
Ivan Šinkarenko

Lunar Rover Motion Planning and Commands

School of Electrical Engineering

Department of Automation and Systems Technology

Thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science in Technology

Espoo, August 20, 2013

Instructor: Eric Halbach

Aalto University
School of Electrical Engineering

Supervisors: Professor Emeritus Aarne Halme Professor Thomas Gustafsson

Aalto University Luleå University of Technology
School of Electrical Engineering

Acknowledgements

I would like to express my deepest gratitude to all the people who provided
me with the possibility to complete this Thesis. I thank my instructor, Eric
Halbach, for his patience and help throughout the entire period of writing.
Furthermore, I would also like to thank Tomi Ylikorpi and Professor Emeritus
Aarne Halme for their guidance. Special gratitude I give to Veikko Immonen for
his assistance and help. I really enjoyed the discussions with Laura Mendoza,
my English teacher, and appreciate her contribution into my language skills.
I thank my fellow SpaceMasters, who made these two years joyful and unfor-
gettable. In addition, I appreciate all the support and patience provided by my
colleagues at DevBridge Group. Finally, nobody has given me as much encour-
agement and inspiration as my family, who deserved more than just my special
thanks.

Espoo, August 20, 2013

Ivan Šinkarenko

ii

Aalto University
School of Electrical Engineering Abstract of the Master’s Thesis
Author: Ivan Šinkarenko

Title of the thesis: Lunar Rover Motion Planning and Commands

Date: August 20, 2013 Number of pages: 85

Department: Automation and Systems Technology

Programme: Master’s Degree Programme in Space Science and Technology

Professorship: Automation Technology (AS-84)

Supervisors: Professor Emeritus Aarne Halme (Aalto)

Professor Thomas Gustafsson (LTU)

Instructor: Eric Halbach

Space exploration is moving forward and one of the topics currently being researched
is mining. The objective of this thesis is to design and develop software for the auton-
omous navigation of a wheeled rover that is being built for NASA’s Lunabotics Mining
Competition. The motion control system is a crucial component of a planetary rover
system and its implementation heavily depends on the chassis configuration. The
configuration of the rover enables us to use three steering modes: Ackermann, Point-
turn and Crab steering. The implementation takes advantages of all the modes and
involves algorithms for path planning, path smoothing and path following. In addi-
tion, the system offers a feature of automatic steering mode selection. The system can
be tuned and controlled by the cross-platform application specifically developed for
this purpose. The performance of the implemented system is analyzed by testing in a
simulator with a realistic physics engine and 3D visualization capabilities. Our con-
ducted tests confirm that the system is sufficient in the framework of the Lunabotics
Mining Competition.

Keywords: motion, planning, control, lunar, rover, lunabotics, mining

iii

Contents

1 Introduction 1

1.1 Competition Rules . 2
1.2 Project Description . 4
1.3 Outline . 5

2 Related Work 6

2.1 Overview of Ground Locomotion 6
2.2 Wheeled Locomotion . 9

2.2.1 Wheel Types . 11
2.2.2 Suspension . 12
2.2.3 Holonomicity . 13

2.3 Steering . 14
2.3.1 Skid Steering . 14
2.3.2 Explicit Steering . 15
2.3.3 Articulated Steering . 15

2.4 Terrain . 17
2.4.1 Regolith Properties . 17
2.4.2 Wheel-Soil Interaction 18

2.5 Driving Path . 19
2.5.1 Path Generation . 19
2.5.2 Path Selection . 20
2.5.3 Path Following . 21

3 Implementation 24

3.1 Rover Hardware . 24
3.1.1 Chassis . 24
3.1.2 Electronics . 28

3.2 Path Planning Algorithms . 28
3.2.1 Search Algorithms Overview 29

iv

3.2.2 Potential Fields . 33
3.2.3 Sampling-Based Algorithms 33
3.2.4 Path Planning Solution 34
3.2.5 Path Smoothing . 36

3.3 Path Following Algorithms . 41
3.3.1 Control Overview . 41
3.3.2 PID Controller . 42
3.3.3 Ackermann Path Following 44
3.3.4 Point-turn Path Following 46
3.3.5 Crab Path Following . 48
3.3.6 Steering Mode Selection 49

3.4 Software Packages . 50
3.4.1 Onboard Software Package 51
3.4.2 Graphical User Interface 52
3.4.3 Communication . 57

3.5 Simulation . 60
3.5.1 Stage Simulator . 60
3.5.2 Gazebo Simulator . 61

4 Simulation Results 68

4.1 LunArena . 68
4.2 Slope . 71
4.3 Lunar Surface . 72

5 Conclusions and Further Work 74

References 77

A Internal Communication of the ROS Nodes I

B Shell Scripts of the Onboard Software III

v

List of Tables

2.1 Performance evaluation metrics and indexes. 18

3.1 The properties of the individual links of the Gazebo rover model. 65
3.2 The properties of the individual joints of the Gazebo rover model. 65
3.3 The friction coefficients of the polyurethane wheel layer on va-

rious surfaces. 65

vi

List of Figures

1.1 LunArena (isometric view). 3

2.1 Simplified kinematics of the Scarab suspension demonstrating
inching, with indication of the suspension and wheel motions. . 8

2.2 Influence of wheel-soil interaction on the wheel arrangement. . . 10
2.3 Influence of wheel-soil terramechanic on the wheel shapes. . . . 10
2.4 Castor wheel. 11
2.5 Mecanum wheels implemented on URANUS omni-directional mo-

bile robot. 11
2.6 Ball wheels implemented on MoVille car concept. 12
2.7 The Rocker-bogie suspension of MER. 13
2.8 The articulated suspension of the Marsokhod rover. 13
2.9 Forward-backward maneuver for a non-holonomic wheeled mobile

robot. 14
2.10 Skid steering Ackermann and Point-turn examples. 14
2.11 Explicit steering Ackermann and Point-turn examples. 15
2.12 Articulated steering example. 16
2.13 Crab control mode example. 17
2.14 Example terrain assessment and path selection by MER vehicle. 20
2.15 a) Bicycle model. b) All-wheel dynamics model. 22
2.16 Thrust-Cornering Characteristic Diagram. 22

3.1 Three of six 20 inch aluminum wheels on an engineering model
of the MSL rover. 25

3.2 The CAD model of the chassis of the rover. 26
3.3 The CAD model of the wheel module. 27
3.4 Mechanical constraints of the steering motors. 27
3.5 The example of the obstacles inflated in the occupancy grid of

the LunArena map. 29

vii

3.6 a) Expansion of a node in the 4-directional search. b) Expansion
of a node in the 8-directional search. 30

3.7 a) The typical transitions allowed from a node in a uniform grid.
b) Field D* available transition in a uniform grid. 31

3.8 Paths produced by classic grid-based planners and Field D* in a
150× 60 uniform resolution grid. 31

3.9 Expansion of a node in raD* 32 search. 32
3.10 The example of a potential field. 33
3.11 The comparison of the outputs of original and modified A* algo-

rithms. 35
3.12 Construction of the linear Bézier curve. 36
3.13 Construction of the quadratic Bézier curve. 37
3.14 Construction of the cubic Bézier curve. 37
3.15 A quadratic Bézier curve created by the proposed algorithm. . . 38
3.16 Tetragonal concave boundary approach. 39
3.17 Path smoothing analysis conducted by Choi et al.. 40
3.18 The smooth trajectory constructed by the tetragonal concave

boundary method. 40
3.19 The block diagrams of different control systems. 42
3.20 The block diagram of a PID controller. 43
3.21 Path following using feedback control. 44
3.22 Curvature detection for feedforward control. 45
3.23 The model of the Ackermann steering system. 45
3.24 Control Bicycle model and the ICR point. 46
3.25 The state diagram of the path following routine in Point-turn

steering mode. 47
3.26 Point-turn approach of the all-wheel steered rover. 48
3.27 Crab control of the all-wheel steered rover. 49
3.28 Calculation of the maximum curvature. 50
3.29 The main application window of the robot interaction software. 53
3.30 The example of selecting multiple waypoints. 54
3.31 All-Wheel Control window. 55
3.32 Path following window. 56
3.33 Trajectory Analysis window. 57
3.34 The environment in the Stage simulator. 61
3.35 The six possible lower-pair joints. 62

viii

3.36 The model of the project robot on the simulated lunar surface. . 66

4.1 Test environments created for the Gazebo simulator. 69
4.2 Ackermann steering in the LunArena environment. 70
4.3 Driving test in the LunArena environment. 71
4.4 Path correction test on a slope. 72
4.5 Driving on the Moon-like surface test. 73

A.1 The graph of nodes and topics of the onboard software package. II

ix

Abbreviations

ATHLETE All-Terrain Hex-Limbed Extra-Terrestrial Explorer

BP-1 Black Point-1

CAD Computer-Aided Design

CFM Constraint Force Mixing

DARPA Defense Advanced Research Projects Agency

DOF Degrees of Freedom

DRCSim DARPA Robotics Challenge Simulator

ESA European Space Agency

GUI Graphical User Interface

ICR Instantaneous Center of Rotation

IMU Inertial Measurement Unit

JPL Jet Propulsion Laboratory

LER Lunar Exploration Rover

KSC Kennedy Space Center

LPA* Lifelong Planning A*

LRV Lunar Roving Vehicle

MER Mars Exploration Rovers

x

MSL Mars Science Laboratory

MSR Mars Sample Return

NASA National Aeronautics and Space Administration

ODE Open Dynamics Engine

OGRE Object-oriented Graphics Rendering Engine

PCBC Piecewise Cubic Bézier Curves

PID Proportional-Integral-Derivative

raD* Rover Adapted D*

RGB-D Red-Green-Blue-Depth

ROS Robot Operating System

SDF Simulation Description Format

SELENE SELenological and ENgineering Explorer

SLAM Simultaneous Localization and Mapping

STEM Science, Technology, Engineering and Mathematics

TCP Transmission Control Protocol

UDP User Datagram Protocol

VoIP Voice over Internet Protocol

XML Extensible Markup Language

xi

Chapter 1

Introduction

“We can only see a short distance ahead, but we can see plenty there that needs to be

done.”

- Alan Turing

Space exploration is moving forward and one of the topics currently being re-
searched is mining. It has great potential and can become a cornerstone of
space exploration. One of the possible applications is the mining of asteroids
to extract useful minerals, such as iron, nickel, titanium, water and oxygen. It
is a more attractive way of delivering materials to space stations and plane-
tary bases than launching them from the Earth. This statement becomes more
important when space exploration is moving further away from the Earth into
deep space. Besides that, several companies have been created to focus on the
topic of asteroid mining, for example, Planetary Resources. "There are near-
limitless numbers of asteroids and more being discovered every year. More than
1,500 are as easy to reach as the Moon and are in similar orbits as Earth. As-
teroids are filled with precious resources, everything from water to platinum"
(Planetary Resources, 2013). Another possible application is the excavation of
materials on site for building a planetary base. The idea of building a lunar
base is quite old and has been considered in the early days of space exploration.
Soviet Union has been developing the Galaktika project, which aimed to design
a Soviet lunar base called Kolumb, in 1967 (Harvey, 2007). The proposal of the
second Soviet lunar base Zvezda was delivered in 1974. On the United States
side, there was project Horizon created in 1959 that focused on studying the

1.1 Competition Rules 2

feasibility of creating a military outpost on the surface of the Moon by 1965
(Encyclopedia Astronautica, 2013). Another project involving construction of
an underground base was called Lunex and aimed to launch people to the Moon
even before Apollo. In the project proposal (U.S. Air Force Systems Command,
Space Systems Division, 1961), the base was referred to as Lunar Expedition
Facility and it was intended to support the expedition with the ability to be
expanded for the military purposes in the future. Unfortunately, neither of
the projects was accomplished. Nowadays, space agencies are coming back to
the possibility of colonizing the Moon, as recent studies have shown that wa-
ter might exist in noteworthy quantities at the lunar poles (Spudis and Lavoie,
2011). In 2006, Japan has revealed their plans to have a base on the Moon in
2030. A year later, Russian space agency Roskosmos has declared that they are
willing to build a lunar base in the timeframe of 2027-2032.

To speed up the development of the required technologies, some companies are
creating challenges available for the vast amount of people to elaborate on solv-
ing problems for these missions. One of the widely known challenges is Google
Lunar X Prize, which is organized by the X Prize Foundation and sponsored
by Google. The goal of the competition is to build a lunar robot that could
land on the Moon and travel on its surface. The main objective is to travel
500 m in the lunar surface and transmit the images and video from the rover.
Another attractive challenge, which is offered by the National Aeronautics and
Space Administration (NASA), is Lunabotics Lunar Mining Competition, held
in the Visitor Complex of the Kennedy Space Center (KSC), Florida (National
Aeronautics and Space Administration, 2012a). The detailed explanation of the
rules of this competition is collected in Section 1.1.

1.1 Competition Rules

NASA’s Lunabotics Mining Competition is designed for university level students
and is intended to promote interest in areas of Science, Technology, Engineering
and Mathematics (STEM). Beforehand, teams have to create a teleoperated or
autonomous robotic vehicle capable of excavating the surface of the simulated
Moon. There are several categories of the competitions in this event, including
onsite mining, outreach project, systems engineering paper, slide presentation

1.1 Competition Rules 3

and team spirit. In the onsite mining category, teams are obliged to excavate
at least 10 kg of regolith to qualify. In addition, they collect points based on
several factors listed below.

• Total mass of collected regolith

• Dust-tolerant design

• Dust-free operation

• Communication bandwidth

• Vehicle mass

• Power consumption

• Level of autonomy

Figure 1.1: LunArena (isometric view). (Source: National Aeronautics and
Space Administration (2012a))

Total vehicle mass is allowed to be under 80 kg without a penalty. If it is ex-
ceeded, the team gets negative points per kilogram of overweight. Furthermore,
the initial dimensions of the vehicle must not exceed 1.5m length × 0.75m

width × 0.75m height. A rover is allowed to expand after the start, but it
may not exceed a 1.5m height. The simulated area is filled with Black Point-
1 (BP-1) lunar regolith simulant and enclosed in a box called LunArena. Teams

1.2 Project Description 4

are required to perform two competition attempts and each attempt occurs with
two teams that compete at the same time. During each of the attempts, teams
earn cumulative points which are summed up to the total score in the end.
Each rover starts in one of four positions, selected arbitrarily, in the starting
area. Excavation is allowed only in the mining area, which is separated from
the starting area by series of obstacles. The objective of each rover is to get to
the mining area avoiding the obstacles, excavate the regolith and bring it back
to the starting area. After, it has to dump the regolith into so-called LunaBin
that is placed 0.5m above the ground. The obstacle area contains three obsta-
cles placed on top of the compressed BP-1 surface. Each of the obstacles has a
diameter of approximately 20 to 30 cm and a mass of 7 to 10 kg. Additionally,
there are two craters in the obstacle area no wider or deeper than 30 cm. The
sketch of LunArena is shown in Figure 1.1.

1.2 Project Description

This thesis was conducted as a part of the Joint European Master programme in
Space Science and Technology. It is based on the lunar rover project specifically
being developed for the Lunabotics Mining Competition at Aalto University.
The practical part of this thesis was the development of a motion planning and
control subsystem of the rover. Since the rover hardware was being built at
the same time, the software development was based on simulations. Chapter 3
provides algorithms and simulation description. Along with that, the review of
the background study has been conducted, and certain techniques have been
applied within the motion subsystem. The motivation for this work is the im-
portance of creating simple and traversable paths and selecting the appropriate
steering modes in order to reduce slip and ensure affordable mission time along
with the accurate telemetry data. It is proven by the experience of Lindemann
and Voorhees (2005), since trajectory errors of Mars Exploration Rovers (MER)
described in their paper were directly related to a slope height, slope angles and
wheel sinkage.

1.3 Outline 5

1.3 Outline

Chapter 2 reviews possible locomotion configurations for lunar/planetary rovers,
including different sets of wheels and suspensions. It also provides information
about terrain properties and reviews the ways of path generation, selection and
following.

Chapter 3 provides an overview of the hardware platform. It also describes
the implemented algorithms and the background theory required to understand
them. Finally, it presents the software developed for the project and the simu-
lation tools used to test and analyze the implemented algorithms.

Chapter 4 presents the results of various simulation cases.

Chapter 5 summarizes the conducted work and perspectives of this project
and overviews the improvements which can be done in the future.

Chapter 2

Related Work

This chapter demonstrates the available configurations for the mechanical struc-
ture of different lunar/planetary rovers and the algorithms used in the motion
control of those rovers. Section 2.1 discusses the means for the ground motion
of the rovers. Section 2.2 presents the more detailed review of the wheeled lo-
comotion. Section 2.3 reviews the steering modes commonly used in wheeled
rovers. Section 2.4 discusses the properties of the lunar regolith and its effects
on the wheeled motion. Finally, Section 2.5 introduces ways to generate and
follow a path and gives the examples of implementations in current rovers.

2.1 Overview of Ground Locomotion

The locomotion subsystem is a very important part of a lunar/planetary rover
and should be considered carefully. Particularly, on the Moon, ground force
is six times weaker than on the Earth, consequently locomotion mechanism
should ensure low ground pressure in order to avoid sinkage and slip, as stated
in (Nishida et al., 2011). Many types of locomotion exist in the nature and
many of them have been adopted in robotics. Seeni et al. (2008) have classified
locomotion types used for extraterrestrial surfaces as wheeled motion, tracks,
legged motion and hybrid motion.

• Wheeled locomotion is a commonly used concept for terrestrial and plan-
etary rovers. It ensures static stability with three or more wheels touching

2.1 Overview of Ground Locomotion 7

the ground. The drawbacks of this system are sinkage and slip on loose
soil and inability to overcome very steep slopes.

• Track locomotion provides static stability with only two crawlers. How-
ever, crawler mechanisms can be vulnerable to abrasive particles of plan-
etary soil or lunar regolith (Tao et al., 2006). Also, if the crawler belt is
made of rubber, when exposed to vacuum it can be damaged by outgassing
and large temperature amplitude (Nishida et al., 2011). In addition, sig-
nificant power dissipation is a drawback of this mechanism.

• Legged mechanisms are sophisticated and usually are avoided in plane-
tary missions, where robustness is the primary point. However, scientists
keep designing concepts with legged locomotion systems as can be seen
in (Seeni et al., 2008). Legged motion includes actions, such as running,
jumping and walking. In addition, walking can be static or dynamic.
Static walking assumes that anytime three or more legs are in contact
with the ground, keeping the centre of gravity in the support area (Kyrki,
2012). On the contrary, dynamic walking relies on falling action, which
means that less than three legs touches the ground at the same time. As
a result, movement is performed due to gravitational forces.

• Hybrid systems combine the multiple locomotion types listed above. For
example, Sherpa rover utilizes wheeled legs (Cordes et al., 2011). It takes
advantage of features of the system called All-Terrain Hex-Limbed Extra-
Terrestrial Explorer (ATHLETE) developed by the Jet Propulsion Labo-
ratory (JPL). It is stated that legged motion is used to overcome large
obstacles, whereas wheeled motion is used on flatter terrain. Another ex-
ample of a hybrid system is a follow-on rover of the SELenological and
ENgineering Explorer (SELENE) mission, described by Nishida and Wak-
abayashi in 2010, which uses crawler modules in the same way as wheels.
Moreland et al. (2011) have studied a hybrid push-roll locomotion config-
uration called inching. This type is based on expanding and contracting
the wheel base of the vehicle. Drawbar pull is increased approximately by
100% as proven by a drawbar pull test performed with Scarab rover. More-
land et al. have also pointed out that it is important to counter-rotate
wheels "in synchrony with the expanding or contracting side frame; if they
were to be locked they would rotate in the direction of vehicle displace-
ment and thereby inducing slippage associated with a rotating wheel".

2.1 Overview of Ground Locomotion 8

The hybrid locomotion vehicle can potentially overcome steeper slopes or
carry payload of greater weight than the regular vehicles. Schematic of
the inching motion of Scarab rover is shown in Figure 2.1. The ExoMars
rover, developed by the European Space Agency (ESA), also has a hybrid
locomotion system. It can crawl by moving one wheel at a time. Simi-
larly, WorkPartner robot described by Ylonen and Halme (2002) can take
advantage of hybrid locomotion. Ylonen and Halme refer to its motion as
rolking (rolling-walking). Hakenberg (2008) has studied the capabilities
of hybrid locomotion of the Marsokhod rover. This six-wheeled rover is
able to rolk by contracting and expanding its front and rear axles.

Many lunar/planetary rover projects (e.g., Biesiadecki and Maimone (2006),
Kulkarni et al. (2006), Seegmiller and Wettergreen (2011), Peynot and Lacroix
(2003)) implement wheeled locomotion because of its robustness, reliability and
simplicity. In fact, no successful space missions with legged or crawling loco-
motion mechanisms are known. Nevertheless, attempts to build a device which
utilizes legged locomotion have been made, and the concepts can be found in
(Seeni et al., 2008) and (Bares and Whittaker, 1990).

Figure 2.1: Simplified kinematics of the Scarab suspension demonstrating inch-
ing, with indication of the suspension and wheel motions. (Source: Moreland
et al. (2011))

2.2 Wheeled Locomotion 9

Fuke et al. (1995) have specified the following requirements as the key factors
affecting locomotion design of a lunar exploration rover:

• Environmental survivability, that is, design issues, such as thermal
control, lubricants containment.

• Long term reliability, since rovers usually are meant to operate from
several months to several years.

• Terrainability, since a rover has to be able to overcome as many obstacles
as possible without a priori knowledge.

• Reduction of body oscillation, since an exploration rover has to point
its communication antennas very precisely.

2.2 Wheeled Locomotion

Zhang et al. (2008) have pointed out that there is no unified evaluation system
for the design of wheeled planetary rovers. Usually, they are classified by the
number of wheels.

• A two-wheel configuration is hard to imagine, but this concept has been
proposed by Tao et al. (2006). This rover has "bilateral symmetry in con-
figuration". The author considers using several such rovers in a junction
to create the different wheel base configurations for different purposes.

• Four-wheel rovers can be found in many applications on Earth but are less
popular in planetary exploration. The very well known four-wheel rover
is Lunar Roving Vehicle (LRV) from Apollo mission. JPL Nanorover,
described by Tao et al., also belongs to this group.

• A five-wheel configuration is an extraordinary concept and currently has
been developed under SELENE-II mission on the Micro5 rover (Seeni
et al., 2008).

• A six-wheel configuration is one of the most popular lunar exploration
rover concepts (Zhang et al., 2008). It has also been extensively used in

2.2 Wheeled Locomotion 10

JPL Martian missions. Their rover, Sojourner, was the first one to drive
on Mars autonomously. However, it relied purely on reactive behavior and
did not have any permanent terrain map, according to Bajracharya et al.
(2008). MER rovers and Mars Science Laboratory (MSL) rover are the
descendants of Sojourner and have inherited its six-wheel base (National
Aeronautics and Space Administration, 2012b). Future mission, such as
Mars Sample Return (MSR) also consider using six-wheel rovers. Even an
asymmetric configuration of a six-wheeled rover was proposed and studied
by Du et al. (2010).

• An eight-wheel rover example is Lunokhod, developed in early days of
planetary missions. Nowadays this configuration has little use.

Wheeled locomotion can sometimes be referred to by the wheel formula. Seeni
et al. (2008) define wheel formula as Wheel formula = Total no. of wheels ×
no. of actuatedwheels×no. of steered actuatedwheels. For instance, the wheel
formula of the MSL rover is 6× 6× 4. Also, wheeled rovers can vary in wheel
arrangement or wheel shapes. Possible configurations are shown in Figures 2.2
and 2.3.

Figure 2.2: Influence of wheel-soil interaction on the wheel arrangement.
(Source: Deng et al. (2011))

Figure 2.3: Influence of wheel-soil terramechanic on the wheel shapes. (Source:
Deng et al. (2011))

2.2 Wheeled Locomotion 11

2.2.1 Wheel Types

Kyrki (2012) has listed common wheel types used in field and service robotics.
Robots can use combinations or distinct types of wheels, namely:

• A fixed standard wheel, which has two Degrees of Freedom (DOF):
rotation around wheel axle and contact point.

• A steerable standard wheel, which is the same as the fixed standard
wheel with steering capability.

• A castor standard wheel, which has three DOF (See Figure 2.4).

• A Mecanum wheel, developed by the Swedish company Mecanum, is
omnidirectional (See Figure 2.5).

• A ball wheel, which is omnidirectional (See Figure 2.6).

Figure 2.4: Castor wheel.

Figure 2.5: Mecanum wheels implemented on URANUS omni-directional mobile
robot. (Source: Carnegie Mellon University (2011))

Furthermore, some planetary rovers use wheels with grousers. According to
Sutoh et al. (2012), recent studies have proved that grousers increase traveling
performance of planetary rovers. Even though they have little influence on
heavy machines, grousers are efficient for lightweight vehicles, such as planetary
rovers. Moreover, Sutoh et al. (2012) has evaluated influence of grousers and
concluded that increasing their number helps only to a certain extent.

2.2 Wheeled Locomotion 12

Figure 2.6: Ball wheels implemented on MoVille car concept. (Source: Woo-
Ram Lee (2013))

2.2.2 Suspension

Suspension is an important part of the locomotion system especially for lunar/-
planetary rovers. It helps to absorb shocks stimulated by rough terrain and
damp oscillations by buffering part of the energy transferred between surface
and rover body (Deng et al., 2011). Suspension types found in existing rovers
are:

• Rocker-bogie is the most well known suspension system as it has been
adopted in many rovers, including Sojourner, MER, MSL. It has success-
fully demonstrated its high mobility performance in Martian missions.
The suspension is able to passively keep all the wheels in contact with the
surface on any kind of terrain (Seeni et al., 2008). Rocker-bogie suspen-
sion is explained in detail by Lindemann and Voorhees (2005) and can be
seen in Figure 2.7. Another example, which uses Rocker-bogie suspension,
is Lunar Exploration Rover (LER), developed by the Chinese Academy of
Space Technology in 2006 (Zhang et al., 2008).

• Articulated suspension is common for cylinder-conical rovers, such as
Marsokhod or Lama rover from (Peynot and Lacroix, 2003). In this con-
figuration, wheels are mounted on the axles which can roll relatively to
each other. The research on cylinder-conical locomotion control has been
done by Yu et al. in 2006 and Hakenberg in 2008. This setup is shown in
Figure 2.8.

• Other interesting suspension concepts include SR2, SOLERO, CRAB-II,
CRAB-S, CRAB-8, RCL-E, RCL-C, Double Spring and are all described

2.2 Wheeled Locomotion 13

by Seeni et al. (2008).

Figure 2.7: The Rocker-bogie suspension of MER. This is a modified version of
the original Rocker-bogie suspension that can fold. Folding allowed to pack the
rovers inside the spacecraft. (Source: ExploreMars.org (2012))

Figure 2.8: The articulated suspension of the Marsokhod rover. It is fully
articulated in pitch, roll and yaw. (Source: Jean-Marc Maclou (2011))

2.2.3 Holonomicity

When designing a robot, its steering mode characterizes whether the system is
holonomic or non-holonomic. Holonomicity is a relationship between control-
lable DOF and total DOF of the robot. If the number of controllable DOF is
greater or equal to the total number of DOF, the robot is said to be holonomic.
As in (Society of Robots, 2013), a non-holonomic robot cannot move in any
direction but has to perform series of maneuvers to achieve the correct heading.
The typical example of a non-holonomic system is a vehicle with Ackermann
steering geometry. Since it can not move laterally, it has to follow the trajec-
tory shown in Figure 2.9. Holonomic robot, on the other hand, can move in
any direction. An example of a holonomic robot is URANUS robot that uses
Mecanum wheels (See Figure 2.5). Holonomicity is important to remember
when creating a path.

2.3 Steering 14

Figure 2.9: Forward-backward maneuver for a non-holonomic wheeled mobile
robot. Path starts from point A and ends at point B. (Source: Khoukhi et al.
(2007))

2.3 Steering

2.3.1 Skid Steering

The simplest and, thereby, very popular steering type is skid steering. As
Fuke et al. (1995) have pointed out, skid steering does not require any specific
steering mechanism. Instead, the rover has fixed wheels and the steering is
done by varying velocity difference between individual wheels. As a result, the
rover sweeps out the soil in a lateral direction. In turn, the lateral sweep causes
resistance, which creates a high turning moment. According to Fuke et al.,
this turning moment grows when wheels start to sink in the regolith or collide
with an object. Moreover, as stated by Shamah (1999), skid steering consumes

Figure 2.10: Skid steering Ackermann and Point-turn examples. (Source:
Shamah (1999))

more power and demands higher torque than other steering configurations, for

2.3 Steering 15

instance, explicit steering. It happens due to higher sideslip angles produced
by skid steering. Figure 2.10 shows the example of the skid steering. Another
drawback of the skid steering is its poor accuracy. Since the turning motion of a
skid steered rover highly depends on the grip with the surface, wheel odometry
becomes unreliable. Instead, other means, such as Inertial Measurement Unit
(IMU) or visual odometry, should be used.

2.3.2 Explicit Steering

Explicit steering is another popular type. It allows rotation of some wheels
individually so that all wheels follow the arc around the same central point
that is called Instantaneous Center of Rotation (ICR). As a result, sideslip
is eliminated and driving efficiency is at its peak. In fact, explicit steering is
the most used type, as most of the conventional automotive vehicles belong to
it. However, they are able to steer only front wheels, while it is possible to

Figure 2.11: Explicit steering Ackermann and Point-turn examples. (Source:
Shamah (1999))

steer all wheels in an all-wheel steering configuration. Most of the planetary
rovers, including Martian rovers use an explicit steering configuration (National
Aeronautics and Space Administration, 2012b). Figure 2.11 shows the explicit
steering example.

2.3.3 Articulated Steering

In an articulated steering configuration, a four-wheel vehicle is split into two
parts: the front and rear. The steering is done by changing the angle between
front and rear halves. The advantage of this type is that it does not require

2.3 Steering 16

central differential because both halves follow the same trajectory. Still, chang-
ing the angle between halves requires much power. Therefore, hydraulics is a
common mechanism for this steering, but, due to its bulkiness, it is not used in
planetary rovers. This is the reason why articulated steering is usually omitted
while designing a planetary rover. Figure 2.12 shows the articulated steering
example.

Figure 2.12: Articulated steering example. (Source: Integrated Publishing
(2003))

The common steering modes of the planetary rovers are:

• Ackermann or arc-turn, as it is called by Lindemann and Voorhees (2005).
In this mode rover wheels are steered so that the rover can follow a tra-
jectory around ICR (Hoepflinger et al., 2008).

• Point-turn or turn-in-place as it is called Lindemann and Voorhees, is also
called Turn on Spot in (Hoepflinger et al., 2008) and (Shamah, 1999). It
uses straight paths, which connect multiple waypoints. After reaching
a waypoint, the rover turns in place to adjust its heading toward next
waypoint.

• Crab steering is a mode, when all wheels are pointing in the same di-
rection. It enables a vehicle to move sideways. Figure 2.13 shows the
example of the Crab steering.

2.4 Terrain 17

Figure 2.13: Crab control mode example. (Source: Headquarters, Department
of the Army (1993))

2.4 Terrain

2.4.1 Regolith Properties

It has been explored that the lunar surface contains little steep craters and
rocks and generally is flat (Zhang et al., 2008). Furthermore, lunar regolith is
distributed uniformly. Therefore, properties of the surface in different places
of the Moon have similar characteristics. Regolith particles are usually angular
and sharp, as stated by Nishida et al. (2011), because weather phenomena that
could affect those particles are not present on the Moon. Consequently, regolith
particles act as abrasives and can damage unprotected systems. In addition,
the lunar regolith is a loose substance, which creates some challenges in motion
control.

Since it is not possible to use real lunar regolith in the Lunabotics Mining
Competition, BP-1 regolith simulant is used instead. In the description by Na-
tional Aeronautics and Space Administration (2012a), it is stated that BP-1 is
a "crushed lava basalt aggregate with a natural particle size distribution sim-
ilar to that of lunar soil". Moreover, BP-1 aggregate may contain naturally
occurring rocks. The compressed simulant has the density of 1.5 − 1.8 g/cm3,
while 2 cm fluffy powder layer on the top of the surface is raked to the density
of approximately 0.75 g/cm3. Moreover, it is emphasized that BP-1 behaves
similar to actual lunar soil and differently from usual sand.

2.4 Terrain 18

Performance evaluation metrics Performance evaluation indexes

Obstacle surmounting capability:
the capability of surmounting obstacle and
gradeability while driving on the lunar sur-
face without losing maneuverability

Slope angle
Positive capability
Negative capability

Trafficability performance:
the capacity of solid to support a lunar rover
and provide sufficient traction for locomo-
tion system

Nominal ground pressure
Sinkage ratio
Drawbar pull ratio
Resistance coefficient

Stability:
capability to prevent overturning on the
slope both downhill and cross-hill

Downhill angle
Cross-hill angle
Mass center height
Ground clearance

Energy consumption:
capability of minimum energy consumption
working in diversified conditions

Energy efficiency
Unit tractive force coefficient
Wheel torque required
Wheel power consumption

Table 2.1: Performance evaluation metrics and indexes. (Source: Zhang et al.
(2008))

2.4.2 Wheel-Soil Interaction

Scientists are constantly trying to improve the existing configurations to in-
crease their performance and efficiency. Many papers have been written on the
wheel-soil interaction, including (Zhang et al., 2008), (Bauer et al., 2005), (Su-
toh et al., 2012), (Deng et al., 2011), (Grecenko, 1992), (Andrade et al., 1998).
According to Zhang et al., the performance of a mobility system is defined by
"thrust available from the soil and resistance to motion". The best mobility
platform is the one which requires the lowest friction coefficient to drive over
an obstacle. Therefore, Deng et al. suggest selecting the diameter of the wheels
with respect to the sinkage, tire width, load and considered slope angle. Usu-
ally, performance analysis considers wheel parameters, such as the diameter of
the wheel or height of grousers; soil parameters; slip ratio and wheel loads.
Performance evaluation metrics are listed in Table 2.1.

The most important metrics of the analysis are trafficability and terrainability,
where trafficability defines the physical configuration along with environment
and task parameters; terrainability is the ability of the rover to overcome rough

2.5 Driving Path 19

terrain features while keeping its stability and forward progress. Therefore, the
position of the center of mass is important for good terrainability. For example,
Zhang et al. have mentioned the ability to dynamically alter the mass center as
a factor that could increase the capability of climbing steep slopes. One prob-
lem about the wheel-soil interaction is that it is hard to model. Subsequently,
simulation of the rover behavior is usually generalized. Bauer et al. have listed
possible modeling approaches, including:

• Modeling of every grain and its interaction with neighboring grains. This
approach requires enormous amount of processing power.

• Modeling of cells, consisting of a finite number of grains, and their inter-
action with neighboring cells, as in (Andrade et al., 1998).

2.5 Driving Path

2.5.1 Path Generation

The Ackermann control mode requires smooth paths which can be created using
different techniques. Choi et al. (2008) have mentioned circular arcs to construct
turns as one of the options for trajectory generation. Another good alternative
is Bézier curves, which are a popular tool used in many applications includ-
ing object shape description, computer-aided design and path planning (Sohel
et al., 2005). Liang et al. (2012) have mentioned cubic polynomial B-spline as
a possibility but they state that the Bézier curve has smaller curvature and fast
curve fitting rate. Usually, curvature is referred as a value inversely proportional
to the turning radius, as shown in Equation 2.1, where k is curvature and R is
the turning radius.

k =
1

R
(2.1)

Hence, a path with higher curvature requires a smaller turning radius. Smaller
path curvature is preferred because not any non-holonomic rover can follow a
path with sharp curves. In other words, the highest possible angular velocity,
which is achievable by the rover, should be greater than the changing range of

2.5 Driving Path 20

the path curvature. Otherwise, the rover will not be able to follow the trajec-
tory, as described by Liang et al.. Additionally, some Bézier curves tend to have
many control points. Choi et al. claim that it is undesirable to have a curve
with many control points; instead, one should "join low-degree Bézier curves
together in a smooth way for path planning". Hwang et al. (2003) have studied
Piecewise Cubic Bézier Curves (PCBC) usage within an on-line smooth trajec-
tory generation algorithm along with an on-line modification of those curves.
This modification is crucial when the robot is put into dynamic environment,
since obstacles can be discovered suddenly. It is based on the dodging behavior,
described by Arkin in 1998, coupled with a trajectory generation algorithm.
The trajectory is modified by recalculating the control points of the PCBC. In
contrast, Montes et al. (2007) have studied Rational Bézier Curves and Clothoid
curves for obstacle avoidance.

2.5.2 Path Selection

MSL and MER rovers are the good candidates to look at before trying to invent
path generation workflow. MER rovers have proven the concept, which they
are based on, by operating long beyond their estimated mission times. MER

Figure 2.14: Example terrain assessment and path selection by MER vehicle.
The terrain model is built up from stereo imagery. The colored grid represents
the traversability map, and the white lines show the considered paths. (Source:
Bajracharya et al. (2008))

and MSL rovers use the same navigation systems with only one exception that
MSL can plan longer routes than MER rovers (National Aeronautics and Space

2.5 Driving Path 21

Administration, 2012b). The navigation system generates the surrounding ter-
rain map from the stereo cameras. The map has grid representation, where
each cell contains information about its traversability. While navigating, the
rover generates several possible paths and assesses their path traversability and
length. The shortest path, which has affordable traversability is selected. This
process is shown in Figure 2.14.

2.5.3 Path Following

A common way to control the trajectory of a rover is called bicycle model
(Ishigami and Yoshida, 2005). This model approximates a four-wheel vehi-
cle base to a two-wheel base, when the front wheel is located in the middle of
front wheel axle, and the rear wheel is located in the middle of the rear wheel
axle. This approximation is useful when slip motion can be neglected. However,
it is inaccurate on the loose soil. The example of the bicycle model is shown in
Figure 2.15. In contrast, the all-wheel dynamics model, presented in the same
figure, is a complex model consisting of two models: wheel contact model and
dynamics model of the vehicle. The equation of motion for this model is as in
Equation 2.2, where H is the inertia matrix of the vehicle, C is the velocity
depending term, v0 is the translational velocity, w0 is the angular velocity, q is
the angle of each joint of the vehicle, F0 is the vector of forces acting on the
center of gravity of the body, N0 is the vector of torques acting on the center
of gravity of the body, τ is the vector of torques acting on each joint of the
vehicle, J is the Jacobian matrix, Fe is the vector of the external forces acting
on the center of gravity of each wheel and Ne is the vector of torques acting on
the center of gravity of each wheel.

H

v̇0

ẇ0

q̈

+ C =

F0

N0

τ

+ JT

[
Fe

Ne

]
(2.2)

As stated by Lindemann and Voorhees (2005), loose soil on a cross slope con-
tributes mostly to the side slip and has a little effect on the change of the yaw
of the rover. MER rovers are known to sink down by 1-2 cm in soft soil, such
as dry loose sand. However, sinkage would increase to 6-12 cm when travers-
ing rocks taller than 15 cm. It happens because the rover needs more effort to

2.5 Driving Path 22

(a) (b)

Figure 2.15: a) Bicycle model. b) All-wheel dynamics model. (Source: Ishigami
and Yoshida (2005))

Figure 2.16: Thrust-Cornering Characteristic Diagram. (Source: Ishigami et al.
(2008))

climb over the obstacle. Consequently, more skidding occurs, which results in
a greater sinkage. Because sinkage and sideslip in the loose soil make it hard
to predict actual motion, Bajracharya et al. (2008) have proposed ability to
learn terrain properties on-the-fly as a solution. While driving, the rover would

2.5 Driving Path 23

augment its knowledge about the terrain and use it to correlate learned situ-
ations with current terrain geometry and appearance. Alternatively, Ishigami
et al. (2006) have proposed a control algorithm with slip compensation, which
calculates both steering and driving maneuvers. The simulation was carried out
on a slope, uniformly covered with lunar regolith simulant, with an angle of 10◦.
Eventually, the experiment has shown the success of the proposed algorithm.
Ishigami et al. define two ways of using their algorithm in a real system:

• Control the path following in real time.

• Simulate motion offline and generate maneuvers based on this simulation.

In addition, Ishigami et al. have suggested to use their thrust-cornering charac-
teristic diagram for calculation of appropriate steering angles when traversing
a slope. This diagram represents the relationship between the thrust force and
cornering force, as shown in Figure 2.16.

Chapter 3

Implementation

This chapter reveals all the work that has been done to implement the motion
control subsystem. First of all, Section 3.1 gives an overview of the mechanical
structure of the rover and the electronics setup. Section 3.2 describes the exist-
ing search algorithms and the final implementation based on the A* search. The
techniques used while developing a path following control system, are presented
in Section 3.3, followed by Section 3.4, which makes the detailed overview of
the developed software packages for both the onboard computer of the rover
and the control computer. Finally, Section 3.5 explains the simulation that has
been done and the models that have been used.

3.1 Rover Hardware

The mechanical design, described below has been selected in order to meet the
competition rules and fit in a budget at the same time. The total weight of the
vehicle is estimated to be approximately 78 kg, whereas a rover is allowed to be
up to 80 kg without being penalized, as explained in Section 1.1.

3.1.1 Chassis

Among all the possible locomotion configurations described in Section 2.1,
wheeled locomotion was selected, as it is durable and easy to use. Although

3.1 Rover Hardware 25

six-wheeled platforms are the most common in planetary missions, four-wheeled
type was considered sufficient for this competition. In addition, a higher num-
ber of wheels would require more effort during the development phase, while
the time was extremely limited for this project. Selected four-wheeled platform
configuration has a 4× 4× 4 wheel formula (Wheel formula is explained in Sec-
tion 2.2). It gives the highest possible flexibility and allows to use Crab steering
along with other steering modes.

Figure 3.1: Three of six 20 inch aluminum wheels on an engineering model of
the MSL rover. Steering axes are crossing the centers of the wheels. (Source:
Tann (2012))

Usually, the mechanical design of the wheels is done in a way that the wheel
is aligned with the rotation axis of the steering motor, as shown in Figure 3.1.
Thus, the steering action does not change the displacement of a wheel with
respect to the center of a rover. However, this design was not affordable due to
the following reasons:

• It increases the height of the chassis, while dimensions are very limited
for our project.

• It requires driving motors to be placed inside the wheels. Such motors are
costly and are not affordable in the framework of our project.

As a result, the wheels are displaced from the steering axes by the distance
needed to accommodate driving motor and gearbox assemblies, namely 13 cm.

3.1 Rover Hardware 26

Other dimensions are as follows:

• The steering pivot points are placed 53 cm in the longitudinal direction
and 20.5 cm in the lateral direction away from the geometrical center.

• Wheel axes are 4.66 cm below the geometrical center.

• Wheels have 10 cm width and 29.9 cm diameter.

Figure 3.2: The CAD model of the chassis of the rover.

The suspension system implies the rear axle that can passively pivot up to ±30◦

around the longitudinal axis of the rover. Due to the limitation of the steering
motors, they can rotate 90◦ outwards and 65◦ inwards. It creates dead zones
for the ICR-based steering that is described in Section 3.3.3. These dead zones
are referred to in Figure 3.4. The Computer-Aided Design (CAD) model of
the chassis is shown in Figure 3.2. The setup of a wheel module is shown in
Figure 3.3. As seen from the figure, the wheel is positioned on a certain distance
from the steering axis. Hence, when the steering motor is rotating, it requires
a certain rotation of the corresponding wheel in order to avoid skidding. Also,
as the wheel can already be rotating when the robot is moving, the rotation
rate required by the steering is considered a compensation to the current driving
velocity. Adding the compensation velocity to the current driving velocity helps
to avoid skidding, even when the robot is moving. The relation of the linear

3.1 Rover Hardware 27

Figure 3.3: The CAD model of the wheel module. The gray box on the top is the
steering mechanism containing a steering motor and a worm drive transmission,
the black cylinder on the right is the driving motor and black cylinder in the
center is the gearbox.

(a) Left dead zone. (b) Right dead zone. (c) Overall dead zones.

Figure 3.4: Mechanical constraints of the steering motors. Light gray areas
are the dead zones where ICR point cannot be placed. Left (a) and right (b)
triangles are created by mechanical constraints. Upper and lower rectangles are
restricted by the algorithm because the ICR point is always placed on the side
of the rover for the curve following or inside the rover for Point-turn rotation.
Black lines represent the wheel states when driving around ICR1, while gray
lines represent the wheel states for the driving around ICR2.

and angular velocities is shown in Equation 3.1, where v is the linear velocity, w
is the angular velocity and R is the radius of a turn. Therefore, the tangential
velocity of a wheel can be calculated from Equation 3.2 and then converted to
the angular velocity, as shown in Equation 3.3. wd is the angular velocity of
the driving motor; ws is the angular velocity of the steering motor; vw is the

3.2 Path Planning Algorithms 28

tangential velocity of the wheel; l is the shoulder between the steering motor
and the wheel; r is the wheel radius.

w =
v

R
(3.1)

vw = lws (3.2)

wd =
vw
r

=
lws
r

(3.3)

3.1.2 Electronics

The electronics node consists of two FitPC3 computers, running Ubuntu 12.04.
The computers are interfaced via the Ethernet cable and act as a single process-
ing unit. They are also connected to the wireless router to be able to receive
remote commands from the controlling computer. The chassis has its own elec-
tronics board which receives high level commands from the FitPC3 computers
and dispatches them among low level components. For example, the computers
may request to steer a particular wheel by providing a steering angle, whereas
the chassis will select and perform motor routines to reach the desired angle.
All the subsystems are powered by the battery pack, which can output voltages
of 5 and 24 V. The sensor collection includes two infrared proximity sensors for
precision driving while excavating regolith; four load cells to measure the weight
of the carried regolith; IMU, Red-Green-Blue-Depth (RGB-D) Camera, wheel
encoders and a lidar for Simultaneous Localization and Mapping (SLAM) and
odometry; bumpers for safety.

3.2 Path Planning Algorithms

Path planning is meant to find a way from the current position of a robot
to the goal. This problem requires knowledge about the environment and the
current state of the robot. A common way to represent the environment is an
occupancy grid map. It is a two-dimensional matrix, where each cell contains
occupancy information. This information can be treated as traversability option
or a surface type. For example, Oniga et al. (2009) have three distinct types
of the occupancy grid cells: a road, traffic isles and obstacles. In our project,

3.2 Path Planning Algorithms 29

Figure 3.5: The example of the obstacles inflated in the occupancy grid of
the LunArena map. The black cells represent the areas occupied by the real
obstacles, the gray cells represent the inflated obstacles, the blue square is the
cell occupied by the rover and the green rectangular frame around it is the real
dimensions of the rover.

three values are used for the sake of simplicity: obstacles, safety zone and
unoccupied area. Obstacles are inflated in our maps. It means that the occupied
size in the map does not correspond to the real size of an obstacle and is
much bigger. It is inflated in all directions by the distance that is safe for
the rover. As the rover can occupy only one cell in the map, this occupied
cell corresponds to the geometrical center of the rover. If the position of the
rover in the map was adjacent with an obstacle cell, without inflation, it would
collide with an obstacle unless the dimensions of the rover are smaller than the
cell resolution. Figure 3.5 represents the described configuration. Of course,
techniques described in Sections 3.2.2 and 3.2.3 help to avoid inflated obstacle
models. However, it was decided to leave it as a convenient way to constrain
path smoothing algorithm described in Section 3.2.5.

3.2.1 Search Algorithms Overview

Search algorithms are used to find a solution in a tree or graph (closed tree)
of the state space. The occupancy grid mentioned previously is also a repre-
sentation of a graph, when each grid cell corresponds to a node in the graph.
Therefore, a search algorithm is the core component of the path planning prob-
lem. Grid-based search algorithms can be 4-directional and 8-directional, as

3.2 Path Planning Algorithms 30

shown in Figure 3.6. Also, Russell and Norvig (2003a) split search algorithms
into two categories, namely: informed and uninformed search algorithms.

(a) (b)

Figure 3.6: a) Expansion of a node in the 4-directional search. b) Expansion of
a node in the 8-directional search.

Uninformed Search Algorithms

Uninformed search is also called a blind search. It does not contain any addi-
tional information besides the information provided by the problem definition.
These algorithms cannot distinguish which one of several states is more effi-
cient or desirable. Common uninformed search algorithms explained by Rus-
sell and Norvig include Breadth-first search, Depth-first search, Uniform-cost
search, Depth-limited search, Iterative deeping depth-first search and Bidirec-
tional search.

Informed Search Algorithms

In contrast to an uninformed search, informed search uses problem-specific
knowledge together with problem definition to find a solution. The general
approach of the informed search is called best-first search. A key component
of the best-first search algorithms is a heuristic function, which denotes "the
estimated cost of the cheapest path from node n to a goal node", as explained
in (Russell and Norvig, 2003b). Informed search algorithm family includes the
following algorithms:

• Greedy best-first search tries to expand the node which is likely the
closest to the goal. In this sense, it is similar to the depth-first search
since it tries to follow the same branch to the goal. If the node does not

3.2 Path Planning Algorithms 31

(a) (b)

Figure 3.7: a) The typical transitions (in blue) allowed from a node (show at
the center) in a uniform grid. Notice that only heading of 45◦ increments are
available. b) Using linear interpolation, the path cost of any point s′ on an edge
between two grid nodes s1 and s2 can be approximated. This can be used to
plan paths through grids that are not restricted to just 45◦ heading transitions.
(Source: Carsten et al. (2007))

Figure 3.8: Paths produced by classic grid-based planners (red/top) and Field
D* (blue/bottom) in a 150× 60 uniform resolution grid. Darker cells represent
higher-cost areas. (Source: Carsten et al. (2007))

have any successors, and the goal was not reached then greedy best-first
search will back-up and switch to another branch.

• A* search is a very well known in the area of computer science and
robotics. As described by Russell and Norvig (2003b), it assesses the
nodes by introducing a complex heuristic function, which consists of a
sum of the cost to reach the node g(n) and the cost to reach the goal from
this node h(n). Hence, the heuristic function of the A* search algorithm
is defined by the Equation 3.4. A* search is proven to be optimal if h(n)

is an admissible heuristic, that is, it never overestimates the cost to reach

3.2 Path Planning Algorithms 32

the goal.

• D* search is named after Dynamic A* and is an extension of A* search
algorithm. Its main advantage is that it can efficiently work within dy-
namically changing environment, whereas A* is a static search. It is very
useful when used in field robotics because environment is continuously
changing and is complemented by the newly observed obstacles. There
exist several versions of D* algorithm and D* Lite is the most popular
among them. D* Lite is based on Lifelong Planning A* (LPA*), which is
an iterative version of A*, as stated by Koenig and Likhachev (2002).

• Field D* search is a modification of D* search algorithm used in field
robotics. It is implemented onboard MER and MSL rovers as a part of Au-
toNav path planner subsystem. As Carsten et al. (2007) have explained,
in contrast to the grid-based planning algorithms like A*, Field D* allows
transition through any point of an neighboring cell edge. Grid-based al-
gorithms allow transitions only through the cell centers and corners (in
case of a 8-directional search). This difference can be seen in Figure 3.7.
The difference of the resulting paths can be seen in Figure 3.8.

• Rover Adapted D* (raD*) search was presented by Würgler and
Sukkarieh (2010). Instead of considering just adjacent cells, this algo-
rithm can expand the search space of each node depending on the order
of the algorithm. Authors presented versions with orders of 8, 16 and 32.
The example of raD* 32 is shown in Figure 3.9.

Figure 3.9: Expansion of a node in raD* 32 search. (Source: Würgler and
Sukkarieh (2010))

f(n) = g(n) + h(n) (3.4)

3.2 Path Planning Algorithms 33

3.2.2 Potential Fields

Motion planning based on potential fields uses the principle of charged particles.
In nature, particles with opposite charges attract each other, whereas particles
of the same charge repel. Likewise, the robot is repelled from the obstacles and
attracted to its goal. By combining attractive and repulsive vector fields, it is
possible to model the motion of the robot. The motion is derived by calculating
the local force vector at each point, as shown in Figure 3.10. The main ad-
vantage of this approach is computational cheapness. However, potential fields
usually suffer from local minima problems. Local minima are the spots where
the sum of attractive and repulsive forces is zero. It happens under certain
circumstances, for example, when a robot enters a U-shaped obstacle. When
trapped, it cannot move anywhere. Thus, alternative approaches have to be
used for these particular cases.

(a) Attractive and repulsive fields. (b) Resulting trajectory.

Figure 3.10: The example of a potential field. Small arrows are the vectors of
the local forces derived from the combination of attractive and repulsive fields.
(Source: Safadi (2007))

3.2.3 Sampling-Based Algorithms

Sampling-based algorithms are often used with the configuration space. The
configuration space or C-space is a set of configurations, where each configura-

3.2 Path Planning Algorithms 34

tion consists of variables that fully define the state of a robot. "Probabilistic
planners build an approximate model of the valid C-space (Cfree) by select-
ing random samples of configurations and transitions between them according
to some strategy" (Morales et al., 2007). Usually, the output of the planner
is a graph or tree called roadmap that contains vertices representing possible
configurations and edges representing feasible transitions between these config-
urations. C-space planning is very popular with the high-dimensional models,
such as the motion of a robotic manipulator.

3.2.4 Path Planning Solution

The resulting algorithm consists of the grid-based search, potential field ap-
proach and sampling-based strategy. For the grid-search, A* search algorithm
was used, as it is sufficient for the application. D* was considered an optional
objective, as more effort was directed towards the path following research rather
than finding a path. 8-direction A* was used in a grid, where the transitions
have costs equal to the Euclidian distances, that is, 1 for transition between
adjacent cells and

√
2 for the diagonal transition. Later, when all-wheel rover

control was undergoing the path following testing, it became clear that reduc-
tion of path nodes has to be done. As a result, the A* algorithm was enhanced
to exclude intermediate nodes that can be safely removed. An intermediate
node can be safely removed if:

• It has not been explicitly selected in the multiple waypoints selection
mode.

• The line connecting its parent and child nodes does not intersect any
obstacles.

This condition is checked every time when adding a new node to the final graph.
The comparison of the outputs of original and modified A* algorithms can be
seen in Figure 3.11. The modified A* algorithm produces a path similar to the
Field D* result.

Later, the grid-based search was updated to reflect the properties of the po-
tential field approach. Thus, the cells that are close to an obstacle get the

3.2 Path Planning Algorithms 35

(a) Original. (b) Modified.

Figure 3.11: The comparison of the outputs of original and modified A* al-
gorithms. Black cells are obstacles, white circles connected by solid lines are
waypoints and the gray circles are initial and the goal cell.

penalty which is added to their heuristic. Consequently, the algorithm tries to
stay away from the obstacles to a certain extent, just like repulsive force was
acting on it. This repulsive penalty is inversely proportional to the distance
between the node and the closest obstacle. In addition, it is applied only at
a distance not larger than half width of the robot. Hence, the robot will not
go too far away from the obstacle in a wide open area. The attractive force
was not added, because the A* heuristic already contains information about
the distance to the goal.

Finally, the C-space sampling was added to provide an even safer path. The
configuration space of the rover consists of the position and orientation of the
rover. The position of the wheels is not considered, as the rover is switching
several states when rotating in place. Therefore, the maximum dimensions of
the rover are used for collision detection (the maximum length is achieved when
the wheels are aligned longitudinally, whereas the largest width is when the
wheels are aligned laterally). When the grid-based search is adding a new node,
it checks whether a collision can occur when:

• The rover will try to rotate towards a new waypoint.

• The rover will arrive at the new waypoint with this orientation.

3.2 Path Planning Algorithms 36

3.2.5 Path Smoothing

The aim of path smoothing is to ensure the continuous trajectory of a rover
by removing sharp turns. In addition, good path smoothing algorithms should
seek minimization of path curvature, as it allows a rover to keep a higher linear
velocity. Depending on the steering configuration, not any vehicle can perform
turns of high curvature. For example, automotive vehicles that use conventional
Ackermann steering geometry can only perform turns with a radius of at least
few meters. Consequently, they can not follow a trajectory with very sharp
turns.

Path smoothing algorithms are often based on Bézier curves. As described
in (About.com, 2012), "a Bézier curve is a curved line or path defined by math-
ematical equations". A French mathematician and engineer Pierre Bézier devel-
oped this method when he was working for Renault company in the late 1960s.
At first, it was intended for computer drawing software but nowadays has got a
broader use. The shape of the Bézier curve can vary dramatically depending on
the position of its control points and the order of the equation which describes
it. Common types are:

• First order - linear Bézier curve, which contains two control points (See
Figure 3.12).

• Second order - quadratic Bézier curve, which contains three control
points (See Figure 3.13).

• Third order - cubic Bézier curve, which contains four control points (See
Figure 3.14).

Figure 3.12: Construction of the linear Bézier curve. P0 and P1 are its control
points. t is the parameter for constructing the curve, given that the curve is
defined by B(t), t ∈ [0, 1].

3.2 Path Planning Algorithms 37

Figure 3.13: Construction of the quadratic Bézier curve. P0, P1 and P2 are its
control points. t is the parameter for constructing the curve, given that the
curve is defined by B(t), t ∈ [0, 1].

Figure 3.14: Construction of the cubic Bézier curve. P0, P1, P2 and P3 are its
control points. t is the parameter for constructing the curve, given that the
curve is defined by B(t), t ∈ [0, 1].

Of course, Bézier curves can be of higher orders and describe much more sophis-
ticated paths. However, their use is discouraged in path planning applications
because they are computationally much more expensive. Instead, multiple sim-
ple curves can be linked together to form a complete path.

A good path smoothing approach that seeks minimization of the curvature
of a path is described in by Choi et al. (2012). It makes use of quadratic Bézier
curves to smoothen the corners. In the notation of the paper, quadratic Bézier
curve Q(λ) is described by three control points q0, q1 and q2, such that any
point of the curve can be calculated from the Equation 3.5.

Q(λ) = (1− λ)2q0 + 2λ(1− λ)q1 + λ2q2, λ ∈ [0, 1] (3.5)

The middle control point q1 of the quadratic Bézier curve always remains at
the corner, whereas the terminal control points q̃0 and q̃2 are shifted along the
path lines, yielding the new control points q0 and q2. If no obstacles are around,
the terminal control points also remain at their initial places, that is q0 = q̃0

and q2 = q̃2, producing a very smooth curve. On the other hand, when such
a curve crosses an obstacle, it should be recalculated to fit into the tetragonal
concave polygon, defined by four points: three initial control points q̃0, q1, q̃2
and the obstacle point p, which is the closest obstacle point with respect to the
middle control point q1. Such a polygon is illustrated in Figure 3.15. To solve

3.2 Path Planning Algorithms 38

Figure 3.15: A quadratic Bézier curve created by the proposed algorithm. Solid
line boundaries denote the tetragonal concave polygon, square is the obstacle
point p, circles are the initial control points q̃0, q1 and q̃2, dashed line is the
initial quadratic Bézier curve, bold line is the recalculated quadratic Bézier
curve, stars are the recalculated terminal control points q0 and q2.

this problem, Choi et al. introduce two constraints:

• "Given a triangle q̃0q1q̃2, find the points q0 and q2 on the segments q1q̃0 and
q1q̃2, respectively, that minimize the maximum curvature of the quadratic
Bézier curve with control points q0, q1, and q2".

• "The same problem with the additional constraint that the resulting
Bézier curve lies anywhere within the quadrilateral q̃0q1q̃2p, where p is
a given point that lies in the triangle q̃0q1q̃2".

In fact, this method alters the distances between the control points rather than
the control point positions. These distances are denoted as α and β and can
be seen in Figure 3.16. α̃ and β̃ are the distances q1q̃0 and q1q̃2 respectively.
Therefore, 0 < α ≤ α̃ and 0 < β ≤ β̃. The positions of the control points q0
and q2 can be calculated later from α and β, considering that the middle control
point q1 remains fixed. Omitting all the theorems and their proofs, described by
Choi et al., the optimum values α∗ and β∗ are calculated from the Equations 3.6

3.2 Path Planning Algorithms 39

Figure 3.16: Given q1, q̃0 and q̃2 that bounds q0 and q2 on q1q̃0 and q1q̃0, a
quadratic Bézier curve Q illustrated by bold solid line is determined by θ, α
and β. θ is the heading difference between q̃2 − q1 and q1 − q̃0. α and β denote
‖q0 − q1‖ and ‖q2 − q1‖, respectively. p defines the tetragonal concave q̃0q1q̃2p
within which Q must lie. (Source: Choi et al. (2012))

and 3.7 respectively, where separate terms can be found in Equations 3.8-3.14.

α∗ = arg min

((√
α−
√
Kα

)4 − 2Kβcosθ
(√

α−
√
Kα

)2
+K2

β

) 3
2

2K2
βsin

2θ
(√

α−
√
Kα

)2
α

,

∀α ∈
[
max

(
αc, αp(β̃)

)
, min (αm, α̃)

] (3.6)

β∗ = βp (α∗) (3.7)

Kα = px + py cot θ (3.8)

αc =

(√
Kα +

√
Kβ

Θ

)2

(3.9)

αp (β) =
Kα(

1−
√
Kβ/β

)2 (3.10)

Θ =
− cos θ +

√
cos2 θ + 8

2
(3.11)

Kβ =
py

sin θ
(3.12)

αm =

(√
Kα +

√
Kβ

| cos θ|

)2

(3.13)

βp (α) =
Kβ(

1−
√
Kα/α

)2 (3.14)

3.2 Path Planning Algorithms 40

(a) A free piece-wise linear path. (b) Smoothing by the proposed algorithm.

(c) The resulting path.

Figure 3.17: Path smoothing analysis conducted by Choi et al..

(a) Original trajectory. (b) Smoothened trajectory.

Figure 3.18: The smooth trajectory constructed by the tetragonal concave
boundary method. Black cells are obstacles, white cells represent free space,
blue circles connected by the straight lines are the waypoints of the trajectory.
Circles are so densely distributed in (b) that they look like a thick solid line.
Each Bézier curve is cut into 20 segments.

The Bézier curve created by the proposed algorithm is calculated for a single
corner of the trajectory. To construct the entire path, Choi et al. suggest
iterating over all the corners of the trajectory. The terminal control points
q̃0 and q̃2 are set on the midpoints of the straight paths between the adjacent
corners. The middle control point q1 is set at the corner point. An exception
should be made for the first and last straight paths. In this case, the terminal

3.3 Path Following Algorithms 41

control point q̃0 is set at the beginning of the starting path, whereas the terminal
control point q̃2 is set at the end of the final straight path. The results of the
research, conducted by Choi et al. can be seen in Figure 3.17. The trajectory
constructed within our application is shown in Figure 3.18.

3.3 Path Following Algorithms

Path following is a problem that has to be solved in order for a rover to suc-
cessfully reach its goal by following the predefined trajectory. When designing
a path following mechanism, one seeks to minimize the deviation of the actual
trajectory from the planned trajectory. In other words, the rover has to stick
to the given trajectory as close as possible. It is done by implementing control
algorithms described in Section 3.3.1.

3.3.1 Control Overview

In the control theory there are two major types of controls: open-loop and
closed-loop or feedback control. In the opposition to the feedback there is a type
called feedforward control, which is not very common. Finally, there is a term
called fuzzy logic that can switch between control strategies based on certain
parameters. However, fuzzy logic is not considered in this thesis. As explained
in the book by Ogata (2010), closed-loop system compares the reference input
with the feedback to produce a control signal. The feedback can be the output
signal itself or a function of the output signal and its derivatives. In contrast,
open-loop control system is not affected by the output signal at all. Open-loop
control systems are easier to build and are advisable in the applications, where
all the inputs are known in the beginning. Also, open-loop control systems do
not have stability issues, which, in fact, are the major problem of the feedback
control systems. A system can get unstable when it tends to overcorrect the
error, thus, producing oscillations of constant or variable amplitude. Feedfor-
ward control is similar to the open-loop control but is not exactly the same. It
requires the knowledge of a mathematical model of the plant. Feedforward con-
trol system makes a prediction from the disturbance based on the mathematical
model and adds it to the input signal. Three of the mentioned control types

3.3 Path Following Algorithms 42

(a) Open-loop.

(b) Feedforward.

(c) Feedback (closed-loop).

Figure 3.19: The block diagrams of different control systems.

are presented in Figure 3.19. The most popular type of the feedback control
system is a Proportional-Integral-Derivative (PID) controller. Its definition can
be found in Section 3.3.2.

3.3.2 PID Controller

A PID controller is a common approach for the problems that require mini-
mization of an error. It is a control loop feedback mechanism from the control
theory. As stated by Mastascusa (2013), PID controllers are often used because
they give a designer more freedom and possibilities to change the dynamics of
a system. In particular, one can start by using just the proportional controller
and then add the integral or derivative parts later. A PID controller block
diagram is shown in Figure 3.20. It takes the system error as an input. The
output signal of the controller is a sum of P-term (output of the proportional
controller), D-term (output of the derivative controller) and I-term (output of
the integral controller).

The proportional controller calculates a term proportional to the error by mul-
tiplying it with the proportional gain Kp, as shown in Equation 3.15. Therefore,

3.3 Path Following Algorithms 43

Figure 3.20: The block diagram of a PID controller.

the output of the proportional controller is affected by the present.

Pout = Kpe(t) (3.15)

Very high proportional gain can make the system unstable while very low gain
causes the slow response of the system. Also, the proportional controller alone
can result in an undesired steady-state error.

The integral controller improves the steady-state error but significantly slows
the system down. It outputs the accumulated error from the previous itera-
tions multiplied by the integral gain Ki, as shown in Equation 3.16. Thus, the
integral controller is affected by the past, namely the error accumulated in the
past.

Iout = Ki

∫ t1

t0

e(t)dt (3.16)

Usually, it is enough to calculate the accumulated error over a certain period of
time rather than the entire lifetime of the system.

The derivative controller predicts the future by measuring the slope of the error.
It helps to improve both the response and stability of the system. The output
of the derivative controller is calculated by multiplying the derivative gain Kd

with the derivative of the error, as shown in Equation 3.17.

Dout = Kd
d

dt
e(t) (3.17)

As a result, all three terms are preferred because when coupled, they com-
pensate drawbacks of each other. The control signal is then calculated using
Equation 3.18. While creating a PID controller, a designer usually alters the

3.3 Path Following Algorithms 44

gain values using a trial-and-error method. Setting one of the gains to zero al-
lows to exclude the appropriate controller from the control loop. For example,
setting Ki = 0 yields a PD controller instead of a PID.

Control signal = Kpe(t) +Ki

∫
e(t) dt+Kd

d e(t)

dt
(3.18)

3.3.3 Ackermann Path Following

The Ackermann path following algorithm combines feedback and feedforward
control techniques. The feedback chain is based on a PID controller, which is
explained in Section 3.3.2. The feedback error of the controller is a distance
between feedback look-ahead point and the closest point of the trajectory. This
look-ahead point is put in front of the rover on a distance that is proportional
to the longitudinal velocity and has a certain minimal value. This configuration
is shown in Figure 3.21. The output of the controller is the turning angle, which
is marked as γ in Figure 3.24. The tangential velocity of the geometrical center
of the rover is inversely proportional to the angular to this angle.

Figure 3.21: Path following using feedback control. The feedback error is mea-
sured from the point z to the closest curve point p. (Source: Choi et al. (2008))

On the other hand, feedforward control is based on the system proposed by
Hayakawa et al. (2004). It introduces an additional look-ahead point that is
placed between the rover and the feedback look-ahead point. The control sys-
tem tries to predict the curvature of the trajectory ahead of the robot. For this

3.3 Path Following Algorithms 45

Figure 3.22: Curvature detection for feedforward control. (Source: Hayakawa
et al. (2004))

Figure 3.23: The model of the Ackermann steering system. The rectangle on
the top depicts the route ahead of the rover with the feedback error detection
point, which is rectangular, placed further away and the curvature prediction
point, which is elliptical, placed closer to the rover. (Source: Hayakawa et al.
(2004))

purpose, five sample points lying on the trajectory are selected with the middle
one being equal to the feedforward look-ahead point. Three of them (the ter-
minal points and the middle point) are used to estimate the center of rotation
of given trajectory part. Afterwards, radii are calculated for all five points, pro-
ducing one average radius that is used to calculate estimated curvature. The
purpose of the feedforward control is to reduce an early turning on the sharp
curves because the feedback look-ahead point can make the rover rotate too
early. When used, the curvature prediction feature stops the rover from doing
a sharp turn too early. The feedforward curvature detection example is shown
in Figure 3.22.

3.3 Path Following Algorithms 46

Figure 3.24: Control Bicycle model and the ICR point. γ is the turning angle
produced by the PID controller and C is the geometrical center of the rover.

The block diagram of the proposed control systems combination is shown in
Figure 3.23. The feedforward prediction result is joined together with the feed-
back error and given as a reference for a PID controller. Since the bicycle model
was used, it had to produce one ICR point for control. It was decided that the
ICR point should always be aligned with the Y axis of the rover, that is ex-
tending along the lateral direction from the center of the rover. Control signal
of the PID controller was used as an angle for the front and rear wheels of the
bicycle model. Knowing the offset of the front and rear axes from the center,
simple geometry was applied to calculate the position of the ICR point. The
example is shown in Figure 3.24.

3.3.4 Point-turn Path Following

Point-turn steering mode features three different states: Stopped, Turning and
Driving. The state diagram with possible switching between these states is
shown in Figure 3.25. In addition, switching between the states uses another
state machine with three subsequent actions:

1. Wait for the wheels to stop rotating.

2. Wait for the wheels to achieve the new desired angles while standing still.

3.3 Path Following Algorithms 47

Figure 3.25: The state diagram of the path following routine in Point-turn steer-
ing mode. DIST variable means that the distance from the center of the rover
to the current waypoint is acceptable; ANGLE means that the heading error is
acceptable; MORE means that more waypoints exist and the current waypoint
is not the end of the route. When the logic loops in STOPPED state (with
state variables DIST & MORE), the current waypoint is incremented. In the
DRIVING state the rover drives forward with the constant longitudinal velocity
and zero lateral velocity; in the TURNING state the translational velocity of
the rover is equal to zero and it is rotating around its center point.

3. Apply desired rotation to the wheels.

In the Turning state, the system compares actual heading with the desired
heading. The rotation is controlled by a PID controller, and the action is
considered finished when the heading error is small and the rotation rate is
close to zero. In the Driving state, the rover uses Crab steering, where the
Crab angle depends on the lateral deviation from the desired trajectory. This
approach helps to compensate the errors in the rotation or lateral slippage.
To avoid skidding while turning in place, the rover has to rotate its wheels
in a proper way. For this purpose, the ICR-based control approach is used,
where ICR point is placed in the geometrical center of the rover, as shown in
Figure 3.26.

3.3 Path Following Algorithms 48

Figure 3.26: Point-turn approach of the all-wheel steered rover. C is the geo-
metrical center of the rover.

3.3.5 Crab Path Following

The wheel formula of the all-wheel steered rover allows it to use Crab steering.
Being useful only in particular cases, this steering mode is implemented as a
supplement to other steering modes and cannot be set explicitly. Hence, the
Crab steering is enabled, when the orientation of the rover remains correct, but
the lateral deviation exists. It provides great assistance because without Crab
steering, following scenarios could occur:

• In the Ackermann mode, the rover would produce a curve to correct its
position, but it would result in unnecessary oscillations because of the
nature of a PID controller.

• In the Point-turn mode, the lateral deviation from the desired trajec-
tory would create heading error, which would be increasing as the rover
approaches a waypoint. When this error becomes greater than a user-
defined threshold, the rover stops and rotates to correct the error, which
is time-consuming.

Furthermore, Crab steering becomes extremely useful when driving on the slope
covered with a loose soil. If the rover is slipping in a lateral direction down
the slope, the trajectory is automatically corrected by the Crab motion. The
schematic of the Crab steering is shown in Figure 3.27, where γ is the steering

3.3 Path Following Algorithms 49

Figure 3.27: Crab control of the all-wheel steered rover. γ is the turning angle
and C is the geometrical center of the rover.

angle that is proportional to the lateral deviation from the desired trajectory
and cannot be greater than 65◦ defined by the mechanical constraints covered
in Section 3.1.1. In case of the Ackermann steering mode, the translational
velocity of the Crab maneuver is kept equal to the value that is recorded before
it starts. There is also a lower limit of 0.15m/s to avoid very slow motion. The
Point-turn steering mode assigns the same fixed translational velocity to the
Crab maneuver, which is used for driving forward.

3.3.6 Steering Mode Selection

The user can explicitly select Point-turn or Ackermann steering modes. The
Crab steering mode cannot be explicitly selected, as explained in Section 3.3.5.
It is also possible to let the system decide which steering mode to use on a
particular part of the trajectory. The Ackermann mode is always a preference,
however, the Point-turn mode is selected when Ackermann steering is not fea-
sible. Currently, only kinematic constraints are used for this evaluation. The
algorithm calculates the highest curvature of the curve and compares it with the
smallest possible turning radius, defined by the mechanical constraints. When
driving in a curve, the ICR is always aligned with the Y axis, as explained in
Section 3.3.3. Thus, the turning radius is equal to the offset of the ICR from
the geometrical center. The relation between the curvature and the turning
radius is presented in Equation 2.1. The maximum curvature calculation uses
the algorithm described by Deddi et al. (2000). If the middle control point p1

3.4 Software Packages 50

Figure 3.28: Calculation of the maximum curvature. p0, p1 and p2 are the
control points of the Bézier curve Γ. The circles are used to determine the way
of calculating maximum curvature. (Source: Deddi et al. (2000))

lies outside the circles shown in Figure 3.28, the maximum curvature is calcu-
lated according to the Equation 3.19, where m is the middle point between p0
and p2, and A is the area of the triangle p0p1p2. Otherwise the curvature is
said to be monotone and is equal to the largest of two values, calculated from
Equations 3.20 and 3.21.

k(τ) =
‖p1m‖3

A2
(3.19)

k(0) =
A

‖p0p1‖3
(3.20)

k(1) =
A

‖p1p2‖3
(3.21)

The final trajectory is a set of paths, where each path has its own steering mode
assigned.

3.4 Software Packages

It was decided to use Robot Operating System (ROS) as the foundation for
the onboard software. The main advantage of this system is that it is easy to
learn and it has a broad community of users, which facilitates the resolution of

3.4 Software Packages 51

common problems. Apart from creating a ROS package for the onboard soft-
ware, ROS-based simulator plugins were also developed. Further explanation
of the simulator plugins can be found in Section 3.5.2. The description of the
onboard software package is presented in Section 3.4.1. For the human-robot
interaction, a Graphical User Interface (GUI) was developed. It was decided to
use cross-platform programming tools for the GUI to make it possible for the
future groups to easily take over the development, regardless the types of the
machines they will use. Even though, creation of a ROS-based GUI application
would require less effort, at the beginning of the development only Linux-based
ROS distribution had a stable release. Hence, it would limit the team to using
Linux machines only. As a result, QT development environment was selected
for the development of the GUI application.

3.4.1 Onboard Software Package

Onboard software features a single package consisting of several components
called nodes. ROS nodes are separate processes, which communicate via so-
called ROS topics (message passing interfaces built upon Transmission Control
Protocol (TCP) sockets). Topics implement a publisher-subscriber pattern,
where any node can declare itself as a publisher on a particular topic or subscribe
to this topic. When a publisher sends a message, all the subscribers of the
corresponding topic receive this message. Number of nodes were created to
form a complete system, even though not all of them were used to test the
motion control subsystem. These nodes are:

• luna_driver combines the path planner, path following control and pro-
cesses commands for teleoperation.

• luna_mech_gw forms an intermediate layer between various hardware
configurations or simulator interfaces. For example, it can listen to teleop-
eration commands from the joystick and produce appropriate commands
for each wheel of the rover.

• luna_gui_gw sends telemetry information to the GUI application.

• luna_gui_listener listens to telecommands from the GUI application
and distributes them among other nodes.

3.4 Software Packages 52

• luna_slam produces a grid-based map. Depending on the configuration,
it can read a predefined map from a file or get the dynamic map from
Gmapping node. In the future, it will be joined with the code from other
team members.

• luna_aut_gw intended to process information from visual sensors, such
as a laser ranging sensor and stereo camera.

• luna_fear watches for the nearby obstacles that can potentially create
issues. Once found, it should instantly launch obstacle avoidance behav-
ior.

The communication graph with launched nodes and topics between them is
shown in Figure A.1.

Sometimes it is convenient to monitor the workflow of each node separately.
Standard ROS tools allow launching several nodes together, but the output
messages are not easily accessible. For the sake of development efficiency, shell
script was created. It can launch the nodes in separate console windows and
can be configured for any possible situation. The detailed description of the
shell scripts is referred to in Appendix B.

3.4.2 Graphical User Interface

GUI application provides a tool for the user to interact with the rover. Its
current functionality is intended to assist for the development of the motion
control. For instance, it allows tweaking certain parameters, required for path
generation and the path following routines. It also visualizes the current state of
the rover and the world besides providing other useful information. At the be-
ginning of the development, it was aimed that this application will be extended
to form a complete user interface for all of the rover’s subsystems. Based on the
QT foundation, the application takes the advantage of cross-platform develop-
ment and can be ported with a little effort to the different operating systems,
including Linux, Windows and Mac OS. The application has a multiple windows
user interface.

3.4 Software Packages 53

Main Window

The main window, which is shown once the application is launched, can be
viewed in Figure 3.29. It is split into fours sections: telemetry information on
the left-hand side; the list of waypoints of the current path on the right-hand
side; the world map along with the rover position and current path in the cen-
ter; a basic control panel on the bottom. The telemetry table displays most
of the parameters received from the rover. However, it does not show specific
parameters that are shown in All-Wheel Control panel or Trajectory Analysis
panel.

Figure 3.29: The main application window of the robot interaction software. In
this example, the robot is using Ackermann steering.

The world map shows the occupancy grid with gray-scale tones, depending
on the occupancy of the certain cell. The robot position is displayed by a
red circle with the pointer defining its heading. The path is represented by a
set of blue circles (waypoints), connected by blue lines. When the Point-turn
steering mode is selected, waypoint circles are scaled to fill the entire cell be-
cause the waypoints are always at the center of a cell. In contrast, in other
modes, waypoints are not bound to cells, thereby, blue circles are not scaled

3.4 Software Packages 54

but are of fixed size. When the trajectory curve following mode is active, the
feedback error can also be seen on the map. It is represented by a purple line,
connecting the feedback look-ahead point and the closest point of the trajectory.

Apart from the map, the world section shows the information about the map
resolution, robot grid coordinates and the mouse cursor grid coordinates, which
may be useful when manually setting a goal. Defining a goal for the motion
control occurs by simply clicking the corresponding cell. The command is then
sent to the rover that calculates the route, transfers the path to the GUI and
starts driving in accordance with the selected steering mode. It is also possible
to define intermediate waypoints. To switch to the multiple waypoints mode,
user has to push the Multi selection button. He can then click multiple cells and
push the Send button. The route will be calculated taking the selected way-
points into consideration, and the rover will start driving. The way of selecting
multiple waypoints and the generated trajectory received from the onboard soft-
ware is shown in Figure 3.30. The path section, displaying coordinates of the
waypoints, is useful together with the Point-turn steering mode.

(a) Waypoints selected by the user. (b) Generated waypoints.

Figure 3.30: The example of selecting multiple waypoints. In this case, the
trajectory was generated for the Point-turn steering mode.

The control section is used for basic control of the rover. Selection of steering
modes is complemented by few parameters. Teleoperation is done by pressing
F5, F6, F7, F8 keys for the forward, left, back and right commands, respec-
tively. Also, it is possible to connect a USB game controller for teleoperation.
The sketch of the game controller in the main window shows which buttons

3.4 Software Packages 55

are being pressed. Even though it is sufficient to teleoperate the rover, the
advanced motion commands can be found in All-Wheel Control panel. When
teleoperated using basic commands, the rover uses predefined Drive forward,
Drive backward, Turn left, Turn right commands when only one appropriate
button is pressed. When longitudinal motion should be joined with rotation,
ICR-based control is used to drive the rover.

All-Wheel Control Window

The all-wheel control panel is used to control the chassis of a four-wheel rover
in various ways. User can explicitly define the angles for each of the steering
motors and the angular velocities for each of the driving motors. Besides that,
the user is able to control motion by ICR, determine the heading angle and
the linear velocity for the Crab steering or select one of the available ready-
made commands. When defining the ICR point, it is relative to the center of
the rover and uses the frame, where X axis extends forward in the longitudinal
direction of the rover and the Y axis extends to the left from the center. The

Figure 3.31: All-Wheel Control window. In this example, the rover is controlled
to drive around the ICR with the offset of −1 meter along the Y axis and the
linear velocity of the rover’s center of 0.5m/s. ICR point is represented by a
red cross in the sketch.

3.4 Software Packages 56

window is shown in Figure 3.31. The table in the middle of the window provides
information about the states of all the motors. Finally, the sketch on the right-
hand side visualizes the current configuration of the chassis. The proportions of
the sketch reflect those from the real rover, including positions of the steering
motors, offsets of the wheels, thickness and radii of the wheels.

Path Following Window

The path following window is used to monitor the rover while it follows a curvy
path. The window can be seen in Figure 3.32. Its upper part consists of a
sketch, which shows the parameters of the feedback and feedforward control
seen from the center of the rover. The lower part allows adjusting look-ahead
point constraints for the feedback and feedforward control along with the gains
of the PID controller.

Figure 3.32: Path following window. On the sketch, the red triangle represents
the rover; the blue circle extending upward from the triangle is the look-ahead
point of the feedback control; the red line is the feedback error, connecting
the feedback look-ahead point with the closest point of the trajectory; the five
green points (on the left) are the points used in the feedforward control for the
prediction of the curvature of the trajectory.

3.4 Software Packages 57

Figure 3.33: Trajectory Analysis window. Each row in the table represents one
Bézier curve. The smallest rotation radius is the one recorded onboard the rover
since it has started following the current trajectory.

Trajectory Analysis Window

Trajectory Analysis is a simple window showing separate curves, composing the
final trajectory. Since the curves are eventually transformed into point sets,
each of the rows in the table contains the starting and ending index of the
curve in the point set of the whole trajectory. Each curve also has its maximum
curvature calculated and the radius, corresponding to that curvature. Hence,
this window helps to analyze the trajectory and the possibility for the rover to
follow certain curves. The window is shown in Figure 3.33.

3.4.3 Communication

The communication between the GUI and the rover is based on TCP sockets.
TCP is one of two low-level transport protocols widely used in network program-
ming. User Datagram Protocol (UDP) is another protocol used in the network
programming. The main difference between these protocols is that TCP always
checks whether the data has been transmitted correctly. In contrast, UDP does
not check it, what makes it more rapid. Hence, UDP is often used in applica-
tions like Voice over Internet Protocol (VoIP) clients, such as Skype, and TCP
is used whenever data integrity should be preserved during the transmission. As
stated above, two TCP sockets have been used via two ports: for the transmis-
sion from the GUI to the rover and vice-versa. The socket in the GUI is using
QTCPSocket, which is a base class for the TCP sockets inside the QT library.

3.4 Software Packages 58

On the other hand, onboard software relies on Boost Asio, a C++ network
programming library found in (Kohlhoff, 2013), to set up the communication.

The communication interface is based on protocol buffers library from Google,
called protobuf. This library allows seamless serialization and deserialization
of structured data. It ensures the minimal size of the bit stream by excluding
unspecified data during the serialization process. It also ensures data integrity
during the whole communication process. As explained in (Google Inc., 2012),
any data structure can be defined in the specific format and saved in a file with
the *.proto extension. Definition files are then compiled using command-line
utility that generates C++ class files for each of the protobuf data structures.
Resulting C++ classes contain getter and setter methods for each of the at-
tributes as well as methods for serialization and parsing of the corresponding
data structures.

Created data structures for communication between the GUI and onboard soft-
ware includes the following items:

• Point contains data of a 2D point, namely its x and y coordinates.

• Twist contains data for linear and angular velocities.

• Wheels includes values of an arbitrary parameter for each wheel of a
four-wheel rover.

• AllWheelState contains angles of steering motors and angular velocities
of driving motors for each wheel of a four-wheeled rover by utilizingWheels
data structure.

• AllWheelControl is used for controlling the motion of a rover. The
data structure has a flag to define the control type, which should be used:
predefined actions, Crab steering, ICR-based control or explicit control of
each motor. Also, the data structure includes control type-specific data,
for instance, the ICR point relative to the robot’s center or the type of
the predefined action.

• Teleoperation is the simple structure, defining the joystick keys that are
being pressed, namely: forward, back, left and right keys.

3.4 Software Packages 59

• SteeringMode defines a steering mode, such as Ackermann, Point-turn
or Automatic. It also provides the steering settings, namely: heading ac-
curacy, position accuracy, linear velocity limit and the number of segments
per Bézier curve.

• DefineRoute contains one or more waypoints depending on the mode
that has been used for pointing: single-selection or multiple-selection.

• AdjustPID contains information found in the Path following panel, namely:
gains of the PID controller, feedback and feedforward control look-ahead
point parameters.

• Telecommand is the container used to send actual commands from the
GUI to onboard software. It defines a type of the command, such as tele-
operation, steering mode change, disabling autonomy, defining a route,
refreshing the map, adjusting path following parameters or sending a mo-
tion control command for a four-wheeled rover. Along with the type, this
container provides a type-specific data for the command.

• State is a general telemetry of the rover. It can include the pose of the
rover, its velocities and path following parameters.

• World is used to represent the world map. This data structure contains
information about dimensions and resolution of the occupancy grid along
with the occupancy information of each cell.

• Path is used to draw a path on top of the world map. This data structure
includes waypoints of the path and the information about the different
curves of the trajectory.

• Geometry when the dimensions of the rover are acquired either from the
simulator or from the real hardware, they are transmitted to the GUI to
make a correct representation of the chassis in the All-wheel control panel.

• Telemetry is the container used to send all the required data from the
onboard software to the GUI. It can optionally include State, World, Path
and Geometry data structures.

3.5 Simulation 60

3.5 Simulation

Simulation is a crucial part of the project, since most of the algorithms are
tested in simulators before being applied to the real system. It helps to detect
mistakes that may cause the damage of hardware. Moreover, as in our case,
simulation is the only way to test the system before the actual hardware has
been manufactured. There are few simulators available which are compatible
with ROS operating system: Stage, Gazebo, Webots and DARPA Robotics
Challenge Simulator (DRCSim) by the Defense Advanced Research Projects
Agency (DARPA). Webots simulator seems to be advanced, however, it was
not investigated because it requires buying a license. The rest of the listed
simulators are free to use. Nonetheless, DRCSim is built on top of Gazebo
and adds just some convenience functions specific for the Robotics Challenge.
Hence, there is no benefit to use it in our application, as we can use the Gazebo
simulator instead. As a result, the Stage and Gazebo simulators were selected
for the project.

3.5.1 Stage Simulator

The Stage simulator is a very basic application and was initially created to sim-
ulate robot swarms. It visualizes the world in two dimensions but can create a
feeling of 3D environment by producing the isometric picture. The simulated
environment is generated from bitmap files. The simulator accepts so-called
twist messages (a combination of linear and angular velocity vectors) and can
publish odometry and laser scan data. Being very basic, it can not simulate
any noise. Hence, the published odometry data does not drift over time, as it
happens in real life. An example of a simulation in Stage application from the
top view and isometric view is shown in Figure 3.34.

This simulator was used to test the system in the early stage of the devel-
opment when only the linear and angular velocities of the entire robot were
calculated. Later, the system was tested on the Pioneer 3-DX robot that has
a differential drive configuration. The published and received data formats of
both Stage simulator and Pioneer 3-DX robot are identical to each other. The
only difference between the simulated and real robot is the lack of physical prop-

3.5 Simulation 61

(a) Top view. (b) Isometric view.

Figure 3.34: The environment in the Stage simulator. The blue square (smaller)
is the operating robot, the red square (larger) is just a box, the black objects
are obstacles.

erties in the simulator, for example, mass or friction. During this phase, the
path generation method explained in Section 3.2.5 was tested together with a
basic path following algorithm. Unfortunately, Stage simulator is not sufficient
to conduct tests on all-wheel steering robots, as each individual wheel should be
controlled separately. Thus, the Gazebo simulator, explained in Section 3.5.2,
was used for the next step.

3.5.2 Gazebo Simulator

The Gazebo simulator is more advanced than Stage and provides 3D environ-
ment by utilizing OpenGL capabilities via Object-oriented Graphics Render-
ing Engine (OGRE) library. As stated in (Open Source Robotics Foundation,
2012), it is built upon Open Dynamics Engine (ODE), a library for simulating
rigid body dynamics, and OPCODE, a collision detection library. The Gazebo
simulator uses the following notations:

• World: It contains information about simulated environment, such as
models present in this environment and physical properties of the world,
for example, g-force.

• Model: It is any physical object contained by the environment. A model
can be a robot, an obstacle, a ground plane or a light source. Just as in
classical kinematics, a model is composed of a set of rigid bodies. These
bodies are called links. Each link contains information about its visual

3.5 Simulation 62

representation (how it looks in the simulator), collision model and physical
properties, such as its mass, inertia and friction. The collision model
can be different from the visual representation in order to reduce the
computation load of the physics engine. For example, the collision model
of a bookshelf can be described by a box, even though visually there are
small handles and cabinets in the bookshelf. It is much easier to calculate
collision with a box rather than a sophisticated object with many vertices.
Moreover, in the given example approximation to the box is affordable.
Models also contain information about their joints. The joints are the
connections between links. Each joint specifies the links it is attached
to and the joint type. As explained by Craig (2005), joints can be of
six types, which are shown in Figure 3.35. However, only two types are
commonly used: prismatic and revolute.

• Sensor: It is a perception object used by simulated robots. Commonly
used sensors are lidars, sonars and cameras. The sensor object provides
information, specific to every type of the sensor. For example, ray sensors
contain information about their angular range and resolution, the number
of samples and a distance range.

Figure 3.35: The six possible lower-pair joints. (Source: Craig (2005))

Each of the entities listed above are described in Simulation Description For-
mat (SDF) that is based on Extensible Markup Language (XML). The model
of an all-wheel steered robot was created using this format and can be seen in
Figure 3.36. It is composed of the number of links, including chassis, wheels,

3.5 Simulation 63

steering motors, driving motors, gearboxes, rear axle and a lidar sensor. For
the lidar, the ready-made Hokuyo model was used. As this lidar has the an-
gular range of 270◦, it has been reduced to 180◦ to mimic the characteristics
of the SICK lidar sensor that will be used in the real rover. In addition, the
shape of the wheels was taken directly from the CAD model files. Regarding
the dynamics, most of the links have approximate shapes and approximated dy-
namics models. Thus, the chassis and the steering modules are approximated to
the box shape, while motors and gearboxes are represented as simple cylinders.
Even though, they have real mass values, the inertia tensors matrices have been
approximated to the corresponding shapes. These approximations are referred
to in Table 3.1. The inertia tensor of a cylinder with mass m, radius r and
height h, calculated from Equation 3.22, where Z axis is aligned with the height
h. The inertia tensor of a tube is calculated from Equation 3.23, where m is the
mass, r1 is the inner radius, r2 is the outer radius and h is the height. Finally,
the box inertia tensors are represented by the matrix in Equation 3.24, where m
is the mass, h is the height, w is the width and d is the depth. As only the spec-
ification of the chassis of the rover is complete, none of the secondary elements
was assigned dynamic properties. For example, the bucket for storing regolith
is purely visual and is just an approximate model of what will be placed in the
future. The lidar dynamics is also omitted. Other sensors and parts, such as
conveyors for collecting the regolith are not even present in the current model.

I =

1
12
m(3r2 + h2) 0 0

0 1
12
m(3r2 + h2) 0

0 0 1
2
mr2

 (3.22)

I =

1
12
m(3(r21 + r22) + h2) 0 0

0 1
12
m(3(r21 + r22) + h2) 0

0 0 1
2
m(r21 + r22)

 (3.23)

I =

1
12
m(3h2 + d2) 0 0

0 1
12
m(3w2 + d2) 0

0 0 1
12
m(3w2 + h2)

 (3.24)

All these links are glued together via revolute joints, where almost all the joints
are fixed to create rigid connections. Only nine joints are not fixed, namely:
four pairs of steering and driving pivot axes and the revolute joint connect-
ing the rear axle with the rest of the chassis. The properties of these joints

3.5 Simulation 64

can be seen in Table 3.2. The rotation ranges are defined by the mechanical
constraints, while torque and frequency values are calculated from the nomi-
nal values of the motors and reduction rates of the corresponding transmission
elements. For example, both steering and driving motors have rotation rates
of 3000RPM . Knowing that the steering worm drive has a transmission ra-
tio of 1/75, it is possible to calculate the frequency of the steering joint as
3000RPM/75 = 40RPM . Similarly, the continuous torque of the steering
joint has to be 0.22Nm × 75 = 16.5Nm, given that the continuous torque of
the steering motor is 16.5Nm.

The wheels contain specific surface properties, which define the slippage of
the rover. Since in Coulomb friction model the friction coefficient depends on
the properties of both contacting surfaces, it is not possible to get the exact
coefficient. The wheels are known to have a polyurethane rubber layer that has
friction coefficients provided in Table 3.3. Unfortunately, the classic law does
not apply to the loose soil where the grip is a combination of the properties of
individual particles. Moreover, ODE does not follow the exact Coulomb law,
but uses approximation instead, as explained by Smith (2006). The approxi-
mated rule is defined by Equation 3.25, where fT is the tangential force vector,
fN is the normal force vector. This equation creates a "friction cone" such that
when the total friction force vector is within the cone, the contact is sticky. In
contrast, it is sliding when the force vector comes out of the cone. Hence, µ rep-
resents the friction threshold to start sliding rather than conventional friction
coefficient. Due to all above reasons, the µ value was not fixed for the rover, but
it was varied for the different test cases until the rover behavior looked realistic
in the simulator.

|fT | ≤ µ× |fN | (3.25)

Apart from having the friction property, the wheels were assigned a certain level
of sponginess by introducing a soft Constraint Force Mixing (CFM) parameter,
which is referred to by Smith. This parameter allows the contacting bodies to
violate the constraints to a certain extent resulting a "soft" contact.

The Gazebo simulator allows a high level of control of nearly every aspect of
the scene via plugins. It supports plugins of four different types: the system
plugin, the world plugin, the model plugin and the sensor plugin. The system
plugin is loaded on startup, whereas other types are loaded on demand and can

3.5 Simulation 65

Property Mass Approximation Dimensions Inertia Tensor

Steering module 4 kg Box w = 14 cm

d = 16.5 cm

h = 6 cm

Ixx = 0.0103

Iyy = 0.0156

Izz = 0.0077

Wheel 6.64 kg Tube r1 = 11.7 cm

r2 = 14.95 cm

h = 10 cm

Ixx = 0.0599

Iyy = 0.0599

Izz = 0.1197

Driving motor 1.3 kg Cylinder r = 2.75 cm

h = 10.75 cm

Ixx = 0.00149

Iyy = 0.00149

Izz = 0.00008

Gearbox 2.14 kg Cylinder r = 3.5 cm

h = 8.05 cm

Ixx = 0.00181

Iyy = 0.00181

Izz = 0.00131

Chassis 20 kg Box w = 16 cm

d = 106 cm

h = 16 cm

Ixx = 0.0853

Iyy = 1.9153

Izz = 1.9153

Table 3.1: The properties of the individual links of the Gazebo rover model.
Inertia tensors have only diagonal values because the rest values are zeros, as
can be seen from Equations 3.22-3.24.

Property Rotation range Torque Frequency

Steering joint [−90◦; 65◦] 16.5Nm 40RPM

Driving joints Unlimited 22Nm 60RPM

Rear axle pivot joint [−30◦; 30◦] - -

Table 3.2: The properties of the individual joints of the Gazebo rover model.
The rear axle pivot joint is a passive joint and does not have any torque or
frequency limits.

Dry
concrete

Wet
concrete

Dry
asphalt

Wet
asphalt

Dry steel Wet steel Lubricated

0.6 0.4 0.4 0.2-0.3 0.2-0.4 0.1-0.2 < 0.1

Table 3.3: The friction coefficients of the polyurethane wheel layer on various
surfaces.

3.5 Simulation 66

Figure 3.36: The model of the project robot on the simulated lunar surface. The
components which do not contribute to the dynamics of the rover are hidden
here.

access and modify the properties of the relevant entities. A number of plugins
were created for the project. They act as ROS nodes; consequently, they can
transfer information between the simulator and our system. These plugins are
listed below.

• Clock Server World Plugin: It broadcasts the time information and
helps to synchronize the internal clock of the simulator with the internal
clock of the ROS system. The reason behind it is that the internal clock
of the simulator can differ from the CPU real-time clock. Therefore, this
synchronization should ensure more accurate operation of the simulated
robot.

• Transform Server Model Plugin: ROS uses the mechanism of broad-
casting messages with information about the transformations between var-
ious reference frames, for instance, sensor-to-robot or robot-to-world. It
helps to keep certain subsystems generic and independent of a specific con-
figuration. For example, RViz visualization tool requires transformation
messages in order to correctly display the information that the robot is
perceiving. In addition, Gmapping component, which offers ready-made
SLAM service, requires the transformation information between the laser-
centered frame and the robot-centered frame.

• Odometry Model Plugin: This plugin reads and publishes the odome-
try information from the simulator, including the robot position, heading,
relative linear and angular velocities.

3.5 Simulation 67

• Lidar Model Plugin: This plugin reads and publishes the data from
the Hokuyo laser sensor installed on the simulated model.

• Differential Drive Model Plugin: This plugin was created for the
model of Pioneer 3-DX robot used in the early stage of the development.
It accepts the same control commands as Stage simulator and the real
Pioneer 3-DX robot, that is, linear and angular velocity vectors.

• All-wheel Steering Model Plugin: This plugin allows to control all
individual motors installed on the simulated chassis, including four steer-
ing motors and four driving motors. The steering motors are driven by
the individual PID controllers. It allows to assign the azimuth angle for
each steering motor to make it rotate the wheel in the given direction. In
addition, this plugin also provides feedback when all the steering motors
finish rotating to the desired angles. It is useful when performing a se-
quence of actions. For example, when using Crab steering, the robot first
rotates its wheels, while standing still. After it gets the feedback that all
the wheels finished rotating, it gives a command to the driving motors
to start rotating. Velocities for the individual wheels are calculated as
explained in Section 3.1.1.

Chapter 4

Simulation Results

This chapter overviews the tests conducted in the Gazebo simulator and eval-
uates the performance of the developed system. Testing has been conducted
purely by simulations because the rover hardware was not ready at the time of
writing this Thesis. As the rover has been developed with the focus on Lun-
abotics Mining Competition, the priority was given to the tests inside LunArena
simulated environment. The description of this environment and related tests
can be found in Section 4.1. Sections 4.2 and 4.3 describe additional envi-
ronments that were used for testing. All these environments are presented in
Figure 4.1.

4.1 LunArena

This LunArena environment replicates the area of the competition, including
its dimensions, quantity of obstacles and their kind. Initially, it was aimed to
integrate the motion control with SLAM subsystem that would provide a dy-
namically built map. For this purpose, the rock obstacles were transformed into
high cliffs, such that the lidar sensor, positioned parallel to the surface, could
observe them. LunArena walls were also raised for the same reason. However, as
the SLAM system was not available at the time of testing, the dynamic map was
not used. Instead, the static map was created by hand from the top-view image
of the area. The rocks were marked as obstacles and inflated appropriately to
suit the used inflated obstacle model. Craters were not marked as obstacles, as

4.1 LunArena 69

(a) LunArena. (b) Slippery slope.

(c) Moon-like surface.

Figure 4.1: Test environments created for the Gazebo simulator.

the rover was able to overcome them without significant problems. The result-
ing world map had 48× 92 occupancy grid with each cell being 8× 8 cm. Path
planning on this map took under five seconds to create the route between the
furthest points of the LunArena, which is a very good result. The surface has
a certain level of slippage to mimic the motion on the loose soil, such as lunar
regolith.

At first, Ackermann steering with different velocity limits was tested, as pre-
sented in Figure 4.2. The trajectory was accurate when driving not faster than
0.5m/s. Otherwise, high slippage occurred on the curves and the control al-
gorithm was creating an oscillating trajectory of increasing amplitude, when
trying to correct the error. For example, the test with the velocity limit of
0.6m/s resulted in an unacceptable trajectory. Tests with 0.7m/s (see Fig-
ure 4.2(d)) and 0.8m/s that is not shown in the figure failed because the rover
could not reach its final destination but crashed into obstacles. On the other
hand, with the limit set to 0.2m/s, Ackermann steering was able to not only
follow the path accurately but also compensate the unevenness of the terrain,

4.1 LunArena 70

(a) Linear velocity limited to 0.2m/s. (b) Linear velocity limited to 0.5m/s.

(c) Linear velocity limited to 0.6m/s. (d) Linear velocity limited to 0.7m/s.

Figure 4.2: Ackermann steering in the LunArena environment with the cell
size of 8 × 8 cm. The blue thick curve is the planned trajectory, whereas the
red overlay line is the actual trajectory. The higher speed limit causes larger
trajectory deviation after the turns. The linear velocity of 0.6m/s and higher
results in an unacceptable trajectory.

such as craters. Nonetheless, 0.5m/s is quite a high speed for a planetary rover
and is accurate enough. The times between getting a command from GUI and
finishing the route were 74.883 s, 36.035 s and 27.839 s for velocity limits of
0.2m/s, 0.5m/s and 0.6m/s respectively.

Once the 0.2m/s was considered a "safe" option, it was used in the tests of
the three types of steering modes presented in Figure 4.3. In these tests, all the
settings together with start and end points of the trajectory were equal. Acker-
mann steering showed the best performance with the time of 60.489 s. Besides
being a time-consuming mode (120.551 s), Point-turn was dramatically affected
by the uneven terrain, even though it was very precise on the flat surface. In
particular, the central crater seen in Figure 4.3(d) is located in the middle of
the planned trajectory. The rotation in that area caused errors. Although the
errors were corrected by Crab maneuver, it became clear that craters should
be treated as obstacles to get the best performance from the Point-turn mode.
The automatic steering selection was expected to benefit from the Point-turn

4.2 Slope 71

(a) Ackermann steering. (b) Point-turn steering.

(c) Automatic steering. (d) Surface corresponding to (a)-(c).

Figure 4.3: Driving test in the LunArena environment. The blue circles are the
planned trajectory, whereas the red overlay line is the actual trajectory. The
linear velocity limit was set to 0.2m/s.

mode in areas where the high precision is required, for example, narrow passes.
However, the performance of automatic steering selection was reduced by the
Point-turn parts and eventually was worse than Ackermann steering. It also
became clear that the selection algorithm needs to be improved because some
short curves could have a high curvature value, although their influence on Ack-
ermann trajectory is insignificant due to their size. Hence, Ackermann steering
should be selected in those areas rather than Point-turn. The time spent on
Automatic steering was 132.815 s.

4.2 Slope

The purpose of this environment was to test the ability of the rover to keep its
attitude while drifting down the slope. Thereby, the time was not measured in
these tests. As seen in Figure 4.1(b), this environment contains a plane inclined

4.3 Lunar Surface 72

by 11.5◦ with surface properties, such that the rover drifts down several cen-
timeters per second when placed on it. The conducted test results are presented
in Figure 4.4. The Automatic steering was not tested in this environment, as it
is useless for wide open area, since Ackermann steering would be always chosen.
This slope was represented by an obstacle-free map of size 100×100 where each
cell was 8× 8 cm. The linear velocity limit was set to 0.2m/s.

(a) Ackermann steering. (b) Point-turn steering.

Figure 4.4: Path correction test on a slope. The blue line is the planned trajec-
tory, whereas the red overlay line is the actual trajectory. The linear velocity
limit was set to 0.2m/s. Both tests have a huge spike at the beginning of the
trajectory caused by the delay of the path planning.

The delay caused by path planning was of order of several tens of seconds.
Consequently, in Figure 4.4, it is clearly seen that the rover was drifting down
while standing still even after receiving a command from the user. However,
this error was later corrected by the control algorithms. In the Point-turn mode,
the path was corrected by the Crab maneuver, whereas Ackermann mode was
using an ICR-based driving. Ackermann path following has higher oscillation
because the orientation was changing, whereas the Crab maneuver would keep
the orientation fixed. The ICR-based driving was selected over Crab maneuver
because the initial orientation of the rover was different from the desired.

4.3 Lunar Surface

For the Moon-like environment, terrain with small hills and high slippage possi-
bility was built, as shown in Figure 4.1(c). In the beginning, the gravity vector

4.3 Lunar Surface 73

(a) Ackermann steering. (b) Point-turn steering.

Figure 4.5: Driving on the Moon-like surface test. The blue line is the planned
trajectory, whereas the red overlay line is the actual trajectory. The linear
velocity limit was set to 0.2m/s. Both tests are conducted on the same area of
the surface.

was set to 1.622m/s2, which is the gravity magnitude of the Moon. Unfortu-
nately, the rover was tending to roll over even on relatively small hills, which
did not look realistic. It was especially noticeable when turning in place, as the
wheel base gets quite short in the lateral direction. Later, the gravity was set
to the nominal magnitude for the Earth, that is 9.81m/s2. It allowed to test
the steering modes without rolling over. The Automatic steering was not tested
here for the same reason as in Section 4.2. This environment was assigned the
same occupancy grid as the slope in Section 4.2. Test results that are referred
to in Figure 4.5 show excellent performance, despite a hilly surface. In both
cases, the rover was driving at the speeds not higher than 0.2m/s on the same
part of the surface.

Chapter 5

Conclusions and Further Work

The main objective of this Thesis was to develop a motion control subsystem
for the rover that is being built for participation in NASA Lunabotics Mining
competition. The onboard software package has been developed and extensively
tested using the Gazebo simulator. In addition, a cross-platform GUI applica-
tion has been created. It gives user a flexible control over the motion control
subsystem and allows adjusting certain parameters on-the-fly.

The review of existing planetary rover configurations and their performance
helped to understand the importance of key design features, such as wheel con-
figuration or suspension type. However, the only mobility system that has been
extensively tested in practice is the one adopted by Sojourner, MER and MSL
rovers. Rocker-bogie suspension on a six-wheel rover has been proven to be
efficient. Nevertheless, researchers keep studying robot-soil interaction to be
able to improve the autonomy of future rovers by reducing driving errors. In
this project, the four-wheeled chassis was chosen due to the constrained bud-
get and the ease of manufacturing. The fact that all the wheels are steered
and actuated made it possible to use three different steering modes, namely:
Ackermann, Point-turn and Crab steering. Ackermann and Point-turn steering
modes were built independent, whereas Crab steering was designed as an assis-
tive mode and is enabled automatically when needed. The onboard software,
developed in C++ for ROS, was equipped with algorithms for path planning,
path smoothing, path following and steering mode selection:

75

• Path planning relies on the modified A* algorithm with some features of
the potential field and configuration sampling methods.

• The task of the path smoothing algorithm is to transform a set of straight
path pieces into a set of Bézier curves.

• The Path following routine consists of several algorithms specific for Ack-
ermann and Point-turn steering modes. Ackermann steering mode uses
a combination of feedback and feedforward control techniques. In the
Point-turn mode, the rover uses a PID controller to point towards the
next waypoint, while straight driving relies on the Crab motion, where
the angle is proportional to the lateral deviation from the trajectory.

• The Automatic steering mode bases its decisions on the maximum curva-
ture of the particular piece of the trajectory. If the calculated curvature
is possible to achieve via Ackermann steering, it is used by default; oth-
erwise, the Point-turn mode is selected.

Apart from the onboard software package, a GUI application has been devel-
oped using Qt framework and, thereby, is compatible with various operating
systems, including Windows, Linux and Mac OS. It communicates with the on-
board software over the Internet using TCP sockets. The application has many
features, including steering mode selection, the tuning of the control parameters,
display of the state of the rover, its position on the world map, teleoperation
and emergency stop. For the purpose of testing, a set of plugins for the Gazebo
simulator was created. They provide full control over the rover inside the sim-
ulated environment. Once finished, the complete system was tested in different
environments, including LunArena, slippery slope and Moon-like environment.

Tests confirmed the designed system to be sufficient for the competition. Crab
steering was extremely useful in most of the tests. Furthermore, the rover was
able to drive accurately enough with the speed up to 0.5m/s, which is quite
fast for a planetary rover. Nevertheless, the system comes with some drawbacks
as well. First of all, the performance of the A* with the post-processing algo-
rithms decreases exponentially with the growth of the world map. Therefore, a
quick replanning is impossible with a really large map. Nonetheless, it did not
cause any problems as the planning delay during LunArena test was only few
seconds. Also, there is no rush during a real planetary mission, thereby, it is

76

believed to be a minor problem. Secondly, Point-turn mode was accurate only
on the flat surfaces, while causing large errors on uneven terrain when the rover
was rotating. Undoubtedly, despite being a time-consuming mode, Point-turn
steering has to be used when the precision is a preference. Consequently, auto-
matic steering selection was performing worse than Ackermann steering in the
LunArena tests because of the Point-turn mode rotation errors. Apart from the
list of drawbacks of the motion control, it was also impossible to simulate lunar
regolith. Instead, a rigid slippery surface was used for testing. As no precise
slippage values could be calculated, the slippage was adjusted in the simulator
by hand until it appeared to be realistic.

Clearly, field testing on the working prototype is needed in the future, as no
hardware was available at the time of writing. Moreover, to remedy the prob-
lems listed above, the further work implies the improvements of the relevant
parts of the system. For example, path planning can adopt Field D* algorithm
that is more suitable for navigation systems of the planetary rovers than con-
ventional A*. Besides, the 3D map analysis should be used instead of 2D. It
will benefit during the automatic steering selection because it will avoid switch-
ing to the Point-turn mode in the uneven spots. Also, the Automatic steering
can be improved to assess not only the kinematic but also dynamic capabilities
of Ackermann steering. For example, the comparison of the curvature change
rate to the ability of the rover to adjust its wheels quickly, would allow avoid-
ing Ackermann steering where it is not feasible for the rover. In addition, the
Automatic steering could ignore small curves of high curvature which result in
switching to Point-turn mode but, in fact, are not causing significant errors for
Ackermann steering. Finally, the Crab steering can be improved for the use in
emergency cases. For example, when one of the steering motors fails, the rover
could rotate and align its wheels in such a way that it could drive by crabbing.
The rover would remain operational with greatly reduced mobility.

To summarize, the developed system is sufficient for the competition, but it
also has room for improvements by implementing ideas described above.

References

About.com (2012). Bezier Curve / Pierre Bézier.
URL: http://graphicssoft.about.com/od/glossary/l/blbezier.htm

Andrade, G., Amar, F., Bidaud, P., and Chatila, R. (1998). Mod-
eling robot-soil interaction for planetary rover motion control. In Intel-
ligent Robots and Systems, 1998. Proceedings., 1998 IEEE/RSJ Interna-
tional Conference on, volume 1, pages 576 –581 vol.1. doi:10.1109/IROS.
1998.724680.

Arkin, R.C. (1998). Behavior-Based Robotics. MIT Press, Cambridge.

Bajracharya, M., Maimone, M., and Helmick, D. (2008). Autonomy
for Mars Rovers: Past, Present, and Future. Computer, 41(12):44 –50.
ISSN 0018-9162. doi:10.1109/MC.2008.479.

Bares, J. and Whittaker, W. (1990). Walking robot with a circulating
gait. In Intelligent Robots and Systems ’90. ’Towards a New Frontier of
Applications’, Proceedings. IROS ’90. IEEE International Workshop on,
pages 809 –816 vol.2. doi:10.1109/IROS.1990.262500.

Bauer, R., Leung, W., and Barfoot, T. (2005). Experimental and
simulation results of wheel-soil interaction for planetary rovers. In Intel-
ligent Robots and Systems, 2005. (IROS 2005). 2005 IEEE/RSJ Interna-
tional Conference on, pages 586 – 591. doi:10.1109/IROS.2005.1545179.

Biesiadecki, J. and Maimone, M. (2006). The Mars Exploration Rover
surface mobility flight software driving ambition. In Aerospace Conference,
2006 IEEE, page 15 pp. doi:10.1109/AERO.2006.1655723.

Carnegie Mellon University (2011). Uranus.
URL: http://www.cs.cmu.edu/afs/cs/user/gwp/www/robots/Uranus.html

REFERENCES 78

Carsten, J., Rankin, A., Ferguson, D., and Stentz, A. (2007).
Global Path Planning on Board the Mars Exploration Rovers. In Aerospace
Conference, 2007 IEEE, pages 1–11. ISSN 1095-323X. doi:10.1109/AERO.
2007.352683.

Choi, J.w., Curry, R., and Elkaim, G. (2008). Path Planning Based
on Bezier Curve for Autonomous Ground Vehicles. In World Congress
on Engineering and Computer Science 2008, WCECS ’08. Advances in
Electrical and Electronics Engineering - IAENG Special Edition of the,
pages 158 –166. doi:10.1109/WCECS.2008.27.

Choi, J.w., Curry, R.E., and Elkaim, G.H. (2012). Minimizing the
maximum curvature of quadratic Bezier curves with a tetragonal concave
polygonal boundary constraint. Comput. Aided Des., 44(4):311–319. ISSN
0010-4485. doi:10.1016/j.cad.2011.10.008.
URL: http://dx.doi.org/10.1016/j.cad.2011.10.008

Cordes, F., Dettmann, A., and Kirchner, F. (2011). Locomotion
modes for a hybrid wheeled-leg planetary rover. In Robotics and Biomimet-
ics (ROBIO), 2011 IEEE International Conference on, pages 2586 –2592.
doi:10.1109/ROBIO.2011.6181694.

Craig, J.J. (2005). Introduction to robotics : mechanics and control.
Pearson Education, Upper Saddle River, N.J. 07458, third edition edition.
ISBN 0-13-123629-6.
URL: http://opac.inria.fr/record=b1101583

Deddi, H., Everett, H., and Lazard, S. (2000). Interpolation prob-
lem with curvature constraints. In C.R..L.L.S. A. Cohen, editor, Curve &
Surface Fitting. Vanderbilt University press. This book contain a selection
of papers presented at the 4th International Conference on Curves & Sur-
faces, Saint-Malo, 1999. Contribution à un ouvrage. A00-R-390 || deddi00a
A00-R-390 || deddi00a.
URL: http://hal.inria.fr/inria-00099245

Deng, Z., Fan, X., Gao, H., and Ding, L. (2011). Influence analysis
of terramechanics on conceptual design of manned lunar rover’s locomo-
tion system. In Electronic and Mechanical Engineering and Information
Technology (EMEIT), 2011 International Conference on, volume 2, pages
645 –648. doi:10.1109/EMEIT.2011.6023183.

REFERENCES 79

Du, J., Ren, M., Zhu, J., and Liu, D. (2010). Study on the dynam-
ics and motion capability of the planetary rover with asymmetric mobility
system. In Information and Automation (ICIA), 2010 IEEE International
Conference on, pages 682 –687. doi:10.1109/ICINFA.2010.5512479.

Encyclopedia Astronautica (2013). Project Horizon.
URL: http://www.astronautix.com/articles/prorizon.htm

ExploreMars.org (2012). MSL Picture of the Day: T-4 Days: Mission
Essentials.
URL: http://www.exploremars.org/msl-picture-of-the-day-t-4-days-
mission-essentials

Fuke, Y., Apostolopoulos, D., Rollins, E., Silberman, J., and

Whittaker, W. (1995). A prototype locomotion concept for a lunar
robotic explorer. In Intelligent Vehicles ’95 Symposium., Proceedings of
the, pages 382 –387. doi:10.1109/IVS.1995.528312.

Google Inc. (2012). Developer Guide.
URL: https://developers.google.com/protocol-buffers/docs/overview

Grecenko, A. (1992). The slip and drift model of a wheel with tyre
compared to some other attempts in this field. Journal of Terramechanics,
29(6):599 – 604. ISSN 0022-4898. doi:10.1016/0022-4898(92)90039-M.
URL: http://www.sciencedirect.com/science/article/pii/002248989290039M

Hakenberg, J.P. (2008). Mobility and autonomous reconfiguration of
Marsokhod. Master’s thesis, Helsinki University of Technology.

Harvey, B. (2007). Soviet and Russian lunar exploration. Springer ;
Published in association with Praxis Pub., Berlin; New York; Chichester,
UK. ISBN 9780387218960 0387218963.

Hayakawa, Y., White, R., Kimura, T., and Naito, G. (2004).
Driver-compatible steering system for wide speed-range path following.
Mechatronics, IEEE/ASME Transactions on, 9(3):544–552. ISSN 1083-
4435. doi:10.1109/TMECH.2004.834653.

Headquarters, Department of the Army (1993). Technical Man-
ual for Truck, Forklift; 6,000 lb. Variable Reach, Rough Terrain. Integrated
Publishing.

REFERENCES 80

URL: http://constructionforklifts.tpub.com/TM10393066010/css/TM10-
393066010_59.htm

Hoepflinger, M., Krebs, A., Pradalier, C., Lee, C., Obstei, R.,

and Siegwart, R. (2008). Description of the Locomotion Control Ar-
chitecture on the ExoMars Rover Breadboard. In Proc. of The 10th ESA
Workshop on Advanced Space Technologies for Robotics and Automation
(ASTRA).

Hwang, J.H., Arkin, R., and Kwon, D.S. (2003). Mobile robots at
your fingertip: Bezier curve on-line trajectory generation for supervisory
control. In Intelligent Robots and Systems, 2003. (IROS 2003). Proceedings.
2003 IEEE/RSJ International Conference on, volume 2, pages 1444 – 1449
vol.2. doi:10.1109/IROS.2003.1248847.

Integrated Publishing (2003). Construction Mechanic Basic. Inte-
grated Publishing, Volume 01.
URL: http://www.tpub.com/eqopbas/27.htm

Ishigami, G., Nagatani, K., and Yoshida, K. (2006). Path Following
Control with Slip Compensation on Loose Soil for Exploration Rover. In
Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference
on, pages 5552 –5557. doi:10.1109/IROS.2006.282271.

Ishigami, G., Nagatani, K., and Yoshida, K. (2008). Trafficabil-
ity analysis for lunar/planetary exploration rover using Thrust-Cornering
Characteristic Diagram. In Intelligent Robots and Systems, 2008. IROS
2008. IEEE/RSJ International Conference on, pages 2228 –2233. doi:
10.1109/IROS.2008.4651186.

Ishigami, G. and Yoshida, K. (2005). Steering characteristics of an
exploration rover on loose soil based on all-wheel dynamics model. In Intel-
ligent Robots and Systems, 2005. (IROS 2005). 2005 IEEE/RSJ Interna-
tional Conference on, pages 3099 – 3104. doi:10.1109/IROS.2005.1545277.

Jean-Marc Maclou (2011). The Wheel Reinvented.
URL: http://www.unusuallocomotion.com/pages/locomotion/the-wheel-
reinvented.html

Khoukhi, A., Baron, L., and Balazinski, M. (2007). Fuzzy Parking
Manoeuvres of Wheeled Mobile Robots. In Fuzzy Information Processing

REFERENCES 81

Society, 2007. NAFIPS ’07. Annual Meeting of the North American, pages
60–65. doi:10.1109/NAFIPS.2007.383811.

Koenig, S. and Likhachev, M. (2002). D*lite. In Eighteenth national
conference on Artificial intelligence, pages 476–483. American Association
for Artificial Intelligence, Menlo Park, CA, USA. ISBN 0-262-51129-0.
URL: http://dl.acm.org/citation.cfm?id=777092.777167

Kohlhoff, C. (2013). Boost.Asio.
URL: http://www.boost.org/doc/libs/1_53_0/doc/html/boost_asio.html

Kulkarni, N., Ippolito, C., Krishnakumar, K., and Al-Ali, K.

(2006). Adaptive inner-loop rover control. In Space Mission Challenges for
Information Technology, 2006. SMC-IT 2006. Second IEEE International
Conference on, pages 8 pp. –504. doi:10.1109/SMC-IT.2006.12.

Kyrki, V. (2012). Locomotion, Kinematics and Motion Control; Lecture
notes distributed in Field and Service Robotics, AS-84.3144.

Liang, Z., Zheng, G., and Li, J. (2012). Automatic parking path
optimization based on Bezier curve fitting. In Automation and Logistics
(ICAL), 2012 IEEE International Conference on, pages 583 –587. ISSN
2161-8151. doi:10.1109/ICAL.2012.6308145.

Lindemann, R. and Voorhees, C. (2005). Mars Exploration Rover
mobility assembly design, test and performance. In Systems, Man and
Cybernetics, 2005 IEEE International Conference on, volume 1, pages 450
– 455 Vol. 1. doi:10.1109/ICSMC.2005.1571187.

Mastascusa, E.J. (2013). PID Controllers - General PIDs.
URL: http://www.facstaff.bucknell.edu/mastascu/econtrolhtml/PID/PID3.html

Montes, N., Mora, M., and Tornero, J. (2007). Trajectory Gen-
eration based on Rational Bezier Curves as Clothoids. In Intelligent Ve-
hicles Symposium, 2007 IEEE, pages 505 –510. ISSN 1931-0587. doi:
10.1109/IVS.2007.4290165.

Morales, M., Pearce, R., and Amato, N. (2007). Analysis of the
Evolution of C-Space Models built through Incremental Exploration. In
Robotics and Automation, 2007 IEEE International Conference on, pages
1029–1034. ISSN 1050-4729. doi:10.1109/ROBOT.2007.363120.

REFERENCES 82

Moreland, S., Skonieczny, K., Wettergreen, D., Asnani, V.,

Creager, C., and Oravec, H. (2011). Inching locomotion for planetary
rover mobility. In Aerospace Conference, 2011 IEEE, pages 1 –6. ISSN
1095-323X. doi:10.1109/AERO.2011.5747265.

National Aeronautics and Space Administration (2012a). Lun-
abotics Mining Competition.
URL: http://www.nasa.gov/lunabotics

National Aeronautics and Space Administration (2012b). Mars
Science Laboratory.
URL: http://mars.jpl.nasa.gov/msl/mission/

Nishida, S., Okabayashi, Y., and Wakabayashi, S. (2011). Analy-
ses and testing of new mobility system for lunar rover. In Robotics and
Biomimetics (ROBIO), 2011 IEEE International Conference on, pages
2574 –2579. doi:10.1109/ROBIO.2011.6181692.

Nishida, S. and Wakabayashi, S. (2010). Analyses for mobility and
control system of lunar rover. In SICE Annual Conference 2010, Proceed-
ings of, pages 799 –803.

Ogata, K. (2010). Modern control engineering. Instrumentation and
controls series. Prentice Hall, 5th edition. ISBN 9780136156734.
URL: http://books.google.fi/books?id=Wu5GpNAelzkC

Oniga, F., Nedevschi, S., Danescu, R., and Meinecke, M. (2009).
Global map building based on occupancy grids detected from dense stereo
in urban environments. In Intelligent Computer Communication and Pro-
cessing, 2009. ICCP 2009. IEEE 5th International Conference on, pages
111–117. doi:10.1109/ICCP.2009.5284776.

Open Source Robotics Foundation (2012). Gazebo Architecture.
URL: http://gazebosim.org/wiki/Architecture

Peynot, T. and Lacroix, S. (2003). Enhanced locomotion control for
a planetary rover. In Intelligent Robots and Systems, 2003. (IROS 2003).
Proceedings. 2003 IEEE/RSJ International Conference on, volume 1, pages
311 – 316 vol.1. doi:10.1109/IROS.2003.1250646.

REFERENCES 83

Planetary Resources (2013). Mission.
URL: http://www.planetaryresources.com/mission/

Russell, S. and Norvig, P. (2003a). Artificial Intelligence: A Modern
Approach, chapter Solving Problems by Searching, pages 59–94. Prentice-
Hall, Englewood Cliffs, NJ, 2nd edition edition.

Russell, S. and Norvig, P. (2003b). Artificial Intelligence: A Mod-
ern Approach, chapter Informed Search and Exploration, pages 94–137.
Prentice-Hall, Englewood Cliffs, NJ, 2nd edition edition.

Safadi, H. (2007). Local Path Planning Using Virtual Potential Field.
McGill University School of Computer Science.
URL: http://www.cs.mcgill.ca/ hsafad/robotics/

Seegmiller, N. and Wettergreen, D. (2011). Control of a passively
steered rover using 3-D kinematics. In Intelligent Robots and Systems
(IROS), 2011 IEEE/RSJ International Conference on, pages 607 –612.
ISSN 2153-0858. doi:10.1109/IROS.2011.6094930.

Seeni, A., Schafer, B., Rebele, B., and Tolyarenko, N. (2008).
Robot Mobility Concepts for Extraterrestrial Surface Exploration. In
Aerospace Conference, 2008 IEEE, pages 1 –14. ISSN 1095-323X. doi:
10.1109/AERO.2008.4526237.

Shamah, B. (1999). Experimental Comparison of Skid Steering Vs. Ex-
plicit Steering for a Wheeled Mobile Robot. Master’s thesis, Robotics In-
stitute, Carnegie Mellon University, Pittsburgh, PA.

Smith, R. (2006). Open Dynamics Engine v0.5 User Guide.
URL: http://www.ode.org/ode-latest-userguide.html

Society of Robots (2013). OMNI-WHEEL ROBOT - FUZZY.
URL: http://www.societyofrobots.com/robot_omni_wheel.shtml

Sohel, F., Karmakar, G., and Dooley, L. (2005). A generic shape
descriptor using Bezier curves. In Information Technology: Coding and
Computing, 2005. ITCC 2005. International Conference on, volume 2,
pages 95 – 100 Vol. 2. doi:10.1109/ITCC.2005.11.

REFERENCES 84

Spudis, P. and Lavoie, T. (2011). Using the resources of the Moon to
create a permanent, cislunar space faring system. In Lunar Science Fo-
rum. Lunar and Planetary Institute, NASA Marshall Space Flight Center,
Huntsville AL USA.

Sutoh, M., Nagaoka, K., Nagatani, K., and Yoshida, K. (2012).
Evaluation of influence of surface shape of locomotion mechanism on travel-
ing performance of planetary rovers. In Robotics and Automation (ICRA),
2012 IEEE International Conference on, pages 3419 –3424. ISSN 1050-
4729. doi:10.1109/ICRA.2012.6225024.

Tann, N. (2012). July 25, 2012: Three of six 20 inch aluminum wheels.
URL: http://darkroom.baltimoresun.com/2012/08/nasa-lands-curiosity-
rover-on-mars/three-of-six-20-inch-aluminum-wheels-are-seen-on-an-
engineering-model-of-nasas-curiosity-mars-rover-as-it-navigates-a-sandy-
mars-like-environment-named-the-mars-yard-at-nasas-jet-propulsion-
labora/

Tao, J., Deng, Z., Hu, M., Liu, J., and Bi, Z. (2006). A small
wheeled robotic rover for planetary exploration. In Systems and Control in
Aerospace and Astronautics, 2006. ISSCAA 2006. 1st International Sym-
posium on, pages 6 pp. –418. doi:10.1109/ISSCAA.2006.1627655.

U.S. Air Force Systems Command, Space Systems Division

(1961). Lunar Expedition Plan Lunex.
URL: http://www.astronautix.com/data/lunex.pdf

Woo-Ram Lee (2013). MoVille, Tear Drop Shaped Futuristic Car
Concept with Big Grin.
URL: http://www.tuvie.com/moville-tear-drop-shaped-futuristic-car-
concept-with-big-grin/

Würgler, S. and Sukkarieh, S. (2010). Path Planning for a Plane-
tary Rover. In 10th Australian Space Science Conference. National Space
Society of Australia, Australian Centre for Field Robotics, University of
Sydney, NSW, Australia.

Ylonen, S. and Halme, A. (2002). WorkPartner - centaur like service
robot. In Intelligent Robots and Systems, 2002. IEEE/RSJ International

REFERENCES 85

Conference on, volume 1, pages 727–732 vol.1. doi:10.1109/IRDS.2002.
1041477.

Yu, X., Deng, Z., Fang, H., and Tao, J. (2006). Research on Locomo-
tion Control of Lunar Rover with Six Cylinder-conical Wheels. In Robotics
and Biomimetics, 2006. ROBIO ’06. IEEE International Conference on,
pages 919 –923. doi:10.1109/ROBIO.2006.340343.

Zhang, P., Deng, Z., Hu, M., and Gao, H. (2008). Mobility perfor-
mance analysis of lunar rover based on terramechanics. In Advanced Intel-
ligent Mechatronics, 2008. AIM 2008. IEEE/ASME International Confer-
ence on, pages 120 –125. doi:10.1109/AIM.2008.4601645.

Appendix A

Internal Communication of the

ROS Nodes

A Internal Communication of the ROS Nodes II

F
ig
ur
e
A
.1
:
T
he

gr
ap

h
of

no
de
s
an

d
to
pi
cs

of
th
e
on

bo
ar
d
so
ft
w
ar
e
pa

ck
ag

e.
/r
os
ou

t
is

a
st
an

da
rt

R
O
S
ou

tp
ut

no
de
,
w
hi
ch

ac
-

ce
pt
s
de
bu

g,
w
ar
ni
ng

an
d
er
ro
r
m
es
sa
ge
s.

/g
az
eb

o_
in
te
rf
ac
e
is

th
e
se
t
of

R
O
S-
ba

se
d
pl
ug

in
s
ru
nn

in
g
in
si
de

th
e
G
az
eb

o
si
m
ul
at
or
.

D
es
cr
ip
ti
on

of
th
e
pl
ug

in
s
ca
n
be

fo
un

d
in

Se
ct
io
n
3.
5.
2.

Appendix B

Shell Scripts of the Onboard

Software

To make the shell commands accessible from anywhere in the system, setup file
was created. It can be found in the root directory of the package and launched
by the command below.

> export ‘ roscd lunabot i c s ‘ / setup . bash

After the setup, it is possible to launch the onboard software package using the
command below.

> e l i a s

This command is very flexible and can accept various parameters. For example,
user can specify the location, where to search for the predefined map file, set
the configuration to differential drive or four-wheel rover. The full description
of available options can be reached by the command below.

> e l i a s −h

The Stage simulator with the selected erratic world is launched using command

> lunas tage

and the Gazebo simulator with a four-wheeled rover model can be launched
with the command below.

B Shell Scripts of the Onboard Software IV

> lunagazebo

The Gazebo simulator with a four-wheeled rover model inside LunArena envi-
ronment can be launched with the command below.

> lunarena

	Introduction
	Competition Rules
	Project Description
	Outline

	Related Work
	Overview of Ground Locomotion
	Wheeled Locomotion
	Wheel Types
	Suspension
	Holonomicity

	Steering
	Skid Steering
	Explicit Steering
	Articulated Steering

	Terrain
	Regolith Properties
	Wheel-Soil Interaction

	Driving Path
	Path Generation
	Path Selection
	Path Following

	Implementation
	Rover Hardware
	Chassis
	Electronics

	Path Planning Algorithms
	Search Algorithms Overview
	Potential Fields
	Sampling-Based Algorithms
	Path Planning Solution
	Path Smoothing

	Path Following Algorithms
	Control Overview
	PID Controller
	Ackermann Path Following
	Point-turn Path Following
	Crab Path Following
	Steering Mode Selection

	Software Packages
	Onboard Software Package
	Graphical User Interface
	Communication

	Simulation
	Stage Simulator
	Gazebo Simulator

	Simulation Results
	LunArena
	Slope
	Lunar Surface

	Conclusions and Further Work
	References
	Internal Communication of the ROS Nodes
	Shell Scripts of the Onboard Software

