore,

a neural network model can be utilized as one of the candidate models to solve

the problem of missing degradation-matched filters.

� The piece-wise linear degradation model utilized in this thesis is considered as

one of the assumptions and limitations that need to be improved in the future.

One direction for future research is to use alternative models for degradation

derived from sensors’ readings.

� There is no doubt that uncertainty quantification is an extremely critical prob-

lem when it comes to using the neural networks in sensitive fields such as

aerospace, transportation, and manufacturing. One direction to measure the

uncertainty of a model is to resort to the Bayesian construction of DNNs. A

fruitful direction for future research is to extend the proposed models to incor-

porate uncertainty quantification, e.g., via the development of Bayesian DNNs.

� In order to be capable of learning the most suitable feature representations from

the data, one can consider the exploration of other deep learning techniques such

as Deep belief networks or Capsule Networks. Furthermore, one can study how

features can be extracted more efficiently to further boost prediction accuracy.

� Examining different types of injected noise, and study the effects of that on the

model generalization and robustness are other directions for future research.

Additionally, one can consider exploring more effective methods to find the

optimum hyper-parameter settings.
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� The batch normalization can not be utilized for all the DNNs techniques and

models due to dependence on different variables such as the model design layout,

batch size, and learning type. In batch normalization, the mean and its standard

deviation are computed across the batch and are the same for each example in

the batch. In other words, it normalizes the input features across the batch

dimension. This issue might be solved by using layer normalization where the

normalization statistics are computed across each feature and are independent

of other training scenarios.
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