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A B S T R A C T   

Fruit size at harvest is an economically important variable for high-quality table fruit production in orchards and 
vineyards. In addition, knowing the number and size of the fruit on the tree is essential in the framework of 
precise production, harvest, and postharvest management. A prerequisite for analysis of fruit in a real-world 
environment is the detection and segmentation from background signal. In the last five years, deep learning 
convolutional neural network have become the standard method for automatic fruit detection, achieving F1- 
scores higher than 90 %, as well as real-time processing speeds. At the same time, different methods have 
been developed for, mainly, fruit size and, more rarely, fruit maturity estimation from 2D images and 3D point 
clouds. These sizing methods are focused on a few species like grape, apple, citrus, and mango, resulting in mean 
absolute error values of less than 4 mm in apple fruit. This review provides an overview of the most recent 
methodologies developed for in-field fruit detection/counting and sizing as well as few upcoming examples of 
maturity estimation. Challenges, such as sensor fusion, highly varying lighting conditions, occlusions in the 
canopy, shortage of public fruit datasets, and opportunities for research transfer, are discussed.   

1. Introduction 

Agricultural production of fresh fruit and vegetables must substan-
tially increase to address the food demand due to the growing popula-
tion, which is expected to reach 9.7 billion people by mid-century (UN, 
2022). However, the production needs to respect the environment and 
meet the requirements of social and economic sustainability (FAO, 
2017). Avoiding food waste is a major concern in all these aspects. Food 
waste in the fruit supply chain can be caused by lack of fruit safety and 
decay of fruit, as well as rejection of fruit on the market due to insuffi-
cient product quality (Nicastro and Carillo, 2021). Product decay is 
addressed by postharvest technologies to keep fruit at marketing quality. 
On the other hand, achieving the desired fruit quality is left to the 
farmers, but demanded by the actors of the value chain (Saitone and 
Sexton, 2017). If the market value is considered, the appearance rep-
resents the most important quality parameter that needs to be achieved 
(Musacchi and Serra, 2018). The main variable of complex appearance is 
the fruit size. Size as well as other variables of appearance such as 

colour, shape or absence of defects are addressed by means of inline 
grading, sorting fruit according to the different market needs. However, 
too large fruit are difficult to market, since they frequently show reduced 
storability (Paul and Pandey, 2014), whereas consumers prefer large, 
but not uncommonly large fruit (Iwanami, 2011). Similarly, it is difficult 
to find an economically reasonable market for small fruit, due to 
unfavourable ratio of edible to residual parts of the fruit. 

Size is considered a “search characteristic” that can be assessed 
before purchasing (Yeo and Edwards, 2006). It plays a role in the con-
sumer’s decision to buy. Consumers preference for apples varies 
depending on country, region, type of market, gender, family income, 
education, age, food safety factors (i.e. pesticide use) and memory of 
previous eating experiences (Harker et al., 2003; Bonany et al., 2013; 
Bavay et al., 2013; Favre et al., 2022). A study conducted in Canadian 
territories reported the ideal size for dessert apple ranges between 74 
and 76 mm considering various ages (Hampson et al., 2002). Sorting 
machines in packing lines are commonly dividing fruit in size classes and 
the class obtained influences the fruit price. Apple size is frequently 
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included in trading standards or regional producers’ standards. In the 
European market, cultivar-specific fruit size of 60 mm has been 
requested (OECD, 2021). However, such requests have been becoming 
less binding due to introduction of kids’ apples and other specific 
products. Nevertheless, for sweet cherry, but also European plum and 
other stone fruits, the size of fruit is directly affecting the market price, e. 
g. in sweet cherry cultivar ’Celeste’ even selective harvesting appears as 
economically vital. It was shown that at red ripening stage 55 days after 
full bloom (DAFB), 35 % of cherries reached > 28 mm, whereas after 60 
DAFB another 40 % more passed this value-creating threshold. Selective 
harvesting was reasonable in this case, since the higher size class gained 
20 % increased market price (Heim and Zude-Sasse, 2014; He et al., 
2015). However, for drawing harvest conclusions, the information on 
fruit size is requested in real-time. 

Strategies to produce the desired fruit size are captured in the 
concept of crop load management (Robinson et al., 2017), which re-
quires the feedback on actual fruit number and fruit size in the field 
(Delong et al., 2006). High crop load, beyond the fruit bearing capacity 
may result in small fruit considering the MaluSim approach from Lakso 
(Penzel et al., 2020). Low crop load situation obviously results in 
reduced yield per area, however, yield can be even further reduced due 
to an increased risk of storage disorders appearing in large fruit. In 
control and 1-MCP treated ’Gala’ apples flesh breakdown in storage 
increased with enhanced fruit size (Lee et al., 2013). In nectarine, fruit 
size served as an input variable to model fruit development and stor-
ability (Casagrande et al., 2021). Furthermore, in non-destructive 
quality sensing of citrus fruit, it was shown that fruit size affects the 
non-destructive spectral-optical analysis in the short-wave near infrared 
(NIR) wavelength range (Miller and Zude-Sasse, 2004; Sun et al., 2021). 

Fraser et al. (2003) has shown that the distribution of light varies within 
citrus fruit. Consequently, information on fruit size and fruit size dis-
tribution in the canopy may support development of more robust sensor 
calibrations. 

Automatic detection, location and sizing of fruit in the field are 
agricultural problems in which computer vision and geo-positioning 
play a fundamental role. Fruit detection consists of finding a candidate 
region of interest (ROI) in a given image, point cloud or other type of 
data, and classifying it as fruit or background. The fruit location problem 
goes even one step further by locating the fruit in a local or global co-
ordinate system (e.g. the position of the fruit in an image or on the Earth, 
respectively), and making a coordinate conversion to transfer fruit po-
sition detected in images onto the real world coordinate system. In-field 
fruit sizing consists of measuring the fruit (e.g. diameter, length, vol-
ume, etc.) on the tree to obtain morphological data. 

Systems applied to fruit detection and sizing must deal with data 
acquired under a variety of lighting conditions (Chaivivatrakul and 
Dailey, 2014), and their performance may be affected by factors such as 
shadows, reflections, backlights, background colour, inclusion and oc-
clusions (Fig. 1a,b). Other factors such as coinciding structures or the 
slope in an orchard (Fig. 1c) affect the open view to the fruit object and 
require geometric correction of sensor raw data. The combination of 
these factors influences the accuracy of the detection result. According 
to the lighting conditions, it is useful to mention work carried out in 
night-time conditions (Fig. 1d), with the help of artificial lighting rigs 
used both to lighten the scene and to reduce the undesirable effects of 
variable lighting. Fruit clustering, occlusions and shading (Fig. 1e,f) are 
other factors that need to be taken into consideration in fruit detection 
(Jarvinen et al., 2019). 

Fig. 1. Examples of fruit detection challenges under several conditions. (a) Fuji apples with shadows (Gené-Mola et al., 2020e). (b) Golden Delicious apples (colour 
similar to the background) with reflections and backlights. (c) Slope in an apple tree orchard. (d) Apple tree in night-time conditions (Gené-Mola et al., 2019b). (e) 
Cluster of grapes (Arnó, 2008). (f) Peaches, occlusions and shading. 
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Regarding fruit growing stages, changes in colour and shape along 
the growing season affect the performance of the fruit detection system. 
Depending on the purpose of the study, measurements are taken at 
different stages: mapping of flower and fruit distributions for yield 
prediction (Underwood et al., 2016), or detection of fruit at several 
stages of growth to monitor the evolution of the orchard (Tian et al., 
2019; Tsoulias et al., 2022). Nevertheless, most studies have been car-
ried out at harvest time, when the objective is, for example, to predict 
the yield, map the production or for automatic harvesting purposes 
(Gené-Mola et al., 2019a; Wang et al., 2019). In this stage, the fruit has 
reached maximum size and frequently changed colour from green to 
yellow or red, which is less challenging compared to detection of small, 
green objects in green foliage (Tsoulias et al., 2020, 2023). 

With respect to the algorithms used, two aspects need to be consid-
ered: 1) obtaining a high-performance fruit detection, which means 
having high detection rates and a low number of false positives; 2) the 
development of computationally efficient algorithms to achieve low 
processing times (Häni et al., 2020a). In this regard, the application of 
deep learning in computer vision and the use of 3D sensors have revo-
lutionized fruit detection (Koirala et al., 2019a). However, the shortage 
of public fruit datasets, as well as the diversity of lighting conditions and 
capture devices, makes it difficult to compare the fruit detection algo-
rithms that have been published (Qureshi et al., 2017). Nonetheless, 
efforts have been carried out to collect and classify specialized agricul-
tural datasets that include different sensor types, fruit varieties, and field 
conditions (Lu and Young, 2020). In addition, it should be noted that 
fruit detection and sizing systems usually deal with complex, unstruc-
tured and changing agricultural environments, in contrast to the 
generally clearly defined targets that detection systems work on in in-
dustrial applications (Bechar and Vigneault, 2016; Zhao et al., 2016a). 
Although promising results have been achieved in industry environ-
ments, it is still cumbersome to determine the fruit load when these 
techniques are implemented in the field. All the reasons set out above 
explain why fruit detection and sizing appears an interesting application 
of AI and is currently a focal point of interest. 

This work presents a review of the state-of-the-art of computer 

vision-based fruit detection and sizing methods. The present review 
work is structured in six main sections. Section 1 comprises this intro-
duction. Sections 2 and 3 deal with fruit detection, reviewing the 
handcrafted computer vision and deep learning methods, respectively. 
Section 4 covers the field of fruit size analysis and maturity estimation 
that can be later applied in crop load management and yield estimation. 
In Section 5, the challenges to be faced when applying fruit sizing are 
discussed. Final conclusions are presented in Section 6. 

2. Fruit detection based on handcrafted features 

2.1. Background 

Before the advent of deep learning, most of the computer vision al-
gorithms relied on the identification and extraction of image features 
such as corners, edges and blobs, and the subsequent classification of 
these features that defined the image or parts of the image. The design of 
the methodology to extract these features was done manually (hand-
crafted) based on human vision insights and intuitions (Nanni et al., 
2017); this is why these algorithms are known as handcrafted 
feature-based methods. Previous reviews of these methods are thor-
oughly described in Gongal et al. (2015) and in Zhao et al. (2016a). 
While there is no single recipe to frame all the handcrafted methods, the 
aim of this section is to provide an up-to-date review. 

Fruit detection algorithms, as a special case of general object 
detection (Fig. 2), can follow approaches based on two main steps (Wang 
and Zheng, 2019; Ward et al., 2019): (1) candidate region proposals 
generation; and (2) detection and recognition. 

2.2. Candidate region proposals 

The generation of candidate region proposals is the step of the pro-
cess in which potential regions of interest are identified from data 
received by sensors. As sub-tasks, this can be divided into region se-
lection and region description. Thresholding has been one of the most 
commonly used methods to classify fruit and background regions 

Fig. 2. Pipeline for fruit detection based on handcrafted features.  
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(Fig. 3). This method aims to binarize data by setting a numerical 
threshold into a discriminative feature that describes the object of in-
terest. A common feature used has been the colour (Maldonado and 
Barbosa, 2016; Qian et al., 2018), although other types of data have 
been considered such as the area of pixels (Liu et al., 2019), the depth 
(Tao and Zhou, 2017), and the temperature using thermal imaging 
(Pedraza et al., 2019). Fruit reflectance and geometric features are also 
applied to define the fruit ROI (Gene-Mola et al., 2019a; Tsoulias et al., 
2020). 

Another possibility for region selection is to apply machine learning 
classifiers. Classification methods allow objects within a space to be 
distinguished by specific features. The most used classifiers include the 
unsupervised k-means algorithm (Wang et al., 2018a; Shi et al., 2020), 
and different supervised methods such as Bayesian (Lin et al., 2019), the 
k-nearest neighbours (KNN) (Qureshi et al., 2017) and support vector 
machine (SVM) procedures (Zhang et al., 2020). With regard to 3D point 
clouds, there are many methods that allow their segmentation (Grilli 
et al., 2017). Two of the most commonly used methods in fruit detection 
are Euclidean clustering (Nguyen et al., 2016) and density-based spatial 
clustering of applications with noise (DBSCAN) (Eizentals and Oka, 
2016). 

Region description is a step prior to detection and recognition in 
which the identified regions are described with features to refine the 
selection according to their appearance and geometry. The result can be 
a multi-dimensional numeric vector or a set of pixels or point cloud with 
candidate labels (fruit, background, etc.). Colour, shape, texture and 
multiple features are used to describe regions. 

Colour-based radiometric features mostly comprise the statistical 
data about channels in colour spaces. For example, in Syal et al. (2014) 
features were extracted by using the mean colour of the ‘a′ and ‘b′ 
components in L*a*b space. Using light detection and ranging (LiDAR) 

at 660 nm provides information on the chlorophyll content of fruit, 
which can support the segmentation (Tsoulias et al., 2023). 

Shape-based techniques are useful in cases where the fruit and the 
background have the same colour. These are ideal for detecting fruits 
whose shape differs from leaves and branches. In fruit detection, the 
most relevant shape-based techniques are the Hough transform (HT) and 
the histogram of oriented gradients (HOG). One of the main variants of 
HT is the circular Hough transform (CHT), which has been widely used 
to locate spherical fruit in orchards (Wang et al., 2018a; Chen et al., 
2021). Other shape-based techniques include analysis of convexity 
(Kelman and Linker, 2014), three-point circle fitting (Sun et al., 2019), 
or random sample consensus (RANSAC) (Nguyen et al., 2016). 

Textures are small patterns with fluctuations of the intensity between 
groups of neighbouring pixels. Texture-based methods are used to detect 
fruit of the same colour as the background, taking advantage of the 
invariant characteristics of textures to changes in lighting and the 
smoother surfaces of the fruits. Among the texture-based methods used 
in fruit detection can be cited oriented FAST and rotated BRIEF (ORB), 
speeded-up robust features (SURF), scale-invariant feature transform 
(SIFT) and local binary patterns (LBP) (Chaivivatrakul and Dailey, 2014; 
Wang et al., 2018a). Multiple feature combinations have been preferred 
by some authors to improve the detection success rate. Li et al. (2016) 
and Qureshi et al. (2017) present examples of this approach for the 
detection of immature citrus and mango fruit, respectively. 

2.3. Detection and recognition 

Once a set of candidate regions and a list of features that describe 
each of these regions have been obtained, the next step is to classify 
them into true (fruit) or false (background) detection. For this purpose, a 
variety of classifiers have been used such as SVM (Gené-Mola et al., 

Fig. 3. Example of colour conversion and intensity thresholding applied to fruit segmentation. (a) RGB image. (b) Image converted to the HSV colour space. Colour 
scale corresponds to the hue (H) value. (c) Histogram of hue values for apple (red) and background (green) pixels. The vertical dash-dotted line corresponds to the 
selected threshold. (d) Segmented apples after applying the hue threshold. 
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2020a; Wu et al., 2020), KNN (Li et al., 2016; Nyarko et al., 2018), 
Adaboost (Wang et al., 2018a; Mekhalfi et al., 2020), random forest (Yu 
et al., 2021), backpropagation neural network (BPNN) (Cheng et al., 
2017), and Gaussian mixture model (GMM) (Roy et al., 2019). 

A common source of error in fruit counting systems is the presence of 
multiple detections (more than one detection of a single fruit), which 
results in an over-counting error. To prevent multiple detections, some 
authors have applied the non-maximum suppression (NMS) algorithm, 
which consists of discarding the overlapped detections with non- 
maximum confidence values (Yu et al., 2021). 

Handcrafted detection algorithms are still applied due to their lower 
use of resources (computer power and memory) (Zhang et al., 2020) and 
the relatively minor amount of data required to train them compared to 
blackbox methods such as deep neural networks. They are used in cases 
where the object has a high contrast with the background and can be 
easily distinguished. These methods have also been implemented on 
platforms where high computational power is not available (Fu et al., 
2018; Habib et al., 2020). The disadvantage of handcrafted detection 
algorithms is the lack of generalization in detecting fruit in other 
acquisition conditions for which specific algorithms were not designed. 
In addition to this, the functions need to be optimized manually, which 
is time consuming (Farjon et al., 2020). 

3. Fruit detection based on deep learning 

3.1. Background 

Deep learning has meant a breakthrough in computer vision and, 
consequently, in fruit detection. Koirala et al. (2019a) reviewed the use 
of deep neural networks for fruit detection. Prior to 19/01/2019 they 
found a total of 9 papers in the Scopus data base (www.scopus.com) 
using the keywords: ‘deep’ + ’learning’ + ’fruit’ + ’detection’. Four 
years later (on 31/07/2023), a total of 347 articles were found in Scopus 
on the same search basis, showing that the use of deep learning for fruit 
detection is a highly active research field with a rapid increase in sci-
entific production (Fig. 4). 

The most commonly used deep neural networks in computer vision 
are the so-called convolutional neural networks (CNN), where the 
neurons of each unit are organized in three-dimensional matrices 
(feature maps). Consecutive units are connected by means of convolu-
tional layers, pooling layers and fully connected layers used to process 
the input data and extract features at different scales (LeCun et al., 
2015). 

CNNs have demonstrated a level of performance similar to that of the 

human eye in tasks such as image classification, object detection, and 
semantic and instance segmentation (Voulodimos et al., 2018). Image 
classification refers to the problem of classifying the whole image in a 
specific class, for instance an image of a fruit in the fruit class or variety 
(Fig. 5a). Object detection refers to the problem of identifying the re-
gions (bounding boxes) that contain the objects of interest, for instance 
locating the fruit that appear in an image (Fig. 5b). Semantic segmen-
tation refers to the problem of classifying each pixel in the image, for 
instance labelling each pixel as fruit, trunk, branch or background 
(Fig. 5c). Finally, instance segmentation combines object detection and 
semantic segmentation: first objects of interest are located in the image 
and then the objects are segmented, identifying which pixels of the 
image correspond to each detected object (Fig. 5d). 

A comparative table of the results reported in different deep 
learning-based fruit detection works is shown in Table 1. The F1-score 
metric was selected as it is the most commonly used in fruit detection 
papers. Other metrics such as average precision (AP) or accuracy (ACC) 
are reported when the F1-score results were not available. It should be 
noted that the reported results depend not only on the CNN structure 
and its parameters but also on the difficulty of the dataset. Thus, works 
assessing different structures with different datasets are not comparable. 

3.2. Fruit detection using image classification CNNs 

The structure of image classification CNNs is based on an input layer 
(the image to classify) connected with a group of convolutional layers 
that act as feature extractors (feature maps), ending with a group of fully 
connected layers that act as classifiers. The convolutional layers encode 
image features into more discriminative features by convolving the 
feature maps with filters (learned weights). Finally, fully connected 
layers are placed at the end of the CNN to classify feature maps in one of 
the classes of the output layer. 

The use of classification CNNs for fruit counting is marginal because 
these architectures classify the entire image in a unique class and do not 
locate the objects inside images. Wang et al. (2021) proposed a modified 
version of the VGG16 network (Simonyan and Zisserman, 2014) to count 
the number of apple flowers in an image. The total number of flowers in 
the image was considered the image class, and the network was trained 
to directly estimate the number of flowers visible in the image, without 
locating them. A similar approach was used in Bhattarai and Karkee 
(2022), who modified the classification block of the VGG16 architecture 
to regress the number of flowers or fruits in apple tree images. 

Fig. 4. Number of articles (conference proceedings not included) published per year in Scopus data-base containing keywords ‘deep’ + ’learning’ 
+ ’fruit’ + ’detection’. 
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3.3. Fruit detection using object detection CNNs 

Object detection CNNs are formed with two main structures: back-
bone and head. The backbone usually uses the first layers of an image 
classification CNN as feature extractor to encode the data into feature 
maps. Then, the head structure uses the feature maps provided by the 
backbone to predict the object locations and their class. Depending on 
the head structure, object detection networks can be classified as one- or 
two-stage networks. 

The first CNNs used for fruit detection were two-stage networks type, 
with a structure based on two main modules: (1) a region proposal 
module used to propose ROIs likely to contain a fruit; (2) a classification 
branch used to classify the proposed regions into fruit or background 
and refine the detection bounding box. The most commonly used two- 
stage CNN for fruit detection is the Faster-RCNN (Ren et al., 2017), 
which has been used to detect apples (Apolo-Apolo et al., 2020b; Kang 
and Chen, 2020; Tian et al., 2019), oranges ( Apolo-Apolo et al., 2020a, 
Biffi et al., 2021), mangos (Bargoti and Underwood, 2017a; Koirala 
et al., 2019b), kiwis (Gan et al., 2018), and strawberries (Chen et al., 
2019), among others. 

One-stage CNNs (or single shot detectors) simultaneously predict 
object class and bounding box without the need of a region proposal 
branch. Single shot detectors (SSD) used for fruit detection include the 
single shot multibox detector (Liu et al., 2016) and the You Only Look 
Once (YOLO) (Redmon and Farhadi, 2018) and its variants v2, v3, v4 
and v5. The SSD was used in Vasconez et al. (2020) with the MobileNet 
backbone for detection of apples, avocadoes and lemons. YOLOv2, 
YOLOv3 and YOLOv4 were used with DarkNet-19 and DarkNet-53 
backbones, respectively, in different fruit detection works for apples, 
pears, kiwis, mangoes, bananas and grapes (Bresilla et al., 2019; Fu 
et al., 2021, 2022; Koirala et al., 2019b; Santos et al., 2020; Tian et al., 
2019). 

To enhance the performance of fruit detection systems, some authors 
have proposed the use of multi-modal deep neural networks to fuse 
different image modalities such as colour (RGB), depth or infrared (IR) 
intensity. Using a red-green-blue-depth (RGB-D) camera, Gené-Mola 
et al. (2019c) showed an increase of 4.46 % in the F1-score when 
combining colour, range-corrected IR intensity and depth images for 
apple detection with Faster-RCNN. Similarly, colour and depth images 
were combined for passion fruit detection in Tu et al. (2020), and colour 
and thermal images were combined in Gan et al. (2018) for orange 

detection. More recently, Sun et al. (2022) developed a new multi-modal 
network termed noise-tolerant feature fusion network (NT-FFN) which 
merged colour and depth features by means of attention modules, 
resulting in a better fruit detection performance: from F1-score of 0.910 
(using RGB) to 0.934 (fusing RGB-D through NT-FFN). 

The introduction of edge computing applications and the need of 
deploying real-time fruit detection in embedded computers, such as 
NVIDA Jetson products, has shifted the attention of researchers to the 
development of smaller object detection CNNs (Roy and Bhaduri, 2022; 
Zhang et al., 2021b; Zhang et al., 2022a). In consequence, many fruit 
detection papers published during the last two years are focused on 
achieving faster inference speeds in low power devices by means of 
light-weight and fast CNNs such as YOLOv5s and other YOLO-based tiny 
variants (Gai et al., 2021; Wang and He, 2021; Yan et al., 2021). 

3.4. Fruit detection using semantic and instance segmentation CNNs 

The fully convolutional network (FCN) (Long et al., 2015) is one of 
the most used architectures for fruit segmentation. FCN uses the first 
convolutional layers of CNN image classification as a backbone to 
encode data in discriminative feature maps. Then, the last feature map 
from the backbone is up-scaled by means of skip connections that 
combine information from shallower layers (finer but less discrimina-
tive) and deeper layers (coarser but more discriminative). FCN was used 
to detect kiwi fruits (Williams et al., 2019), oranges and apples (Chen 
et al., 2017; Liu et al., 2018). 

Other authors have opted to develop new architectures specifically 
designed for fruit segmentation. The MangoNet architecture, developed 
by Kestur et al. (2019), replaced the last 3 convolution layers of FCN 
with a single convolution layer, obtaining a similar performance to that 
of FCN but reducing network complexity. Wang et al. (2020) developed 
a new architecture to adapt ResNet-50 for apple edge segmentation. 
Bargoti and Underwood (2017b) proposed a sliding window approach, 
which classified each pixel by means of a self-developed multilayer 
perceptron (MLP) and a CNN. 

A disadvantage of semantic segmentation CNNs is that it is not 
possible to directly count fruits from a segmented image because all 
fruits appearing in an image are segmented under the same class. 
Instance segmentation CNNs overcame this issue by combining object 
detection and semantic segmentation. The most popular instance seg-
mentation CNN used for fruit detection is Mask-RCNN (He et al., 2017), 

Fig. 5. Common computer vision tasks. Examples of apples on trees in field conditions: (a) classification, (b) object detection, (c) semantic segmentation, (d) instance 
segmentation. 
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which is an extension of Faster-RCNN that includes a segmentation 
branch to mask detected objects. Mask-RCNN was used with VGG-19 
backbone for apple detection (Kang and Chen, 2020), with ResNet-50 
backbone for strawberry detection (Yu et al., 2019) and with 
ResNet-101 backbone for apple (Gené-Mola et al., 2020d) and grape 
detection (Santos et al., 2020). More recently, some authors have pro-
posed modifications in the Mask-RCNN architecture in order to achieve 
a better fruit detection performance (Chu et al., 2021; Wang and He, 
2022) or a faster inference speed (Jia et al., 2021). 

Kang and Chen (2019) developed a multi-task architecture termed 
“Detection and Segmentation Network” (DaSNetv1). This architecture 
combines a segmentation branch used to segment apples, trunks and 
branches, and a detection branch to locate fruits. This network was 

specifically designed for harvesting robots, allowing the detection of 
fruits and obstacles (branches) in a single network. Later, the same au-
thors presented an improved version (DaSNetv2) (Kang and Chen, 2020) 
which replaced the previous detection branch with an instance seg-
mentation architecture, allowing detection and instance segmentation 
to be performed on fruits, and semantic segmentation on branches in one 
step. 

So far, the reviewed architectures were designed for working with 
image data. However, the evolution of photonics has led to the 
deployment of 3D sensors for robotic applications and, thus, to an 
increasing interest in using deep learning architectures to work with 3D 
data such as point clouds. Kurtser et al. (2020a) proposed the use of 
PointNet (Qi et al., 2017) for grape segmentation in 3D point clouds 

Table 1 
A comparative table of results reported in different deep learning-based fruit detection works. Results are reported in terms of F1-score and processing time per image. 
Accuracy (ACC), Pearson’s R value and Average Precision (AP) are provided when the F1-score value is not available.  

Approach Data type Method Backbones Crop F1-score Processing time 
(seconds per 
image) 

Reference 

Image classification RGB ResNet50 N/A Apples 0.978 
(ACC) 

N/M (Häni et al., 2020a)  

RGB CountNet VGG-16 Apples 0.962 (R) N/M (Bhattarai and Karkee, 
2022) 

Object detection RGB Faster-RCNN VGG-16 Mangoes 0.881 N/M (Stein et al., 2016)  
RGB Faster-RCNN VGG-16 Mangoes 0.908 0.13 (Bargoti and Underwood, 

2017a)  
RGB CNN + WS Self-developed Apples 0.861 0.24 (Bargoti and Underwood, 

2017b)  
RGB Faster-RCNN ResNet-50 Strawberries 0.842 0.113 (Chen et al., 2019)  
RGB MangoYOLO(pt) N/M Mangoes 0.968 0.015 (Koirala et al., 2019b)  
RGB YOLOv2-M1 Darknet-19 Apples, pears 0.79 0.05 (Bresilla et al., 2019)  
RGB YOLOv3dense Darknet-53 Apples 0.864 0.304 (Tian et al., 2019)  
RGB Faster-RCNN Inception v2 Avocados 0.84 (AP) 0.217 (Vasconez et al., 2020)  
RGB Faster-RCNN Inception v2 Cherries 0.733 N/M (Villacrés and Auat 

Cheein, 2020)  
RGB Faster-RCNN ResNet v2 Atrous Apples 0.919 N/M (Apolo-Apolo et al., 

2020b)  
RGB DY3TNet Darknet-53 Kiwis 0.903 

(AP) 
0.034 (Fu et al., 2021)  

RGB ATSS ResNet50 Apples 0.925 
(AP) 

N/M (Biffi et al., 2021)  

RGB YOLOv4dense DenseNet Cherries 0.947 0.467 (Gai et al., 2021)  
RGB YOLOv5s-pruned Modified 

CSPDarknet 
Apple fruitlets 0.915 0.008 (Wang and He, 2021)  

RGB YOLOv5s-attention Modified 
CSPDarknet 

Apples 0.875 0.015 (Yan et al., 2021)  

RGB YOLOv4 CSPDarknet-53 Bananas 0.941 0.045 (Fu et al., 2022)  
RGB+Thermal Faster-RCNN + CHT VGG-16 Oranges 0.929 N/M (Gan et al., 2018)  
RGB+ NIRC+Depth Faster-RCNN VGG-16 Apples 0.898 0.074 (Gené-Mola et al., 2019c)  
RGB+Depth MS-FRCNN ResNet101 Passion fruits 0.946 0.175 (Tu et al., 2020)  
RGB+Depth NT-FFN Self-developed Citrus 0.934 0.026 (Sun et al., 2022) 

Semantic 
segmentation 

HyperSpectral Hyperspectral CNN N/A Mangoes 0.989 N/M (Wendel et al., 2018)  

RGB FCN-8S VGG-16 Kiwis 0.878 0.25 (Williams et al., 2019)  
RGB MangoNet+CCL N/A Mangoes 0.844 N/M (Kestur et al., 2019) 

Fruit edge 
segmentation 

RGB Self-developed ResNet 50 Apples 0.531 0.075 (Wang et al., 2020) 

Instance 
segmentation 

RGB Mask-RCNN ResNet50 +FPN Strawberries 0.956 0.125 (Yu et al., 2019)  

RGB Mask-RCNN ResNet101 Grapes 0.847 N/M (Santos et al., 2020)  
RGB Mask-RCNN ResNet101-FPN Apples 0.858 0.15 (Gené-Mola et al., 2020d)  
RGB Mask-RCNN- 

suppression 
ResNet101-FPN Apples 0.905 0.25 (Chu et al., 2021)  

RGB Mask-RCNN- 
attention 

ResNet50 +FPN Apples 0.964 0.25 (Wang and He, 2022) 

Multitask RGB DaSNet-v1 ResNet-101 Apples 0.832 0.072 (Kang and Chen, 2019)  
RGB DaSNet-v2 Darknet-53 Apples 0.873 0.070 (Kang and Chen, 2020) 

Point cloud 
segmentation 

Point cloud PointNet PointNet Grapes 0.91 
(ACC) 

N/A (Kurtser et al., 2020a)  

Point cloud LFPNet PointNet Apples, pears, 
grapes 

0.802 
(ACC) 

N/A (Yu et al., 2022a)  

Point cloud Mask-RCNN F-PointNet Pomegranates 0.845 N/A (Yu et al., 2022b) 

N/A = not applicable. N/M = not mentioned. NIRC = Near-infrared (range-corrected intensity). 
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acquired with RGB-D sensors. The best results were obtained when 
combining RGB and XYZ data, reporting an average accuracy of 65 % in 
field conditions. Inspired by PointNet, Yu et al. (2022a) developed a new 
lightweight architecture for apple, pear and lemon point cloud seg-
mentation that reported a mean accuracy of 80.2 %. Recently, Yu et al. 
(2022b) have tested the F-PointNet (Qi et al., 2018), a variant of the 
PointNet in which the frustrum between the camera shooting and the 
detected fruits is used for point cloud segmentation. An F1-score of 
0.845 and AP score of 0.952 were obtained for mature pomegranate fruit 
detection. 

3.5. Datasets for training fruit detection CNNs 

The main disadvantage of using deep learning methods is the high 
amount of annotated data required for training models. The existence of 
large datasets such as ImageNet (Deng et al., 2009), Pascal VOC (Ever-
ingham et al., 2010) or COCO (Lin et al., 2014) enables CNN pre-training 
with publicly available data and fine-tuning of the network for fruit 
detection with new annotated images, reducing significantly the amount 
of images required to train the CNN. Nevertheless, the annotation of new 
data continues to be an intensive time-consuming task (Koirala et al., 
2019b). 

Some authors have analysed the correlation between dataset size and 
CNN performance. Tian et al. (2019) reported that performance 
improved with the number of fruit training images, reaching conver-
gence around 3000 images. A similar analysis was performed by Koirala 
et al. (2019b) and Bargoti and Underwood (2017a), who reached 
convergence at around 400 training images and 500,000 annotated in-
stances, while Wang et al. (2022) showed that 2500 annotated objects 
were sufficient for single-class fruit training. 

Lu and Young (2020) reviewed publicly available datasets that could 
be of interest for training future fruit detection CNNs. Table 2 provides 

details of the ten datasets included in Lu and Young (2020) and seven 
additional datasets for fruit detection, classification and segmentation. 

When a CNN model trained with a given dataset do not generalize 
well with new data, semi-automatic labelling is an option for better 
annotation efficiency. Semi-automatic labelling consists of automati-
cally detecting fruits in new images with a pre-trained network (or an 
unsupervised method) and generating the ground truth by manually 
correcting the detections (dos Santos Ferreira et al., 2019). Another 
option is to use weakly supervised methods: Bellocchio et al. (2019, 
2020) proposed a deep learning approach that only required a simple 
image binary labelling; Biffi et al. (2021) proposed a deep learning 
approach based on an adaptive training sample selection (ATSS) method 
that only requires annotation of the centre point of the objects; while 
Bhattarai and Karkee (2022) proposed a regression network (CountNet) 
which only requires the ground truth of the number of fruits per image. 

When the number of empirical data is limited, different strategies 
have been applied to increase the capability of the network to gener-
alize. Data augmentation techniques use annotated images to create new 
images by means of image transformations such as image flipping, 
rotation, and colour perturbations. This is a common practice employed 
in fruit detection works (Koirala et al., 2019a). Another option is to use 
synthetic data. Bresilla et al. (2019) generated synthetic images with 
random elliptic dark-green shapes (leaves) and light-green and light-red 
circles (fruit). More recently, the introduction of cycle generative 
adversarial networks has shown an improvement of the realism of syn-
thetic images (Zhang et al., 2021a), increasing the performance of 
trained networks by more than 8 % (Barth et al., 2020). 

3.6. Fruit tracking and counting 

A common source of error when estimating fruit load is the double 
counting of fruit. The easiest method to prevent this is to acquire data 

Table 2 
Publicly available datasets for fruit detection. Data can be accessed by clicking on the corresponding title (highlighted in blue).  

Title Year Image type Images * 
(instances) 

Image size * * Annotation type Crops References 

ACFR-orchard fruit dataset 2016 RGB 3704 308 × 202/ 
500 × 500 

Bounding boxes Almonds, 
apples, 
mangoes 

(Bargoti and 
Underwood, 
2017a) 

DeepFruits 2016 RGB 586 Different sizes Bounding boxes 7 different 
fruits 

(Sa et al., 2016) 

MangoNet semantic dataset 2018 RGB 49 4000 × 3000 Segmentation masks Mangoes (Kestur et al., 2019) 
Date fruit dataset 2019 RGB 

Videos 
8079 
15 

Different sizes Length, weight, maturity Dates (Altaheri et al., 
2019) 

Embrapa WGISD 2019 RGB 300 (4432) 2048 × 1365/ 
5184 × 3456 

Instance segmentation Grapes (Santos et al., 2020) 

ISARLab_counting_dataset 2019 RGB 1560 300 × 300/ 
606 × 403 

Fruit number per image Almonds, 
olives, apples 

(Bellocchio et al., 
2019) 

Kfuji-RGB-DS dataset 2019 RGB+Depth+NIR 967 (12,839) 548 × 373 Bounding boxes Apples (Gené-Mola et al., 
2019b) 

MangoYOLO data set 2019 RGB 1730 612 × 512 Bounding boxes Mangoes (Koirala et al., 
2019b) 

MinneApple 2019 RGB 1000 
(41,000) 

1280 × 720 Instance segmentation Apples (Häni et al., 2020b) 

WSU apple dataset 2019 RGB 2298 Different sizes Bounding boxes Apples (Bhusal et al., 
2019) 

Apple_detect dataset 2020 RGB 5969 1024 × 1024 Apple centre point Apples (Biffi et al., 2021) 
FruitsGB: Top Indian fruits 

with quality 
2020 RGB 12,000 256 × 256 Quality label 6 different 

fruits 
(Meshram et al., 
2020) 

Fuji-SfM dataset 2020 RGB 
Point cloud 

288 (1749) 
1 (1455) 

1024 × 1024 
10.5 Mpts 

Segmentation masks 
3D bounding boxes 

Apples (Gené-Mola et al., 
2020e) 

LFuji-air dataset 2020 Point cloud 88 (1444) 235 kpts 3D bounding boxes Apples (Gené-Mola et al., 
2020b) 

Scifresh-apple-RGB-images 2020 RGB 800 1920 × 1080 Bounding boxes Apples (Gao et al., 2020) 
Mango fruit on tree image 

collection 
2021 RGB 250 4752 × 3168 Fruit number per image Mangoes (Walsh et al., 2021) 

PFuji-Size dataset 2021 Point cloud 4 (615) 9.1 Mpts 3D instance segmentation 
+ fruit centre location 
+ diameters 

Apples (Gené-Mola et al., 
2021b) 

In the case of point cloud based datasets: *number of point clouds provided in the dataset, * * number of points per point cloud (average). 
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along the orchard without overlap between consecutive frames (Bargoti 
and Underwood, 2017a; Apolo-Apolo et al., 2020a). However, since the 
ratio of visible to occluded fruit is not always constant, the use of 
multi-view approaches is sometimes required to increase fruit detect-
ability (Hemming et al., 2014). Hence, to prevent double counting, fruit 
need to be tracked during scanning. 

Two different strategies have been applied to track fruit across 
consecutive frames: video multi-object tracking (MOT) and the use of 3D 
data to locate the position of detections in the 3D space (Fig. 6). So far, 
the method most commonly used for video fruit tracking has been the 
Kalman filter (Anderson et al., 2021a; Itakura et al., 2021; Liu et al., 
2018; Wang et al., 2019). Alternatively, Das et al. (2015) used optical 
flow, while Stein et al. (2016) used epipolar geometry by projecting the 
epipolar lines of the detected fruits centre onto consecutive frames. 
Recently, deep learning has demonstrated a good performance for 
solving MOT tasks (Dendorfer et al., 2020), being DeepSORT (Wojke 
et al., 2017) the deep learning-based tracking method most used for fruit 
counting in videos (Osman et al., 2021; Parico and Ahamed, 2021; 
Villacrés et al., 2023). A different approach was implemented in Roy and 
Isler (2016), who used calibrated cameras to register images through 
affine transformation. Similarly, Apolo-Apolo et al. (2020b) and Chen 
et al. (2019), applied affine transformations to build an orthomosaic of 
the entire orchard and subsequently detected fruits. Another method 
involves utilizing image stitching, as demonstrated by Zhang et al. 
(2022b), who used a SIFT-based image matching technique to form 
unique panoramic image of the captured fruit trees. 

An alternative approach to reduce double-counting issues is the 
detection of fruit in the 3D space by means of RGB-D cameras, LiDAR 
sensors, or structure-from-motion (SfM). Wang et al. (2013) used a 
stereovision system synchronized with two global navigation satellite 
system (GNSS) receivers in order to transform apple locations into the 
global coordinate system. Then, fruit detected in consecutive frames 
closer than 0.16 m were automatically merged. Other works proposed 
the use of SfM to merge fruit detected from different camera positions 
(Gené-Mola et al., 2020d; Häni et al., 2020a; Liu et al., 2018, 2019; 
Santos et al., 2020). Taking advantage of the 3D data generated with 
SfM photogrammetry, fruits are previously detected in images and 

subsequently projected onto the 3D space for pair-wise association 
(Table 3). 

4. Fruit size and maturity estimation 

4.1. Size estimation from 2D images 

This group includes the set of works carried out by Stajnko et al., 
where apple fruit diameters were estimated throughout their growing 
season using RGB (Stajnko and Čmelik, 2005; Stajnko et al., 2009) and 
thermal images (Stajnko et al., 2004). A high coefficient of determina-
tion was obtained when comparing the estimated fruit diameter growing 
curves with the actual ones (R2 of 0.89 and 0.96 for RGB and thermal 
images, respectively). The tests with thermal cameras also showed that it 
is more difficult to detect the thermal gradient of the fruits inside the 
crown; this is because they heat up less than fruit located on the outside 
part. Likewise, Wang et al. (2020) used a spherical video camera for 
monitoring the apple growth from fruit thinning to their ripening. Es-
timates of the horizontal diameter of apples were made by applying 
ellipse and circular fitting methods and with the help of calibration balls. 
Ellipse fitting estimates yielded a mean average absolute error of 
0.90 mm, much less than the 2.80 mm error obtained using a circular 
fitting. The size of citrus fruit was also estimated by Apolo-Apolo et al. 
(2020a), in this case using images taken from an unmanned aerial 
vehicle (UAV) and considering a wood ruler of known dimensions as the 
calibration object. Recently, Lu et al. (2022) proposed a near real-time 
apple fruit detection and sizing method from images taken by a 
low-cost smartphone in various growth stages. To estimate the fruit size, 
a red artificial apple was placed as a reference in the middle of the target 
area during the data collection stage. Estimated fruit sizes achieved R2 

values of 0.68 and 0.66 in fruit height and fruit width, respectively. 
Another alternative is based on knowing the distance to the camera 

of each of the fruit that appear in the image. In their pioneering work, 
Regunathan and Lee (2005) combined colour images with distance in-
formation obtained with ultrasound sensors and, using trigonometry, 
estimated the dimensions of citrus fruit. In this line, Wang et al. (2017) 
used the images and depth data provided by an RGB-D camera to 

Fig. 6. Summary of methods used to prevent fruit double counting. Multi-object tracking (top) and 3D projection (bottom) procedures.  
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estimate the size of mango fruits in trees by applying the thin lens the-
ory. Root-mean-square errors (RMSE) of 4.9 and 4.3 mm were obtained 
in the fruit length and width estimates, respectively. Gongal et al. (2018) 
estimated apple sizes from distances provided by a time-of-flight (ToF) 
camera using a regression model that converts pixels (digital camera) to 
millimetres. The mean absolute percentage error (MAPE) was 15.2 %, 
lower than the 30.9 % obtained when the size was derived from the 
point clouds provided by a ToF camera. Another approach to estimate 
the fruit size from two images taken at different positions was presented 
by Rakun et al. (2019). This procedure uses image registration and 
similar triangles, known the distance between the two camera positions. 
Average diameter errors of 7 and 8 mm were obtained for peach and 
apple fruits, respectively. 

4.2. Size estimation from 3D point clouds 

As mentioned, fruit size estimation based on 2D images require the 
use of calibration targets or to merge the image data with ancillary 
distance information that adds complexity and computational costs to 
the processing. These limitations can be overcome using 3D sensing 
techniques (Rosell and Sanz, 2012; Gregorio and Llorens, 2021), such as 
LiDAR, structured-light, binocular stereo vision, multi-view stereo 
(MVS) or RGB-D cameras, among others, which allow the generation of 
three-dimensional reconstructions of the fruits. 

Regarding LiDAR-based techniques, Méndez et al. (2019) used a 3D 
laser scanner with RGB data and applied the k-means algorithm to es-
timate the number and size of oranges. The computed diameters did not 
show significant differences in relation to those measured manually 
(p = 0.35). As the authors point out, this is a time-consuming method, 
but given its high accuracy it can serve as a reference for other faster and 
more economical methods. For their part, Tsoulias et al. (2020) used a 
mobile terrestrial LiDAR scanner to monitor apples at different growth 
stages. Fruit diameter was estimated from each point cluster identified 
as apple and the resulting R2 with RMSE was 0.46 with 10.8 % and 0.67 
with 7.7 %, 42 DAFB and at harvest, respectively. 

Structured-light principle was used by Rist et al. (2019), who tested a 
hand-held high-resolution scanner for 3D phenotyping of grape bunches 
under field conditions. These are high cost, high precision devices with 
acquisition speeds of about 1 million points/s. The authors achieved R2 

values of 0.70–0.91 in the prediction of several phenotypic traits 
(number and diameter of grapes; bunch width, length and volume). The 
RMSE values were 13.51 and 19.24 mm for bunch width and length, 
respectively, and 28.09 mL for the volume. 

Binocular stereo vision was applied in harvesting robots under out-
door conditions by Luo et al. (2016). The authors proposed a method to 
detect the cut-off point of the peduncle and estimate the volume of grape 
bunches. As a result of their work, they obtained errors of less than 
17 mm and 19 mm in bunch height and diameter, respectively. Her-
rero-Huerta et al. (2015) applied MVS for vineyard phenotyping and 
determined the grape bunch volume using an automatic method that fit 

a convex hull to the point cloud and a semi-automatic method that 
generated a CAD model. In both methods, similar coefficients of deter-
mination were obtained (0.76 and 0.77) when comparing the estimates 
with the actual bunch volumes. MVS was also applied in vineyards by 
Rose et al. (2016), who determined berry diameter by fitting spheres to 
point clouds. Estimates were highly accurate with differences of about 
2 mm with respect to manual measurements. Recent studies (Gené-Mola 
et al., 2021a; Grilli et al., 2021) have applied MVS and SfM to carry out 
in-field diameter estimation of apple fruit. Gené-Mola et al. (2021a) 
compared the performance of four different size estimation methods 
under several fruit visibility/occlusion levels (Fig. 7). The least squares 
method was concluded to be the most efficient in terms of computational 
cost, while the MAE ranged from 4.5 to 7.8 mm depending on the visi-
bility. These errors were lower than those obtained with the largest 
segment method and similar to those obtained with the M-estimator 
sample and consensus (MSAC) method and template matching. For their 
part, Grilli et al. (2021) developed a procedure for on-tree automatic 
apple fruit counting and sizing using videos acquired with a smartphone. 
Apple size estimation was performed by fitting spheres (RANSAC 
method) on the point cloud. 

RGB-D sensors have been applied in vineyard yield estimation by 
Hacking et al. (2019). In their study, RGB-D measurements were used to 
create one mesh per grape bunch and determine its volume and mass. 
Also in vineyards, Kurtser et al. (2020b) used point clouds generated by 
an RGB-D camera to detect the grape clusters. These authors proposed 
three methods based on fitting geometric shapes to estimate the grape 
cluster size, obtaining the best results using percentile bounding boxes. 
Also using RGB-D sensors, Yu et al. (2022b) performed 3D sphere fitting 
to estimate the position and size of pomegranate fruits. Estimates of the 
fruit radius presented an RMSE of 2.35 mm and R2 of 0.826 when 
compared to the actual radius, while the position error was less than 
5 mm. 

As seen in this section, fruit size estimations have been carried out in 
a limited number of studies, many of them focusing on a few species. It is 
difficult to compare the performance of the different techniques due to 
the diversity of metrics used for their evaluation (Table 4). It is therefore 
advisable that future works include, at least, the mean absolute error 
(MAE) and the coefficient of determination (R2) when comparing esti-
mated and actual size values. 

4.3. Advancing fruit maturity estimation 

In addition to the fruit size, knowing their maturity is essential for 
proper crop load management as well as for subsequent postharvest 
processes. Although automatic methods for fruit maturity estimation are 
less developed than sizing methods, some pioneering works have been 
carried out. Since many fruit species exhibit specific change of shape 
during fruit development, the fruit maturity can be estimated by means 
of the shape of the singularized, segmented fruit data. In apple, the 
shape of fruit was modelled by means of statistical approach (Danckaers 

Table 3 
A comparative table of results reported in different fruit counting works. Results are reported in terms of R2.  

Tracking method Sensors Fruit detection method Backbone Crops R2 

* 
Reference 

Images without overlap RGB MLP + CHT N/A Apples 0.83 (Bargoti and Underwood, 2017b) 
Epipolar geometry RGB + LiDAR Faster-RCNN VGG-16 Mangoes 0.90 (Stein et al., 2016) 
Kalman RGB SSD Mobilenet Avocado, apples, lemons 0.77 (Vasconez et al., 2020)  

RGB MangoYolo Not specified Mangoes 0.62 (DR) (Wang et al., 2019) 
DeepSORT RGB YOLOv4 CSPDarknet53 Pears 0.755 (MOTA) (Parico and Ahamed, 2021) 
Orthomosaic RGB Faster-RCNN Resnet V2 Atrous Apples 0.80 (Apolo-Apolo et al., 2020b)  

RGB Faster-RCNN Resnet-50 Strawberries 0.84 (DR) (Chen et al., 2019) 
3D projection RGB HSV thresholding N/A Apples 0.12 (ADRE) (Wang et al., 2013)  

RGB Faster-RCNN Not specified Mangoes 0.78 (Liu et al., 2019)  
RGB Mask-RCNN ResNet-101-FPN Apples 0.80 (Gené-Mola et al., 2020d)  

* Average detection rate error (ADRE), detection rate (DR) and MOT accuracy (MOTA) are provided when the R2 coefficient is not available. 
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et al., 2017) or Fourier signature (Rogge et al., 2015; Tapia Zapata et al., 
2022). Such approaches provide the next step of extracting information 
describing the maturity of fruit. In mango, the change around the 
shoulder of the fruit indicates maturity, which was analysed by means of 
RGB imaging (Sahu and Potdar, 2017). 

Beside the shape of fruit also the pigment content and distribution 
provide information on the fruit maturity. The pigment contents have 
been addressed by means of colour analysis and spectral-optical data 
with enhanced resolution providing information on the reflectance in-
tensity altered by absorption of pigments at their specific wavebands 
(Merzlyak et al., 2003; Walsh et al., 2020). Measurements were carried 
out in contact to the fruit to avoid stray light or with passive RGB sensors 
being not reliable in varying lighting conditions. However, the intensity 
measured by means of RGB-D and LiDAR sensors was employed previ-
ously to analyse the pigments of whole canopies employing LiDAR 
sensors emitting at 532 nm (green) or 660 nm (red), the latter to mea-
sure the leaf chlorophyll content (Eitel et al., 2010). Accordingly, 3D 
fruit segmentation and chlorophyll analysis were recently shown on 
apples in the orchard (Tsoulias et al., 2023) and banana fruit in post-
harvest (Saha and Zude-Sasse, 2022). Employing the return signal 
strength intensity of LiDAR sensor requests the radiometric calibration 
referencing the lowest and highest measurable intensity as well as cur-
vature correction (Saha and Zude-Sasse, 2022). Classification of 
different measuring dates during fruit development were shown for 
apple as well as banana fruit, providing an interesting alternative to 
multispectral 2D readings. 

5. Discussion and future trends 

5.1. The importance of data acquisition 

Sensors are the first stage of detection/counting and size estimation 
of fruit and, thus, are critical for the performance of the entire process. 
Limitations of up-to-date available sensors are transferred to the ob-
tained measurements which feed up the subsequent applied algorithms, 
thus limiting their effectiveness. Changes in environmental lighting af-
fects RGB and RGB-D cameras’ performance (Gené-Mola et al., 2020c; 
Fu et al., 2020). In addition, structured light sensors usually fail to 
characterize the contours, what is especially problematic in small ob-
jects, such as fruit. Also, in contours of objects, LiDAR’s mixed pixels 

phenomenon (Sanz-Cortiella et al., 2011) leads to distorted points 
clouds and filtering is often required. 

Some more advanced and affordable new sensors, which are ex-
pected to achieve great advances in this field, are being already tested 
for fruit detection and sizing. Thus, multi-beam as well as solid state 
LiDAR sensors are a great step forward. There are also LiDAR + RGB 
systems that allow obtaining coloured point clouds, although the correct 
colour assignment needs further improvement, especially in the outlines 
of small objects. The possibility of using two LiDAR systems at different 
wavelengths to simultaneously determine the normalized difference 
vegetation index (NDVI) of fruit in addition to the fruit number and size 
has recently been demonstrated (Tsoulias et al., 2023). Some companies 
have developed systems that merge different sensing principles (sensor 
fusion) with AI and post processing algorithms in the same product 
(Zheng et al., 2021). Also, the use of smartphones’ embedded sensors 
(GNSS, RGB cameras, LiDAR …) allows much more compact systems 
with post processing capabilities in the same hardware. 

Some ideas for next steps towards fruit’s detecting and sizing systems 
can be outlined, such as the combination of multiple sensors, with the 
same or different sensing principles (sensor fusion). In addition, the 
application of stereo vision, SfM and MVS principles to thermal cameras 
can also be assessed, in order to obtain point clouds in the thermal range 
of the electromagnetic spectrum. The same can be applied to multi-
spectral (MS) cameras, which are commercially available at affordable 
prices: systems similar to those based on RGB cameras but with MS 
cameras can be developed, allowing to obtain 2D images of fruits/trees/ 
crops including IR and, from these, obtain 2D images of vegetative 
indices (VI), such as NDVI or the normalized difference red edge index 
(NDRE), among others. Likewise, progress can be made in obtaining 3D 
point clouds in the IR and in these VI. In the case of MS cameras with 
multiple optical objectives (one for each spectral band), it is necessary to 
address the effect on the measurements of not having a single common 
optical objective. 

Apart from the sensors themselves, it is also necessary to delve into 
the measurement system as a whole: vehicle, supports and optimal 
location of the sensors (Xie et al., 2022). The GNSS receiver system 
associated with the sensors is also important, since the more precise it is, 
the better, because it affects the accuracy of the measurements, espe-
cially with regard to the location of the fruit, which must allow mapping 
the size of fruit both in the tree and in the plot. 

Fig. 7. Pipeline proposed by Gené-Mola et al. (2021a) to obtain in-field diameter estimation of apple fruit.  
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Another aspect is the optimization of the resolution of the images and 
point clouds obtained by the sensors, so that they do not compromise the 
processing speed and allow progress towards real-time detection. Pro-
gresses must also be made in the implementation of systems that are 
increasingly plug and play, to facilitate their effective implementation in 
the sector, without the need to be an ICT expert. Finally, more studies 
are needed to know how external variables - apart from lighting con-
ditions - such as temperature, dust, fog, vibrations etc., influence sen-
sors’ performance. 

5.2. Fruit counting 

Fruit growers still often use manual fruit counts on trees sampled 
within the plot to estimate orchard fruit yield. The fruit grower’s 
experience helps to make this task more efficient, but since fruit 
counting is manual, it is always very laborious and expensive. AI 
application is expected to become the new paradigm in providing fruit 
growers with fast and reliable fruit counting methods for yield estima-
tion. However, different strategies can be proposed, some of which still 
require new advances to be applied in a practical way. As demonstrated 
in this review, getting to automate fruit counting is not a simple matter, 
when occlusions, varying background, changing lighting exposure, un-
structured canopies, and variable crop-load level are some of the chal-
lenges to face (Bhattarai and Karkee, 2022). If this were not enough, 

different steps must be addressed in the overall fruit counting process 
adding even more computational complexity. To give an example of the 
difficulty involved, it is known that only object-level annotation takes a 
substantial amount of manual annotation hours to create large labelled 
datasets (Pawara et al., 2020). The regression-based fruit counting 
approach has also been raised in some research (Bhattarai and Karkee, 
2022; Pawara et al., 2020). In contrast to detection-based, annotation of 
only the total number of fruits at image level is used to train a neural 
network for counting. Thus, there is no need for explicit individual 
detection and localization resulting in a computationally simpler pro-
cess. Another particularly interesting strategy is the one mentioned in 
Hobbs et al. (2021), where a deep learning-based density estimation 
approach is applied to count the number of flowering pineapple plants. 
By combining the latest advances in remote sensing and computer 
vision, counting is then affordable in orchards with high planting den-
sity. Indirect yield prediction, more than fruit count, has also been 
implemented for years by developing models that relate yield to features 
from environment (meteorological information) and/or features from 
canopy or tree physiology (management mode, plant growth state) (He 
et al., 2022). 

The automatic fruit detection with computer vision algorithms is a 
key task for fruit counting systems. From 2016, the introduction of deep 
learning stablished object detection convolutional neural networks as 
the standard method to detect fruit in images, achieving F1-scores 

Table 4 
Sensing techniques and methods for in-field fruit size estimation reporting coefficient of determination (R2), absolute error (AE), mean absolute error (MAE), mean bias 
error (MBE), root mean square error (RMSE), mean average percentage error (MAPE).  

Techniques Size estimation method Fruits Size parameters Performance References 

Binocular stereo 
vision 

Calibration object. Regression model to 
predict pixel sizes. 

Grape Bunch diameter/ 
height 

AE < 18.6 mm / 16.2 mm (Luo et al., 2016) 

High resolution 3D 
scanner 

Sphere fitting. Grape Bunch length / width / 
volume 

R2 = 0.70 / 0.71 /0.91 (Rist et al., 2019) 

LiDAR-based sensor Sphere fitting. Apple Fruit diameter R2 = 0.38–0.95 
RMSE: 4.1–15.8 % 
MAE= 3.5–12.4 mm 
MBE= − 10.7 to 7.5 mm. 

(Tsoulias et al., 2020) 

MVS Pixel conversion. Image registration. Apple 
Peach 

Fruit diameter 
Fruit diameter 

MAE= 8 mm 
MAE= 7 mm1 

(Rakun et al., 2019)  

Convex hull. CAD generation. Grapes Bunch volume R2 = 0.77 / 0.76 (convex hull / CAD 
model) 

(Herrero-Huerta et al., 
2015) 

MVS, SfM Sphere fitting. Apple Fruit diameter R2 = 0.91 
RMSE = 5.1 mm 
MAE= 3.7 mm 
MBE = − 1.9 mm 
MAPE= 5.9 % 

(Gené-Mola et al., 
2021a) 

RGB + ultrasonic 
sensor 

Distances with ultrasonic sensors. Pixel 
conversion. 

Apple Fruit diameter RMSE= 0.4 cm. (Regunathan and Lee, 
2005) 

RGB camera Calibration object. Pixel conversion. Avocado 
Mandarin 
Navel orange 
Apple 
Mango 
Mango 

Fruit diameter 
Fruit diameter 
Fruit diameter 
Fruit diameter 
Fruit length 
Fruit width 

RMSE= 3.4 mm 
RMSE= 3.8 mm 
RMSE= 2.4 mm 
RMSE= 2.0 mm 
RMSE= 5.3 mm / 5.5 mm (controlled/ 
ambient light) 
RMSE= 3.7 mm / 4.6 mm. (controlled/ 
ambient light) 

(Wang et al., 2018b)  

Calibration object. Pixel conversion. Apple Fruit diameter growing 
curve 

R2 = 0.96 (Stajnko et al., 2009)  

Pixel conversion. Apple Fruit diameter r = 0.55 – 0.80 (harvest stage) (Stajnko and Čmelik, 
2005)  

Calibration object. Pixel conversion. 
Ellipse/ circle fitting. 

Apple Fruit diameter MAE= 0.90 mm / 2.80 mm (ellipse/ 
circle fitting) 

(Wang et al., 2020)  

Calibration object. Pixel conversion. Grapes Berry diameter R2 = 0.88 (Roscher et al., 2014) 
RGB camera + ToF Calibration object. Regression model to 

predict pixel sizes. 
Apple Fruit diameter MAPE: 15.2 % (RGB) / 30.9 % (ToF) (Gongal et al., 2018) 

RGB-D camera Bounding box/ ellipsoid/ cylinder 
fitting. 

Grapes Bunch length / width MAE= ~2.9 cm /~3.6 cm. (Kurtser et al., 2020b)  

Pixel conversion units. Mango Fruit length / width RMSE= 4.9 mm / 4.3 mm. (Wang et al., 2017)  
Sphere fitting. Pomegranate Fruit radius RMSE= 2.35 mm 

R2 = 0.826 
(Yu et al., 2022b) 

Thermal cameras Pixel conversion units. Apple Fruit diameter growing 
curve 

R2 = 0.89 (Stajnko et al., 2004)  
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higher than 90 %, similar to the human eye. The tendency of the used 
CNN architectures is being the following. First (from 2016 to 2018, 
approximately), importance was given to improve accuracy. In this 
period, architectures such as Faster-RCNN demonstrated to be more 
accurate than the previous methods. Later (from 2018 to 2021, 
approximately), efforts were focused on improving efficiency and speed 
(Table 1). During this period, one-stage networks such as YOLO and its 
variance became the most popular, demonstrating real-time processing 
speeds and similar accuracy than the previous architectures. The current 
trend is to develop lightweight CNN to be implemented for edge 
computing purposes processed in embedded computers. It is expected 
that this will facilitate the deployment of commercial and affordable 
fruit counting devices (Zhang et al., 2021b). 

Future research in fruit detection is expected to introduce emerging 
machine learning methods such as vision transformers (Carion et al., 
2020), which are promising deep learning architectures based on 
attention mechanisms which could be more efficient and accurate than 
the popular CNNs. On the other hand, it is also expected an advance on 
point cloud-based object detection algorithms, which so far, have shown 
a lower performance compared with 2D algorithms based on CNNs. In 
this regard, further research should be done in order to test 3D machine 
learning methods that have not been applied for fruit detection such as 
the use of graph neural networks (Zhou et al., 2020) or PointPillars 
(Lang et al., 2019). 

Based on the revised literature, authors consider the detection 
problem a quite mature problem at the level of computer vision. The 
handcrafted methods have been largely superseded by those based on 
deep learning. The lack of generalization in the detection of fruits 
together with variable conditions of the acquisition process (lighting 
changes, noise, background colours, etc.) are the main factors that 
directly affect handcrafted methods. Nevertheless, there are still envi-
ronments (e.g. high-contrast fruit compared to the background) where 
methods based on handcrafted features could continue to be advanta-
geous given their low computational cost. In order to advance to the 
development and deployment of commercial devices, future works 
should apply and evaluate the methods for in-field counting. Having 
high detection rates in the images does not ensure a high performance of 
these systems for yield estimation and mapping, since there are other 
factors that affect the systems performance such as the structure of trees, 
the amount of fruit occlusions, the use of multi-view methods, the 
strategies to prevent fruit double counting (such fruit tracking), etc. 
During the literature review we found that there are many works that 
evaluate the detection performance in images, but few works comparing 
the number of fruits detected in the images with respect to the actual 
number of fruits on trees or orchards. In addition, very few fruit 
counting and mapping methods were evaluated at different growth 
stages and different scanning conditions to ensure that systems gener-
alize well at different environments. Thus, further efforts should be done 
to confront the challenges not related with the detection and evaluate 
the generalization of the models on larger datasets including different 
orchards scanned at different conditions. 

Finally, authors involved in future research should also consider 
making publicly available the codes and the datasets with detailed ex-
planations about how to implement and use them. This will facilitate 
that the scientific community advances efficiently and collaboratively. 
In other research fields such as Computer Science it is a common prac-
tice to make codes and data available. This, for example, explains the 
rapid advances in deep learning during the last decade. However, in the 
field of fruit detection and counting there is still a reluctance for the 
open science, which makes difficult to reproduce the methods and 
makes it difficult collaborative and additive research. Counting fruits is 
a task in which AI has allowed great advances. But, thinking of applying 
sensors and processes punctually within the plots, the combined use of 
AI together with efficient sampling cannot be ruled out, this being a still 
pending issue. 

5.3. Fruit sizing and characterization 

The fruit sizing task has not received as much attention as fruit 
detection, but several advances have been achieved during the last 
decade. Most of the revised works measure the fruit size in pixels in 
images and then apply a conversion from pixels to millimeters. Methods 
based on 2D images require the usage of calibration targets placed at the 
same distance to the cameras than fruit, which limits the efficiency of 
the data acquisition process. However, more advanced methods are 
based on 3D data, which can directly measure the fruit size in milli-
meters, or on RGB-D data, which allow the conversion from pixels to 
millimeters by applying the pinhole camera model. 

So far, the dimensions of fruit at advanced ripening stages have been 
estimated, but there is also an interest in earlier maturity stages. For 
instance, the measurement of apple fruitlets is of interest for precisely 
adjusting the dose when applying chemical thinning. Thus, while ac-
curate fruit sizing results have been reported in the revised literature, 
further research should be done for measuring young fruit to take 
appropriate actions in crop load management. 

One of the major challenges when measuring fruit size with sensors is 
the presence of fruit occlusions. Although a high percentage of fruits are 
partially occluded, some fruit sizing works found in the literature limit 
the evaluation of their methods on fully visible fruits. From the authors’ 
opinion, to transfer the fruit sizing research methods needs to deal with 
occlusions. Consequently, future works should provide fruit sizing re-
sults at different degrees of occlusion. In addition, further research 
should be carried out to automatically estimate the percentage of visi-
bility of detected fruits, which would allow to identify the most occluded 
detections and limit the measurement to the most visible fruits, which 
are likely to be better measured. 

The authors consider that future works will involve the development 
of methods capable of real-time monitoring the fruit temperature (sun-
burn risk), estimating fruit maturity (Section 4.3), early detecting its 
defects and diseases, etc. Ultimately, current size estimation methods 
should evolve towards fruit characterization methods to allow a more 
complete knowledge of the different variables that affect fruit growth. 

5.4. Opportunities for research transfer 

Considering in-field fruit size estimation (necessary to monitor 
growth and estimate fruit weight), new research and commercial op-
portunities are emerging with the priority of developing robust and low- 
cost systems, and also under the premise of having to process large 
amounts of data when applied to large farms with large number of trees. 
Currently, there are a few companies that detect and count blossom and 
fruits and, in some cases, estimate fruit dimensions to estimate yield 
(Anderson et al., 2021b). Fruit detection and sizing would unlock the 
possibility to estimate per tree crop load and adjust the number of fruits 
on a tree and quality bases. It is well-known that crop load influences 
fruit quality (Serra et al., 2016; Embree et al., 2007). Together with crop 
load, irrigations strategies but also fruit location in the canopy, mainly 
according to height, are also affecting quality parameters (Alcobendas 
et al., 2013). In-field fruit location and sizing systems allow fruits to be 
georeferenced on a per tree basis and also to register their position in the 
canopy. An early detection and sizing solution would allow the farmers 
to apply thinning strategies within the same season considering the 
number of fruitlets per tree or even per branch or according to height. 
Several measurements along the season would provide him/her feed-
back about fruit growth uniformity and expected fruit quality. Late 
measurements, right before harvesting, would provide feedback on the 
applied strategy and information for the next season. When use in a 
whole farm approach instead of in a sampling approach, those systems 
would allow farms to better plan their logistics (labor force hiring, dis-
tribution within the field, transport and storage capacity, etc.) and also 
accurately estimate their yield and benefit according to fruit size clas-
sifications. In addition, when fruit size distribution is obtained for a 
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whole plot, real-time or even map-based selective harvesting strategies 
could also be applied after a cost-benefit analysis according to fruit size 
or even to fruit colour (when such information is also gathered). 

Summarizing, having information on the number of fruit, their size 
and their location within the trees and throughout the plot on a 
continuous, non-discreet, bases, will allow farms apply fruit quality and 
or cost-benefit -oriented strategies and make more informed decisions in 
the framework of Precision Agriculture or Precision Fructiculture 
resulting in enhanced fruit quality and reduced fruit size distribution. 

6. Conclusions 

From the analysis of previous research in fruit detection and sizing, it 
can be concluded that, although very significant advances have been 
achieved in the recent past (in particular since the development of deep 
learning algorithms), it remains as an open field of study, which is 
currently a focal point of great interest. 

Fruit load management and yield estimation in fruit orchards is still 
usually done by manual/visual fruit counting and sizing. However, this 
is always a costly task in terms of time and labour. For this reason, 
automatic counting using fruit detection systems is becoming a feasible 
option for the fruit sector. 

Actually, both leaf area and fruit size can be estimated with LiDAR, 
RGB and RGB-D sensors-based systems, enabling the tree-individual 
analysis of fruit bearing capacity. Such precise management avoids er-
rors and, therefore, can contribute to more sustainable fruit production. 
In postharvest, the fruit size determines the fruit value in some crops 
such as sweet cherry. In other crops such as apples, the storability of fruit 
can be affected by fruit size. 

Both active and passive electromagnetic (EM) radiation-based sen-
sors are being used for detection and sizing of fruits, most of them in the 
visible, IR or thermal region of the EM spectrum. Hopeful future ad-
vances are expected from new emerging sensor, electronics and post 
processing systems as well as sensor fusion, which should lead to 
achieving this goal in a practical and affordable way in a few years. 
Optimizing measurements’ size files, GNNS accuracy and systems’ 
simplicity of use no doubt will help greatly to the adoption of the 
commercially products that will gradually appear in the coming years. 

Hand in hand with these advances in sensors, a key point has also 
been the developments made in the applied algorithms, taking special 
relevance those based on artificial intelligence techniques and specif-
ically deep learning based on convolutional neural networks, CNNs. 
Most fruit detection and sizing recent approaches use image classifica-
tion, object detection or semantic and instance segmentation CNNs. 
However, near future advances are also linked to the availability of high 
quality and size datasets to train the algorithms that will be developed 
from now on. 
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A process-based model of nectarine quality development during pre- and post- 
harvest. Postharvest Biol. Technol. 175, 111458 https://doi.org/10.1016/j. 
postharvbio.2020.111458. 

Chaivivatrakul, S., Dailey, M.N., 2014. Texture-based fruit detection. Precis. Agric. 15, 
662–683. https://doi.org/10.1007/s11119-014-9361-x. 

Chen, J., Wu, J., Wang, Z., Qiang, H., Cai, G., Tan, C., Zhao, C., 2021. Detecting ripe 
fruits under natural occlusion and illumination conditions. Comput. Electron. Agric. 
190, 106450 https://doi.org/10.1016/j.compag.2021.106450. 

Chen, S.W., Shivakumar, S.S., Dcunha, S., Das, J., Okon, E., Qu, C., Taylor, C.J., 
Kumar, V., 2017. Counting apples and oranges with deep learning: a data-driven 
approach. IEEE Robot. Autom. Lett. 2, 781–788. https://doi.org/10.1109/ 
LRA.2017.2651944. 

Chen, Y., Lee, W.S., Gan, H., Peres, N., Fraisse, C., Zhang, Y., He, Y., 2019. Strawberry 
yield prediction based on a deep neural network using high-resolution aerial 
orthoimages. Remote Sens. 11 (13), 1584. https://doi.org/10.3390/rs11131584. 

Cheng, H., Damerow, L., Sun, Y., Blanke, M., 2017. Early yield prediction using image 
analysis of apple fruit and tree canopy features with neural networks. J. Imaging 3 
(1), 6. https://doi.org/10.3390/jimaging3010006. 

Chu, P., Li, Z., Lammers, K., Lu, R., Liu, X., 2021. Deep learning-based apple detection 
using a suppression mask R-CNN. Pattern Recognit. Lett. 147, 206–211. https://doi. 
org/10.1016/j.patrec.2021.04.022. 

Danckaers, F., Huysmans, T., Van Dael, M., Verboven, P., Nicolaï, B., Sijbers, J., 2017. 
Building 3D statistical shape models of horticultural products. Food Bioprocess. 
Technol. 10, 2100–2112. https://doi.org/10.1007/s11947-017-1979-z. 

Das, J., Cross, G., Qu, C., Makineni, A., Tokekar, P., Mulgaonkar, Y., Kumar, V., 2015. 
Devices, systems, and methods for automated monitoring enabling precision 
agriculture. In: Proceedings of the 2015 IEEE International Conference on 
Automation Science and Engineering (CASE), 462–469. https://doi.org/10.1109/Co 
ASE.2015.7294123. 

Delong, M.J., Prange, K.R., Harrison, A.P., Embree, G.C., Nichols, S.D., Wright, A.H., 
2006. The influence of crop-load, delayed cooling and storage atmosphere on post- 
storage quality of ‘Honeycrisp’™ apples. J. Hortic. Sci. Biotechnol. 81 (3), 391–396. 
https://doi.org/10.1080/14620316.2006.11512078. 

Dendorfer, P., Os̆ep, A., Milan, A., Schindler, K., Cremers, D., Reid, I., Roth, S., Leal- 
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