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ABSTRACT 

TOWARD AUTONOMIC DISTRIBUTED DATA MINING USING 

INTELLIGENT WEB SERVICES 

Padmanabhan Ramaswamy 

May 1,2005 

This study defines a new approa(;h for building a Web Services based 

infrastructure for distributed data mining applications. The proposed architecture 

provides a roadmap for "autonomic" func:tionality of the infrastructure hiding the 

complexity of implementation details and enabling the user with a new level of usability 

in data mining process. Web Services based infrastructure delivers all required data 

mining activities in a utility-like fashion enabling heterogeneous components to be 

incorporated in a unified manner. Moreover, this structure allows the implementation of 

data mining algorithms for processing data on more than one source in a distributed 

manner. The purpose of this study is to presl~nt a simple, but efficient methodology for 

determining when data distributed at several sites can be centralized and analyzed as data 

from the same theoretical distribution. This analysis also answers when and how the 

semantics of the sites is influenced by distribution in data. This hierarchical framework 

with advanced and core Web Services improves the current data mining capability 

significantly in terms of performance, scalability, efficiency, transparency of resources, 

and incremental extensibility. 
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1. INTRODUCTION 

Information technology and data mining technology have lingered too long in an 

era of over-specialization in which integration is just another specialty. We have made a 

tremendous progress in almost every aspect of computing through these specializations in 

computer science and engineering. Some components are smaller, others are faster, 

cheaper, easily connectable, more precise, and have more capacity. How do we deal with 

the complexity of the entire environment generated by all that "smaller/faster/cheaper" 

focus, where complexity is expressed by heterogeneity and large interconnectivity of 

powerful software, hardware, and data components? Though this question is applicable to 

different IT disciplines, our concentration is on solutions for the data mining domain. 

Data mining technology is a typical example where research has made a lot of progress in 

specific algorithms and tools, but there are not enough results on their integration and 

simplified use in complex, distributed Internet based environments [8, 11]. 

Moreover, the assumptions and approaches used for static and centralized data 

mining processes are not any more valid for distributed environment [9]. Distributed data 

mining (DDM) refers to the mining of distributed data sets using distributed 

computational resources. The physical distribution of data through different sites in 

general corresponds to a semantic distribution, i.e., the location of data may have a 



meaning that needs to be explicitly addressed in a distributed mining process [13]. Data 

mining algorithms should take place at a local level to discover characteristics of the local 

site, and at a global level where local data mining results may be combined to find global 

findings or compare the local semantics. In distributed data mining strategy, it is 

necessary to provide the means of learning how to analyze, combine, and integrate a 

number of separately learned dynamic local models. Real-time data mining analysis are 

highly desirable in many distributed applications on the Internet to update models when 

new events are detected [3, 4, 6]. Easy distribution of models in a networked environment 

is essential for maintaining up to date detection capabilities. 

Furthermore, the simplified implementation of algorithms and methods developed 

for centralized data mining applications could make significant influence on a reduced 

quality of data mining results [14] in the distributed environment. Therefore, it is 

necessary to reevaluate all data mining phases and all algorithms in the context of 

distributed resources applied for real-time data mining. This research shows the need for 

new phases or updated phases in the data mining process [11, 15]. 

1.1 MOTIVATION 

There are many reasons to investigate the use of web services in distributed data 

mining systems. Today most of the data mining is done in three-tier or four-tier system. 

In a three-tier system client sends the request to server, the server then runs mining 

algorithms on its local data. In a four-tier s:ystem, the server talks to another remote 

server, the remote server analyzes its local data. In both the systems, mining algorithms 
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and the data are tied to the server making it a closed system. An extendable and open 

distributed data mining system can be built by separating the algorithm and data. 

Using web services the interaction between algorithm and data can be made 

dynamic. Also, the algorithm can dynamically locate and analyze the data making it a 

much more robust system. The main motivation for this thesis involves the realization 

that using web services a dynamic distributed data mining system can be built. 

1.2 CONTRIBUTIONS 

The Web Services oriented approach proposed in this project is an attempt to 

build an infrastructure for DDM that will allow the integration of distributed, 

heterogeneous environment and complex interconnectivity. This approach will overcome 

the complexity of DDM applications and the limitations of existing infrastructures using 

Web Services technology [7, 8]. The proposed architecture will allow users to 

concentrate on what they want to aClcomplish rather than figuring how to solve all the 

technical details in tuning computing system for executing distributed data mining 

models. The Web Services based infrastructure delivers required data mining activities in 

a utility-like fashion enabling heterogeneous components to cooperate in a unified 

manner. The exchange and integration of data and tasks (tools, libraries, device drivers, 

middleware, etc.) will be implemented through open standards defining the identification 

of components, their communication protocol and negotiation protocol among them. The 

key characteristics of the proposed data mining framework are: 
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Dynamic: Dynamic discovery and use of data sets and data mining algorithms over the 

Internet based on user defined high-llevel specifications, and integration into distributed 

data mining process is one of the essential characteristics of the framework. It will tap the 

available resources, even negotiatt~ their use, adapting to the conditions in the 

environment and requirements of the mining process. 

Scalable: The Web Services based technologies used in this framework will allow 

integration of new data sources, algorithms, and tools available on the internet. In 

addition, clients from any platform will be ablie to use these new services. The framework 

will find a way to best interact with other neighboring systems. 

Transparent: The complexity of data mining should be transparent to the users of the. In 

the proposed framework user focuses on what he/she wants to achieve with data mining 

and not on how to perform data mining. Therefore, the proposed framework hides the 

complexity of data mining operation built over heterogeneous and distributed Internet. 

Extensible: The framework allows incremental and dynamic extensions of data sets and 

applied algorithms used in a distributed data mining process. Interactive configuration 

and dynamic reconfiguration of specified services under varying conditions, and 

adjustments of configurations to best handle changing web environment will be an 

important feature of our system. 
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1.3 THESIS ORGANIZATION 

The thesis is organized in seven chapters. Chapter 2 summarizes the related 

research and a model for Distributed Data Mining. Chapter 3 discusses the proposed 

service oriented architecture. Registration and implementation details for various 

distributed datasets and data mining algorithms are discussed in Chapter 4 and the data 

mining algorithms and their functionalities are explained in Chapter 5. The results are 

provided in Chapter 6 and the summary and conclusions are included in Chapter 7. 
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2. RELATED RESEARCH 

It is convenient to think of data mining systems that were developed during the 

past decade as comprising three generations: 1) client-server systems; 2) component and 

agent-based systems; and 3) systems based upon web services. The first generation of 

data mining system utilized local data, with either client-server or 3-tier architectures. 

With these systems, a client front end is used to access a server (possibly on the same 

machine) hosting the data mining application. With a client-server model, the server also 

manages the data; with a 3-tier modl~l, the data is accessed from another source using 

ODBC, JDBC, or other related protocol. The next generation of data mining systems was 

component-based. The components could be local, relying on Microsoft's COM or 

DCOM platforms, for example, or global, relying on systems such as Suns J2EE 

platform. Angoss is an example ofthe former, and Kensington is an example of the latter. 

More or less at the same time, various experimental agent-based data mining systems 

were developed. The basic assumption in these systems is that the data is distributed and 

agents are used to move the data, move the models produced by a local data mining 

system, or move the results of a local data mining computation. Today, very few agent­

based systems are used in practice. This is probably because no agent-based 

infrastructure, over which an agent-based data mining system must be built, was ever 

widely adopted. Examples of agent-based distributed data mining systems include JAM 

[19], Papyrus [7], and BODHI [14]. 
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Somewhat later, the next generation of service-based data mining systems began 

to emerge. These are generally buiilt using W3C's standardization of web services. 

Examples include DataSpace [9] and data mining systems developed by IBM, Microsoft 

and SAS that employ the XML for Analysis standard [3]. More general service-based 

infrastructures, such as grids or data grids [4], are also used for data mining, especially 

when large computational resources are required. A data grid uses Globus, or an 

equivalent infrastructure, to provide a security infrastructure and resource management 

infrastructure so that distributed computing resources can be used. In addition, Globus 

provides a high performance data transport mechanism called GridFTP. The Grid 

community has begun an effort called the Open Grid Service Architecture, or OGSA, that 

provides a web service based access to some grid services [17]. OGSA Database Access 

and Integration Services (OGSA DAIS) [16] combine grid services with web services for 

remotely accessing databases. 

2.1 EXISTING SYSTEMS 

There are a few integrated systems developed for distributed data mining. The 

JAM system developed by Professor Stolfo et a1. uses local learning, and outputs from 

local learning can be combined to build meta-learning. JAM provides a set of learning 

programs that execute models over data stored locally and also provides a set of agents 

for combining the results from multiple sites [10]. The Kensington [5] data-mining 

infrastructure developed by Professor Guo allows access to data from anywhere on the 

Internet. This remote access to data and mining framework are based on CORBA. The 

BODHI [9, 10] developed by Professor Kargupta is an agent based distributed knowledge 
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discovery system. It uses local learning schemes that can be combined at a central 

location to build meta-knowledge. The Papyrus system [4] developed by Professor 

Grossman is based on a layered infrastructure for high performance and wide area data 

mining. The distributed agent based mining environment (DAME) is developed by 

Krishnaswamy et al. The focus of DAME was to delivery data mining services via the 

Internet. It can support cluster of workstations connected by high performance network. 

The client server models for distributed data mining were developed by Chattratichat [2] 

called DecisionCenter, and the IntelliMiner [13] by Parthasarthy et al. These existing 

approaches in modeling data mining infrastructure suffer from one or more of the 

following limitations: 

• Selected data mining algorithms are applied independently on different sites and their 

results are integrated to provide global learning models. Lack of coordination 

between different sites during the process of local model building affects the quality 

of results in global learning models [7]. 

• In all the existing frameworks, a fixed number of distributed data mining algorithms 

are implemented. This rigid scheme of implementing proprietary data mining 

algorithms in a framework limits the integration of new improved algorithms 

developed by third party that are available on the Internet. The data mining 

framework must be flexible to allow incremental addition to the algorithm knowledge 

base. 
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• The data location and format of data has to be known before hand. In the Internet 

world data sources are added every day. A data mining framework must have the 

flexibility to discover new data sources for a particular domain dynamically. 

• Most of the existing implementations of data mmmg infrastructures are tightly 

coupled and require both ends of the communication system to use the same 

distributed object model. This may not work across heterogeneous environments and 

firewall or proxy servers [6]. 

• Most of the data mining models do not discuss the security/privacy structure for data 

access and execution of distributed agents. Moreover, there is no discussion of cost / 

charge for data access and distributed agent execution on the data site. 

• Some of the existing frameworks provide an integrated web of data such as 

DataSpace [4]. These frameworks allow queries to be executed on distributed data 

sets, but the data types in these frameworks are very limited. The goal of distributed 

data mining must include web of distributed algorithms and other resources in 

addition to web of data [5]. 

In the existing data mining approaches, the success or failure of a distributed data­

mining project is highly dependent on a particular person and a tool. Successful practice 

may not necessarily be repeated across the applications, especially when they are 

becoming more complex and more demanding in a distributed environment [8]. 

Therefore, data mining needs standard protocols in terms of a methodology and 
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technology used. The objective of these standards should be to help user translate an 

application problem into data mining tasks on a higher abstract level with less efforts 

[11]. That is especially important for the users in the Internet environment where 

distributed data mining applications become extremely complex. This complexity 

increases when requirements for incremental or on-line mining [6] is added to the huge 

amount of data that is available for mining in distributed heterogeneous systems. 

Integrating time- and space-sensitive functionality of data in the mining process, and only 

partial availability of data, confronting privacy and security policies, all that enormously 

increase the complexity of the data-mining task [2, 8, 11]. This growing complexity of 

the distributed infrastructure threatens to undermine the very benefits data mining 

technology aims to provide. 

2.2 DISTRIBUTED DATA MINING (DDM) 

The benefit of understanding large, complex, and information-rich data sets is 

common to all fields of businesses, science, and engineering. Globally, data mining is 

defined as a process of discovering various models, summaries, derived nontrivial 

information, and patterns from a give:n collection of data [10, 11, 13, 16]. The popularity 

of Internet and Web makes it imperative that data-mining framework is extended to 

include the distributed and time dependent information and tools. Moreover, the 

assumptions and the approaches used for static and centralized data mining process are 

not valid any more for distributed environment [14, 17]. Traditional development and 

deployment of different data mining techniques in a data mining process usually assume 

that: 
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• Data set for analysis is centralized, on a single computer, in a form of centralized 

database, data warehouse, data mart, or for simple problems as a flat file. 

• The amount of available data is enough for successful application of a data 

mining techniques. 

• Software tools supporting different data mining techniques are also centralized; 

they are located on the same computers where the data are stored. 

For many classical data mining applications these assumptions are good enough 

[10, 11, 12] but in an Internet-based distributed information environment these 

assumptions about data, algorithms, and data mining process are not true and may 

represent constraints on the quality of data mining results. Standardization on one side, 

and use of new technologies for an infrastructure improvement on the other side, will 

make large, complex data mining projects less costly, more reliable, more repeatable, 

more manageable, more efficient, and very important, with new higher quality in data 

mining results. Our approach in standardization of distributed data mining methodology 

is based on a model of data mining process having four levels of abstraction [15]. They 

are organized in a hierarchical structure: a) phases of data mining, b) generic tasks, c) 

specialized tasks, and d) process instances. The hierarchy of the model is graphically 

presented in Figure 2.1. 

The structure will be illustrated with examples of task hierarchies shown in 

Figure 2.2. For example, in the exploration phase one of generic tasks is "build the 

model", while its specialized task is "build classification model", and corresponding 

process instances are: "neural network", "decision rules", or "logistic regression". The 

11 



other example of task hierarchy is data preparation phase, where "data cleaning" is a 

generic task, possible specialized task is "elimination of missing values", and 

corresponding process instances are: "mean value algorithm" or "clustering". 

While higher level of abstract concepts in the hierarchy explain what to do, lower 

level components go in details of data processing and answer the question how to do. We 

have used the bottom-up approach for building service-oriented infrastructure for data 

mining. The implementation starts with process instances as components of Web 

services, and then integrate them into more abstract, and at the same time more complex 

and intelligent data mining specialization tasks. 

/ • 
Generic 
Task 11 

~ 
~ 

Specific 
Task 111 

~~ 

0000 
Process Instances 

Data Mining Process 

G,eneric 
T~lsk 12 

Specific 
ask 112 T 

Phase n ~ J 
/\~- . 

Figure 2.1: Hierarchical structure of a (Distributed) Data Mining Model 
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Exploration Phase Data Preparation Phase 

.J l 
Build The Model Data Cleaning 

·····1 l ... 
Build Classification Elimination of 

Model Missing Values 

. t l 
Neural network 

Decision rules - Logistic 
regression I 

.... Mean Value Algorithm -

; .. 
Clustering 

Figure 2.2: Examples of paths in hierarchical structure of a data mining process 

2.3 WEB SERVICES 

A tenn that refers to distributed or virtual applications or processes that use the 

Internet to link activities or software components. Web services use the following 

standards for communication and data processing: 

• XML (eXtensible Markup Language) - An open standard for describing data. 

• UDDI (Universal Description, Discovery, Integration specification) - Descriptive 

standard for documentation and how/where to publish it in an automated fashion. 

• SOAP (Simple Object Access Protocol) - A technique to allow communications 

between applications over the web. 

• WSDL (Web Services Description Language) - An XML specification for 

describing web services, what they do, and how to access them. 
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A web service makes itself available by describing itself in a Web Services 

Description Language (WSDL) document. WSDL document is a XML document that has 

all the information about web service, including its name, the operations it supports, 

parameters for those operations and the location where it is running. For service 

consumers or clients to locate the web service, web service provider has to publish the 

web service at registry server. Universal Description, Discovery, and Integration (UDDI) 

are a standard protocol to publish or to find web services. The description part in UDDI is 

for service provider to publish details about their organization and web services they 

provide. The discovery part in UDDI is for service consumers or clients to find these 

services. Service consumer or client invokes web service using Simple Object Access 

Protocol (SOAP). SOAP is a lightwe:ight XML protocol used for information exchange 

between heterogeneous systems. 

• Service provider registers the service in UDDI Registry. 

• Client finds the service, gets the WSDL for the service. 

• Using WSDL, client constructs a web service call and invokes the service. 

Advantages of Web Services: 

1. Interoperability: Client written in Java can invoke a service written in .NET or 

vice versa. 

2. Ubiquity: Once the web service is registered in a registry server, any organization 

can use it. 

3. Loosely coupled: Web servIce does not depend on the underlying system 

architecture. 
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Creating a Distributed Data Mining architecture using Web services involves a lot 

of new technologies. Java Web Services Developer Pack (JWSDP) from Sun 

Microsystems solves many of the issues and was suitable for this framework and hence 

chosen as the toolkit for its implementation. 

2.4 SOAP BASED WEB SERVICES 

A web service may be implemented as a standalone TCP server, or it may be 

accessed via a URL through a web server. When running under a web server, the SOAP 

service can take advantage of firewalll tunneling, although performance will be reduced. 

The SOAP service accepts XML that describes an action for the server to perform, and 

returns XML to the client describing the result of the operation. It is possible to maintain 

state between operations, and operations are essentially non-streaming, due to the 

marshaling rules of XML. There are two fundamental problems when using web services 

for data mining of moderate to large size remote and distributed data sets. First, due to the 

overhead of XML encoding and parsing, there is a limit to the speed of the data 

transmission and the total size of the return set. This is caused by the need to retain the 

entire dataset in local storage due to XML encoding and decoding rules. The specific 

issue is that redundant parts of XML documents can and must refer to the other similar 

parts of documents. This requires that the entire document be maintained for lookup 

purposes. Therefore, all data packaging mechanisms that are truly XML compliant are in 

essence non-streaming. While a server could, in theory, safely ignore this encoding rule 

when there are no circular data structures, a compliant client cannot safely do so. 
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3. WEB BASED DISTRIBUTED DATA MINING FRAMEWORK 

Distributed environment used to be viewed as a solution for intensive 

computations with large datasets. However, operating with real world applications in 

distributed environment motivated new reasons to appear different than the traditional 

one. One application is in distributed data mining. Data mining algorithms are known 

with their combinatorial results which make distributed environment a good candidate for 

them. But sometimes, distribution of data is intended because the distribution itself has a 

meaning. A very popular example is in banking where banks like to exchange their 

models for fraud detection or loans approval. This is infeasible because of privacy of 

customers. Even if exchanging models were feasible it will lead to unexpressive results in 

case of loans approval because banks apply different policies for loans. In these cases, the 

following approach for mining distributed data is suggested: 

• Build local models for each site 

• Discuss relations between local models of sites i.e., whish sites are similar and 

which are different, to what extent they differ and the implication and significance 

of their differences. 

• For similar sites build global model(s) and exclude those very different 
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3.1 SERVICE ORIENTED ApPROACH 

Service oriented computing has become ever more popular due to the 

proliferation of web based computing [6]. In this paradigm, core Web Services [11] (as 

Web Components) form the fundamental elements for developing large and complex data 

mining environment. The core services, their description, operations including 

publication, discovery, selection and binding constitute the foundation of service oriented 

computing. Using these core services higher composition layers encompassing 

functionality of multiple layers at lower level can be built. The aggregate service 

components can then become part of the core services and can be used in building higher­

level components. These aggregate components can be published and discovered by 

applications for providing effective solutions to users. 

In general, service oriented Web Components are self-describing, based on open 

standards, allow rapid composition of distributed applications. Service or component 

providers develop these service-based components; they supply the detailed description 

of the functionality through the Web Service Definition Language (WSDL). The data or 

algorithm providers register the services with descriptions WSDL in the registries and the 

registries are searched by the clients £or the required Web Services components [11, 15]. 

These components provide distributed computing framework across different 

platforms and languages. The design of core Web Services and aggregate services is a 

distributed programming task where service providers want to reuse existing services by 

extending or restricting their functionality without building from scratch. Currently, there 
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is no data mmmg framework that allows the definition and implementation of data 

mining Web Services compositions. In order to alleviate this limitation, a framework for 

developing aggregate services for distributed data mining is proposed in this project. 

3.2 EXECUTION FRAMEWORK 

The design of core Web servIces and aggregate serVIces IS a distributed 

programming task where service providers want to reuse existing services by extending 

or restricting their functionality without building from scratch. Currently, there is no data 

mining framework that allows the definition and implementation of data mining Web 

service compositions. In order to alleviate this limitation, a framework for developing 

aggregate services for Distributed Data Mining is proposed in this paper. 

In order to build servIce oriented framework for distributed data mining, we 

propose the architecture shown in Figure 3.1. In subsequent discussion, first the major 

components and their interaction are discussed followed by the details of major modules 

required for this architecture. In this framework data and algorithm providers will register 

their resources as follows: 

Algorithm and data providers will describe their services using Web Services 

Description Language (WSDL) and interact with the registration service. Registration 

service will use WSDL description for entry in the registry. 
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Clients will interact with the Web interfaces and provide their data mInIng 

requirements In terms of data to be analyzed and types of mining activities to be 

performed. Detailed structure of data and the structure of algorithm are obtained from the 

registry by retrieving the WSDL for the data set and algorithm. Based on the client 

selection of data and algorithm, the execution framework will generate the execution 

sequence and will interact with the data and algorithm provider directly based on the 

information in WSDL. 

c==== _C_I~IT· n_t ________ ~ 
JSP/Servlels 

Execution FrameworkiWeb Interfaces 

WSOl 

~ XML Registry 

[DalaS';" .1 _m Se",,,,, 

Figure 3.1: Execution framework 

3.3 DETAILED ARCHITECTURE 

In order to build service oriented framework for distributed data mining, we 

propose the architecture shown in Figure 3.2. In subsequent discussion, the major 

components and their interaction are discussed followed by the details of major modules 

required for this architecture. The core components of the proposed framework are 

described in Table 3.1. 
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Figure 3.2: Architecture for hierarchical Web Component service execution 

Component 

Clients 

Registry 

Data Mining 
Discovery 
Service 

Algorithm 
Provider 

Data Provider 

Execution 
Framework 

Functionality 

The user of the distributed data-mining framework_ 

This location has database for all the algorithm service 
providers and the data provides a to keeps their details in 
the form of WSDL This registry could be a local registry 
in an organization, or global UDDI registries [8]. 

Allows clients to discover and select distributed data sets 
and algorithms based on data mining problem 
requirement and returns WSDL description to Data 
Mining Web component execution framework. 

Provides the data mining algorithms. These algorithms 
could be core Web Services or aggregate components. It 
is the responsibility of the provider to register the WSDL 
of the dataset in registry using registration service. 

Provides the datasets for analyses. It is the responsibility 
of the provider to register the WSDL of the dataset in 
registry using registration service. 

Provides support for invoking data and algorithm 
discovery service and the proper execution of selected 
algorithms. 

JJ 

Table 3.1: Functionality of the core components in the proposed framework given in Figure 3.2 
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In this framework data and algorithm providers will register their resources as follows: 

Rl: Algorithm and data providers will describe their services using Web Services 

Description Language (WSDL) and interact with Registration service. 

R2: Registration service will use WSDL description for entry in the registry. 

Clients will interact with data mining execution framework as follows: 

Cl: Clients will interact with Web Component execution framework and provide their 

data mining requirements in terms of data to be analyzed and types of mining 

activities to be performed. 

C2: This framework will interact with data mmmg discovery servIce application 

program interface (API) by specifying data and algorithm requirements. 

C3: The discovery service will provide a set of data and algorithms matching the 

client's requirement. Client will select the resources for data mining. Detailed 

structure of data and the structure of algorithm are obtained from registry by 

retrieving the WSDL for the data set and algorithm. 

C4: Based on the client selection of data and algorithm, the Web component execution 

framework will generate the execution sequence and will interact with the data 

and algorithm provider directly based on the information in WSDL. 
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4. IMPLEMENTATION FRAMEWORK 

4.1 DETAILED SYSTEM ARCHITECTURE 

Registration is the fist step toward system initiation, during which services are 

registered with the registry. The services can be either data services or algorithm services. 

The registration process requires the following details from the service provider. 

• Organization: Name and Description 

• Contact: N arne, Phone, and Email 

• Service: Name and Description 

• Service Binding: URI and Description 

An organization can have one service with several bindings or multiple services. 

Figure 4.1 shows the registration process. 

This data registration process requires the data providers to specify the fields that 

are available for performing mining tasks, the data repository location, and how to get 

access the data or execute an algorithm on the data site. In the algorithm registration 

process, the provider gives the detailed information about the parameters associated with 

the service and other configuration details. 
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Figure 4.1: The registration process where the service providers register their services. 

Once the registration process is complete, the services are ready to be used by the 

system for applying the various algorithms on the registered data sites. The first step of 

processing a client request is to select the dataset the client is interested in. In the 

proposed framework, a client is allowed to select a dataset from a list of available 

registered data services of their interest. Once the dataset is chosen the client has a choice 

of algorithms that can be applied to the selected dataset. All the dataset and algorithm 

information is retrieved from the registry. 

In data registration, the data providers specify the data fields that are available for 

mining, the location of the data, and how to get access the data or execute an algorithm 

on the data site. In algorithm registration, the provider gives the detailed information 
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about the service execution. For example information included for Fractal Dimension 

service is shown in Table 4.1. 

Attribute Value 

Organization Name UofL ASP 

Organization Description University of Louisville - Algorithm Service Providers 

Service Name Fractal Dimension 

Service Description Algorithm Service to calculate Fractal Dimension, number and types of 
inputs needed, outputs generated 

Service Binding URI http://136.165.147.86:8080Ifdalgo-jaxrpclfd 

Service Binding Description Service Binding for Fractal Dimension Algorithm 

Table 4.1: Registration information for a service 

Once the registration process is complete, the services are ready to be used by the 

system for applying the various algorithms on the registered data sites. The first step of 

processing a client request is to select the dataset the client is interested in. In the 

proposed framework a client is allowed to choose a dataset from a list of available 

registered data set services of their interest. Once the dataset is selected the client has a 

choice of algorithms that can be applied to the selected dataset. All the dataset and 

algorithm information is retrieved from the registry. 

Figure 4.2 describes the general structure of most distributed data mmmg 

algorithms. In this figure distributed data mining algorithms are broken in three different 

parts that could be executed iteratively. The first part of the logic is performed on all the 

data sets involved for computing local models. These intermediate results are then 
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integrated in part 2 of the processing model. Then, the integrated results are sent to part 3 

of the computation that will distribute results for generating global models of data mining 

algorithm. One of the main goals in building distributed data mining algorithms is to 

reduce the amount of data exchanged between computing sites. 

Data mining logic to be 
executed 

Part 1 on different data set 

Part 2 

Part 3 

simultaneously for 
computing local models 

Combining the local 
models 

for distributed 
computation 

Exchanging results 
between 

different sites for 
building global models 

Figure 4.2: Structure of distributed data mining approach for distributed data 

In our implementation framework parts 2 and 3 of the DDM service are generic, 

and will be offered as a core sub-service. This sub-service can perform different types of 

activities on various results obtained at different sites. 
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The implementation is broken in two parts: 

i) the logic to be executed independently on various data sets. 

ii) the logic that needs to be executed with the combined results. 

We have chosen two approaches to implement this framework: 

a) Centralized approach 

In the centralized approach, the datasets residing on remote sites are collected and 

combined to form one data resource bundle on which the algorithm is executed as shown 

in Figure 4.3. 

Data Site, 

Central Site 

Data Site~ Data Site" 

Response 

Central Site 

Figure 4.3: The datasets being collected into the central site and 
the results being sent to the client after processing the global model 

b) Distributed approach 

Client 

In the distributed approach, the datasets are not moved and they always reside on 

the remote sites. The algorithm is propagated to the remote data sites where it processes 

the individual dataset and returns local models to a coordination site. The results are then 

processed to generate the global model and thereafter sent to the client. The number of 
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intennediate results directly depends on the data mining algorithm itself. The distributed 

approach may require multiple transfers of data between the co-ordination site and the 

data sites but it eventually proves to be the better of the two choices, especially for large 

real world data sets since the amount of data transferred is considerably lesser compared 

to the fetching of the actual datasets. The distributed approach is shown in Figure 4.4. 

Data Sitej Data Site2 Data Siten Data Site1 Data Site2 Data Site~ 

/~ //~ 
AJgoritm ! A1goritm AIQOritm/// 

..--:-!~~// 

Request 
.--~--------

Client 

Co-ordination Site Co-ordijnation Site 

Figure 4.4: The algorithm being sent to the remote site and local models being collected 
to generate the global model and results being sent to the client after processing the global model 

4.2 IMPLEMENT A TION OF THE SERVICE FRAMEWORK 

Registering Data and Algorithm Services require the following common parameters: 

a. Service Name 

b. Service Description 

c. Service URI 

d. Classification 

The classification is an optional attribute but it plays a major role in reducing drastic 

amounts of search time. 
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4.2.1 DATA SERVICES 

The data service registration is a two step process. The first step requests the user 

to provide the service information and the number of data fields that are available for 

processing. Figure 4.5a shows the interface the client uses as the first step towards 

registering the data service. 

Data Service Registration (Step 1) 

Service Name 

Ser~ice Description 

Service URI 

Classitication I Select Cla.ssifica.tion 

Please specify the classification if it is not listed. 

Number of tields 

I Next» ] 

Figure 4.5a: Step I of the Data Service registration process 

For each attribute of the data service, the following parameters need to be specified. 

a) Attribute Name 

b) Attribute Type 

c) Attribute Cost 

d) Attribute Exposure 

The Attribute Type can be any of the data types supported by Web Services. The 

Attribute Cost specifies the amount to use the attribute. The Attribute Exposure specifies 

if the user can view this attribute. A value of Yes allows the user to view/copy the 

attribute. A value of No means that the attribute can be used to test algorithms on but the 
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actual values cannot be viewed or copied. Figure 4.Sb shows the interface the client uses 

as the second step to provide this information about the data service. Suppose the 

Number of fields was set to 5 in Step 1. 

Data Service Registration (Step 2) 

Field Name Data Type Cost Expose 

I I Select DataType ::3 $1 I Select.:J 

I I Select Data Type::3 $1 I Select.:J 

I I Select Data Type::3 $1 I Select .:.I 
I I Select Data Type .:::J $1 I Select .:.I 
I I Select Data Type ::g $1 I Select::J 

I Next» I 

Figure 4.5b: Step 2 of the Data Service registration process 

The information provided is used to register the Service with the local registry 

and additional information is stored in a database. Figure 4.Sc shows the registry 

response received once the data service registration is complete. 

SWAMY Logged in 

Register New Service Data Service Registration Complete 

Vie .... MV Services 

Vie ... Cldssifications 

Execute Service 

Enter Keyword 

I 
. Search I 
Modify Account 

Logout 

SfHvice Information 
Se,."c. Key 10044aEc-3'21·C;()44·1251-1890cb770790 

St?/V,ce Name Fractal D!menslon Da·a Service 

Serv!(~ Descripil'Yl S<lrnp!e Data Sel fGr Fract<il DunenslOrl Algo!!thrn 

Setv:ce Bmdlng l1RL httr.!/l}:;; 1/35.47 195J),"lIfi)c·fd_d3ta_S-I?NICe 

Service Bindmg Descflptior Calumni.number 13 95 Y,Column2 numbBr.12 45 ',r ,Column3 number 11 % \( .ColumnA numbl~r.9 75 Y 

Figure 4.5c: Registry response for the Data Service registration process 

29 



4.2.2 ALGORITHM SERVICES 

The algorithm service registration is a two step process. The first step requests the 

user to provide the service information and the cost of using the algorithm and the 

number of input parameters accepted. Figure 4.6a shows the interface the client uses as 

the first step towards registering the algorithm service. 

Algorithm Service Registration (Step 1) 

Service Name 

Service Description 

Service URI 

Classification 1 Select Classification 

Please specify the classification if it is not listed. 

Algorithm Cost $1 
Number of input 
parameters 

Next » 

Figure 4.6a: Step 1 of the Algorithm Service registration process 

The second step of the algorithm servIce registration process reqUIres the 

following additional fields: 

a) Number of input parameters 

b) Output parameter type 

c) Algorithm Cost 

Based on the parameter Number of input parameters, Step 2 will dynamically 

allocate the required number of parameters to accept the data type. Figure 4.6b shows the 

interface the client uses as the second step to provide this information. Suppose the 

Number of input parameters was set to 5 in Step 1. 
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Algorithm Service Registration (Step 2) 

Parameter 

Input-1 

Input-2 

Input-3 

Input-4 

Input-5 

Output Parameter 

I Select 05t5 Type :a 
Nf)xt»I 

Data Type 

I Select 05t5 Type O!J 

I Select 05t5 TypeO!J 

I Select 05t5 Type :::I 
I Select 05t5 Type O!J 

I Select 05t5 Type .::1 

Figure 4.6b: Step 2 of the Algorithm Service registration process 

The information provided is used to register the Service with the local registry 

and additional information is stored in a database. Figure 4.6c shows the registry 

response received once the algorithm service registration is complete. 

SWAMY Logged in 

Register New SelVice Algorithm Service Registration Complete 

View My Service, 

View Classifications 

Execute service 

Enter Keyword 

I 
.·SeatCh I 
ModifV Account 

Logout 

Service Information 

Service Key 10044b29-6601-0044-ec22-b957cceee16c 

Service Nam~ Fractal Dimt'Elsmn Algorilhm S8rv;(€ 

ServIce Description The algorithm Fractal DlrnenSlon Iiself 

S8rvi~e 8mdmg URL httfJ:j/13f~.165 4? 1~16.:Jd){:PL-fd_dl;;o_servlc~ 
Sl?rvic e Bmding Description Inputs"(number ,numb.:n) Output: (number) 

Figure 4.6c: Registry response for the Algorithm Service registration process 
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4.2.3 CENTRALIZED SERVICES 

In the centralized approach, a collection of remote datasets is performed 

concurrently to form a single data resource bundle on which the data mining algorithm is 

executed. The algorithm also needs to be fetched from its remote location to the co­

ordination site where the actual execution takes place. The following web services are 

used to achieve the execution of the centralized framework. 

• CopyRemoteData (in remote_location, in data_handler, in local_repository): 

reads the data from the "remote_location" based on the specifications of the 

data_handler" and stores the data in the "locaCrepository" 

• CombineData (in local_repository, out combined_data): combines the data 

read from the "locaIJepository" to create one large data source, 

"combined data". 

• FetchAlgorithm (in algorithm_location): fetches the data mmmg algorithm 

from the "algorithm_location" and stores it locally for processing the data in the 

local repository 

• ExecuteAlgorithm (in local_repository, out results): processes the data mining 

algorithm on the "locaIJepository" with the logic specified in the algorithm. 

Returns the intermediate "results" for performing other tasks or the final 

"results ". 
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4.2.4 DISTRIBUTED SERVICES 

In the distributed approach, the datasets always reside on the remote sites and are 

never moved. The algorithm is propagated to the remote data sites where it processes the 

individual dataset and returns local models to a coordination site. The results are then 

processed to generate the global model and thereafter sent to the client. The number of 

intermediate results directly depends on the data mining algorithm itself. 

• SendAlgorithm (in algorithm_location, in remoteJocations): fetches the data 

mining algorithm from the H algorithm_location" and sends it to the "remote­

locations" for processing the data. 

• ExecuteAlgorithm (in remote_locations, out results): executes the algorithms 

concurrently on the "remote_locations" and stores the "results" on the remote 

location as the data model. 

• CopyRemoteModel (in remote_models): reads the "remote_models" from the 

remote locations and copies it to the local coordination site for processing to get 

the final results. 

The distributed approach may reqUIre multiple transfers of data between the 

coordination site and the data sites but it eventually proves to be the better of the two 

choices, especially for large real world data sets since the amount of data transferred is 

considerably less compared to the fetching of the actual datasets. The performance 

improvement can be measured in terms of execution time as well as the quality of 

servIce. 
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4.3 SELECTING DATASET AND ALGORITHM SERVICE INFORMATION 

The first step in the exceution phase is to choose the desired datasets and thc 

algorithm that can be applied on them. Figure 4.8 shows the steps involved in the 

selection of dataset and algorithm information from the registry. 

The client uses the web interface to query the registry for information about 

available datasets based on classifications or keyword search. The registry returns the 

appropriate information on all the datasets that match the search criteria. Once the client 

selects the datasets for processing, a search for algorithms that match the selected datasets 

is performed and the algorithm service information that can be applied on them is 

displayed. This step of the implementation is common for the centralized and distributed 

approach. 

Request to view available 
Dataset Information 

R 
e 
9 
i 
s 
t 

y 

Service 
Information 

Client 

"¥"""'" Show available Algorithms for the 
" selected Datasets 

Select Dataset(s) and 
Request available algorithms 

JSP I Servlets 

Service 
Information 

Figure 4.8: The client requests to view service information from the registry 
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4.3.1 EXECUT]ON - CENTRALIZED ApPROACH 

Step 1: The client invokes the data mining services from a URL. The client selects the 

required datasets located on remote sites. 

Step 2: Servlet calls the service on the selected data sites to collect the data. The 

collected data is stored in a centralized location for processing as shown in 

Figure 4.9. 

Step 3: The Apriori Service downloads the algorithm to the central site and is applied to 

build the global model for the datasets at the central site. 

The datasets are now available as a single resource in the central site. The 

algorithm is applied on this combined data set and the results are returned to the client. 
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Figure 4.9: Client interaction in Centralized Approach 
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4.2.1 DATA SERVICES 

The data service registration is a two step process. The first step requests the user 

to provide the service information and the number of data fields that are available for 

processing. Figure 4.5a shows the interface the client uses as the first step towards 

registering the data service. 

Data Service Registration (Step 1) 

Service Name 

Ser~ice Description 

Service URI 

Classitication I Select Cla.ssifica.tion 

Please specify the classification if it is not listed. 

Number of tields 

I Next» ] 

Figure 4.5a: Step I of the Data Service registration process 

For each attribute of the data service, the following parameters need to be specified. 

a) Attribute Name 

b) Attribute Type 

c) Attribute Cost 

d) Attribute Exposure 

The Attribute Type can be any of the data types supported by Web Services. The 

Attribute Cost specifies the amount to use the attribute. The Attribute Exposure specifies 

if the user can view this attribute. A value of Yes allows the user to view/copy the 

attribute. A value of No means that the attribute can be used to test algorithms on but the 

28 



actual values cannot be viewed or copied. Figure 4.Sb shows the interface the client uses 

as the second step to provide this information about the data service. Suppose the 

Number of fields was set to 5 in Step 1. 

Data Service Registration (Step 2) 

Field Name Data Type Cost Expose 

I I Select DataType ::3 $1 I Select.:J 

I I Select Data Type::3 $1 I Select.:J 

I I Select Data Type::3 $1 I Select .:.I 
I I Select Data Type .:::J $1 I Select .:.I 
I I Select Data Type ::g $1 I Select::J 

I Next» I 

Figure 4.5b: Step 2 of the Data Service registration process 

The information provided is used to register the Service with the local registry 

and additional information is stored in a database. Figure 4.Sc shows the registry 

response received once the data service registration is complete. 

SWAMY Logged in 

Register New Service Data Service Registration Complete 

Vie .... MV Services 

Vie ... Cldssifications 

Execute Service 

Enter Keyword 

I 
. Search I 
Modify Account 

Logout 

SfHvice Information 
Se,."c. Key 10044aEc-3'21·C;()44·1251-1890cb770790 

St?/V,ce Name Fractal D!menslon Da·a Service 

Serv!(~ Descripil'Yl S<lrnp!e Data Sel fGr Fract<il DunenslOrl Algo!!thrn 

Setv:ce Bmdlng l1RL httr.!/l}:;; 1/35.47 195J),"lIfi)c·fd_d3ta_S-I?NICe 

Service Bindmg Descflptior Calumni.number 13 95 Y,Column2 numbBr.12 45 ',r ,Column3 number 11 % \( .ColumnA numbl~r.9 75 Y 

Figure 4.5c: Registry response for the Data Service registration process 
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4.2.2 ALGORITHM SERVICES 

The algorithm service registration is a two step process. The first step requests the 

user to provide the service information and the cost of using the algorithm and the 

number of input parameters accepted. Figure 4.6a shows the interface the client uses as 

the first step towards registering the algorithm service. 

Algorithm Service Registration (Step 1) 

Service Name 

Service Description 

Service URI 

Classification 1 Select Classification 

Please specify the classification if it is not listed. 

Algorithm Cost $1 
Number of input 
parameters 

Next » 

Figure 4.6a: Step 1 of the Algorithm Service registration process 

The second step of the algorithm servIce registration process reqUIres the 

following additional fields: 

a) Number of input parameters 

b) Output parameter type 

c) Algorithm Cost 

Based on the parameter Number of input parameters, Step 2 will dynamically 

allocate the required number of parameters to accept the data type. Figure 4.6b shows the 

interface the client uses as the second step to provide this information. Suppose the 

Number of input parameters was set to 5 in Step 1. 
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Algorithm Service Registration (Step 2) 

Parameter 

Input-1 

Input-2 

Input-3 

Input-4 

Input-5 

Output Parameter 

I Select 05t5 Type :a 
Nf)xt»I 

Data Type 

I Select 05t5 Type O!J 

I Select 05t5 TypeO!J 

I Select 05t5 Type :::I 
I Select 05t5 Type O!J 

I Select 05t5 Type .::1 

Figure 4.6b: Step 2 of the Algorithm Service registration process 

The information provided is used to register the Service with the local registry 

and additional information is stored in a database. Figure 4.6c shows the registry 

response received once the algorithm service registration is complete. 

SWAMY Logged in 

Register New SelVice Algorithm Service Registration Complete 

View My Service, 

View Classifications 

Execute service 

Enter Keyword 

I 
.·SeatCh I 
ModifV Account 

Logout 

Service Information 

Service Key 10044b29-6601-0044-ec22-b957cceee16c 

Service Nam~ Fractal Dimt'Elsmn Algorilhm S8rv;(€ 

ServIce Description The algorithm Fractal DlrnenSlon Iiself 

S8rvi~e 8mdmg URL httfJ:j/13f~.165 4? 1~16.:Jd){:PL-fd_dl;;o_servlc~ 
Sl?rvic e Bmding Description Inputs"(number ,numb.:n) Output: (number) 

Figure 4.6c: Registry response for the Algorithm Service registration process 
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4.2.3 CENTRALIZED SERVICES 

In the centralized approach, a collection of remote datasets is performed 

concurrently to form a single data resource bundle on which the data mining algorithm is 

executed. The algorithm also needs to be fetched from its remote location to the co­

ordination site where the actual execution takes place. The following web services are 

used to achieve the execution of the centralized framework. 

• CopyRemoteData (in remote_location, in data_handler, in local_repository): 

reads the data from the "remote_location" based on the specifications of the 

data_handler" and stores the data in the "locaCrepository" 

• CombineData (in local_repository, out combined_data): combines the data 

read from the "locaIJepository" to create one large data source, 

"combined data". 

• FetchAlgorithm (in algorithm_location): fetches the data mmmg algorithm 

from the "algorithm_location" and stores it locally for processing the data in the 

local repository 

• ExecuteAlgorithm (in local_repository, out results): processes the data mining 

algorithm on the "locaIJepository" with the logic specified in the algorithm. 

Returns the intermediate "results" for performing other tasks or the final 

"results ". 
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4.2.4 DISTRIBUTED SERVICES 

In the distributed approach, the datasets always reside on the remote sites and are 

never moved. The algorithm is propagated to the remote data sites where it processes the 

individual dataset and returns local models to a coordination site. The results are then 

processed to generate the global model and thereafter sent to the client. The number of 

intermediate results directly depends on the data mining algorithm itself. 

• SendAlgorithm (in algorithm_location, in remoteJocations): fetches the data 

mining algorithm from the H algorithm_location" and sends it to the "remote­

locations" for processing the data. 

• ExecuteAlgorithm (in remote_locations, out results): executes the algorithms 

concurrently on the "remote_locations" and stores the "results" on the remote 

location as the data model. 

• CopyRemoteModel (in remote_models): reads the "remote_models" from the 

remote locations and copies it to the local coordination site for processing to get 

the final results. 

The distributed approach may reqUIre multiple transfers of data between the 

coordination site and the data sites but it eventually proves to be the better of the two 

choices, especially for large real world data sets since the amount of data transferred is 

considerably less compared to the fetching of the actual datasets. The performance 

improvement can be measured in terms of execution time as well as the quality of 

servIce. 
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4.3 SELECTING DATASET AND ALGORITHM SERVICE INFORMATION 

The first step in the exceution phase is to choose the desired datasets and thc 

algorithm that can be applied on them. Figure 4.8 shows the steps involved in the 

selection of dataset and algorithm information from the registry. 

The client uses the web interface to query the registry for information about 

available datasets based on classifications or keyword search. The registry returns the 

appropriate information on all the datasets that match the search criteria. Once the client 

selects the datasets for processing, a search for algorithms that match the selected datasets 

is performed and the algorithm service information that can be applied on them is 

displayed. This step of the implementation is common for the centralized and distributed 

approach. 

Request to view available 
Dataset Information 

R 
e 
9 
i 
s 
t 

y 

Service 
Information 

Client 

"¥"""'" Show available Algorithms for the 
" selected Datasets 

Select Dataset(s) and 
Request available algorithms 

JSP I Servlets 

Service 
Information 

Figure 4.8: The client requests to view service information from the registry 
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4.3.1 EXECUT]ON - CENTRALIZED ApPROACH 

Step 1: The client invokes the data mining services from a URL. The client selects the 

required datasets located on remote sites. 

Step 2: Servlet calls the service on the selected data sites to collect the data. The 

collected data is stored in a centralized location for processing as shown in 

Figure 4.9. 

Step 3: The Apriori Service downloads the algorithm to the central site and is applied to 

build the global model for the datasets at the central site. 

The datasets are now available as a single resource in the central site. The 

algorithm is applied on this combined data set and the results are returned to the client. 
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Figure 4.9: Client interaction in Centralized Approach 

35 

Results , 

:+ 
; dlsplayResuHs 
'--'--,r-'-"; 

// 
/ 



3D, or In a higher dimensional space because only one dimension ( one attribute) is 

assumed as independent variable and all others are dependent. Also, the dimensionality of 

rectangle and plane surface is always 2 regardless the dimensionality of the space for 

representation. These objects, representing an abstract relation in a data set, lead to the 

definition of the embedding and intrinsic dimensions of a data set [7]: 

Definition 1 - The embedding dimension E of a data set is the dimension of its address 

space. In other words, it is the number of attributes of the data set. 

Definition 2 - The intrinsic dimension D of a data set is the dimension of the spatial 

object represented by the data set, regardless of the space where it is 

embedded. 

While the embedding dimension is gIven explicitly with the data set as the 

number of attributes, the intrinsic dimension is not computable directly. We can 

approximate it with the fractal dimension parameter [7, 16]. The fractal dimension 

characterizes multidimensional fractal sets. By embedding the data set in an n­

dimensional grid with cell sides of size r, we can compute the frequency with which data 

points fall into the i-th cell, Pi. The generalized fractal dimension Dq represents a 

derivative or linear slope of discrete frequency function, as shown in the equation: 

Where: 

Dq = l/(q-l) [d(logI:iPiq)/ d(logr)] 

Pi - frequency of points falling in the i-th cell, and 

r - size of the cell. 
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There is a family of fractal dimensions (i.e. Hausdorff fractal dimension for q=O, 

information fractal dimension for q=l, and correlation fractal dimension for q=2). 

Specifically, the correlation fractal dimension (q = 2) has gained attention in the literature 

[7]. Changes in the correlation fractal dimension means changes in the distribution of 

points in the multidimensional data set, and that is the parameter we are using in the 

simple and scalable analysis of large, distributed data sets. As many real data sets are 

self-similar, we can use their correlation fractal dimension as a measure of their intrinsic 

dimension D. The correlation fractal dimension is usually calculated by means of the 

box-counting algorithm. Let N(r) he Li p?, then the plot ofN(r) for different values of r 

in a log-log scale is called the box-counting plot. The linear slope of the plot is the 

estimation of the correlation fractal dimension for the given data set. 

5.3APRIORI 

Association analysis identifies relationships or affinities between items and/or 

between features. These relationships are then expressed as a collection of association 

rules. The approach has been particularly successful in mining very large transaction 

databases and is one of the core classes of techniques in data mining. 

Each transaction is thought of as a basket of items, which we might represent as 

{A, B, C, D, E, F}. The algorithm searches for collections of items that often appear 

together e.g.{A, C, F}, and then from these ilemsels it identifies rules like A, F -7 C 

which we read as indicating an association between A and F being in the transaction and 

C consequently appearing in the transaction. 
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The basis of an association analysis algorithm is the generation of frequent 

itemsets. However, naIve approaches will be quite expensive in computational time with 

even moderately sized databases. The apriori algorithm takes advantage of the simple 

apriori observation that all subsets of a frequent itemset must also be frequent. The 

observation allows the algorithm to consider a significantly reduced search space by 

starting with frequent individual items (eliminating rare items). We can then combine 

these into item sets containing just two items and retain only those that are frequent 

enough. Similarly for itemsets containing three items, and so on. 

Suppose we have a rule of the form A ~ C. We call A the antecedent and C the 

consequent, and both are non-empty sets of items. The concept of frequent enough is a 

parameter of the algorithm, used to control the number of association rules discovered. 

This support specifies how frequently the items must appear in the whole data set before 

the items can be considered as a candidate association rule. For example, the user may 

choose to consider only sets of items that occur in at least 5% of all transactions. 

Formally we define support for a collection of items I as the proportion of all baskets in 

which all items in I appear. Then we can define the support for an association rule as: 

support (A ~ C) = support (A U C) 

A second parameter, the confidence, calculates the proportion of transactions 

containing A that also contain C the use specifies a minimal probability for the 

association rule. For example, the user may choose to only generate rules which are true 

at least 90% of the time (that is, when A appears in the basket, C also appears in the same 

basket at least 90% of the time). 
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Formally: 

confidence (A 7 C) = support (A 7 C) / support (A) 

The Apriori algorithm is a breadth-first or generate-and-test type of search 

algorithm. Only after exploring all possibilities of associations containing kitems does it 

then consider those containing k + 1 items. For each k, all candidates are tested to 

determine whether they have enough support. The apriori algorithm uses a simple two 

step generate and merge process: generate frequent item sets of size kthen combine them 

d·d.c. . f . k + 1 to generate can I ate lrequent Itemsets 0 sIze The algorithm is reasonably 

efficient even though the number of possible items is generally large and the baskets are 

generally small. The input data to the algorithm consists of records or transactions, each 

transaction representing a basket of items. 

The two primary tuning parameters are minsup (minimum support expressed as 

a percentage of the total number of transactions in data) and mincon (minimum 

confidence also expressed as a percentage of the total number of transactions in data). 

Typically they have quite small values because of the size of the databases we are dealing 

with. Thus a support of 0.1 % or smaller is not unusual. 

47 



6. RESULTS AND DISCUSSION 

In order to evaluate the effectiveness of the proposed service oriented framework 

three core data mining services including Normalization service (used by the Fractal 

Dimension algorithm), Fractal Dimension service and Apriori service were implemented. 

The services were implemented both in the centralized and distributed service oriented 

framework and their execution time was measured in a local and a wide area networks. 

The execution time for both implementations in a local area network is shown in the 

graphs included in this chapter. It is clear that as the number of records increase, the 

execution time of the centralized algorithm increases dramatically due to the overhead of 

combining all the data at the central site before performing the algorithm. The results 

illustrate that the distributed approach is more consistent and requires a shorter execution 

time. The performance results for the centralized and the distributed services in a wide 

area network are shown in various charts. It is interesting to observe that the increase in 

execution time for smaller number of records is much more significant here compared to 

the local area network. This shows the impact of additional communication delay when 

data sets are located on distant sites and are not on the same local area network. The 

distributed approach is consistent over time since it is dependent on the algorithms 

complexity rather than the dataset size. The apriori algorithm, whose complexity is higher 

than the fractal dimension algorithm showed similar results. 
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6.1 NORMALIZATION 

Sample Input (Abridged) 

1000 0 0 1000 1000000 
750 433.012702 324759.5264 1183.012702 750000 
625 649.519053 405949.408 1274.519053 812500 
812.5 324.759526 263867.1152 1137.259526 765625 
656.25 595.392465 390726.3052 1251. 642465 785156.25 
328.125 297.696233 97681.57631 625.821233 196289.0625 
164.0625 148.848116 24420.39408 312.910616 49072.26563 
332.03125 507.43676 168484.8617 839.46801 367736.8164 
666.015625 253.71838 168980.4054 919.734005 507949.8291 
833.007813 126.85919 105674.6964 959.867003 709995.2698 
916.503906 63.429595 58133.47159 979.933501 844002.7237 
708.251953 464.727499 329144.1591 1172.979453 717592.4778 
354.125977 232.36375 82286.03978 586.489726 179398.1195 
427.062988 549.194577 234540.6771 976.257565 483997.4791 
713.531494 274.597288 195933.8135 988.128783 584530.8639 
606.765747 570.311346 346045.39 1177.077093 693419.7033 

587.075298 37.483753 22005.78552 624.559051 346062.4371 
543.537649 451.754578 245545.6215 995.292227 499515.375 
271.768824 225.877289 61386.40537 497.646114 124878.8437 
635.884412 112.938645 71815.92365 748.823057 417104.1232 
567.942206 489.482024 277997.5007 1057.42423 562151.0015 
283.971103 244.741012 69499.37517 528.712115 140537.7504 
641. 985552 122.370506 78560.09682 764.356058 427119.9891 
820.992776 61.185253 50232.65072 882.178029 677772.773 
660.496388 463.605328 306209.6448 1124.101716 651185.3789 
830.248194 231.802664 192453.7433 1062.050858 743044.5387 
915.124097 115.901332 106064.1019 1031.025429 850885.2316 
707.562048 490.963368 347387.0464 1198.525416 741689.0811 
853.781024 245.481684 209587.6036 1099.262708 789203.2945 
426.890512 122.740842 52396.90089 549.631354 197300.8236 
213.445256 61.370421 13099.22522 274.815677 49325.20591 
106.722628 30.68521 3274.806306 137.407839 12331.30148 
553.361314 15.342605 8490.004201 568.703919 306444.1394 
776.680657 7.671303 5958.152362 784.35196 603291.6919 
388.340329 3.835651 1489.538091 392.17598 150822.923 
444.170164 434.930528 193183.1639 879.100692 386451. 6986 
222.085082 217.465264 48295.79097 439.550346 96612.92465 
361.042541 541.745334 195593.1119 902.787875 423839.7231 
680.521271 270.872667 184334.6114 951.393937 536481.2013 
590.260635 568.449035 335533.0887 1158.709671 671541. 9233 

The sample input shown here is an abridged version. The actual datasets were 

distributed over the network on multiple data sites. The results obtained for a test run 

with data of the nature above, the following results were obtained. 
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Results (Abridged) 

Global Minimum and Maximum Values for each column 

1.072523 
1000.0 

0.0 0.0 1.40947 1.710467 
865.262736 432982.5973 1365.443297 1000000.0 

Normalized Values 

0.4107373542594024 0.5495562795160058 0.4517744510282653 
0.6491557866621734 0.39533401203878155 

0.20483183985938153 0.2747781397580029 0.11294361278016196 
0.32406123825549377 0.09883222015225111 

0.6024159199296908 0.13738907045686063 0.16551352503977415 
0.5280737887448299 0.37754971381932634 

0.3006711226945257 0.06869453465057115 0.04137838125994354 
0.2635202389302622 0.0943861455973873 

0.6503355618477997 0.03434726790314474 0.044664000771838866 
0.4978032887156543 0.4243065234953063 

0.32463094315304336 0.017173633373713207 0.011166000195269279 
0.2483849896487941 0.10607534797138221 

0.161778634306202 0.008586817264715765 0.002791500047662539 
0.12367583974880411 0.026517554150401298 

0.08035247988278132 0.004293408054498721 6.978750113382443E-4 
0.061321264432249306 0.006628105685156048 

0.03963940317160783 0.0021467040272493605 1.744687534119515E-4 
0.030143977507091545 0.0016557435690947352 

0.8536240324081105 0.2837076806691465 0.48405549069858655 
0.8048577801142757 0.7892029339385748 

0.42627517893373557 0.14185384033457324 0.12101387265155102 
0.4019122349815449 0.1972994506071994 

0.21260075219654812 0.07092692016728662 0.030253468157113852 
0.20043946241517954 0.04932357980935559 

0.10576353882795438 0.035463459505784146 0.007563367041588024 
0.09970307649855666 0.012329612102394624 

0.5528817694139772 0.017731729752892073 0.01960818807486053 
0.4158947071332418 0.3064429530935586 

0.7764408847069886 0.0088658654543052 0.013760720174792114 
0.5739905231837039 0.6032910133423697 

0.3876836055837115 0.004432932149293437 0.003440180044852809 
0.28647860651625906 0.1508214705081482 

0.44357338365615906 0.5026571813442802 0.4461684259474971 
0.6434526802977885 0.3864506491440825 

0.22124985455775986 0.2513285906721401 0.11154210647532646 
0.32120968507330133 0.09661137943357635 

0.36035650864372015 0.6261050100278442 0.4517343494165417 
0.6608182195763096 0.423838737595174 

0.6801782548223968 0.3130525050139221 0.4257321484731183 
0.6964522786721183 0.5364804084650348 

0.5898207082755017 0.6569669666208762 0.7749343525405472 
0.848439516742278 0.671541361482338 
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Table 6.1 presents a summary of the total execution time for various SIzes of 

datasets in a Local Area Network and Figure 6.1 shows the difference in the execution 

times for both the approaches. 

Number of Centralized Distributed 
Records Approach (in ms) Approach (in ms) 

10 2 10093 
100 953 10572 

1000 ,: 1584 11174 
10000 11280 12045 

f--- 25000 19985 12986 
'---- 50000 41063 14193 

Table 6.1: Execution Times for the Normalization algorithm in a Local Area Network 
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Normalization: Timing Results for a local Area Network 
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Figure 6.1: Timing Results the Normalization algorithm in a Local Area Network 
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Table 6.2 presents a summary of the total execution time for various sizes of 

datasets in a Wide Area Network and Figure 6.2 shows the difference in the execution 

times for both the approaches. 

Number of Centralized Distributed 
Records Approach (in ms) Approach (in ms) 

10 3 20675 
100 1121 22128 

1000 14752 23284 
10000 58163 24117 
25000 70034 25283 
50000 95178 26131 

Table 6.2: Execution Times for the Normalization algorithm in a Wide Area Network 

Normalization: Timing Results for a Wide Area Network 
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Figure 6.2: Timing Results the Normalization algorithm in a Wide Area Network 
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6.2 FRACTAL DIMENSION 

Sample Input (Abridged) 

0.904760414 0.750513162 0.001091628 0.932206113 0.407564752 
0.739706064 0.864580806 0.259423693 0.011418937 0.356706385 
0.424688613 0.078193912 0.153734069 0.033618253 0.376185509 
0.729208003 0.763120257 0.81536836 0.943994791 0.184170159 
0.94646033 0.398229453 0.222784329 0.176225524 0.922198721 
0.124967392 0.516087951 0.711096562 0.890662873 0.411399253 
0.563390336 0.267818823 0.459989708 0.77024769 0.813885662 
0.382414158 0.900767957 0.653436678 0.612937901 0.874448675 
0.171765921 0.124435936 0.296652074 0.631348493 0.684876036 
0.378876905 0.161410775 0.42654536 0.313310403 0.232790797 
0.449745042 0.157385243 0.891801018 0.589122929 0.987613927 
0.567700996 0.602806213 0.371143355 0.21021309 0.714086604 
0.255867668 0.087695473 0.468571623 0.053235229 0.034510664 
0.14056215 0.672202741 0.914448435 0.009408939 0.616517722 
0.031873775 0.243668039 0.275138193 0.343516135 0.883287067 
0.97361543 0.088462958 0.006037269 0.503342929 0.542236925 
0.520164863 0.750445934 0.340843093 0.631344558 0.646232528 
0.860985541 0.950320833 0.312228982 0.612159987 0.234560139 

0.397552305 0.572512484 0.856433221 0.241987076 0.766401098 
0.036515194 0.827046468 0.634690871 0.5103693 0.548223592 
0.315227562 0.061213551 0.389608188 0.553344671 0.609341084 
0.55011439 0.884756061 0.40060435 0.546643909 0.801152882 
0.333780101 0.265699934 0.650382835 0.621150656 0.53191915 
0.189299685 0.323530236 0.601776414 0.257489409 0.014817414 
0.109534611 0.950736971 0.399120502 0.973776989 0.675134591 
0.708144024 0.893788511 0.10829746 0.800678545 0.675315414 
0.48400863 0.660084574 0.901932356 0.088998619 0.266764217 
0.102632789 0.167947575 0.624461557 0.048280511 0.374226558 
0.4903537 0.975016942 0.852711187 0.687892242 0.001038837 
0.98228721 0.254021122 0.952769735 0.362897777 0.23039182 
0.889392779 0.937807216 0.415990575 0.654767107 0.679089268 
0.547029756 0.590564596 0.146221548 0.253154055 1 
0.437302612 0.960276301 0.08488191 1 0.836566837 
0.134236786 0.550800623 1 0.624244059 0.912227382 
0.196445825 1 0.505775257 0.430126011 0.478878893 
1 0.280940063 0.323681051 0.082927406 0.641381264 
0.216719789 0.616373528 0.615742464 0.418062896 0.007025302 

The sample input shown here is an abridged version. The actual datasets were 

distributed over the network on multiple data sites. The results obtained for a test run 

with data of the nature above, the following results were obtained. 
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Results (Abridged) 

r = 1/2 r = 1/4 
1.1.1.1.1 285 1.1.1.1.1 5 
1.1.1.1.2 313 1.1.1.1.2 10 
1.1.1.2.1 339 1.1.1.1.3 12 
1.1.1.2.2 314 1.1.1.1.4 9 
1.1.2.1.1 306 1.1.1.2.1 13 

2.2.1.2.2 323 1.1.2.1.3 10 
2.2.2.1.1 341 1.1.2.1.4 6 
2.2.2.1.2 303 1.1.2.2.1 7 
2.2.2.2.1 317 1.1.2.2.2 6 
2.2.2.2.2 324 1.1.2.2.3 11 

r = 1/32 r = 1/64 
1.1. 26. 31. ~~4 1 1.10.13.13.31 
1.1.28.3.24 1 1.10.39.45.3 
1.1.6.28.10 1 1.10.52.52.24 
1.10.13.30.10 1 1.10.9.41.21 
1.10.19.29.5 1 1.11.25.19.5 

9.9.25.2.3 1 9.64.6.20.48 
9.9.29.8.10 1 9.7.11.49.45 
9.9.4.25.16 1 9.7.11.63.45 
9.9.7.29.18 1 9.8.30.48.19 
9.9.9.30.28 1 9.9.5.23.55 

FD = 2.788957407590457 
R = 0.9404928239071236 

FD = 1.0678309573125557 
R = 0.8293589297488905 

FD = 0.11581529365873741 
R = 0.7949366774769094 

FD = 0.004621321783703003 
R = 0.793912851301406 

The FD: 2.788957407590457 
The R: 0.9404928239071236 

r = 1/8 r = 1/16 
1.1.1.1.3 2 1.1.1.4.12 1 
1.1.1.1.5 1 1.1.1.8.10 1 
1.1.1.2.1 1 1.1.1.9.10 1 
1.1.1.2.6 1 1.1.10.13.4 1 
1.1.1.4.2 1 1.1.10.3.4 1 

8.8.8.7.8 1 9.9.8.5.11 1 
8.8.8.8.2 2 9.9.8.7.10 1 
8.8.8.8.6 1 9.9.8.7.15 1 
8.8.8.8.7 1 9.9.9.15.10 1 
8.8.8.8.8 1 9.9.9.4.2 1 

r = 1/128 
1 1.103.51.112.13 1 
1 1.104.115.60.44 1 
1 1.104.121.123.18 1 
1 1.105.26.21.119 1 
1 1.105.31.32.87 1 

1 99.86.24.87.66 1 
1 99.88.62.13.61 1 
1 99.89.54.7.38 1 
1 99.9.102.77.9 1 
1 99.97.94.103.11 1 
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Table 6.3 presents a summary of the total execution time for various SIzes of 

datasets in a Local Area Network and Figure 6.3 shows the difference in the execution 

times for both the approaches. 

.. 
" c 
8 
II 
.!!! 

Number of Centralized Distributed 
Records Approachlin ms~ A~oach (in ms~ 

10 28 20048 
100 752 21613 

1000 1759 21934 
10000 58125 25912 
20000 80474 30945 

1------ 30000 92087 33117 
40000 n2790 42283 
50000 146183 51743 
60000 165251 56276 

Table 6.3: Execution Times for the Fractal Dimension algorithm in a Local Area Network 

Fractal Dimension: Timing Results for a Local Area Network 
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Figure 6.3: Timing Results the Fractal Dimension algorithm in a Local Area Network 

55 



Table 6.4 presents a summary of the total execution time for various sizes of 

datasets in a Wide Area Network and Figure 6.4 shows the difference in the execution 

times for both the approaches. 

Number of Centralized Distributed 
Records Approach (in ms) Approach (in ms) 

10 27. 103425 
100 7512 121533 

1000 ·-17509 177342 
10000 165433. 185630 
20000 189342 192153 
30000 240342 213436 
40000 453262 235121 
50000 648211 247345 
60000 812424 245841 

Table 6.4: Execution Times for the Fractal Dimension algorithm in a Wide Area Network 

Fractal Dimension: Timing Results for a Wide Area Network 
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Figure 6.4: Timing Results the Fractal Dimension algorithm in a Wide Area Network 
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6.3 APruoru 

Sample Input (For generating Maximal Frequent Itcmsets) 

Site 1 Site 2 

1 3 4 1 2 3 4 
2 3 5 2 3 5 
1 2 3 5 1 2 3 5 
2 5 2 5 

3 4 5 
1 2 4 
1 3 

Results (Maximal Frequent Itemsets) 

Site 1 Site 2 

Frequent Itemsets Frequent Itemsets 

1 (2) 1 (4 ) 

1 3 (2 ) 1 2 (3) 
2 (3) 1 3 (3) 
2 3 (2 ) 2 (5 ) 
2 3 5 (2 ) 2 3 (3) 
2 5 ( 3) 2 5 (3) 
3 (3) 3 (5) 

3 5 (2) 3 5 (3) 
5 (3) 5 (4 ) 

Maximal Frequent Itemsets Maximal Frequent Itemsets 

1 3 (3) 1 2 (3) 
2 3 5 (2) 1 3 (3) 

2 3 (3) 
2 5 (3) 
3 5 (3) 

Similarity Matrix Generation 

Iteration 1 (FI 1 to FI 2) 

The first element {1 3} from FI 1 is searched in FI 2. The second element is a perfect 

match. Hence we consider the existence of {1 3} as a value of 1. 

The second element {2 3 5} from FI 1 is searched in FI 2. 

57 



{2 3 5) ~-7 {2 3 5) -7 0 

Since there exists no perfect match, a subset search is initiated. The subsets are created in 

a tree fashion to enable search based on the size of the subset. The results of the subset 

search yield the following values: 

{2 3 5) ~-7 {2 3 5) -7 0 
{2 3) ~-7 {2 3) -7 1 
{2 5) ~-7 {2 5) -7 1 
{3 5) ~-7 {3 5) -7 1 

Note that {2 3 5} is a subset of itself. Therefore the existence of {2 3 5} is considered as 

% since one of the four subsets failed to match. The similarity matrix entry for S]S2 is 

calculated as (1 + %) / 2 = 0.875. 

To 
From S] 

S] 1 

S2 

Iteration 1 (FI2 to FI 1) 

The first element {I 2} from FI 2 is searched in FI 1. 
{I 2} ~-7 {I 2} -7 0 

S2 
0.875 

1 

The second element {I 3} from FI 2 is searched in FI 1. 
{1 3} ~-7 {1 3} -7 1 

The third element {2 3} from FI 2 is searched in FI 1. 
{2 3} ~-7 {2 3} -71(Amatchbasedonthesubsetof{235}inFIl) 

The fourth element {2 5} from FI 2 is searched in FI 1. 
{2 5} ~-7 {2 5} -7 1 (Amatchbasedonthesubsetof{23 5} inFI 1) 

The fifth element {3 5} from FI 2 is searched in FI 1. 
{3 5} ~-7 {3 5} -7 1 (A match based on the subset of {2 3 5} in FI 1) 

The similarity matrix entry for S2S] is calculated as (1 + 1 + 1 + 1) / 5 = 0.8 

To 
From S) S2 

S] 1 0.875 

S2 0.8 1 
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Table 6.5 presents a summary of the total execution time for various sizes of 

datasets distributed over several sites and the algorithm execution performed using the 

centralized approach. 

Number 10,000 25,000 50,000 75,000 100,000 
of Sites Records Records Records Records Records 

2 18,334, ••. · 27,453 49,565 81,532 105,648 

3 26,321 .40,453 67,453 106,732 126,321 

4 31,743 58,454 91,343 117,321 156,896 

5 44,982 71,454 100,565 149,697 178,564 

6 53,683 89,454 121~538 163,998 184,232 

7 70,564 110,768 149,576 189,432 197,546 

Table 6.5: Execution Times in Milliseconds for the Centralized approach 

The results were plotted to measure performance changes as well as to determine 

the quality of the results. Figure 6.5 shows the centralized approach implementation of 

the Apriori algorithm. 

CENTRALIZED APPROACH 
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Number of Sites 

-"-10,000 Records ---25,000 Records ---50,000 Records 75,000 Records 100,000 Records 

Figure 6.5: Timing Results for the Centralized approach 
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It is clear that as the number of records increase, the execution time of the 

centralized algorithm increases dramatically due to the overhead of combining all the 

data at the central site before executing the algorithm. Table 6.7 shows the results 

obtained when a comparison of both the approaches was performed. The results illustrate 

that the distributed approach is more consistent and requires a shorter execution time in 

the long run. 

Number 10,000 25,000 50,000 75,000 100,000 
of Sites Records Records Records Records Records 

2 -61.1% -22.5'10 17.3'10 40.7'10 45.7'10 
3 ,,: "24:4'10 7.4'10 29.3'10 49.5'10 52.0'10 

4 - -.,;~ -9.5'10 29.9'10 43.5'10 48.3'10 55.7'10 
5 <0,0 . -"17.8'10 37.1 '10 44.4'10 55.0'10 I- 56.9'10 -
6 . >,26,3'10 46.4'10 51.0'10 56.4'10 54.6'10 
7 :38.0'10 54.2'10 58.7'10 60.2'10 54.7'10 

Table 6.7: Percentage Improvement of Distributed approach Vs Centralized approach 

The percentage of improvement of the distributed framework over the centralized 

framework is shown in Figure 6.7. 

Percentage Improvement of Distributed Approach vs. Centralized Approach 
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Figure 6.7: Percentage improvement 
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7. CONCLUSION 

This project describes a service oriented distributed data mining framework that 

provides improved performance and hierarchical structure for developing composite 

service using core data mining services. This framework neither has any overhead of 

downloading data to a particular location for mining nor fixed location for data mining 

tools. In this framework a user will be able to mine data available at multiple sites, using 

distributed data mining algorithms and executing them on more than one site. The 

framework allows users ability to discover and use new algorithms and data sets on the 

Internet and for their data-mining tasks dynamically. The proposed framework alleviates 

the major limitations of existing approaches: 

• The proposed framework allows coordination between different local models. This 

results in better accuracy in global learning models. 

• Aggregate component development allows creation of new data mining components 

using the existing components. Moreover, the proposed middleware supports 

integration of heterogeneous technologies, data and algorithms. 

• The proposed service oriented approach is dynamic where datasets and algorithms are 

searched based on the client's requirements. Thus, the location and data format for 
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datasets may not be known beforehand. The proposed framework Improves the 

flexibility and performance of a data mining system. 

• The proposed service oriented framework is built on open standards and is not tightly 

coupled but can execute components on heterogeneous platforms and languages. 

Moreover, Web provides a flexible platform for performing distributed data mining. 
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ApPENDIX 

Publish.java - This program lets the algorithm/data servIce providers to publish their 
service with the registry. 

package registry; 

import java.net.PasswordAuthentication; 
import java.util.ArrayList; 
import java.util.Collection; 
import java.util.HashSet; 
import java.util.lterator; 
import java.util.Properties; 
import java.util.Set; 

import javax.xml.registry.BulkResponse; 
import javax.xml.registry.BusinessLifeCycleManager; 
import javax.xml.registry.BusinessQueryManager; 
import javax.xml.registry.Connection; 
import javax.xml.registry.ConnectionFactory; 
import javax.xml.registry.JAXRException; 
import javax.xml.registry.RegistryService; 
import javax.xml.registry.infomodel.EmailAddress; 
import javax.xml.registry.infomodel.lnternationalString; 
import javax.xml.registry.infomodel.Organization; 
import javax.xml.registry.infomodel.PersonName; 
import javax.xml.registry.infomodel.Service; 
import javax.xml.registry.infomodel.ServiceBinding; 
import javax.xml.registry.infomodel.TelephoneNurnber; 
import javax.xml.registry.infomodel.User; 

1** 
* @author swamy 

* 
* To change the template for this generated type comment go to 
* Window&gt;Preferences&gt;Java&gt;Code Generation&gt;Code and Comments 
*1 

public class Publish ( 

Connection connection = null; 

public void makeConnection(String queryUrl, String publishUrl) ( 

IIString httpProxyHost=""; 
IIString httpProxyPort="SOSO"; 
IIString httpsProxyHost=""; 
IIString httpsProxyPort="SOBO"; 

Properties props = new Properties(); 
props.setProperty("javax.xml.registry.queryManagerURL", queryUrl); 
props.setProperty("javax.xml.registry.lifeCycleManagerURL", publishUrl); 

Ilprops.setProperty("com.sun.xml.registry.http.proxyHost", 
II httpProxyHost); 
Ilprops.setProperty("com.sun.xml.registry.http.proxyPort", 
II httpProxyPort); 
Ilprops.setProperty("com.sun.xml.registry.https.proxyHost", 
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II httpsProxyHost); 
Ilprops.setProperty("com.sun.xml.registry.https.proxyPort", 
II httpsProxyPort); 

try ( 

II Create the connection, passing it the configuration properties 

ConnectionFactory factory = ConnectionFactory.newInstance(); 
factory.setProperties(props); 
connection = factory.createConnection(); 
System.out.println("Created connection to registry"); 

catch (Exception e) ( 
e.printStackTrace(); 
if (connection != null) 

try ( 
connection.close(); 

catch (JAXRException je) 

public String executePublish(String username, String password, 
String orgName, String orgDescription, String personName, 
String phoneNumber, String email, String classificationScheme, 
String classificationName, String classificationValue, 
String serviceName, String serviceDescription, 
String svcbindingDescription, String svcbindingAccessURI) 

RegistryService rs = nUll; 
BusinessLifeCycleManager blcm = null; 
BusinessQueryManager bqm = null; 

String id = nUll; 

try ( 
rs = connection.getRegistryService(); 
blcm = rs.getBusinessLifeCycleManager(); 
bqm = rs.getBusinessQueryManager(); 
System.out.println("Got registry service, query manager, and life 
cycle manager"); 

II Get authorization from the registry 
PasswordAuthentication passwdAuth = new PasswordAuthentication( 

username, password.toCharArray()); 

Set creds = new HashSet(); 
creds.add(passwdAuth); 
connection.setCredentials(creds); 
System.out.println(".Established security credentials"); 

II Create organization name and description 
Organization org = blcm.createOrganization(orgName); 
InternationalString s = blcm 

.createInternationalString(orgDescription); 
org.setDescription(s); 

II Create primary contact, set name 
User primaryContact = blcm.createUser(); 
PersonName pName = blcm.createPersonName(personName); 
primaryContact.setPersonName(pName); 

II Set primary contact phone number 
TelephoneNumber tNum = blcm.createTelephoneNumber(); 
tNum.setNumber(phoneNumber); 
Collection phoneNums= new ArrayList(); 
phoneNums.add(tNum); 
primaryContact.setTelephoneNumbers(phoneNums); 

II Set primary contact email address 
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EmailAddress emailAddress = blcm.createEmailAddress(email); 
Collection emailAddresses = new ArrayList(); 
emailAddresses.add(emailAddress); 
primaryContact.setEmailAddresses(emailAddresses); 

II Set primary contact for organization 
org.setPrimaryContact(primaryContact); 

II II Set classification scheme to NAICS 
II ClassificationScheme cScheme = 
II bqm.findClassificationSchemeByName(null, classificationScheme); 
II 
II 
II 
II 
II 
II 

II 
II 

II Create and add classification 
Classification classification 

blcm.createClassification(cScheme, 
classificationName,classificationValue); 

Collection classifications = new 
ArrayList(); 
classifications.add(classification); 
org.addClassifications(classifications); 

II Create services and service 
Collection services = new ArrayList(); 
Service service = blcm.createService(serviceName); 
InternationalString is = blcm 

.createlnternationalString(serviceDescription); 
service.setDescription(is); 

II Create service bindings 
Collection serviceBindings = new ArrayList(); 
ServiceBinding binding = blcm.createServiceBinding(); 
is = blcm.createlnternationalString(svcbindingDescription); 
binding.setDescription(is); 

II allow us to publish a fictitious URL without an error 
binding.setValidateURI(false); 
binding.setAccessURI(svcbindingAccessURI); 
serviceBindings.add(binding); 

II Add service bindings to service 
service.addServiceBindings(serviceBindings); 

II Add service to services, then add services to organization 
services.add(service); 
org.addServices(services); 

II Add organization and submit to registry 
II Retrieve key if successful 
Collection orgs = new ArrayList(); 
orgs.add(org); 

BulkResponse response blcm.saveOrganizations(orgs); 

Collection exceptions response.getExceptions(); 

if (exceptions == null) 
System.out.println("Organization saved"); 

Collection keys = response.getCollection(); 
Iterator keylter = keys.iterator(); 
if (keylter. hasNext ()) ( 

} else ( 

javax.xml.registry.infomodel.Key orgKey 
(javax.xml.registry.infomodel.Key) keyIter 

} 

.next (); 
id = orgKey.getld(); 
System.out.println("Organization key is " + id); 

Iterator excIter = exceptions.iterator(); 
Exception exception = null; 
while (excI ter. hasNext ()) { 
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exception = (Exception) excIter.next(); 
System.err.println("Exception on save: " 

+ exception.toString()); 

catch (Exception e) 
e.printStackTrace() ; 

finally { 
// At end, close connection to registry 
if (connection != null) { 

try { 
connection.close(); 

catch (JAXRException je) 

return id; 

public static void main(String[] args) 

String username 
String password 

"testuser"; 
"testuser"; 

String orgName = "The Coffee Break by Swamy"; 
String orgDescription = "Purveyor of the finest coffees. Established 

1969"; 

String personName = "Swamy"; 
String phoneNurnber = "(502) 314-8312"; 
String email ="swamy@priest.com"; 

String classificationScheme = "ntis-gov:naics"; 
String classificationName = "Snack and Nonalcoholic Beverage"; 
String classificationValue = "722213"; 

String serviceName = "Published Using Program"; 
String serviceDescription = "My Service Description"; 

String svcbindingDescription = "My Binding Description"; 
String svcbindingAccessURI = "http://Coffee.com:8080/sb/"; 

//Additional parameters end here 

String queryURL = "http://localhost:8080/RegistryServer/"; 
String publishURL = "http://localhost:8080/RegistryServer/"; 

Publish P = new Publish(); 

p.makeConnection(queryURL, publishURL); 

p.executePublish(username, password, orgName, orgDescription, 
personName, phoneNurnber, email, classificationScheme, 
classificationName, classificationValue, serviceName, 
serviceDescription, svcbindingDescription, 
svcbindingAccessURI); 
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QueryRegistry.java - This program lets the algorithm/data service providers to publish 
their service with the registry. 

package registry; 

import java.io.IOException; 
import java.io.PrintWriter; 
import java.util.ArrayList; 
import java.util.Collection; 
import java.util.lterator; 
import java.util.Properties; 

import javax.servlet.ServletException; 
import javax.servlet.http.HttpServlet; 
import javax.servlet.http.HttpServletRequest; 
import javax.servlet.http.HttpServletResponse; 
import javax.xml.registry.BulkResponse; 
import javax.xml.registry.BusinessQueryManager; 
import javax.xml.registry.Connection; 
import javax.xml.registry.ConnectionFactory; 
import javax.xml.registry.FindQualifier; 
import javax.xml.registry.JAXRException; 
import javax.xml.registry.JAXRResponse; 
import javax.xml.registry.RegistryService; 
import javax.xml.registry.infomodel.Organization; 
import javax.xml.registry.infomodel.RegistryObject; 
import javax.xml.registry.infomodel.Service; 

public class QueryRegistry extends HttpServlet 

II edit these if behind firewall, otherwise leave blank 
String httpProxyHost ""; 

String httpProxyPort ""; 

Printwriter out; 

public void doGet(HttpServletRequest req, HttpServletResponse res) 
throws ServletException, IOException { 

doPost(req, res); 

public void doPost(HttpServletRequest req, HttpServletResponse res) 
throws ServletException, IOException { 

out = res.getWriter(); 
res.setContentType("text/html"); 

String regUrli 
String regUrlp 
String company 

"http://localhost:8080/RegistryServer"; 
"https:lllocalhost:80BO/RegistryServer"; 
"%"; 

out.println("regUrli 
out.println("regUrlp 
out.println("company 

try { 

" + regUrli + "<br>"); 
" + regUrlp + "<br>"); 
" + company + n<br>"); 

executeQueryTest(regUrli, regUrlp, company); 
catch (JAXRException e) { 

out.println("Error during the test: " + e); 
catch (NullPointerException e) { 

out.println("Null Pointer Error during the test: " + e); 

out.close(); 

public void executeQueryTest(String file, String filep, String cname) 
throws JAXRException { 
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try ( 
Properties props = new Properties(); 
props.setProperty("javax.xml.registry.queryManagerURL", file); 
props.setProperty("javax.xml.registry.lifeCycleManagerURL", filep); 
props.setProperty("javax.xml.registry.factoryClass", 

"com.sun.xml.registry.uddi.ConnectionFactorylmpl"); 

props.setProperty("com.sun.xml.registry.http.proxyHost ", 
httpProxyHost); 

props.setProperty("com.sun.xml.registry.http.proxyPort ", 
httpPrcxyPort); 

ConnectionFactory factory = ConnectionFactory.newlnstance(); 
factory.setProperties(props); 
Connection conn = factory.createConnection(); 
RegistryService rs = conn.getRegistryService(); 
BusinessQueryManager bqm = rs.getBusinessQueryManager(); 

ArrayList names = new ArrayList(); 
names.add(cname); 

Collection fQualifiers = new ArrayList(); 
fQualifiers.add(FindQualifier.SORT BY_NAME_DESC); 

BulkResponse br = bqm.findOrganizations(fQualifiers, names, null, 
null, null, null); 

if (br. getStatus () "'= JAXRResponse. STATUS SUCCESS) ( 
out.println("Successfully queried the" 

+ "registry for organization matching the " 
+ "name pattern: \"" + cname + "\"" + 

n<br>"); 

Collection orgs = br.getCollection(); 
out.println("Results found: " + orgs.size() + "<br>"); 
Iterator iter = orgs.iterator(); 
while (iter. hasNext ()) ( 

Organization org = (Organization) iter.next(); 
out.println("Organization Name: " + getName(org) + 

n<br>")i 
out.println("Organization Key: " + 

org.getKey() .getld() 

} 

} else { 

+ n<br>"}; 
out.println("Organization Description: " 

+ getDescription(org) + "<br>"); 

Collection services = org.getServices(); 
Iterator siter = services.iterator(); 
while (si ter. hasNext ()) ( 

Service service = (Service) siter.next(); 
out.println("\tService Name: " + 
getName(service) + "<br>"); 
out.println("\tService Key: " 
+ service.getKey() .getld() + "<br>"); 
out.println("\tService Description: " 
+ getDescription(service) + "<br>"); 

out.println("One or more JAXRExceptions " 
+ "occurred during the query operation:"); 
Collection exceptions = br.getExceptions(); 
Iterator iter = exceptions.iterator(); 
while (iter.hasNext()) ( 

Exception e = (Exception) iter.next(); 
out.println(e.toString()) ; 

catch (JAXRException e) ( 
e.printStackTrace(); 
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private String getName(RegistryObject ro) throws JAXRException { 
try ( 

return ro.getName() .getValue(); 
catch (NullPointerException npe) ( 

return u"; 

private String getDescription(RegistryObject ro) throws JAXRException { 
try ( 

return ro. getDescription () . getValue () ; 
catch (NullPointerException npe) { 

return ""; 

ShowDataSets.java - This program displays the data sets published in the registry based 
on the search perfonned by the user. 

package registry; 

import java.io.IOException; 
import java.io.PrintWriter; 
import java.util.ArrayList; 
import java.util.Collection; 
import java.util.lterator; 
import java.util.Properties; 
import java.util.StringTokenizer; 

import javax.servlet.ServletException; 
import javax.servlet.http.HttpServlet; 
import javax.servlet.http.HttpServletRequest; 
import javax.servlet.http.HttpServletResponse; 
import javax.xml.registry.BulkResponse; 
import javax.xml.registry.BusinessQueryManager; 
import javax.xml.registry.Connection; 
import javax.xml.registry.ConnectionFactory; 
import javax.xml.registry.FindQualifier; 
import javax.xml.registry.JAXRException; 
import javax.xml.registry.JAXRResponse; 
import javax.xml.registry.RegistryService; 
import javax.xml.registry.infomodel.Organization; 
import javax.xml.registry.infomodel.RegistryObject; 
import javax.xml.registry.infomodel.Service; 
import javax.xml.registry.infomodel.ServiceBinding; 

public class ShowDataSets extends HttpServlet ( 

II edit these if behind firewall, otherwise leave blank 
String httpProxyHost ""; 
String httpProxyPort ""; 

PrintWriter out; 

boolean showAll; 

String serviceField ""; 

int checkBoxCount; 

String dataAccessURI; 

public void doGet(HttpServletRequest req, HttpServletResponse res) 
throws ServletException, IOException ( 

doPost(req, res); 
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public void doPost(HttpServletRequest req, HttpServletResponse res) 
throws ServletException, IOException ( 

out = res.getWriter(); 
res.setContentType("text/html"); 

string regUrli 
String regUrlp 
String company 

"http://localhost:8080/RegistryServer"; 
"https://localhost:8080/RegistryServer"; 
n%"; 

checkBoxCount = 1; 

try ( 
serviceField = req.getParameter("keyword"); 
//out.println("Keyword: " + serviceField + "<br>"); 
if (serviceField.equals("")) 

showAll true; 
else 

showAll false; 
catch (NullPointerException npe) 

showAll = true; 

out.println("<html>"); 
out.println("<head>"); 
out.println ("<ti tle>DDM usiIJn JWS: Data Sets</ti tle>") ; 
out 

out 

.println("<meta http-equiv=\"Content-Type\" 
content=\"text/html; charset=iso-8859-1\">"); 

. println ("<I.ink href=\ "webmine. css \" rel= \" stylesheet \" 
type=\"text/css\">"); 

out.println("</head>"); 
out.println("<body>"); 

//out.println("<center>"); 
out.println("<table width=\"100%\">"); 
out.println("<tr>"); 
out 

.println("<th align=\"center\" valign=\"middle\" 
bgcolor=\"'F6F9FE\">"); 
out 

.println("<font color=\"'006699\" size=\"5\" 
face=\"Verdana, Arial, Helvetica, sans-serif\">"); 
out.println("<strong>Results</strong></font>"); 
out.println("</th>"); 
out.println("</tr>"); 
out.println("</table>") ; 
out.println("<br>"); 

out.println("<p><b>Registry URI:</b> " + regUrli + "<br><br>"); 

try ( 
executeQueryTest(regUrIi, regUrlp, company); 

catch (JAXRException e) ( 
out.println("Error during the test: " + e); 

catch (NullPointerException e) ( 
out.println("Null Pointer Error during the test: " + e); 

out.close(); 

public void executeQueryTest(String file, String filep, String cname) 
throws JAXRException ( 

try ( 
Properties props = new Properties(); 
props.setProperty("javax.xml.registry.queryManalJerURL", file); 
props.setproperty("javax.xml.registry.lifeCycleManagerURL", filep); 
props.setProperty("javax.xml.registry.factoryClass", 

"com.sun.xml.registry.uddi.ConnectionFactoryImpl"); 
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props.setProperty("com.sun.xml.registry.http.proxyHost ", 
httpProxyHost); 

props.setProperty("com.sun.xml.registry.http.proxyPort ", 
httpProxyPort); 

ConnectionFactory factory = ConnectionFactory.newlnstance(); 
factory.setProperties(props); 
Connection conn = factory.createConnection(); 
RegistryService rs = conn.getRegistryService(); 
BusinessQueryManager bqm = rs.getBusinessQueryManager(); 

ArrayList names = new ArrayList(); 
names.add(cname); 

Collection fQualifiers = new ArrayList(); 
fQualifiers.add(FindQualifier.SORT_BY NAME DESC); 

BulkResponse br = bqm.findOrganizations(fQualifiers, names, null, 
null, null, null); 

if (br. getStatus () == JAXRResponse. STATUS __ SUCCESS) 
/* 
* out.println("Successfully queried the" + "registry for 
* organization matching the" + "name pattern: \"" + 
* serviceField + "\"" + " <br><br> H); 
*/ 

out 
.println("<font face=verdana 

size=4px><strong>Data Sets</strong></font>"); 
Collection orgs = br.getCollection(); 

Iterator iter orgs.iterator(); 
int dsCount = 0; 
out 

.println("<form name=datasetform method=post 
action=ShowAlgorithms>"); 
out.println("<table border=l>"); 

while (iter.hasNext()) { 
boolean printOnce = true; 
Organization org = (Organization) iter.next(); 

Collection services = org.getServices(); 
Iterator siter = services.iterator(); 

while (siter.hasNext()) { 
Service service = (Service) siter.next(); 
String serviceName = getName(service); 
StringTokenizer st = new 
StringTokenizer(serviceName); 

while (st. hasMoreTokens ()) { 
String token = st.nextToken(); 
if (token.equalsIgnoreCase("Dataset") 

II 
token.equalsIgnoreCase ("Data")) { 

if (printOnce) { 
out.println("<tr>"); 
out 

.println("<td bgcolor=#006699 
bordercolor=#006699><strong><font 
color=#FFFFFF>Organization Name 
</font></strong></td>"); 

out 

.println("<td bgcolor=#006699 
bordercolor=#006699 colspan=2><strong><font 
color=#FFFFFF>" 
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+ getName(org) + "(" getDescription(org)+ ")</font></strong></td>"); 
out.println("</tr>"); 
out.println("<tr>"); 
out 
.println("<td bordercolor=#FFFFFF><strong>Service Name</strong></td>"); 
out 
.println("<td bordercolor=#FFFFFF><strong>Parameters</strong></td>"); 
out 
.println("<td bordercolor=#FFFFFF><strong>Service Bindings</strong></td>"); 
} 

printOnce = false; 
if (showAll) { 

} else 

out.println("<tr>"); 
out 
.println("<td bordercolor=#FFFFFF><input type=checkbox name=datasetKey" 
+ checkBoxCount + " value=\"" 
+ service.getKey() .getld() 
+ n\">"); 
//checkBoxCount++; 
out.println("<strong>" + serviceName 
+ "</strong></td>"); 
out 
.println("<td bordercolor=#FFFFFF>" 
+ getDescription(service) + "<ltd>"); 
Collection service Bindings = service 
.getServiceBindings(); 
Iterator sbiter = serviceBindings.iterator(); 
out.println("<td bordercolor=#FFFFFF>"); 
while (sbiter.hasNext()) { 

ServiceBinding serviceBinding = (ServiceBinding) sbiter.next(); 
dataAccessURI = serviceBinding.getAccessURI(); 
out.println("1 <a href=\"" 
+ dataAccessURI + "?WSDL\">"); 
out.println(dataAccessURI + "?WSDL"); 
out.println("</a> I"); 
out 
.println("<input type=hidden name=dataAccessURI" 
+ checkBoxCount 
+ " value=\"n 
+ dataAccessURI + "\""); 
checkBoxCount++; 

out.println("</td>"); 
out.println("</tr>"); 
//out.println(serviceName + 
getDescription(service) + "<br>"); 
dsCount++; 
continue; 

String serviceDescr = getDescription(service); 
StringTokenizer stDesc = new StringTokenizer( 
serviceDescr, ","); 
while (stDesc.hasMoreTokens()) 

String tokenDesc = stDesc.nextToken() 
. trim(); 
for (int i = 1; i < tokenDesc.length(); i++) 

String region = tokenDesc 
.substring(O, i); 
if (serviceField 
.equalsIgnoreCase(region) ) 

out.println("<tr>"); 
out 
.println("<td bordercolor=#FFFFFF><input 
type=checkbox name=datasetKey" 
+ checkBoxCount 
+ " value=\"" 
+ service 
.getKey () 
.getId() 
+ n\">"); 
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out.println("<strong>" 
+ serviceName 
+ "</strong></td>"); 
out 
.println("<td bordercolor=#FFFFFF>" 

+ getDescription(service) 
+ "<ltd>"); 

Collection serviceBindings 
.getServiceBindings() ; 

service 

Iterator sbiter = serviceBindings 
. i terator () ; 

out.println("<td bordercolor=#FFFFFF>"); 

while (sbiter.hasNext()) { 
ServiceBinding service Binding 
sbiter.next(); 
dataAccessURI = serviceBinding 

.getAccessURI(); 
out.println("1 <a href=\"" 

+ dataAccessURI 
+ "?WSDL\">"); 

out.println(dataAccessURI 
+ "?WSDL"); 

out.println("</a> I"); 

out 

(ServiceBinding) 

.println("<input type=hidden 
name=dataAccessURI" 

checkBoxCount++; 

+ checkBoxCount 
+ " value=\"" 
+ dataAccessURI 
+ n\ "n) ; 

out.println("</td>"); 
out.println("</tr>"); 
//out.println(serviceName + 
// getDescription(service) + 
// "<br>"); 
dsCount++; 
/ /break; 
continue; 
) 

out.println("</table>"); 
out.println("<br>"); 
out 

} else 

.println("<input type=submit name=submit 
value=\"Show Algorithms\">"); 
//out.println("<input type=hidden name=dataAccessURI 
value::::\"n 
// + dataAccessURI + "\""); 
out.println("</form>") ; 
out.println("<p><b>Datasets found:</b> " + dsCount + 
n</p>"); 

out.println("One or more JAXRExceptions " 
+ "occurred during the query operation:"); 

Collection exceptions = br.getExceptions(); 
Iterator iter = exceptions.iterator(); 
while (iter.hasNext()) { 

Exception e = (Exception) iter.next(); 
out.println(e.toString()); 
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out.close(); 
catch (JAXRException e) ( 

e.printStackTrace(); 

private String getName(RegistryObject ro) throws JAXRException { 
try ( 

return ro.getName() .getValue(); 
catch (NullPointerException npe) ( 

return 

private String getDescription(RegistryObject ro) throws JAXRException { 
try ( 

return ro.getDescription() .getValue(); 
catch (NullPointerException npe) ( 

return "". , 

Show Algorithms.java - This program queries the registry and displays the appropriate 
algorithms based on the data sets selected by the user. 

package registry; 

import java.io.*; 
import java.util.*; 

import javax.servlet.*; 
import javax.servlet.http.*; 

import javax.xml.registry.*; 
import javax.xml.registry.infomodel.*; 

public class ShowAlgorithms extends HttpServlet 

II edit these if behind firewall, otherwise leave blank 
String httpProxyHost; 
String httpProxyPort; 

PrintWriter out; 

boolean showAll; 

String dataset Field; 

String datasetDescription; 

Vector datafieldList; 

Vector parameterVals; 

String dataAccessURI; 

String algoAccessURI; 

IIVector algofieldList new Vector(); 

Service service; 

Vector dataAccessURIs; 
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Vector algoAccessURIs; 

public void doGet(HttpServletRequest req, HttpServletResponse res) 
throws ServletException, IOException { 

doPost(req, res); 

public void doPost(HttpServletRequest req, HttpServletResponse res) 
throws ServletException, IOException { 

out ~ res.getWriter(); 
res.setContentType("text/html"); 

httpProxyHost .... ; 
httpProxyPort .... ; 

showAll ~ true; 
datasetField ~ .... ; 
datasetDescription ~ .... ; 
datafieldList new Vector(); 
parameterVals new Vector(); 

dataAccessURI "": 
algoAccessURI .... ; 
//Vector algofieldList new Vector(); 

service ~ null; 
dataAccessURIs 
algoAccessURIs 

String regUrli 
String regUrlp 
String company 

algoAccessURIs 

/* 
* try { 

new Vector(); 
new Vector(); 

''http://136.165.67.140:8080/RegistryServer''; 
"https://136.165.67.140:8080/RegistryServer"; 
"%"; 

new vector(); 

* datasetField ~ req.getParameter("datasetKeyl"); 
* //out.println("Keyword: .. + service Field + .. <br> .. ); 
* if(datasetField.equals( .... )) showAll ~ true; else showAll 
* catch(NullPointerException npe) { showAll ~ true; } 
*/ 

out.println("<html>"); 
out.println("<head>"); 
out.println("<title>DDM usign JWS: Algorithms</title>"); 
out 

out 

.println("<meta http-equiv~\"Content-Type\" 
content~\"text/html; charset~iso-8859-1\">"); 

false; } 

.println("<link href~\"webmine.css\" rel~\"stylesheet\" 
type~\"text/css\">"); 

out.println("</head>"); 
out.println("<body>"); 

//out.println("<center>"); 
out.println("<table width~\"lOO%\">"); 
out.println("<tr>"); 
out 

.println("<th align~\"center\" valign~\"middle\" 
bgcolor~\"#F6F9FE\">"); 

out 
.println("<font color~\"#006699\" size~\"5\" 

face~\"Verdana, Arial, Helvetica, sans-serif\">"); 
out.println("<strong>Results</strong></font>"); 
out.println("</th>"); 
out.println("</tr>"); 
out.println("</table>"); 
out.println("<br>"); 
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out.println("<p><b>Registry URI:</b> " + regUrli + "<br><br>"); 

Enumeration en ~ req.getParameterNames(); 
dataAccessURIs ~ new Vector(); 
parameterVals ~ new Vector(); 

Vector cnt ~ new Vector(); 
while (en.hasMoreElements()) 

String paramName ~ en.nextElement() .toString(); 
if (paramName. startsWi th ("datasetKey")) { 

String parameterVal ~ req.getParameter(paramName); 
parameterVals.add(parameterVal); 
cnt.add(paramName.substring(lO) ); 
showAll ~ false; 
Ilout.println("Name ~ " + parameterName + "Value "+ 
II parameterVal); 

Enumeration enl ~ req.getParameterNames(); 
while (enl.hasMoreElements()) { 

String parameterName ~ enl.nextElement() .toString(); 
if (parameterName.startsWith("dataAccessURI") 

&& (cnt.contains(parameterName.substring(13)))) 
String parameterVal ~ req.getParameter(parameterName); 
dataAccessURIs.add(parameterVal); 
out.println("Name ~ " + parameterName + " Value ~ " 

+ parameterVal + "<br>"); 
showAll ~ false; 

Ilif(parameterName.equals("dataAccessURI")) dataAccessURI 
II req.getParameter("dataAccessURI"); 
if (parameterVals.size() ~~ 0) 

showAll ~ true; 

try { 
executeQueryTest(regUrli, regUrlp, company); 

catch (JAXRException e) { 
out.println("Error during the test: " + el; 

catch (NullPointerException e) { 
out.println("Null Pointer Error during the test: " + e); 

out.close(); 

public void executeQueryTest(String file, String filep, String cname) 
throws JAXRException { 

try { 
Properties props ~ new Properties(); 
props.setProperty("javax.xml.registry.queryManagerURL", file); 
props.setProperty("javax.xml.registry.lifeCycleManagerURL", filep); 
props.setProperty("javax.xml.registry.factoryClass", 

"com.sun.xml.registry.uddi.ConnectionFactorylmpl"); 

props.setProperty("com.sun.xml.registry.http.proxyHost ", 
httpProxyHost); 

props.setProperty("com.sun.xml.registry.http.proxyPort ", 
httpProxyPort); 

ConnectionFactory factory ~ ConnectionFactory.newlnstance(); 
factory.setProperties(props); 
Connection conn ~ factory.createConnection(); 
RegistryService rs ~ conn.getRegistryService(); 
BusinessQueryManager bqm ~ rs.getBusinessQueryManager(); 

ArrayList names ~ new ArrayList(); 
names.add(cname); 
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datafieldList = new Vector(); 

Collection fQualifiers = new ArrayList(); 
fQualifiers.add(FindQualifier.SORT BY~NAME~DESC); 

BulkResponse br = bqm.findOrganizations(fQualifiers, names, null, 
null, null, null); 

if (br.getStatus() JAXRResponse.STATUS SUCCESS) 

out 
.println("<form name=algorithmform 

method=post action=WebMineServlet>"); 

/* 
* out.println("Successfully queried the" + "registry for 
* organization matching the" + "name pattern: , .... + 
* serviceField + .. , .... + .. <br><br> "); 
*/ 

if (! showAll ) 
out 

.println("<font face=verdana 
size=4px><strong>Data Set(s)</strong></font><br>"); 
Collection tempOrgs = br.getCollection(); 
Iterator templter = tempOrgs.iterator(); 
while (templter.hasNext ()) ( 

Organization tempOrg = (Organization) 
templter.next(); 

Collection tempServices = tempOrg.getServices(); 
Iterator tempSiter = tempServices.iterator(); 
while (tempSiter.hasNext()) ( 

Service tempService = (Service) 
tempSiter.next(); 

String key = tempService.getKey() .getld(); 
for (int i = 0; i < parameterVals.size(); 

i++) { 

85 

if (key.equals(parameterVals.get(i))) 
( 

out.println("<table 
border=l>"); 
out.println("<tr>"); 
out 

.println("<td 
bgcolor=#006699 

bordercolor=#006699><strong><font 
color=#FFFFFF>Dataset 
information</font></strong></td>"); 

out.println("</tr>"); 
out.println("<tr>"); 
out 

.println("<td 
bordercolor=#FFFFFF><s 

trong>Key: </strong>" 

+ key + "</td>"); 
out.println("</tr>"); 
out.println("<tr>") ; 
out 

.println("<td 
bordercolor=#FFFFFF><s 

trong>Service Name: 
</strong>" 

+ getName(tempService) 

+ "<ltd>"); 
out.println("</tr>"); 
out.println("<tr>"); 
datasetDescription = 
getDescription(tempService); 



out.println("<td bordercolor=#FFFFFF><strong>Parameters: </strong><br>"); 
StringTokenizer serviceParameters = new StringTokenizer( 
getDescription(tempService), ","I; 

while (serviceParameters.hasMoreTokens()) ( 
String attribute = service Parameters 
.nextToken(); 
out.println("<input type=radio name=\"attribute--" 

+ dataAccessURIs.get(i) 
+ "\" value=" 
+ attribute 
+ ">"); 

out.println(attribute + "<br>"); 
} 

out.println("</td>"); 
out.println("</tr>"); 
out.println("</table>"); 
out.println("<br>"); 
StringTokenizer datasetTokens = new StringTokenizer( 
datasetDescription); 
while (datasetTokens.hasMoreTokens()) 

String datasetToken = dataset Tokens 
.nextToken(); 
int indexOfColon = datasetToken 

.indexOf(":"); 
Ilout.println(indexOfColon + "<br>"); 
String fieldType = datasetToken.substring( 
indexOfColon + 1, datasetToken 
.length() ); 
if (fieldType. endswi th ( " , ") ) 
fieldType = fieldType.substring(O, 
fieldType.length() - 1); 
//out.println(fieldType + "<br>"); 
datafieldList.add(fieldType.trim() 
.toLowerCase()); 
} 

Ilout.println("<strong>Data Field 
II List:</strong> " + datafieldList + 
II "<br><br>"); 

out 
.println("<font face=verdana size=4px><strong>Algorithms</strong></font>"); 
Collection orgs = br.getCollection(); 
Iterator iter = orgs.iterator(); 

int dsCount = 0; 

for (int i = 0; i < parameterVals.size(); i++) 
out.println("<input type=hidden name=datasetKey" + i 

+ " value=" + parameterVals.get(i) + ">"); 
out.println("<table border=I>"); 

while (iter.hasNext()) ( 
boolean printOnce = true; 
Organization org = (Organization) iter.next(); 

Collection services = org.getServices(); 
Iterator siter = services.iterator(); 

while (si ter. hasNext ()) ( 
service = (Service) siter.next(); 
String serviceName = getName(service); 
StringTokenizer st = new 
StringTokenizer(serviceName); 

while (st.hasMoreTokens()) 
String token = st.nextToken(); 
if 

(token.equalsIgnoreCase("Algorithm") 
II 

token.equalsIgnoreCase("Algorithms") ) 
if (printOnce) { 
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} else 

out.println("<tr>"); 
out.println("<td bgcolor=#006699 bordercolor=#006699><strong><font 
color=#FFFFFF>Organization Name </font></strong></td>"); 
out 
.println("<td bgcolor=#006699 bordercolor=#006699 colspan=2><strong><font 
color=#FFFFFF>" 

+ getName (org) 
+ "(" 
+ getDescription(org) 
+ ")</font></strong></td>"); 
out.println("</tr>") ; 
out.println("<tr>"); 
out 
.println("<td bordercolor=#FFFFFF><strong>Service Name</strong></td>"); 
out 
.println("<td bordercolor=#FFFFFF><strong>Parameters</strong></td>"); 
out 
.println("<td bordercolor=#FFFFFF><strong>Service Bindings</strong></td>"); 
} 

printOnce = false; 
if (showAll) { 

out.println("<tr>"); 
out 

.println("<td bordercolor=#FFFFFF><input type=radio name=algorithmKey value=\"" 
+ service.getKey() .getld() 
+ "\ ">") ; 
out.println("<strong>" + serviceName 
+ "</strong></td>"); 
out 
.println("<td bordercolor=#FFFFFF>" 
+ getDescription(service) 
+ "<ltd>"); 
Collection serviceBindings = service 
.getServiceBindings(); 
Iterator sbiter = serviceBindings.iterator(); 
out.println("<td bordercolor=#FFFFFF>"); 
while (sbi ter. hasNext ()) { 

ServiceBinding serviceBinding = (ServiceBinding) sbiter 
.next (); 

algoAccessURI = serviceBinding.getAccessURI(); 
out.println("1 <a href=\"" 
+ algoAccessURI + "\"?WSDL>"); 

out.println(algoAccessURI + "?WSDL"); 
out.println("</a> I"); 
algoAccessURIs.add(service.getKey() 
.getId()); 
algoAccessURIs.add(algoAccessURI); 
} 

out.println("</td>"); 
out.println("</tr>"); 
//out.println(serviceName + 
// getDescription(service) + "<br>"); 
dsCount++; 
continue; 

String serviceDescr = getDescription(service); 
StringTokenizer stDesc = new StringTokenizer( 
serviceDescr, ":"); 
while (stDesc.hasMoreTokens()) 

String tokenDesc = stDesc.nextToken(); 
int indexOfOpenBracket = tokenDesc 
.indexOf("("); 
int indexOfCloseBracket = tokenDesc 
.indexOf(")"); 
String fieldSet = tokenDesc. substring ( 

indexOfOpenBracket 4 1, 
indexOfCloseBracket); 

StringTokenizer fieldSetTokens = new StringTokenizer( 
fieldSet, ",H); 

Vector algofieldList = new Vector(); 
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while (fieldSetTokens.hasMoreElements()) 
algofieldList.add(fieldSetTokens 
.nextToken() .trim() 
.toLowerCase()); 

Collections.sort(algofieldList); 
Collections.sort(datafieldList); 
Ilout.println("Algo Field List: " + 
II algofieldList + "<br>"); 
Ilout.println("Data Field List: " + 
II datafieldList + "<br>"); 
if (new Subset() . compare (datafieldList, 

algofieldList)) ( 
out.println("<tr>"); 
out 
.println("<td bordercolor=#FFFFFF><input type=radio name=algorithmKey value=\"" 

+ service.getKey() 
. getId () 
+ "\ ">"); 

out.println("<strong>" 
+ serviceName 
+ "</strong></td>"); 
out 
.println("<td bordercolor=#FFFFFF>" 

+ getDescription(service) 
+ "<ltd>"); 

Collection serviceBindings = service 
.getServiceBindings(); 

Iterator sbiter = serviceBindings 
.iterator(); 

out 
.println("<td bordercolor=#FFFFFF>"); 
while (sbi ter. hasNext ()) ( 

ServiceBinding service Binding 
.next(); 

algoAccessURI = service Binding 
.getAccessURI(); 

out.println("1 <a href=\"" 
+ algoAccessURI 
+ "?WSDL\">"); 

out.println(algoAccessURI 
+ "?WSDL"); 

out.println("</a> I"); 

algoAccessURIs.add(service 
.getKey() .getld()); 

algoAccessURIs 
.add(algoAccessURI); 

out.println("</td>"); 
out.println("</tr>"); 

dsCount++; 

break; 
} 

out.println("</table>"); 
out.println("<br>"); 
out 

(ServiceBinding) sbiter 

.println("<input type=submit name=submit value=\"Run Algorithm\">"}; 
for (int i = 0; i < dataAccessURIs.sizel). i++} 
out.println("<input type=hidden name=dataAccessURI" + i 

+ " value=\"" + dataAccessURIs.get(i) + "\">"); 
out.println("<input type=hidden name=algoAccessURI 
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value=\"" 
+ algoAccessURIs.toString(} + "\">"}; 
out.println("</form>"}; 
out.println("<p><b>Algorithms found:</b> " + dsCount + "</p>"}; 

} else { 
out.println("One or more JAXRExceptions " 

+ "occurred during the query operation:"}; 

Collection exceptions = br.getExceptions(}; 
Iterator iter = exceptions.iterator(}; 
while (iter.hasNext(}) { 

out.close(} ; 

Exception e = (Exception) iter.next(}; 
out.println(e.toString(}}; 

catch (JAXRException e) { 
e.printStackTrace(}; 

private String getName(RegistryObject ro} throws JAXRException { 
try { 

return ro.getName(} .getValue(}; 
catch (NullPointerException npe) { 

return "". . 

private String getDescription(RegistryObject ro} throws JAXRException { 
try { 

return ro.getDescription(} .getValue(}; 
catch (NullPointerException npe) { 

return ""; 

AprioriImpl.java - Implementation of the Apriori algorithm as a web service. 

package aprioriservice; 

import java.io.BufferedReader; 
import java.io.BufferedWriter; 
import java.io.FileReader; 
import java.io.FileWriter; 
import java.io.IOException; 
import java.io.PrintWriter; 
import java.util.ArrayList; 
import java.util.Arrays; 
import java.util.Enumeration; 
import java.util.StringTokenizer; 
import java.util.Vector; 

public class AprioriImpl implements AprioriIF 

int pass; II number of passes 

int total; II total number of frequent itemsets 

int minsup; II minimal support of itemset 

String filename; II the filename of the database 

Item root; II the root item of the Trie 
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BufferedWriter writer;11 the buffer to write the output to 

DataHandler dh; II the handler for the database 

StringBuffer returnStr; II the buffer that holds all the messages 

String output filename; 

1** 
* Constructur for creating a Apriori object. 

* 
*1 

public Apriorilmpl () {} 

1** 
* The workhorse method for the basic implementation of the Apriori 
* algorithm. 
*1 

public void findFrequentSets(String filename, String minsup, String outfile) { 

1** 

this.pass = 0; 
this.total = 0; 
this.outputfilename = outfile; 
this.minsup = Integer.parselnt(minsup); 
this.dh = new DataHandler(filename); 
this.root new Item(O); 
returnStr = new StringBuffer(); 
try { 

if (!outfile.equals("")) 
writer new BufferedWriter(new FileWriter(outfile)); 

catch (Exception e) 

boolean running = true; 
int candidates = 0, transactions 

while (running) { 
this.pass++; 

0, pruned 0, itemsets; 

candidates = this.generateCandidates(this.root, new Vector(), 1); 
transactions = this.countSupport(); 
pruned = this.pruneCandidates(this.root); 

itemsets candidates - pruned; 

II correct the candidate count on first pass for printing 
if (this.pass == 1) 

candidates = total; 

total += itemsets; 
if (itemsets <= this.pass && this.pass > 1) { 

running = false; 

IISystem.out.println("pass: " + this.pass + ", total: " + total 
II + ", candidates: " + candidates + ", pruned: " + 
pruned) ; 

returnStr.append("pass: " + this.pass + ", total: " + total 
+ ", candidates: " + candidates +" pruned: " + 

pruned + "\n"); 

* Method for generating new candidates. Copies the siblings of an item to 
* its children. 
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* @param item 
* the item to which generated items are added 
* @param depth 
* the depth of recursion 
* @return the number of new candidates generated 
*/ 

public int generateCandidates(Item item, Vector current, int depth) ( 
Vector v = item.getChildren(); 

/->* 

Item child = item; 
int generated = 0; 

for (Enumeration e = v.elements(); e.hasMoreElements();) 
child = (Item) e.nextElement(); 
current.add(child); 

if (depth == this.pass - 1) ( 
generated += this.copySiblings(child, v, current); 

else ( 
generated += this.generateCandidates(child, current, depth 

+ I); 

current.remove(child); 

return generated; 

* Method for copying the siblings of an Item to its children. 

* 
* @param item 
* the item to which the siblings are copied 
* @param siblings 
* the siblings to be copied 
* @param current 

the current itemset to be generated 
* @return the number of siblings copied 
*/ 

public int copySiblings(Item item, Vector siblings, Vector current) 
Enumeration e = siblings.elements(); 

/** 

Item parent = item; 
Item sibling = new Item(); 
int copied = 0; 

while (sibling.getLabel() < parent.getLabel() && e.hasMoreElements()) 
sibling = (Item) e.nextElement(); 

while (e.hasMoreElements()) ( 
sibling = (Item) e.nextElement(); 
current.add(sibling); 
if (this.pass <= 2 

I I this 
.checkSubsets(current, 

this.root.getChildren(), 0, 
I) ) 

parent.addChild(new Item(sibling.getLabel())); 
copied++; 

current.remove(sibling); 

return copied; 

.. Checks if the subsets of the itemset to be generated are all frequent . .. 
* @param current 
.. the current itemset to be generated 
* @param children 
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* the children in the trie on this depth 
* @param mark 
* the mark in the current itemset 
* @param depth 

depth of recursion 
* @return true if the subsets are frequent, else false 
*/ 

public boolean checkSubsets(Vector current, Vector children, int mark, 
int depth) { 

boolean ok = true; 
Item child; 
int index; 
int i = depth; 

if (children == null) 
return false; 

while (ok && (mark <= i)) { 
index = children.indexOf(current.elementAt(i)); 
if (index >= 0) { 

if (depth < this.pass - 1) { 
child = (Item) children.elementAt(index); 
ok = checkSubsets(current, child.getChildren(), i + 

1,depth + 1); 

/** 

} 

else { 
ok false; 

i--; 

return ok; 

* Method for counting the supports of the candidates generated on this 
* pass. 
* 
* @return the number of transactions from which the support was counted 
*/ 

public int countSupport() 
int rowcount = 0; 
int[] items; 
this.dh.open(); 
for (items = this.dh.read(); items.length > 0; items 

rowcount++; 
if (this.pass == 1) 

this.root.incSupport(); 

this.dh.read()) { 

this.total += generateFirstCandidates(items); 
else { 

countSupport(root, items, 0, 1); 

/** 

if (this.pass == 1) 
this.minsup 

return rowcount; 

this.minsup * rowcount / 100; 

* Method generates the first candidates by adding each item found in the 
* database to the children of the root item. Also counts the supports of 
* the items found in the database. 
* 
* @param items 

the array of integer items from the database 
* @return the number of candidates generated 
*/ 

public int generateFirstCandidates(int[] items) 
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Vector v = root.getChildren(); 
Enumeration e = v.elements(); 
Item item = new Item(); 
int generated = 0; 

for (int i = 0; i < items.length; i++) { 

while (e.hasMoreElements() && item.getLabel() < items[i]) { 
item = (Item) e.nextElement(); 

if (item.getLabel() == items[i]) 
item.incSupport(); 
if (e.hasMoreElements()) 

item = (Item) e.nextElement(); 
) else if (item.getLabel() > items[i]) { 

int index = v.indexOf(item); 
Item child = new Item(items[i]); 
child.incSupport(); 
this. root. addChild (child, index); 
generated++; 

) else { 
Item child = new Item(items[i]); 
child.incSupport(); 
this.root.addChild(child); 
generated++; 

return generated; 

public void countSupport(Item item, int[] items, int i, int depth) ( 
Vector v = item.getChildren(); 

1** 

Item child; 
int tmp; 
Enumeration e = v.elements(); 

II loop through the children to check 
while (e.hasMoreElements()) { 

child = (Item) e.nextElement(); 

II break, if the whole transaction is checked 
if (i == items.length) { 

break; 

II do a linear search for the child in the transaction starting 
II from i 
tmp = i; 
while (tmp < items.length && items[tmp] < child.getLabel()) 

tmp++; 

II if the same item exists, increase support or go deaper 
if (tmp < items.length && child.getLabel() == items[tmp]) 

if (depth == this.pass) { 
child.incSupport(); 

else { 
countSupport(child, items, tmp + 1, depth + 1); 

i = tmp + 1; 

* Method for pruning the candidates. Removes items that are not frequent 
* from the Trie. 

* @param item 
* the item the children of which will be pruned 
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* @return the number of items pruned from the candidates 
*1 

public int pruneCandidates(Item item) 
Vector v = item.getChildren(); 
Item child item; 

1** 

int pruned = 0; 

for (Enumeration e = new Vector (v) .elements(); e.hasMoreElements();) { 
child = (Item) e.nextElement(); 

II check infrequency, existence and that it is fully counted 
if (child.getSupport() < this.minsup) { 

v.remove(child); 
pruned++; 

else { 
pruned += pruneCandidates(child); 

return pruned; 

* Method prints the itemsets to the system output and to a file if the name 
* of an output file exists. 
*1 

public String printFrequentSets() 
if (this.writer != null) { 

print(root, "H); 

1** 

IISystem.out.println("\nnumber of frequent itemsets found: " + 
this.total); 
returnStr.append("\nnumber of frequent itemsets found: " + this.total + 

"\n"); 

try { 
this.writer.close(); 

catch (IOException e) { 
e.printStackTrace(); 

IlgenerateSortedFile(); 

return returnStr.toString(); 

• Loops through the Trie recursively adding paths and subpaths to the 
* output string along the way. 

* @param item 
the item where the recursion is 

* @param str 

* the string of the gatherd itemset 
*1 

public void print (Item item, String str) 
Vector v = item.getChildren(); 

for (Enumeration e = v.elements(); e.hasMoreElements();) 
item = (Item) e.nextElement(); 
try { 

this.writer.write(str + item.getLabel() + "\n"); 
II " (" + item.getSupport() + ")\n"); 
this.writer.flush(); 

catch (Exception x) { 
IISystem.out.println("no output file"); 
returnStr.append("no output file\n"); 

if (item.hasChildren()) 
print(item, str + item.getLabel() + " H); 
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public void generateSortedFile(String outputfilename) { 

/** 

try ( 

//Read the file contents into an arraylist 
ArrayList al = new ArrayList(O); 
BufferedReader in = new BufferedReader(new 
FileReader(outputfilename)); 
String responseLine = null; 
while{{responseLine=in.readLine{)) !=null) 

StringTokenizer st = new StringTokenizer{responseLine); 
//System.out.println{responseLine + ":" + 

st.countTokens{)); 
al.add{String.valueOf{st.countTokens{)) + "." + 
responseLine); 

in.close(); 

//Sort the elements 
Object[] arrayForSorting = al.toArray(); 
Arrays.sort{arrayForSorting); 

//System.out.println("Elements : " + arrayForSorting.length); 
Object[] invertArray = new Object[arrayForSorting.length]; 
for{int forward=O,reverse = arrayForSorting.length-l;forward < 
arrayForSorting.length; forward++, reverse--) ( 

//System.out.println{"i = " + forward + " : " + "j = " + 
reverse); 
invertArray[reverse] = arrayForSorting[forward]; 

//Write to a new file 
PrintWriter out = new PrintWriter(new BufferedWriter(new 

FileWriter(outputfilename + "_sorted", false))); 
for{int j=O;j<arrayForSorting.length;j++) ( 

StringTokenizer st = new 
StringTokenizer(invertArray[j] .toString(), ":"); 
st.nextToken(); 
out.println(st.nextToken{)); 

out.close(); 

catch (Exception e) ( 
// TODO Auto-generated catch block 
e.printStackTrace{); 

* Main method for testing the algorithm. 
* 
* @param args 

* 
*/ 

the arguments can contain the filename of the test file and the 
minimal support threshold and a filename for output 

public static void main{String args[]) 
String testfile = "test.dat"; 
String outfile ""; 
String support "50"; 

//StopWatch sw 
//sw.start{); 

new StopWatch(); 

Apriorilmpl apriori = new Apriorilmpl(); 
apriori.findFrequentSets(testfile, support, outfile); 
System.out.println(apriori.printFrequentSets() ); 
/ /sw.stop (); 
//sw.print{); 
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FractalDimensionlmpl.java - Implementation of the Fractal Dimension algorithm as a 
web service. 

package fractaldimensionservice; 

import java.util.*; 
import java.io.*; 

public class FractalDimensionlmpl 

public String findFD(String dataFileName, String normalizedFileName) ( 

String result = new String(); 

double elements[] [] null; 
double min[] null; 
double max[] = null; 

BufferedReader in = null; 
try ( 

in = new BufferedReader(new FileReader(dataFileName)); 

catch (FileNotFoundException fne) 
re~ult = "File not found."; 

int dimension = 0; 
String responseLine 
int i 0; 

new String(); 

int j = 0; 
try ( 

while (( responseLine = in. readLine ()) ! = null) ( 
IISystem.out.println("line = " + responseLine); 
StringTokenizer stMain = new StringTokenizer(responseLine); 
j = 0; 
if (dimension == 0) ( 

dimension = stMain.countTokens(); 
elements = new double [dimension] [100000]; 
min new double[dimension]; 
max = new double[dimension]; 

IISystem.out.println(responseLine); 
while (stMain.hasMoreTokens()) ( 

elements [jJ [iJ 
Double.parseDouble(stMain.nextToken()); 

IISystem.out.print("elements[" + j + "] [" + i + "]" + 
II elements [j] [i]); 
if (i == 0) { 

min[j] 
max[j] 

} else { 

elements[j] [i]; 
elements[j] [i]; 

if (elements[j] [i] < min[j]) 
min[j] = elements[j] [i]; 

if (elements[j] [iJ > max[jJ) 
max[j] = elements[j] [i]; 

IISystem.out.print("\tmin[" + j + "I" + min[j]); 
I/System.out.print("\tmax[" + j + "I" + max[j] + "\n"); 

j++; 

IISystem.out.println(}; 
i++; 
j = 0; 

in.close(}; 

catch (IOException ioe) { 
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result "Error reading file contents."; 

double normalized 0; 

try { 
Printwriter out = new PrintWriter(new BufferedWriter( 

new FileWriter(normalizedFileName))); 
for (int s = 0; s < i; s++) { 

for (int r = 0; r < dimension; r++) { 
normalized = (elements[r] [s] - min[r]) I (max[r] - min[r]); 

out.print(normalized); 
IISystem.out.print(normalized); 
I ISystem. out. print (elements [r] [s] ) ; 
if (r != dimension - 1) 

out.print("\t"); 

out.println(); 

out.close(); 
catch (IOException ioe) ( 

result = "Error writing normalized file."; 

result = processData(normalizedFileName); 
return result; 

private String processData(String normalFileName) 

double xArray[] = new double[7]; 
double yArray[] = new double[7]; 
StringBuffer returnVal = new StringBuffer(); 

int arr = 0; 
for (int r = 2; r <= 128; r *= 2, arr++) { 

BufferedReader in = null; 
try ( 

in = new BufferedReader(new FileReader(normaIFileName)); 
catch (FileNotFoundException fne) ( 

return "Normalized file not found."; 

Hashtable cellTab = new Hashtable(); 
String responseLine = new String(); 

IISystem.out.println(recieveStr); 
try { 

while (( response Line = in. readLine ()) ! = null) ( 

StringTokenizer st = new StringTokenizer(responseLine); 
String cellld = ""; 
while (st.hasMoreTokens()) ( 

IlreturnVal.append(responseLine + "\n"); 

int x = (int) Math.ceil(Double.parseDouble(st 
.nextToken() ) 
* r); 

if (x == 0) 
x = 1; 

cellld = cellld + String.valueOf(x) + 

if (cellId.trim().length() != 0) ( 

cellld = cellld.substring(O, cellld.length() - 1); 
IIIf the table already contains the Cell rD, increment 
/ / it. 
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if (ceIITab.containsKey(cellId)) ( 
int cellValue = Integer.parselnt(ceIITab 
.get(ceilld) .toString()); 

cellValue++; 
celITab.remove(cellld) ; 
cellTab.put(cellld, 

String.valueOf(ceIIValue)); 
} else ( 

catch (IOException ioe) 

//Otherwise add a new entry 
ceIITab.put(cellld, "1"); 

return "Could not read file contents."; 

int sum = 0; 

Enumeration enum = ceIITab.keys(); 
while (enum.hasMoreElements()) ( 

Object key = enum.nextElement(); 
sum += Integer.parselnt(ceIITab.get(key) .toString()) 
Integer.parselnt(ceIITab.get(key) .toString()); 

yArray[arr] 
xArray[arr] 

Math.log(sum) I Math.log(2); 
Math.log(l.O / r) I Math.log(2); 

IlreturnVal.append("arr =" + arr + "r 11" + r + "x "+ 
II xArray[arr] + " y = " + yArray[arr] + "\n"); 

writeResults(cellTab, r, returnVal); 

calculateFD(xArray, yArray, returnVal); 

return returnVal.toString(); 

private void calculateFD(double[] xVal, doubler] yVal, 
StringBuffer returnVal) ( 

double meanX 0; 
double meanY 0; 

doubler] coeff_corr = new double[4]; 
double fd[] = new double[4]; 

for (int i = 0; i < 4; i++) 
double surnX 0; 
double sumY = 0; 

//System.out.println("Iteration" + (i+l)); 
for (int j = i; j < i + 4; j++) 

surnX += xVal[j]; 
sumY += yVal[j]; 

meanX 
me anY 

surnX I 4; 
sumY I 4; 

IISystem.out.println("Mean of X: " + meanX); 
IISystem.out.println("Mean of Y: " + meanY); 

double SXX 0; 
double SYY 0; 
double SXY 0; 

for (int k i; 
SXX += 
SYY += 
SXY += 

k < i + 4; k++) 
(xVal[k] - meanX) * (xVal[k] - meanX); 
(yVal[k] - meanY) * (yVal[k] - meanY); 
(xVal[k] - meanX) * (yVal[k] - meanY); 
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//System.out.println("SXX: " + SXX); 
//System.out.println("SYY: " + SYY); 
//System.out.println("SXY: " + SXY); 

fd[i] = SXY / SXX; 
//System.out.println("FD "+ fd[i]); 
returnVal.append("FD = " + fd[i] + "\n"); 

coeff_corr[i] = SXY / Math.pow(SXX * SYY, 0.5); 
//System.out.println("R "+ coeff_corr[i]}; 
returnVal.append("R = " + coeff corr[i] + "\n"}; 

double max = 0; 
double theFD = 0; 
for (int 1 0; 1 < 4; 1++) { 

if (coeff_corr[l] > max) 
max = coeff_corr[l]; 
theFD = fd[l]; 

//System.out.println("The FD: " + theFD); 
//System.out.println("The R: " + max}; 

returnVal. append ("The FD: " + theFD + "\n"); 
returnVal.append("The R: " + max + "\n"}; 

private void writeResults(Hashtable ht, int r, StringBuffer returnVal) { 

returnVal.append("r = 1/" + r + "\n"); 

Object[] keys = new Object[ht.size(}]; 
Enumeration enum = ht.keys(); 
int i = 0; 
while (enum.hasMoreElements()) 

Object hashKey = enum.nextElement(}; 
keys[i++] = hashKey + " " + ht.get(hashKey}; 

Arrays.sort(keys); 

for (int j = 0; j < keys.length; j++) { 
String hashRow = keys[j] .toString(}; 
String hashKey = hashRow.substring(O, hashRow.lastIndexOf(".")}; 
String hashValue = hashRow.substring(hashRow.lastIndexOf("."} + 1, 

hashRow.length()}; 
returnVal.append(hashKey + "\t" + hashValue + "\n"}; 

public static void main(String args[]} { 
String result = new FractalDimensionImpl(} .findFD("C:\\comb_data.out", 

"C:\\normalized.out"}; 
System.out.println(result) ; 
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