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Sommaire 

Cette these a pour objectif de developper un simulateur tutoriel intelligent pour l'ap-
prentissage de manipulations robotisees, applicable au bras robot canadien sur la station 
spatiale internationale. Le simulateur appele Roman Tutor est une preuve de concept de 
simulateur d'apprentissage autonome et continu pour des manipulations robotisees com-
plexes. Un tel concept est notamment pertinent pour les futures missions spatiales sur Mars 
ou sur la Lune, et ce en depit de l'inadequation du bras canadien pour de telles missions 
en raison de sa trop grande complexity. Le fait de demontrer la possibilite de conception 
d'un simulateur capable, dans une certaine mesure, de donner des retroactions similaires 
a celles d'un enseignant humain, pourrait inspirer de nouvelles idees pour des concepts 
similaires, applicables a des robots plus simples, qui seraient utilises dans les prochaines 
missions spatiales. Afin de realiser ce prototype, il est question de developper et d'inte-
grer trois composantes originales : premierement, un planificateur de trajectoires pour des 
environnements dynamiques presentant des contraintes dures et flexibles ; deuxiemement, 
un generateur automatique de demonstrations de taches, lequel fait appel au planificateur 
de trajectoires pour trouver une trajectoire solution a une tache de deplacement du bras 
robot et a des techniques de planification des animations pour filmer la solution obtenue; 
et troisiemement, un modele pedagogique implementant des strategies d'intervention pour 
donner de l'aide a un operateur manipulant le SSRMS. L'assistance apportee a un opera-
teur sur Roman Tutor fait appel d'une part a des demonstrations de taches generees par le 
generateur automatique de demonstrations, et d'autre part au planificateur de trajectoires 
pour suivre la progression de l'operateur sur sa tache, lui fournir de l'aide et le corriger au 
besoin. 
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Introduction 

La manipulation du bras robot canadien ou SSRMS (pour "Space Station Remote Ma-
nipulator System") sur la station spatiale internationale (SSI) est une tache fortement com-
plexe. Elle necessite la maitrise complete de la geometrie du robot et des differents modes 
de manipulation, ainsi qu'une connaissance approfondie de l'architecture de la station avec 
ses differents composants. La figure 1 montre une vue reelle de la SSI et du SSRMS. Le 
SSRMS est utilise pour deplacer une charge d'un endroit a un autre, reparer un des elements 
de la station et inspecter la station a l'aide d'une camera montee a son extremite. Toutes 
ces manipulations sont accomplies avec la plus grande precision de sorte que le SSRMS ne 
doit, en aucun cas, entrer en collision avec un element de la station. 

figure 1 - SSRMS sur la station spatiale internationale 

La manipulation du SSRMS se fait a distance, a partir d'un ordinateur situe a l'interieur 
d'un des compartiments de la SSI. Cet ordinateur comprend trois moniteurs relies chacun 
a une camera placee a un endroit particulier de la SSI. En tout, les cameras sont au nombre 
de quatorze, mon ie s a differents endroits de la SSL Lors de la manipulation du SSRMS, 
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1.1. INTRODUCTION 

un bon choix de cameras pour chacun des trois moniteurs s'impose. L'astronaute choisit 
celles qui lui offrent une meilleure visibility tout fen gardant une bonne appreciation de son 
evolution dans la tache. La difficulty de la manipulation du SSRMS provient surtout du 
fait que chacun des moniteurs ne presente qu'une vue partielle de la station. Nous utili-
sons 1'appellation "manipulations robotisees" pour referer aux manipulations effectuees a 
distance par les astronautes a travers l'ordinateur pour deplacer le SSRMS. 

Cette these a pour objectif de developper un systeme, dans notre cas un simulateur, 
tutoriel intelligent (STI) pour l'apprentissage de manipulations robotisees, applicable au 
SSRMS sur la SSL Le STI appele Roman Tutor (voir la figure 2), pour RObot MANipula-
tion Tutor, est une preuve du concept de simulateur d'apprentissage autonome et continue 
pour des manipulations robotisees complexes. Un tel concept est pertinent pour les futures 
missions spatiales sur Mars ou sur la Lune. Meme si le SSRMS ne sera pas impliqu6 dans 
de telles missions a cause de sa trop grande complexity, le fait de demontrer qu'on peut 
concevoir un simulateur capable de donner des retroactions similaires a celles d'un ensei-
gnant humain peut fournir des idees pour des concepts similaires applicables aux robots 
plus simples qui seront utilisees dans les prochaines missions sur Mars ou la Lune. 

rktar OfftoJtyloml K d i M Tods About... 

j-. ' st a w s 

Action Applied 10 Result Cofllslon Details Proximity Detslls 

Movement W P (-180.SZ9444. -160.172366. 166.910689 J & 
Movement W P [-180.<I69350,-160.023379, 166.904245] I 
Movement W P 1-180.407111.- lS9.S7S2fl7, 168.867^80) ^ 
Movement SP 1-188.107114.-1S9.87S217 .168 .867180) : 
Mnvemcnt SV I-180.4074! 4 , -159.875247 , 168.867480) t 

figure 2 - Roman tutor interface 

Au-dela de prouver le concept d'apprentissage autonome des manipulations robotisees, 
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1.1. INTRODUCTION 

Roman Tutor constitue un outil de validation des operations robotisees utilisable par les 
equipes terrestres en support aux astronautes sur le SSI. En effet, la realisation d'une ope-
ration impliquant le SSRMS sur le SSI necessite au prealable la validation par une equipe 
sur terre en liaison avec les astronautes. L'equipe sur terre utilise un simulateur du SSRMS 
pour valider les operations impliquant le SSRMS. Cependant, le simulateur actuel est es-
sentiellement un outil de visualisation, sans aucune intelligence. II ne peut pas comparer 
differents scenarios possibles ni donner des retroactions pedagogiques aux operateurs (par 
exemple, expliquer pourquoi une manoeuvre est preferable a une autre). En fait, il revient 
aux operateurs de decider du deplacement du SSRMS dans le simulateur et comparer les 
differentes alternatives. 

Contrairement a un simulateur normal, Roman Tutor a la capacite de comprendre, dans 
une certaine mesure, les manipulations du SSRMS pour pouvoir valider les manipulations 
faites par un operateur, les critiquer et suggerer de meilleures approches. Une des com-
posantes permettant au STI cette capacite de comprendre les manipulations est un plani-
ficateur des deplacements du SSRMS. Etant donne une configuration initiale du SSRMS 
et une configuration cible, le planificateur est en mesure de determiner une trajectoire me-
nant de la configuration initiale a la configuration finale, tenant compte des obstacles et 
des contraintes de visibilite. Ainsi, etant donne une trajectoire faite par un operateur, Ro-
man Tutor peut la critiquer par rapport a sa propre trajectoire et fournir des retroactions au 
besoin. 

La planification de trajectoires pour des robots articules est un probleme fortement 
etudie en robotique et en intelligence artificielle, auquel plusieurs solutions ont ete propo-
sees [36, 11, 22, 57, 44]. Dans sa forme classique, le probleme consiste a amener un robot 
d'une position a une autre en evitant la collision avec les obstacles presents dans le milieu. 
Une des choses qui rendent le probleme particulier dans Roman Tutor est son aspect for-
tement dynamique resultant du fait qu'il doit suivre les deplacements du SSRMS effectues 
par un operateur pour les valider. Pendant que l'operateur deplace le SSRMS, le role du pla-
nificateur est de verifier, a chaque mouvement, l'existence d'une trajectoire possible entre 
la configuration courante du robot et une configuration finale donnee comme cible a at-
teindre. Roman Tutor ne peut pas prevoir a l'avance les mouvements de l'operateur; il doit 
recalculer dynamiquement la trajectoire vers la cible a partir de la configuration courante. 
Cela doit se faire efficacement en exploitant les calculs realises dans les etapes precedentes. 
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1.1. INTRODUCTION 

Idealement, ceci necessite que le planificateur de trajectoire ait la propriete "anytime" [20], 
c'est-a-dire, qu'il soit capable de donner une solution approximative dans un delai limite; 
de sorte que plus le delai alloue est eleve, plus la solution est proche de l'optimalite. 

Une autre particularite du probleme de planification de trajectoires dans Roman Tutor 
concerne les contraintes de visibilite. Le planificateur doit calculer des trajectoires visibles 
au travers des cameras montees sur la SSI et que l'operateur utilise pour voir l'exterieur de 
la SSI. Bien entendu, la contrainte de deplacer le SSRMS d'une position initiale vers une 
position finale en evitant les collisions demeure la contrainte la plus critique. II s'agit d'une 
contrainte dite dure parce que les collisions doivent etre evitees a tout prix. Par contre, dif-
ferentes regions de la SSI peuvent etre plus ou moins visibles selon les cameras choisies 
et selon les conditions de l'environnement. Par exemple, l'orbite de la SSI peut faire en 
sorte qu'a differents moments des cameras deviennent exposees au soleil, rendant difficile 
la visibilite des regions couvertes par ces dernieres. Selon ce degre de visibilite, une tra-
jectoire passant a travers certaines regions doit etre evitee le plus possible, mais peut etre 
acceptee s'il s'avere impossible de trouver de meilleures solutions. Les contraintes de visi-
bilite sont done des contraintes souples ou fiexibles. Elles expriment des preferences dans 
la navigation du robot. 

Pour donner des retroactions, Roman Tutor utilise un generateur automatique de de-
monstrations de taches ATDG pour "Automatic Task Demonstration Genrator". Etant donne 
la description d'une tache (par exemple, deplacer une charge d'un endroit a un autre), le 
ATDG genere une animation 3D interactive expliquant comment effectuer une telle tache. 
La conception du ATDG est inspiree des techniques de planification automatique des ani-
mations 3D. Les techniques usuelles presentes dans la litterature sont de deux types : les 
approches par satisfaction de contraintes et les approches par idiomes (chapitre 2). Les ap-
proches par satisfaction de contraintes travaillent au niveau de chaque image constituant le 
film et utilisent des methodes numeriques fastidieuses pour s'assurer de 1'exactitude et de 
la coherence de leur contenu. Les approches par idiomes s'inspirent du monde cinemato-
graphique et utilisent differents concepts leurs permettant de filmer une animation comme 
le fait un metteur en scene. Vu le caractere tres complexe de notre application, les deux 
families d'approche s'averent etre inapplicables directement a notre problematique. 

En resume, cette these a pour objectif le developpement d'un prototype simulateur tu-
toriel intelligent pour l'apprentissage d'operations robotisees, appele Roman Tutor. Pour 
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1.1. INTRODUCTION 

realiser ce prototype, nous nous proposons de developper et d'integrer trois composantes 
originales. 

1. Un planificateur de trajectoires pour des environnements dynamiques presentant des 
contraintes dures et flexibles. 

2. Un generateur automatique de demonstrations de taches (ATDG). Ce dernier fait 
appel au planificateur de trajectoires pour trouver une trajectoire solution a une tache 
de deplacement du SSRMS et a des techniques de planification des animations pour 
filmer la solution obtenue. 

3. Un modele pedagogique implementant des strategies d'intervention pour donner de 
l'aide a un operateur manipulant le SSRMS. 

Le premier chapitre de cette these introduit la nouvelle approche de planification de 
trajectoires avec preferences que nous avons developpee. Cette nouvelle approche etend 
les approches de planification de trajectoires par echantillonnage actuelles par l'ajout de 
la caracteristique flexible permettant de tenir compte des contraintes souples dans l'envi-
ronnement, et de la tenir compte des contraintes de visibilite sur la SSI. Les approches par 
echantillonnage sont les plus efficaces dans des environnements a forte complexity [30]. 
Nous montrons dans ce chapitre que cette notion de flexibility permet d'ameliorer grande-
ment la qualite des trajectoires generees, un des plus importants handicaps des approches 
par echantillonnage. De plus, ce nouveau planificateur adapte les caracteristiques "anyti-
me" et dynamique au sein des approches de planification par echantillonnage. 

Le deuxieme chapitre est consacre a l'etude de l'ATDG, le generateur automatique de 
demonstrations de taches. ATDG utilise la logique temporelle lineaire (LTL) [3] pour ex-
primer les principes cinematographiques et les preferences de filmage, un langage plus 
expressif et avec une semantique plus simple que les anciens langages de planification 
de cameras. ATDG implemente l'algorithme sous-jacent TLPlan pour la planification de 
cameras. Tout d'abord, la trajectoire du robot est generee en utilisant le planificateur de tra-
jectoires. Le planificateur de cameras TLPlan est ensuite invoque pour trouver la meilleure 
sequence de configurations de cameras filmant le robot sur sa trajectoire. 

Dans le troisieme et dernier chapitre de cette these, nous exposons le modele pedago-
gique implemente au sein de Roman Tutor pour supporter et encadrer l'apprentissage de 
manipulations robotisees. L'aide a un operateur fait appel d'une part a des demonstrations 
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1.1. INTRODUCTION 

de taches generees automatiquement par le ATDG, et d'autre part au planificateur de tra-
jectoires pour suivre la progression de l'operateur sur sa tache, lui fournir de l'aide et le 
corriger au besoin. 
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Chapitre 1 

Planification de trajectoires avec 
preferences dans des environnements 
dynamiques tres complexes 

Resume 

Les approches de planification de trajectoires presentes dans la litterature peuvent 
etre classees en deux principales categories : les approches combinatoires et les 
approches par echantillonnage [14, 44], Les approches par echantillonnage ou 
PRMs (pour "Probabilistic Roadmap Methods") sont les plus efficaces dans des 
environnements a forte complexite [30]. Leur caracteristique probabiliste leur 
permet d'eviter la representation explicite et complete de l'espace. Par echan-
tillonnage probabiliste, elles construisent un roadmap ou graphe qui n'en est 
qu'une representation simplifiee. Vu la complexite accrue des environnements 
dans lesquels oeuvrent les robots propres a notre problematique, il semble evident 
que la nouvelle approche de planification de trajectoires que nous presentons dans 
ce chapitre soit alignee a cette categorie de planificateurs. 

Dans sa formulation traditionnelle, le probleme de planification de trajec-
toires consiste a amener un robot d'une position a une autre en evitant la col-
lision avec les obstacles presents dans l'environnement. Dans certaines applica-
tions complexes du monde reel, toutefois, en plus des obstacles qui doivent etre 
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evites, il peut y avoir des zones dangereuses qui doivent etre evitees autant que 
possible. La notion de danger est pertinente par exemple dans des applications 
militaires [51, 59], Inversement, il peut etre souhaitable pour un chemin de rester 
a proximite de certaines zones autant que possible. C'est notamment le cas dans 
la manipulation du SSRMS sur la SSI, ou les preferences sont liees a des champs 
de visions de cameras, qui changent de fagon dynamique, en partie a cause des 
changements dans l'orbite de la SSL 

Nous presentons dans les pages qui suivent un article qui introduit notre nou-
velle approche de planification de trajectoires avec preferences. Cette nouvelle 
approche est intitulee FADPRM pour "Flexible Anytime Dynamic PRM". Le pla-
nificateur FADPRM va etendre les approches de planification PRMs actuelles par 
l'ajout de la caracteristique flexible permettant de tenir compte des contraintes 
souples dans l'environnement. Les contraintes souples (ou flexibles) sont dictees 
par la presence de zones avec differents degres de desirabilite dans l'environ-
nement. FADPRM previlegie des trajectoires solutions qui evitent les zones non 
desirables et qui font passer le robot le plus possible a travers les zones desirables. 

Meme quand un probleme de planification de trajectoires ne necessite pas 
l'ajout de la notion de desirabilite de maniere explicite, l'introduire permet de 
fournir un moyen efficace pour controler la qualite des trajectoires generees par 
une methode de planification par echatillonnage. En effet, dans les approches par 
echantillonnage, les trajectoires sont obtenues en reliant des configurations qui 
sont choisies au hasard dans l'espace des configurations libres. Ceci conduit a des 
trajectoires solutions complexes et de mauvaise qualite, necessitant de operations 
heuristiques de post-traitement pour les lisser [58]. Dans l'article suivant, nous 
demontrons qu'il est possible d'influencer la strategie d'echantillonnage pour 
generer des trajectoires plus lisses juste en specifiant des zones avec degres de 
desirabilite dans l'environnement. Nous montrons egalement que la notion de 
desirabilite permet un meilleur controle de 1'exploration de l'espace de recherche 
pour garantir une planification plus efficace. 

Avec FADPRM, l'exploration par echantillonnge de l'espace des configura-
tions libres s'inspire de differentes strategies d'exploration dynamiques et "any-
time" presentes dans le litterature [47, 48, 39]. Un planificateur de trajectoires 
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peut s'adapter aux changements dynamiques qui surviennent dans l'environne-
ment (changement dans les obstacles, dans les zones et dans leurs degres de de-
sirabilite ou dans les configurations initiale et finale) en recalculant une nouvelle 
trajectoire a chaque fois. Une strategic dynamique reutilise les resultats obte-
nus des recherches anterieures pour garantir de meilleures performances dans la 
planification. Une strategic "anytime" [20] procede de maniere incremental, en 
commen§ant par un plan de degre de desirabilite bas, puis l'ameliore progressi-
vement. De cette fa§on, et a tout moment, le planificateur dispose d'un plan d'un 
certain degre de satisfaction qui est ameliore si plus de temps de planification est 
disponible. 

Commentaires 

Une premiere version du planificateur FADPRM a ete presentee a la conference 
"IEEE International Conference on Robotics and Automation" en 2006 [7]. Dans 
cette derniere, FADPRM utilisait la strategie d'exploration AD* pour "Anytime 
Dynamic A*" [48]. Dans sa nouvelle version presentee dans les pages qui suivent, 
FADPRM implemente une version "anytime" de la strategie plus recente GAA* 
pour "Genralized Adaptive A*" [61]. Nous utilisons maintenant GAA* a la place 
de AD* parce que les deux algorithmes ont des performances comparables et que 
GAA* a une structure plus simple et plus facile a comprendre et a implementer. 

L'article presente dans ce chapitre a ete soumis au journal "International 
Journal of Robotics Research". Une version plus courte de ce travail va pa-
raitre dans les actes de "International Conference on Autonomous and Intelligent 
Systems" [6]. Dans la version courte, seulement 1'adaptation du planificateur 
GAA* dans FADPRM sans integrer de la strategie "anytime" a ete presentee. 
Ces travaux ont ete realises, valides et rediges sous la supervision du Professeur 
Froduald Kabanza (Universite de Sherbrooke) et avec les conseils du Professeur 
Leo Hartman (Agence spatiale canadienne). 
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Abstract 

In this paper, we consider the problem of planning paths for articulated bo-
dies operating in workplaces containing obstacles and regions with preferences 
expressed as degrees of desirability. Degrees of desirability could specify dan-
ger zones and desire zones. A planned path should not collide with the obstacles 
and should maximize the degrees of desirability. Region desirability can also 
convey search-control strategies guiding the exploration of the search space. To 
handle desirability specifications, we introduce the notion of flexible probabilis-
tic roadmap (flexible PRM) as an extension of the traditional PRM. Each edge 
in a flexible PRM is assigned a desirability degree. We show that flexible PRM 
planning can be achieved very efficiently with a simple sampling strategy of the 
configuration space defined as a trade-off between a traditional sampling oriented 
towards coverage of the configuration space and a heuristic optimization of the 
path desirability degree. For path planning problems in dynamic environments, 
where obstacles and region desirability can change in real-time, we use dynamic 
and anytime search exploration strategies. The dynamic strategy allows the plan-
ner to re-plan efficiently by exploiting results from previous planning phases. The 
anytime strategy starts with a quickly computed path with a potentially low desi-
rability degree which is then incrementally improved depending on the available 
planning time. 
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1 .1 . INTRODUCTION 

1.1 Introduction 

In its traditional form, the path planning problem is to plan a path for a moving body (ty-
pically a robot) from a given start configuration to a given goal configuration in a workspace 
containing a set of obstacles. The basic constraint on solution paths is to avoid collision 
with obstacles, which we call hereby a hard constraint. There exist numerous approaches 
for path planning under this constraint [36, 11, 22, 57, 44]. 

In many complex applications, however, in addition to obstacles that must be avoided, 
we may have dangerous areas that must be avoided as much as possible. That is, a path 
going through these areas is not highly desirable, but would be acceptable if no better path 
exists or can be computed efficiently. The danger concept is relevant, for example, in mi-
litary applications. Some path planning techniques that deal with it have been proposed, 
including [59, 51]. Conversely, it may be desirable for a path to stay close to certain areas 
as much as possible. Even when a path planning problem has no explicit notion of region 
desirability, introducing the notion provides a way to control the quality of a path generated 
by a randomized path planning method. Indeed, paths are obtained by connecting miles-
tones that are randomly sampled in the free workspace and this tends to yield awkward 
paths, requiring heuristic post-processing operations to smooth them. In this paper, we de-
monstrate that one can influence the sampling strategy to generate less awkward paths by 
specifying zones the path is preferred to go through. We also show that region desirability 
specifications can also help control the exploration of the sampled search space and make 
the path-planner more efficient. 

Our path planning approach builds flexible roadmaps by extending existing sampling 
techniques including delayed collision checking, single query, bi-direction and adaptive 
sampling [58]. Desirable and undesirable workspace regions are soft constraints on the 
robot path, whereas obstacles are hard constraints. The soft constraints convey preferences 
for rating solutions paths which must avoid obstacles. The more a path avoids undesirable 
zones and goes through desirable zones, the better it is. 

The exploration of the sampled configuration space is done using dynamic and anytime 
space exploration methods [47,48, 39]. In dynamic environments, a path planner can adapt 
a previously computed path to dynamic changes in obstacle configurations, goals or region 
desirability, by computing a new path. Dynamic state space exploration strategies reuse 
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1 . 1 . I N T R O D U C T I O N 

the results obtained from previous searches to achieve better performance compared to 
re-searching from scratch. In addition, an anytime search strategy proceeds incrementally, 
starting with a path having a low desirability degree and then improving it incrementally. 
In this way at "any time", the planner has a plan with some degree of satisfaction that is 
improved as more planning time is spent. 

Our testbed is a simulation of the Space Station Remote Manipulator System (SSRMS) 
deployed on the International Space Station (ISS). The SSRMS is a 17 meter long arti-
culated robot manipulator, having a translation joint, seven rotational joints (each with a 
range of 270 degrees) and two latching end-effectors which can be moved to various fix-
tures, giving it the capability to "walk" from one grappling fixture to next on the exterior of 
the ISS [19]. Astronauts operate SSRMS using the robot control station located inside one 
of the ISS compartments (Figure 1.1). A robot control station has an interface with three 
monitors, each connected to a camera placed at a strategic location of the ISS. There are 
many cameras covering different parts of the ISS structure and three of them are selected 
and mapped to the three monitors. 

(a) View from one of the monitors (b) Robot control station 

figure 1.1 - ISS path-planning domain and robot control station 

Most of the SSRMS tasks on the ISS involve moving the robot from one configuration 
to another in order, for example, to move a payload from the shuttle or inspect a region 
of the ISS exterior using a camera mounted on the end effector. A judicious choice of the 
camera on each of the three monitors along different segments of a robot path ensures 
that the operator is appropriately aware of the robot motion. Computed paths must go as 
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much as possible through camera fields of view to enable a good appreciation of the robot 
motion. In other words, the camera fields of view convey preferences for regions through 
which the robot path should remain as much as possible while avoiding collisions with the 
ISS structure. 

In the next section we give the background and discuss some of the related work. We 
then present our path planning approach to handling path preferences in the robot works-
pace. We follow with experiments in the ISS environment and in a car repair domain, 
showing the capability of the new planning approach to handle path preferences and search 
control specifications that are expressed by assigning desirability degrees to workspace 
regions. 

1.2 Background and Related Work 

A configuration q of an articulated robot with n degrees of freedom ( d o f ) is an n ele-
ment vector of the robot joint positions. Since the robot moves by changing its joint rota-
tions or translations, a path between two points is a sequence of configurations sufficiently 
close together connecting the two points. A path is collision-free or in the space of collision-
free configurations C/ r e e , if the robot does not collide with any obstacle in the workspace 
in any of the configurations on the path. Computing a path is seen as making a query (to 
the path-planner) with the input of the start and goal configurations. Two very commonly 
used approaches to path planning are the combinatorial and randomized approaches. 

Combinatorial approaches, also called decomposition or exact approaches, proceed by 
searching through a geometric representation of C/ r e e . Given a 2D or 3D model of obstacles 
in the workspace, a 2D or 3D model of the robot, the configuration space is decomposed 
into an occupancy grid of cells, also called a roadmap. A path from a start cell to a goal cell 
is then found by searching a sequence of moves between adjacent free cells, connecting the 
start configuration to the goal [38, 49, 22, 44]. These moves correspond to possible edges 
in a graph with nodes corresponding to free cells in the grid. Graph-search algorithms such 
as A* search [29, 54] or AD* [48] can be used to compute a path between the start and goal 
configurations. 

Randomized approaches, also known as sampling-based approaches, proceed by sam-
pling the space of the robot configurations. Given a 2D or 3D model of obstacles in the 
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workspace and a 2D or 3D model of the robot, a randomized planner builds a graph of nodes 
corresponding to configurations in Cfree by picking configurations randomly and checking 
that they are collision-free. It uses a fast collision detection checker (called a local planner) 
to check that an edge between two adjacent nodes is also collision-free; each time the lo-
cal planner succeeds, the corresponding edge (i.e., local path or path segment) is inserted 
into the graph. The graph built that way is called a probabilistic roadmap (PRM) [36] or a 
rapidly-exploring random tree (RRT) [44] and is a simplified representation of C/ r e e . Here 
too graph-search algorithms such as A* search [54] or AD* [48] can be used to explore the 
graph to find a collision-free path linking the start to the goal configuration. 

Therefore combinatorial as well as randomized approaches have in common the discre-
tization problem to build an intermediate graph structure (the roadmap) and search through 
it. The key difference lies in what the graph represents and how it is built. With combinato-
rial approaches the graph is meant to be an exact representation of Cfree and its construction 
takes into account the geometry of the workspace and the robot. With sampling approaches, 
the graph represents samples of Cfree. It is not an exact representation of C/ r e e . Given that 
the configuration space is randomly sampled, randomized approaches do not guarantee a 
full coverage of free space and they are not complete and do not guarantee optimality. In 
fact, they are probabilistically complete, meaning that the more samples are made the closer 
the probability of guaranteeing the absence or presence of a solution gets to 1 [58]. Com-
binatorial approaches guarantee completeness and optimality by using a sufficiently small 
discritization step. In practice, this results in large search spaces, making the approaches 
generally intractable for high dimensional configuration spaces [30]. 

A heuristic method for grid decompositions is to plan using a coarse discretization 
space. If no solution is found or to improve the solution found so far, a new planning ite-
ration is made with finer discretization pace. The process can be iterated as more planning 
time is invested or until a satisfactory solution is found. Another exploration strategy for 
the occupancy grid maybe to use random search [45], While this may help coping with the 
complexity of the configuration space, in very large configuration spaces the planner spends 
a large amount of time generating the occupancy grid [30]. Sampling-based methods ge-
nerally offer better performance than exact methods for domains with high-dimensional 
spaces [30, 14, 44], 
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1.2.1 Probabilistic Roadmap Approach 

Our randomized implementation follows a PRM approach [58], However, it can be 
easily adapted to an RRT approach given an RRT approach fundamentally corresponds to 
a single-query PRM with on the fly search of the sampled roadmap combined with on-the-
fly collision detection [45]. Our implementation includes various configuration modes that 
allow the planner to run in a single or multiple query mode, with on-the-fly search of the 
roadmap or not and with collision detection on-the-fly or delayed. 

A PRM is an undirected graph G = (N, V) with N the nodes of the graph and V 
the arcs. The nodes are sampled configurations in C/ r e e , also called milestones. The arcs 
represent links or segments v connecting two configurations. Algorithm 1 shows a basic 
PRM path planning algorithm. It starts by initializing the roadmap G with the start and goal 
configurations nstart and ngoai. Then, a new node n is sampled randomly, with a probability 
measure 7r, in Cfree and added to the roadmap. A set of nodes in G and in the neighborhood 
of n called Vn is selected. Using a collision checker (local planner), we look for a node n' 
in Vn such that the link (n, n') is free of collisions and then add it to G. The process is 
repeated until a path connecting nstart and ngoai is found. 

Algorithm 1 Basic PRM Algorithm 
01. Initialize the roadmap G with two nodes, nstart and ngoai 
02. Repeat 
03. Sample a configuration n from Cfree with probability measure IT 

04. if (n e Cfree) then add n as a new node of G 
05. for some nodes n' in a neighborhood Vn of n in G such that n' / n 
06. if collisionFree(n, n') then add v = (n, n') as a new edge of G 
07. until nSTART a n d rig0aL are in the same connected component of G or G contains N + 2 nodes 
08. if fistart^nd ngoai are in the same connected component of G then 
09. return a path between them 
10. else 
11. return No Path 

The above algorithm follows a single-query on-the-fly collision detection approach. 
The samples of Cfree corresponding to the nodes in the graph G are generated while sear-
ching G and detecting collision on the fly. On each query, the graph is reconstructed. It is 
conceivable to generate G, store it and then search it each time we have a query. In this 
case, a sufficiently large G needs to be generated to cover potential queries. This is known 
as a multiple-query approach because several queries can be made on the same roadmap. A 
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delayed collision-checking approach would avoid checking collisions (Step 6) until a whole 
path has been found. If a segment on the path turns out to be colliding, the algorithm would 
backtrack to search for a new path. A delayed collision-checking method can outperform a 
non-delayed one on some planning domains [11, 58]. 

A PRM planner selects a node to expand in the free configuration space according to 
some given sampling measure. The efficiency of PRM approaches significantly depends on 
this measure [30], A naive sampling measure will likely lose efficiency when the free space 
Cfree contains narrow passages. A narrow passage is a small region in Cfree where the 
sampling probability becomes very low. Some approaches exploit the geometry of obstacles 
in the workspace to adapt the sampling measure accordingly [9, 40, 41]. Other methods 
use machine learning techniques to adapt the sampling strategy dynamically during the 
construction of the probabilistic roadmap [41, 13, 31]. 

1.2.2 Path Planning with Preferences 

In addition to collision avoidance, the concept of dangerous areas that have to be avoi-
ded as much as possible has been addressed in some path planning approaches [51, 59]. 
Herein we generalize the concept to preferences among regions in the Cfree space. Dif-
ferent regions can be assigned different degrees of desirability, meaning that we would like 
the path planner to compute a path which not only avoids obstacles but also maximizes 
the degree of desirability for the path. Since path quality criterion may also depend on 
other metrics such as the distance along the path, we define the overall path quality as a 
trade-off between region desirability and distance. The trade-off is conveyed by a parame-
ter weighing the contribution of each of these criteria to the global path-quality criterion. 
As a means to convey preferences among collision-free paths, region desirability provides 
a way to specify search control information for a path planner. It can be used to determine 
how the search process chooses the next node to expand. 

1.2.3 Anytime Path Planning 

In real-time applications involving the computation of an optimal solution, it is often 
desirable to have an incremental algorithm that computes its solution as a sequence of in-
termediate useful, but suboptimal solutions, converging towards an optimal solution. Dean 
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and Boddy called these anytime algorithms [20]. Such an algorithm guarantees a useful ap-
proximate solution at any time, which gets improved incrementally if more planning time 
is allowed. With a PRM planner, an anytime capability can be integrated into the search al-
gorithm exploring the sampled roadmap. In particular, using the A* heuristic graph-search 
algorithm, one can implement a twofold anytime capability. 

If given a transition function covering the entire search space and an admissible heuris-
tic, A* guarantees finding an optimal solution. In our case, the search space is the sampled 
roadmap and a heuristic function h{n) is a function taking a configuration n as input and 
returning the estimated distance from a configuration n to the goal configuration. It is ad-
missible if it never overestimates the actual distance h*{n). We use the Euclidean distance 
as admissible heuristic. Obviously, the larger the search space, the more time it may take 
to find an optimal solution, even though A* does not have to exhaust the search space to 
guarantee optimality. To mitigate the combinatorial size of the state space, one can run A* 
on a smaller portion of the search space (producing an approximate path), then expand the 
search space and compute a new solution path for it and so on. This gives a sequence of 
solutions, converging to the optimal when the entire search space is covered. Given a dead-
line for computing a solution, the search space will be iteratively expanded accordingly ; a 
solution for each chunk of expansion is then computed. This implements an anytime capa-
bility through state expansion. The search process can be stopped at any time and give a 
solution (more precisely anytime after the time necessary for a first solution) and the more 
time it is given, the better the solution will be. 

Another interesting property of A* is that, if given a non admissible heuristic h(n) = 
h*(n) + e, then the cost of the path computed by A* minus the cost of the optimal distance 
is less or equal than e. In other words, e is an upper bound on the error for the cost of 
the solution compared to the optimal solution. Moreover, A* tends to return a solution, 
possibly suboptimal, faster with inadmissible heuristics than with admissible heuristics. 
Based on these two observations and given an admissible heuristic h (e.g., the Euclidean 
distance), another way to implement an anytime A* search would be to compute a path 
using h{n) + ei, then another solution using h(n) + e2 and so on. In other words, a sequence 
of solutions using a decreasing error bound Q on the admissible heuristic is computed, 
with e i + i < €j. Given a deadline for computing a solution path, the inflating factor will be 
decreased iteratively, computing a solution for each decrease. This is the anytime capability 
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through heuristic improvement. 
Both previous methods for implementing anytime capabilities with A* are comple-

mentary and can be combined as is the case in the Anytime Repairing A* (ARA*) algo-
rithm [49]. We use a similar approach to explore a randomized flexible roadmap. 

1.2.4 Dynamic Path Planning 

In the ISS environment, most of the structure is fixed, only the robots can move. Ho-
wever, region desirability degrees can change as well as the goal. Regions of desirability 
depend on the task and the involved camera views. Depending on the orbit of the ISS, a 
camera may have its view towards the sun, making it undesirable. From the roadmap pers-
pective, this means that the cost of a segment between two nodes can change dynamically. 
Such changes may invalidate a previously calculated path, either because it is no longer 
optimal or simply because it now leads to a dead-end. Re-planning is necessary in such 
cases. 

Dynamic path planners adapt dynamically to change happening around the robot by 
repairing incrementally their representation of the environment. Different approaches exist 
that are extensions of the A* algorithm, including D* Lite [38], Anytime Dynamic A* 
(AD*) [48] and Generalized Adaptive A* (GAA*) [61]. These algorithms extends A* search 
to solve dynamic search problems faster by updating heuristics on nodes using knowledge 
acquired from previous searches. 

1.3 FADPRM Path Planner 

Combining region preferences, anytime search and dynamic re-planning, we obtain a 
flexible anytime dynamic probabilistic roadmap planner (FADPRM). The general idea is 
to keep track of milestones in an optimal solution to the goal. When changes are noticed, 
edges costs are updated and a new roadmap is re-computed fast, starting from the goal, 
taking into account previous traces of the path-calculation. This brings us back to a method 
in between the multiple query approach and the single query approach. The difference with 
a multiple query approach is that we are now only concerned with the roadmap to the 
current goal the robot is trying to reach in a dynamic environment. 
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FADPRM uses GAA* to explore the roadmap. The cost of an edge between two confi-
gurations depends on the actual distance between the configurations and the desirability 
degrees of the configurations along that edge. In a preliminary version of FADPRM [7], 
we have used AD* instead of GAA*. We now use GAA* instead of AD* because they 
have comparable performances, yet GAA* has a simpler description. Note that the contri-
bution of FADPRM does not just amount to using GAA* to explore a sampled roadmap. 
The integration of preferences and their use to control both the path quality as well as the 
search-process for computing such a path are the key contributions. 

1.3.1 Algorithm Sketch 

FADPRM works with Cfree segmented into zones, each zone being assigned a degree 
of desirability (dd), that is, a real number in the interval [0 1], The closer is dd to 1, the 
more desirable the zone is. Every configuration in the roadmap is assigned a dd equal to 
the average of dd of zones overlapping with it. The dd of a path is an average of dd of 
configurations in the path. An optimal path is one having the highest dd. 

The input for FADPRM is thus : a start configuration, a goal configuration, a 3D model 
of obstacles in the workspace, a 3D specification of zones with corresponding dd and a 3D 
model of the robot. Given this input: 

1. To find a path connecting the input and goal configuration, we search backward from 
the goal towards the start (current) robot configuration. Backward instead of forward 
search is done because the robot moves; we want to re-compute a path to the same 
goal but from the current position whenever the environment changes before the goal 
is reached. 

2. A probabilistic priority queue OPEN contains nodes on the frontier of the current 
roadmap (i.e., nodes that need to be expanded because they have no predecessor yet; 
or nodes that have been previously expanded but are not being updated anymore) and 
a list CLOSED contains non frontier nodes (i.e., nodes already expanded) 

3. Search consists of repeatedly picking a node from OPEN, generating its predeces-
sors and putting the new ones and the ones not yet updated in OPEN. 

(a) Every node n in OPEN has a key priority proportional to the node's density 
and best estimate to the goal. The density of a node n, density(n), reflects the 
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density of nodes around n and is the number of nodes in the roadmap with confi-
gurations that are a short distance away. The estimate to the goal, f(n), takes 
into account the node's dd and the Euclidean distance to the goal configuration 
as explained below. Nodes in OPEN are selected for expansion in decreasing 
priority. With these definitions, a node n in OPEN is selected for expansion 
with priority proportional to 

(1 — (3) / density in) + /3 * fin), 

(3 is the inflation factor with 0 < [3 < 1. 

(b) To increase the resolution of the roadmap, a new predecessor is randomly gene-
rated within a short neighborhood radius (the radius is fixed empirically based 
on the density of obstacles in the workspace) and added to the list of prede-
cessors in the roadmap generated so far; then the entire list of predecessors is 
returned. 

(c) Collision is delayed : detection of collisions on the edges between the current 
node and its predecessors is delayed until a candidate solution is found; if col-
liding, we backtrack and rearrange the roadmap by eliminating nodes involved 
in this collision. 

4. The robot may start executing the first path found. 

5. Concurrently, the path continues to be improved. 

6. Changes in the environment (moving obstacles and zones or changes in dd for zones) 
cause updating of the roadmap and replanning. 

With f3 equal to 0, the selection of a node to expand is totally blind to zone degrees of 
desirability and to edges costs (Euclidian distance). Assuming OPEN is the entire road-
map, this case corresponds to a normal PRM and the algorithm probabilistically converges 
towards an optimal solution as is the case for a normal PRM [58]. With (3 = 1, the selection 
of a node is a best-first strategy and by adopting an A*-like f(n) implementation, we can 
guarantee finding an optimal solution within the resolution of the roadmap sampled so far. 
Therefore the expression (1 — (3)/density(n) + f3 * f(n) implements a balance between 
fast-solution search and best-solution search by choosing different values for (3. 
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Values of /3 closer to 1 give better solutions, but take more time. An initial path is 
generated fast assuming a value close to 0, then (3 is increased by a small quantity, a new 
path is computed again and so on. At each step, we have a higher probability of getting a 
better path (probability 1 when /3 reaches 1). This is the key in the anytime capability of 
our algorithm. 

The heuristic estimate is separated into two components g(n) (the quality of the best 
path so far from n to the goal configuration) and h(n) (estimate of the quality of the path 
from n to the start configuration), that is, f(n) = (g(n) + h(n))/2; we divide by 2 to 
normalize f{n) to values between [0,1]. This definition of f(n) is as in normal A* except 
that: 

- We do backward search, hence g(n) and h(n) are reversed. 
- The quality of a path is a combination of its dd and its cost in terms of distance 

traveled by the robot. Given pathC ost(n, n'), the cost between two nodes, g(n) is 
defined as follows : 

g(n) = pathdd(ngoah n)/{ 1 + 7pathC ost{ngoah n)) 
with 0 < 7 < 1. 

- The heuristic h(n) is expressed in the same way as g(n) and estimates the cost of the 
path remaining to reach nstart : 

h(n) = pathdd(n, nstart)/(1 + 7pathCost(n, nstart)) 
The factor 7 determines the influence of the dd on g(n) and on h(n). With 7 = 0, nodes 

with high dd are privileged, whereas with 7 = 1 and with the dd of all nodes equal to 1, 
nodes with least cost to the goal are privileged. In the last case, if the cost between two 
nodes pathCost(n,n')) is chosen to be the Euclidean distance, then we have an admis-
sible heuristic and the algorithm is guaranteed to converge to the optimal solution. When 
dd's are involved and since zones can have arbitrary configurations, it is difficult to define 
admissible heuristics. The algorithm guarantees improvement of the solution, but it's im-
possible to verify optimality. Since the dd measures the quality of the path, the idea is to 
run the algorithm until a satisfactory dd is reached. The functions pathdd and pathCost 
are implemented by attaching these values to nodes and updating them on every expansion 
or when dynamic changes are observed in the environment. 
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1.3.2 Algorithm Details 

The detailed structure of the FADPRM path planner is presented in Algorithm 2. Since 
FADPRM proceeds backwards, it updates h-values with respect to the start configuration 
of all expanded nodes n after every search as follows : 

h(n) = g(n8tart) ~ g{n). 

Following GAA*, FADPRM does not initialize all g-values and h-values up front. Instead, 
it uses the variables counter, search(n) and pathcost(x) to decide when to initialize and 
update them by calling UpdateState() : 

- The value of counter is x in the .xth execution of ComputeOrlmprovePath, that is, 
the xth call for GAA* on the roadmap. 

- search(n) stores the number of the last search that generated node n. FADPRM 
initializes these values to 0 for new nodes in the roadmap. 

- pathcost(x) stores the cost for the best path found on the roadmap by the xth search. 
More precisely, the formula for pathcost(x) is : 

pathcost(x) =g(nstart) = pathdd(ngoahnstart) / (1 + 7 pathCost(ngoahnstart)) 
Nodes in OPEN are expanded in decreasing priority to update their g-values and their 

predecessors' g and h-values. The ordering of nodes in OPEN is based on a node priority 
key(n), which is a pair [ki(n), k2(n)] defined as follows : 

key(n) = [(1 — (3) / density (n) + (3f(n), h(n)], 

with f(n) = [(g(n) + h(n)]/2 and key(n) < key[n!) if ki(n) < ki(n') or {k\{n) = ki(n') 
and k2(n) < k2(n')). During the update on nodes, FADPRM initializes the g-value of nodes 
not yet generated by an already performed search, nodes with search(n) = 0, to zero. 

In the function ComputeorlmprovePathQ, when a node n with maximum key is 
extracted from OPEN, we first try to connect it to nstart using a fast local planner as in 
SBL [58]. If it succeeds, a path is then returned (line 16). The expansion on a node n with 
maximum key from the OPEN (line 18) consists of sampling a new collision-free node in 
the neighborhood of n [58] and then the sampled node is added in the set Pred{n). After 
increasing the connectivity of the roadmap by adding a new node, FADPRM executes an 
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Algorithm 2 FADPRM Algorithm 
01. KEY(N) 33. while (Not collision-free Path) 
02. f(n) = [g(n) + h(n)]/2; 34. Rearrange Tree; 
03. return [(1 - 0)/density (n) + /3.f(n);h(n)]\ 35. 

36. 
ComputeorlmprovePathQ; 
counter = counter + 1; 

04. UPDATES TATE (TI) 37. if (OPEN = 0) 
05. if ((search(n) ^ 0) AND (search(n) ^ counter)) 38. pathcost(search(n)) = 0; 
06. if (<?(n) + h(n) < pathcost(search(n)) 39. e l s e 
07. h(n) = pathcost(search{n)) — g{n)\ 40. pathcost(search(n)) = g(nstart); 
08. g(n) = 0; 41. publish current 0o—suboptimal solution ; 
09. e l s e if (search(n) = 0) 42. while (nstart not in neighborhood of ngoai) 
10. g(n) = 0; 43. if ("start changed) 
11. search(n) = counter; 44. 

45. 
if (addtoTree(nst0rt)) 

publish current solution; 
12. COMPUTEORIMPROVEPATH() 46. if changes in edge costs are detected 
13. while (NoPathfound) 47. for all changed edges (u, v) 
14. remove n with max key f rom OPEN : 48. Update the edge cost c(u, v): 
15. if (Connect(n, nstart)) 49. UpdateSta te(u) ; 
16. r e tu rn /3-suboptimal pa th ; 50. Update the priorities for all 
17. else 51. n € OPEN according to Key(n); 
18. ExpandNode(n); 

For all n' 6 Pred(n) 
52. CONSISTENCYPROCEDURE() ; 

19. 
ExpandNode(n); 
For all n' 6 Pred(n) 53. decrease 0 or replan from scratch ; 

20. UPDATESTATE(H'); 
9(«') = g(n) + c(n,n')-

54. if ( 0 < 1) 
21. 

UPDATESTATE(H'); 
9(«') = g(n) + c(n,n')- 55. increase /3; 

22. insert n' into OPEN ; 56. CLOSED = 0; 
23. insert n into CLOSED ; 57. 

58. 
while (Not collision-free Path) 

Rearrange Tree; 
24. MAINQ 59. ComputeorlmprovePathQ; 
25. counter = 1; 60. counter — counter + 1; 
26. g(nstart) = g(ngoal) = 0; 61. if (OPEN = 0) 
27. sear ch(n start) = search(ngoai) = 0; 62. pathcost(search(n)) = 0; 
28. /3 = A>; 63. else 
29. OPEN = CLOSED = 0 ; 64. pathcost(search(n)) = g(nstart); 
30. UPDATESTATE(NSTART) : 65. publish current j3—suboptimal solution; 
31. UPDATESTATE(NGOOI) ; 66. if (/? = 1) 
32. insert ngoal into OPEN with key{ngoai); 67. wait for changes in edges cost; 

update of the heuristics of all nodes in Pred(n) in order to make them more informed and 

then allow for later more focused searches. 

FADPRM updates the h-values of node n (line 7) if different conditions are satisfied : 

- The node has not yet been generated by the current search (search(n) ^ counter) 

- The node was generated by a previous search (search(n) ^ 0) 

- The node was expanded by the search that generated it last 

(g(n) + h(n) < path.cost(counter)) 
FADPRM sets h(n) (line 7) to the difference between g{nstart) that is the cost of the path 

from nstart to ngoai during the last search that expanded n and g(n) that remained the same 

since the same search. Dynamic changes in the environment affect (increase or decrease) 

edge costs. Such changes are handled by a consistency procedure, adapted from GAA* 
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and described in Algorithm 3. This procedure invoked at line 52 of the main algorithm 
whenever a cost decrease is observed. When invoked, it updates the h-values with respect 
to the start node. 

Algorithm 3 Consistency Procedure 
01. CONSISTENCYPROCEDUREQ 
02. update the increased and decreased action costs (if any) ; 
03. OPEN = 0 ; 
04. for all edges (n , n') 
05. with (n ^ nstart) and edge cost c,(s, s') decreased 
06. UPDATESTATE(H); 
07. UPDATESTATE(N'); 
08. if O(n) > c(n,n') + h(n')) 
09. h(n) = c(n,n') + h(n') 
10. if neOPEN 
11. delete n f rom OPEN ; 
12. insert n in OPEN with key-value KEY(N); 
13. while (OPEN ^ 0 ) ; 
14. delete n' with smallest key-value from OPEN ; 
15. for all states n ^ nstart with succ(n) = n' 
16. UPDATESTATE(N); 
17. if (h(n) > c(n,n') + h(n')) 
18. h(n) = c(n,n') + h(succ(n')) 
19. Une OPEN 
20. delete n f rom OPEN; 
21. insert n in OPEN with key-value KEY(N); 

The Main procedure in FADPRM first sets the inflation factor f3 to a low value f30, so 
that a suboptimal plan can be generated quickly (line 41). Then if no change in edge costs 
is detected, j3 is increased to improve the quality of its solution (lines 54-55). This will 
continue until the maximum of optimality is reached with 0 = 1 (lines 66-67). 

FADPRM follows also the concept of lazy collision checking. Every time a /3-suboptimal 
path is returned by ComputeorImprovePath(), it is checked for collision. If a collision is 
detected on one of the edges constituting the path, a rearrangement of the roadmap is then 
needed to eliminate nodes involved in this collision (lines 34, 58). FADPRM also handles 
the case of a floating starting configuration (lines 43-44). 

1.4 Experimental Results 

In a first set of experiments, we illustrate and validate the re-planning and anytime 
capabilities of FADPRM in dealing with highly complex environments with preferences. 
In a second set of experiments, we illustrate the search control capability of FADPRM and 
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show how region desirability specifications can help control the exploration of the sampled 
search space and make path-planning more efficient. 

Experiments are made in two different environments : a simulation of the SSRMS on the 
ISS and a Puma robot operating on a car. The SSRMS is the most complex environment: 
7 degrees of freedom, 75 obstacles modeled with 85 000 triangles. The Puma robot has 6 
degrees of freedom and its environment is modeled by approximately 7 000 triangles. 

All experiments were run on a 2,86 GHZ Core 2 Processor with 2GB of RAM. We 
consider paths with a dd of 0, 5 to be neutral, below 0, 5 to be dangerous and above to be 
desirable. More specifically, dangerous zones are given a dd of 0, 2 and desirable ones a dd 
of 0,8. A free configuration of the robot not having any contact with zones is assigned a 
dd of 0, 5. We use path-dd as a measure for path quality. For all experiments, PRM refers 
to an implementation of SBL [58] for Single-query Bidirectional PRM-planner with Lazy 
collision detection. 

1.4.1 Fast-Replanning Capability 

In the SSRMS application, the concept of dangerous and desirable zones is motivated 
by a real-world application dealing with teaching astronauts to operate the SSRMS in order 
to move payloads or inspect the ISS using a camera mounted at the end effector. Astronauts 
have to move the SSRMS remotely, within safe corridors of operations. The definition 
of a safe corridor is that it must of course avoid obstacles (hard constraints), but also go 
as much as possible within regions visible through cameras mounted on the ISS exterior 
(so the astronaut can see the manipulations through a monitor on which the cameras are 
mapped). Hence, safe corridors depend on view angles and lighting conditions for cameras 
mounted on the ISS, which change dynamically with the orbit of the ISS by modifying 
their exposure to direct sunlight. As safe corridors are more complex to illustrate on paper, 
we just picked conical zones approximating cameras view regions and polygonal zones at 
arbitrary locations. Figure 1.2 illustrates a trajectory of the SSRMS carrying a load and 
going through three cameras fields of view (purple, green and blue cones) and avoiding an 
undesirable zone with very limited lighting conditions (rectangular zone in pale red). 

The first experiment illustrates the situation in which a human operator is learning to 
manipulate the SSRMS from a given start configuration to a given goal configuration. To 
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figure 1.2 - SSRMS going through three different cameras fields of view (purple, green and 
blue cones) and avoiding an undesirable zone (rectangular zone in pale red) 

provide feedback on whether he is on the right track, from every current configuration, we 
call the FADPRM planner to calculate a path with a high dd to the goal. If no such a path 
exists, we notify the learner that he is moving the SSRMS to a dead end. Although paths 
are computed to confirm the learner is on the right track, they are not displayed to him. 
Hence while the learner is making suitable progress toward the goal, they are solving the 
problem on their own. 

Figure 1.3 shows the time taken for replanning while the human operator is moving 
the robot toward a goal configuration in the scenario of Figure 1.2. We conducted the expe-
riment three times with the operator doing exactly the same manipulations to reach the goal 

5.00 4.7S 4.SO 4.2S 4.00 3.75 3.50 3.00 2.75 2.50 2.2S 2.00 1.75 1 50 1.25 1.00 0.75 0.50 0.25 

Oistance to Goal configuration 

figure 1 . 3 - FADPRM versus PRM in replannin 
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1 .4 . EXPERIMENTAL RESULTS 

from the start configuration and each time using FADPRM (with /3 = 0) and the normal 
PRM. Except for the first few iterations, FADPRM take less re-planning time than PRM. 
For FADPRM and in the first few iterations, the overhead incurred by the GAA*-based 
exploration dominates the planning time. In later iterations, it is outweighed by the savings 
gained by re-planning from the previous roadmap. 

FADPRM Versus PRM 

- • - F A D P R M (beta = 0.4) 

• • •FADPRM (beta=0) 

PRM 

0 • •• - -
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Q u e r y N 

figure 1.4 - FADPRM versus PRM in planning time 

In Figure 1.4, we compare the time needed for FADPRM and PRM to find a solution for 
15 arbitrary queries in the ISS environment. Since the time (and path quality) for finding 
path is a random variable given the random sampling of the free workspace, for each query 
we ran each of the planners ten times and reported the average planning time. In this case, 
FADPRM is used in a mode that does not store the roadmap between successive runs. 
Before displaying the results, we sorted the PRM setting in increasing order of complexity, 
starting with queries taking less time to solve. 

For FADPRM, we show results with (3 = 0 and /3 = 0,4. With (3 = 0, FADPRM 
behaves exactly like the normal PRM. With f3 = 0,4, planning takes more time for both 
planners. This validates our previous analysis about FADPRM : with (3 = 0, an FADPRM 
planner behaves in way very similar to a normal PRM, but as soon as we start seeking 
optimality (in our case with f3 = 0,4), the time for planning will increase proportionally. 

On an other hand, Figure 1.5 shows that (3 = 0,4 yields higher quality paths than (3 = 0. 
This validates another previous analysis : higher (3 values yield better paths, but take more 
time to compute. 
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| Query N 

figure 1.5 - FADPRM versus PRM in path quality (Path-dd) 

1.4.2 Search Control Capability 

Specifying zone degrees of desirability provides a means to accelerate the computation 
of a path. Since FADPRM explores configurations in the order of specified preferences, it is 
possible to control the search process, via the specification of regions with suitable degrees 
of desirability, so it reaches a solution very quickly on average. 

(a) Scenario 1 with one desirable zone (b) Scenario 2 with two desirable zones and one 
danger zone 

figure 1.6 - Not smoothed paths with FADPRM (/3 = 0, 7) in the ISS environment 

To illustrate the search control capability in the ISS environment, we establish a plan-
ning scenario where the SSRMS has to carry a load to a space shuttle docked to the ISS. 
Path Planning is further made more complex in this scenario with the final configuration 
placed in a narrow passage : near the shuttle and surrounded by a number of modules as 
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shown on Figure 1.6. Normal PRMs start losing efficiency in such areas since the sam-
pling probability becomes very low. In the first experiment (Figure 1.6(a)), we plan for a 
path with a wide desirable zone on the left of the shuttle. In the second experiment (Fi-
gure 1.6(b)), we specify an undesirable zone on the right of the shuttle and two wide de-
sirable zones on the front and on the left of the shuttle. By adding zones with appropriate 
degrees of desirability, we wanted to influence the sampling of the free workspace to yield 
better paths. Here, planning is done without any call to a post-processing smoothing step 
as is usually done with normal PRM planners [58]. This explains why we have awkward 
trajectories on both figures (Figure 1.6). 

FAQ PRM Versus PRM on Scenario 1 of Fig 6-a FADPRM Venus PRM on Scenario 2 of Fig 6-b 

- • - F A D P R M (BETA * 0.7) -V-FADPRM (BETA = 0.4) FADPRM (BETA «Q) PFTM FADPRM (BETA* 0.7) " •"FADPRM (BETA • 0.4) - * - P A 0 P R M (BETA = 0) PRM 

figure 1.7 - FADPRM (/3 = 0 ,4 and f3 = 0, 7) versus PRM in planning time 

In Figure 1.7, we compare the time needed for FADPRM and PRM to find a solution 
for 15 different queries within both scenarios of (Figure 1.6(a)) and (Figure 1.6(b)). For all 
queries, the goal configuration with the carried module inside the shuttle remains the same. 
Start configurations are picked randomly at different locations around the shuttle. For each 
query we ran each of the planners ten times and reported the average planning time. Before 
displaying the results, we sorted the PRM setting in increasing order of complexity, starting 
with queries taking less time to solve. For FADPRM we show the results with j3 = 0, 
(3 = 0,4 and /3 = 0,7. In these experiments, The bias factor 7 that determines the influence 
of the dd on the cost of edges within the roadmap is equal to 0, 5. 

With (3 = 0 FADPRM behaves exactly like a normal PRM in both scenarios yielding 
very complex awkward paths requiring an approximately equivalent time to compute. As 
soon as we start seeking optimality with (3 = 0,4 and j3 = 0, 7, the time for planning in 
the two scenarios increases. In both scenarios, FADPRM with f3 = 0, 7 yield better paths 
than FADPRM with (3 = 0, 4 but takes more computing time. Figure 1.8 confirms this 
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FADPRM In Scenario 1 (Fig 6-a) FADPRM In Scenario 2 (Fig 6-b) 
•-FADPRM (BETA = 0.7) - » - F A D P R M (BETA >0.4) - + - M D P R M (BETA = 0.7) FADPRM (BETA = 0.4) 

figure 1.8 - Path quality with FADPRM (f3 = 0,4 and 3 = 0. 7) 

and shows better quality (i.e., better dd's) for paths computed with FADPRM ((3 = 0, 7) 
compared to paths found by FADPRM ((3 = 0,4). 

If we compare the time taken for planning with the same version of FADPRM (f3 = 0,4 
or (3 = 0, 7) within the two different scenarios of Figure 1.6, we notice that more planning 
time is needed in the scenario of Figure 1.6(a). With larger values of f3, the sampling with 
FADPRM is pushed into areas with high values of dd. If the workspace is not covered with 
enough desirable zones, the planner may remain stuck sampling within one desirable zone 
of the workspace. This explains the problem of local minima we see on Figure 1.7 with 
FADPRM in scenario of Figure 1.6(a). The more f3 is increased, the more the sampling is 
pushed within high dd zones. This explains why the local minima problem is more frequent 
with FADPRM with (3 = 0, 7. By increasing the coverage of the workspace with more 
desirable and undesirable zones like in Figure 1.6(b), we significantly improve the planning 
time needed for finding an optimal solution and considerably reduce the probability of 
having the local minima problem (Figure 1.7). 

The factor 7 determines the influence of the dd on g{n) and on h{n). With 7 = 0, 
nodes with high dd are privileged, whereas with 7 = 1 and with the dd of all nodes equal 
to 1, nodes with least cost to the goal are privileged. In the following experiment, we test 
the influence of different values of 7 on the planning time with FADPRM (/3 = 0,7) in 
the scenario of Figure 1.6(b) with a well constrained workspace. Seeking optimality in the 
robot path takes more time and can lead to local minima problems. With FADPRM, the 
local minima problem can have two reasons : 

1. distance-minima problem : the planner remains stuck sampling without success in a 
narrow passage around a configuration too close to the goaZ-configuration. 
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FADPRM w i t h be ta = 0 .7 o n Scenar io 2 o f Fig 6 -b 

" • • F A D P R M (gamma = 0.S) FADPRM (gamma = 0.2) 

Local 
Minima 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Q u e r y N 

figure 1.9 - Planning time with FADPRM (j3 = 0, 7) with 7 = 0, 5 and 7 = 0, 2 

2. cM-minima problem : the planner remains stuck sampling without success within a 
tiny desirable zone of the workspace like in the scenario of Figure 1.6(a). 

By increasing the influence of dd on the cost of nodes, we reduce the probability of having 
the distance-minima problem. By increasing the coverage of the workspace with desirable 
and undesirable zones, we reduce the probability of having the dd-minima problem. This 
explains why in Figure 1.9, FADPRM with 7 = 0, 2 take less time for planning compared 
to FADPRM with 7 = 0, 5. More importantly, no occurrence of the local minima problem 
is observed with FADPRM (7 = 0, 2). 

1.4.3 Path-Quality Control Capability 

With randomized path planners, paths are obtained by connecting milestones that are 
randomly sampled in the free workspace and this tends to yield awkward paths, requiring 
heuristic post-processing operations to smooth them. With FADPRM, it is possible to in-
fluence the sampling strategy and generate less awkward paths by specifying zones we 
prefer them to go through or zones we want them to avoid. 

In Figure 1.6, we notice an improvement in the smoothness of the path generated with 
FADPRM on the scenario of Figure 1.6(b) compared to the path on Figure 1.6(a). In Fi-
gure 1.11, we measure the time needed for smoothing the paths (as shown on Figure 1.10) 
found on the 15 queries of Figure 1.7. 

Compared to normal PRM, FADPRM (with j3 = 0,4 or j3 = 0, 7) always produces 
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(a) with one desirable zone (b) with two desirable zones and one danger zone 

figure 1 .10- Smoothed paths with FADPRM in the ISS environment (/3 = 0,7) 

paths that need less post-processing smoothing time. In both scenarios, FADPRM with 
(3 = 0, 7 needs less time for smoothing than FADPRM with 8 = 0,4. Here, we notice that 
the more we seek optimality in the robot path, the less awkward solution paths are, which 
explains why they require less time to smooth. 

figure 1 .11- FADPRM versus PRM in smoothing time 

We also notice that for both versions of FADPRM (with f3 = 0,4 or j3 = 0, 7), more 
smoothing time is required in the first scenario on Figure 1.6(a). The more the path is 
constrained with desirable and undesirable zones within the workspace, the more quality 
and efficiency we guarantee in the solution path. That is, the path is smoother and requires 
less time to smooth. 

Figure 1.12 confirms the same results found with not smoothed solution paths on Fi-
gure 1.8. Increasing j3 into FADPRM yields smoothed paths with better quality in terms of 
degrees of desirability. Also the more we cover the workspace with desirability zones, the 
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FADPRM In Scenario 1 (Fig 6-a) FAOPRM In Scenario 2 (Fig 6-b) 
- • - F A D P R M (BETA = 0.7} ' • • F A D P R M {BETA = 0.4) FADPRM (BETA = 0.7) FADPRM (BETA «0.4) 

figure 1.12 - FADPRM versus PRM in path quality of smoothed paths 

more this path quality is enhanced. Zones with degrees of desirability provide a mean to 
specify a sampling strategy that controls the search process to generate better paths (bet-
ter dd's and better smoothness) by simply annotating the 3D workspace with the regions' 
degrees of desirability. - * 

1.4.4 Generality of the Results 

By running the previous experiments on several randomly chosen samples and reporting 
the average results, we somewhat try to verify that FADPRM features are not dependent 
on one specific scenario. Obviously, the ISS domain has a specific structure. Runs on dif-
ferent domains are necessary to increase confidence in the generality of the observed per-
formances of FADPRM. In this regard, we did numerous experiments on a simulated Puma 
robot operating on a car. The obtained results confirm those in the SSRMS domain. 

For instance, to evaluate the search-control capability of FADPRM, in one of the experi-
ments we specified a small desirable zone (see Figure 1.13(a)) and in another, we specified 
a wider desirable zone (in front of the car) and a wide undesirable zone (in the back) (see 
Figure 1.13(b)). In both set of experiments, we wanted to influence the sampling of the free 
workspace to yield paths that move the robot in front of the car (from the left side, to the 
front, then to the right side). 

By specifying a desirable zone on the right front of the car as shown in Figure 1.13(a) 
and running FADPRM planner many times on the same query (input/goal configuration), 
they yielded better paths, on average, than PRM. On the other hand, by enlarging the size 
and coverage of the desirable zone and adding an undesirable zone (right, on the back of 
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(a) (b) 

figure 1 .13 - PUMA robot around a car 

the car), as shown in Figure 1.13(b), we noticed that the quality of paths increased by a 
percentage of 50% over 100 trials. The second experiment succeeds more often because 
the path is more constrained; a wider desirable zone on the front of the car together with an 
undesirable zone on the back of the car, make the probability of sampling a configuration 
along the desirable region higher than in the first set-up. 

Evolution of Path d d wi th FADPRM (beta = 0.4) 

- • - F i g 13-a -» -F ig 13-b 

=9 

7 S 
Time (s) 

13 M IS 

figure 1.14 - Path quality evolution with FADPRM 

Figure 1.14 shows the anytime capability of FADPRM (with /? = 0,4) on these two 
experiments. We notice the continuous improvement of the path quality (path — dd) for the 
two settings. The more time it is given, the better the path provided by FADPRM will be. 
The results here confirm the observations noticed in the first experiment with the SSRMS. 
Handling zones with degrees of desirability provides FADPRM with a powerful sampling 
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strategy that helps generate better quality paths. And the better is the coverage of the works-
pace with preference zones, the more optimal (in terms of degrees of desirability), the so-
lution path to which FADPRM converges will be. 

1.5 Conclusion 

In many real world path planning applications, in addition to obstacles that must be 
avoided, we may have areas that the body is preferred to avoid (or, conversely, to go 
through) as much as possible. This is the case in the ISS domain where preferences are 
tied to camera views which change dynamically, in part because of varying environmental 
conditions throughout the orbit. 

In this paper, we presented a new randomized approach for robot path planning which 
extends the PRM framework to handle a workspace containing regions with degrees of 
desirability. Our approach integrates dynamic and anytime search exploration strategies to 
deal with problems in dynamic environments where obstacles and region desirability can 
change in real-time. The dynamic strategy allows the planner to re-plan efficiently by ex-
ploiting results from previous planning iterations. The anytime strategy starts with a quickly 
computed path with a potentially low degree of desirability which is then incrementally im-
proved if more planning time is allowed. 

The experiments validated the different features of FADPRM on two particular path-
planning domains. Although we obtain good path quality and better re-planning time than 
normal PRM approaches, there remains potential for improvement on both dimensions. 
Paths still need to be smoothed in post-processing and for real-time applications we still 
want a planning algorithm that is as fast as possible. We will therefore continue to explore 
ways to improve our approach and look for alternatives. 

FADPRM is a component in a large simulation prototype for training astronauts on the 
SSRMS. It is invoked by an intelligent tutoring system (ITS) to monitor robot operations 
carried out by a student and provide feedback on how to control the arm. For instance, 
given the task of moving the SSRMS from one configuration to another, the ITS can try 
computing a path from the current configuration to the goal and advise the student when the 
current configuration seems to be a dead-end. The student can then backtrack to a previous 
point from which better paths to the goal are available. 
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Chapitre 2 

Planification automatique de cameras 
pour filmer des operations robotisees 

Resume 

Dans le monde du cinema, les metteurs en scene ont elabore des principes et 
des regies cinematographiques pour montrer la fagon dont differentes categories 
de scenes impliquant 1'interaction entre personnages doivent etre filmees [2, 50]. 
Inspirees par ces methodes, differentes approches pour le controle automatique 
de la camera ont emerge dans le domaine de l'infographie et dans quelques do-
maines connexes comme les jeux video, 1'animation par ordinateur et la realite 
virtuelle [5, 25, 33], Ces approches permettent la generation automatique d'ani-
mations 3D avec haute precision sans ou avec un minimum de support des ani-
mateurs et des programmeurs. 

Dans 1'article qui suit, nous presentons une nouvelle approche de planifica-
tion de cameras qui utilise la logique temporelle lineaire (LTL) [3] pour speci-
fier les principes et regies cinematographiques. Par rapport aux approches exis-
tantes dans la litterature et avec 1'utilisation de LTL, nous obtenons un langage 
avec une semantique plus claire et une syntaxe plus intuitive pour exprimer les 
regies de composition cinematographique. L'algorithme de planification sous ja-
cent TLPlan [3] est egalement plus efficace que les planificateurs utilises dans les 
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approches precedentes. En effet, TLPlan implemente une strategie de controle de 
la recherche lui permettant de restreindre la planification seulement sur les etats 
compatibles avec les formules LTL objectifs instaurees, qui dans notre cas trans-
mettent les regies de composition cinematographiques. 

Le nouveau planificateur de cameras est integre dans ATDG, un systeme de 
planification automatisee pour la production de demonstrations de taches 3D im-
pliquant la manipulation du SSRMS sur la station spatiale internationale (SSI). 
Une tache de manipulation typique consiste a deplacer le bras robot d'une confi-
guration a une autre dans l'environnement de la SSI. Le principal defi est de 
planifier automatiquement les meilleures configurations de cameras pour filmer 
le bras de la maniere la plus comprehensible par l'utilisateur. La trajectoire du 
robot est generee en utilisant le planificateur de trajectoires FADPRM (voir cha-
pitre precedent). Le planificateur de cameras TLPlan est alors invoque pour trou-
ver la meilleure sequence de configurations de cameras filmant le robot sur sa 
trajectoire. 

Commentaires 

L'article presente dans ce chapitre a ete soumis au journal "International Jour-
nal of Knowledge-Based and Intelligent Engineering Systems". Une version plus 
courte de ce travail a ete publiee dans les actes de "International Conference on 
Automated Planning and Scheduling" [34]. Ces travaux ont ete effectues en col-
laboration avec Philipe Bellefeuille dans le cadre de sa maitrise en informatique 
a l'Universite de Sherbrooke. L'adaptation de TLPlan pour filmer des operations 
robotisees a ete implementee par Philipe. L'ensemble de ces travaux ont ete reali-
ses, valides et rediges sous la supervision du Professeur Froduald Kabanza (Uni-
versite de Sherbrooke) et avec les conseils du Professeur Leo Hartman (Agence 
spatiale canadienne). 
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Abstract 

Automatic 3D animation generation techniques are becoming increasingly pop-
ular in different areas related to computer graphics such as video games and ani-
mated movies. They help automate the filmmaking process even by non profes-
sionals without or with minimal intervention of animators and computer graphics 
programmers. Based on specified cinematographic principles and filming rules, 
they plan the sequence of virtual cameras that the best render a 3D scene. In 
this paper, we present an approach for automatic movie generation using lin-
ear temporal logic to express these filming and cinematography rules. We con-
sider the filming of a 3D scene as a sequence of shots satisfying given filming 
rules, conveying constraints on the desirable configuration (position, orientation, 
and zoom) of virtual cameras. The selection of camera configurations at differ-
ent points in time is understood as a camera plan, which is computed using a 
temporal-logic based planning system (TLPlan) to obtain a 3D movie. The cam-
era planner is used within an automated planning application for generating 3D 
tasks demonstrations involving a teleoperated robot arm on the the International 
Space Station (ISS). A typical task demonstration involves moving the robot arm 
from one configuration to another. The main challenge is to automatically plan 
the configurations of virtual cameras to film the arm in a manner that conveys the 
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1 .1 . INTRODUCTION 

best awareness of the robot trajectory to the user. The robot trajectory is gener-
ated using a path-planner. The camera planner is then invoked to find a sequence 
of configurations of virtual cameras to film the trajectory. 

2.1 Introduction 

Filmmakers have developed different cinematography principles and rules stating how 
different categories of scenes evolving interacting characters should be filmed [2, 50], 
Inspired by these methods, different methodologies for automatic camera control have 
emerged in computer graphics and related areas such as computer games, computer ani-
mation and virtual reality [5, 25, 33], They allow the automatic generation of accurate 3D 
animations without or with minimal support from computer graphics professionals. An ex-
ample of application is the automatic generation of movies showing a replay in a game such 
as soccer, hockey or basketball. In this paper, we present a camera planning approach that 
uses Linear Temporal Logic (LTL) [3] to specify cinematographic principles and filming 
rules. This is a more detailed account of the work presented in [34]. Compared to existing 
planning approaches, by using LTL we get a language with clear semantics for expressing 
camera planning rules and with an intuitive syntax. The underlying TLPlan planning algo-
rithm [3] is also more efficient than the planners underlying previous approaches, because 
of the intrinsic ability of TLPlan to prune the search space by removing state trajectories 
inconsistent with the input LTL goal formula. In our case the LTL goal formula specifies 
composition rules. 

Camera planning approaches found in the literature rely on filming primitives that cap-
ture and convey cinematographic principles specific to the domain of actors. These prim-
itives are not relevant for filming a robot arm (since the points of interests and types of 
actions are different), but they can be adapted. As part of this adaptaion, in particular, we 
had to develop an ontology of meaningful elementary movements for robot arms relating 
to task descriptions. 

The camera planner is integrated into an Automatic Task Demonstration Generator or 
ATDG, a fully automated system that we developed to generate 3D task demonstrations of 
the manipulations made by an astronaut with a simulated Space Station Remote Manipu-
lator (SSRMS). The SSRMS is a 17-meter long articulated robot arm on the International 
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Space Station (ISS). It has a complex geometry, with seven rotational joints, each with a 
range of ±270 degrees. Astronauts operate the SSRMS through a workstation located in-
side one of the ISS compartments. Tasks consist of manipulating the SSRMS from one 
configuration to another in order, for example, to move a payload or inspect a region of the 
ISS exterior using a camera mounted on the end effector. The current ATDG prototype is 
integrated within a proof-of-concept simulator called ROMAN Tutor (RObot MANipula-
tion Tutor) for the command and control of the SSRMS that we have also developed [35]. 
Figure 2.1 shows a snapshot of the simulator. 

Movement W P \ -180.529444. -160.172366 ,168.940609 ] & 
Movement W P [ -180.469350. -160.023379, 166.904245] 
Movement W P | -188.407414 , -159.875247, 169.867490) 
Movement SP ( -180.407414. -1S9.07S247 .168.867480 1 ' 
Movement SY | -180.407414. -159.375247. 168.867400 ] 

yT̂flTÔBIÎwisB̂MHWffli1!̂  flilrrf1 

Figure 2.1: Roman tutor interface 

One motivation for this application is to support ground operators in planning SSRMS 
manipulation tasks for the ISS. Given a new task, or given changes to a task previously 
planned, ATDG automatically and efficiently generates 3D demonstrations of the task with-
out or with minimal intervention of computer graphics programmers. Another motivation 
is to use automatically generated demonstrations in a 3D training simulator to provide feed-
back to student astronauts learning to manipulate the robot arm. 

In the next section, we give the most relevant background. We then describe the Auto-
matic Task Demonstration Generator, the system application that motivated our research. 
After a detailed study of our temporal camera planning approach in a next paragraph, we 
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2 . 2 . BACKGROUND 

illustrate with some experiments that shows some of its merits. 

2.2 Background 

2.2.1 Virtual Camera and Virtual Camera Planning 

An animation is a rapid display of a sequence of images. To create the illusion of move-
ment, an animation displays from 24 to 30 images per second (frames per second or fps). 
On each frame, a 3D virtual camera has at least seven degrees of freedom for position, 
orientation and field of view (Figure. 2.2). Planning camera configurations consists of gen-
erating a series of camera configurations, each corresponding to one frame of the desired 
final movie. The search space for possible solutions is then very large. 

2.2.2 Scenes, Shots and Idioms 

To help simplify the calculation of the frame sequences composing a film, camera plan-
ning approaches borrow some concepts from the world of cinematography to abstract the 
camera configuration's search space and reduce its combinatorial complexity. Specifically, 
a movie is hierarchically decomposed into scenes and shots (Figure 2.3), and the concept 
of idiom. 

A scene is a distinct narrative unit usually characterized by unity of location or unity of 
time. For the case of robotic manipulations, we consider a scene as a distinctive movement 

{X, Y, Z , RY RY, RPFOV] 

Figure 2.2: Degrees of freedom of a virtual camera 
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of the robotic arm (e.g., translation along the mobile base, or moving the end effector 
towards a given position). A scene is defined as a sequence of shots. A shot in turn is 
defined as a continuous succession of images taken by one camera (each generally lasts a 
few seconds). Figure 2.3 illustrates this film hierarchy.1 

Figure 2.3: Film abstraction hierarchy 

An idiom describes how a scene can be filmed, that is, how the different shots compos-
ing a scene can be taken. For instance, an idiom for a conversation between two people 
will specify the number of shots and how the camera for each shot is placed and config-
ured. In general we have different ways of filming a scene. Hence we have different idioms 
for a scene. But in a film, for each scene only one specific idiom will be selected and ap-
plied. Similarly, for each scene illustrating a distinctive movement of the SSRMS, different 
idioms for filming the movement can be applied. 

2.2.3 Camera Planning Approaches 

Given the previous hierarchical movie decomposition, the problem of automatically 
generating a movie essentially becomes one of determining what shot to make at different 
segments of the scene. This is often understood as a camera planning problem, that is, 
determining the sequences of shots given a goal corresponding to what meaning should be 
conveyed by the movie (e.g., in our application a looming collision or the arm going too 
fast ; in other applications a person running, a happy person or a conversation among a 

1. A more general film hierarchy considers two additional granularity levels, where a film consists of acts, 
an act comprises sequences, and a sequence contains one or more scenes. Our hierarchy stops at the scene 
level. 
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group of people). 
Previous automated camera planning approaches in the literature can be grouped into 

two main categories: constraint approaches and cinematographic approaches. Constraint 
approaches film a scene (i.e., its objects or background, static or in motion) based only on 
the geometry of the scene. Constraints on the camera (position, view angle, zoom, covered 
objects or regions) are essentially geometric (e.g., filming a moving character during 20 
minutes, without any occlusion of the camera). There are no explicit constraints associated 
with actions involving objects in the scene. For instance, in previous approaches we cannot 
express a constraint such as "if the person is moving then his legs must remain in the camera 
view angle during the motion". 

One of the earliest attempt to put these concepts into practice was made by Blinn [10]. 
His algorithm could find the required camera configuration (position and orientation) start-
ing from some constraints on the content of the images to produce. Later, more sophis-
ticated constraint camera planning systems were proposed. The system developed in [8] 
uses camera motions constraints expressed using a system of polynomial equations. The 
Cinema system [21 ] has a procedural interface for specifying camera movements relative to 
objects, events, and the general state of an environment. The Virtual Cameraman [32, 42] 
provides the user with camera movements satisfying user defined constraints specified in 
the image space and/or constraints on the objects of the scene. Bares et al. developed Con-
straintCam, a real-time camera engine for dynamic 3D environments [4], Three classes of 
constraints are implemented within ConstraintCam: viewing angle, viewing distance and 
occlusion avoidance. CamPlan [28], a camera planning subsystem for polygonal graphics, 
uses a genetic algorithm to optimize the camera with respect to a set of image objectives. 

The approach in [53] could also be seen as a constraint or geometric approach, although 
not explicitly introduced that way. Camera placements are seen as configurations in a 
probabilistic roadmap; a camera plan (for example, to navigate in a museum from one point 
to another) becomes a trajectory in the roadmap, obtained using probabilistic roadmap 
algorithms normally used for articulated bodies (e.g., robots) combined with some post 
processing to smooth the view angles and the zoom. 

Constraint approaches operate at the frame level and are not appropriate for filming a 
complex task (e.g., a moving robot) during which the camera has to constantly adapt to the 
context in which the task is being carried out. In other words, they cannot dynamically take 
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into account the semantics associated with actions in the task. In fact, for a dynamic han-
dling of the action semantics, we need to use cinematographic camera planning approaches 
which operate at the shot level. 

At the shot level, rules for composing (or sequencing) shots depending on the type of 
action being filmed are specified. This way, a scene can be filmed while taking into account 
constraints on actions in addition to geometric constraints. For example, we may want to 
specify a rule such as if you are filming a sequence of shots showing one person talking to 
another, the faces of both people should remain in the camera view angle. Or, if the end 
effector of the SSRMS is aligned with some visual cue on the ISS then we would like to 
film it with the cue in view (e.g., near the Canadian flag for example) and thereby make the 
astronaut more aware of the current configuration of the robot. 

The Camera Planning System (CPS) of [15] is an example of a cinematographic camera 
planner. It automatically generates camera positions based on idioms specified in a declar-
ative camera control language (DCCL). The language provides four primitive concepts, 
namely, fragments, views, placements, and movement endpoints. By camera placement 
we mean a continuous sequence of camera configurations over a period of time (or equiv-
alently, from one point of the scene to another). These quite intuitive primitives are then 
combined to specify higher-level constructs such as shots and idioms. An example of a 
fragment is a go-by shot which represents a static camera overseeing a given region for a 
given period. Using these DCCL primitives, the user can specify idioms indicating how to 
film objects of interest. For example, we can specify how to film two people approaching 
each other: the camera could show one person advancing at some time; then switch to a 
close position where we see both of them, and finally slightly moving away from the target. 
The generic aspect of the system comes from the fact that the same scene can be filmed the 
same way regardless of the involved characters. Also, one can change the filming of the 
scene by specifying a different idiom, without going into the details of the computer graph-
ics, which are filled in automatically through the primitive operators. The approach in [5] 
is analogous, with the difference that users can specify visual preferences about how ob-
jects should be filmed. Given such preferences, the system UCAM selects the best camera 
placements that satisfy those preferences. 

The approach in [27] combines constraint (frame level) and cinematographic (shot 
level) approaches to generate more refined films. The algorithm takes as input a geo-
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2 . 3 . N E E D S FOR A C A M E R A P L A N N I N G APPROACH FOR VIEWING ROBOT 
M A N I P U L A T I O N TASKS 

metric description of the scene (e.g., the object in the scene one would like to see) and 
plans the camera positions accordingly, while taking into account cinematographic princi-
ples regarding camera placements. Geometric frame-level constraints are solved using a 
contraint-solving technique, in which constraints can relate to the height angle, distance to 
the target, and orientation of the camera. 

Tomlinson et al. [62] implemented an autonomous cinematography system based on 
the autonomous character design work of the Synthetic Characters Group at the MIT Me-
dia Lab. Their system used expressive and user-controlled characters to drive the on-the-fly 
selection of shots in a virtual collaborative 3D environment. Friedman et al. [25, 26] im-
plemented a knowledge-based system that allowed users to express cinematography pref-
erences in a specific language and produce automatic animated 3D movies accordingly. 
More recently, Jhala and Young [33] developed a camera planning system that mirrors the 
film production pipeline in narrative-oriented virtual worlds. In more of finding the best 
framing for shots to determine geometrically smooth transitions between them, their sys-
tem exploits the narrative structure and the causal relationships between shots and scene 
segments to find better camera configurations. 

2.3 Needs for a Camera Planning Approach for Viewing 
Robot Manipulation Tasks 

All the previous approaches were developed for domains with predefined story scripts 
and in which subjects are characters and objects as normally found in movies or video 
games. They assume a finite number of primitive filming operators which convey cine-
matographic principles proper to the domain of actors. To illustrate, "Extreme Close Up" 
is a primitive consisting of using a camera zoom on the face of a person being filmed. There 
are a small number of such primitives [15, 5, 26]. 

Filming an articulated robot arm introduces additional challenges not explicitly envi-
sioned in these approaches. First of all, the cinematographic principles for filming actors 
are different from those of filming a robot task given that the points of interests and types 
of actions are different. A specific ontology for filming robot tasks is necessary and it 
must include types of meaningful elementary movements for robot arms, relations of those 

4 6 



2 . 4 . THE AUTOMATIC TASK DEMONSTRATION GENERATOR 

elements to tasks and to filming idioms. We initiate this quest for such ontological defini-
tion of camera planning in the domain of articulated robot arms by proposing one for the 
SSRMS. 

Another particularity of filming robot tasks is that the trajectory, motion and actions 
of the robot being filmed are not known in advance. In other words, tasks and underlying 
trajectories in our domain are not scripted in advance. As we mentioned, given a task, we 
generate a trajectory of the robot accomplishing the task by using a path planner. This tra-
jectory is automatically decomposed into meaningful segments (shots) according to some 
heuristics. 

Once we have an ontology for the right filming primitives and an on-the-fly decomposi-
tion of a robot trajectory into shots, in principle the previous approaches (like DCCL) could 
be easily adapted to film the robot. However, here we opt rather for using LTL [3] as the 
language for specifying shot composition rules. The advantage of LTL over the languages 
used in previous approaches, such as DCCL, is that LTL has well defined semantics. With 
LTL, we can express arbitrary temporal conditions about the order in which objects should 
be filmed, which objects should remain in the background until some condition become 
true as well as more complex constraints. Another advantage of adopting LTL is that the 
underlying TLPlan planning algorithm is far more efficient than the planning systems un-
derlying previous cinematographic approaches. For instance, DCCL was handled using a 
variant of UCPOP [15]. TLPlan was shown to outperform such planning systems by several 
orders of magnitude [3]. 

2.4 The Automatic Task Demonstration Generator 

The automatic task demonstration generator (ATDG) takes as input start and goal con-
figurations of the SSRMS. Using those two configurations, the ATDG generates a movie 
demonstration of the required manipulations in order to bring the SSRMS from its start 
configuration to its goal configuration. The top figure in Figure 2.4 illustrates the internal 
architecture of the ATDG. The bottom one shows the different steps the data go through in 
order to transform the two given configurations into a complete movie demonstration. 

First, the ATDG uses a path planning algorithm (i.e., the Flexible Anytime Dynamic 
Probabilistic Roadmap (FADPRM) planner [7]), which takes the two given configurations 
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Figure 2.4: ATDG architecture 

and generates a collision free path between them. This path is then given to the trajectory 
parser which separates it into categorized segments. This transforms the continuous tra-
jectory into a succession of scenes, where each scene can be filmed by a specific group of 
idioms. The parser looks for uniformity in the movements of the SSRMS. This process is 
described in greater detail in the next section. 

Once the path is parsed, the camera planner uses TLPlan to find the shots in order to 
best convey each scene, while making sure that the whole is pleasing and comprehensive. 
To do this, TLPlan uses an idiom database to help it find the best way to film each scene. 
In addition to the idiom database, TLPlan applies a set of LTL shot composition rules 
to generate a movie that is visually appealing and coherent. TLPlan further applies an 
occlusion detector to make sure the SSRMS is visible all the time. Once TLPlan is done, 
we are left with a list of shots that is used by the rendering system to create the animation. 
The renderer uses both the shots given by TLPlan and the SSRMS trajectory in order to 
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position the cameras in relation with the SSRMS, generating the final task demonstration. 

2.5 Camera Planning Approach 

2.5.1 Segmenting the Robot Trajectory into Scenes 

In order to divide the animation into short sequences as a human would, we must study 
the robotic arm's trajectory. Indeed, it is the only factor that can be used to split the movie 
since everything else in the scene is stationary. We implemented two different complemen-
tary ways to proceed with this partitioning task. 

Dividing according to elementary movements 

The idea here is to define some elementary motions of the robotic arm that the seg-
mentation algorithm is able to recognize in the trajectory. Presently we use the following 
elementary motions, based on an intuitive analysis of the different movements of an arm 
one wants to recognize. 

- Vertical elevation: The arm moves up, due to the elbow joint or the pitch shoulder 
joint. This movement occurs when we need to elevate a load to avoid an obstacle, for 
example. 

- Lateral rotating motion: The movement of the yaw shoulder joint dominates and 
causes the arm to move laterally, possibly to transfer to another local region of the 
station when no obstacles lay between. 

- Static rotation: This movement corresponds to a rotation of the shoulder-elbow seg-
ment, controlled by the roll shoulder joint. 

- Wrist movement: As the name indicates, here only the wrists joints are moving sig-
nificantly. 

- Rail translation: The arm translates from one point to another along the rectilinear 
rail on the ISS. This movement is used when the arm needs to change to a different 
work area. 

The algorithm used to detect these movements consists of calculating the elementary 
variations along each of the robotic arm's 7 degrees of freedom frame by frame and cutting 
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the trajectory when the nature of the movement changes. We can then film each segment 
by selecting and then applying an idiom well suited to the elementary motion. 

Dividing according to objects and regions of interest 

We also segment the trajectory according to its variation with respect to given obstacles 
or visual cues. When the variation reaches a fixed threshold, we have a transition to a new 
segment. The lower level implementation invokes the graphics Proximity Query Package 
(PQP) [43] to calculate the distances from the arm to given obstacles or cues. In this way we 
can also define segmentations of the arm depending on whether the entire arm or selected 
parts of the arm move from one zone of interest to another. 

2.5.2 Specifying Shots and Idioms 

A shot is specified by five components: shot type, camera placement mode, camera 
zooming mode, side of the line of interest and length. 

- Shot Types: Five shot types are currently defined in the ATDG System: Static, GoBy, 
Pan, Track and POV. A Static shot is done from a static camera when the robot is in a 
constant position or moving slowly. A GoBy shot has the camera in a static position 
showing the robot in movement. For a Pan shot, the camera is in a static position but 
doing incremental rotations following the movement of the robot. A Track shot has 
the camera following the robot and keeping a constant position relative to it. Finally, 
the POV shot has the camera placed directly on the SSRMS, moving with the robot. 

- Camera Placements: For each shot type, other than POV, the camera can be placed 
in five different ways according to some given line of interest: External, Parallel, 
Internal, Apex and External II (Figure 2.5). In the current implementation, the line of 
interest is the trajectory along which the center of gravity of the robot is moving; this 
is sufficient for filming many typical manoeuvres. POV is treated separately. Since 
the camera is directly on the SSRMS, the previously described camera placements 
are inapplicable. This attribute is instead used to specify where on the robot arm 
the camera is placed (such as on the end effector, on some joint, in the middle of a 
segment, etc.). 
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Line of Interest 

External Internal External II 

Apex 

Figure 2.5: Camera placements 

- Zoom modes: For each shot type and camera placement, the zoom of the camera can 
be in five different modes: Extreme Close Up, Close Up, Medium View, Full View 
and Long View. 

- Side: Each shot type other than POV can be taken from either side of the line of 
interest or from above. In the case of POV, this attribute is used to tell whether 
the camera is forwards or backwards of the SSRMS. Shots from above help achieve 
smooth transitions between a shot from one side to a shot from the other side of the 
line of interest or can be used when the robot is flanked on both sides by obstacles. 

- Length: The length is a fraction of the scene occupied by the shot. The total length 
for all shots in a scene must be 1. For instance, if the first shot has a length of 0,25, the 
second, a length of 0,5 and the last a length of 0,25, while the scene lasts 2 seconds, 
then the first shot will end after half a second, the second will then start and end at 
1,5 seconds, and so on. 

More shot types, camera placements and zoom modes will be added in the future to 
specify a greater variety of shots. We are now in position to explain how idioms are for-
malized. An idiom is specified by describing the sequence of shots composing it. Figure 2.6 
shows three examples. 

Each idiom consists of an identifier, the scene to which it is applicable, the number of 
shots and then the shots. Thus the first idiom is applicable to a translation of the SSRMS 
along its mobile base and it contains three shots. The idiom states that a translation can 
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(idioml translation 3 
(go-by external medium-view 0,25 left) 
(go-by parallel full-view 0,5 left) 
(pan internal full-view 0,25 left)) 

(idiom2 translation 3 
(static external medium-view 0,25 right) 
(static apex medium-view 0,67 right)) 
(static parallel closeup-view 0,67 right)) 

(idiom3 effector 3 
(pan parallel full-view 0,33 left) 
(static parallel closeup-view 0,67 left)) 

Figure 2.6: Examples of idioms 

be filmed by first placing the camera external to the robot using a medium view zoom, 
following the SSRMS for a quarter of the whole movement, then changing to a full view 
zoom while still following the robot on a parallel course for half the scene and then stopping 
and using a pan shot with the camera rotating to follow the robot for the rest of the way, 
still at a full view zoom. This is just one of the many ways such a scene could be filmed. 
There are other idioms specifying the alternatives. 

For instance, idiom2 illustrates another way of filming a translation of the SSRMS along 
its mobile base to anchor a new module on the ISS. In this case, we start with a static shot 
showing the robot approaching the destination module of the ISS using an External camera 
placement to have a good visualization of the destination module; the zoom is medium 
to have a good view of the approach. The second shot is also static but with an Apex 
placement to show the robot approaching the destination module. The last shot switches to 
a Close Up Static view to give a good appreciation of the anchoring operation. 

The third idiom describes a sequence of shots for filming the SSRMS's end effector 
fixing a new component on the ISS. The first shot is a pan shot following the rotation of the 
robot to the anchor point. The last shot is a static shot focusing on the joint at the extremity 
of the robot while fixing the new component on the desired target. 

Thus for each SSRMS movement type (or scene), we have several idioms (from six 
to ten in the current implementation) and each idiom is defined by taking into account 
the complexity of the movement, the geometry of the ISS, the visual cues on the ISS and 
subjective expectations of the viewer. For example, if the SSRMS is moving along its 
mobile base, it is important that the camera shows not only the entire arm but also some 
visual cues on the ISS in order to provide situational awareness of the relocation of the 
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mobile base. Consequently, the idioms for this manipulation involve shots with a Full or 
Long View zoom. In contrast, manipulations involving the end effector require a high 
precision, so an Extreme Close Up zoom will be involved. 

2.5.3 Specifying Shot Composition Rules 

The description of idioms is based on considerations that are local to a scene. Shots 
within an idiom are in principle sequenced coherently with respect to the scene, but this 
does not guarantee that the sequencing of scenes is coherent too. The role of shot compo-
sition rules is to ensure that selected idioms generate a continuous animation with smooth 
transitions between scenes and with some global constraints that must be respected across 
the entire film. Such global shot composition rules are expressed in LTL. 

As mentioned before, LTL is the language used by TLPlan to specify temporally ex-
tended goals [3]. LTL formulas are interpreted over state sequences [3], In our case, a 
state conveys some properties about the current shot, hence LTL formulas are indirectly 
interpreted over sequences of shots. In the LTL language, one uses the temporal modalities 
next, always, eventual, until, combined with the standard first order connectives, 
to express temporal statements. For instance, (next f ) , where f is a formula means 
that f is true in the next state; (always f) means that f holds on the entire state se-
quence; similarly for the other modalities, they have the intuitive semantics suggested by 
their names. Given a planning domain, an initial state and an LTL temporally extended 
goal, TLPlan computes a plan, as a sequence of actions, such that the underlying sequence 
of states satisfies the goal. 

;; line of interest 
(always 

(and 
(forall (?t0 ?p0 ?z0 ?10) 

(current-shot ?t0 ?p0 ?z0 ?10 right) 
(next (not (exists (?tl ?pl ?zl ?11) 

(current-shot ?tl ?pl ?zl ?11 left))))) 
(forall (?t0 ?p0 ?z0 ?10) 

(current-shot ?t0 ?p0 ?z0 ?10 left) 
(next (not (exists (?tl ?pl ?zl ?11) 

(current-shot ?tl ?pl ?zl ?11 right))))))) 

Figure 2.7: A shot composition rule 

Figure 2.7 illustrates an LTL shot composition rule forbidding the selection of two dif-
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ferent sides for two successive shots. This implements a cinematography rule that prevents 
crossing the line of interest because it could induce a misunderstanding of the manipulation 
performed. This idiom will require TLPlan to insert an intermediate shot in order to satisfy 
the requirement. 

2.5.4 Planning the Cameras 

When searching for a sequence of shots to satisfy a goal, shots are evaluated using 
the Occlusion Detector function according to their degree of occlusion. Specifically this 
function measures the degree of visibility of the robot within the shot. This is done by 
examining each image in the shot and evaluating the number of joints present in the image 
and the zoom made on the robot. The quality measure on each image is heuristically defined 
b y : 

ushot = (NbrjV/NbrjT + SR/ST)/2, 

with : 
- NbrJV : Number of joints visible in the image 
- NbrJT '• Total Number of joints in the robot 
- SR : Surface covered by the robot on the image 
- ST '• Total Surface of the image 

TLPlan calls the Occlusion Detector not only to compute the quality measure on each 
shot but also to compute the quality measure on every idiom. The quality measure of an 
idiom ai(norn is the average of the quality measures on the shots composing it. 

The planning domain is specified using two different kinds of planning operators: 
Idiom-Selection and Shot-Specification. The first type of operators conveys idiom-level 
constraints. The second conveys shot-level constraints. More specifically, Idiom-Selection 
operators select idioms for shots, and Shot-Specification operators select attributes for each 
shot composing an idiom. Since the attributes are already specified by the idioms, the role 
of this operator is essential to ensure that the shot follows the defined cinematographic rules 
and to allow the Occlusion Detector to verify its quality. 

Figure 2.9 illustrates an idiom-selection operator. The operator checks whether the 
scene already has an idiom associated to it ( i.e., (not-planned ?scene)). If no idiom has 
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;; Shot selection operator 
(add-adl-op 
:name ' (apply-shot ?scene ?shot-type ?shot-place 

?shot-zoom ?shot-length ?shot-side) 
:pre (adl-pre :var-gens ' ((?scene ?idiom) 

(planned ?scene ?idiom) 
(?nextShot) 
(next-shot ?scene ?nextShot) 
(?shot-type) 
(next-shot-type ?idiom 

?nextShot) 
(?shot-place) 
(next-shot-place ?idiom 

?nextShot) 
(?shot-zoora) 
(next-shot-zoom ?idiom 

?nextShot) 
(? shot-length) 
(next-shot-length ?idiom 

?nextShot) 
(? shot-side) 
(next-shot-side ?idiom 

?nextShot) 
(?nbrShot) (nb-shot ?scene 

TnbrShot))) 
:add (adl-add (adl-cond :form '(= ?nextShot 

(- ?nbrShot 1)) 
:lit '(done-plan ?scene)) 

(adl-cond :form '(not(= ?nextShot 
(- TnbrShot 1))) 

:lit ' (next-shot ?scene 
(+ ?nextShot 1))) 

(adl-cond :lit ' (last-shot ?shot-type 
?shot-place ?shot-zoom 
?shot-length 
?shot-side))) 

:del (adl-del (adl-cond :var-gens ' ((?nextShot) 
(next-shot ?scene 

?nextShot)) 
:lit ' (next-shot ?scene ? 

nextShot)) 
(adl-cond :var-gens ' <(?t ?p ?z ?1 ?s) 

(last-shot ?t ?p 
?z ?1 ?s) ) 

:lit '(last-shot ?t ?p ?z ?1 
?s)) ) ) 

Figure 2.8: Shot specification operator 
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been planned for the scene, the operator will update the current state by adding an idiom 
for the scene, updating the number of shots to be planned for this scene (as specified by the 
chosen idiom) and will update the next shot to be planned to be the first shot of the idiom. 
Figure 2.8 illustrates a shot-specification operator. 

During search, the "current" world state in this domain consists of: 

1. The "current" scene from a given scene list. 

2. The "current" idiom being tested as a candidate for the current scene. 

3. The "current" shot in the idiom currently being tested. 

;; Idiom selection operator 
(add-adl-op 
:name '(apply-idiom ?scene ?idiom) 
:pre (adl-pre 

:var-gens '((?scene) (not-planned ?scene) 
(?type) (sc-type ?scene ?type) 
(?idiom) (idioms)) 

:form '(eq? ?type (id-type ?idiom))) 
:add (adl-add (adl-cond 

:var-gens ' ((?nbrShot) 
(gen-nb-shot ?idiom)) 

:lit '(nb-shot ?scene ?nbrShot)) 
(adl-cond :lit '(planned ?scene ?idiom)) 
(adl-cond :lit ' (next-shot ?scene 0))) 

:del (adl-del (adl-cond :lit ' (not-planned ?scene)))) 

Figure 2.9: Idiom selection operator 

Intuitively, the search process underlying TLPlan explores the world state space as 
follows. On each iteration, TLPlan takes the current scene from the list of scenes and 
checks whether an idiom has already been selected to be tested as best candidate for it. 
If not, it calls the Idiom-Selection operator and selects an idiom from the list of idioms 
associated to the corresponding category of scene. When a current idiom is selected in the 
current state, TLPlan takes the list of shots composing it and finds the next unplanned shot 
(if all the shots have been planned, then the scene is completed and TLPlan can now move 
to the next scene). Then it calls the Shot-Specification operators on the current shot which 
calls the Occlusion Detector. If the shot is accepted, then it is added to the list of planned 
shots. 
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2.5.5 Discussion 

We explicitly specify the sequence of shots composing an idiom. Given that an LTL 
formula describes a sequence of states (that is, the sequence of states satisfying it), we 
could have adopted LTL formulas not just for specifying shot composition rules but also 
for describing idioms. For instance, filming a translation scene using idiom 1 or idiom2 in 
Figure 2.6 could be specified as described in Figure 2.10. 

(define control-idiom-translation 
(always 

(exists (?scene ?type) (and (current-sc ?scene) (sc-type ?scene ?type)) 
(implies (?type translation) 

(or 
(and (not bad-idiom IdO ?scene) 

(current-idiom ?scene IdO) 
(next (current-shot go-by external medium-view 0,25 left)) 
(next (next (current-shot go-by parallel full-view 0,5 left))) 
(next (next (next (and (current-shot pan internal full-view 0,25 left) 

(planned ?scene)))))) 
(and (not bad-idiom Idl ?scene) 

(current-idiom ?scene Idl) 
(next (current-shot pan external medium-view 0,33 right)) 
(next (next (and (current-shot static parallel closeup-view 0,67 right) 

(planned ?scene)))))))))) 

Figure 2.10: Idiom-description LTL formula used to film a translation of the SSRMS 

This approach would allow a richer idiom specification language since LTL can express 
more general sequences than listing a series of shots. However, with this approach the 
size of the search space becomes larger and sophisticated search control would have to be 
involved. Indeed, for each scene, the search process would have to consider all possible 
shots sequences satisfying the idiom formula. In contrast, with the current approach, search 
is only limited to the shot sequences in the idiom specifications. More intelligent ways of 
using LTL formulas to specify idioms remain a topic for future research. 

We acquired knowledge on the SSRMS through discussions with experts (including 
instructors of the SSRMS) and sitting in actual training courses of the SSRMS. The current 
idioms take into account only visibility requirements, but there are other constraints that 
will have to be integrated to complete the tool, including the various modes of operating the 
arm, which involve, among many things, switching between different frames of references 
during a manipulation. 
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2.6 Experiments 

We used a publicly available Scheme version of TLPlan within the ATDG. The Robot 
Simulator is in C++. The communication between TLPlan and other components in the 
ATDG is done using sockets and through reading and writing in text files. For example, 
TLPlan communicates by sockets with the Occlusion Detector to compute at each iteration 
the quality measure on shots and idioms. The camera plan is passed to the renderer in text 
format. 

f 
Figure 2.11: Idiom to film the SSRMS anchoring a new module on the ISS 

We implemented two different variations of the camera planner. The first version (VI) 
delays the check of the quality on shots until a complete sequence of shots composing the 
whole film is found; the other version (V2) makes the check on the fly on each idiom as 
has been understood so far. In each case, the metrics for the quality of an animation are 
the absence of occlusion. Checking occlusions takes time, hence the motivation to verify 
whether there is any gain by delaying it. The experiments also include a comparison with 
a simplified implementation of a constraint-based approach as in ConstraintCam (CC) [4], 

Figure 2.11 shows snapshots generated by ATDG illustrating the anchoring operation 
of idiom2 in Figure 2.6. The ISS workspace is specified by almost 85 000 triangles. This 
is moderately complex by computer graphics standards. The experiments were performed 
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on a Pentium Dual Core, 2,8 GHZ, with 2G of RAM. 

Figure 2.12: Scenarios 

The trajectories for the eight scenarios on which we made our experiments are given 
in Figure 2.12. Figure 2.13 shows the performance data on the scenarios. The first three 
colomns in Figure 2.13 indicate, respectively: the scenario, the number of shots composing 
the film and the duration of the film in seconds. The next three columns express the quality 
of the movie for each of the methods V1, V2 and CC, in terms of the proportion of shots 
without any occlusion of the camera and with all selected elements of the arm visible. This 
occlusion-based quality measure could be refined by counting the number of images in 
occlusion or by taking into account the proportion of the shot that is occluded. The last 
three columns give the planning time for each of the methods. 

Scene Properties Visual Quality Planning Time (s) 
ScN Nbr Shots Length (s} V1 V2 CC V1 V2 CC 

1 2 5.34 0.61 0.64 0.4 0.65 0.87 0.54 
2 3 13.42 0.54 0.57 0.37 0.66 0.73 0.45 
3 4 7.45 0.71 0.76 0.5 1.04 1.52 1.12 
4 8 10.41 0.56 0.62 0.23 1.35 2.12 1.21 
5 6 20.21 0.7 0.76 0.43 1.53 1.87 1.3 
6 5 8.73 0.81 0.87 0.62 1.42 1.65 0.98 
7 11 24.1 0.68 0.73 0.24 2.86 3.76 1.57 
8 9 17.2 0.8 0.82 0.45 2.03 2.54 1.24 

Figure 2.13: Performance data 

As the experiments show, the quality of the demonstrations generated by ATDG are 
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very good in terms of the number of shots that are not occluded and this is an important 
property that we would like our application to have. We also noticed that the film is very 
smooth considering it is generated automatically. As it turns out, both versions of ATDG 
generate movies of similar qualities, but they differ in the planning time. Delaying occlu-
sion checking turns out to be worthwhile for this experiment. 

The results also show that the quality of the path filmed by ATDG was always better 
than CC. This is due to the fact that TLPlan works at the level of the idiom, a level higher 
than that of a frame (the level to which ConstraintCam applies) and this always ensures a 
higher level of quality. We also believe that with a C++ implementation of TLPlan, our 
approach would become more efficient. One of the key aspects of our solution is the use of 
LTL to specify shot composition rules and generally they are more easily understood than 
frame-level constraints. It is important to remember, however, that this is a comparison 
with a simplified implementation of the original ConstraintCam. 

2.7 Conclusion and Future Work 

In this paper, we presented a temporal-logic camera planning approach that brings im-
provements to automatic 3D animation generation techniques along two main dimensions. 
First, it uses temporal logics to express cinematographic principles and filming preferences, 
a language more expressive and with simpler semantics than previous camera planning lan-
guages. Second, it implements the TLPlan algorithm, a planner more powerful than previ-
ous camera planners in the literature, because with TLPlan, LTL composition rules enable 
search pruning. 

The new camera planner is implemented within an application of automated planning 
for the generation of 3D task demonstrations for an articulated robot arm. Our application 
currently concerns the SSRMS deployed on the international space station but the results 
are transferable to other telemanipulated robots and to other domains. 

So far we have obtained promising results using very simple metrics for the quality of 
movies. Adding visual cues and regional constraints is quite straightforward and will be 
done in the near future. Before the tool becomes useable in practice, additional metrics 
characterizing the different manoeuvres in terms of task and space awareness will have 
to be brought in. The definition of these metrics will involve human factor experts and 
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instructors. 

Besides the intended future use of our system to support ground operators, future in-
quiry will also concern the integration of the system into a training simulator to provide 
feedback to students by showing them how to accomplish the task. This opens several 
interesting research opportunities, including making the generated animation interactive 
rather than a continuous video as is currently the case. 

Finally, using TLPlan also opens up interesting opportunities for developing efficient 
search control knowledge for this particular application domain and for learning such 
knowledge. As mentioned above, it would be also interesting to extend the use of LTL 
formulas to the specification of idioms. 
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Chapitre 3 

Modele pedagogique dans un simulateur 
intelligent pour les operations robotisees 

Resume 

L'apprentissage par simulation en environnements virtuels est seulement pos-
sible s'il existe un espace probleme bien explicite associe aux differentes taches 
a realiser par l'apprenant [1, 63]. Un tel espace permet de bien suivre l'appre-
nant au cours de son apprentissage et de le guider si necessaire. Au fait, le suivi 
de la connaissance et de son acquisition par l'apprenant pendant l'apprentissage 
ne sont possibles qu'en satisfaisant parfaitement a cette condition [18]. Cepen-
dant, dans des environnements tres complexes, il n'est pas toujours possible de 
construire une structure de tache bien explicite. Par exemple, les environnements 
traitant de connaissances spatiales ont une multitude de possibilites pour resoudre 
une tache donnee. Ceci est le cas dans Roman Tutor ou la tache de manipulation 
du SSRMS pour l'emmener d'un endroit a un autre peut s'effectuer selon une 
infinite de trajectoires. 

Dans 1'article que nous presentons dans ce chapitre, nous montrons que par 
l'utilisation du planificateur de trajectoires FADPRM (voir chapitre 1) comme 
expert du domaine, il n'est plus necessaire de creer un graphe de taches complexe 
et bien explicite. Nous presentons ensuite 1'architecture du modele pedagogique 
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instaure dans Roman Tutor pour supporter l'apprentissage d'un apprenant sur 
le simulateur. Nous montrons comment les differentes composantes integrees, 
principalement FADPRM et ATDG, sont mises a contribution pour assurer un 
suivi et un encadrement efficaces de 1'apprenant. 

Pour illustrer, pendant que l'apprenant manipule le robot pour l'execution 
de differents taches de manipulations, Roman Tutor fait appel a FADPRM en 
arriere plan pour surveiller d'une maniere continue revolution de l'apprenant 
dans son apprentissage : Est-t-il en train de suivre les zones desirables ou non ? 
S'approche-t-il de la configuration finale ou pas ? Est-ce qu'il existe une famille 
de solutions meilleures que celle qu'il est en train de realiser ? La caracteristique 
dynamique aide FADPRM a s'ajuster automatiquement aux changements conti-
nuels dans l'environnement (deplacements du robot, deplacements des zones). La 
caracteristique anytime va lui permettre de trouver des diagnostics en temps reel 
pour un encadrement plus efficace. De plus, Roman Tutor fait appel a ATDG pour 
guider l'apprenant s'il se trouve bloque ou s'il commence a effectuer des erreurs 
pour lui presenter presque instantanement des videos correctives ou illustrant les 
trajectoires solutions qui permettent de completer la tache. 

Commentaires 

L'article presente dans ce chapitre a ete soumis au journal "IEEE Transactions on 
Learning Technology". Une version plus courte de ce travail a ete publiee dans 
les actes de "International Conference on Intelligent Tutoring Systems" [56]. Ces 
travaux ont ete realises, valides et rediges sous la supervision du Professeur Ro-
ger Nkambou (Universite du Quebec a Montreal), du Professeur Froduald Ka-
banza (Universite de Sherbrooke) et avec les conseils du Professeur Leo Hartman 
(Agence spatiale canadienne). 
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Abstract 

Roman Tutor is a tutoring system that uses sophisticated domain knowledge to 
monitor the progress of students and advise them while they are learning how to 
operate a space tele-robotic system. It is intended to help train operators of the 
Space Station Remote Manipulator System (SSRMS) including astronauts, op-
erators involved in ground-based control of SSRMS and technical support staff. 
Currently there is only a single training facility for SSRMS operations and it 
is heavily scheduled. The training staff time is in heavy demand for teaching 
students, planning training tasks, developing teaching material and new teach-
ing tools. For example, all SSRMS simulation exercises are developed by hand 
and this process requires a lot of staff time. Once in orbit ISS astronauts currently 
have only simple web-based material for skill development and maintenance. For 
long duration space flight astronauts will require sophisticated simulation tools to 
maintain skills. Roman Tutor addresses these challenges by providing a sophis-
ticated portable training tool. It incorporates a model of the system operations 
curriculum, a kinematic simulation of the robotics equipment and the ISS, a high 
performance path planner and an automatic task demonstration generator. For 
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1 .1 . INTRODUCTION 

each element of the curriculum that the student is supposed to master, Roman 
Tutor generates example tasks for the student to accomplish within the simula-
tion environment and then monitors its progression to provide relevant feedback 
when needed. Although motivated by the SSRMS application, Roman Tutor re-
mains applicable to any tele-robotics system application. 

F 

3.1 Introduction 

Roman Tutor (RObot MANipulation Tutor) is a simulation-based tutoring system to 
support astronauts in learning how to operate the SSRMS, an articulated robot arm mounted 
on the International Space Station (ISS). Figure 3.1 includes an image of the SSRMS on 
the ISS. Astronauts operate the SSRMS from a robotic workstation located inside one of 
the ISS compartments. Figure 3.1 also shows the workstation which has an interface with 
three monitors, each of which can be connected to any of the 14 cameras placed at strategic 
locations on the exterior of the ISS. Roman Tutor's user interface in Figure 3.2 includes the 
most important features of the robotic workstation. 

Figure 3.1: SSRMS on the ISS (left) and the robotic workstation (right) 

The SSRMS is a key component of the ISS and is used in the assembly, maintenance 
and repair of the station, and also for moving payloads from visiting shuttles. Operators 
manipulating the SSRMS on orbit receive support from ground operations. Part of this 
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support consists of visualizing and validating maneuvers before they are actually carried 
out on the ISS. Operators have in principle rehearsed the maneuvers many times on the 
ground prior to the mission, but unexpected changes are frequent during the mission. In 
such cases, ground operators may have to generate 3D animations for the new maneuvers 
and upload them to the operator on the station. So far, the generation of these 3D animations 
are done manually by computer graphic programmers and thus are very time consuming. 

SSRMS can be involved in various tasks on the ISS, including moving a load from 
one place of the station to another, inspecting the ISS structure (using a camera on the 
arm's end effector) and making repairs. These tasks must be carried out very carefully to 
avoid collisions with the ISS structure and to maintain safety-operating constraints on the 
SSRMS (such as avoiding self-collisions and singularities). At different phases of a given 
manipulation, the astronaut must choose a setting of cameras that provides him with the 
best visibility while maintaining awareness of his progress on the task. Thus astronauts are 
trained not only to operate the arm itself, but also to recognize visual cues on the station 
that are crucial in mentally reconstructing the actual working environment from the partial 
and restricted views provided by the three monitors, and to select cameras depending on 
the task and other parameters. 

One challenge in developing a good training simulator is, of course, to build it so that 
one can reason about it. This is even more important when the simulator is built for training 
purposes [23]. Until now, simulation-based tutoring is possible only if there is an explicit 
model or representation of the problem space associated with training tasks. The explicit 
representation is required in order to track student actions, to identify if these actions are 
still on a path to a solution and to generate relevant tutoring feedback [1, 63]. Knowledge 
and model tracing are only possible in these conditions [18]. It is not always possible to de-
velop an explicit comprehensive task structure in complex domains, especially in domains 
where spatial knowledge is used, as there are many possible ways to solve a given problem. 
The robot manipulation that Roman Tutor focuses on is an example of such a domain. For 
each robot manipulation task, there is a combinatorial explosion of possible solutions for 
moving SSRMS from one place to another in the ISS environment. Such domains has been 
identified as "ill-structured" [60, 24], 

Conventional tutoring approaches such as model-tracing [37] or constraint-based mod-
eling [52] are very limited when applied on "ill-structured" domains. A model-tracing 
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approach consists of comparing a predefined task model with a student's solution. In the 
context of robot manipulations, because of the infinity of solutions we have associated 
with each task, designing a task model by hand becomes practically infeasible. Applying 
a constraint-based modeling approach in the context of robot manipulations will also face 
the same kind of limitations. Here, identifying the constraints associated with robot manip-
ulation tasks can be difficult and very time consuming. Since a huge number of constraints 
is required to achieve an adequate level of tutoring assistance [24], the approach becomes 
impractical. 

To overcome these limitations, we propose a solution to this issue by integrating a 
sophisticated path planner FADPRM [7] as a domain expert system to support spatial rea-
soning within the simulator and make model tracing tutoring possible without any explicit 
task structure. 

l A f i i i Monitor 1 

Action Applied to 

Q Monitor 3 

Movement 
Movement 
Wove men I 
Wove men I 
Movement 

Scicct Camera Monitor? 

W P 
W P 
W P 
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[ -180.523444 . -1C0.172366 . 168.940609 ] 8 
[-180.489350 . -160.023373 . 16B.9G4245 ] , 
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[ -180.407414, -159.875247,168.667400 ] 
| 180.407414. -159.B7S247 . 168.867480 ] 

_ _ _ _ _ _ _ c p 2 i'-:i 

Collision Details Proximity Details 

Figure 3.2: Roman tutor interface 

FADPRM (Flexible Anytime Dynamic PRM path planner) is an extension to the PRM 
planning framework [36] to handle regions to which we assign preferences within complex 
workspaces. By being flexible in this way, FADPRM not only computes collision free paths 
but is also capable of taking into account the placement of cameras on the ISS, the lighting 
conditions and other safety constraints on operating the SSRMS. This allows the generation 
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of collision-free trajectories in which the robot stays within regions visible through cameras 
and in which the manipulation is, therefore, safer and easier. FADPRM also implements a 
dynamic strategy to adapt efficiently to dynamic changes in the environment and re-plan on 
the fly by exploiting results from previous planning phases. FADPRM also implements an 
anytime strategy to provide a correct but likely suboptimal solution very quickly and then 
incrementally improve the quality of this solution if more planning time is allowed. 

Roman Tutor uses the different capabilities implemented within the FADPRM path 
planner to provide useful feedback to a student operating the SSRMS simulation. To illus-
trate, when a student is learning to move a payload with the robot, Roman Tutor invokes 
the FADPRM path-planner periodically to check whether there is a path from the current 
configuration to the target and provides feedback accordingly. By using FADPRM as a 
robot manipulation domain expert, we follow an "expert system approach" to support the 
tutoring process within Roman Tutor. This approach has proven successful and has been 
used within different well-known intelligent tutoring systems such as SOPHIE I [ 12] and 
GUIDON [16]. But in our case, we are applying it in the context of robot manipulations, 
an "ill-structured" domain. 

We also developed within Roman Tutor an automatic task demonstration generator 
ATDG [34], which generates 3D animations that demonstrate how to perform a given task 
with the SSRMS. The ATDG is integrated with the FADPRM path planner and can con-
tribute to ground support of SSRMS operations by generating useful task demonstrations 
on the fly that help the student carry out his tasks. ATDG includes a component based on 
TLPlan [3] for camera planning and uses Linear Temporal Logic (LTL) as the language for 
specifying cinematographic principles and filming preferences. A robot trajectory is first 
generated by FADPRM and TLPlan is then called to find the best sequence of camera shots 
following the robot on its path. 

In the next section, we start by presenting FADPRM and ATDG in detail. We then 
describe Roman Tutor's internal architecture and outline its basic functionalities. After 
enumerating the tasks on which a student is trained within Roman Tutor, we describe the 
approaches followed to provide the tutoring assistance. In a following section, we show 
how the use of FADPRM as a domain expert within the simulator helped in providing very 
relevant tutoring feedback to the student. We finally conclude with a discussion on related 
work. 
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3.2 FADPRM Path Planner 

In its traditional form, the path planning problem is to plan a path for a moving body 
(typically a robot) from a given start configuration to a given goal configuration in a 
workspace containing a set of obstacles. The basic constraint on solution paths is to avoid 
collision with obstacles, which we call hereby a hard constraint. There exist numerous 
approaches for path planning under this constraint [36, 14, 47, 57, 44]. In order to take 
into account the visibility constraints we have in the SSRMS environment, we developed 
a new class of flexible path planners FADPRM [7] able to express and take into account 
preferences in the navigation of the robot within very complex environments. In addition 
to the obstacles the robot must avoid, our approach takes account of desirable and undesir-
able (or dangerous) zones. This will make it possible to take into account the disposition 
of cameras on the station. Thus, our planner will try to keep the robot in zones offering 
the best possible visibility of progress on the task while trying to avoid zones with reduced 
visibility. 

The robot free workspace is segmented into zones with each zone having an associated 
degree of desirability (dd), that is, a real number in the interval [0 1 ], depending on the task, 
visual cue positions, camera positions and lighting conditions. The closer the dd is to 1, 
the more the zone is desirable. Safe corridors are zones with dd near to 1, whereas unsafe 
corridors are those with dd in the neighborhood of 0. A zone covering the field of view 
of a camera will be assigned a high dd and will have a cone shape ; whereas a zone with 
very limited lighting conditions will be considered as an undesirable zone with a dd near 0 
and will take an arbitrary polygonal shape. Figure 3.3 illustrates a trajectory of the SSRMS 
going through three cameras fields of view (three cones) and avoiding an undesirable zone 
(rectangular zone in pale red). 

For efficient path planning, we pre-process the robot workspace into a roadmap of 
collision-free robot motions in regions with highest desirability degree. More precisely, 
the roadmap is a graph such that every node n in the graph is labeled with its corresponding 
robot configuration n.q. and its degree of desirability n.dd, which is the average of dd of 
zones overlapping with n.q. An edge (n,n') connecting two nodes is also assigned a dd 
equal to the average of dd of configurations in the path-segment (n.q,n'.q). The dd of a 
path (i.e., a sequence of nodes) is an average of dd of its edges. 
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Figure 3.3: SSRMS going through three different cameras fields of view (purple, green and 
blue cones) and avoiding an undesirable zone (rectangular zone in pale red) 

Following probabilistic roadmap methods (PRM) [58], we build the roadmap by pick-
ing robot configurations probabilistically, with a probability that is biased by the density 
of obstacles. A path is then a sequence of collision free edges in the roadmap, connecting 
the initial and goal configuration. Following the Anytime Dynamic A* (AD*) approach 
[48], to get new paths when the conditions defining safe zones have dynamically changed, 
we can quickly re-plan by exploiting the previous roadmap. On the other hand, paths are 
computed through incremental improvements so the planner can be stopped at anytime to 
provide a collision-free path (i.e., anytime after the first such path has been found) and the 
more time it is given, the more the path is optimized to move through desirable zones. 

FADPRM works as follows. The input is an initial configuration, a goal configuration, 
a 3D model of obstacles in the workspace, a 3D specification of zones with corresponding 
dd and a 3D model of the robot. Given this input: 

- To find a path connecting the input and goal configuration, we search backward from 
the goal towards the initial (current) robot configuration. Backward search instead of 
forward search is done because the robot moves and, hence, its current configuration 
is not in general the initial configuration; we want to re-compute a path to the same 
goal when the environment changes before the goal is reached. 

- A probabilistic queue OPEN contains nodes of the frontier of the current roadmap 
(i.e., nodes are expanded because they are new or because they have previously been 
expanded but are no longer up to date w.r.t. to the desirable path) and a list CLOSED 
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contains non frontier nodes (i.e., nodes already expanded). 
Search consists of repeatedly picking a node from OPEN, generating its predecessors 

and putting the new ones or out of date ones in OPEN. 
The density of a node is the number of nodes in the roadmap with configurations that 
are a short distance away (proximity being an empirically set parameter, taking into 
account the obstacles in an application domain). The distance estimate to the goal 
takes into account the node's dd and the Euclidean distance to the goal. A node n in 
OPEN is selected for expansion with probability proportional to : 

(1 — (3)/density (n) + f3 * goal — distance — estimate{n) 
with 0 < 0 < 1. 

This equation implements a balance between fast-solution search and best-solution 
search by choosing different values for /3. With j3 near to 0, the choice of a node 
to be expanded from OPEN depends only on the density around it. That is, nodes 
with lower density will be chosen first, which is the heuristic used in traditional PRM 
approaches to guarantee the diffusion of nodes and to accelerate the search for a path 
[58]. As (3 approaches 1, the choice of a node to be expanded from OPEN will rather 
depend on its estimated distance to the goal. In this case, we are seeking optimality 
rather than the speed of finding a solution. 

To increase the resolution of the roadmap, a new predecessor is randomly generated 
within a small neighborhood radius (that is, the radius is fixed empirically based on 
the density of obstacles in the workspace) and added to the list of successors in the 
roadmap generated so far. The entire list predecessors is returned. 
Collision is delayed: detection of collisions on the edges between the current node 
and its predecessors is delayed until a candidate solution is found; if there is a col-
lision, we backtrack. Collisions that have already been detected are stored in the 
roadmap to avoid doing them again. 
The robot may start executing the first path found. 

Concurrently, the path continues being improved by replanning with an increased 
value of (3. 
Changes in the environment (moving obstacles or changes in dd for zones) cause 
updates of the roadmap and replanning. 
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The calculation of a configuration dd and a path dd is a straightforward extension of 
collision checking for configurations and path segments. For this, we customized the Prox-
imity Query Package (PQP) [43], The 3D models for the ISS, the SSRMS and zones 
are implemented using a customization of Silicon Graphics' Open Inventor. The robot is 
modeled using Motion Planning Kit (MPK), that is, an implementation of Sanchez and 
Latombe's PRM planner [58]. 

3.3 The Automatic Task Demonstration Generator 

The automatic task demonstration generator (ATDG) [34] takes as input a start and 
a goal configuration of the SSRMS. ATDG will generate a movie demonstration of the 
required manipulations that bring the SSRMS from the start configuration to the goal con-
figuration. The top figure in Figure 3.4 shows the internal architecture of the ATDG. The 
bottom one shows the different steps the data go through in order to transform the two given 
configurations into a complete movie demonstration. 

First, ATDG calls the FADPRM path planner to generate a collision free path between 
the two given configurations. The path is then passed to the trajectory parser which sepa-
rates it into categorized segments. This will turn the continuous trajectory into a succession 
of scenes, where each scene can be filmed by a specific group of idioms. An idiom is a 
succession of shots that represents a stereotypical way to film a scene category. The parser 
looks for uniformity in the movements of the SSRMS to detect and recognize the category 
of scenes. Once the path is parsed, a call is made to the camera planner TLPlan to find 
the best shots that best convey each scene, while making sure the whole is pleasing and 
comprehensive. 

The use of TLPlan as a camera planner within ATDG provides two advantages. First 
LTL, the language used by TLPlan is more expressive, yet with a simpler defined seman-
tics, than previous camera planning languages such as DCCL [15]. For instance, we can 
express arbitrary temporal conditions about the order in which objects should be filmed, 
which objects should remain in the background until some condition become true and more 
complex constraints that the LTL language can express. Secondly, TLPlan is more pow-
erful than other camera planners presented in the literature such as [15, 5, 26, 33] because 
with TLPlan, LTL shot composition rules provide a search pruning capability. In ATDG, 
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Figure 3.4: ATDG architecture 

each shot in the idiom is distinguished by three key attributes: shot type, camera placement 
mode, camera zooming mode. 

- Shot Types: five shot types are currently defined in the ATDG System: Static, GoBy, 
Pan, Track and Pov. A Static shot for example is done from a static camera when the 
robot is in a constant position or moving slowly. Whereas in a Track shot, a camera 
follows the robot and keeps a constant distance from it. 

- Camera Placements: for each shot type, the camera can be placed in five different 
ways according to some given line of interest: External, Parallel, Internal, Apex and 
External II. Currently, we take the trajectory of the robot's center of gravity as the 
line of interest which allows filming of a number of many typical manoeuvres. For 
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larger coverage of manoeuvres, additional lines of interest will be added later. 
- Zoom modes: for each shot type and camera placement, the zoom of the camera can 

be in five different modes: Extreme Close up, Close up, Medium View, Full View 
and Long View. 

Figure 3.5: Idiom to film the SSRMS anchoring a new component on the ISS 

Figure 3.5 shows an idiom illustrating the anchoring of a new component on the ISS. It 
starts with a Track shot following the robot while moving on the truss. Then, another Track 
shot follows that shows the rotation of one joint on the robot to align with the ISS structure. 
And finally there is a Static shot focusing on the anchoring operation. In TLPlan, idioms are 
specified in the Planning Definition Language (PDDL 3.0). Intuitively, a PDDL operator 
specifies preferences about shot types in time and in space depending on the robot manoeu-
ver. Parsing the trajectory of the robot with the successive scenes performed, TLPlan will 
try to find a succession of shots that captures the best possible idioms. TLPlan also takes 
into account cinematic principles to ensure consistency of the resulting movie. Idioms and 
cinematic principles are in fact encoded in the form of temporal logic formulas within the 
planner. TLPlan uses also an occlusion detector to make sure the SSRMS is visible all the 
time. Once TLPlan is done, we are left with a list of shots that is passed to the rendering 
system to create the animation. The renderer uses both the shots given by TLPlan and the 
SSRMS trajectory in order to position the cameras in relation with the SSRMS, generating 
the final task demonstration. 

For each SSRMS movement type (or scene), we have several idioms (from six to ten 
in the current implementation) and each idiom is defined by taking into account the com-
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plexity of the movement, the geometry of the ISS, the visual cues on the ISS and subjective 
expectations of the viewer. For example, if the SSRMS and the mobile base are moving 
along the main truss of the ISS, it is important that the camera show not only the entire arm 
but also some visual cues on the ISS so the operator can get a sense of situational awareness 
for the relocation of the base of the arm. Consequently, the idioms for this manipulation 
will involve shots with a Full or Long View zoom. In contrast, movements involving the 
end effector require a high precision, so an Extreme Close Up zoom will be involved. 

3.4 Roman Tiitor Architecture and Basic Functionalities 

3.4.1 Architecture and Main Components 

Roman Tutor works with any robot manipulator provided a 3D model of the robot and 
its workspace are specified. Roman Tutor's architecture includes the following components 
(Figure 3.6): the graphic user interface, the State Reflector, the FADPRM path planner, the 
automatic task demonstration generator ATDG, the Tutoring Module and the Simulator 
Core with several third-party libraries: Proximity Query Package (PQP) [43], Open Inven-
tor from Silicon Graphics and Motion Planning Kit (MPK) [58]. 

Figure 3.6: Roman Tutor architecture 
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As shown in Figure 3.2, Roman Tutor's user interface has three screens (for the three 
monitors). The keyboard is used to operate the robot (the SSRMS in our case). In command 
mode, one controls the joints directly; in automatic mode, one moves the end-effector, 
small increments at a time, relying on inverse kinematics to calculate the joint rotations. 
In Figure 3.2, different cameras are selected, displaying the same robot configuration from 
different viewpoints. The perspective camera (on the left) can inspect the entire ISS 3D 
model. It is used in training tasks aimed at helping a student to develop a mental 3D model 
of the ISS even though there is no such camera on the ISS. Normal training uses small 
physical models of the ISS for the same purpose. 

In Roman Tutor students could carry out several kinds of training tasks that we describe 
more formally in the next section. The State Reflector periodically updates the student's 
actions (i.e., keyboard inputs) and their effects on the ISS environment (robot configura-
tion, cameras mapped to the monitors, their view angles and the operation mode). It also 
monitors lighting conditions. 

3.4.2 Training Tasks 

Training tasks can be classified as open, recognition, localization, or robot manipula-
tion. Open tasks are those in which the student interacts with the simulator, without any 
formally set goal, with minimal assistance configured in the system's preferences (e.g., col-
lision warning and avoidance). Recognition tasks train to recognize the different elements 
in the workspace. An example is to show a picture of an element of the ISS and ask the 
student to name it and describe its function. Localization tasks train to locate visual cues 
or ISS elements and to relate them spatially to other elements. An example is to show a 
picture of a visual cue and ask the student to make it visible on the screen using an appro-
priate selection of cameras; or we can ask to name elements that are above another element 
shown on the screen. 

Robot operation tasks deal with moving the manipulator (avoiding collision and singu-
larities, using the appropriate speed, switching cameras as appropriate and using the right 
operation mode at different stages), berthing, or mating. An illustration is to move the arm 
from one position to another, with or without a payload. Another example is to inspect an 
indicated component of the ISS using a camera on the end-effector. These tasks require 
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the student to be able to define a corridor in a free workspace for a safe operation of the 
robot and follow it. The student must do this based on the task, the location of cameras and 
visual cues and the current lighting conditions. Therefore localization and navigation are 
important in robot operations. Robot operation tasks are made more or less unpredictable 
by dynamically changing the lighting conditions, thus requiring the revalidation of safe 
corridors. 

3.4.3 Tutoring Approaches in Roman Tutor 

The Feedback Generator inside the Tutoring Module (Figure 3.6) periodically checks 
the current state to trigger feedback to the student, using rules that are preconditioned on 
the current state information and the current goal. These are "teaching" expert rules and can 
be as efficient as the available teaching expertise allows. Feedback rules take into account 
how long the student has been trying on a subtask and how good or bad he is progressing 
on it. 

In the context of open, recognition and localization tasks, providing tutoring assistance 
seems straight forward. The domain knowledge is well defined: what element or cue of 
the ISS to recognize or to localize? what camera to choose and when? etc. Here, we 
follow a model-tracing approach and define for each category of tasks a well structured 
task model to support the tutoring process. Task models are designed by hand starting from 
recommendations provided by human experts and are structured in the form of a graph 
encoding if-then rules. The Feedback Generator uses the predefined task graphs to validate 
student actions, identify gaps and provide feedback accordingly. 

As we stated previously in an early section, the domain of robot manipulations is an 
"ill-structured" domain where classical tutoring approaches start to loose efficiency and 
show limitations. To overcome these limitations, we choose to follow an "expert system 
approach" and use the FADPRM path-planner as a domain expert in our system to support 
the tutoring process. In the context of robot manipulation tasks, the Feedback Generator 
evaluates student actions by comparing it to the optimal solutions found by FADPRM and 
provides useful feedback accordingly. The tutoring process that uses FADPRM as an expert 
of the domain knowledge is described in more details in the next section. 

One of the very important early results in intelligent tutoring research is the importance 
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of the cognitive fidelity of the domain knowledge module. That is, it is important for the 
tutor to reason about the problem in the same way that humans do [17]. Approaches for 
modeling a domain expert within intelligent tutoring systems can be grouped into three 
main categories: black box models, glass box models and cognitive models [55]. The 
main difference between these models lies in the cognitive fidelity with which each model 
represents the expert domain knowledge. "" 

A black box model describes problem states differently than the student. The classic 
example of such a system is SOPHIE I [12]. SOPHIE I is a tutor for electronic trou-
bleshooting that used its expert system to evaluate the measurements students were making 
in troubleshooting a circuit. The expert system made its decisions only by solving sets of 
equations. A glass box model is an intermediate model that reasons in terms of the same 
domain constructs as the human expert. However, the model reasons with a different con-
trol structure than the human expert. A classic example of such a system is GUIDON [16], 
a tutoring system for medical diagnosis. This system was built around MYCIN, an ex-
pert system for the treatment of bacterial infections. A cognitive approach, on the other 
hand, aims to develop a cognitive model of the domain knowledge that captures the way 
knowledge is represented in the human mind in order to make the tutor respond to problem-
solving situations in a way very similar to humans. This approach, in contrast to the other 
approaches, has as an objective to support cognitively plausible reasoning [55], A good 
example for such a tutoring system is SHERLOCK [46], another practice environment for 
electronics troubleshooting. SHERLOCK used a procedural domain knowledge represen-
tation based on a cognitive analysis of human skill acquisition. 

By taking into account the disposition of cameras on the ISS, FADPRM reasons about 
actions in a way very similar to students. Thus, the use of FADPRM as a domain expert in 
Roman Tutor results in a tutoring approach that lies in between a glass box approach and a 
cognitive approach. Even if we are applying it in the context of an "ill-structured" domain, 
we believe that this will guarantee good quality of the tutoring provided to the student, at 
least at the same level as the one provided by a glass box model like GUIDON. In the next 
section, we describe and evaluate the tutoring provided using FADPRM as an expert of the 
domain to a student working on robot manipulation tasks. 
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3.5 FADPRM as a Domain Expert in Roman Tutor 

Roman Tutor initiates a robot manipulation task and monitors the student's progress 
towards accomplishing it. Students begin the task and can ask Roman Tutor for help or 
for a recommendation about what to do next. Students can ask Roman Tutor about how to 
avoid a collision with a nearby obstacle, how to go to a desirable location in the workspace 
or how to go through a desirable zone. In this situation, the Feedback Generator calls the 
ATDG (which calls the FADPRM planner) to compute and show a movie illustrating how 
to complete the manipulation task. If the objective is to give the operator a sense of the 
task as he will be seeing it from the command and control workstation, then virtual camera 
positions will be selected from the 14 cameras on the exterior of the ISS. But if the objective 
is to convey some cognitive awareness of the task, then virtual cameras are selected to best 
help the operator gain a maximal cognitive awareness. 

Using the real time dynamic capability of the FADPRM path planner, the Feedback 
Generator monitors the student's activity in the State Reflector to validate incrementally 
student's action or sequence of actions, give information about the next relevant action or 
sequence of actions. The Feedback Generator regularly evaluates whether the task can be 
completed from the current configuration of the manipulator and whether it can be com-
pleted efficiently. At the point at which it discovers that the student would have to backtrack 
from the current position or that achieving the task takes more than the time planned for it, 
the Feedback Generator will intervene and begin to show the student a more efficient tra-
jectory. Once a better initial trajectory has been demonstrated, the student can take control 
and resume the task. This error-prompted turn taking repeats until the task is completed 
(Figure 3.7). We see here the importance of having FADPRM as a planner in our system to 
guide the operations by the student. By taking into account the disposition of the cameras 
on the station, we are assured that the plan shown to the student passes through zones that 
are visible from cameras placed in the ISS environment and can then be followed by the 
student. 

To evaluate the tutoring mechanics we implemented to support a student working on 
robot manipulation tasks, we compare the types of feedback we provide in our application 
to those provided by a classic intelligent tutoring system SHERLOCK [46] that is known 
to be efficient. SHERLOCK is a practice environment for electronics troubleshooting and 
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Figure 3.7: Roman Tutor showing a robot trajectory to the student 

provides advice on problem solving steps upon student request. Four types of feedback are 
available [17]: (1) advice on what test action to carry out and how, (2) advice on how to 
read the outcome of the test, (3) advice on what conclusion can be drawn from the test and 
(4) advice on what option to pursue next. 

As described earlier, our "FADPRM as a domain expert" tutoring approach provides 
feedback not only upon request but also intervenes automatically when it detects errors 
or difficulties experienced by the student. Different types of feedback are also available : 
(1) advice on what action (or manipulation) to execute and how by showing at each step a 
valid path to the goal or by showing a movie computed with ATDG, (2) advice on how to 
avoid errors while progressing on a task by showing paths that avoid a nearby obstacle or 
by showing movies recorded from the most useful cameras, (3) advice on what conclusion 
can be drawn from the errors made by detecting incorrect choices made by the student and 
by proposing the right path to follow and (4) advice on what action or sequence of actions 
to pursue next in order to reach the goal. 

The types of feedback provided by our tutoring approach are at a level of expressiveness 
very similar to those provided by SHERLOCK. By using FADPRM as a domain expert 
within Roman Tutor and despite the fact that we are working in an "ill-structured" domain, 
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we succeeded in achieving a level of quality for the tutoring similar to the one provided by 
an ITS with a cognitive representation for the domain expert. 

3.6 Conclusion 

In this paper, we presented a real-time flexible approach for robot path planning called 
FADPRM and showed how it can be used efficiently to provide very helpful feedback to 
a student on a robot manipulation training simulator. FADPRM supports spatial reasoning 
and makes model tracing tutoring possible without any explicit task structure. By using 
FADPRM as a domain expert within the simulator, we showed how to achieve a high quality 
level for the tutoring assistance without planning in advance what feedback to give to the 
student and without creating a complex task graph to support the tutoring process. 

We also detailed the architecture of the intelligent training simulator Roman Tutor in 
which FADPRM is integrated. Among other components, Roman Tutor contains an auto-
matic task demonstration generator ATDG used for the on the fly generation of useful task 
demonstrations that help the student carry on his manipulation tasks on the simulator. 

Roman Tutor's benefits to future training strategies are (1) the simulation of complex 
tasks at a low cost (e.g., using inexpensive simulation equipment and with no risk of in-
juries or equipment damage) and (2) the installation anywhere and anytime to provide "just 
in time" training. Crew members would be able to use it onboard the ISS, for example, to 
study complex maintenance or repair operations. For very long missions, they would be 
able to use it to train regularly in order to maintain their skills. In particular Roman Tutor is 
able to generate as many training examples as the student wants. This capacity provides im-
portant learning challenges and opportunities that are not possible with the current system 
based on a fixed set of manually generated examples. Although motivated by the SSRMS 
application, Roman Tutor with its innovative components (FADPRM and ATDG) remains 
applicable to any other tele-robotics system application. 
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Conclusion 

Cette these avait pour objectif le developpement d'un simulateur tutoriel intelligent 
pour les operations robotisees, appele Roman Tutor, applicable a la manipulation du bras 
canadien (SSRMS) sur la station spatiale internationale (SSI). Ce simulateur integre trois 
composantes originales. La premiere consiste en un nouveau planificateur de trajectoires 
appele FADPRM pour des environnements dynamiques presentant des contraintes dures 
et flexibles. En plus de determiner une trajectoire sans collisions pour le robot a travers 
les obstacles, FADPRM permet d'ajouter des preferences quant a la navigation de ce der-
nier dans l'environnement de manipulation. La deuxieme composante est un generateur 
automatique de demonstrations de taches ATDG. Ce dernier fait appel a FADPRM pour 
trouver une trajectoire solution pour une tache de deplacement du robot et a de nouvelles 
techniques de planification de la camera du rendu pour filmer la solution obtenue. Enfin, 
la troisieme composante integree au sein de Roman Tutor consiste en une modelisation pe-
dagogique implementant des strategies d'intervention pour donner de l'aide a un operateur 
manipulant le SSRMS sur Roman Tutor. L'aide a l'apprentissage fait appel d'une part a des 
demonstrations de taches generees automatiquement par le ATDG, et d'autre part au plani-
ficateur de trajectoires pour suivre la progression de l'operateur sur sa tache, lui fournir de 
l'aide et le corriger au besoin. 

Dans le premier chapitre de cette these, nous avons presente un article qui introduit la 
nouvelle approche de planification de trajectoires FADPRM que nous avons developpee. 
Cet article a ete soumis au journal "International Journal of Robotics Research". La nou-
velle approche FADPRM pour " Flexible Anytime Dynamic PRM" etend les approches 
PRM de base pour s'appliquer dans des environnements contenant des regions avec des 
degres de desirabilite. Cette nouvelle approche integre les strategies de recherche dyna-
mique et "anytime" pour faire face a des environnements dynamiques, ou les obstacles et 
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les zones avec degre de desirabilite peuvent changer en temps reel. La strategic dynamique 
permet au planificateur de replanifier efficacement en exploitant les resultats trouves dans 
les iterations precedentes. La strategic "anytime" commence par une trajectoire rapidement 
calculee avec un degre de desirabilite potentiellement faible qui est ensuite progressivement 
augmente si plus de temps de planification est permis. 

Dans le cadre de la manipulation du SSRMS sur la SSI, la caracteristique flexible per-
met a FADPRM de prendre en consideration la disposition des cameras sur la station pour 
generer des trajectoires solutions en tout point visibles par un operateur sur Roman Tutor. 
Les experiences conduites dans l'article ont valide les differentes caracteristiques de FAD-
PRM. Cependant, bien que nous obtenions une meilleure qualite pour les trajectoires ge-
nerees avec un meilleur temps de replanification en comparaison avec les approches PRM 
de base, il persiste toutefois un potentiel d'amelioration sur ces deux dimensions. En effet, 
les trajectoires necessitent toujours une etape de post-traitement pour les lisser, et dans les 
applications en temps reel, nous cherchons toujours a avoir un algorithme de planification 
le plus rapide possible. Comme travail futur, nous continuerons done a explorer des moyens 
pour ameliorer notre approche en adoptant et en testant de nouvelles alternatives. 

L'article introduit dans le deuxieme chapitre presente le generateur automatique de de-
monstrations de tache ATDG. Cet article a ete soumis au journal "International Journal of 
Knowledge-Based and Intelligent Engineering Systems". ATDG est implements au sein 
de Roman Tutor pour generer des demonstrations de taches de manipulation du SSRMS 
sur la SSL ATDG integre une nouvelle approche de planification des cameras qui ap-
porte des ameliorations aux techniques de generation automatique d'animations suivant 
deux dimensions principales. Premierement, elle utilise la logique temporelle pour expri-
mer les principes cinematographiques, un langage plus expressif et avec une semantique 
plus simple que les anciens langages de planification de cameras. Deuxiemement, elle uti-
lise 1' algorithme TLPlan, un planificateur plus puissant que les planificateurs precedents, 
puisque avec TLPlan, les regies de composition LTL permettent un controle efficace de la 
recherche. 

Nous avons obtenu des resultats tres prometteurs en utilisant des mesures simples pour 
la qualite des films generes en comparant avec d'anciennes approches de planification de 
cameras usuelles. L'ajout de reperes visuels comme contraintes dans la planification est 
assez simple et se fera dans le cadre d'un travail futur. Dans la version actuelle du ATDG, 
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nous utilisons les formules de logique temporelle dans TLPlan seulement pour encoder les 
lois de compositions cinematographiques. Dans un travail futur, nous planifions d'etendre 
l'utilisation des formules LTL a la description des idiomes. Cette approche permettra de 
beneficier d'un langage plus riche pour la specification des idiomes. 

Le troisieme et dernier article de cette these concerne le modele pedagogique imple-
mente au sein de Roman Tutor pour encadrer l'apprentissage de manipulations robotisees. 
Cet article a ete soumis au journal "IEEE Transactions on Learning Technology". Nous 
y avons montre comment le planificateur de trajectoires FADPRM peut etre efficacement 
utilise pour fournir des retroactions incroyablement utiles a un apprenant sur Roman Tu-
tor. En utilisant FADPRM comme un expert du domaine dans le simulateur, et ATDG 
comme generateur automatique de demonstrations, nous avons montre qu'on pouvait at-
teindre un haut niveau de qualite dans l'assistance tutorielle sans pour autant planifier a 
l'avance quelles retroactions fournir, ni creer au prealable et explicitement un graphe de 
taches complexe pour appuyer et guider le processus de tutorat. 

Une fois en orbite, les astronautes sur la SSI ne disposent actuellement que de simple 
materiel base Web pour le maintien et le developpement de leurs competences relatives a 
la manipulation du SSRMS. Pour les missions spatiales de longue duree, les astronautes 
auront besoin d'outils de simulation plus sophistiques pour maintenir leurs competences. 
Roman Tutor repond a ces besoins en fournissant un outil de formation intelligent et por-
table. II integre, entre autres, un environnement de simulation realiste du SSRMS sur la SSI, 
un planificateur de trajectoires efficace qui tient compte des contraintes de visibility sur la 
station, et un generateur automatique de demonstrations de taches. Roman Tutor genere 
des exemples de taches a accomplir par un apprenant dans 1'environnement de simulation 
et surveille sa progression, pour lui fournir des informations pertinentes en cas de besoin. 
Bien que motive par l'application du bras canadien sur la SSI, le concept de simulateur 
intelligent Roman Tutor avec ses differentes composantes innovatrices dont FADPRM et 
ATDG, reste applicable et transferable a tout autre application d'operations robotisees. 
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