
University of Louisville University of Louisville

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

5-2005

Toward autonomic distributed data mining using intelligent web Toward autonomic distributed data mining using intelligent web

services. services.

Padmanabhan Ramaswamy 1976-
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

Recommended Citation Recommended Citation
Ramaswamy, Padmanabhan 1976-, "Toward autonomic distributed data mining using intelligent web
services." (2005). Electronic Theses and Dissertations. Paper 1177.
https://doi.org/10.18297/etd/1177

This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional
Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator
of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who
has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F1177&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/1177
mailto:thinkir@louisville.edu

TOWARD AUTONOMIC DISTRIBUTED DATA MINING USING

INTELLIGENT WEB SERVICES

By

Padmanabhan Ramaswamy
BS., Kerala University, 1998

A Thesis
Submitted to the Faculty of the

Speed scientific School
University of Louisville

As Partial Fulfillment of the Requirements
F or the Professional Degree

Master of Science

Computer Engineering and Computer Science Department
University of Louisville

Louisville KY

May 2005

TOWARD AUTONOMIC DISTRIBUTED DATA MINING USING
INTELLIGENT WEB SERVICES

By

Padmanabhan Ramaswamy
B.S., Kerala University, 1998

A Thesis approved on

April 29, 2005

By the following Reading and Examination Committee

Dr. Anup Kumar, Co-Advisor (CECS)

Dr. Mehmed Kantardzic, Co-Advisor (CECS)

Dr. Adel Elmaghraby, Member (CECS)

Dr. Julius Wong, Member (ME)

 ii

ACKNOWLEDGEMENTS

I would like to gratefully acknowledge the enthusiastic supervision of Dr. Anup

Kumar who provided me with insights that guided me and challenged my thinking,

substantially improving the finished product. I thank Dr. Mehmed Kantardzic for

providing me with on-going support throughout the project and for the technical

discussions we had on the Distributed Data Mining model. I feel a lasting gratitude

toward the faculty of Speed School who were excellent teachers and advisors.

I would also like to thank all my friends and family, wherever they are,

particularly my Mum and Dad.

The study was in part supportt:d by Kentucky Science & Engineering Foundation

grant KSEF-323-RDE-003 and NSF grant INF 7-001-006.

III

ABSTRACT

TOWARD AUTONOMIC DISTRIBUTED DATA MINING USING

INTELLIGENT WEB SERVICES

Padmanabhan Ramaswamy

May 1,2005

This study defines a new approa(;h for building a Web Services based

infrastructure for distributed data mining applications. The proposed architecture

provides a roadmap for "autonomic" func:tionality of the infrastructure hiding the

complexity of implementation details and enabling the user with a new level of usability

in data mining process. Web Services based infrastructure delivers all required data

mining activities in a utility-like fashion enabling heterogeneous components to be

incorporated in a unified manner. Moreover, this structure allows the implementation of

data mining algorithms for processing data on more than one source in a distributed

manner. The purpose of this study is to presl~nt a simple, but efficient methodology for

determining when data distributed at several sites can be centralized and analyzed as data

from the same theoretical distribution. This analysis also answers when and how the

semantics of the sites is influenced by distribution in data. This hierarchical framework

with advanced and core Web Services improves the current data mining capability

significantly in terms of performance, scalability, efficiency, transparency of resources,

and incremental extensibility.

IV

TABLE OF CONTENTS

Acknowledgements... 111

Abstract. IV

List of Figures... VB

List of Tables........................... V11}

CHAPTERl

Introduction... 1

1.1 Motivation.. 2
1.2 Contributions ". 3
1.3 Thesis Organization.. ... 5

CHAPTER 2

Related Research. .. 6

2.1 Existing Systems.. 7
2.2 Distributed Data Mining... 10
2.3 Web Services ".. 13
2.4 SOAP Based Web Services.. 15

CHAPTER 3

Web Based Distributed Data Mining Framework.. 16

3.1 Service Oriented Approach.... 17
3.2 Execution Framework ".. 18
3.3 Detailed Architecture... 19

V

CHAPTER 4

Implementation Framework.. 22

4.1 Detailed System Architecture... 22

4.2 Implementation of the Services Framework.... 27
4.2.1 Data Services... 28
4.2.2 Algorithm Services... ... 30
4.2.3 Centralized Services.. 32
4.2.4 Distributed Services... 33

4.3 Selecting Dataset and Algorithm S(~rvice information... 34
4.3.1 Execution - Centralized Approach.... 35
4.3.2 Execution - Distributed Approach... 36
4.3.3 Service Cost Calculation... 37

CHAPTERS

Mining Algorithms as Web Services........ 40

5.1 Normalization.. 41
5.2 Fractal Dimension... 43
5.3 Apriori... 45

CHAPTER 6

Results and Discussion... 48

6.1 Normalization.. 49
6.2 Fractal Dimension... 53
6.3 Apriori... 57

CHAPTER 7

Conclusion........................ 62

References. 64

Appendix. 71

Curriculum Vitae............ 100

VI

LIST OF }~IGURES

CHAPTER 2

2.1 Hierarchical structure of a (Distributed) Data Mining Model......... 12
2.2 Examples of paths in hierarchical structure ofa data mining process................... 13

CHAPTER 3

3.1 Execution Framework........................... ... 19
3.2 Architecture for hierarchical Web Component service execution...... 20

CHAPTER 4

4.1 The registration process where the service providers register their services........... 23
4.2 Structure of distributed data mining approach for distributed data.................. 25
4.3 The datasets being collected into tht! central site............... 26
4.4 The algorithm being sent to the remote site.. 27
4.5a Step I of the Data Service registration process...... 28
4.5b Step 2 ofthe Data Service registratiion proce:ss... 29
4.5c Registry response for the Data Service registration process............................ 29
4.6a Step I of the Algorithm Service registration process.................................... 30
4.6b Step 2 of the Algorithm Service registration process......... 31
4.6c Registry response for the Algorithm Service registration process..................... 31
4.8 The client requests to view service information from the registry..................... 34
4.9 Client interaction in Centralized Approach... ... 35
4.10 Client interaction in Distributed Approach.................. 37
4.11 Data field selection and cost informlation.. 38
4.12 Algorithm cost information... 39
4.13 Final cost information... 39

CHAPTER 6

6.1 Timing Results the Normalization algorithm in a LAN......... 51
6.2 Timing Results the Normalization algorithm in a WAN.................. 52
6.3 Timing Results the Fractal Dimension algorithm in a LAN......... 55
6.4 Timing Results the Fractal Dimension algorithm in a WAN.................. 56
6.5 Timing Results for the Centralized approach..................... 59
6.6 Timing Results for the Distributed approach. 60
6.7 Percentage improvement......... 61

VB

LIST OF TABLES

CHAPTER 3

3.1 Functionality of the core components in the proposed framework given in
Figure 3.2 .. '

20

CHAPTER 4

4.1 Registration information for a servic:e... 24
4.2 Sample data fields and associated costs... 37

CHAPTER 6

6.1 Execution Times for the Normalization algorithm in a Local Area Network
(Fractal Dimension Algorithm) ' .. .

51

6.2 Execution Times for the normalization algorithm in a Wide Area Network
(Fractal Dimension Algorithm)

52

6.3 Execution Times for the Fractal Dimension algorithm in a Local Area Network
(Fractal Dimension Algorithm)

55

6.4 Execution Times for the Fractal Dimension algorithm in a Wide Area Network
(Fractal Dimension Algorithm)

56

6.5 Execution Times in Milliseconds for the Centralized approach
(Apriori Algorithm) ,

59

6.6 Execution Times in Milliseconds for the Distributed approach
(Apriori Algorithm)

60

6.7 Percentage Improvement of Distributed approach Vs Centralized approach
(Apriori Algorithm)

61

Vlll

1. INTRODUCTION

Information technology and data mining technology have lingered too long in an

era of over-specialization in which integration is just another specialty. We have made a

tremendous progress in almost every aspect of computing through these specializations in

computer science and engineering. Some components are smaller, others are faster,

cheaper, easily connectable, more precise, and have more capacity. How do we deal with

the complexity of the entire environment generated by all that "smaller/faster/cheaper"

focus, where complexity is expressed by heterogeneity and large interconnectivity of

powerful software, hardware, and data components? Though this question is applicable to

different IT disciplines, our concentration is on solutions for the data mining domain.

Data mining technology is a typical example where research has made a lot of progress in

specific algorithms and tools, but there are not enough results on their integration and

simplified use in complex, distributed Internet based environments [8, 11].

Moreover, the assumptions and approaches used for static and centralized data

mining processes are not any more valid for distributed environment [9]. Distributed data

mining (DDM) refers to the mining of distributed data sets using distributed

computational resources. The physical distribution of data through different sites in

general corresponds to a semantic distribution, i.e., the location of data may have a

meaning that needs to be explicitly addressed in a distributed mining process [13]. Data

mining algorithms should take place at a local level to discover characteristics of the local

site, and at a global level where local data mining results may be combined to find global

findings or compare the local semantics. In distributed data mining strategy, it is

necessary to provide the means of learning how to analyze, combine, and integrate a

number of separately learned dynamic local models. Real-time data mining analysis are

highly desirable in many distributed applications on the Internet to update models when

new events are detected [3, 4, 6]. Easy distribution of models in a networked environment

is essential for maintaining up to date detection capabilities.

Furthermore, the simplified implementation of algorithms and methods developed

for centralized data mining applications could make significant influence on a reduced

quality of data mining results [14] in the distributed environment. Therefore, it is

necessary to reevaluate all data mining phases and all algorithms in the context of

distributed resources applied for real-time data mining. This research shows the need for

new phases or updated phases in the data mining process [11, 15].

1.1 MOTIVATION

There are many reasons to investigate the use of web services in distributed data

mining systems. Today most of the data mining is done in three-tier or four-tier system.

In a three-tier system client sends the request to server, the server then runs mining

algorithms on its local data. In a four-tier s:ystem, the server talks to another remote

server, the remote server analyzes its local data. In both the systems, mining algorithms

2

and the data are tied to the server making it a closed system. An extendable and open

distributed data mining system can be built by separating the algorithm and data.

Using web services the interaction between algorithm and data can be made

dynamic. Also, the algorithm can dynamically locate and analyze the data making it a

much more robust system. The main motivation for this thesis involves the realization

that using web services a dynamic distributed data mining system can be built.

1.2 CONTRIBUTIONS

The Web Services oriented approach proposed in this project is an attempt to

build an infrastructure for DDM that will allow the integration of distributed,

heterogeneous environment and complex interconnectivity. This approach will overcome

the complexity of DDM applications and the limitations of existing infrastructures using

Web Services technology [7, 8]. The proposed architecture will allow users to

concentrate on what they want to aClcomplish rather than figuring how to solve all the

technical details in tuning computing system for executing distributed data mining

models. The Web Services based infrastructure delivers required data mining activities in

a utility-like fashion enabling heterogeneous components to cooperate in a unified

manner. The exchange and integration of data and tasks (tools, libraries, device drivers,

middleware, etc.) will be implemented through open standards defining the identification

of components, their communication protocol and negotiation protocol among them. The

key characteristics of the proposed data mining framework are:

3

Dynamic: Dynamic discovery and use of data sets and data mining algorithms over the

Internet based on user defined high-llevel specifications, and integration into distributed

data mining process is one of the essential characteristics of the framework. It will tap the

available resources, even negotiatt~ their use, adapting to the conditions in the

environment and requirements of the mining process.

Scalable: The Web Services based technologies used in this framework will allow

integration of new data sources, algorithms, and tools available on the internet. In

addition, clients from any platform will be ablie to use these new services. The framework

will find a way to best interact with other neighboring systems.

Transparent: The complexity of data mining should be transparent to the users of the. In

the proposed framework user focuses on what he/she wants to achieve with data mining

and not on how to perform data mining. Therefore, the proposed framework hides the

complexity of data mining operation built over heterogeneous and distributed Internet.

Extensible: The framework allows incremental and dynamic extensions of data sets and

applied algorithms used in a distributed data mining process. Interactive configuration

and dynamic reconfiguration of specified services under varying conditions, and

adjustments of configurations to best handle changing web environment will be an

important feature of our system.

4

1.3 THESIS ORGANIZATION

The thesis is organized in seven chapters. Chapter 2 summarizes the related

research and a model for Distributed Data Mining. Chapter 3 discusses the proposed

service oriented architecture. Registration and implementation details for various

distributed datasets and data mining algorithms are discussed in Chapter 4 and the data

mining algorithms and their functionalities are explained in Chapter 5. The results are

provided in Chapter 6 and the summary and conclusions are included in Chapter 7.

5

2. RELATED RESEARCH

It is convenient to think of data mining systems that were developed during the

past decade as comprising three generations: 1) client-server systems; 2) component and

agent-based systems; and 3) systems based upon web services. The first generation of

data mining system utilized local data, with either client-server or 3-tier architectures.

With these systems, a client front end is used to access a server (possibly on the same

machine) hosting the data mining application. With a client-server model, the server also

manages the data; with a 3-tier modl~l, the data is accessed from another source using

ODBC, JDBC, or other related protocol. The next generation of data mining systems was

component-based. The components could be local, relying on Microsoft's COM or

DCOM platforms, for example, or global, relying on systems such as Suns J2EE

platform. Angoss is an example ofthe former, and Kensington is an example of the latter.

More or less at the same time, various experimental agent-based data mining systems

were developed. The basic assumption in these systems is that the data is distributed and

agents are used to move the data, move the models produced by a local data mining

system, or move the results of a local data mining computation. Today, very few agent­

based systems are used in practice. This is probably because no agent-based

infrastructure, over which an agent-based data mining system must be built, was ever

widely adopted. Examples of agent-based distributed data mining systems include JAM

[19], Papyrus [7], and BODHI [14].

6

Somewhat later, the next generation of service-based data mining systems began

to emerge. These are generally buiilt using W3C's standardization of web services.

Examples include DataSpace [9] and data mining systems developed by IBM, Microsoft

and SAS that employ the XML for Analysis standard [3]. More general service-based

infrastructures, such as grids or data grids [4], are also used for data mining, especially

when large computational resources are required. A data grid uses Globus, or an

equivalent infrastructure, to provide a security infrastructure and resource management

infrastructure so that distributed computing resources can be used. In addition, Globus

provides a high performance data transport mechanism called GridFTP. The Grid

community has begun an effort called the Open Grid Service Architecture, or OGSA, that

provides a web service based access to some grid services [17]. OGSA Database Access

and Integration Services (OGSA DAIS) [16] combine grid services with web services for

remotely accessing databases.

2.1 EXISTING SYSTEMS

There are a few integrated systems developed for distributed data mining. The

JAM system developed by Professor Stolfo et a1. uses local learning, and outputs from

local learning can be combined to build meta-learning. JAM provides a set of learning

programs that execute models over data stored locally and also provides a set of agents

for combining the results from multiple sites [10]. The Kensington [5] data-mining

infrastructure developed by Professor Guo allows access to data from anywhere on the

Internet. This remote access to data and mining framework are based on CORBA. The

BODHI [9, 10] developed by Professor Kargupta is an agent based distributed knowledge

7

discovery system. It uses local learning schemes that can be combined at a central

location to build meta-knowledge. The Papyrus system [4] developed by Professor

Grossman is based on a layered infrastructure for high performance and wide area data

mining. The distributed agent based mining environment (DAME) is developed by

Krishnaswamy et al. The focus of DAME was to delivery data mining services via the

Internet. It can support cluster of workstations connected by high performance network.

The client server models for distributed data mining were developed by Chattratichat [2]

called DecisionCenter, and the IntelliMiner [13] by Parthasarthy et al. These existing

approaches in modeling data mining infrastructure suffer from one or more of the

following limitations:

• Selected data mining algorithms are applied independently on different sites and their

results are integrated to provide global learning models. Lack of coordination

between different sites during the process of local model building affects the quality

of results in global learning models [7].

• In all the existing frameworks, a fixed number of distributed data mining algorithms

are implemented. This rigid scheme of implementing proprietary data mining

algorithms in a framework limits the integration of new improved algorithms

developed by third party that are available on the Internet. The data mining

framework must be flexible to allow incremental addition to the algorithm knowledge

base.

8

• The data location and format of data has to be known before hand. In the Internet

world data sources are added every day. A data mining framework must have the

flexibility to discover new data sources for a particular domain dynamically.

• Most of the existing implementations of data mmmg infrastructures are tightly

coupled and require both ends of the communication system to use the same

distributed object model. This may not work across heterogeneous environments and

firewall or proxy servers [6].

• Most of the data mining models do not discuss the security/privacy structure for data

access and execution of distributed agents. Moreover, there is no discussion of cost /

charge for data access and distributed agent execution on the data site.

• Some of the existing frameworks provide an integrated web of data such as

DataSpace [4]. These frameworks allow queries to be executed on distributed data

sets, but the data types in these frameworks are very limited. The goal of distributed

data mining must include web of distributed algorithms and other resources in

addition to web of data [5].

In the existing data mining approaches, the success or failure of a distributed data­

mining project is highly dependent on a particular person and a tool. Successful practice

may not necessarily be repeated across the applications, especially when they are

becoming more complex and more demanding in a distributed environment [8].

Therefore, data mining needs standard protocols in terms of a methodology and

9

technology used. The objective of these standards should be to help user translate an

application problem into data mining tasks on a higher abstract level with less efforts

[11]. That is especially important for the users in the Internet environment where

distributed data mining applications become extremely complex. This complexity

increases when requirements for incremental or on-line mining [6] is added to the huge

amount of data that is available for mining in distributed heterogeneous systems.

Integrating time- and space-sensitive functionality of data in the mining process, and only

partial availability of data, confronting privacy and security policies, all that enormously

increase the complexity of the data-mining task [2, 8, 11]. This growing complexity of

the distributed infrastructure threatens to undermine the very benefits data mining

technology aims to provide.

2.2 DISTRIBUTED DATA MINING (DDM)

The benefit of understanding large, complex, and information-rich data sets is

common to all fields of businesses, science, and engineering. Globally, data mining is

defined as a process of discovering various models, summaries, derived nontrivial

information, and patterns from a give:n collection of data [10, 11, 13, 16]. The popularity

of Internet and Web makes it imperative that data-mining framework is extended to

include the distributed and time dependent information and tools. Moreover, the

assumptions and the approaches used for static and centralized data mining process are

not valid any more for distributed environment [14, 17]. Traditional development and

deployment of different data mining techniques in a data mining process usually assume

that:

10

• Data set for analysis is centralized, on a single computer, in a form of centralized

database, data warehouse, data mart, or for simple problems as a flat file.

• The amount of available data is enough for successful application of a data

mining techniques.

• Software tools supporting different data mining techniques are also centralized;

they are located on the same computers where the data are stored.

For many classical data mining applications these assumptions are good enough

[10, 11, 12] but in an Internet-based distributed information environment these

assumptions about data, algorithms, and data mining process are not true and may

represent constraints on the quality of data mining results. Standardization on one side,

and use of new technologies for an infrastructure improvement on the other side, will

make large, complex data mining projects less costly, more reliable, more repeatable,

more manageable, more efficient, and very important, with new higher quality in data

mining results. Our approach in standardization of distributed data mining methodology

is based on a model of data mining process having four levels of abstraction [15]. They

are organized in a hierarchical structure: a) phases of data mining, b) generic tasks, c)

specialized tasks, and d) process instances. The hierarchy of the model is graphically

presented in Figure 2.1.

The structure will be illustrated with examples of task hierarchies shown in

Figure 2.2. For example, in the exploration phase one of generic tasks is "build the

model", while its specialized task is "build classification model", and corresponding

process instances are: "neural network", "decision rules", or "logistic regression". The

11

other example of task hierarchy is data preparation phase, where "data cleaning" is a

generic task, possible specialized task is "elimination of missing values", and

corresponding process instances are: "mean value algorithm" or "clustering".

While higher level of abstract concepts in the hierarchy explain what to do, lower

level components go in details of data processing and answer the question how to do. We

have used the bottom-up approach for building service-oriented infrastructure for data

mining. The implementation starts with process instances as components of Web

services, and then integrate them into more abstract, and at the same time more complex

and intelligent data mining specialization tasks.

/ •
Generic
Task 11

~
~

Specific
Task 111

~~

0000
Process Instances

Data Mining Process

G,eneric
T~lsk 12

Specific
ask 112 T

Phase n ~ J
/\~- .

Figure 2.1: Hierarchical structure of a (Distributed) Data Mining Model

12

Exploration Phase Data Preparation Phase

.J l
Build The Model Data Cleaning

·····1 l ...
Build Classification Elimination of

Model Missing Values

. t l
Neural network

Decision rules - Logistic
regression I

.... Mean Value Algorithm -

; ..
Clustering

Figure 2.2: Examples of paths in hierarchical structure of a data mining process

2.3 WEB SERVICES

A tenn that refers to distributed or virtual applications or processes that use the

Internet to link activities or software components. Web services use the following

standards for communication and data processing:

• XML (eXtensible Markup Language) - An open standard for describing data.

• UDDI (Universal Description, Discovery, Integration specification) - Descriptive

standard for documentation and how/where to publish it in an automated fashion.

• SOAP (Simple Object Access Protocol) - A technique to allow communications

between applications over the web.

• WSDL (Web Services Description Language) - An XML specification for

describing web services, what they do, and how to access them.

13

A web service makes itself available by describing itself in a Web Services

Description Language (WSDL) document. WSDL document is a XML document that has

all the information about web service, including its name, the operations it supports,

parameters for those operations and the location where it is running. For service

consumers or clients to locate the web service, web service provider has to publish the

web service at registry server. Universal Description, Discovery, and Integration (UDDI)

are a standard protocol to publish or to find web services. The description part in UDDI is

for service provider to publish details about their organization and web services they

provide. The discovery part in UDDI is for service consumers or clients to find these

services. Service consumer or client invokes web service using Simple Object Access

Protocol (SOAP). SOAP is a lightwe:ight XML protocol used for information exchange

between heterogeneous systems.

• Service provider registers the service in UDDI Registry.

• Client finds the service, gets the WSDL for the service.

• Using WSDL, client constructs a web service call and invokes the service.

Advantages of Web Services:

1. Interoperability: Client written in Java can invoke a service written in .NET or

vice versa.

2. Ubiquity: Once the web service is registered in a registry server, any organization

can use it.

3. Loosely coupled: Web servIce does not depend on the underlying system

architecture.

14

Creating a Distributed Data Mining architecture using Web services involves a lot

of new technologies. Java Web Services Developer Pack (JWSDP) from Sun

Microsystems solves many of the issues and was suitable for this framework and hence

chosen as the toolkit for its implementation.

2.4 SOAP BASED WEB SERVICES

A web service may be implemented as a standalone TCP server, or it may be

accessed via a URL through a web server. When running under a web server, the SOAP

service can take advantage of firewalll tunneling, although performance will be reduced.

The SOAP service accepts XML that describes an action for the server to perform, and

returns XML to the client describing the result of the operation. It is possible to maintain

state between operations, and operations are essentially non-streaming, due to the

marshaling rules of XML. There are two fundamental problems when using web services

for data mining of moderate to large size remote and distributed data sets. First, due to the

overhead of XML encoding and parsing, there is a limit to the speed of the data

transmission and the total size of the return set. This is caused by the need to retain the

entire dataset in local storage due to XML encoding and decoding rules. The specific

issue is that redundant parts of XML documents can and must refer to the other similar

parts of documents. This requires that the entire document be maintained for lookup

purposes. Therefore, all data packaging mechanisms that are truly XML compliant are in

essence non-streaming. While a server could, in theory, safely ignore this encoding rule

when there are no circular data structures, a compliant client cannot safely do so.

15

3. WEB BASED DISTRIBUTED DATA MINING FRAMEWORK

Distributed environment used to be viewed as a solution for intensive

computations with large datasets. However, operating with real world applications in

distributed environment motivated new reasons to appear different than the traditional

one. One application is in distributed data mining. Data mining algorithms are known

with their combinatorial results which make distributed environment a good candidate for

them. But sometimes, distribution of data is intended because the distribution itself has a

meaning. A very popular example is in banking where banks like to exchange their

models for fraud detection or loans approval. This is infeasible because of privacy of

customers. Even if exchanging models were feasible it will lead to unexpressive results in

case of loans approval because banks apply different policies for loans. In these cases, the

following approach for mining distributed data is suggested:

• Build local models for each site

• Discuss relations between local models of sites i.e., whish sites are similar and

which are different, to what extent they differ and the implication and significance

of their differences.

• For similar sites build global model(s) and exclude those very different

16

3.1 SERVICE ORIENTED ApPROACH

Service oriented computing has become ever more popular due to the

proliferation of web based computing [6]. In this paradigm, core Web Services [11] (as

Web Components) form the fundamental elements for developing large and complex data

mining environment. The core services, their description, operations including

publication, discovery, selection and binding constitute the foundation of service oriented

computing. Using these core services higher composition layers encompassing

functionality of multiple layers at lower level can be built. The aggregate service

components can then become part of the core services and can be used in building higher­

level components. These aggregate components can be published and discovered by

applications for providing effective solutions to users.

In general, service oriented Web Components are self-describing, based on open

standards, allow rapid composition of distributed applications. Service or component

providers develop these service-based components; they supply the detailed description

of the functionality through the Web Service Definition Language (WSDL). The data or

algorithm providers register the services with descriptions WSDL in the registries and the

registries are searched by the clients £or the required Web Services components [11, 15].

These components provide distributed computing framework across different

platforms and languages. The design of core Web Services and aggregate services is a

distributed programming task where service providers want to reuse existing services by

extending or restricting their functionality without building from scratch. Currently, there

17

is no data mmmg framework that allows the definition and implementation of data

mining Web Services compositions. In order to alleviate this limitation, a framework for

developing aggregate services for distributed data mining is proposed in this project.

3.2 EXECUTION FRAMEWORK

The design of core Web servIces and aggregate serVIces IS a distributed

programming task where service providers want to reuse existing services by extending

or restricting their functionality without building from scratch. Currently, there is no data

mining framework that allows the definition and implementation of data mining Web

service compositions. In order to alleviate this limitation, a framework for developing

aggregate services for Distributed Data Mining is proposed in this paper.

In order to build servIce oriented framework for distributed data mining, we

propose the architecture shown in Figure 3.1. In subsequent discussion, first the major

components and their interaction are discussed followed by the details of major modules

required for this architecture. In this framework data and algorithm providers will register

their resources as follows:

Algorithm and data providers will describe their services using Web Services

Description Language (WSDL) and interact with the registration service. Registration

service will use WSDL description for entry in the registry.

18

Clients will interact with the Web interfaces and provide their data mInIng

requirements In terms of data to be analyzed and types of mining activities to be

performed. Detailed structure of data and the structure of algorithm are obtained from the

registry by retrieving the WSDL for the data set and algorithm. Based on the client

selection of data and algorithm, the execution framework will generate the execution

sequence and will interact with the data and algorithm provider directly based on the

information in WSDL.

c==== _C_I~IT· n_t ________ ~
JSP/Servlels

Execution FrameworkiWeb Interfaces

WSOl

~ XML Registry

[DalaS';" .1 _m Se",,,,,

Figure 3.1: Execution framework

3.3 DETAILED ARCHITECTURE

In order to build service oriented framework for distributed data mining, we

propose the architecture shown in Figure 3.2. In subsequent discussion, the major

components and their interaction are discussed followed by the details of major modules

required for this architecture. The core components of the proposed framework are

described in Table 3.1.

19

~taMining
I I Client

Data Mining Data Mining ~
Client Client

~-11 C1

Execution framework for Hierarchical Web-Component based services

C2

DM Registration DM Discovery
C4 Using WSDL Service

R2

D R1

Algorithm Provider [Data Algorithm Provider J Data
(Aggregate Component) Provider (Core Web Service) Provider

Figure 3.2: Architecture for hierarchical Web Component service execution

Component

Clients

Registry

Data Mining
Discovery
Service

Algorithm
Provider

Data Provider

Execution
Framework

Functionality

The user of the distributed data-mining framework_

This location has database for all the algorithm service
providers and the data provides a to keeps their details in
the form of WSDL This registry could be a local registry
in an organization, or global UDDI registries [8].

Allows clients to discover and select distributed data sets
and algorithms based on data mining problem
requirement and returns WSDL description to Data
Mining Web component execution framework.

Provides the data mining algorithms. These algorithms
could be core Web Services or aggregate components. It
is the responsibility of the provider to register the WSDL
of the dataset in registry using registration service.

Provides the datasets for analyses. It is the responsibility
of the provider to register the WSDL of the dataset in
registry using registration service.

Provides support for invoking data and algorithm
discovery service and the proper execution of selected
algorithms.

JJ

Table 3.1: Functionality of the core components in the proposed framework given in Figure 3.2

20

In this framework data and algorithm providers will register their resources as follows:

Rl: Algorithm and data providers will describe their services using Web Services

Description Language (WSDL) and interact with Registration service.

R2: Registration service will use WSDL description for entry in the registry.

Clients will interact with data mining execution framework as follows:

Cl: Clients will interact with Web Component execution framework and provide their

data mining requirements in terms of data to be analyzed and types of mining

activities to be performed.

C2: This framework will interact with data mmmg discovery servIce application

program interface (API) by specifying data and algorithm requirements.

C3: The discovery service will provide a set of data and algorithms matching the

client's requirement. Client will select the resources for data mining. Detailed

structure of data and the structure of algorithm are obtained from registry by

retrieving the WSDL for the data set and algorithm.

C4: Based on the client selection of data and algorithm, the Web component execution

framework will generate the execution sequence and will interact with the data

and algorithm provider directly based on the information in WSDL.

21

4. IMPLEMENTATION FRAMEWORK

4.1 DETAILED SYSTEM ARCHITECTURE

Registration is the fist step toward system initiation, during which services are

registered with the registry. The services can be either data services or algorithm services.

The registration process requires the following details from the service provider.

• Organization: Name and Description

• Contact: N arne, Phone, and Email

• Service: Name and Description

• Service Binding: URI and Description

An organization can have one service with several bindings or multiple services.

Figure 4.1 shows the registration process.

This data registration process requires the data providers to specify the fields that

are available for performing mining tasks, the data repository location, and how to get

access the data or execute an algorithm on the data site. In the algorithm registration

process, the provider gives the detailed information about the parameters associated with

the service and other configuration details.

22

Datasites

Algorithms

Data
Service,

Algorithm
Service 1

Algorithm
Service,

Data
Service2

Algorithm
Service2

Algorithm
Service2

Data
Servicen

Registration Process

Registry Server

Algorithm
Servicen

Algorithm
Servicen

Registration Process

Figure 4.1: The registration process where the service providers register their services.

Once the registration process is complete, the services are ready to be used by the

system for applying the various algorithms on the registered data sites. The first step of

processing a client request is to select the dataset the client is interested in. In the

proposed framework, a client is allowed to select a dataset from a list of available

registered data services of their interest. Once the dataset is chosen the client has a choice

of algorithms that can be applied to the selected dataset. All the dataset and algorithm

information is retrieved from the registry.

In data registration, the data providers specify the data fields that are available for

mining, the location of the data, and how to get access the data or execute an algorithm

on the data site. In algorithm registration, the provider gives the detailed information

23

about the service execution. For example information included for Fractal Dimension

service is shown in Table 4.1.

Attribute Value

Organization Name UofL ASP

Organization Description University of Louisville - Algorithm Service Providers

Service Name Fractal Dimension

Service Description Algorithm Service to calculate Fractal Dimension, number and types of
inputs needed, outputs generated

Service Binding URI http://136.165.147.86:8080Ifdalgo-jaxrpclfd

Service Binding Description Service Binding for Fractal Dimension Algorithm

Table 4.1: Registration information for a service

Once the registration process is complete, the services are ready to be used by the

system for applying the various algorithms on the registered data sites. The first step of

processing a client request is to select the dataset the client is interested in. In the

proposed framework a client is allowed to choose a dataset from a list of available

registered data set services of their interest. Once the dataset is selected the client has a

choice of algorithms that can be applied to the selected dataset. All the dataset and

algorithm information is retrieved from the registry.

Figure 4.2 describes the general structure of most distributed data mmmg

algorithms. In this figure distributed data mining algorithms are broken in three different

parts that could be executed iteratively. The first part of the logic is performed on all the

data sets involved for computing local models. These intermediate results are then

24

integrated in part 2 of the processing model. Then, the integrated results are sent to part 3

of the computation that will distribute results for generating global models of data mining

algorithm. One of the main goals in building distributed data mining algorithms is to

reduce the amount of data exchanged between computing sites.

Data mining logic to be
executed

Part 1 on different data set

Part 2

Part 3

simultaneously for
computing local models

Combining the local
models

for distributed
computation

Exchanging results
between

different sites for
building global models

Figure 4.2: Structure of distributed data mining approach for distributed data

In our implementation framework parts 2 and 3 of the DDM service are generic,

and will be offered as a core sub-service. This sub-service can perform different types of

activities on various results obtained at different sites.

25

The implementation is broken in two parts:

i) the logic to be executed independently on various data sets.

ii) the logic that needs to be executed with the combined results.

We have chosen two approaches to implement this framework:

a) Centralized approach

In the centralized approach, the datasets residing on remote sites are collected and

combined to form one data resource bundle on which the algorithm is executed as shown

in Figure 4.3.

Data Site,

Central Site

Data Site~ Data Site"

Response

Central Site

Figure 4.3: The datasets being collected into the central site and
the results being sent to the client after processing the global model

b) Distributed approach

Client

In the distributed approach, the datasets are not moved and they always reside on

the remote sites. The algorithm is propagated to the remote data sites where it processes

the individual dataset and returns local models to a coordination site. The results are then

processed to generate the global model and thereafter sent to the client. The number of

26

intennediate results directly depends on the data mining algorithm itself. The distributed

approach may require multiple transfers of data between the co-ordination site and the

data sites but it eventually proves to be the better of the two choices, especially for large

real world data sets since the amount of data transferred is considerably lesser compared

to the fetching of the actual datasets. The distributed approach is shown in Figure 4.4.

Data Sitej Data Site2 Data Siten Data Site1 Data Site2 Data Site~

/~ //~
AJgoritm ! A1goritm AIQOritm///

..--:-!~~//

Request
.--~--------

Client

Co-ordination Site Co-ordijnation Site

Figure 4.4: The algorithm being sent to the remote site and local models being collected
to generate the global model and results being sent to the client after processing the global model

4.2 IMPLEMENT A TION OF THE SERVICE FRAMEWORK

Registering Data and Algorithm Services require the following common parameters:

a. Service Name

b. Service Description

c. Service URI

d. Classification

The classification is an optional attribute but it plays a major role in reducing drastic

amounts of search time.

27

4.2.1 DATA SERVICES

The data service registration is a two step process. The first step requests the user

to provide the service information and the number of data fields that are available for

processing. Figure 4.5a shows the interface the client uses as the first step towards

registering the data service.

Data Service Registration (Step 1)

Service Name

Ser~ice Description

Service URI

Classitication I Select Cla.ssifica.tion

Please specify the classification if it is not listed.

Number of tields

I Next»]

Figure 4.5a: Step I of the Data Service registration process

For each attribute of the data service, the following parameters need to be specified.

a) Attribute Name

b) Attribute Type

c) Attribute Cost

d) Attribute Exposure

The Attribute Type can be any of the data types supported by Web Services. The

Attribute Cost specifies the amount to use the attribute. The Attribute Exposure specifies

if the user can view this attribute. A value of Yes allows the user to view/copy the

attribute. A value of No means that the attribute can be used to test algorithms on but the

28

actual values cannot be viewed or copied. Figure 4.Sb shows the interface the client uses

as the second step to provide this information about the data service. Suppose the

Number of fields was set to 5 in Step 1.

Data Service Registration (Step 2)

Field Name Data Type Cost Expose

I I Select DataType ::3 $1 I Select.:J

I I Select Data Type::3 $1 I Select.:J

I I Select Data Type::3 $1 I Select .:.I
I I Select Data Type .:::J $1 I Select .:.I
I I Select Data Type ::g $1 I Select::J

I Next» I

Figure 4.5b: Step 2 of the Data Service registration process

The information provided is used to register the Service with the local registry

and additional information is stored in a database. Figure 4.Sc shows the registry

response received once the data service registration is complete.

SWAMY Logged in

Register New Service Data Service Registration Complete

Vie MV Services

Vie ... Cldssifications

Execute Service

Enter Keyword

I
. Search I
Modify Account

Logout

SfHvice Information
Se,."c. Key 10044aEc-3'21·C;()44·1251-1890cb770790

St?/V,ce Name Fractal D!menslon Da·a Service

Serv!(~ Descripil'Yl S<lrnp!e Data Sel fGr Fract<il DunenslOrl Algo!!thrn

Setv:ce Bmdlng l1RL httr.!/l}:;; 1/35.47 195J),"lIfi)c·fd_d3ta_S-I?NICe

Service Bindmg Descflptior Calumni.number 13 95 Y,Column2 numbBr.12 45 ',r ,Column3 number 11 % \(.ColumnA numbl~r.9 75 Y

Figure 4.5c: Registry response for the Data Service registration process

29

4.2.2 ALGORITHM SERVICES

The algorithm service registration is a two step process. The first step requests the

user to provide the service information and the cost of using the algorithm and the

number of input parameters accepted. Figure 4.6a shows the interface the client uses as

the first step towards registering the algorithm service.

Algorithm Service Registration (Step 1)

Service Name

Service Description

Service URI

Classification 1 Select Classification

Please specify the classification if it is not listed.

Algorithm Cost $1
Number of input
parameters

Next »

Figure 4.6a: Step 1 of the Algorithm Service registration process

The second step of the algorithm servIce registration process reqUIres the

following additional fields:

a) Number of input parameters

b) Output parameter type

c) Algorithm Cost

Based on the parameter Number of input parameters, Step 2 will dynamically

allocate the required number of parameters to accept the data type. Figure 4.6b shows the

interface the client uses as the second step to provide this information. Suppose the

Number of input parameters was set to 5 in Step 1.

30

Algorithm Service Registration (Step 2)

Parameter

Input-1

Input-2

Input-3

Input-4

Input-5

Output Parameter

I Select 05t5 Type :a
Nf)xt»I

Data Type

I Select 05t5 Type O!J

I Select 05t5 TypeO!J

I Select 05t5 Type :::I
I Select 05t5 Type O!J

I Select 05t5 Type .::1

Figure 4.6b: Step 2 of the Algorithm Service registration process

The information provided is used to register the Service with the local registry

and additional information is stored in a database. Figure 4.6c shows the registry

response received once the algorithm service registration is complete.

SWAMY Logged in

Register New SelVice Algorithm Service Registration Complete

View My Service,

View Classifications

Execute service

Enter Keyword

I
.·SeatCh I
ModifV Account

Logout

Service Information

Service Key 10044b29-6601-0044-ec22-b957cceee16c

Service Nam~ Fractal Dimt'Elsmn Algorilhm S8rv;(€

ServIce Description The algorithm Fractal DlrnenSlon Iiself

S8rvi~e 8mdmg URL httfJ:j/13f~.165 4? 1~16.:Jd){:PL-fd_dl;;o_servlc~
Sl?rvic e Bmding Description Inputs"(number ,numb.:n) Output: (number)

Figure 4.6c: Registry response for the Algorithm Service registration process

31

4.2.3 CENTRALIZED SERVICES

In the centralized approach, a collection of remote datasets is performed

concurrently to form a single data resource bundle on which the data mining algorithm is

executed. The algorithm also needs to be fetched from its remote location to the co­

ordination site where the actual execution takes place. The following web services are

used to achieve the execution of the centralized framework.

• CopyRemoteData (in remote_location, in data_handler, in local_repository):

reads the data from the "remote_location" based on the specifications of the

data_handler" and stores the data in the "locaCrepository"

• CombineData (in local_repository, out combined_data): combines the data

read from the "locaIJepository" to create one large data source,

"combined data".

• FetchAlgorithm (in algorithm_location): fetches the data mmmg algorithm

from the "algorithm_location" and stores it locally for processing the data in the

local repository

• ExecuteAlgorithm (in local_repository, out results): processes the data mining

algorithm on the "locaIJepository" with the logic specified in the algorithm.

Returns the intermediate "results" for performing other tasks or the final

"results ".

32

4.2.4 DISTRIBUTED SERVICES

In the distributed approach, the datasets always reside on the remote sites and are

never moved. The algorithm is propagated to the remote data sites where it processes the

individual dataset and returns local models to a coordination site. The results are then

processed to generate the global model and thereafter sent to the client. The number of

intermediate results directly depends on the data mining algorithm itself.

• SendAlgorithm (in algorithm_location, in remoteJocations): fetches the data

mining algorithm from the H algorithm_location" and sends it to the "remote­

locations" for processing the data.

• ExecuteAlgorithm (in remote_locations, out results): executes the algorithms

concurrently on the "remote_locations" and stores the "results" on the remote

location as the data model.

• CopyRemoteModel (in remote_models): reads the "remote_models" from the

remote locations and copies it to the local coordination site for processing to get

the final results.

The distributed approach may reqUIre multiple transfers of data between the

coordination site and the data sites but it eventually proves to be the better of the two

choices, especially for large real world data sets since the amount of data transferred is

considerably less compared to the fetching of the actual datasets. The performance

improvement can be measured in terms of execution time as well as the quality of

servIce.

33

4.3 SELECTING DATASET AND ALGORITHM SERVICE INFORMATION

The first step in the exceution phase is to choose the desired datasets and thc

algorithm that can be applied on them. Figure 4.8 shows the steps involved in the

selection of dataset and algorithm information from the registry.

The client uses the web interface to query the registry for information about

available datasets based on classifications or keyword search. The registry returns the

appropriate information on all the datasets that match the search criteria. Once the client

selects the datasets for processing, a search for algorithms that match the selected datasets

is performed and the algorithm service information that can be applied on them is

displayed. This step of the implementation is common for the centralized and distributed

approach.

Request to view available
Dataset Information

R
e
9
i
s
t

y

Service
Information

Client

"¥"""'" Show available Algorithms for the
" selected Datasets

Select Dataset(s) and
Request available algorithms

JSP I Servlets

Service
Information

Figure 4.8: The client requests to view service information from the registry

34

4.3.1 EXECUT]ON - CENTRALIZED ApPROACH

Step 1: The client invokes the data mining services from a URL. The client selects the

required datasets located on remote sites.

Step 2: Servlet calls the service on the selected data sites to collect the data. The

collected data is stored in a centralized location for processing as shown in

Figure 4.9.

Step 3: The Apriori Service downloads the algorithm to the central site and is applied to

build the global model for the datasets at the central site.

The datasets are now available as a single resource in the central site. The

algorithm is applied on this combined data set and the results are returned to the client.

Collect the Datasets from the
selected Data Site(s)

Combine the
selected
Datasets

Selected Algorithm
and data set

information from eli
Data 1
Data 2,-__

--------ljlolH! combmeData ;
'r-r---,r;;! "

Fetch the selected
Algorithm

From the Remote Site

Combined

Process the
Combined

Dataset
with the selected

Alaorithm

data set r---l AI(Jorithm 1 :
'--Joi.-! fetchAlgo ! ---------·-.. L~~~~~~~" ..

... i
Results after I

n1lnll1g I

'

I"

Reques r Algo
R
e
9
i
s
t
r
v

Data 2'

Data 1

Data 1 Data 2

R
e
9
i
s
t
r
v

ng the
Igo Service

URL

Algorithm 1 .,
.II

Algorithm1

Figure 4.9: Client interaction in Centralized Approach

35

Results ,

:+
; dlsplayResuHs
'--'--,r-'-";

//
/

4.2.1 DATA SERVICES

The data service registration is a two step process. The first step requests the user

to provide the service information and the number of data fields that are available for

processing. Figure 4.5a shows the interface the client uses as the first step towards

registering the data service.

Data Service Registration (Step 1)

Service Name

Ser~ice Description

Service URI

Classitication I Select Cla.ssifica.tion

Please specify the classification if it is not listed.

Number of tields

I Next»]

Figure 4.5a: Step I of the Data Service registration process

For each attribute of the data service, the following parameters need to be specified.

a) Attribute Name

b) Attribute Type

c) Attribute Cost

d) Attribute Exposure

The Attribute Type can be any of the data types supported by Web Services. The

Attribute Cost specifies the amount to use the attribute. The Attribute Exposure specifies

if the user can view this attribute. A value of Yes allows the user to view/copy the

attribute. A value of No means that the attribute can be used to test algorithms on but the

28

actual values cannot be viewed or copied. Figure 4.Sb shows the interface the client uses

as the second step to provide this information about the data service. Suppose the

Number of fields was set to 5 in Step 1.

Data Service Registration (Step 2)

Field Name Data Type Cost Expose

I I Select DataType ::3 $1 I Select.:J

I I Select Data Type::3 $1 I Select.:J

I I Select Data Type::3 $1 I Select .:.I
I I Select Data Type .:::J $1 I Select .:.I
I I Select Data Type ::g $1 I Select::J

I Next» I

Figure 4.5b: Step 2 of the Data Service registration process

The information provided is used to register the Service with the local registry

and additional information is stored in a database. Figure 4.Sc shows the registry

response received once the data service registration is complete.

SWAMY Logged in

Register New Service Data Service Registration Complete

Vie MV Services

Vie ... Cldssifications

Execute Service

Enter Keyword

I
. Search I
Modify Account

Logout

SfHvice Information
Se,."c. Key 10044aEc-3'21·C;()44·1251-1890cb770790

St?/V,ce Name Fractal D!menslon Da·a Service

Serv!(~ Descripil'Yl S<lrnp!e Data Sel fGr Fract<il DunenslOrl Algo!!thrn

Setv:ce Bmdlng l1RL httr.!/l}:;; 1/35.47 195J),"lIfi)c·fd_d3ta_S-I?NICe

Service Bindmg Descflptior Calumni.number 13 95 Y,Column2 numbBr.12 45 ',r ,Column3 number 11 % \(.ColumnA numbl~r.9 75 Y

Figure 4.5c: Registry response for the Data Service registration process

29

4.2.2 ALGORITHM SERVICES

The algorithm service registration is a two step process. The first step requests the

user to provide the service information and the cost of using the algorithm and the

number of input parameters accepted. Figure 4.6a shows the interface the client uses as

the first step towards registering the algorithm service.

Algorithm Service Registration (Step 1)

Service Name

Service Description

Service URI

Classification 1 Select Classification

Please specify the classification if it is not listed.

Algorithm Cost $1
Number of input
parameters

Next »

Figure 4.6a: Step 1 of the Algorithm Service registration process

The second step of the algorithm servIce registration process reqUIres the

following additional fields:

a) Number of input parameters

b) Output parameter type

c) Algorithm Cost

Based on the parameter Number of input parameters, Step 2 will dynamically

allocate the required number of parameters to accept the data type. Figure 4.6b shows the

interface the client uses as the second step to provide this information. Suppose the

Number of input parameters was set to 5 in Step 1.

30

Algorithm Service Registration (Step 2)

Parameter

Input-1

Input-2

Input-3

Input-4

Input-5

Output Parameter

I Select 05t5 Type :a
Nf)xt»I

Data Type

I Select 05t5 Type O!J

I Select 05t5 TypeO!J

I Select 05t5 Type :::I
I Select 05t5 Type O!J

I Select 05t5 Type .::1

Figure 4.6b: Step 2 of the Algorithm Service registration process

The information provided is used to register the Service with the local registry

and additional information is stored in a database. Figure 4.6c shows the registry

response received once the algorithm service registration is complete.

SWAMY Logged in

Register New SelVice Algorithm Service Registration Complete

View My Service,

View Classifications

Execute service

Enter Keyword

I
.·SeatCh I
ModifV Account

Logout

Service Information

Service Key 10044b29-6601-0044-ec22-b957cceee16c

Service Nam~ Fractal Dimt'Elsmn Algorilhm S8rv;(€

ServIce Description The algorithm Fractal DlrnenSlon Iiself

S8rvi~e 8mdmg URL httfJ:j/13f~.165 4? 1~16.:Jd){:PL-fd_dl;;o_servlc~
Sl?rvic e Bmding Description Inputs"(number ,numb.:n) Output: (number)

Figure 4.6c: Registry response for the Algorithm Service registration process

31

4.2.3 CENTRALIZED SERVICES

In the centralized approach, a collection of remote datasets is performed

concurrently to form a single data resource bundle on which the data mining algorithm is

executed. The algorithm also needs to be fetched from its remote location to the co­

ordination site where the actual execution takes place. The following web services are

used to achieve the execution of the centralized framework.

• CopyRemoteData (in remote_location, in data_handler, in local_repository):

reads the data from the "remote_location" based on the specifications of the

data_handler" and stores the data in the "locaCrepository"

• CombineData (in local_repository, out combined_data): combines the data

read from the "locaIJepository" to create one large data source,

"combined data".

• FetchAlgorithm (in algorithm_location): fetches the data mmmg algorithm

from the "algorithm_location" and stores it locally for processing the data in the

local repository

• ExecuteAlgorithm (in local_repository, out results): processes the data mining

algorithm on the "locaIJepository" with the logic specified in the algorithm.

Returns the intermediate "results" for performing other tasks or the final

"results ".

32

4.2.4 DISTRIBUTED SERVICES

In the distributed approach, the datasets always reside on the remote sites and are

never moved. The algorithm is propagated to the remote data sites where it processes the

individual dataset and returns local models to a coordination site. The results are then

processed to generate the global model and thereafter sent to the client. The number of

intermediate results directly depends on the data mining algorithm itself.

• SendAlgorithm (in algorithm_location, in remoteJocations): fetches the data

mining algorithm from the H algorithm_location" and sends it to the "remote­

locations" for processing the data.

• ExecuteAlgorithm (in remote_locations, out results): executes the algorithms

concurrently on the "remote_locations" and stores the "results" on the remote

location as the data model.

• CopyRemoteModel (in remote_models): reads the "remote_models" from the

remote locations and copies it to the local coordination site for processing to get

the final results.

The distributed approach may reqUIre multiple transfers of data between the

coordination site and the data sites but it eventually proves to be the better of the two

choices, especially for large real world data sets since the amount of data transferred is

considerably less compared to the fetching of the actual datasets. The performance

improvement can be measured in terms of execution time as well as the quality of

servIce.

33

4.3 SELECTING DATASET AND ALGORITHM SERVICE INFORMATION

The first step in the exceution phase is to choose the desired datasets and thc

algorithm that can be applied on them. Figure 4.8 shows the steps involved in the

selection of dataset and algorithm information from the registry.

The client uses the web interface to query the registry for information about

available datasets based on classifications or keyword search. The registry returns the

appropriate information on all the datasets that match the search criteria. Once the client

selects the datasets for processing, a search for algorithms that match the selected datasets

is performed and the algorithm service information that can be applied on them is

displayed. This step of the implementation is common for the centralized and distributed

approach.

Request to view available
Dataset Information

R
e
9
i
s
t

y

Service
Information

Client

"¥"""'" Show available Algorithms for the
" selected Datasets

Select Dataset(s) and
Request available algorithms

JSP I Servlets

Service
Information

Figure 4.8: The client requests to view service information from the registry

34

4.3.1 EXECUT]ON - CENTRALIZED ApPROACH

Step 1: The client invokes the data mining services from a URL. The client selects the

required datasets located on remote sites.

Step 2: Servlet calls the service on the selected data sites to collect the data. The

collected data is stored in a centralized location for processing as shown in

Figure 4.9.

Step 3: The Apriori Service downloads the algorithm to the central site and is applied to

build the global model for the datasets at the central site.

The datasets are now available as a single resource in the central site. The

algorithm is applied on this combined data set and the results are returned to the client.

Collect the Datasets from the
selected Data Site(s)

Combine the
selected
Datasets

Selected Algorithm
and data set

information from eli
Data 1
Data 2,-__

--------ljlolH! combmeData ;
'r-r---,r;;! "

Fetch the selected
Algorithm

From the Remote Site

Combined

Process the
Combined

Dataset
with the selected

Alaorithm

data set r---l AI(Jorithm 1 :
'--Joi.-! fetchAlgo ! ---------·-.. L~~~~~~~" ..

... i
Results after I

n1lnll1g I

'

I"

Reques r Algo
R
e
9
i
s
t
r
v

Data 2'

Data 1

Data 1 Data 2

R
e
9
i
s
t
r
v

ng the
Igo Service

URL

Algorithm 1 .,
.II

Algorithm1

Figure 4.9: Client interaction in Centralized Approach

35

Results ,

:+
; dlsplayResuHs
'--'--,r-'-";

//
/

3D, or In a higher dimensional space because only one dimension (one attribute) is

assumed as independent variable and all others are dependent. Also, the dimensionality of

rectangle and plane surface is always 2 regardless the dimensionality of the space for

representation. These objects, representing an abstract relation in a data set, lead to the

definition of the embedding and intrinsic dimensions of a data set [7]:

Definition 1 - The embedding dimension E of a data set is the dimension of its address

space. In other words, it is the number of attributes of the data set.

Definition 2 - The intrinsic dimension D of a data set is the dimension of the spatial

object represented by the data set, regardless of the space where it is

embedded.

While the embedding dimension is gIven explicitly with the data set as the

number of attributes, the intrinsic dimension is not computable directly. We can

approximate it with the fractal dimension parameter [7, 16]. The fractal dimension

characterizes multidimensional fractal sets. By embedding the data set in an n­

dimensional grid with cell sides of size r, we can compute the frequency with which data

points fall into the i-th cell, Pi. The generalized fractal dimension Dq represents a

derivative or linear slope of discrete frequency function, as shown in the equation:

Where:

Dq = l/(q-l) [d(logI:iPiq)/ d(logr)]

Pi - frequency of points falling in the i-th cell, and

r - size of the cell.

44

There is a family of fractal dimensions (i.e. Hausdorff fractal dimension for q=O,

information fractal dimension for q=l, and correlation fractal dimension for q=2).

Specifically, the correlation fractal dimension (q = 2) has gained attention in the literature

[7]. Changes in the correlation fractal dimension means changes in the distribution of

points in the multidimensional data set, and that is the parameter we are using in the

simple and scalable analysis of large, distributed data sets. As many real data sets are

self-similar, we can use their correlation fractal dimension as a measure of their intrinsic

dimension D. The correlation fractal dimension is usually calculated by means of the

box-counting algorithm. Let N(r) he Li p?, then the plot ofN(r) for different values of r

in a log-log scale is called the box-counting plot. The linear slope of the plot is the

estimation of the correlation fractal dimension for the given data set.

5.3APRIORI

Association analysis identifies relationships or affinities between items and/or

between features. These relationships are then expressed as a collection of association

rules. The approach has been particularly successful in mining very large transaction

databases and is one of the core classes of techniques in data mining.

Each transaction is thought of as a basket of items, which we might represent as

{A, B, C, D, E, F}. The algorithm searches for collections of items that often appear

together e.g.{A, C, F}, and then from these ilemsels it identifies rules like A, F -7 C

which we read as indicating an association between A and F being in the transaction and

C consequently appearing in the transaction.

45

The basis of an association analysis algorithm is the generation of frequent

itemsets. However, naIve approaches will be quite expensive in computational time with

even moderately sized databases. The apriori algorithm takes advantage of the simple

apriori observation that all subsets of a frequent itemset must also be frequent. The

observation allows the algorithm to consider a significantly reduced search space by

starting with frequent individual items (eliminating rare items). We can then combine

these into item sets containing just two items and retain only those that are frequent

enough. Similarly for itemsets containing three items, and so on.

Suppose we have a rule of the form A ~ C. We call A the antecedent and C the

consequent, and both are non-empty sets of items. The concept of frequent enough is a

parameter of the algorithm, used to control the number of association rules discovered.

This support specifies how frequently the items must appear in the whole data set before

the items can be considered as a candidate association rule. For example, the user may

choose to consider only sets of items that occur in at least 5% of all transactions.

Formally we define support for a collection of items I as the proportion of all baskets in

which all items in I appear. Then we can define the support for an association rule as:

support (A ~ C) = support (A U C)

A second parameter, the confidence, calculates the proportion of transactions

containing A that also contain C the use specifies a minimal probability for the

association rule. For example, the user may choose to only generate rules which are true

at least 90% of the time (that is, when A appears in the basket, C also appears in the same

basket at least 90% of the time).

46

Formally:

confidence (A 7 C) = support (A 7 C) / support (A)

The Apriori algorithm is a breadth-first or generate-and-test type of search

algorithm. Only after exploring all possibilities of associations containing kitems does it

then consider those containing k + 1 items. For each k, all candidates are tested to

determine whether they have enough support. The apriori algorithm uses a simple two

step generate and merge process: generate frequent item sets of size kthen combine them

d·d.c. . f . k + 1 to generate can I ate lrequent Itemsets 0 sIze The algorithm is reasonably

efficient even though the number of possible items is generally large and the baskets are

generally small. The input data to the algorithm consists of records or transactions, each

transaction representing a basket of items.

The two primary tuning parameters are minsup (minimum support expressed as

a percentage of the total number of transactions in data) and mincon (minimum

confidence also expressed as a percentage of the total number of transactions in data).

Typically they have quite small values because of the size of the databases we are dealing

with. Thus a support of 0.1 % or smaller is not unusual.

47

6. RESULTS AND DISCUSSION

In order to evaluate the effectiveness of the proposed service oriented framework

three core data mining services including Normalization service (used by the Fractal

Dimension algorithm), Fractal Dimension service and Apriori service were implemented.

The services were implemented both in the centralized and distributed service oriented

framework and their execution time was measured in a local and a wide area networks.

The execution time for both implementations in a local area network is shown in the

graphs included in this chapter. It is clear that as the number of records increase, the

execution time of the centralized algorithm increases dramatically due to the overhead of

combining all the data at the central site before performing the algorithm. The results

illustrate that the distributed approach is more consistent and requires a shorter execution

time. The performance results for the centralized and the distributed services in a wide

area network are shown in various charts. It is interesting to observe that the increase in

execution time for smaller number of records is much more significant here compared to

the local area network. This shows the impact of additional communication delay when

data sets are located on distant sites and are not on the same local area network. The

distributed approach is consistent over time since it is dependent on the algorithms

complexity rather than the dataset size. The apriori algorithm, whose complexity is higher

than the fractal dimension algorithm showed similar results.

48

6.1 NORMALIZATION

Sample Input (Abridged)

1000 0 0 1000 1000000
750 433.012702 324759.5264 1183.012702 750000
625 649.519053 405949.408 1274.519053 812500
812.5 324.759526 263867.1152 1137.259526 765625
656.25 595.392465 390726.3052 1251. 642465 785156.25
328.125 297.696233 97681.57631 625.821233 196289.0625
164.0625 148.848116 24420.39408 312.910616 49072.26563
332.03125 507.43676 168484.8617 839.46801 367736.8164
666.015625 253.71838 168980.4054 919.734005 507949.8291
833.007813 126.85919 105674.6964 959.867003 709995.2698
916.503906 63.429595 58133.47159 979.933501 844002.7237
708.251953 464.727499 329144.1591 1172.979453 717592.4778
354.125977 232.36375 82286.03978 586.489726 179398.1195
427.062988 549.194577 234540.6771 976.257565 483997.4791
713.531494 274.597288 195933.8135 988.128783 584530.8639
606.765747 570.311346 346045.39 1177.077093 693419.7033

587.075298 37.483753 22005.78552 624.559051 346062.4371
543.537649 451.754578 245545.6215 995.292227 499515.375
271.768824 225.877289 61386.40537 497.646114 124878.8437
635.884412 112.938645 71815.92365 748.823057 417104.1232
567.942206 489.482024 277997.5007 1057.42423 562151.0015
283.971103 244.741012 69499.37517 528.712115 140537.7504
641. 985552 122.370506 78560.09682 764.356058 427119.9891
820.992776 61.185253 50232.65072 882.178029 677772.773
660.496388 463.605328 306209.6448 1124.101716 651185.3789
830.248194 231.802664 192453.7433 1062.050858 743044.5387
915.124097 115.901332 106064.1019 1031.025429 850885.2316
707.562048 490.963368 347387.0464 1198.525416 741689.0811
853.781024 245.481684 209587.6036 1099.262708 789203.2945
426.890512 122.740842 52396.90089 549.631354 197300.8236
213.445256 61.370421 13099.22522 274.815677 49325.20591
106.722628 30.68521 3274.806306 137.407839 12331.30148
553.361314 15.342605 8490.004201 568.703919 306444.1394
776.680657 7.671303 5958.152362 784.35196 603291.6919
388.340329 3.835651 1489.538091 392.17598 150822.923
444.170164 434.930528 193183.1639 879.100692 386451. 6986
222.085082 217.465264 48295.79097 439.550346 96612.92465
361.042541 541.745334 195593.1119 902.787875 423839.7231
680.521271 270.872667 184334.6114 951.393937 536481.2013
590.260635 568.449035 335533.0887 1158.709671 671541. 9233

The sample input shown here is an abridged version. The actual datasets were

distributed over the network on multiple data sites. The results obtained for a test run

with data of the nature above, the following results were obtained.

49

Results (Abridged)

Global Minimum and Maximum Values for each column

1.072523
1000.0

0.0 0.0 1.40947 1.710467
865.262736 432982.5973 1365.443297 1000000.0

Normalized Values

0.4107373542594024 0.5495562795160058 0.4517744510282653
0.6491557866621734 0.39533401203878155

0.20483183985938153 0.2747781397580029 0.11294361278016196
0.32406123825549377 0.09883222015225111

0.6024159199296908 0.13738907045686063 0.16551352503977415
0.5280737887448299 0.37754971381932634

0.3006711226945257 0.06869453465057115 0.04137838125994354
0.2635202389302622 0.0943861455973873

0.6503355618477997 0.03434726790314474 0.044664000771838866
0.4978032887156543 0.4243065234953063

0.32463094315304336 0.017173633373713207 0.011166000195269279
0.2483849896487941 0.10607534797138221

0.161778634306202 0.008586817264715765 0.002791500047662539
0.12367583974880411 0.026517554150401298

0.08035247988278132 0.004293408054498721 6.978750113382443E-4
0.061321264432249306 0.006628105685156048

0.03963940317160783 0.0021467040272493605 1.744687534119515E-4
0.030143977507091545 0.0016557435690947352

0.8536240324081105 0.2837076806691465 0.48405549069858655
0.8048577801142757 0.7892029339385748

0.42627517893373557 0.14185384033457324 0.12101387265155102
0.4019122349815449 0.1972994506071994

0.21260075219654812 0.07092692016728662 0.030253468157113852
0.20043946241517954 0.04932357980935559

0.10576353882795438 0.035463459505784146 0.007563367041588024
0.09970307649855666 0.012329612102394624

0.5528817694139772 0.017731729752892073 0.01960818807486053
0.4158947071332418 0.3064429530935586

0.7764408847069886 0.0088658654543052 0.013760720174792114
0.5739905231837039 0.6032910133423697

0.3876836055837115 0.004432932149293437 0.003440180044852809
0.28647860651625906 0.1508214705081482

0.44357338365615906 0.5026571813442802 0.4461684259474971
0.6434526802977885 0.3864506491440825

0.22124985455775986 0.2513285906721401 0.11154210647532646
0.32120968507330133 0.09661137943357635

0.36035650864372015 0.6261050100278442 0.4517343494165417
0.6608182195763096 0.423838737595174

0.6801782548223968 0.3130525050139221 0.4257321484731183
0.6964522786721183 0.5364804084650348

0.5898207082755017 0.6569669666208762 0.7749343525405472
0.848439516742278 0.671541361482338

50

Table 6.1 presents a summary of the total execution time for various SIzes of

datasets in a Local Area Network and Figure 6.1 shows the difference in the execution

times for both the approaches.

Number of Centralized Distributed
Records Approach (in ms) Approach (in ms)

10 2 10093
100 953 10572

1000 ,: 1584 11174
10000 11280 12045

f--- 25000 19985 12986
'---- 50000 41063 14193

Table 6.1: Execution Times for the Normalization algorithm in a Local Area Network

50000 T---

40000

~ 30000
8
~
E

~ 20000
1=

10000

10

Normalization: Timing Results for a local Area Network

100 1000 10000 25000 50000
Number of Records

~Centralized __ Distributed

Figure 6.1: Timing Results the Normalization algorithm in a Local Area Network

51

Table 6.2 presents a summary of the total execution time for various sizes of

datasets in a Wide Area Network and Figure 6.2 shows the difference in the execution

times for both the approaches.

Number of Centralized Distributed
Records Approach (in ms) Approach (in ms)

10 3 20675
100 1121 22128

1000 14752 23284
10000 58163 24117
25000 70034 25283
50000 95178 26131

Table 6.2: Execution Times for the Normalization algorithm in a Wide Area Network

Normalization: Timing Results for a Wide Area Network

..
" 60000 c
0
u

" ~
E
~
" 40000 E
;::

10 100 1000 10000 25000 50000
Number of Records

~ Centralized ___ Distributed

Figure 6.2: Timing Results the Normalization algorithm in a Wide Area Network

52

6.2 FRACTAL DIMENSION

Sample Input (Abridged)

0.904760414 0.750513162 0.001091628 0.932206113 0.407564752
0.739706064 0.864580806 0.259423693 0.011418937 0.356706385
0.424688613 0.078193912 0.153734069 0.033618253 0.376185509
0.729208003 0.763120257 0.81536836 0.943994791 0.184170159
0.94646033 0.398229453 0.222784329 0.176225524 0.922198721
0.124967392 0.516087951 0.711096562 0.890662873 0.411399253
0.563390336 0.267818823 0.459989708 0.77024769 0.813885662
0.382414158 0.900767957 0.653436678 0.612937901 0.874448675
0.171765921 0.124435936 0.296652074 0.631348493 0.684876036
0.378876905 0.161410775 0.42654536 0.313310403 0.232790797
0.449745042 0.157385243 0.891801018 0.589122929 0.987613927
0.567700996 0.602806213 0.371143355 0.21021309 0.714086604
0.255867668 0.087695473 0.468571623 0.053235229 0.034510664
0.14056215 0.672202741 0.914448435 0.009408939 0.616517722
0.031873775 0.243668039 0.275138193 0.343516135 0.883287067
0.97361543 0.088462958 0.006037269 0.503342929 0.542236925
0.520164863 0.750445934 0.340843093 0.631344558 0.646232528
0.860985541 0.950320833 0.312228982 0.612159987 0.234560139

0.397552305 0.572512484 0.856433221 0.241987076 0.766401098
0.036515194 0.827046468 0.634690871 0.5103693 0.548223592
0.315227562 0.061213551 0.389608188 0.553344671 0.609341084
0.55011439 0.884756061 0.40060435 0.546643909 0.801152882
0.333780101 0.265699934 0.650382835 0.621150656 0.53191915
0.189299685 0.323530236 0.601776414 0.257489409 0.014817414
0.109534611 0.950736971 0.399120502 0.973776989 0.675134591
0.708144024 0.893788511 0.10829746 0.800678545 0.675315414
0.48400863 0.660084574 0.901932356 0.088998619 0.266764217
0.102632789 0.167947575 0.624461557 0.048280511 0.374226558
0.4903537 0.975016942 0.852711187 0.687892242 0.001038837
0.98228721 0.254021122 0.952769735 0.362897777 0.23039182
0.889392779 0.937807216 0.415990575 0.654767107 0.679089268
0.547029756 0.590564596 0.146221548 0.253154055 1
0.437302612 0.960276301 0.08488191 1 0.836566837
0.134236786 0.550800623 1 0.624244059 0.912227382
0.196445825 1 0.505775257 0.430126011 0.478878893
1 0.280940063 0.323681051 0.082927406 0.641381264
0.216719789 0.616373528 0.615742464 0.418062896 0.007025302

The sample input shown here is an abridged version. The actual datasets were

distributed over the network on multiple data sites. The results obtained for a test run

with data of the nature above, the following results were obtained.

53

Results (Abridged)

r = 1/2 r = 1/4
1.1.1.1.1 285 1.1.1.1.1 5
1.1.1.1.2 313 1.1.1.1.2 10
1.1.1.2.1 339 1.1.1.1.3 12
1.1.1.2.2 314 1.1.1.1.4 9
1.1.2.1.1 306 1.1.1.2.1 13

2.2.1.2.2 323 1.1.2.1.3 10
2.2.2.1.1 341 1.1.2.1.4 6
2.2.2.1.2 303 1.1.2.2.1 7
2.2.2.2.1 317 1.1.2.2.2 6
2.2.2.2.2 324 1.1.2.2.3 11

r = 1/32 r = 1/64
1.1. 26. 31. ~~4 1 1.10.13.13.31
1.1.28.3.24 1 1.10.39.45.3
1.1.6.28.10 1 1.10.52.52.24
1.10.13.30.10 1 1.10.9.41.21
1.10.19.29.5 1 1.11.25.19.5

9.9.25.2.3 1 9.64.6.20.48
9.9.29.8.10 1 9.7.11.49.45
9.9.4.25.16 1 9.7.11.63.45
9.9.7.29.18 1 9.8.30.48.19
9.9.9.30.28 1 9.9.5.23.55

FD = 2.788957407590457
R = 0.9404928239071236

FD = 1.0678309573125557
R = 0.8293589297488905

FD = 0.11581529365873741
R = 0.7949366774769094

FD = 0.004621321783703003
R = 0.793912851301406

The FD: 2.788957407590457
The R: 0.9404928239071236

r = 1/8 r = 1/16
1.1.1.1.3 2 1.1.1.4.12 1
1.1.1.1.5 1 1.1.1.8.10 1
1.1.1.2.1 1 1.1.1.9.10 1
1.1.1.2.6 1 1.1.10.13.4 1
1.1.1.4.2 1 1.1.10.3.4 1

8.8.8.7.8 1 9.9.8.5.11 1
8.8.8.8.2 2 9.9.8.7.10 1
8.8.8.8.6 1 9.9.8.7.15 1
8.8.8.8.7 1 9.9.9.15.10 1
8.8.8.8.8 1 9.9.9.4.2 1

r = 1/128
1 1.103.51.112.13 1
1 1.104.115.60.44 1
1 1.104.121.123.18 1
1 1.105.26.21.119 1
1 1.105.31.32.87 1

1 99.86.24.87.66 1
1 99.88.62.13.61 1
1 99.89.54.7.38 1
1 99.9.102.77.9 1
1 99.97.94.103.11 1

54

Table 6.3 presents a summary of the total execution time for various SIzes of

datasets in a Local Area Network and Figure 6.3 shows the difference in the execution

times for both the approaches.

..
" c
8
II
.!!!

Number of Centralized Distributed
Records Approachlin ms~ A~oach (in ms~

10 28 20048
100 752 21613

1000 1759 21934
10000 58125 25912
20000 80474 30945

1------ 30000 92087 33117
40000 n2790 42283
50000 146183 51743
60000 165251 56276

Table 6.3: Execution Times for the Fractal Dimension algorithm in a Local Area Network

Fractal Dimension: Timing Results for a Local Area Network

200000.---

150000

~ 100000

50000

10 100 1000 10000 20000 30000 40000 50000 60000
Num ber of Records

-+-Centralized --- Distributed

Figure 6.3: Timing Results the Fractal Dimension algorithm in a Local Area Network

55

Table 6.4 presents a summary of the total execution time for various sizes of

datasets in a Wide Area Network and Figure 6.4 shows the difference in the execution

times for both the approaches.

Number of Centralized Distributed
Records Approach (in ms) Approach (in ms)

10 27. 103425
100 7512 121533

1000 ·-17509 177342
10000 165433. 185630
20000 189342 192153
30000 240342 213436
40000 453262 235121
50000 648211 247345
60000 812424 245841

Table 6.4: Execution Times for the Fractal Dimension algorithm in a Wide Area Network

Fractal Dimension: Timing Results for a Wide Area Network

1000000,-·--··--·-····----·----------,

800000

" " 600000 c
8
~

~
'E
:§. . 400000 E
;:

200000

10 100 1000 10000 20000 30000 40000 50000 60000
Number of Records

__ Centralized Approach --Distributed Approach

Figure 6.4: Timing Results the Fractal Dimension algorithm in a Wide Area Network

56

6.3 APruoru

Sample Input (For generating Maximal Frequent Itcmsets)

Site 1 Site 2

1 3 4 1 2 3 4
2 3 5 2 3 5
1 2 3 5 1 2 3 5
2 5 2 5

3 4 5
1 2 4
1 3

Results (Maximal Frequent Itemsets)

Site 1 Site 2

Frequent Itemsets Frequent Itemsets

1 (2) 1 (4)

1 3 (2) 1 2 (3)
2 (3) 1 3 (3)
2 3 (2) 2 (5)
2 3 5 (2) 2 3 (3)
2 5 (3) 2 5 (3)
3 (3) 3 (5)

3 5 (2) 3 5 (3)
5 (3) 5 (4)

Maximal Frequent Itemsets Maximal Frequent Itemsets

1 3 (3) 1 2 (3)
2 3 5 (2) 1 3 (3)

2 3 (3)
2 5 (3)
3 5 (3)

Similarity Matrix Generation

Iteration 1 (FI 1 to FI 2)

The first element {1 3} from FI 1 is searched in FI 2. The second element is a perfect

match. Hence we consider the existence of {1 3} as a value of 1.

The second element {2 3 5} from FI 1 is searched in FI 2.

57

{2 3 5) ~-7 {2 3 5) -7 0

Since there exists no perfect match, a subset search is initiated. The subsets are created in

a tree fashion to enable search based on the size of the subset. The results of the subset

search yield the following values:

{2 3 5) ~-7 {2 3 5) -7 0
{2 3) ~-7 {2 3) -7 1
{2 5) ~-7 {2 5) -7 1
{3 5) ~-7 {3 5) -7 1

Note that {2 3 5} is a subset of itself. Therefore the existence of {2 3 5} is considered as

% since one of the four subsets failed to match. The similarity matrix entry for S]S2 is

calculated as (1 + %) / 2 = 0.875.

To
From S]

S] 1

S2

Iteration 1 (FI2 to FI 1)

The first element {I 2} from FI 2 is searched in FI 1.
{I 2} ~-7 {I 2} -7 0

S2
0.875

1

The second element {I 3} from FI 2 is searched in FI 1.
{1 3} ~-7 {1 3} -7 1

The third element {2 3} from FI 2 is searched in FI 1.
{2 3} ~-7 {2 3} -71(Amatchbasedonthesubsetof{235}inFIl)

The fourth element {2 5} from FI 2 is searched in FI 1.
{2 5} ~-7 {2 5} -7 1 (Amatchbasedonthesubsetof{23 5} inFI 1)

The fifth element {3 5} from FI 2 is searched in FI 1.
{3 5} ~-7 {3 5} -7 1 (A match based on the subset of {2 3 5} in FI 1)

The similarity matrix entry for S2S] is calculated as (1 + 1 + 1 + 1) / 5 = 0.8

To
From S) S2

S] 1 0.875

S2 0.8 1

58

Table 6.5 presents a summary of the total execution time for various sizes of

datasets distributed over several sites and the algorithm execution performed using the

centralized approach.

Number 10,000 25,000 50,000 75,000 100,000
of Sites Records Records Records Records Records

2 18,334, ••. · 27,453 49,565 81,532 105,648

3 26,321 .40,453 67,453 106,732 126,321

4 31,743 58,454 91,343 117,321 156,896

5 44,982 71,454 100,565 149,697 178,564

6 53,683 89,454 121~538 163,998 184,232

7 70,564 110,768 149,576 189,432 197,546

Table 6.5: Execution Times in Milliseconds for the Centralized approach

The results were plotted to measure performance changes as well as to determine

the quality of the results. Figure 6.5 shows the centralized approach implementation of

the Apriori algorithm.

CENTRALIZED APPROACH

200,000

~ 150,000
'" "C
C
0
u
III

~ 100,000
E
.:
III
E 50,000 i=

2 3 4 5 6 7

Number of Sites

-"-10,000 Records ---25,000 Records ---50,000 Records 75,000 Records 100,000 Records

Figure 6.5: Timing Results for the Centralized approach

59

It is clear that as the number of records increase, the execution time of the

centralized algorithm increases dramatically due to the overhead of combining all the

data at the central site before executing the algorithm. Table 6.7 shows the results

obtained when a comparison of both the approaches was performed. The results illustrate

that the distributed approach is more consistent and requires a shorter execution time in

the long run.

Number 10,000 25,000 50,000 75,000 100,000
of Sites Records Records Records Records Records

2 -61.1% -22.5'10 17.3'10 40.7'10 45.7'10
3 ,,: "24:4'10 7.4'10 29.3'10 49.5'10 52.0'10

4 - -.,;~ -9.5'10 29.9'10 43.5'10 48.3'10 55.7'10
5 <0,0 . -"17.8'10 37.1 '10 44.4'10 55.0'10 I- 56.9'10 -
6 . >,26,3'10 46.4'10 51.0'10 56.4'10 54.6'10
7 :38.0'10 54.2'10 58.7'10 60.2'10 54.7'10

Table 6.7: Percentage Improvement of Distributed approach Vs Centralized approach

The percentage of improvement of the distributed framework over the centralized

framework is shown in Figure 6.7.

Percentage Improvement of Distributed Approach vs. Centralized Approach

80%

60% -
40%

• ..
c
0
u 20%

• E 0%
'E 5 6 7
.!: -20%
• e
j:: -40%

'f>·
-60%

-80%

Number of Sites

-'""- 10,000 Reco rds _ 25,000 Records _ 50,000 RecordS-- 75,000 Records '. 100,000 Records

Figure 6.7: Percentage improvement

61

7. CONCLUSION

This project describes a service oriented distributed data mining framework that

provides improved performance and hierarchical structure for developing composite

service using core data mining services. This framework neither has any overhead of

downloading data to a particular location for mining nor fixed location for data mining

tools. In this framework a user will be able to mine data available at multiple sites, using

distributed data mining algorithms and executing them on more than one site. The

framework allows users ability to discover and use new algorithms and data sets on the

Internet and for their data-mining tasks dynamically. The proposed framework alleviates

the major limitations of existing approaches:

• The proposed framework allows coordination between different local models. This

results in better accuracy in global learning models.

• Aggregate component development allows creation of new data mining components

using the existing components. Moreover, the proposed middleware supports

integration of heterogeneous technologies, data and algorithms.

• The proposed service oriented approach is dynamic where datasets and algorithms are

searched based on the client's requirements. Thus, the location and data format for

62

datasets may not be known beforehand. The proposed framework Improves the

flexibility and performance of a data mining system.

• The proposed service oriented framework is built on open standards and is not tightly

coupled but can execute components on heterogeneous platforms and languages.

Moreover, Web provides a flexible platform for performing distributed data mining.

63

REFERENCES

[1] ACM SIGKDD, Workshop on Distributed Data Mining, http://www.eecs.wsu.edu

l~hillollDKD/dpks2000.html, 2000.

[2] ADELFI: A model for Deployment of High Perfonnance Solutions on

IntemetlIntranets, Esprit Framework-4 Project, http://rubv.doc.ic.ac.uk/adelfi/,

2000.

[3] Foster I., Kesselman c., Nick 1., Tueck S. The Physiology of The Web,

http://www.globus.org/researchlpapers/osga.pdf, 2002.

[4] Bailey S., Grossman R., Sivakumar H., Papyrus: A system for Data Mining over

Local and Wide Area Clusters and Super Clusters, http://citeseer.

nj.nec.coml408839.html, May 1999.

[5] Ning Chen, Nuno C. Marques, Narasimha Bolloju, A Web Service-based approach

for data mining in distributed environments, CENTRIA, Department of

Infonnation FCT, New University of Lisbon, Portugal,

http://centria.di.feLunl. pt/~nchenlpapers/icei s. pdf

[6] Moore, Benjamin Seth" Distributed Mathematics as a Web Service," M Eng.

Thesis, University of Louisville, April 2002. (Kumar).

[7] Business Process Execution Language for Web Service, Version 1.1,

www.ibm.comldeveloperworks/libraray/ws-bpel/.

[8] Box, Don, et a1. Simple Object Access Protocol (SOAP) 1.1. NC: World Wide

Web Consortium, May 2000. http://www.w3.org/ TRiSOAP/, March 2002.

64

[9] Chattratichat 1., Darlington J., Guo Y., Hedvall S., Kohler M., Syed 1., An

Architecture for Distributed Enterprise Data Mining, Proceedings of the HPCN

Conference, Amsterdam, 1999.

[10] Christensen, Erik, et aI. Web Services Description Language (WSDL). NC:

World Wide Web Consortium, http://www. w3.org/TRlwsdI.html, March 2001.

[11] Paul Donachy, et aI., Web Enabled Distributed Data Mining and Conversion of

Unstructured Data, Belfast e-Science Centre, ttp://www.nesc.ac.uklevents/

ahm2003/AHMCD/pdf/070.pdf

[12] Kassie, Fitsum"Smart Card Application Development Using Web Services",

M.Engg. Thesis, University of Louisville, Dec. 2003. (Kumar)

[13] Elmaghraby, A. S. , Kantardzic, M and Wachowiak, M. P.," Data Mining From

Multimedia Patient Records", book chapter, accepted for publication in the book

"Data Mining and Knowledge Discovery Approaches Based on Rule Induction

Techniques", editors Triantaphyllou E. and Felici G., Kluwer Academic

Publishers, Spring 2004.

[14] Goldszmidt M. and Jensen D., ed., Recommendations Report - DARPA

Workshop on Knowledge Discovery, Data Mining and Machine Learning,

Carnegie Mellon University, June 1998.

[15] Grossman R., Data Space Project, University of Illinois at Chicago,

http://www.dataspaceweb.net/dataspace. January 2000.

[16] Grossman R., S. Bailey, A. Ramu, B. Malhi and A. Turinsky, The Preliminary

Design of Papyrus: A System for High Performance, Distributed Data Mining

over Clusters, in "Advances in Distributed and Parallel Knowledge Discovery",

65

H. Kargupta and P. Chan, editors, AAAI Press/The MIT Press, Menlo Park,

California, 2000, pages 259-275.

[17] Grossman, Robert," Integrating Distributed Bioinformatics Data Using Data

Webs", Practical Innovation - BioCon 2003, San Diego, CA, February 2003.

[18] Guo Y., Sutiwaraphun J., Integrating Knowledge in Distributed Data Mining,

pew Conference, 1998.

[19] Guo Y., Sutiwaraphun J., Probing Knowledge in Distributed Data Mining,

Proceedings of the PAKDD Conference, Beijing, China, 1999.

[20] IEEE IPDSP, Workshop on High Performance Data Mining,

http://www.cs.rpi.eduizaki/HPMD/, 2000.

[21] Kantardzic, M., Data Mining: Methods, Tools and Techniques, IEEE Press and

John Wiley, 2002, Pages 380.

[22] Kantardzic M., Kumar A, Toward Autonomic Distributed Data Mining With

Intelligent Web Services, Proceedings of The 2003 International Conference on

Information and Knowledge Engineering, IKE'03, June 23-26, 2003, Las Vegas,

pp. 544-550.

[23] Kantardzic M., Djulbegovic B., Hamdan H., A Data Mining Approach to

Improving Polycythemia Vera Diagnostics, Special Issue of Computers and

Industrial Engineering Journal on Data Mining and Knowledge Discovery, Vol

43., December 2002, pp. 765-773 .

[24] Kantardzic M., H. Hamdan, B. Djulbegovic, Artificial Neural Networks (ANN)

Approach in Diagnostics of Polycythemia Vera, International Journal of

Computers and Their Applications, Vol. 8, No.2, June 2001, pp. 74-79.

66

[25] Kantardzic M., Sadeghian P., Knowledge Discovery in Semantically Distributed

Data: The Fractal Dimension Approach, submitted for The Nineteenth National

Conference on Artificial Intelligence AAAI 2004, San Jose, CA, July 2004.

[26] Kantardzic M., Soliman M., Global Model of Distributed Data Mining is not

Summing of Local Models, in "Data Mining IV", editors: N. Ebecken, C.

Breibbia, and A. Zanasi, WIT Press, Southampton, UK, 2004., pp. 89-98.

[27] Kantardzic M.,. Emam A. Z., Elmaghraby A. S., Min H., A Novel Approach for

Profile Association Rule Mining from Mixed Databases, The 6th World

Multiconference on Systems, Cybernetics, and Informatics SCI 2002, Orlando,

Florida, July 2002.

[28] Kantardzic, M., Zurada, J., "New Generation of Data Mining Applications",

accepted for publications by IEEE Press and John Wiley, Spring 2004.

[29] Kantardzic, M., Sagedhian, P., Chun, S., "The Time Diversification Monitoring of

a Stock Portfolio: An Approach Based on a Fractal Dimension", accepted for the

ACM Symposium on Applied Computing SAC 2004, Nicosia, Cyprus, March 2004.

[30] Kantardzic, M., and Badia, A. "Efficient Implementation of Strong Negative

Associations Rules", Proceedings of the 2003 International Conference on

Machine Learning and Applications, Los Angeles, CA, June 2003, pp. 152-158

(The Best Paper A ward).

[31] Kantardzic, M., Badia, A., "A Data Mining Framework for Semantically

Distributed Databases", Proceedings of The Seventh lASTED International

Conference in Artificial Intelligence and Soft Computing (ASC 2003), Banff,

Canada, July 2003.

67

[32] Kubera, F. etal, "Unraveling the Web Service Web: An introduction to SOAP,

WSDL, UDDI", IEEE Internet Computing, Vol. 6, No.2, March/April 2002.

[33] Kantardzic, M., Soliman, M., "An Approach for Mining Frequent Sequences in

Distributed Environment", Proceedings of the 2002 International Conference on

Information and Knowledge Engineering, Las Vegas, Nevada, June 2002.

[34] Kargupta H., "Distributed Knowledge Discovery from Heterogeneous Sites",

DIADIC Laboratory, University of Maryland at Baltimore County,

http://www .cs.umbc.edU/~hillol.

[35] Kargupta H., Chan P., Advances in Distributed and Parallel Knowledge

Discovery, AAAI Press/ MIT Press, 1999.

[36] Kargupta H., Park B., Johnson E., Hershberger D., Huang W., Ayyagari R., Ghosh

S., Distributed Knowledge Discovery from Heterogeneous Sites, Project

Proposal, http://www.cs.umbc.edu/~hillollDKD/ddm research.html.

[37] Kargupta H., Park B., Hershberger D., Johnson E., Collective Data Mining: A

New Perspective Toward Distributed Data Mining, in "Advances in Distributed

and Parallel Knowledge Discovery", eds.: Hillol Kargupta and Philip Chan,

MIT / AAAI Press, 1999.

[38] Krishnaswamy, S., Zaslasvky, A., and Loke, S, W., Internet Delivery of

Distributed Data Mining Services: Architectures, Issues and Prospects, Chapter 7

in the book Architectural Issues of Web-enabled Electronic Business, Murthy,

V.K. and Shi, N. (eds.), 2003, pp. 113 - 127, Idea Group Publishing.

[39] Krishnaswamy, S., Loke, S, W., and Zaslavsky, A., Towards Anytime Anywhere

Data Mining E-Services, Proceedings of the Australian Data Mining Workshop

68

(ADM'02) at the 15th Australian Joint Conference on Artificial Intelligence, (eds)

S.J. Simoff, G.J. Williams, and M. Hegland. Canberra, Australia, December 2002,

pp. 47 - 56.

[40] Kumar, A., Kantardzic, M., Ramaswamy, P., Sadeghi an, P., "An Extensible

Service Oriented Distributed Data Mining Framework", Proceedings of

International Conference on Machine Learning and Applications ICMLA04,

Louisville, December 2004, pp. 161-169.

[41] Little, M., "Transactions and Web Services", Communications of the ACM, Vol.

46, No.1 0, pp.29-34, 2003.

[42] Kumar, A., Kantardzic, M., "Web Application Protocols and Services for

Distributed Data Mining", The Ninth ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining - Workshop on Data Mining Standards,

Services and Platforms (DM-SSP 03), Washington, DC, August 2003.

[43] McKarthy J., Phenomenal Data Mining: From Data to Phenomena, SIGKDD

Explorations, Vol. 1, No.2, 2000, pp. 24-29.

[44] Papazoglou, M.P. and Georgakopoulos, D. ," Service Oriented Computing,"

Communications of the ACM, Vol. 46, No. 10, pp. 25-28, 2003.

[45] Park, B. H., Kargupta H, "Distributed Data Mining: Algoriths, Systems and

Applications", http://citeseer.nj.nec.com/540909 .html, 2000.

[46] Parsarthy, S. and Subramanian, R. "An Interactive Resource aware Framework for

Distributed Daya mining", Newsletter of the IEEE Technical Committee on

Distributed Processing, Spring 2001, pp. 24-32.

69

[47] Prodromidis A. L., Chan P. K., Stolfo S. J., "Meta-Learning in Distributed Data

Mining Systems: Issues and Approaches", In ''Advances in Distributed and

Parallel Knowledge Discovery ", Kargupta and Chan (eds.), MITIAAAI Press,

1999.

[48] Software Architecture for DecisionCentre: A Web-based Distributed Data Mining

System, Data Mining Group, Imperial College, PCW, 1997.

[49] Sayal, Mehmet and Scheuermann, Peter, " A Distributed Clustering Algorithm for

Web-Based Access Patterns", in Proceedings of the 2nd ACM-SIGMOD

Workshop on Distributed and Parallel Knowledge Discovery, Boston, August

2000.

[SO] Kantardzic, M., et aI., "Data Mining Approach in a Selection of Laparoscopic

Techniques", Proceedings of the loth International Conference on Intelligent

Systems, Arlington, VA, June 2001, pp. 1-4.

[SI] Soliman, M., Kantardzic, M., "Towards Building a Distributed Mining

Approach", Proceedings of the 2nd IEEE International Symposium on Signal

Processing and Information Technology, Marrakesh, Marocco, December 2002,

pp.30S-309.

[S2] Steve J. , "A Wireless Printing Application Using Web Service Technology", MS.

Thesis, University of Louisville, May 2002, (Kumar).

[53] Subramonian R., Parthasarathy, "An Architecture for Distributed Data Mining",

Fourth International Conference on Knowledge Discovery and Data Mining, New

York, 1998, pp. 44-S9.

70

ApPENDIX

Publish.java - This program lets the algorithm/data servIce providers to publish their
service with the registry.

package registry;

import java.net.PasswordAuthentication;
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashSet;
import java.util.lterator;
import java.util.Properties;
import java.util.Set;

import javax.xml.registry.BulkResponse;
import javax.xml.registry.BusinessLifeCycleManager;
import javax.xml.registry.BusinessQueryManager;
import javax.xml.registry.Connection;
import javax.xml.registry.ConnectionFactory;
import javax.xml.registry.JAXRException;
import javax.xml.registry.RegistryService;
import javax.xml.registry.infomodel.EmailAddress;
import javax.xml.registry.infomodel.lnternationalString;
import javax.xml.registry.infomodel.Organization;
import javax.xml.registry.infomodel.PersonName;
import javax.xml.registry.infomodel.Service;
import javax.xml.registry.infomodel.ServiceBinding;
import javax.xml.registry.infomodel.TelephoneNurnber;
import javax.xml.registry.infomodel.User;

1**
* @author swamy

*
* To change the template for this generated type comment go to
* Window>Preferences>Java>Code Generation>Code and Comments
*1

public class Publish (

Connection connection = null;

public void makeConnection(String queryUrl, String publishUrl) (

IIString httpProxyHost="";
IIString httpProxyPort="SOSO";
IIString httpsProxyHost="";
IIString httpsProxyPort="SOBO";

Properties props = new Properties();
props.setProperty("javax.xml.registry.queryManagerURL", queryUrl);
props.setProperty("javax.xml.registry.lifeCycleManagerURL", publishUrl);

Ilprops.setProperty("com.sun.xml.registry.http.proxyHost",
II httpProxyHost);
Ilprops.setProperty("com.sun.xml.registry.http.proxyPort",
II httpProxyPort);
Ilprops.setProperty("com.sun.xml.registry.https.proxyHost",

71

II httpsProxyHost);
Ilprops.setProperty("com.sun.xml.registry.https.proxyPort",
II httpsProxyPort);

try (

II Create the connection, passing it the configuration properties

ConnectionFactory factory = ConnectionFactory.newInstance();
factory.setProperties(props);
connection = factory.createConnection();
System.out.println("Created connection to registry");

catch (Exception e) (
e.printStackTrace();
if (connection != null)

try (
connection.close();

catch (JAXRException je)

public String executePublish(String username, String password,
String orgName, String orgDescription, String personName,
String phoneNumber, String email, String classificationScheme,
String classificationName, String classificationValue,
String serviceName, String serviceDescription,
String svcbindingDescription, String svcbindingAccessURI)

RegistryService rs = nUll;
BusinessLifeCycleManager blcm = null;
BusinessQueryManager bqm = null;

String id = nUll;

try (
rs = connection.getRegistryService();
blcm = rs.getBusinessLifeCycleManager();
bqm = rs.getBusinessQueryManager();
System.out.println("Got registry service, query manager, and life
cycle manager");

II Get authorization from the registry
PasswordAuthentication passwdAuth = new PasswordAuthentication(

username, password.toCharArray());

Set creds = new HashSet();
creds.add(passwdAuth);
connection.setCredentials(creds);
System.out.println(".Established security credentials");

II Create organization name and description
Organization org = blcm.createOrganization(orgName);
InternationalString s = blcm

.createInternationalString(orgDescription);
org.setDescription(s);

II Create primary contact, set name
User primaryContact = blcm.createUser();
PersonName pName = blcm.createPersonName(personName);
primaryContact.setPersonName(pName);

II Set primary contact phone number
TelephoneNumber tNum = blcm.createTelephoneNumber();
tNum.setNumber(phoneNumber);
Collection phoneNums= new ArrayList();
phoneNums.add(tNum);
primaryContact.setTelephoneNumbers(phoneNums);

II Set primary contact email address

72

EmailAddress emailAddress = blcm.createEmailAddress(email);
Collection emailAddresses = new ArrayList();
emailAddresses.add(emailAddress);
primaryContact.setEmailAddresses(emailAddresses);

II Set primary contact for organization
org.setPrimaryContact(primaryContact);

II II Set classification scheme to NAICS
II ClassificationScheme cScheme =
II bqm.findClassificationSchemeByName(null, classificationScheme);
II
II
II
II
II
II

II
II

II Create and add classification
Classification classification

blcm.createClassification(cScheme,
classificationName,classificationValue);

Collection classifications = new
ArrayList();
classifications.add(classification);
org.addClassifications(classifications);

II Create services and service
Collection services = new ArrayList();
Service service = blcm.createService(serviceName);
InternationalString is = blcm

.createlnternationalString(serviceDescription);
service.setDescription(is);

II Create service bindings
Collection serviceBindings = new ArrayList();
ServiceBinding binding = blcm.createServiceBinding();
is = blcm.createlnternationalString(svcbindingDescription);
binding.setDescription(is);

II allow us to publish a fictitious URL without an error
binding.setValidateURI(false);
binding.setAccessURI(svcbindingAccessURI);
serviceBindings.add(binding);

II Add service bindings to service
service.addServiceBindings(serviceBindings);

II Add service to services, then add services to organization
services.add(service);
org.addServices(services);

II Add organization and submit to registry
II Retrieve key if successful
Collection orgs = new ArrayList();
orgs.add(org);

BulkResponse response blcm.saveOrganizations(orgs);

Collection exceptions response.getExceptions();

if (exceptions == null)
System.out.println("Organization saved");

Collection keys = response.getCollection();
Iterator keylter = keys.iterator();
if (keylter. hasNext ()) (

} else (

javax.xml.registry.infomodel.Key orgKey
(javax.xml.registry.infomodel.Key) keyIter

}

.next ();
id = orgKey.getld();
System.out.println("Organization key is " + id);

Iterator excIter = exceptions.iterator();
Exception exception = null;
while (excI ter. hasNext ()) {

73

exception = (Exception) excIter.next();
System.err.println("Exception on save: "

+ exception.toString());

catch (Exception e)
e.printStackTrace() ;

finally {
// At end, close connection to registry
if (connection != null) {

try {
connection.close();

catch (JAXRException je)

return id;

public static void main(String[] args)

String username
String password

"testuser";
"testuser";

String orgName = "The Coffee Break by Swamy";
String orgDescription = "Purveyor of the finest coffees. Established

1969";

String personName = "Swamy";
String phoneNurnber = "(502) 314-8312";
String email ="swamy@priest.com";

String classificationScheme = "ntis-gov:naics";
String classificationName = "Snack and Nonalcoholic Beverage";
String classificationValue = "722213";

String serviceName = "Published Using Program";
String serviceDescription = "My Service Description";

String svcbindingDescription = "My Binding Description";
String svcbindingAccessURI = "http://Coffee.com:8080/sb/";

//Additional parameters end here

String queryURL = "http://localhost:8080/RegistryServer/";
String publishURL = "http://localhost:8080/RegistryServer/";

Publish P = new Publish();

p.makeConnection(queryURL, publishURL);

p.executePublish(username, password, orgName, orgDescription,
personName, phoneNurnber, email, classificationScheme,
classificationName, classificationValue, serviceName,
serviceDescription, svcbindingDescription,
svcbindingAccessURI);

74

QueryRegistry.java - This program lets the algorithm/data service providers to publish
their service with the registry.

package registry;

import java.io.IOException;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Collection;
import java.util.lterator;
import java.util.Properties;

import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.xml.registry.BulkResponse;
import javax.xml.registry.BusinessQueryManager;
import javax.xml.registry.Connection;
import javax.xml.registry.ConnectionFactory;
import javax.xml.registry.FindQualifier;
import javax.xml.registry.JAXRException;
import javax.xml.registry.JAXRResponse;
import javax.xml.registry.RegistryService;
import javax.xml.registry.infomodel.Organization;
import javax.xml.registry.infomodel.RegistryObject;
import javax.xml.registry.infomodel.Service;

public class QueryRegistry extends HttpServlet

II edit these if behind firewall, otherwise leave blank
String httpProxyHost "";

String httpProxyPort "";

Printwriter out;

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

doPost(req, res);

public void doPost(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

out = res.getWriter();
res.setContentType("text/html");

String regUrli
String regUrlp
String company

"http://localhost:8080/RegistryServer";
"https:lllocalhost:80BO/RegistryServer";
"%";

out.println("regUrli
out.println("regUrlp
out.println("company

try {

" + regUrli + "
");
" + regUrlp + "
");
" + company + n
");

executeQueryTest(regUrli, regUrlp, company);
catch (JAXRException e) {

out.println("Error during the test: " + e);
catch (NullPointerException e) {

out.println("Null Pointer Error during the test: " + e);

out.close();

public void executeQueryTest(String file, String filep, String cname)
throws JAXRException {

75

try (
Properties props = new Properties();
props.setProperty("javax.xml.registry.queryManagerURL", file);
props.setProperty("javax.xml.registry.lifeCycleManagerURL", filep);
props.setProperty("javax.xml.registry.factoryClass",

"com.sun.xml.registry.uddi.ConnectionFactorylmpl");

props.setProperty("com.sun.xml.registry.http.proxyHost ",
httpProxyHost);

props.setProperty("com.sun.xml.registry.http.proxyPort ",
httpPrcxyPort);

ConnectionFactory factory = ConnectionFactory.newlnstance();
factory.setProperties(props);
Connection conn = factory.createConnection();
RegistryService rs = conn.getRegistryService();
BusinessQueryManager bqm = rs.getBusinessQueryManager();

ArrayList names = new ArrayList();
names.add(cname);

Collection fQualifiers = new ArrayList();
fQualifiers.add(FindQualifier.SORT BY_NAME_DESC);

BulkResponse br = bqm.findOrganizations(fQualifiers, names, null,
null, null, null);

if (br. getStatus () "'= JAXRResponse. STATUS SUCCESS) (
out.println("Successfully queried the"

+ "registry for organization matching the "
+ "name pattern: \"" + cname + "\"" +

n
");

Collection orgs = br.getCollection();
out.println("Results found: " + orgs.size() + "
");
Iterator iter = orgs.iterator();
while (iter. hasNext ()) (

Organization org = (Organization) iter.next();
out.println("Organization Name: " + getName(org) +

n
")i
out.println("Organization Key: " +

org.getKey() .getld()

}

} else {

+ n
"};
out.println("Organization Description: "

+ getDescription(org) + "
");

Collection services = org.getServices();
Iterator siter = services.iterator();
while (si ter. hasNext ()) (

Service service = (Service) siter.next();
out.println("\tService Name: " +
getName(service) + "
");
out.println("\tService Key: "
+ service.getKey() .getld() + "
");
out.println("\tService Description: "
+ getDescription(service) + "
");

out.println("One or more JAXRExceptions "
+ "occurred during the query operation:");
Collection exceptions = br.getExceptions();
Iterator iter = exceptions.iterator();
while (iter.hasNext()) (

Exception e = (Exception) iter.next();
out.println(e.toString()) ;

catch (JAXRException e) (
e.printStackTrace();

76

private String getName(RegistryObject ro) throws JAXRException {
try (

return ro.getName() .getValue();
catch (NullPointerException npe) (

return u";

private String getDescription(RegistryObject ro) throws JAXRException {
try (

return ro. getDescription () . getValue () ;
catch (NullPointerException npe) {

return "";

ShowDataSets.java - This program displays the data sets published in the registry based
on the search perfonned by the user.

package registry;

import java.io.IOException;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Collection;
import java.util.lterator;
import java.util.Properties;
import java.util.StringTokenizer;

import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.xml.registry.BulkResponse;
import javax.xml.registry.BusinessQueryManager;
import javax.xml.registry.Connection;
import javax.xml.registry.ConnectionFactory;
import javax.xml.registry.FindQualifier;
import javax.xml.registry.JAXRException;
import javax.xml.registry.JAXRResponse;
import javax.xml.registry.RegistryService;
import javax.xml.registry.infomodel.Organization;
import javax.xml.registry.infomodel.RegistryObject;
import javax.xml.registry.infomodel.Service;
import javax.xml.registry.infomodel.ServiceBinding;

public class ShowDataSets extends HttpServlet (

II edit these if behind firewall, otherwise leave blank
String httpProxyHost "";
String httpProxyPort "";

PrintWriter out;

boolean showAll;

String serviceField "";

int checkBoxCount;

String dataAccessURI;

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException (

doPost(req, res);

77

public void doPost(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException (

out = res.getWriter();
res.setContentType("text/html");

string regUrli
String regUrlp
String company

"http://localhost:8080/RegistryServer";
"https://localhost:8080/RegistryServer";
n%";

checkBoxCount = 1;

try (
serviceField = req.getParameter("keyword");
//out.println("Keyword: " + serviceField + "
");
if (serviceField.equals(""))

showAll true;
else

showAll false;
catch (NullPointerException npe)

showAll = true;

out.println("<html>");
out.println("<head>");
out.println ("<ti tle>DDM usiIJn JWS: Data Sets</ti tle>") ;
out

out

.println("<meta http-equiv=\"Content-Type\"
content=\"text/html; charset=iso-8859-1\">");

. println ("<I.ink href=\ "webmine. css \" rel= \" stylesheet \"
type=\"text/css\">");

out.println("</head>");
out.println("<body>");

//out.println("<center>");
out.println("<table width=\"100%\">");
out.println("<tr>");
out

.println("<th align=\"center\" valign=\"middle\"
bgcolor=\"'F6F9FE\">");
out

.println("<font color=\"'006699\" size=\"5\"
face=\"Verdana, Arial, Helvetica, sans-serif\">");
out.println("Results");
out.println("</th>");
out.println("</tr>");
out.println("</table>") ;
out.println("
");

out.println("<p>Registry URI: " + regUrli + "

");

try (
executeQueryTest(regUrIi, regUrlp, company);

catch (JAXRException e) (
out.println("Error during the test: " + e);

catch (NullPointerException e) (
out.println("Null Pointer Error during the test: " + e);

out.close();

public void executeQueryTest(String file, String filep, String cname)
throws JAXRException (

try (
Properties props = new Properties();
props.setProperty("javax.xml.registry.queryManalJerURL", file);
props.setproperty("javax.xml.registry.lifeCycleManagerURL", filep);
props.setProperty("javax.xml.registry.factoryClass",

"com.sun.xml.registry.uddi.ConnectionFactoryImpl");

78

props.setProperty("com.sun.xml.registry.http.proxyHost ",
httpProxyHost);

props.setProperty("com.sun.xml.registry.http.proxyPort ",
httpProxyPort);

ConnectionFactory factory = ConnectionFactory.newlnstance();
factory.setProperties(props);
Connection conn = factory.createConnection();
RegistryService rs = conn.getRegistryService();
BusinessQueryManager bqm = rs.getBusinessQueryManager();

ArrayList names = new ArrayList();
names.add(cname);

Collection fQualifiers = new ArrayList();
fQualifiers.add(FindQualifier.SORT_BY NAME DESC);

BulkResponse br = bqm.findOrganizations(fQualifiers, names, null,
null, null, null);

if (br. getStatus () == JAXRResponse. STATUS __ SUCCESS)
/*
* out.println("Successfully queried the" + "registry for
* organization matching the" + "name pattern: \"" +
* serviceField + "\"" + "

 H);
*/

out
.println("<font face=verdana

size=4px>Data Sets");
Collection orgs = br.getCollection();

Iterator iter orgs.iterator();
int dsCount = 0;
out

.println("<form name=datasetform method=post
action=ShowAlgorithms>");
out.println("<table border=l>");

while (iter.hasNext()) {
boolean printOnce = true;
Organization org = (Organization) iter.next();

Collection services = org.getServices();
Iterator siter = services.iterator();

while (siter.hasNext()) {
Service service = (Service) siter.next();
String serviceName = getName(service);
StringTokenizer st = new
StringTokenizer(serviceName);

while (st. hasMoreTokens ()) {
String token = st.nextToken();
if (token.equalsIgnoreCase("Dataset")

II
token.equalsIgnoreCase ("Data")) {

if (printOnce) {
out.println("<tr>");
out

.println("<td bgcolor=#006699
bordercolor=#006699><font
color=#FFFFFF>Organization Name
</td>");

out

.println("<td bgcolor=#006699
bordercolor=#006699 colspan=2><font
color=#FFFFFF>"

79

+ getName(org) + "(" getDescription(org)+ ")</td>");
out.println("</tr>");
out.println("<tr>");
out
.println("<td bordercolor=#FFFFFF>Service Name</td>");
out
.println("<td bordercolor=#FFFFFF>Parameters</td>");
out
.println("<td bordercolor=#FFFFFF>Service Bindings</td>");
}

printOnce = false;
if (showAll) {

} else

out.println("<tr>");
out
.println("<td bordercolor=#FFFFFF><input type=checkbox name=datasetKey"
+ checkBoxCount + " value=\""
+ service.getKey() .getld()
+ n\">");
//checkBoxCount++;
out.println("" + serviceName
+ "</td>");
out
.println("<td bordercolor=#FFFFFF>"
+ getDescription(service) + "<ltd>");
Collection service Bindings = service
.getServiceBindings();
Iterator sbiter = serviceBindings.iterator();
out.println("<td bordercolor=#FFFFFF>");
while (sbiter.hasNext()) {

ServiceBinding serviceBinding = (ServiceBinding) sbiter.next();
dataAccessURI = serviceBinding.getAccessURI();
out.println("1 <a href=\""
+ dataAccessURI + "?WSDL\">");
out.println(dataAccessURI + "?WSDL");
out.println(" I");
out
.println("<input type=hidden name=dataAccessURI"
+ checkBoxCount
+ " value=\"n
+ dataAccessURI + "\"");
checkBoxCount++;

out.println("</td>");
out.println("</tr>");
//out.println(serviceName +
getDescription(service) + "
");
dsCount++;
continue;

String serviceDescr = getDescription(service);
StringTokenizer stDesc = new StringTokenizer(
serviceDescr, ",");
while (stDesc.hasMoreTokens())

String tokenDesc = stDesc.nextToken()
. trim();
for (int i = 1; i < tokenDesc.length(); i++)

String region = tokenDesc
.substring(O, i);
if (serviceField
.equalsIgnoreCase(region))

out.println("<tr>");
out
.println("<td bordercolor=#FFFFFF><input
type=checkbox name=datasetKey"
+ checkBoxCount
+ " value=\""
+ service
.getKey ()
.getId()
+ n\">");

80

out.println(""
+ serviceName
+ "</td>");
out
.println("<td bordercolor=#FFFFFF>"

+ getDescription(service)
+ "<ltd>");

Collection serviceBindings
.getServiceBindings() ;

service

Iterator sbiter = serviceBindings
. i terator () ;

out.println("<td bordercolor=#FFFFFF>");

while (sbiter.hasNext()) {
ServiceBinding service Binding
sbiter.next();
dataAccessURI = serviceBinding

.getAccessURI();
out.println("1 <a href=\""

+ dataAccessURI
+ "?WSDL\">");

out.println(dataAccessURI
+ "?WSDL");

out.println(" I");

out

(ServiceBinding)

.println("<input type=hidden
name=dataAccessURI"

checkBoxCount++;

+ checkBoxCount
+ " value=\""
+ dataAccessURI
+ n\ "n) ;

out.println("</td>");
out.println("</tr>");
//out.println(serviceName +
// getDescription(service) +
// "
");
dsCount++;
/ /break;
continue;
)

out.println("</table>");
out.println("
");
out

} else

.println("<input type=submit name=submit
value=\"Show Algorithms\">");
//out.println("<input type=hidden name=dataAccessURI
value::::\"n
// + dataAccessURI + "\"");
out.println("</form>") ;
out.println("<p>Datasets found: " + dsCount +
n</p>");

out.println("One or more JAXRExceptions "
+ "occurred during the query operation:");

Collection exceptions = br.getExceptions();
Iterator iter = exceptions.iterator();
while (iter.hasNext()) {

Exception e = (Exception) iter.next();
out.println(e.toString());

81

out.close();
catch (JAXRException e) (

e.printStackTrace();

private String getName(RegistryObject ro) throws JAXRException {
try (

return ro.getName() .getValue();
catch (NullPointerException npe) (

return

private String getDescription(RegistryObject ro) throws JAXRException {
try (

return ro.getDescription() .getValue();
catch (NullPointerException npe) (

return "". ,

Show Algorithms.java - This program queries the registry and displays the appropriate
algorithms based on the data sets selected by the user.

package registry;

import java.io.*;
import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;

import javax.xml.registry.*;
import javax.xml.registry.infomodel.*;

public class ShowAlgorithms extends HttpServlet

II edit these if behind firewall, otherwise leave blank
String httpProxyHost;
String httpProxyPort;

PrintWriter out;

boolean showAll;

String dataset Field;

String datasetDescription;

Vector datafieldList;

Vector parameterVals;

String dataAccessURI;

String algoAccessURI;

IIVector algofieldList new Vector();

Service service;

Vector dataAccessURIs;

82

Vector algoAccessURIs;

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

doPost(req, res);

public void doPost(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

out ~ res.getWriter();
res.setContentType("text/html");

httpProxyHost ;
httpProxyPort ;

showAll ~ true;
datasetField ~ ;
datasetDescription ~ ;
datafieldList new Vector();
parameterVals new Vector();

dataAccessURI "":
algoAccessURI ;
//Vector algofieldList new Vector();

service ~ null;
dataAccessURIs
algoAccessURIs

String regUrli
String regUrlp
String company

algoAccessURIs

/*
* try {

new Vector();
new Vector();

''http://136.165.67.140:8080/RegistryServer'';
"https://136.165.67.140:8080/RegistryServer";
"%";

new vector();

* datasetField ~ req.getParameter("datasetKeyl");
* //out.println("Keyword: .. + service Field + ..
 ..);
* if(datasetField.equals(....)) showAll ~ true; else showAll
* catch(NullPointerException npe) { showAll ~ true; }
*/

out.println("<html>");
out.println("<head>");
out.println("<title>DDM usign JWS: Algorithms</title>");
out

out

.println("<meta http-equiv~\"Content-Type\"
content~\"text/html; charset~iso-8859-1\">");

false; }

.println("<link href~\"webmine.css\" rel~\"stylesheet\"
type~\"text/css\">");

out.println("</head>");
out.println("<body>");

//out.println("<center>");
out.println("<table width~\"lOO%\">");
out.println("<tr>");
out

.println("<th align~\"center\" valign~\"middle\"
bgcolor~\"#F6F9FE\">");

out
.println("<font color~\"#006699\" size~\"5\"

face~\"Verdana, Arial, Helvetica, sans-serif\">");
out.println("Results");
out.println("</th>");
out.println("</tr>");
out.println("</table>");
out.println("
");

83

out.println("<p>Registry URI: " + regUrli + "

");

Enumeration en ~ req.getParameterNames();
dataAccessURIs ~ new Vector();
parameterVals ~ new Vector();

Vector cnt ~ new Vector();
while (en.hasMoreElements())

String paramName ~ en.nextElement() .toString();
if (paramName. startsWi th ("datasetKey")) {

String parameterVal ~ req.getParameter(paramName);
parameterVals.add(parameterVal);
cnt.add(paramName.substring(lO));
showAll ~ false;
Ilout.println("Name ~ " + parameterName + "Value "+
II parameterVal);

Enumeration enl ~ req.getParameterNames();
while (enl.hasMoreElements()) {

String parameterName ~ enl.nextElement() .toString();
if (parameterName.startsWith("dataAccessURI")

&& (cnt.contains(parameterName.substring(13))))
String parameterVal ~ req.getParameter(parameterName);
dataAccessURIs.add(parameterVal);
out.println("Name ~ " + parameterName + " Value ~ "

+ parameterVal + "
");
showAll ~ false;

Ilif(parameterName.equals("dataAccessURI")) dataAccessURI
II req.getParameter("dataAccessURI");
if (parameterVals.size() ~~ 0)

showAll ~ true;

try {
executeQueryTest(regUrli, regUrlp, company);

catch (JAXRException e) {
out.println("Error during the test: " + el;

catch (NullPointerException e) {
out.println("Null Pointer Error during the test: " + e);

out.close();

public void executeQueryTest(String file, String filep, String cname)
throws JAXRException {

try {
Properties props ~ new Properties();
props.setProperty("javax.xml.registry.queryManagerURL", file);
props.setProperty("javax.xml.registry.lifeCycleManagerURL", filep);
props.setProperty("javax.xml.registry.factoryClass",

"com.sun.xml.registry.uddi.ConnectionFactorylmpl");

props.setProperty("com.sun.xml.registry.http.proxyHost ",
httpProxyHost);

props.setProperty("com.sun.xml.registry.http.proxyPort ",
httpProxyPort);

ConnectionFactory factory ~ ConnectionFactory.newlnstance();
factory.setProperties(props);
Connection conn ~ factory.createConnection();
RegistryService rs ~ conn.getRegistryService();
BusinessQueryManager bqm ~ rs.getBusinessQueryManager();

ArrayList names ~ new ArrayList();
names.add(cname);

84

datafieldList = new Vector();

Collection fQualifiers = new ArrayList();
fQualifiers.add(FindQualifier.SORT BY~NAME~DESC);

BulkResponse br = bqm.findOrganizations(fQualifiers, names, null,
null, null, null);

if (br.getStatus() JAXRResponse.STATUS SUCCESS)

out
.println("<form name=algorithmform

method=post action=WebMineServlet>");

/*
* out.println("Successfully queried the" + "registry for
* organization matching the" + "name pattern: , +
* serviceField + .. , + ..

 ");
*/

if (! showAll)
out

.println("<font face=verdana
size=4px>Data Set(s)
");
Collection tempOrgs = br.getCollection();
Iterator templter = tempOrgs.iterator();
while (templter.hasNext ()) (

Organization tempOrg = (Organization)
templter.next();

Collection tempServices = tempOrg.getServices();
Iterator tempSiter = tempServices.iterator();
while (tempSiter.hasNext()) (

Service tempService = (Service)
tempSiter.next();

String key = tempService.getKey() .getld();
for (int i = 0; i < parameterVals.size();

i++) {

85

if (key.equals(parameterVals.get(i)))
(

out.println("<table
border=l>");
out.println("<tr>");
out

.println("<td
bgcolor=#006699

bordercolor=#006699><font
color=#FFFFFF>Dataset
information</td>");

out.println("</tr>");
out.println("<tr>");
out

.println("<td
bordercolor=#FFFFFF><s

trong>Key: "

+ key + "</td>");
out.println("</tr>");
out.println("<tr>") ;
out

.println("<td
bordercolor=#FFFFFF><s

trong>Service Name:
"

+ getName(tempService)

+ "<ltd>");
out.println("</tr>");
out.println("<tr>");
datasetDescription =
getDescription(tempService);

out.println("<td bordercolor=#FFFFFF>Parameters:
");
StringTokenizer serviceParameters = new StringTokenizer(
getDescription(tempService), ","I;

while (serviceParameters.hasMoreTokens()) (
String attribute = service Parameters
.nextToken();
out.println("<input type=radio name=\"attribute--"

+ dataAccessURIs.get(i)
+ "\" value="
+ attribute
+ ">");

out.println(attribute + "
");
}

out.println("</td>");
out.println("</tr>");
out.println("</table>");
out.println("
");
StringTokenizer datasetTokens = new StringTokenizer(
datasetDescription);
while (datasetTokens.hasMoreTokens())

String datasetToken = dataset Tokens
.nextToken();
int indexOfColon = datasetToken

.indexOf(":");
Ilout.println(indexOfColon + "
");
String fieldType = datasetToken.substring(
indexOfColon + 1, datasetToken
.length());
if (fieldType. endswi th (" , "))
fieldType = fieldType.substring(O,
fieldType.length() - 1);
//out.println(fieldType + "
");
datafieldList.add(fieldType.trim()
.toLowerCase());
}

Ilout.println("Data Field
II List: " + datafieldList +
II "

");

out
.println("Algorithms");
Collection orgs = br.getCollection();
Iterator iter = orgs.iterator();

int dsCount = 0;

for (int i = 0; i < parameterVals.size(); i++)
out.println("<input type=hidden name=datasetKey" + i

+ " value=" + parameterVals.get(i) + ">");
out.println("<table border=I>");

while (iter.hasNext()) (
boolean printOnce = true;
Organization org = (Organization) iter.next();

Collection services = org.getServices();
Iterator siter = services.iterator();

while (si ter. hasNext ()) (
service = (Service) siter.next();
String serviceName = getName(service);
StringTokenizer st = new
StringTokenizer(serviceName);

while (st.hasMoreTokens())
String token = st.nextToken();
if

(token.equalsIgnoreCase("Algorithm")
II

token.equalsIgnoreCase("Algorithms"))
if (printOnce) {

86

} else

out.println("<tr>");
out.println("<td bgcolor=#006699 bordercolor=#006699><font
color=#FFFFFF>Organization Name </td>");
out
.println("<td bgcolor=#006699 bordercolor=#006699 colspan=2><font
color=#FFFFFF>"

+ getName (org)
+ "("
+ getDescription(org)
+ ")</td>");
out.println("</tr>") ;
out.println("<tr>");
out
.println("<td bordercolor=#FFFFFF>Service Name</td>");
out
.println("<td bordercolor=#FFFFFF>Parameters</td>");
out
.println("<td bordercolor=#FFFFFF>Service Bindings</td>");
}

printOnce = false;
if (showAll) {

out.println("<tr>");
out

.println("<td bordercolor=#FFFFFF><input type=radio name=algorithmKey value=\""
+ service.getKey() .getld()
+ "\ ">") ;
out.println("" + serviceName
+ "</td>");
out
.println("<td bordercolor=#FFFFFF>"
+ getDescription(service)
+ "<ltd>");
Collection serviceBindings = service
.getServiceBindings();
Iterator sbiter = serviceBindings.iterator();
out.println("<td bordercolor=#FFFFFF>");
while (sbi ter. hasNext ()) {

ServiceBinding serviceBinding = (ServiceBinding) sbiter
.next ();

algoAccessURI = serviceBinding.getAccessURI();
out.println("1 <a href=\""
+ algoAccessURI + "\"?WSDL>");

out.println(algoAccessURI + "?WSDL");
out.println(" I");
algoAccessURIs.add(service.getKey()
.getId());
algoAccessURIs.add(algoAccessURI);
}

out.println("</td>");
out.println("</tr>");
//out.println(serviceName +
// getDescription(service) + "
");
dsCount++;
continue;

String serviceDescr = getDescription(service);
StringTokenizer stDesc = new StringTokenizer(
serviceDescr, ":");
while (stDesc.hasMoreTokens())

String tokenDesc = stDesc.nextToken();
int indexOfOpenBracket = tokenDesc
.indexOf("(");
int indexOfCloseBracket = tokenDesc
.indexOf(")");
String fieldSet = tokenDesc. substring (

indexOfOpenBracket 4 1,
indexOfCloseBracket);

StringTokenizer fieldSetTokens = new StringTokenizer(
fieldSet, ",H);

Vector algofieldList = new Vector();

87

while (fieldSetTokens.hasMoreElements())
algofieldList.add(fieldSetTokens
.nextToken() .trim()
.toLowerCase());

Collections.sort(algofieldList);
Collections.sort(datafieldList);
Ilout.println("Algo Field List: " +
II algofieldList + "
");
Ilout.println("Data Field List: " +
II datafieldList + "
");
if (new Subset() . compare (datafieldList,

algofieldList)) (
out.println("<tr>");
out
.println("<td bordercolor=#FFFFFF><input type=radio name=algorithmKey value=\""

+ service.getKey()
. getId ()
+ "\ ">");

out.println(""
+ serviceName
+ "</td>");
out
.println("<td bordercolor=#FFFFFF>"

+ getDescription(service)
+ "<ltd>");

Collection serviceBindings = service
.getServiceBindings();

Iterator sbiter = serviceBindings
.iterator();

out
.println("<td bordercolor=#FFFFFF>");
while (sbi ter. hasNext ()) (

ServiceBinding service Binding
.next();

algoAccessURI = service Binding
.getAccessURI();

out.println("1 <a href=\""
+ algoAccessURI
+ "?WSDL\">");

out.println(algoAccessURI
+ "?WSDL");

out.println(" I");

algoAccessURIs.add(service
.getKey() .getld());

algoAccessURIs
.add(algoAccessURI);

out.println("</td>");
out.println("</tr>");

dsCount++;

break;
}

out.println("</table>");
out.println("
");
out

(ServiceBinding) sbiter

.println("<input type=submit name=submit value=\"Run Algorithm\">"};
for (int i = 0; i < dataAccessURIs.sizel). i++}
out.println("<input type=hidden name=dataAccessURI" + i

+ " value=\"" + dataAccessURIs.get(i) + "\">");
out.println("<input type=hidden name=algoAccessURI

88

value=\""
+ algoAccessURIs.toString(} + "\">"};
out.println("</form>"};
out.println("<p>Algorithms found: " + dsCount + "</p>"};

} else {
out.println("One or more JAXRExceptions "

+ "occurred during the query operation:"};

Collection exceptions = br.getExceptions(};
Iterator iter = exceptions.iterator(};
while (iter.hasNext(}) {

out.close(} ;

Exception e = (Exception) iter.next(};
out.println(e.toString(}};

catch (JAXRException e) {
e.printStackTrace(};

private String getName(RegistryObject ro} throws JAXRException {
try {

return ro.getName(} .getValue(};
catch (NullPointerException npe) {

return "". .

private String getDescription(RegistryObject ro} throws JAXRException {
try {

return ro.getDescription(} .getValue(};
catch (NullPointerException npe) {

return "";

AprioriImpl.java - Implementation of the Apriori algorithm as a web service.

package aprioriservice;

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Enumeration;
import java.util.StringTokenizer;
import java.util.Vector;

public class AprioriImpl implements AprioriIF

int pass; II number of passes

int total; II total number of frequent itemsets

int minsup; II minimal support of itemset

String filename; II the filename of the database

Item root; II the root item of the Trie

89

BufferedWriter writer;11 the buffer to write the output to

DataHandler dh; II the handler for the database

StringBuffer returnStr; II the buffer that holds all the messages

String output filename;

1**
* Constructur for creating a Apriori object.

*
*1

public Apriorilmpl () {}

1**
* The workhorse method for the basic implementation of the Apriori
* algorithm.
*1

public void findFrequentSets(String filename, String minsup, String outfile) {

1**

this.pass = 0;
this.total = 0;
this.outputfilename = outfile;
this.minsup = Integer.parselnt(minsup);
this.dh = new DataHandler(filename);
this.root new Item(O);
returnStr = new StringBuffer();
try {

if (!outfile.equals(""))
writer new BufferedWriter(new FileWriter(outfile));

catch (Exception e)

boolean running = true;
int candidates = 0, transactions

while (running) {
this.pass++;

0, pruned 0, itemsets;

candidates = this.generateCandidates(this.root, new Vector(), 1);
transactions = this.countSupport();
pruned = this.pruneCandidates(this.root);

itemsets candidates - pruned;

II correct the candidate count on first pass for printing
if (this.pass == 1)

candidates = total;

total += itemsets;
if (itemsets <= this.pass && this.pass > 1) {

running = false;

IISystem.out.println("pass: " + this.pass + ", total: " + total
II + ", candidates: " + candidates + ", pruned: " +
pruned) ;

returnStr.append("pass: " + this.pass + ", total: " + total
+ ", candidates: " + candidates +" pruned: " +

pruned + "\n");

* Method for generating new candidates. Copies the siblings of an item to
* its children.

90

* @param item
* the item to which generated items are added
* @param depth
* the depth of recursion
* @return the number of new candidates generated
*/

public int generateCandidates(Item item, Vector current, int depth) (
Vector v = item.getChildren();

/->*

Item child = item;
int generated = 0;

for (Enumeration e = v.elements(); e.hasMoreElements();)
child = (Item) e.nextElement();
current.add(child);

if (depth == this.pass - 1) (
generated += this.copySiblings(child, v, current);

else (
generated += this.generateCandidates(child, current, depth

+ I);

current.remove(child);

return generated;

* Method for copying the siblings of an Item to its children.

*
* @param item
* the item to which the siblings are copied
* @param siblings
* the siblings to be copied
* @param current

the current itemset to be generated
* @return the number of siblings copied
*/

public int copySiblings(Item item, Vector siblings, Vector current)
Enumeration e = siblings.elements();

/**

Item parent = item;
Item sibling = new Item();
int copied = 0;

while (sibling.getLabel() < parent.getLabel() && e.hasMoreElements())
sibling = (Item) e.nextElement();

while (e.hasMoreElements()) (
sibling = (Item) e.nextElement();
current.add(sibling);
if (this.pass <= 2

I I this
.checkSubsets(current,

this.root.getChildren(), 0,
I))

parent.addChild(new Item(sibling.getLabel()));
copied++;

current.remove(sibling);

return copied;

.. Checks if the subsets of the itemset to be generated are all frequent . ..
* @param current
.. the current itemset to be generated
* @param children

91

* the children in the trie on this depth
* @param mark
* the mark in the current itemset
* @param depth

depth of recursion
* @return true if the subsets are frequent, else false
*/

public boolean checkSubsets(Vector current, Vector children, int mark,
int depth) {

boolean ok = true;
Item child;
int index;
int i = depth;

if (children == null)
return false;

while (ok && (mark <= i)) {
index = children.indexOf(current.elementAt(i));
if (index >= 0) {

if (depth < this.pass - 1) {
child = (Item) children.elementAt(index);
ok = checkSubsets(current, child.getChildren(), i +

1,depth + 1);

/**

}

else {
ok false;

i--;

return ok;

* Method for counting the supports of the candidates generated on this
* pass.
*
* @return the number of transactions from which the support was counted
*/

public int countSupport()
int rowcount = 0;
int[] items;
this.dh.open();
for (items = this.dh.read(); items.length > 0; items

rowcount++;
if (this.pass == 1)

this.root.incSupport();

this.dh.read()) {

this.total += generateFirstCandidates(items);
else {

countSupport(root, items, 0, 1);

/**

if (this.pass == 1)
this.minsup

return rowcount;

this.minsup * rowcount / 100;

* Method generates the first candidates by adding each item found in the
* database to the children of the root item. Also counts the supports of
* the items found in the database.
*
* @param items

the array of integer items from the database
* @return the number of candidates generated
*/

public int generateFirstCandidates(int[] items)

92

Vector v = root.getChildren();
Enumeration e = v.elements();
Item item = new Item();
int generated = 0;

for (int i = 0; i < items.length; i++) {

while (e.hasMoreElements() && item.getLabel() < items[i]) {
item = (Item) e.nextElement();

if (item.getLabel() == items[i])
item.incSupport();
if (e.hasMoreElements())

item = (Item) e.nextElement();
) else if (item.getLabel() > items[i]) {

int index = v.indexOf(item);
Item child = new Item(items[i]);
child.incSupport();
this. root. addChild (child, index);
generated++;

) else {
Item child = new Item(items[i]);
child.incSupport();
this.root.addChild(child);
generated++;

return generated;

public void countSupport(Item item, int[] items, int i, int depth) (
Vector v = item.getChildren();

1**

Item child;
int tmp;
Enumeration e = v.elements();

II loop through the children to check
while (e.hasMoreElements()) {

child = (Item) e.nextElement();

II break, if the whole transaction is checked
if (i == items.length) {

break;

II do a linear search for the child in the transaction starting
II from i
tmp = i;
while (tmp < items.length && items[tmp] < child.getLabel())

tmp++;

II if the same item exists, increase support or go deaper
if (tmp < items.length && child.getLabel() == items[tmp])

if (depth == this.pass) {
child.incSupport();

else {
countSupport(child, items, tmp + 1, depth + 1);

i = tmp + 1;

* Method for pruning the candidates. Removes items that are not frequent
* from the Trie.

* @param item
* the item the children of which will be pruned

93

* @return the number of items pruned from the candidates
*1

public int pruneCandidates(Item item)
Vector v = item.getChildren();
Item child item;

1**

int pruned = 0;

for (Enumeration e = new Vector (v) .elements(); e.hasMoreElements();) {
child = (Item) e.nextElement();

II check infrequency, existence and that it is fully counted
if (child.getSupport() < this.minsup) {

v.remove(child);
pruned++;

else {
pruned += pruneCandidates(child);

return pruned;

* Method prints the itemsets to the system output and to a file if the name
* of an output file exists.
*1

public String printFrequentSets()
if (this.writer != null) {

print(root, "H);

1**

IISystem.out.println("\nnumber of frequent itemsets found: " +
this.total);
returnStr.append("\nnumber of frequent itemsets found: " + this.total +

"\n");

try {
this.writer.close();

catch (IOException e) {
e.printStackTrace();

IlgenerateSortedFile();

return returnStr.toString();

• Loops through the Trie recursively adding paths and subpaths to the
* output string along the way.

* @param item
the item where the recursion is

* @param str

* the string of the gatherd itemset
*1

public void print (Item item, String str)
Vector v = item.getChildren();

for (Enumeration e = v.elements(); e.hasMoreElements();)
item = (Item) e.nextElement();
try {

this.writer.write(str + item.getLabel() + "\n");
II " (" + item.getSupport() + ")\n");
this.writer.flush();

catch (Exception x) {
IISystem.out.println("no output file");
returnStr.append("no output file\n");

if (item.hasChildren())
print(item, str + item.getLabel() + " H);

94

public void generateSortedFile(String outputfilename) {

/**

try (

//Read the file contents into an arraylist
ArrayList al = new ArrayList(O);
BufferedReader in = new BufferedReader(new
FileReader(outputfilename));
String responseLine = null;
while{{responseLine=in.readLine{)) !=null)

StringTokenizer st = new StringTokenizer{responseLine);
//System.out.println{responseLine + ":" +

st.countTokens{));
al.add{String.valueOf{st.countTokens{)) + "." +
responseLine);

in.close();

//Sort the elements
Object[] arrayForSorting = al.toArray();
Arrays.sort{arrayForSorting);

//System.out.println("Elements : " + arrayForSorting.length);
Object[] invertArray = new Object[arrayForSorting.length];
for{int forward=O,reverse = arrayForSorting.length-l;forward <
arrayForSorting.length; forward++, reverse--) (

//System.out.println{"i = " + forward + " : " + "j = " +
reverse);
invertArray[reverse] = arrayForSorting[forward];

//Write to a new file
PrintWriter out = new PrintWriter(new BufferedWriter(new

FileWriter(outputfilename + "_sorted", false)));
for{int j=O;j<arrayForSorting.length;j++) (

StringTokenizer st = new
StringTokenizer(invertArray[j] .toString(), ":");
st.nextToken();
out.println(st.nextToken{));

out.close();

catch (Exception e) (
// TODO Auto-generated catch block
e.printStackTrace{);

* Main method for testing the algorithm.
*
* @param args

*
*/

the arguments can contain the filename of the test file and the
minimal support threshold and a filename for output

public static void main{String args[])
String testfile = "test.dat";
String outfile "";
String support "50";

//StopWatch sw
//sw.start{);

new StopWatch();

Apriorilmpl apriori = new Apriorilmpl();
apriori.findFrequentSets(testfile, support, outfile);
System.out.println(apriori.printFrequentSets());
/ /sw.stop ();
//sw.print{);

95

FractalDimensionlmpl.java - Implementation of the Fractal Dimension algorithm as a
web service.

package fractaldimensionservice;

import java.util.*;
import java.io.*;

public class FractalDimensionlmpl

public String findFD(String dataFileName, String normalizedFileName) (

String result = new String();

double elements[] [] null;
double min[] null;
double max[] = null;

BufferedReader in = null;
try (

in = new BufferedReader(new FileReader(dataFileName));

catch (FileNotFoundException fne)
re~ult = "File not found.";

int dimension = 0;
String responseLine
int i 0;

new String();

int j = 0;
try (

while ((responseLine = in. readLine ()) ! = null) (
IISystem.out.println("line = " + responseLine);
StringTokenizer stMain = new StringTokenizer(responseLine);
j = 0;
if (dimension == 0) (

dimension = stMain.countTokens();
elements = new double [dimension] [100000];
min new double[dimension];
max = new double[dimension];

IISystem.out.println(responseLine);
while (stMain.hasMoreTokens()) (

elements [jJ [iJ
Double.parseDouble(stMain.nextToken());

IISystem.out.print("elements[" + j + "] [" + i + "]" +
II elements [j] [i]);
if (i == 0) {

min[j]
max[j]

} else {

elements[j] [i];
elements[j] [i];

if (elements[j] [i] < min[j])
min[j] = elements[j] [i];

if (elements[j] [iJ > max[jJ)
max[j] = elements[j] [i];

IISystem.out.print("\tmin[" + j + "I" + min[j]);
I/System.out.print("\tmax[" + j + "I" + max[j] + "\n");

j++;

IISystem.out.println(};
i++;
j = 0;

in.close(};

catch (IOException ioe) {

96

result "Error reading file contents.";

double normalized 0;

try {
Printwriter out = new PrintWriter(new BufferedWriter(

new FileWriter(normalizedFileName)));
for (int s = 0; s < i; s++) {

for (int r = 0; r < dimension; r++) {
normalized = (elements[r] [s] - min[r]) I (max[r] - min[r]);

out.print(normalized);
IISystem.out.print(normalized);
I ISystem. out. print (elements [r] [s]) ;
if (r != dimension - 1)

out.print("\t");

out.println();

out.close();
catch (IOException ioe) (

result = "Error writing normalized file.";

result = processData(normalizedFileName);
return result;

private String processData(String normalFileName)

double xArray[] = new double[7];
double yArray[] = new double[7];
StringBuffer returnVal = new StringBuffer();

int arr = 0;
for (int r = 2; r <= 128; r *= 2, arr++) {

BufferedReader in = null;
try (

in = new BufferedReader(new FileReader(normaIFileName));
catch (FileNotFoundException fne) (

return "Normalized file not found.";

Hashtable cellTab = new Hashtable();
String responseLine = new String();

IISystem.out.println(recieveStr);
try {

while ((response Line = in. readLine ()) ! = null) (

StringTokenizer st = new StringTokenizer(responseLine);
String cellld = "";
while (st.hasMoreTokens()) (

IlreturnVal.append(responseLine + "\n");

int x = (int) Math.ceil(Double.parseDouble(st
.nextToken())
* r);

if (x == 0)
x = 1;

cellld = cellld + String.valueOf(x) +

if (cellId.trim().length() != 0) (

cellld = cellld.substring(O, cellld.length() - 1);
IIIf the table already contains the Cell rD, increment
/ / it.

97

if (ceIITab.containsKey(cellId)) (
int cellValue = Integer.parselnt(ceIITab
.get(ceilld) .toString());

cellValue++;
celITab.remove(cellld) ;
cellTab.put(cellld,

String.valueOf(ceIIValue));
} else (

catch (IOException ioe)

//Otherwise add a new entry
ceIITab.put(cellld, "1");

return "Could not read file contents.";

int sum = 0;

Enumeration enum = ceIITab.keys();
while (enum.hasMoreElements()) (

Object key = enum.nextElement();
sum += Integer.parselnt(ceIITab.get(key) .toString())
Integer.parselnt(ceIITab.get(key) .toString());

yArray[arr]
xArray[arr]

Math.log(sum) I Math.log(2);
Math.log(l.O / r) I Math.log(2);

IlreturnVal.append("arr =" + arr + "r 11" + r + "x "+
II xArray[arr] + " y = " + yArray[arr] + "\n");

writeResults(cellTab, r, returnVal);

calculateFD(xArray, yArray, returnVal);

return returnVal.toString();

private void calculateFD(double[] xVal, doubler] yVal,
StringBuffer returnVal) (

double meanX 0;
double meanY 0;

doubler] coeff_corr = new double[4];
double fd[] = new double[4];

for (int i = 0; i < 4; i++)
double surnX 0;
double sumY = 0;

//System.out.println("Iteration" + (i+l));
for (int j = i; j < i + 4; j++)

surnX += xVal[j];
sumY += yVal[j];

meanX
me anY

surnX I 4;
sumY I 4;

IISystem.out.println("Mean of X: " + meanX);
IISystem.out.println("Mean of Y: " + meanY);

double SXX 0;
double SYY 0;
double SXY 0;

for (int k i;
SXX +=
SYY +=
SXY +=

k < i + 4; k++)
(xVal[k] - meanX) * (xVal[k] - meanX);
(yVal[k] - meanY) * (yVal[k] - meanY);
(xVal[k] - meanX) * (yVal[k] - meanY);

98

//System.out.println("SXX: " + SXX);
//System.out.println("SYY: " + SYY);
//System.out.println("SXY: " + SXY);

fd[i] = SXY / SXX;
//System.out.println("FD "+ fd[i]);
returnVal.append("FD = " + fd[i] + "\n");

coeff_corr[i] = SXY / Math.pow(SXX * SYY, 0.5);
//System.out.println("R "+ coeff_corr[i]};
returnVal.append("R = " + coeff corr[i] + "\n"};

double max = 0;
double theFD = 0;
for (int 1 0; 1 < 4; 1++) {

if (coeff_corr[l] > max)
max = coeff_corr[l];
theFD = fd[l];

//System.out.println("The FD: " + theFD);
//System.out.println("The R: " + max};

returnVal. append ("The FD: " + theFD + "\n");
returnVal.append("The R: " + max + "\n"};

private void writeResults(Hashtable ht, int r, StringBuffer returnVal) {

returnVal.append("r = 1/" + r + "\n");

Object[] keys = new Object[ht.size(}];
Enumeration enum = ht.keys();
int i = 0;
while (enum.hasMoreElements())

Object hashKey = enum.nextElement(};
keys[i++] = hashKey + " " + ht.get(hashKey};

Arrays.sort(keys);

for (int j = 0; j < keys.length; j++) {
String hashRow = keys[j] .toString(};
String hashKey = hashRow.substring(O, hashRow.lastIndexOf(".")};
String hashValue = hashRow.substring(hashRow.lastIndexOf("."} + 1,

hashRow.length()};
returnVal.append(hashKey + "\t" + hashValue + "\n"};

public static void main(String args[]} {
String result = new FractalDimensionImpl(} .findFD("C:\\comb_data.out",

"C:\\normalized.out"};
System.out.println(result) ;

99

Name

Address

Date of Birth

Education

Publications

CURRICULUM VITAE

Padmanabhan Ramaswamy

Department of Computer Engineering and Computer Science
University of Louisville
Louisville KY 40208

August 5 1976

M.S., Computer Engineering and Computer Science, 2002 - 2005
University of Louisville, Louisville, KY

Kerala University, Trivandrum, India
B.S., Computer Science, 1994 - 1998

"An Extensible Service Oriented Distributed Data Mining
Framework", Proceedings ofIntemational Conference on
Machine Learning and Applications ICMLA - 04.

100

	Toward autonomic distributed data mining using intelligent web services.
	Recommended Citation

	tmp.1423685735.pdf.6_sIv

