6,142 research outputs found

    Ab-Initio Molecular Dynamics

    Full text link
    Computer simulation methods, such as Monte Carlo or Molecular Dynamics, are very powerful computational techniques that provide detailed and essentially exact information on classical many-body problems. With the advent of ab-initio molecular dynamics, where the forces are computed on-the-fly by accurate electronic structure calculations, the scope of either method has been greatly extended. This new approach, which unifies Newton's and Schr\"odinger's equations, allows for complex simulations without relying on any adjustable parameter. This review is intended to outline the basic principles as well as a survey of the field. Beginning with the derivation of Born-Oppenheimer molecular dynamics, the Car-Parrinello method and the recently devised efficient and accurate Car-Parrinello-like approach to Born-Oppenheimer molecular dynamics, which unifies best of both schemes are discussed. The predictive power of this novel second-generation Car-Parrinello approach is demonstrated by a series of applications ranging from liquid metals, to semiconductors and water. This development allows for ab-initio molecular dynamics simulations on much larger length and time scales than previously thought feasible.Comment: 13 pages, 3 figure

    A Hybrid Decomposition Parallel Implementation of the Car-Parrinello Method

    Full text link
    We have developed a flexible hybrid decomposition parallel implementation of the first-principles molecular dynamics algorithm of Car and Parrinello. The code allows the problem to be decomposed either spatially, over the electronic orbitals, or any combination of the two. Performance statistics for 32, 64, 128 and 512 Si atom runs on the Touchstone Delta and Intel Paragon parallel supercomputers and comparison with the performance of an optimized code running the smaller systems on the Cray Y-MP and C90 are presented.Comment: Accepted by Computer Physics Communications, latex, 34 pages without figures, 15 figures available in PostScript form via WWW at http://www-theory.chem.washington.edu/~wiggs/hyb_figures.htm

    Coupled Electron Ion Monte Carlo Calculations of Dense Metallic Hydrogen

    Full text link
    We present a new Monte Carlo method which couples Path Integral for finite temperature protons with Quantum Monte Carlo for ground state electrons, and we apply it to metallic hydrogen for pressures beyond molecular dissociation. We report data for the equation of state for temperatures across the melting of the proton crystal. Our data exhibit more structure and higher melting temperatures of the proton crystal than Car-Parrinello Molecular Dynamics results. This method fills the gap between high temperature electron-proton Path Integral and ground state Diffusion Monte Carlo methods

    Coulomb Interactions via Local Dynamics: A Molecular--Dynamics Algorithm

    Full text link
    We derive and describe in detail a recently proposed method for obtaining Coulomb interactions as the potential of mean force between charges which are dynamically coupled to a local electromagnetic field. We focus on the Molecular Dynamics version of the method and show that it is intimately related to the Car--Parrinello approach, while being equivalent to solving Maxwell's equations with freely adjustable speed of light. Unphysical self--energies arise as a result of the lattice interpolation of charges, and are corrected by a subtraction scheme based on the exact lattice Green's function. The method can be straightforwardly parallelized using standard domain decomposition. Some preliminary benchmark results are presented.Comment: 8 figure

    Grand-Canonical Quantized Liquid Density-Functional Theory in a Car-Parrinello Implementation

    Full text link
    Quantized Liquid Density-Functional Theory [Phys. Rev. E 2009, 80, 031603], a method developed to assess the adsorption of gas molecules in porous nanomaterials, is reformulated within the grand canonical ensemble. With the grand potential it is possible to compare directly external and internal thermodynamic quantities. In our new implementation, the grand potential is minimized utilizing the Car-Parrinello approach and gives, in particular for low temperature simulations, a significant computational advantage over the original canonical approaches. The method is validated against original QLDFT, and applied to model potentials and graphite slit pores.Comment: 19 pages, 5 figure

    Polymers near Metal Surfaces: Selective Adsorption and Global Conformations

    Full text link
    We study the properties of a polycarbonate melt near a nickel surface as a model system for the interaction of polymers with metal surfaces by employing a multiscale modeling approach. For bulk properties a suitably coarse grained bead spring model is simulated by molecular dynamics (MD) methods with model parameters directly derived from quantum chemical calculations. The surface interactions are parameterized and incorporated by extensive quantum mechanical density functional calculations using the Car-Parrinello method. We find strong chemisorption of chain ends, resulting in significant modifications of the melt composition when compared to an inert wall.Comment: 8 pages, 3 figures (2 color), 1 tabl
    • …
    corecore