459 research outputs found

    Trajectory planning for industrial robot using genetic algorithms

    Full text link
    En las últimas décadas, debido la importancia de sus aplicaciones, se han propuesto muchas investigaciones sobre la planificación de caminos y trayectorias para los manipuladores, algunos de los ámbitos en los que pueden encontrarse ejemplos de aplicación son; la robótica industrial, sistemas autónomos, creación de prototipos virtuales y diseño de fármacos asistido por ordenador. Por otro lado, los algoritmos evolutivos se han aplicado en muchos campos, lo que motiva el interés del autor por investigar sobre su aplicación a la planificación de caminos y trayectorias en robots industriales. En este trabajo se ha llevado a cabo una búsqueda exhaustiva de la literatura existente relacionada con la tesis, que ha servido para crear una completa base de datos utilizada para realizar un examen detallado de la evolución histórica desde sus orígenes al estado actual de la técnica y las últimas tendencias. Esta tesis presenta una nueva metodología que utiliza algoritmos genéticos para desarrollar y evaluar técnicas para la planificación de caminos y trayectorias. El conocimiento de problemas específicos y el conocimiento heurístico se incorporan a la codificación, la evaluación y los operadores genéticos del algoritmo. Esta metodología introduce nuevos enfoques con el objetivo de resolver el problema de la planificación de caminos y la planificación de trayectorias para sistemas robóticos industriales que operan en entornos 3D con obstáculos estáticos, y que ha llevado a la creación de dos algoritmos (de alguna manera similares, con algunas variaciones), que son capaces de resolver los problemas de planificación mencionados. El modelado de los obstáculos se ha realizado mediante el uso de combinaciones de objetos geométricos simples (esferas, cilindros, y los planos), de modo que se obtiene un algoritmo eficiente para la prevención de colisiones. El algoritmo de planificación de caminos se basa en técnicas de optimización globales, usando algoritmos genéticos para minimizar una función objetivo considerando restricciones para evitar las colisiones con los obstáculos. El camino está compuesto de configuraciones adyacentes obtenidas mediante una técnica de optimización construida con algoritmos genéticos, buscando minimizar una función multiobjetivo donde intervienen la distancia entre los puntos significativos de las dos configuraciones adyacentes, así como la distancia desde los puntos de la configuración actual a la final. El planteamiento del problema mediante algoritmos genéticos requiere de una modelización acorde al procedimiento, definiendo los individuos y operadores capaces de proporcionar soluciones eficientes para el problema.Abu-Dakka, FJM. (2011). Trajectory planning for industrial robot using genetic algorithms [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/10294Palanci

    Enhanced online programming for industrial robots

    Get PDF
    The use of robots and automation levels in the industrial sector is expected to grow, and is driven by the on-going need for lower costs and enhanced productivity. The manufacturing industry continues to seek ways of realizing enhanced production, and the programming of articulated production robots has been identified as a major area for improvement. However, realizing this automation level increase requires capable programming and control technologies. Many industries employ offline-programming which operates within a manually controlled and specific work environment. This is especially true within the high-volume automotive industry, particularly in high-speed assembly and component handling. For small-batch manufacturing and small to medium-sized enterprises, online programming continues to play an important role, but the complexity of programming remains a major obstacle for automation using industrial robots. Scenarios that rely on manual data input based on real world obstructions require that entire production systems cease for significant time periods while data is being manipulated, leading to financial losses. The application of simulation tools generate discrete portions of the total robot trajectories, while requiring manual inputs to link paths associated with different activities. Human input is also required to correct inaccuracies and errors resulting from unknowns and falsehoods in the environment. This study developed a new supported online robot programming approach, which is implemented as a robot control program. By applying online and offline programming in addition to appropriate manual robot control techniques, disadvantages such as manual pre-processing times and production downtimes have been either reduced or completely eliminated. The industrial requirements were evaluated considering modern manufacturing aspects. A cell-based Voronoi generation algorithm within a probabilistic world model has been introduced, together with a trajectory planner and an appropriate human machine interface. The robot programs so achieved are comparable to manually programmed robot programs and the results for a Mitsubishi RV-2AJ five-axis industrial robot are presented. Automated workspace analysis techniques and trajectory smoothing are used to accomplish this. The new robot control program considers the working production environment as a single and complete workspace. Non-productive time is required, but unlike previously reported approaches, this is achieved automatically and in a timely manner. As such, the actual cell-learning time is minimal

    Lunar Rover Motion Planning and Commands

    Get PDF
    Space exploration is moving forward and one of the topics currently being researched is mining. The objective of this thesis is to design and develop software for the auton- omous navigation of a wheeled rover that is being built for NASA’s Lunabotics Mining Competition. The motion control system is a crucial component of a planetary rover system and its implementation heavily depends on the chassis configuration. The configuration of the rover enables us to use three steering modes: Ackermann, Point- turn and Crab steering. The implementation takes advantages of all the modes and involves algorithms for path planning, path smoothing and path following. In addi- tion, the system offers a feature of automatic steering mode selection. The system can be tuned and controlled by the cross-platform application specifically developed for this purpose. The performance of the implemented system is analyzed by testing in a simulator with a realistic physics engine and 3D visualization capabilities. Our con- ducted tests confirm that the system is sufficient in the framework of the Lunabotics Mining Competition

    Bricks and Sustainability

    Get PDF

    Kinematics, motion analysis and path planning for four kinds of wheeled mobile robots

    Get PDF

    MUSME 2011 4 th International Symposium on Multibody Systems and Mechatronics

    Full text link
    El libro de actas recoge las aportaciones de los autores a través de los correspondientes artículos a la Dinámica de Sistemas Multicuerpo y la Mecatrónica (Musme). Estas disciplinas se han convertido en una importante herramienta para diseñar máquinas, analizar prototipos virtuales y realizar análisis CAD sobre complejos sistemas mecánicos articulados multicuerpo. La dinámica de sistemas multicuerpo comprende un gran número de aspectos que incluyen la mecánica, dinámica estructural, matemáticas aplicadas, métodos de control, ciencia de los ordenadores y mecatrónica. Los artículos recogidos en el libro de actas están relacionados con alguno de los siguientes tópicos del congreso: Análisis y síntesis de mecanismos ; Diseño de algoritmos para sistemas mecatrónicos ; Procedimientos de simulación y resultados ; Prototipos y rendimiento ; Robots y micromáquinas ; Validaciones experimentales ; Teoría de simulación mecatrónica ; Sistemas mecatrónicos ; Control de sistemas mecatrónicosUniversitat Politècnica de València (2011). MUSME 2011 4 th International Symposium on Multibody Systems and Mechatronics. Editorial Universitat Politècnica de València. http://hdl.handle.net/10251/13224Archivo delegad

    Simulateur tutoriel intelligent pour les opérations robotisées application au bras canadien sur la station spatiale internationale

    Get PDF
    Cette thèse a pour objectif de développer un simulateur tutoriel intelligent pour l'apprentissage de manipulations robotisées, applicable au bras robot canadien sur la station spatiale internationale. Le simulateur appelé Roman Tutor est une preuve de concept de simulateur d'apprentissage autonome et continu pour des manipulations robotisées complexes. Un tel concept est notamment pertinent pour les futures missions spatiales sur Mars ou sur la Lune, et ce en dépit de l'inadéquation du bras canadien pour de telles missions en raison de sa trop grande complexité. Le fait de démontrer la possibilité de conception d'un simulateur capable, dans une certaine mesure, de donner des rétroactions similaires à celles d'un enseignant humain, pourrait inspirer de nouvelles idées pour des concepts similaires, applicables à des robots plus simples, qui seraient utilisés dans les prochaines missions spatiales. Afin de réaliser ce prototype, il est question de développer et d'intégrer trois composantes originales : premièrement, un planificateur de trajectoires pour des environnements dynamiques présentant des contraintes dures et flexibles ; deuxièmement, un générateur automatique de démonstrations de tâches, lequel fait appel au planificateur de trajectoires pour trouver une trajectoire solution à une tâche de déplacement du bras robot et à des techniques de planification des animations pour filmer la solution obtenue ; et troisièmement, un modèle pédagogique implémentant des stratégies d'intervention pour donner de l'aide à un opérateur manipulant le SSRMS. L'assistance apportée à un opérateur sur Roman Tutor fait appel d'une part à des démonstrations de tâches générées par le générateur automatique de démonstrations, et d'autre part au planificateur de trajectoires pour suivre la progression de l'opérateur sur sa tâche, lui fournir de l'aide et le corriger au besoin

    Design and testing of a position adaptation system for KUKA robots using photoelectric sensors

    Get PDF
    This thesis presents the development and analysis of a position monitoring and adaptation system to be used in conjunction with a KUKA KR16-2 articulated robot using components readily available in most manufacturing settings. This system could be beneficial in the manufacturing sector in areas such as polymer welding and spray painting. In the former it could be used to maintain an effective distance between a welding end effector laying molten plastic and the surface area of the parts being welded, or in the case of the latter the system would be useful in painting objects of unknown shape or objects with unknown variations in the surface level. In the case of spray painting if you spray to close to an object you will get an inconsistent amount of paint applied to an area. This system would maintain the programmed distance between the robot system and target object. Typically, systems that achieve this level of control rely on expensive sensors such as force torque sensors. This research proposes to take the first step in trying to address the technical problems by introducing a novel way of adapting to a target surface deformation using comparably low cost photoelectric diffuse sensors. The key outcomes of this thesis can be found in the form of a software package to interface the photo-electric sensors to the KUKA robot system. This system is operated by a custom-built algorithm which is capable of dynamically calculating robot movements based off the sensor input. Additionally, an optimum system setup is developed with different configurations of sensor mounting and speeds of robot operation discussed and tested. The viability of the photo-electric diffuses sensors used in this application is also considered with further works suggested. Finally, a secondary application is developed for recording and analysing KUKA robot movements for use in other research activities

    Topology based representations for motion synthesis and planning

    Get PDF
    Robot motion can be described in several alternative representations, including joint configuration or end-effector spaces. These representations are often used for manipulation or navigation tasks but they are not suitable for tasks that involve close interaction with the environment. In these scenarios, collisions and relative poses of the robot and its surroundings create a complex planning space. To deal with this complexity, we exploit several representations that capture the state of the interaction, rather than the state of the robot. Borrowing notions of topology invariances and homotopy classes, we design task spaces based on winding numbers and writhe for synthesizing winding motion, and electro-static fields for planning reaching and grasping motion. Our experiments show that these representations capture the motion, preserving its qualitative properties, while generalising over finer geometrical detail. Based on the same motivation, we utilise a scale and rotation invariant representation for locally preserving distances, called interaction mesh. The interaction mesh allows for transferring motion between robots of different scales (motion re-targeting), between humans and robots (teleoperation) and between different environments (motion adaptation). To estimate the state of the environment we employ real-time sensing techniques utilizing dense stereo tracking, magnetic tracking sensors and inertia measurements units. We combine and exploit these representations for synthesis and generalization of motion in dynamic environments. The benefit of this method is on problems where direct planning in joint space is extremely hard whereas local optimal control exploiting topology and metric of these novel representations can efficiently compute optimal trajectories. We formulate this approach in the framework of optimal control as an approximate inference problem. This allows for consistent combination of multiple task spaces (e.g. end-effector, joint space and the abstract task spaces we investigate in this thesis). Motion generalization to novel situations and kinematics is similarly performed by projecting motion from abstract representations to joint configuration space. This technique, based on operational space control, allows us to adapt the motion in real time. This process of real-time re-mapping generates robust motion, thus reducing the amount of re-planning.We have implemented our approach as a part of an open source project called the Extensible Optimisation library (EXOTica). This software allows for defining motion synthesis problems by combining task representations and presenting this problem to various motion planners using a common interface. Using EXOTica, we perform comparisons between different representations and different planners to validate that these representations truly improve the motion planning
    corecore