2,071 research outputs found

    Toward autonomic distributed data mining using intelligent web services.

    Get PDF
    This study defines a new approach for building a Web Services based infrastructure for distributed data mining applications. The proposed architecture provides a roadmap for autonomic functionality of the infrastructure hiding the complexity of implementation details and enabling the user with a new level of usability in data mining process. Web Services based infrastructure delivers all required data mining activities in a utility-like fashion enabling heterogeneous components to be incorporated in a unified manner. Moreover, this structure allows the implementation of data mining algorithms for processing data on more than one source in a distributed manner. The purpose of this study is to present a simple, but efficient methodology for determining when data distributed at several sites can be centralized and analyzed as data from the same theoretical distribution. This analysis also answers when and how the semantics of the sites is influenced by distribution in data. This hierarchical framework with advanced and core Web Services improves the current data mining capability significantly in terms of performance, scalability, efficiency, transparency of resources, and incremental extensibility

    Definition of a temporal distribution index for high temporal resolution precipitation data over Peninsular Spain and the Balearic Islands: the fractal dimension; and its synoptic implications

    Get PDF
    Precipitation on the Spanish mainland and in the Balearic archipelago exhibits a high degree of spatial and temporal variability, regardless of the temporal resolution of the data considered. The fractal dimension indicates the property of self-similarity, and in the case of this study, wherein it is applied to the temporal behaviour of rainfall at a fine (10-min) resolution from a total of 48 observatories, it provides insights into its more or less convective nature. The methodology of Jenkinson & Collison which automatically classifies synoptic situations at the surface, as well as an adaptation of this methodology at 500 hPa, was applied in order to gain insights into the synoptic implications of extreme values of the fractal dimension. The highest fractal dimension values in the study area were observed in places with precipitation that has a more random behaviour over time with generally high totals. Four different regions in which the atmospheric mechanisms giving rise to precipitation at the surface differ from the corresponding above-ground mechanisms have been identified in the study area based on the fractal dimension. In the north of the Iberian Peninsula, high fractal dimension values are linked to a lower frequency of anticyclonic situations, whereas the opposite occurs in the central region. In the Mediterranean, higher fractal dimension values are associated with a higher frequency of the anticyclonic type and a lower frequency of the advective type from the east. In the south, lower fractal dimension values indicate higher frequency with respect to the anticyclonic type from the east and lower frequency with respect to the cyclonic type

    Nonlinear heart rate variability features for real-life stress detection. Case study : students under stress due to university examination

    Get PDF
    Background: This study investigates the variations of Heart Rate Variability (HRV) due to a real-life stressor and proposes a classifier based on nonlinear features of HRV for automatic stress detection. Methods: 42 students volunteered to participate to the study about HRV and stress. For each student, two recordings were performed: one during an on-going university examination, assumed as a real-life stressor, and one after holidays. Nonlinear analysis of HRV was performed by using Poincaré Plot, Approximate Entropy, Correlation dimension, Detrended Fluctuation Analysis, Recurrence Plot. For statistical comparison, we adopted the Wilcoxon Signed Rank test and for development of a classifier we adopted the Linear Discriminant Analysis (LDA). Results: Almost all HRV features measuring heart rate complexity were significantly decreased in the stress session. LDA generated a simple classifier based on the two Poincaré Plot parameters and Approximate Entropy, which enables stress detection with a total classification accuracy, a sensitivity and a specificity rate of 90%, 86%, and 95% respectively. Conclusions: The results of the current study suggest that nonlinear HRV analysis using short term ECG recording could be effective in automatically detecting real-life stress condition, such as a university examination

    Dynamic texture recognition using time-causal and time-recursive spatio-temporal receptive fields

    Full text link
    This work presents a first evaluation of using spatio-temporal receptive fields from a recently proposed time-causal spatio-temporal scale-space framework as primitives for video analysis. We propose a new family of video descriptors based on regional statistics of spatio-temporal receptive field responses and evaluate this approach on the problem of dynamic texture recognition. Our approach generalises a previously used method, based on joint histograms of receptive field responses, from the spatial to the spatio-temporal domain and from object recognition to dynamic texture recognition. The time-recursive formulation enables computationally efficient time-causal recognition. The experimental evaluation demonstrates competitive performance compared to state-of-the-art. Especially, it is shown that binary versions of our dynamic texture descriptors achieve improved performance compared to a large range of similar methods using different primitives either handcrafted or learned from data. Further, our qualitative and quantitative investigation into parameter choices and the use of different sets of receptive fields highlights the robustness and flexibility of our approach. Together, these results support the descriptive power of this family of time-causal spatio-temporal receptive fields, validate our approach for dynamic texture recognition and point towards the possibility of designing a range of video analysis methods based on these new time-causal spatio-temporal primitives.Comment: 29 pages, 16 figure

    COMPARATIVE STUDY OF FONT RECOGNITION USING CONVOLUTIONAL NEURAL NETWORKS AND TWO FEATURE EXTRACTION METHODS WITH SUPPORT VECTOR MACHINE

    Get PDF
    Font recognition is one of the essential issues in document recognition and analysis, and is frequently a complex and time-consuming process. Many techniques of optical character recognition (OCR) have been suggested and some of them have been marketed, however, a few of these techniques considered font recognition. The issue of OCR is that it saves copies of documents to make them searchable, but the documents stop having the original appearance. To solve this problem, this paper presents a system for recognizing three and six English fonts from character images using Convolution Neural Network (CNN), and then compare the results of proposed system with the two studies. The first study used NCM features and SVM as a classification method, and the second study used DP features and SVM as classification method. The data of this study were taken from Al-Khaffaf dataset [21]. The two types of datasets have been used: the first type is about 27,620 sample for the three fonts classification and the second type is about 72,983 sample for the six fonts classification and both datasets are English character images in gray scale format with 8 bits. The results showed that CNN achieved the highest recognition rate in the proposed system compared with the two studies reached 99.75% and 98.329 % for the three and six fonts recognition, respectively. In addition, CNN got the least time required for creating model about 6 minutes and 23- 24 minutes for three and six fonts recognition, respectively. Based on the results, we can conclude that CNN technique is the best and most accurate model for recognizing fonts
    corecore