533 research outputs found

    Olive classification according to external damage using image analysis.

    Full text link
    The external appearance of an olive’s skin is the most decisive factor in determining its quality as a fruit. This work tries to establish a hierarchical model based on the features extracted from images of olives reflecting their external defects. Seven commercial categories of olives, established by product experts, were used: undamaged olives, mussel-scale or ‘serpeta’, hail-damaged or ‘granizo’, mill or ‘rehús’, wrinkled olive or ‘agostado’, purple olive and undefined-damage or ‘molestado’. The original images were processed using segmentation, colour parameters and morphological features of the defects and the whole fruits. The application of three consecutive discriminant analyses resulted in the correct classification of 97% and 75% of olives during calibration and validation, respectively. However the correct classification percentages vary greatly depending on the categories, ranging 80–100% during calibration and 38– 100% during validation

    Computer vision techniques for modelling the roasting process of coffee (Coffea arabica L.) var. Castillo

    Full text link
    [EN] Artificial vision has wide-ranging applications in the food sector; it is easy to use, relatively low cost and allows to conduct rapid non-destructive analyses. The aim of this study was to use artificial vision techniques to control and model the coffee roasting process. Samples of Castillo variety coffee were used to construct the roasting curve, with captured images at different times. Physico-chemical determinations, such as colour, titratable acidity, pH, humidity and chlorogenic acids, and caffeine content, were investigated on the coffee beans. Data were processed by (i) Principal component analysis (PCA) to observe the aggrupation depending on the roasting time, and (ii) partial least squares (PLS) regression to correlate the values of the analytical determinations with the image information. The results allowed to construct robust regression models, where the colour coordinates (L*, a*), pH and titratable acidity presented excellent values in prediction (R-Pred(2) 0.95, 0.91, 0.94 and 0.92). The proposed algorithms were capable to correlate the chemical composition of the beans at each roasting time with changes in the images, showing promising results in the modelling of the coffee roasting process.Supported by the Universidad Surcolombiana, Project No. USCO-VIPS-3050.Ivorra Martínez, E.; Sarria-González, JC.; Girón Hernández, J. (2020). Computer vision techniques for modelling the roasting process of coffee (Coffea arabica L.) var. Castillo. Czech Journal of Food Sciences. 38(6):388-396. https://doi.org/10.17221/346/2019-CJFSS38839638

    Colour preferences of UK garden birds at supplementary seed feeders

    Get PDF
    Supplementary feeding of garden birds generally has benefits for both bird populations and human wellbeing. Birds have excellent colour vision, and show preferences for food items of particular colours, but research into colour preferences associated with artificial feeders is limited to hummingbirds. Here, we investigated the colour preferences of common UK garden birds foraging at seed-dispensing artificial feeders containing identical food. We presented birds simultaneously with an array of eight differently coloured feeders, and recorded the number of visits made to each colour over 370 30-minute observation periods in the winter of 2014/15. In addition, we surveyed visitors to a garden centre and science festival to determine the colour preferences of likely purchasers of seed feeders. Our results suggest that silver and green feeders were visited by higher numbers of individuals of several common garden bird species, while red and yellow feeders received fewer visits. In contrast, people preferred red, yellow, blue and green feeders. We suggest that green feeders may be simultaneously marketable and attractive to foraging birds

    Non-Destructive Technologies for Detecting Insect Infestation in Fruits and Vegetables under Postharvest Conditions: A Critical Review

    Get PDF
    In the last two decades, food scientists have attempted to develop new technologies that can improve the detection of insect infestation in fruits and vegetables under postharvest conditions using a multitude of non-destructive technologies. While consumers\u27 expectations for higher nutritive and sensorial value of fresh produce has increased over time, they have also become more critical on using insecticides or synthetic chemicals to preserve food quality from insects\u27 attacks or enhance the quality attributes of minimally processed fresh produce. In addition, the increasingly stringent quarantine measures by regulatory agencies for commercial import-export of fresh produce needs more reliable technologies for quickly detecting insect infestation in fruits and vegetables before their commercialization. For these reasons, the food industry investigates alternative and non-destructive means to improve food quality. Several studies have been conducted on the development of rapid, accurate, and reliable insect infestation monitoring systems to replace invasive and subjective methods that are often inefficient. There are still major limitations to the effective in-field, as well as postharvest on-line, monitoring applications. This review presents a general overview of current non-destructive techniques for the detection of insect damage in fruits and vegetables and discusses basic principles and applications. The paper also elaborates on the specific post-harvest fruit infestation detection methods, which include principles, protocols, specific application examples, merits, and limitations. The methods reviewed include those based on spectroscopy, imaging, acoustic sensing, and chemical interactions, with greater emphasis on the noninvasive methods. This review also discusses the current research gaps as well as the future research directions for non-destructive methods\u27 application in the detection and classification of insect infestation in fruits and vegetables

    Sensors for product characterization and quality of specialty crops—A review

    Get PDF
    This review covers developments in non-invasive techniques for quality analysis and inspection of specialty crops, mainly fresh fruits and vegetables, over the past decade up to the year 2010. Presented and discussed in this review are advanced sensing technologies including computer vision, spectroscopy, X-rays, magnetic resonance, mechanical contact, chemical sensing, wireless sensor networks and radiofrequency identification sensors. The current status of different sensing systems is described in the context of commercial application. The review also discusses future research needs and potentials of these sensing technologies. Emphases are placed on those technologies that have been proven effective or have shown great potential for agro-food applications. Despite significant progress in the development of non-invasive techniques for quality assessment of fruits and vegetables, the pace for adoption of these technologies by the specialty crop industry has been slow

    Fruit sizing using AI: A review of methods and challenges

    Get PDF
    Fruit size at harvest is an economically important variable for high-quality table fruit production in orchards and vineyards. In addition, knowing the number and size of the fruit on the tree is essential in the framework of precise production, harvest, and postharvest management. A prerequisite for analysis of fruit in a real-world environment is the detection and segmentation from background signal. In the last five years, deep learning convolutional neural network have become the standard method for automatic fruit detection, achieving F1-scores higher than 90 %, as well as real-time processing speeds. At the same time, different methods have been developed for, mainly, fruit size and, more rarely, fruit maturity estimation from 2D images and 3D point clouds. These sizing methods are focused on a few species like grape, apple, citrus, and mango, resulting in mean absolute error values of less than 4 mm in apple fruit. This review provides an overview of the most recent methodologies developed for in-field fruit detection/counting and sizing as well as few upcoming examples of maturity estimation. Challenges, such as sensor fusion, highly varying lighting conditions, occlusions in the canopy, shortage of public fruit datasets, and opportunities for research transfer, are discussed.This work was partly funded by the Department of Research and Universities of the Generalitat de Catalunya (grants 2017 SGR 646 and 2021 LLAV 00088) and by the Spanish Ministry of Science and Innovation / AEI/10.13039/501100011033 / FEDER (grants RTI2018-094222-B-I00 [PAgFRUIT project] and PID2021-126648OB-I00 [PAgPROTECT project]). The Secretariat of Universities and Research of the Department of Business and Knowledge of the Generalitat de Catalunya and European Social Fund (ESF) are also thanked for financing Juan Carlos Miranda’s pre-doctoral fellowship (2020 FI_B 00586). The work of Jordi Gené-Mola was supported by the Spanish Ministry of Universities through a Margarita Salas postdoctoral grant funded by the European Union - NextGenerationEU.info:eu-repo/semantics/publishedVersio

    Nondestructive measurement of fruit and vegetable quality

    Get PDF
    We review nondestructive techniques for measuring internal and external quality attributes of fruit and vegetables, such as color, size and shape, flavor, texture, and absence of defects. The different techniques are organized according to their physical measurement principle. We first describe each technique and then list some examples. As many of these techniques rely on mathematical models and particular data processing methods, we discuss these where needed. We pay particular attention to techniques that can be implemented online in grading lines

    Advances in non-destructive early assessment of fruit ripeness towards defining optimal time of harvest and yield prediction—a review

    Get PDF
    © 2018 by the authors. Licensee MDPI, Basel, Switzerland. Global food security for the increasing world population not only requires increased sustainable production of food but a significant reduction in pre-and post-harvest waste. The timing of when a fruit is harvested is critical for reducing waste along the supply chain and increasing fruit quality for consumers. The early in-field assessment of fruit ripeness and prediction of the harvest date and yield by non-destructive technologies have the potential to revolutionize farming practices and enable the consumer to eat the tastiest and freshest fruit possible. A variety of non-destructive techniques have been applied to estimate the ripeness or maturity but not all of them are applicable for in situ (field or glasshousassessment. This review focuses on the non-destructive methods which are promising for, or have already been applied to, the pre-harvest in-field measurements including colorimetry, visible imaging, spectroscopy and spectroscopic imaging. Machine learning and regression models used in assessing ripeness are also discussed

    Recent Advances and Applications of Hyperspectral Imaging for Fruit and Vegetable Quality Assessment

    Get PDF
    Hyperspectral imaging systems are starting to be used as a scientific tool for food quality assessment. A typical hyperspectral image is composed of a set of a relatively wide range of monochromatic images corresponding to continuous wavelengths that normally contain redundant information or may exhibit a high degree of correlation. In addition, computation of the classifiers used to deal with the data obtained from the images can become excessively complex and time-consuming for such high-dimensional datasets, and this makes it difficult to incorporate such systems into an industry that demands standard protocols or high-speed processes. Therefore, recent works have focused on the development of new systems based on this technology that are capable of analysing quality features that cannot be inspected using visible imaging. Many of those studies have also centred on finding new statistical techniques to reduce the hyperspectral images to multispectral ones, which are easier to implement in automatic, non-destructive systems. This article reviews recent works that use hyperspectral imaging for the inspection of fruit and vegetables. It explains the different technologies available to acquire the images and their use for the non-destructive inspection of the internal and external features of these products. Particular attention is paid to the works aimed at reducing the dimensionality of the images, with details of the statistical techniques most commonly used for this task
    • …
    corecore