
SIMULATEUR TUTORIEL INTELLIGENT POUR

LES OPERATIONS ROBOTISEES

APPLICATION AU BRAS CANADIEN SUR LA STATION

SPATIALE INTERNATIONALE

par

Khaled Belghith

These presentee au Departement d'informatique
en vue de l'obtention du grade de philosophise doctor (Ph.D.)

FACULTE DES SCIENCES

UNIVERSITE DE SHERBROOKE

Sherbrooke, Quebec, Canada, 19 juillet 2010

1 * 1
Library and Archives Bibliothfeque et
Canada Archives Canada

Published Heritage Direction du
Branch Patrimoine de l'6dition

395 Wellington Street
Ottawa ON K1A 0N4
Canada

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre r6ference
ISBN: 978-0-494-70601-5
Our file Notre r6f6rence
ISBN: 978-0-494-70601-5

NOTICE:

The author has granted a non-
exclusive license allowing Library and
Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:

L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans le
monde, a des fins commerciales ou autres, sur
support microforme, papier, electronique et/ou
autres formats.

The author retains copyright
ownership and moral rights in this
thesis. Neither the thesis nor
substantial extracts from it may be
printed or otherwise reproduced
without the author's permission.

L'auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these. Ni
la these ni des extraits substantiels de celle-ci
ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting forms
may have been removed from this
thesis.

While these forms may be included
in the document page count, their
removal does not represent any loss
of content from the thesis.

Conformement a la loi canadienne sur la
protection de la vie privee, quelques
formulaires secondaires ont ete enleves de
cette these.

Bien que ces formulaires aient inclus dans
la pagination, il n'y aura aucun contenu
manquant.

1 * 1

Canada

Le 22 juillet 2010,

le jury a accepte la these de Monsieur Khaled Belghith
dans sa version finale.

Membres du jury

Professeur Froduald Kabanza
Directeur de recherche

Departement d'informatique

Professeur Roger Nkambou
Membre

Departement Informatique
Universite du Quebec a Montreal

Docteur Leo Hartman
Membre externe

Agence spatiale canadienne

Professeur Richard St-Denis
President rapporteur

Departement d'informatique

Sommaire

Cette these a pour objectif de developper un simulateur tutoriel intelligent pour l'ap-
prentissage de manipulations robotisees, applicable au bras robot canadien sur la station
spatiale internationale. Le simulateur appele Roman Tutor est une preuve de concept de
simulateur d'apprentissage autonome et continu pour des manipulations robotisees com-
plexes. Un tel concept est notamment pertinent pour les futures missions spatiales sur Mars
ou sur la Lune, et ce en depit de l'inadequation du bras canadien pour de telles missions
en raison de sa trop grande complexity. Le fait de demontrer la possibilite de conception
d'un simulateur capable, dans une certaine mesure, de donner des retroactions similaires
a celles d'un enseignant humain, pourrait inspirer de nouvelles idees pour des concepts
similaires, applicables a des robots plus simples, qui seraient utilises dans les prochaines
missions spatiales. Afin de realiser ce prototype, il est question de developper et d'inte-
grer trois composantes originales : premierement, un planificateur de trajectoires pour des
environnements dynamiques presentant des contraintes dures et flexibles ; deuxiemement,
un generateur automatique de demonstrations de taches, lequel fait appel au planificateur
de trajectoires pour trouver une trajectoire solution a une tache de deplacement du bras
robot et a des techniques de planification des animations pour filmer la solution obtenue;
et troisiemement, un modele pedagogique implementant des strategies d'intervention pour
donner de l'aide a un operateur manipulant le SSRMS. L'assistance apportee a un opera-
teur sur Roman Tutor fait appel d'une part a des demonstrations de taches generees par le
generateur automatique de demonstrations, et d'autre part au planificateur de trajectoires
pour suivre la progression de l'operateur sur sa tache, lui fournir de l'aide et le corriger au
besoin.

i

Remerciements

A mon directeur de these, monsieur Froduald Kabanza, professeur au departement d'in-
formatique de l'Universite de Sherbrooke. Je vous remercie de m'avoir accueilli dans votre
laboratoire et de m'avoir confie ce projet qui me tenait particulierement a coeur. Puissent
ces quelques mots vous temoigner de ma profonde gratitude, pour votre encadrement exem-
plaire, votre soutien, votre confiance, ainsi que pour vos precieux apports scientifiques tout
au long de cette these.

A tous les membres du jury de cette these. Je vous remercie vivement pour l ' h o n n e u r
que vous me faites en acceptant d'evaluer ce travail de recherche.

A monsieur Roger Nkambou, professeur a l'Universite du Quebec A Montreal. Un
grand Merci pour votre disponibilite et pour vos idees pertinentes et vos conseils congrus,
m'ayant ete d'une grande aide dans la realisation du troisieme chapitre de cette these.

A monsieur Leo Hartman, chercheur a l'Agence spatiale canadienne. Je tiens a vous
remercier pour tous vos conseils, et tout le soutien que vous m'avez apporte tout au long
de la redaction de la these.

Je tiens egalement a remercier tous les membres des laboratoires GDAC (UQAM) et
Planiart (Universite de Sherbrooke) ayant contribue de pres ou de loin a la realisation du
projet Roman Tutor. Merci pour toutes ces collaborations ayant aide a realiser cette these.
Un remerciement particulier a Philipe Bellefeuille, Mahie Khan et Benjamin Auder.

Enfin, a ma mere, a mon pere, sans qui cette these n'aurait pas vu le jour. A mon frere,
a toute ma famille et a toutes les personnes qui me sont proches, un grand merci pour
vos encouragements, votre affection et pour avoir cru en moi. Un tendre merci a Raoudha
Trabelsi, ma future femme, pour sa patience et son soutien constant tout au long de la
redaction de cette these.

ii

Abreviations

ATDG Automatic Task Demonstration Generator

FADPRM Flexible Anytime Dynamic PRM

LTL Logique temporelle lineaire

PRM Probabilistic Roadmap Methods

Roman T\itor RObot MANipulation Tutor

SSI Station spatiale internationale

SSRMS Space Station Remote Manipulator System (le bras canadien)

STI Simulateur (systeme) tutoriel intelligent

iii

Table des matieres

Sommaire i

Remerciements ii

Abreviations iii

Table des matieres iv

Liste des figures vii

Introduction 1

1 Planification de trajectoires avec preferences dans des environnements dyna-
miques tres complexes 7
1.1 Introduction 11

1.2 Background and Related Work 13
1.2.1 Probabilistic Roadmap Approach 15
1.2.2 Path Planning with Preferences 16
1.2.3 Anytime Path Planning 16
1.2.4 Dynamic Path Planning 18

1.3 FADPRM Path Planner 18
1.3.1 Algorithm Sketch 19
1.3.2 Algorithm Details 22

1.4 Experimental Results 24
1.4.1 Fast-Replanning Capability 25

iv

TABLE DES MATIERES

1.4.2 Search Control Capability 28
1.4.3 Path-Quality Control Capability 31
1.4.4 Generality of the Results 33

1.5 Conclusion 35
1.6 Acknowledgement 36

2 Planification automatique de cameras pour filmer des operations robotisees 37
2.1 Introduction 40
2.2 Background 42

2.2.1 Virtual Camera and Virtual Camera Planning 42
2.2.2 Scenes, Shots and Idioms 42
2.2.3 Camera Planning Approaches 43

2.3 Needs for a Camera Planning Approach for Viewing Robot Manipulation
Tasks 46

2.4 The Automatic Task Demonstration Generator 47
2.5 Camera Planning Approach 49

2.5.1 Segmenting the Robot Trajectory into Scenes 49
2.5.2 Specifying Shots and Idioms 50
2.5.3 Specifying Shot Composition Rules 53
2.5.4 Planning the Cameras 54
2.5.5 Discussion 57

2.6 Experiments 58
2.7 Conclusion and Future Work 60
2.8 Acknowledgement 61

3 Modele pedagogique dans un simulateur intelligent pour les operations robo-
tisees 62
3.1 Introduction 65
3.2 FADPRM Path Planner 69
3.3 The Automatic Task Demonstration Generator 72
3.4 Roman Tutor Architecture and Basic Functionalities 75

3.4.1 Architecture and Main Components 75
3.4.2 Training Tasks 76

v

TABLE DES MATIERES

3.4.3 Tutoring Approaches in Roman Tutor 77

3.5 FADPRM as a Domain Expert in Roman Tutor 79
3.6 Conclusion 81
3.7 Acknowledgement 81

Conclusion 82

vi

Table des figures

1 SSRMS sur la station spatiale internationale 1
2 Roman tutor interface 2

1.1 ISS path-planning domain and robot control station 12
1.2 SSRMS going through three different cameras fields of view (purple, green

and blue cones) and avoiding an undesirable zone (rectangular zone in pale
red) 26

1.3 FADPRM versus PRM in replanning 26
1.4 FADPRM versus PRM in planning time 27
1.5 FADPRM versus PRM in path quality (Path-dd) 28
1.6 Not smoothed paths with FADPRM (/3 = 0, 7) in the ISS environment . . . 28
1.7 FADPRM (/3 = 0,4 and /3 = 0, 7) versus PRM in planning time 29
1.8 Path quality with FADPRM (/3 = 0,4 and {3 = 0, 7) 30
1.9 Planning time with FADPRM (0 = 0, 7) with 7 = 0, 5 and 7 = 0, 2 31
1.10 Smoothed paths with FADPRM in the ISS environment ((3 = 0, 7) 32
1.11 FADPRM versus PRM in smoothing time 32
1.12 FADPRM versus PRM in path quality of smoothed paths 33

1.13 PUMA robot around a car 34
1.14 Path quality evolution with FADPRM 34

2.1 Roman tutor interface 41
2.2 Degrees of freedom of a virtual camera 42
2.3 Film abstraction hierarchy 43
2.4 ATDG architecture 48
2.5 Camera placements 51

vii

TABLE DES M A T I E R E S

2.6 Examples of idioms 52
2.7 A shot composition rule 53
2.8 Shot specification operator 55
2.9 Idiom selection operator 56
2.10 Idiom-description LTL formula used to film a translation of the SSRMS . . 57
2.11 Idiom to film the SSRMS anchoring a new module on the ISS 58
2.12 Scenarios 59

2.13 Performance data 59

3.1 SSRMS on the ISS (left) and the robotic workstation (right) 65
3.2 Roman tutor interface 67
3.3 SSRMS going through three different cameras fields of view (purple, green

and blue cones) and avoiding an undesirable zone (rectangular zone in pale
red) 70

3.4 ATDG architecture 73
3.5 Idiom to film the SSRMS anchoring a new component on the ISS 74
3.6 Roman Tutor architecture 75
3.7 Roman Tutor showing a robot trajectory to the student 80

viii

Introduction

La manipulation du bras robot canadien ou SSRMS (pour "Space Station Remote Ma-
nipulator System") sur la station spatiale internationale (SSI) est une tache fortement com-
plexe. Elle necessite la maitrise complete de la geometrie du robot et des differents modes
de manipulation, ainsi qu'une connaissance approfondie de l'architecture de la station avec
ses differents composants. La figure 1 montre une vue reelle de la SSI et du SSRMS. Le
SSRMS est utilise pour deplacer une charge d'un endroit a un autre, reparer un des elements
de la station et inspecter la station a l'aide d'une camera montee a son extremite. Toutes
ces manipulations sont accomplies avec la plus grande precision de sorte que le SSRMS ne
doit, en aucun cas, entrer en collision avec un element de la station.

figure 1 - SSRMS sur la station spatiale internationale

La manipulation du SSRMS se fait a distance, a partir d'un ordinateur situe a l'interieur
d'un des compartiments de la SSI. Cet ordinateur comprend trois moniteurs relies chacun
a une camera placee a un endroit particulier de la SSI. En tout, les cameras sont au nombre
de quatorze, mon ie s a differents endroits de la SSL Lors de la manipulation du SSRMS,

1

1.1. INTRODUCTION

un bon choix de cameras pour chacun des trois moniteurs s'impose. L'astronaute choisit
celles qui lui offrent une meilleure visibility tout fen gardant une bonne appreciation de son
evolution dans la tache. La difficulty de la manipulation du SSRMS provient surtout du
fait que chacun des moniteurs ne presente qu'une vue partielle de la station. Nous utili-
sons 1'appellation "manipulations robotisees" pour referer aux manipulations effectuees a
distance par les astronautes a travers l'ordinateur pour deplacer le SSRMS.

Cette these a pour objectif de developper un systeme, dans notre cas un simulateur,
tutoriel intelligent (STI) pour l'apprentissage de manipulations robotisees, applicable au
SSRMS sur la SSL Le STI appele Roman Tutor (voir la figure 2), pour RObot MANipula-
tion Tutor, est une preuve du concept de simulateur d'apprentissage autonome et continue
pour des manipulations robotisees complexes. Un tel concept est pertinent pour les futures
missions spatiales sur Mars ou sur la Lune. Meme si le SSRMS ne sera pas impliqu6 dans
de telles missions a cause de sa trop grande complexity, le fait de demontrer qu'on peut
concevoir un simulateur capable de donner des retroactions similaires a celles d'un ensei-
gnant humain peut fournir des idees pour des concepts similaires applicables aux robots
plus simples qui seront utilisees dans les prochaines missions sur Mars ou la Lune.

rktar OfftoJtyloml K d i M Tods About...

j-. ' st a w s

Action Applied 10 Result Cofllslon Details Proximity Detslls

Movement W P (-180.SZ9444. -160.172366. 166.910689 J &
Movement W P [-180.<I69350,-160.023379, 166.904245] I
Movement W P 1-180.407111.- lS9.S7S2fl7, 168.867^80) ^
Movement SP 1-188.107114.-1S9.87S217 .168 .867180) :
Mnvemcnt SV I-180.4074! 4 , -159.875247 , 168.867480) t

figure 2 - Roman tutor interface

Au-dela de prouver le concept d'apprentissage autonome des manipulations robotisees,

2

1.1. INTRODUCTION

Roman Tutor constitue un outil de validation des operations robotisees utilisable par les
equipes terrestres en support aux astronautes sur le SSI. En effet, la realisation d'une ope-
ration impliquant le SSRMS sur le SSI necessite au prealable la validation par une equipe
sur terre en liaison avec les astronautes. L'equipe sur terre utilise un simulateur du SSRMS
pour valider les operations impliquant le SSRMS. Cependant, le simulateur actuel est es-
sentiellement un outil de visualisation, sans aucune intelligence. II ne peut pas comparer
differents scenarios possibles ni donner des retroactions pedagogiques aux operateurs (par
exemple, expliquer pourquoi une manoeuvre est preferable a une autre). En fait, il revient
aux operateurs de decider du deplacement du SSRMS dans le simulateur et comparer les
differentes alternatives.

Contrairement a un simulateur normal, Roman Tutor a la capacite de comprendre, dans
une certaine mesure, les manipulations du SSRMS pour pouvoir valider les manipulations
faites par un operateur, les critiquer et suggerer de meilleures approches. Une des com-
posantes permettant au STI cette capacite de comprendre les manipulations est un plani-
ficateur des deplacements du SSRMS. Etant donne une configuration initiale du SSRMS
et une configuration cible, le planificateur est en mesure de determiner une trajectoire me-
nant de la configuration initiale a la configuration finale, tenant compte des obstacles et
des contraintes de visibilite. Ainsi, etant donne une trajectoire faite par un operateur, Ro-
man Tutor peut la critiquer par rapport a sa propre trajectoire et fournir des retroactions au
besoin.

La planification de trajectoires pour des robots articules est un probleme fortement
etudie en robotique et en intelligence artificielle, auquel plusieurs solutions ont ete propo-
sees [36, 11, 22, 57, 44]. Dans sa forme classique, le probleme consiste a amener un robot
d'une position a une autre en evitant la collision avec les obstacles presents dans le milieu.
Une des choses qui rendent le probleme particulier dans Roman Tutor est son aspect for-
tement dynamique resultant du fait qu'il doit suivre les deplacements du SSRMS effectues
par un operateur pour les valider. Pendant que l'operateur deplace le SSRMS, le role du pla-
nificateur est de verifier, a chaque mouvement, l'existence d'une trajectoire possible entre
la configuration courante du robot et une configuration finale donnee comme cible a at-
teindre. Roman Tutor ne peut pas prevoir a l'avance les mouvements de l'operateur; il doit
recalculer dynamiquement la trajectoire vers la cible a partir de la configuration courante.
Cela doit se faire efficacement en exploitant les calculs realises dans les etapes precedentes.

3

1.1. INTRODUCTION

Idealement, ceci necessite que le planificateur de trajectoire ait la propriete "anytime" [20],
c'est-a-dire, qu'il soit capable de donner une solution approximative dans un delai limite;
de sorte que plus le delai alloue est eleve, plus la solution est proche de l'optimalite.

Une autre particularite du probleme de planification de trajectoires dans Roman Tutor
concerne les contraintes de visibilite. Le planificateur doit calculer des trajectoires visibles
au travers des cameras montees sur la SSI et que l'operateur utilise pour voir l'exterieur de
la SSI. Bien entendu, la contrainte de deplacer le SSRMS d'une position initiale vers une
position finale en evitant les collisions demeure la contrainte la plus critique. II s'agit d'une
contrainte dite dure parce que les collisions doivent etre evitees a tout prix. Par contre, dif-
ferentes regions de la SSI peuvent etre plus ou moins visibles selon les cameras choisies
et selon les conditions de l'environnement. Par exemple, l'orbite de la SSI peut faire en
sorte qu'a differents moments des cameras deviennent exposees au soleil, rendant difficile
la visibilite des regions couvertes par ces dernieres. Selon ce degre de visibilite, une tra-
jectoire passant a travers certaines regions doit etre evitee le plus possible, mais peut etre
acceptee s'il s'avere impossible de trouver de meilleures solutions. Les contraintes de visi-
bilite sont done des contraintes souples ou fiexibles. Elles expriment des preferences dans
la navigation du robot.

Pour donner des retroactions, Roman Tutor utilise un generateur automatique de de-
monstrations de taches ATDG pour "Automatic Task Demonstration Genrator". Etant donne
la description d'une tache (par exemple, deplacer une charge d'un endroit a un autre), le
ATDG genere une animation 3D interactive expliquant comment effectuer une telle tache.
La conception du ATDG est inspiree des techniques de planification automatique des ani-
mations 3D. Les techniques usuelles presentes dans la litterature sont de deux types : les
approches par satisfaction de contraintes et les approches par idiomes (chapitre 2). Les ap-
proches par satisfaction de contraintes travaillent au niveau de chaque image constituant le
film et utilisent des methodes numeriques fastidieuses pour s'assurer de 1'exactitude et de
la coherence de leur contenu. Les approches par idiomes s'inspirent du monde cinemato-
graphique et utilisent differents concepts leurs permettant de filmer une animation comme
le fait un metteur en scene. Vu le caractere tres complexe de notre application, les deux
families d'approche s'averent etre inapplicables directement a notre problematique.

En resume, cette these a pour objectif le developpement d'un prototype simulateur tu-
toriel intelligent pour l'apprentissage d'operations robotisees, appele Roman Tutor. Pour

4

1.1. INTRODUCTION

realiser ce prototype, nous nous proposons de developper et d'integrer trois composantes
originales.

1. Un planificateur de trajectoires pour des environnements dynamiques presentant des
contraintes dures et flexibles.

2. Un generateur automatique de demonstrations de taches (ATDG). Ce dernier fait
appel au planificateur de trajectoires pour trouver une trajectoire solution a une tache
de deplacement du SSRMS et a des techniques de planification des animations pour
filmer la solution obtenue.

3. Un modele pedagogique implementant des strategies d'intervention pour donner de
l'aide a un operateur manipulant le SSRMS.

Le premier chapitre de cette these introduit la nouvelle approche de planification de
trajectoires avec preferences que nous avons developpee. Cette nouvelle approche etend
les approches de planification de trajectoires par echantillonnage actuelles par l'ajout de
la caracteristique flexible permettant de tenir compte des contraintes souples dans l'envi-
ronnement, et de la tenir compte des contraintes de visibilite sur la SSI. Les approches par
echantillonnage sont les plus efficaces dans des environnements a forte complexity [30].
Nous montrons dans ce chapitre que cette notion de flexibility permet d'ameliorer grande-
ment la qualite des trajectoires generees, un des plus importants handicaps des approches
par echantillonnage. De plus, ce nouveau planificateur adapte les caracteristiques "anyti-
me" et dynamique au sein des approches de planification par echantillonnage.

Le deuxieme chapitre est consacre a l'etude de l'ATDG, le generateur automatique de
demonstrations de taches. ATDG utilise la logique temporelle lineaire (LTL) [3] pour ex-
primer les principes cinematographiques et les preferences de filmage, un langage plus
expressif et avec une semantique plus simple que les anciens langages de planification
de cameras. ATDG implemente l'algorithme sous-jacent TLPlan pour la planification de
cameras. Tout d'abord, la trajectoire du robot est generee en utilisant le planificateur de tra-
jectoires. Le planificateur de cameras TLPlan est ensuite invoque pour trouver la meilleure
sequence de configurations de cameras filmant le robot sur sa trajectoire.

Dans le troisieme et dernier chapitre de cette these, nous exposons le modele pedago-
gique implemente au sein de Roman Tutor pour supporter et encadrer l'apprentissage de
manipulations robotisees. L'aide a un operateur fait appel d'une part a des demonstrations

5

1.1. INTRODUCTION

de taches generees automatiquement par le ATDG, et d'autre part au planificateur de tra-
jectoires pour suivre la progression de l'operateur sur sa tache, lui fournir de l'aide et le
corriger au besoin.

6

Chapitre 1

Planification de trajectoires avec
preferences dans des environnements
dynamiques tres complexes

Resume

Les approches de planification de trajectoires presentes dans la litterature peuvent
etre classees en deux principales categories : les approches combinatoires et les
approches par echantillonnage [14, 44], Les approches par echantillonnage ou
PRMs (pour "Probabilistic Roadmap Methods") sont les plus efficaces dans des
environnements a forte complexite [30]. Leur caracteristique probabiliste leur
permet d'eviter la representation explicite et complete de l'espace. Par echan-
tillonnage probabiliste, elles construisent un roadmap ou graphe qui n'en est
qu'une representation simplifiee. Vu la complexite accrue des environnements
dans lesquels oeuvrent les robots propres a notre problematique, il semble evident
que la nouvelle approche de planification de trajectoires que nous presentons dans
ce chapitre soit alignee a cette categorie de planificateurs.

Dans sa formulation traditionnelle, le probleme de planification de trajec-
toires consiste a amener un robot d'une position a une autre en evitant la col-
lision avec les obstacles presents dans l'environnement. Dans certaines applica-
tions complexes du monde reel, toutefois, en plus des obstacles qui doivent etre

7

evites, il peut y avoir des zones dangereuses qui doivent etre evitees autant que
possible. La notion de danger est pertinente par exemple dans des applications
militaires [51, 59], Inversement, il peut etre souhaitable pour un chemin de rester
a proximite de certaines zones autant que possible. C'est notamment le cas dans
la manipulation du SSRMS sur la SSI, ou les preferences sont liees a des champs
de visions de cameras, qui changent de fagon dynamique, en partie a cause des
changements dans l'orbite de la SSL

Nous presentons dans les pages qui suivent un article qui introduit notre nou-
velle approche de planification de trajectoires avec preferences. Cette nouvelle
approche est intitulee FADPRM pour "Flexible Anytime Dynamic PRM". Le pla-
nificateur FADPRM va etendre les approches de planification PRMs actuelles par
l'ajout de la caracteristique flexible permettant de tenir compte des contraintes
souples dans l'environnement. Les contraintes souples (ou flexibles) sont dictees
par la presence de zones avec differents degres de desirabilite dans l'environ-
nement. FADPRM previlegie des trajectoires solutions qui evitent les zones non
desirables et qui font passer le robot le plus possible a travers les zones desirables.

Meme quand un probleme de planification de trajectoires ne necessite pas
l'ajout de la notion de desirabilite de maniere explicite, l'introduire permet de
fournir un moyen efficace pour controler la qualite des trajectoires generees par
une methode de planification par echatillonnage. En effet, dans les approches par
echantillonnage, les trajectoires sont obtenues en reliant des configurations qui
sont choisies au hasard dans l'espace des configurations libres. Ceci conduit a des
trajectoires solutions complexes et de mauvaise qualite, necessitant de operations
heuristiques de post-traitement pour les lisser [58]. Dans l'article suivant, nous
demontrons qu'il est possible d'influencer la strategie d'echantillonnage pour
generer des trajectoires plus lisses juste en specifiant des zones avec degres de
desirabilite dans l'environnement. Nous montrons egalement que la notion de
desirabilite permet un meilleur controle de 1'exploration de l'espace de recherche
pour garantir une planification plus efficace.

Avec FADPRM, l'exploration par echantillonnge de l'espace des configura-
tions libres s'inspire de differentes strategies d'exploration dynamiques et "any-
time" presentes dans le litterature [47, 48, 39]. Un planificateur de trajectoires

8

peut s'adapter aux changements dynamiques qui surviennent dans l'environne-
ment (changement dans les obstacles, dans les zones et dans leurs degres de de-
sirabilite ou dans les configurations initiale et finale) en recalculant une nouvelle
trajectoire a chaque fois. Une strategic dynamique reutilise les resultats obte-
nus des recherches anterieures pour garantir de meilleures performances dans la
planification. Une strategic "anytime" [20] procede de maniere incremental, en
commen§ant par un plan de degre de desirabilite bas, puis l'ameliore progressi-
vement. De cette fa§on, et a tout moment, le planificateur dispose d'un plan d'un
certain degre de satisfaction qui est ameliore si plus de temps de planification est
disponible.

Commentaires

Une premiere version du planificateur FADPRM a ete presentee a la conference
"IEEE International Conference on Robotics and Automation" en 2006 [7]. Dans
cette derniere, FADPRM utilisait la strategie d'exploration AD* pour "Anytime
Dynamic A*" [48]. Dans sa nouvelle version presentee dans les pages qui suivent,
FADPRM implemente une version "anytime" de la strategie plus recente GAA*
pour "Genralized Adaptive A*" [61]. Nous utilisons maintenant GAA* a la place
de AD* parce que les deux algorithmes ont des performances comparables et que
GAA* a une structure plus simple et plus facile a comprendre et a implementer.

L'article presente dans ce chapitre a ete soumis au journal "International
Journal of Robotics Research". Une version plus courte de ce travail va pa-
raitre dans les actes de "International Conference on Autonomous and Intelligent
Systems" [6]. Dans la version courte, seulement 1'adaptation du planificateur
GAA* dans FADPRM sans integrer de la strategie "anytime" a ete presentee.
Ces travaux ont ete realises, valides et rediges sous la supervision du Professeur
Froduald Kabanza (Universite de Sherbrooke) et avec les conseils du Professeur
Leo Hartman (Agence spatiale canadienne).

9

Randomized Path Planning with Preferences
in Highly Complex Dynamic Environments

Khaled Belghith, Froduald Kabanza
Departement d'informatique, Universite de Sherbrooke,

Sherbrooke, Quebec, Canada J1K 2R1
khaled.belghith@usherbrooke.ca, kabanza@usherbrooke.ca

Leo Hartman
Canadian Space Agency,

John H. Chapman Space Centre, 6767 Route de l'Aeroport
Saint-Hubert, Quebec J3Y 8Y9

leo.hartman®asc-csa.gc.ca

Abstract

In this paper, we consider the problem of planning paths for articulated bo-
dies operating in workplaces containing obstacles and regions with preferences
expressed as degrees of desirability. Degrees of desirability could specify dan-
ger zones and desire zones. A planned path should not collide with the obstacles
and should maximize the degrees of desirability. Region desirability can also
convey search-control strategies guiding the exploration of the search space. To
handle desirability specifications, we introduce the notion of flexible probabilis-
tic roadmap (flexible PRM) as an extension of the traditional PRM. Each edge
in a flexible PRM is assigned a desirability degree. We show that flexible PRM
planning can be achieved very efficiently with a simple sampling strategy of the
configuration space defined as a trade-off between a traditional sampling oriented
towards coverage of the configuration space and a heuristic optimization of the
path desirability degree. For path planning problems in dynamic environments,
where obstacles and region desirability can change in real-time, we use dynamic
and anytime search exploration strategies. The dynamic strategy allows the plan-
ner to re-plan efficiently by exploiting results from previous planning phases. The
anytime strategy starts with a quickly computed path with a potentially low desi-
rability degree which is then incrementally improved depending on the available
planning time.

10

mailto:khaled.belghith@usherbrooke.ca
mailto:kabanza@usherbrooke.ca

1 .1 . INTRODUCTION

1.1 Introduction

In its traditional form, the path planning problem is to plan a path for a moving body (ty-
pically a robot) from a given start configuration to a given goal configuration in a workspace
containing a set of obstacles. The basic constraint on solution paths is to avoid collision
with obstacles, which we call hereby a hard constraint. There exist numerous approaches
for path planning under this constraint [36, 11, 22, 57, 44].

In many complex applications, however, in addition to obstacles that must be avoided,
we may have dangerous areas that must be avoided as much as possible. That is, a path
going through these areas is not highly desirable, but would be acceptable if no better path
exists or can be computed efficiently. The danger concept is relevant, for example, in mi-
litary applications. Some path planning techniques that deal with it have been proposed,
including [59, 51]. Conversely, it may be desirable for a path to stay close to certain areas
as much as possible. Even when a path planning problem has no explicit notion of region
desirability, introducing the notion provides a way to control the quality of a path generated
by a randomized path planning method. Indeed, paths are obtained by connecting miles-
tones that are randomly sampled in the free workspace and this tends to yield awkward
paths, requiring heuristic post-processing operations to smooth them. In this paper, we de-
monstrate that one can influence the sampling strategy to generate less awkward paths by
specifying zones the path is preferred to go through. We also show that region desirability
specifications can also help control the exploration of the sampled search space and make
the path-planner more efficient.

Our path planning approach builds flexible roadmaps by extending existing sampling
techniques including delayed collision checking, single query, bi-direction and adaptive
sampling [58]. Desirable and undesirable workspace regions are soft constraints on the
robot path, whereas obstacles are hard constraints. The soft constraints convey preferences
for rating solutions paths which must avoid obstacles. The more a path avoids undesirable
zones and goes through desirable zones, the better it is.

The exploration of the sampled configuration space is done using dynamic and anytime
space exploration methods [47,48, 39]. In dynamic environments, a path planner can adapt
a previously computed path to dynamic changes in obstacle configurations, goals or region
desirability, by computing a new path. Dynamic state space exploration strategies reuse

11

1 . 1 . I N T R O D U C T I O N

the results obtained from previous searches to achieve better performance compared to
re-searching from scratch. In addition, an anytime search strategy proceeds incrementally,
starting with a path having a low desirability degree and then improving it incrementally.
In this way at "any time", the planner has a plan with some degree of satisfaction that is
improved as more planning time is spent.

Our testbed is a simulation of the Space Station Remote Manipulator System (SSRMS)
deployed on the International Space Station (ISS). The SSRMS is a 17 meter long arti-
culated robot manipulator, having a translation joint, seven rotational joints (each with a
range of 270 degrees) and two latching end-effectors which can be moved to various fix-
tures, giving it the capability to "walk" from one grappling fixture to next on the exterior of
the ISS [19]. Astronauts operate SSRMS using the robot control station located inside one
of the ISS compartments (Figure 1.1). A robot control station has an interface with three
monitors, each connected to a camera placed at a strategic location of the ISS. There are
many cameras covering different parts of the ISS structure and three of them are selected
and mapped to the three monitors.

(a) View from one of the monitors (b) Robot control station

figure 1.1 - ISS path-planning domain and robot control station

Most of the SSRMS tasks on the ISS involve moving the robot from one configuration
to another in order, for example, to move a payload from the shuttle or inspect a region
of the ISS exterior using a camera mounted on the end effector. A judicious choice of the
camera on each of the three monitors along different segments of a robot path ensures
that the operator is appropriately aware of the robot motion. Computed paths must go as

12

1 .2 . BACKGROUND AND RELATED W O R K

much as possible through camera fields of view to enable a good appreciation of the robot
motion. In other words, the camera fields of view convey preferences for regions through
which the robot path should remain as much as possible while avoiding collisions with the
ISS structure.

In the next section we give the background and discuss some of the related work. We
then present our path planning approach to handling path preferences in the robot works-
pace. We follow with experiments in the ISS environment and in a car repair domain,
showing the capability of the new planning approach to handle path preferences and search
control specifications that are expressed by assigning desirability degrees to workspace
regions.

1.2 Background and Related Work

A configuration q of an articulated robot with n degrees of freedom (d o f) is an n ele-
ment vector of the robot joint positions. Since the robot moves by changing its joint rota-
tions or translations, a path between two points is a sequence of configurations sufficiently
close together connecting the two points. A path is collision-free or in the space of collision-
free configurations C/ r e e , if the robot does not collide with any obstacle in the workspace
in any of the configurations on the path. Computing a path is seen as making a query (to
the path-planner) with the input of the start and goal configurations. Two very commonly
used approaches to path planning are the combinatorial and randomized approaches.

Combinatorial approaches, also called decomposition or exact approaches, proceed by
searching through a geometric representation of C/ r e e . Given a 2D or 3D model of obstacles
in the workspace, a 2D or 3D model of the robot, the configuration space is decomposed
into an occupancy grid of cells, also called a roadmap. A path from a start cell to a goal cell
is then found by searching a sequence of moves between adjacent free cells, connecting the
start configuration to the goal [38, 49, 22, 44]. These moves correspond to possible edges
in a graph with nodes corresponding to free cells in the grid. Graph-search algorithms such
as A* search [29, 54] or AD* [48] can be used to compute a path between the start and goal
configurations.

Randomized approaches, also known as sampling-based approaches, proceed by sam-
pling the space of the robot configurations. Given a 2D or 3D model of obstacles in the

13

1 . 2 . BACKGROUND AND RELATED W O R K

workspace and a 2D or 3D model of the robot, a randomized planner builds a graph of nodes
corresponding to configurations in Cfree by picking configurations randomly and checking
that they are collision-free. It uses a fast collision detection checker (called a local planner)
to check that an edge between two adjacent nodes is also collision-free; each time the lo-
cal planner succeeds, the corresponding edge (i.e., local path or path segment) is inserted
into the graph. The graph built that way is called a probabilistic roadmap (PRM) [36] or a
rapidly-exploring random tree (RRT) [44] and is a simplified representation of C/ r e e . Here
too graph-search algorithms such as A* search [54] or AD* [48] can be used to explore the
graph to find a collision-free path linking the start to the goal configuration.

Therefore combinatorial as well as randomized approaches have in common the discre-
tization problem to build an intermediate graph structure (the roadmap) and search through
it. The key difference lies in what the graph represents and how it is built. With combinato-
rial approaches the graph is meant to be an exact representation of Cfree and its construction
takes into account the geometry of the workspace and the robot. With sampling approaches,
the graph represents samples of Cfree. It is not an exact representation of C/ r e e . Given that
the configuration space is randomly sampled, randomized approaches do not guarantee a
full coverage of free space and they are not complete and do not guarantee optimality. In
fact, they are probabilistically complete, meaning that the more samples are made the closer
the probability of guaranteeing the absence or presence of a solution gets to 1 [58]. Com-
binatorial approaches guarantee completeness and optimality by using a sufficiently small
discritization step. In practice, this results in large search spaces, making the approaches
generally intractable for high dimensional configuration spaces [30].

A heuristic method for grid decompositions is to plan using a coarse discretization
space. If no solution is found or to improve the solution found so far, a new planning ite-
ration is made with finer discretization pace. The process can be iterated as more planning
time is invested or until a satisfactory solution is found. Another exploration strategy for
the occupancy grid maybe to use random search [45], While this may help coping with the
complexity of the configuration space, in very large configuration spaces the planner spends
a large amount of time generating the occupancy grid [30]. Sampling-based methods ge-
nerally offer better performance than exact methods for domains with high-dimensional
spaces [30, 14, 44],

14

1 . 2 . B A C K G R O U N D AND R E L A T E D W O R K

1.2.1 Probabilistic Roadmap Approach

Our randomized implementation follows a PRM approach [58], However, it can be
easily adapted to an RRT approach given an RRT approach fundamentally corresponds to
a single-query PRM with on the fly search of the sampled roadmap combined with on-the-
fly collision detection [45]. Our implementation includes various configuration modes that
allow the planner to run in a single or multiple query mode, with on-the-fly search of the
roadmap or not and with collision detection on-the-fly or delayed.

A PRM is an undirected graph G = (N, V) with N the nodes of the graph and V
the arcs. The nodes are sampled configurations in C/ r e e , also called milestones. The arcs
represent links or segments v connecting two configurations. Algorithm 1 shows a basic
PRM path planning algorithm. It starts by initializing the roadmap G with the start and goal
configurations nstart and ngoai. Then, a new node n is sampled randomly, with a probability
measure 7r, in Cfree and added to the roadmap. A set of nodes in G and in the neighborhood
of n called Vn is selected. Using a collision checker (local planner), we look for a node n'
in Vn such that the link (n, n') is free of collisions and then add it to G. The process is
repeated until a path connecting nstart and ngoai is found.

Algorithm 1 Basic PRM Algorithm
01. Initialize the roadmap G with two nodes, nstart and ngoai
02. Repeat
03. Sample a configuration n from Cfree with probability measure IT

04. if (n e Cfree) then add n as a new node of G
05. for some nodes n' in a neighborhood Vn of n in G such that n' / n
06. if collisionFree(n, n') then add v = (n, n') as a new edge of G
07. until nSTART a n d rig0aL are in the same connected component of G or G contains N + 2 nodes
08. if fistart^nd ngoai are in the same connected component of G then
09. return a path between them
10. else
11. return No Path

The above algorithm follows a single-query on-the-fly collision detection approach.
The samples of Cfree corresponding to the nodes in the graph G are generated while sear-
ching G and detecting collision on the fly. On each query, the graph is reconstructed. It is
conceivable to generate G, store it and then search it each time we have a query. In this
case, a sufficiently large G needs to be generated to cover potential queries. This is known
as a multiple-query approach because several queries can be made on the same roadmap. A

15

1.2 . BACKGROUND AND RELATED W O R K

delayed collision-checking approach would avoid checking collisions (Step 6) until a whole
path has been found. If a segment on the path turns out to be colliding, the algorithm would
backtrack to search for a new path. A delayed collision-checking method can outperform a
non-delayed one on some planning domains [11, 58].

A PRM planner selects a node to expand in the free configuration space according to
some given sampling measure. The efficiency of PRM approaches significantly depends on
this measure [30], A naive sampling measure will likely lose efficiency when the free space
Cfree contains narrow passages. A narrow passage is a small region in Cfree where the
sampling probability becomes very low. Some approaches exploit the geometry of obstacles
in the workspace to adapt the sampling measure accordingly [9, 40, 41]. Other methods
use machine learning techniques to adapt the sampling strategy dynamically during the
construction of the probabilistic roadmap [41, 13, 31].

1.2.2 Path Planning with Preferences

In addition to collision avoidance, the concept of dangerous areas that have to be avoi-
ded as much as possible has been addressed in some path planning approaches [51, 59].
Herein we generalize the concept to preferences among regions in the Cfree space. Dif-
ferent regions can be assigned different degrees of desirability, meaning that we would like
the path planner to compute a path which not only avoids obstacles but also maximizes
the degree of desirability for the path. Since path quality criterion may also depend on
other metrics such as the distance along the path, we define the overall path quality as a
trade-off between region desirability and distance. The trade-off is conveyed by a parame-
ter weighing the contribution of each of these criteria to the global path-quality criterion.
As a means to convey preferences among collision-free paths, region desirability provides
a way to specify search control information for a path planner. It can be used to determine
how the search process chooses the next node to expand.

1.2.3 Anytime Path Planning

In real-time applications involving the computation of an optimal solution, it is often
desirable to have an incremental algorithm that computes its solution as a sequence of in-
termediate useful, but suboptimal solutions, converging towards an optimal solution. Dean

16

1.2 . BACKGROUND AND RELATED W O R K

and Boddy called these anytime algorithms [20]. Such an algorithm guarantees a useful ap-
proximate solution at any time, which gets improved incrementally if more planning time
is allowed. With a PRM planner, an anytime capability can be integrated into the search al-
gorithm exploring the sampled roadmap. In particular, using the A* heuristic graph-search
algorithm, one can implement a twofold anytime capability.

If given a transition function covering the entire search space and an admissible heuris-
tic, A* guarantees finding an optimal solution. In our case, the search space is the sampled
roadmap and a heuristic function h{n) is a function taking a configuration n as input and
returning the estimated distance from a configuration n to the goal configuration. It is ad-
missible if it never overestimates the actual distance h*{n). We use the Euclidean distance
as admissible heuristic. Obviously, the larger the search space, the more time it may take
to find an optimal solution, even though A* does not have to exhaust the search space to
guarantee optimality. To mitigate the combinatorial size of the state space, one can run A*
on a smaller portion of the search space (producing an approximate path), then expand the
search space and compute a new solution path for it and so on. This gives a sequence of
solutions, converging to the optimal when the entire search space is covered. Given a dead-
line for computing a solution, the search space will be iteratively expanded accordingly ; a
solution for each chunk of expansion is then computed. This implements an anytime capa-
bility through state expansion. The search process can be stopped at any time and give a
solution (more precisely anytime after the time necessary for a first solution) and the more
time it is given, the better the solution will be.

Another interesting property of A* is that, if given a non admissible heuristic h(n) =
h*(n) + e, then the cost of the path computed by A* minus the cost of the optimal distance
is less or equal than e. In other words, e is an upper bound on the error for the cost of
the solution compared to the optimal solution. Moreover, A* tends to return a solution,
possibly suboptimal, faster with inadmissible heuristics than with admissible heuristics.
Based on these two observations and given an admissible heuristic h (e.g., the Euclidean
distance), another way to implement an anytime A* search would be to compute a path
using h{n) + ei, then another solution using h(n) + e2 and so on. In other words, a sequence
of solutions using a decreasing error bound Q on the admissible heuristic is computed,
with e i + i < €j. Given a deadline for computing a solution path, the inflating factor will be
decreased iteratively, computing a solution for each decrease. This is the anytime capability

17

1 .3 . F A D P R M PATH PLANNER

through heuristic improvement.
Both previous methods for implementing anytime capabilities with A* are comple-

mentary and can be combined as is the case in the Anytime Repairing A* (ARA*) algo-
rithm [49]. We use a similar approach to explore a randomized flexible roadmap.

1.2.4 Dynamic Path Planning

In the ISS environment, most of the structure is fixed, only the robots can move. Ho-
wever, region desirability degrees can change as well as the goal. Regions of desirability
depend on the task and the involved camera views. Depending on the orbit of the ISS, a
camera may have its view towards the sun, making it undesirable. From the roadmap pers-
pective, this means that the cost of a segment between two nodes can change dynamically.
Such changes may invalidate a previously calculated path, either because it is no longer
optimal or simply because it now leads to a dead-end. Re-planning is necessary in such
cases.

Dynamic path planners adapt dynamically to change happening around the robot by
repairing incrementally their representation of the environment. Different approaches exist
that are extensions of the A* algorithm, including D* Lite [38], Anytime Dynamic A*
(AD*) [48] and Generalized Adaptive A* (GAA*) [61]. These algorithms extends A* search
to solve dynamic search problems faster by updating heuristics on nodes using knowledge
acquired from previous searches.

1.3 FADPRM Path Planner

Combining region preferences, anytime search and dynamic re-planning, we obtain a
flexible anytime dynamic probabilistic roadmap planner (FADPRM). The general idea is
to keep track of milestones in an optimal solution to the goal. When changes are noticed,
edges costs are updated and a new roadmap is re-computed fast, starting from the goal,
taking into account previous traces of the path-calculation. This brings us back to a method
in between the multiple query approach and the single query approach. The difference with
a multiple query approach is that we are now only concerned with the roadmap to the
current goal the robot is trying to reach in a dynamic environment.

18

1.3 . F A D P R M PATH PLANNER

FADPRM uses GAA* to explore the roadmap. The cost of an edge between two confi-
gurations depends on the actual distance between the configurations and the desirability
degrees of the configurations along that edge. In a preliminary version of FADPRM [7],
we have used AD* instead of GAA*. We now use GAA* instead of AD* because they
have comparable performances, yet GAA* has a simpler description. Note that the contri-
bution of FADPRM does not just amount to using GAA* to explore a sampled roadmap.
The integration of preferences and their use to control both the path quality as well as the
search-process for computing such a path are the key contributions.

1.3.1 Algorithm Sketch

FADPRM works with Cfree segmented into zones, each zone being assigned a degree
of desirability (dd), that is, a real number in the interval [0 1], The closer is dd to 1, the
more desirable the zone is. Every configuration in the roadmap is assigned a dd equal to
the average of dd of zones overlapping with it. The dd of a path is an average of dd of
configurations in the path. An optimal path is one having the highest dd.

The input for FADPRM is thus : a start configuration, a goal configuration, a 3D model
of obstacles in the workspace, a 3D specification of zones with corresponding dd and a 3D
model of the robot. Given this input:

1. To find a path connecting the input and goal configuration, we search backward from
the goal towards the start (current) robot configuration. Backward instead of forward
search is done because the robot moves; we want to re-compute a path to the same
goal but from the current position whenever the environment changes before the goal
is reached.

2. A probabilistic priority queue OPEN contains nodes on the frontier of the current
roadmap (i.e., nodes that need to be expanded because they have no predecessor yet;
or nodes that have been previously expanded but are not being updated anymore) and
a list CLOSED contains non frontier nodes (i.e., nodes already expanded)

3. Search consists of repeatedly picking a node from OPEN, generating its predeces-
sors and putting the new ones and the ones not yet updated in OPEN.

(a) Every node n in OPEN has a key priority proportional to the node's density
and best estimate to the goal. The density of a node n, density(n), reflects the

19

1.3 . F A D P R M PATH PLANNER

density of nodes around n and is the number of nodes in the roadmap with confi-
gurations that are a short distance away. The estimate to the goal, f(n), takes
into account the node's dd and the Euclidean distance to the goal configuration
as explained below. Nodes in OPEN are selected for expansion in decreasing
priority. With these definitions, a node n in OPEN is selected for expansion
with priority proportional to

(1 — (3) / density in) + /3 * fin),

(3 is the inflation factor with 0 < [3 < 1.

(b) To increase the resolution of the roadmap, a new predecessor is randomly gene-
rated within a short neighborhood radius (the radius is fixed empirically based
on the density of obstacles in the workspace) and added to the list of prede-
cessors in the roadmap generated so far; then the entire list of predecessors is
returned.

(c) Collision is delayed : detection of collisions on the edges between the current
node and its predecessors is delayed until a candidate solution is found; if col-
liding, we backtrack and rearrange the roadmap by eliminating nodes involved
in this collision.

4. The robot may start executing the first path found.

5. Concurrently, the path continues to be improved.

6. Changes in the environment (moving obstacles and zones or changes in dd for zones)
cause updating of the roadmap and replanning.

With f3 equal to 0, the selection of a node to expand is totally blind to zone degrees of
desirability and to edges costs (Euclidian distance). Assuming OPEN is the entire road-
map, this case corresponds to a normal PRM and the algorithm probabilistically converges
towards an optimal solution as is the case for a normal PRM [58]. With (3 = 1, the selection
of a node is a best-first strategy and by adopting an A*-like f(n) implementation, we can
guarantee finding an optimal solution within the resolution of the roadmap sampled so far.
Therefore the expression (1 — (3)/density(n) + f3 * f(n) implements a balance between
fast-solution search and best-solution search by choosing different values for (3.

2 0

1 .3 . F A D P R M PATH PLANNER

Values of /3 closer to 1 give better solutions, but take more time. An initial path is
generated fast assuming a value close to 0, then (3 is increased by a small quantity, a new
path is computed again and so on. At each step, we have a higher probability of getting a
better path (probability 1 when /3 reaches 1). This is the key in the anytime capability of
our algorithm.

The heuristic estimate is separated into two components g(n) (the quality of the best
path so far from n to the goal configuration) and h(n) (estimate of the quality of the path
from n to the start configuration), that is, f(n) = (g(n) + h(n))/2; we divide by 2 to
normalize f{n) to values between [0,1]. This definition of f(n) is as in normal A* except
that:

- We do backward search, hence g(n) and h(n) are reversed.
- The quality of a path is a combination of its dd and its cost in terms of distance

traveled by the robot. Given pathC ost(n, n'), the cost between two nodes, g(n) is
defined as follows :

g(n) = pathdd(ngoah n)/{ 1 + 7pathC ost{ngoah n))
with 0 < 7 < 1.

- The heuristic h(n) is expressed in the same way as g(n) and estimates the cost of the
path remaining to reach nstart :

h(n) = pathdd(n, nstart)/(1 + 7pathCost(n, nstart))
The factor 7 determines the influence of the dd on g(n) and on h(n). With 7 = 0, nodes

with high dd are privileged, whereas with 7 = 1 and with the dd of all nodes equal to 1,
nodes with least cost to the goal are privileged. In the last case, if the cost between two
nodes pathCost(n,n')) is chosen to be the Euclidean distance, then we have an admis-
sible heuristic and the algorithm is guaranteed to converge to the optimal solution. When
dd's are involved and since zones can have arbitrary configurations, it is difficult to define
admissible heuristics. The algorithm guarantees improvement of the solution, but it's im-
possible to verify optimality. Since the dd measures the quality of the path, the idea is to
run the algorithm until a satisfactory dd is reached. The functions pathdd and pathCost
are implemented by attaching these values to nodes and updating them on every expansion
or when dynamic changes are observed in the environment.

21

1 .3 . F A D P R M PATH PLANNER

1.3.2 Algorithm Details

The detailed structure of the FADPRM path planner is presented in Algorithm 2. Since
FADPRM proceeds backwards, it updates h-values with respect to the start configuration
of all expanded nodes n after every search as follows :

h(n) = g(n8tart) ~ g{n).

Following GAA*, FADPRM does not initialize all g-values and h-values up front. Instead,
it uses the variables counter, search(n) and pathcost(x) to decide when to initialize and
update them by calling UpdateState() :

- The value of counter is x in the .xth execution of ComputeOrlmprovePath, that is,
the xth call for GAA* on the roadmap.

- search(n) stores the number of the last search that generated node n. FADPRM
initializes these values to 0 for new nodes in the roadmap.

- pathcost(x) stores the cost for the best path found on the roadmap by the xth search.
More precisely, the formula for pathcost(x) is :

pathcost(x) =g(nstart) = pathdd(ngoahnstart) / (1 + 7 pathCost(ngoahnstart))
Nodes in OPEN are expanded in decreasing priority to update their g-values and their

predecessors' g and h-values. The ordering of nodes in OPEN is based on a node priority
key(n), which is a pair [ki(n), k2(n)] defined as follows :

key(n) = [(1 — (3) / density (n) + (3f(n), h(n)],

with f(n) = [(g(n) + h(n)]/2 and key(n) < key[n!) if ki(n) < ki(n') or {k\{n) = ki(n')
and k2(n) < k2(n')). During the update on nodes, FADPRM initializes the g-value of nodes
not yet generated by an already performed search, nodes with search(n) = 0, to zero.

In the function ComputeorlmprovePathQ, when a node n with maximum key is
extracted from OPEN, we first try to connect it to nstart using a fast local planner as in
SBL [58]. If it succeeds, a path is then returned (line 16). The expansion on a node n with
maximum key from the OPEN (line 18) consists of sampling a new collision-free node in
the neighborhood of n [58] and then the sampled node is added in the set Pred{n). After
increasing the connectivity of the roadmap by adding a new node, FADPRM executes an

2 2

1 .3 . F A D P R M PATH PLANNER

Algorithm 2 FADPRM Algorithm
01. KEY(N) 33. while (Not collision-free Path)
02. f(n) = [g(n) + h(n)]/2; 34. Rearrange Tree;
03. return [(1 - 0)/density (n) + /3.f(n);h(n)]\ 35.

36.
ComputeorlmprovePathQ;
counter = counter + 1;

04. UPDATES TATE (TI) 37. if (OPEN = 0)
05. if ((search(n) ^ 0) AND (search(n) ^ counter)) 38. pathcost(search(n)) = 0;
06. if (<?(n) + h(n) < pathcost(search(n)) 39. e l s e
07. h(n) = pathcost(search{n)) — g{n)\ 40. pathcost(search(n)) = g(nstart);
08. g(n) = 0; 41. publish current 0o—suboptimal solution ;
09. e l s e if (search(n) = 0) 42. while (nstart not in neighborhood of ngoai)
10. g(n) = 0; 43. if ("start changed)
11. search(n) = counter; 44.

45.
if (addtoTree(nst0rt))

publish current solution;
12. COMPUTEORIMPROVEPATH() 46. if changes in edge costs are detected
13. while (NoPathfound) 47. for all changed edges (u, v)
14. remove n with max key f rom OPEN : 48. Update the edge cost c(u, v):
15. if (Connect(n, nstart)) 49. UpdateSta te(u) ;
16. r e tu rn /3-suboptimal pa th ; 50. Update the priorities for all
17. else 51. n € OPEN according to Key(n);
18. ExpandNode(n);

For all n' 6 Pred(n)
52. CONSISTENCYPROCEDURE() ;

19.
ExpandNode(n);
For all n' 6 Pred(n) 53. decrease 0 or replan from scratch ;

20. UPDATESTATE(H');
9(«') = g(n) + c(n,n')-

54. if (0 < 1)
21.

UPDATESTATE(H');
9(«') = g(n) + c(n,n')- 55. increase /3;

22. insert n' into OPEN ; 56. CLOSED = 0;
23. insert n into CLOSED ; 57.

58.
while (Not collision-free Path)

Rearrange Tree;
24. MAINQ 59. ComputeorlmprovePathQ;
25. counter = 1; 60. counter — counter + 1;
26. g(nstart) = g(ngoal) = 0; 61. if (OPEN = 0)
27. sear ch(n start) = search(ngoai) = 0; 62. pathcost(search(n)) = 0;
28. /3 = A>; 63. else
29. OPEN = CLOSED = 0 ; 64. pathcost(search(n)) = g(nstart);
30. UPDATESTATE(NSTART) : 65. publish current j3—suboptimal solution;
31. UPDATESTATE(NGOOI) ; 66. if (/? = 1)
32. insert ngoal into OPEN with key{ngoai); 67. wait for changes in edges cost;

update of the heuristics of all nodes in Pred(n) in order to make them more informed and

then allow for later more focused searches.

FADPRM updates the h-values of node n (line 7) if different conditions are satisfied :

- The node has not yet been generated by the current search (search(n) ^ counter)

- The node was generated by a previous search (search(n) ^ 0)

- The node was expanded by the search that generated it last

(g(n) + h(n) < path.cost(counter))
FADPRM sets h(n) (line 7) to the difference between g{nstart) that is the cost of the path

from nstart to ngoai during the last search that expanded n and g(n) that remained the same

since the same search. Dynamic changes in the environment affect (increase or decrease)

edge costs. Such changes are handled by a consistency procedure, adapted from GAA*

2 3

1 . 4 . EXPERIMENTAL RESULTS

and described in Algorithm 3. This procedure invoked at line 52 of the main algorithm
whenever a cost decrease is observed. When invoked, it updates the h-values with respect
to the start node.

Algorithm 3 Consistency Procedure
01. CONSISTENCYPROCEDUREQ
02. update the increased and decreased action costs (if any) ;
03. OPEN = 0 ;
04. for all edges (n , n')
05. with (n ^ nstart) and edge cost c,(s, s') decreased
06. UPDATESTATE(H);
07. UPDATESTATE(N');
08. if O(n) > c(n,n') + h(n'))
09. h(n) = c(n,n') + h(n')
10. if neOPEN
11. delete n f rom OPEN ;
12. insert n in OPEN with key-value KEY(N);
13. while (OPEN ^ 0) ;
14. delete n' with smallest key-value from OPEN ;
15. for all states n ^ nstart with succ(n) = n'
16. UPDATESTATE(N);
17. if (h(n) > c(n,n') + h(n'))
18. h(n) = c(n,n') + h(succ(n'))
19. Une OPEN
20. delete n f rom OPEN;
21. insert n in OPEN with key-value KEY(N);

The Main procedure in FADPRM first sets the inflation factor f3 to a low value f30, so
that a suboptimal plan can be generated quickly (line 41). Then if no change in edge costs
is detected, j3 is increased to improve the quality of its solution (lines 54-55). This will
continue until the maximum of optimality is reached with 0 = 1 (lines 66-67).

FADPRM follows also the concept of lazy collision checking. Every time a /3-suboptimal
path is returned by ComputeorImprovePath(), it is checked for collision. If a collision is
detected on one of the edges constituting the path, a rearrangement of the roadmap is then
needed to eliminate nodes involved in this collision (lines 34, 58). FADPRM also handles
the case of a floating starting configuration (lines 43-44).

1.4 Experimental Results

In a first set of experiments, we illustrate and validate the re-planning and anytime
capabilities of FADPRM in dealing with highly complex environments with preferences.
In a second set of experiments, we illustrate the search control capability of FADPRM and

2 4

1 . 4 . EXPERIMENTAL RESULTS

show how region desirability specifications can help control the exploration of the sampled
search space and make path-planning more efficient.

Experiments are made in two different environments : a simulation of the SSRMS on the
ISS and a Puma robot operating on a car. The SSRMS is the most complex environment:
7 degrees of freedom, 75 obstacles modeled with 85 000 triangles. The Puma robot has 6
degrees of freedom and its environment is modeled by approximately 7 000 triangles.

All experiments were run on a 2,86 GHZ Core 2 Processor with 2GB of RAM. We
consider paths with a dd of 0, 5 to be neutral, below 0, 5 to be dangerous and above to be
desirable. More specifically, dangerous zones are given a dd of 0, 2 and desirable ones a dd
of 0,8. A free configuration of the robot not having any contact with zones is assigned a
dd of 0, 5. We use path-dd as a measure for path quality. For all experiments, PRM refers
to an implementation of SBL [58] for Single-query Bidirectional PRM-planner with Lazy
collision detection.

1.4.1 Fast-Replanning Capability

In the SSRMS application, the concept of dangerous and desirable zones is motivated
by a real-world application dealing with teaching astronauts to operate the SSRMS in order
to move payloads or inspect the ISS using a camera mounted at the end effector. Astronauts
have to move the SSRMS remotely, within safe corridors of operations. The definition
of a safe corridor is that it must of course avoid obstacles (hard constraints), but also go
as much as possible within regions visible through cameras mounted on the ISS exterior
(so the astronaut can see the manipulations through a monitor on which the cameras are
mapped). Hence, safe corridors depend on view angles and lighting conditions for cameras
mounted on the ISS, which change dynamically with the orbit of the ISS by modifying
their exposure to direct sunlight. As safe corridors are more complex to illustrate on paper,
we just picked conical zones approximating cameras view regions and polygonal zones at
arbitrary locations. Figure 1.2 illustrates a trajectory of the SSRMS carrying a load and
going through three cameras fields of view (purple, green and blue cones) and avoiding an
undesirable zone with very limited lighting conditions (rectangular zone in pale red).

The first experiment illustrates the situation in which a human operator is learning to
manipulate the SSRMS from a given start configuration to a given goal configuration. To

25

1 .4 . EXPERIMENTAL RESULTS

figure 1.2 - SSRMS going through three different cameras fields of view (purple, green and
blue cones) and avoiding an undesirable zone (rectangular zone in pale red)

provide feedback on whether he is on the right track, from every current configuration, we
call the FADPRM planner to calculate a path with a high dd to the goal. If no such a path
exists, we notify the learner that he is moving the SSRMS to a dead end. Although paths
are computed to confirm the learner is on the right track, they are not displayed to him.
Hence while the learner is making suitable progress toward the goal, they are solving the
problem on their own.

Figure 1.3 shows the time taken for replanning while the human operator is moving
the robot toward a goal configuration in the scenario of Figure 1.2. We conducted the expe-
riment three times with the operator doing exactly the same manipulations to reach the goal

5.00 4.7S 4.SO 4.2S 4.00 3.75 3.50 3.00 2.75 2.50 2.2S 2.00 1.75 1 50 1.25 1.00 0.75 0.50 0.25

Oistance to Goal configuration

figure 1 . 3 - FADPRM versus PRM in replannin

2 6

1 .4 . EXPERIMENTAL RESULTS

from the start configuration and each time using FADPRM (with /3 = 0) and the normal
PRM. Except for the first few iterations, FADPRM take less re-planning time than PRM.
For FADPRM and in the first few iterations, the overhead incurred by the GAA*-based
exploration dominates the planning time. In later iterations, it is outweighed by the savings
gained by re-planning from the previous roadmap.

FADPRM Versus PRM

- • - F A D P R M (beta = 0.4)

• • •FADPRM (beta=0)

PRM

0 • •• - -
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Q u e r y N

figure 1.4 - FADPRM versus PRM in planning time

In Figure 1.4, we compare the time needed for FADPRM and PRM to find a solution for
15 arbitrary queries in the ISS environment. Since the time (and path quality) for finding
path is a random variable given the random sampling of the free workspace, for each query
we ran each of the planners ten times and reported the average planning time. In this case,
FADPRM is used in a mode that does not store the roadmap between successive runs.
Before displaying the results, we sorted the PRM setting in increasing order of complexity,
starting with queries taking less time to solve.

For FADPRM, we show results with (3 = 0 and /3 = 0,4. With (3 = 0, FADPRM
behaves exactly like the normal PRM. With f3 = 0,4, planning takes more time for both
planners. This validates our previous analysis about FADPRM : with (3 = 0, an FADPRM
planner behaves in way very similar to a normal PRM, but as soon as we start seeking
optimality (in our case with f3 = 0,4), the time for planning will increase proportionally.

On an other hand, Figure 1.5 shows that (3 = 0,4 yields higher quality paths than (3 = 0.
This validates another previous analysis : higher (3 values yield better paths, but take more
time to compute.

27

1 . 4 . E X P E R I M E N T A L R E S U L T S

| Query N

figure 1.5 - FADPRM versus PRM in path quality (Path-dd)

1.4.2 Search Control Capability

Specifying zone degrees of desirability provides a means to accelerate the computation
of a path. Since FADPRM explores configurations in the order of specified preferences, it is
possible to control the search process, via the specification of regions with suitable degrees
of desirability, so it reaches a solution very quickly on average.

(a) Scenario 1 with one desirable zone (b) Scenario 2 with two desirable zones and one
danger zone

figure 1.6 - Not smoothed paths with FADPRM (/3 = 0, 7) in the ISS environment

To illustrate the search control capability in the ISS environment, we establish a plan-
ning scenario where the SSRMS has to carry a load to a space shuttle docked to the ISS.
Path Planning is further made more complex in this scenario with the final configuration
placed in a narrow passage : near the shuttle and surrounded by a number of modules as

2 8

1.4 . EXPERIMENTAL RESULTS

shown on Figure 1.6. Normal PRMs start losing efficiency in such areas since the sam-
pling probability becomes very low. In the first experiment (Figure 1.6(a)), we plan for a
path with a wide desirable zone on the left of the shuttle. In the second experiment (Fi-
gure 1.6(b)), we specify an undesirable zone on the right of the shuttle and two wide de-
sirable zones on the front and on the left of the shuttle. By adding zones with appropriate
degrees of desirability, we wanted to influence the sampling of the free workspace to yield
better paths. Here, planning is done without any call to a post-processing smoothing step
as is usually done with normal PRM planners [58]. This explains why we have awkward
trajectories on both figures (Figure 1.6).

FAQ PRM Versus PRM on Scenario 1 of Fig 6-a FADPRM Venus PRM on Scenario 2 of Fig 6-b

- • - F A D P R M (BETA * 0.7) -V-FADPRM (BETA = 0.4) FADPRM (BETA «Q) PFTM FADPRM (BETA* 0.7) " •"FADPRM (BETA • 0.4) - * - P A 0 P R M (BETA = 0) PRM

figure 1.7 - FADPRM (/3 = 0 ,4 and f3 = 0, 7) versus PRM in planning time

In Figure 1.7, we compare the time needed for FADPRM and PRM to find a solution
for 15 different queries within both scenarios of (Figure 1.6(a)) and (Figure 1.6(b)). For all
queries, the goal configuration with the carried module inside the shuttle remains the same.
Start configurations are picked randomly at different locations around the shuttle. For each
query we ran each of the planners ten times and reported the average planning time. Before
displaying the results, we sorted the PRM setting in increasing order of complexity, starting
with queries taking less time to solve. For FADPRM we show the results with j3 = 0,
(3 = 0,4 and /3 = 0,7. In these experiments, The bias factor 7 that determines the influence
of the dd on the cost of edges within the roadmap is equal to 0, 5.

With (3 = 0 FADPRM behaves exactly like a normal PRM in both scenarios yielding
very complex awkward paths requiring an approximately equivalent time to compute. As
soon as we start seeking optimality with (3 = 0,4 and j3 = 0, 7, the time for planning in
the two scenarios increases. In both scenarios, FADPRM with f3 = 0, 7 yield better paths
than FADPRM with (3 = 0, 4 but takes more computing time. Figure 1.8 confirms this

2 9

1.4 . EXPERIMENTAL RESULTS

FADPRM In Scenario 1 (Fig 6-a) FADPRM In Scenario 2 (Fig 6-b)
•-FADPRM (BETA = 0.7) - » - F A D P R M (BETA >0.4) - + - M D P R M (BETA = 0.7) FADPRM (BETA = 0.4)

figure 1.8 - Path quality with FADPRM (f3 = 0,4 and 3 = 0. 7)

and shows better quality (i.e., better dd's) for paths computed with FADPRM ((3 = 0, 7)
compared to paths found by FADPRM ((3 = 0,4).

If we compare the time taken for planning with the same version of FADPRM (f3 = 0,4
or (3 = 0, 7) within the two different scenarios of Figure 1.6, we notice that more planning
time is needed in the scenario of Figure 1.6(a). With larger values of f3, the sampling with
FADPRM is pushed into areas with high values of dd. If the workspace is not covered with
enough desirable zones, the planner may remain stuck sampling within one desirable zone
of the workspace. This explains the problem of local minima we see on Figure 1.7 with
FADPRM in scenario of Figure 1.6(a). The more f3 is increased, the more the sampling is
pushed within high dd zones. This explains why the local minima problem is more frequent
with FADPRM with (3 = 0, 7. By increasing the coverage of the workspace with more
desirable and undesirable zones like in Figure 1.6(b), we significantly improve the planning
time needed for finding an optimal solution and considerably reduce the probability of
having the local minima problem (Figure 1.7).

The factor 7 determines the influence of the dd on g{n) and on h{n). With 7 = 0,
nodes with high dd are privileged, whereas with 7 = 1 and with the dd of all nodes equal
to 1, nodes with least cost to the goal are privileged. In the following experiment, we test
the influence of different values of 7 on the planning time with FADPRM (/3 = 0,7) in
the scenario of Figure 1.6(b) with a well constrained workspace. Seeking optimality in the
robot path takes more time and can lead to local minima problems. With FADPRM, the
local minima problem can have two reasons :

1. distance-minima problem : the planner remains stuck sampling without success in a
narrow passage around a configuration too close to the goaZ-configuration.

3 0

1 .4 . EXPERIMENTAL RESULTS

FADPRM w i t h be ta = 0 .7 o n Scenar io 2 o f Fig 6 -b

" • • F A D P R M (gamma = 0.S) FADPRM (gamma = 0.2)

Local
Minima

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Q u e r y N

figure 1.9 - Planning time with FADPRM (j3 = 0, 7) with 7 = 0, 5 and 7 = 0, 2

2. cM-minima problem : the planner remains stuck sampling without success within a
tiny desirable zone of the workspace like in the scenario of Figure 1.6(a).

By increasing the influence of dd on the cost of nodes, we reduce the probability of having
the distance-minima problem. By increasing the coverage of the workspace with desirable
and undesirable zones, we reduce the probability of having the dd-minima problem. This
explains why in Figure 1.9, FADPRM with 7 = 0, 2 take less time for planning compared
to FADPRM with 7 = 0, 5. More importantly, no occurrence of the local minima problem
is observed with FADPRM (7 = 0, 2).

1.4.3 Path-Quality Control Capability

With randomized path planners, paths are obtained by connecting milestones that are
randomly sampled in the free workspace and this tends to yield awkward paths, requiring
heuristic post-processing operations to smooth them. With FADPRM, it is possible to in-
fluence the sampling strategy and generate less awkward paths by specifying zones we
prefer them to go through or zones we want them to avoid.

In Figure 1.6, we notice an improvement in the smoothness of the path generated with
FADPRM on the scenario of Figure 1.6(b) compared to the path on Figure 1.6(a). In Fi-
gure 1.11, we measure the time needed for smoothing the paths (as shown on Figure 1.10)
found on the 15 queries of Figure 1.7.

Compared to normal PRM, FADPRM (with j3 = 0,4 or j3 = 0, 7) always produces

31

1 . 4 . E X P E R I M E N T A L R E S U L T S

(a) with one desirable zone (b) with two desirable zones and one danger zone

figure 1 .10- Smoothed paths with FADPRM in the ISS environment (/3 = 0,7)

paths that need less post-processing smoothing time. In both scenarios, FADPRM with
(3 = 0, 7 needs less time for smoothing than FADPRM with 8 = 0,4. Here, we notice that
the more we seek optimality in the robot path, the less awkward solution paths are, which
explains why they require less time to smooth.

figure 1 .11- FADPRM versus PRM in smoothing time

We also notice that for both versions of FADPRM (with f3 = 0,4 or j3 = 0, 7), more
smoothing time is required in the first scenario on Figure 1.6(a). The more the path is
constrained with desirable and undesirable zones within the workspace, the more quality
and efficiency we guarantee in the solution path. That is, the path is smoother and requires
less time to smooth.

Figure 1.12 confirms the same results found with not smoothed solution paths on Fi-
gure 1.8. Increasing j3 into FADPRM yields smoothed paths with better quality in terms of
degrees of desirability. Also the more we cover the workspace with desirability zones, the

3 2

1 .4 . EXPERIMENTAL RESULTS

FADPRM In Scenario 1 (Fig 6-a) FAOPRM In Scenario 2 (Fig 6-b)
- • - F A D P R M (BETA = 0.7} ' • • F A D P R M {BETA = 0.4) FADPRM (BETA = 0.7) FADPRM (BETA «0.4)

figure 1.12 - FADPRM versus PRM in path quality of smoothed paths

more this path quality is enhanced. Zones with degrees of desirability provide a mean to
specify a sampling strategy that controls the search process to generate better paths (bet-
ter dd's and better smoothness) by simply annotating the 3D workspace with the regions'
degrees of desirability. - *

1.4.4 Generality of the Results

By running the previous experiments on several randomly chosen samples and reporting
the average results, we somewhat try to verify that FADPRM features are not dependent
on one specific scenario. Obviously, the ISS domain has a specific structure. Runs on dif-
ferent domains are necessary to increase confidence in the generality of the observed per-
formances of FADPRM. In this regard, we did numerous experiments on a simulated Puma
robot operating on a car. The obtained results confirm those in the SSRMS domain.

For instance, to evaluate the search-control capability of FADPRM, in one of the experi-
ments we specified a small desirable zone (see Figure 1.13(a)) and in another, we specified
a wider desirable zone (in front of the car) and a wide undesirable zone (in the back) (see
Figure 1.13(b)). In both set of experiments, we wanted to influence the sampling of the free
workspace to yield paths that move the robot in front of the car (from the left side, to the
front, then to the right side).

By specifying a desirable zone on the right front of the car as shown in Figure 1.13(a)
and running FADPRM planner many times on the same query (input/goal configuration),
they yielded better paths, on average, than PRM. On the other hand, by enlarging the size
and coverage of the desirable zone and adding an undesirable zone (right, on the back of

33

1.4 . EXPERIMENTAL RESULTS

(a) (b)

figure 1 .13 - PUMA robot around a car

the car), as shown in Figure 1.13(b), we noticed that the quality of paths increased by a
percentage of 50% over 100 trials. The second experiment succeeds more often because
the path is more constrained; a wider desirable zone on the front of the car together with an
undesirable zone on the back of the car, make the probability of sampling a configuration
along the desirable region higher than in the first set-up.

Evolution of Path d d wi th FADPRM (beta = 0.4)

- • - F i g 13-a -» -F ig 13-b

=9

7 S
Time (s)

13 M IS

figure 1.14 - Path quality evolution with FADPRM

Figure 1.14 shows the anytime capability of FADPRM (with /? = 0,4) on these two
experiments. We notice the continuous improvement of the path quality (path — dd) for the
two settings. The more time it is given, the better the path provided by FADPRM will be.
The results here confirm the observations noticed in the first experiment with the SSRMS.
Handling zones with degrees of desirability provides FADPRM with a powerful sampling

34

1 .5 . CONCLUSION

strategy that helps generate better quality paths. And the better is the coverage of the works-
pace with preference zones, the more optimal (in terms of degrees of desirability), the so-
lution path to which FADPRM converges will be.

1.5 Conclusion

In many real world path planning applications, in addition to obstacles that must be
avoided, we may have areas that the body is preferred to avoid (or, conversely, to go
through) as much as possible. This is the case in the ISS domain where preferences are
tied to camera views which change dynamically, in part because of varying environmental
conditions throughout the orbit.

In this paper, we presented a new randomized approach for robot path planning which
extends the PRM framework to handle a workspace containing regions with degrees of
desirability. Our approach integrates dynamic and anytime search exploration strategies to
deal with problems in dynamic environments where obstacles and region desirability can
change in real-time. The dynamic strategy allows the planner to re-plan efficiently by ex-
ploiting results from previous planning iterations. The anytime strategy starts with a quickly
computed path with a potentially low degree of desirability which is then incrementally im-
proved if more planning time is allowed.

The experiments validated the different features of FADPRM on two particular path-
planning domains. Although we obtain good path quality and better re-planning time than
normal PRM approaches, there remains potential for improvement on both dimensions.
Paths still need to be smoothed in post-processing and for real-time applications we still
want a planning algorithm that is as fast as possible. We will therefore continue to explore
ways to improve our approach and look for alternatives.

FADPRM is a component in a large simulation prototype for training astronauts on the
SSRMS. It is invoked by an intelligent tutoring system (ITS) to monitor robot operations
carried out by a student and provide feedback on how to control the arm. For instance,
given the task of moving the SSRMS from one configuration to another, the ITS can try
computing a path from the current configuration to the goal and advise the student when the
current configuration seems to be a dead-end. The student can then backtrack to a previous
point from which better paths to the goal are available.

35

1 . 6 . ACKNOWLEDGEMENT

1.6 Acknowledgement

The work presented herein was supported by the Natural Sciences and Engineering

Research Council (NSERC) of Canada.

3 6

Chapitre 2

Planification automatique de cameras
pour filmer des operations robotisees

Resume

Dans le monde du cinema, les metteurs en scene ont elabore des principes et
des regies cinematographiques pour montrer la fagon dont differentes categories
de scenes impliquant 1'interaction entre personnages doivent etre filmees [2, 50].
Inspirees par ces methodes, differentes approches pour le controle automatique
de la camera ont emerge dans le domaine de l'infographie et dans quelques do-
maines connexes comme les jeux video, 1'animation par ordinateur et la realite
virtuelle [5, 25, 33], Ces approches permettent la generation automatique d'ani-
mations 3D avec haute precision sans ou avec un minimum de support des ani-
mateurs et des programmeurs.

Dans 1'article qui suit, nous presentons une nouvelle approche de planifica-
tion de cameras qui utilise la logique temporelle lineaire (LTL) [3] pour speci-
fier les principes et regies cinematographiques. Par rapport aux approches exis-
tantes dans la litterature et avec 1'utilisation de LTL, nous obtenons un langage
avec une semantique plus claire et une syntaxe plus intuitive pour exprimer les
regies de composition cinematographique. L'algorithme de planification sous ja-
cent TLPlan [3] est egalement plus efficace que les planificateurs utilises dans les

37

approches precedentes. En effet, TLPlan implemente une strategie de controle de
la recherche lui permettant de restreindre la planification seulement sur les etats
compatibles avec les formules LTL objectifs instaurees, qui dans notre cas trans-
mettent les regies de composition cinematographiques.

Le nouveau planificateur de cameras est integre dans ATDG, un systeme de
planification automatisee pour la production de demonstrations de taches 3D im-
pliquant la manipulation du SSRMS sur la station spatiale internationale (SSI).
Une tache de manipulation typique consiste a deplacer le bras robot d'une confi-
guration a une autre dans l'environnement de la SSI. Le principal defi est de
planifier automatiquement les meilleures configurations de cameras pour filmer
le bras de la maniere la plus comprehensible par l'utilisateur. La trajectoire du
robot est generee en utilisant le planificateur de trajectoires FADPRM (voir cha-
pitre precedent). Le planificateur de cameras TLPlan est alors invoque pour trou-
ver la meilleure sequence de configurations de cameras filmant le robot sur sa
trajectoire.

Commentaires

L'article presente dans ce chapitre a ete soumis au journal "International Jour-
nal of Knowledge-Based and Intelligent Engineering Systems". Une version plus
courte de ce travail a ete publiee dans les actes de "International Conference on
Automated Planning and Scheduling" [34]. Ces travaux ont ete effectues en col-
laboration avec Philipe Bellefeuille dans le cadre de sa maitrise en informatique
a l'Universite de Sherbrooke. L'adaptation de TLPlan pour filmer des operations
robotisees a ete implementee par Philipe. L'ensemble de ces travaux ont ete reali-
ses, valides et rediges sous la supervision du Professeur Froduald Kabanza (Uni-
versite de Sherbrooke) et avec les conseils du Professeur Leo Hartman (Agence
spatiale canadienne).

38

Automated Camera Planning To Film Robot Operations

Khaled Belghith, Froduald Kabanza, Philipe Bellefeuille
Departement d'informatique, Universite de Sherbrooke,

Sherbrooke, Quebec, Canada J1K 2R1
khaled.belghith@usherbrooke.ca, kabanza@usherbrooke.ca,

philipe.beliefeuilie@usherbrooke.ca
Leo Hartman

Canadian Space Agency,
John H. Chapman Space Centre, 6767 Route de l'Aeroport

Saint-Hubert, Quebec J3Y 8Y9
leo.hartman@asc-csa.gc.ca

Abstract

Automatic 3D animation generation techniques are becoming increasingly pop-
ular in different areas related to computer graphics such as video games and ani-
mated movies. They help automate the filmmaking process even by non profes-
sionals without or with minimal intervention of animators and computer graphics
programmers. Based on specified cinematographic principles and filming rules,
they plan the sequence of virtual cameras that the best render a 3D scene. In
this paper, we present an approach for automatic movie generation using lin-
ear temporal logic to express these filming and cinematography rules. We con-
sider the filming of a 3D scene as a sequence of shots satisfying given filming
rules, conveying constraints on the desirable configuration (position, orientation,
and zoom) of virtual cameras. The selection of camera configurations at differ-
ent points in time is understood as a camera plan, which is computed using a
temporal-logic based planning system (TLPlan) to obtain a 3D movie. The cam-
era planner is used within an automated planning application for generating 3D
tasks demonstrations involving a teleoperated robot arm on the the International
Space Station (ISS). A typical task demonstration involves moving the robot arm
from one configuration to another. The main challenge is to automatically plan
the configurations of virtual cameras to film the arm in a manner that conveys the

39

mailto:khaled.belghith@usherbrooke.ca
mailto:kabanza@usherbrooke.ca
mailto:philipe.beliefeuilie@usherbrooke.ca
mailto:leo.hartman@asc-csa.gc.ca

1 .1 . INTRODUCTION

best awareness of the robot trajectory to the user. The robot trajectory is gener-
ated using a path-planner. The camera planner is then invoked to find a sequence
of configurations of virtual cameras to film the trajectory.

2.1 Introduction

Filmmakers have developed different cinematography principles and rules stating how
different categories of scenes evolving interacting characters should be filmed [2, 50],
Inspired by these methods, different methodologies for automatic camera control have
emerged in computer graphics and related areas such as computer games, computer ani-
mation and virtual reality [5, 25, 33], They allow the automatic generation of accurate 3D
animations without or with minimal support from computer graphics professionals. An ex-
ample of application is the automatic generation of movies showing a replay in a game such
as soccer, hockey or basketball. In this paper, we present a camera planning approach that
uses Linear Temporal Logic (LTL) [3] to specify cinematographic principles and filming
rules. This is a more detailed account of the work presented in [34]. Compared to existing
planning approaches, by using LTL we get a language with clear semantics for expressing
camera planning rules and with an intuitive syntax. The underlying TLPlan planning algo-
rithm [3] is also more efficient than the planners underlying previous approaches, because
of the intrinsic ability of TLPlan to prune the search space by removing state trajectories
inconsistent with the input LTL goal formula. In our case the LTL goal formula specifies
composition rules.

Camera planning approaches found in the literature rely on filming primitives that cap-
ture and convey cinematographic principles specific to the domain of actors. These prim-
itives are not relevant for filming a robot arm (since the points of interests and types of
actions are different), but they can be adapted. As part of this adaptaion, in particular, we
had to develop an ontology of meaningful elementary movements for robot arms relating
to task descriptions.

The camera planner is integrated into an Automatic Task Demonstration Generator or
ATDG, a fully automated system that we developed to generate 3D task demonstrations of
the manipulations made by an astronaut with a simulated Space Station Remote Manipu-
lator (SSRMS). The SSRMS is a 17-meter long articulated robot arm on the International

4 0

1 . 1 . INTRODUCTION

Space Station (ISS). It has a complex geometry, with seven rotational joints, each with a
range of ±270 degrees. Astronauts operate the SSRMS through a workstation located in-
side one of the ISS compartments. Tasks consist of manipulating the SSRMS from one
configuration to another in order, for example, to move a payload or inspect a region of the
ISS exterior using a camera mounted on the end effector. The current ATDG prototype is
integrated within a proof-of-concept simulator called ROMAN Tutor (RObot MANipula-
tion Tutor) for the command and control of the SSRMS that we have also developed [35].
Figure 2.1 shows a snapshot of the simulator.

Movement W P \ -180.529444. -160.172366 ,168.940609] &
Movement W P [-180.469350. -160.023379, 166.904245]
Movement W P | -188.407414 , -159.875247, 169.867490)
Movement SP (-180.407414. -1S9.07S247 .168.867480 1 '
Movement SY | -180.407414. -159.375247. 168.867400]

yT̂flTÔBIÎwisB̂MHWffli1!̂ flilrrf1

Figure 2.1: Roman tutor interface

One motivation for this application is to support ground operators in planning SSRMS
manipulation tasks for the ISS. Given a new task, or given changes to a task previously
planned, ATDG automatically and efficiently generates 3D demonstrations of the task with-
out or with minimal intervention of computer graphics programmers. Another motivation
is to use automatically generated demonstrations in a 3D training simulator to provide feed-
back to student astronauts learning to manipulate the robot arm.

In the next section, we give the most relevant background. We then describe the Auto-
matic Task Demonstration Generator, the system application that motivated our research.
After a detailed study of our temporal camera planning approach in a next paragraph, we

41

2 . 2 . BACKGROUND

illustrate with some experiments that shows some of its merits.

2.2 Background

2.2.1 Virtual Camera and Virtual Camera Planning

An animation is a rapid display of a sequence of images. To create the illusion of move-
ment, an animation displays from 24 to 30 images per second (frames per second or fps).
On each frame, a 3D virtual camera has at least seven degrees of freedom for position,
orientation and field of view (Figure. 2.2). Planning camera configurations consists of gen-
erating a series of camera configurations, each corresponding to one frame of the desired
final movie. The search space for possible solutions is then very large.

2.2.2 Scenes, Shots and Idioms

To help simplify the calculation of the frame sequences composing a film, camera plan-
ning approaches borrow some concepts from the world of cinematography to abstract the
camera configuration's search space and reduce its combinatorial complexity. Specifically,
a movie is hierarchically decomposed into scenes and shots (Figure 2.3), and the concept
of idiom.

A scene is a distinct narrative unit usually characterized by unity of location or unity of
time. For the case of robotic manipulations, we consider a scene as a distinctive movement

{X, Y, Z , RY RY, RPFOV]

Figure 2.2: Degrees of freedom of a virtual camera

4 2

2 . 2 . B A C K G R O U N D

of the robotic arm (e.g., translation along the mobile base, or moving the end effector
towards a given position). A scene is defined as a sequence of shots. A shot in turn is
defined as a continuous succession of images taken by one camera (each generally lasts a
few seconds). Figure 2.3 illustrates this film hierarchy.1

Figure 2.3: Film abstraction hierarchy

An idiom describes how a scene can be filmed, that is, how the different shots compos-
ing a scene can be taken. For instance, an idiom for a conversation between two people
will specify the number of shots and how the camera for each shot is placed and config-
ured. In general we have different ways of filming a scene. Hence we have different idioms
for a scene. But in a film, for each scene only one specific idiom will be selected and ap-
plied. Similarly, for each scene illustrating a distinctive movement of the SSRMS, different
idioms for filming the movement can be applied.

2.2.3 Camera Planning Approaches

Given the previous hierarchical movie decomposition, the problem of automatically
generating a movie essentially becomes one of determining what shot to make at different
segments of the scene. This is often understood as a camera planning problem, that is,
determining the sequences of shots given a goal corresponding to what meaning should be
conveyed by the movie (e.g., in our application a looming collision or the arm going too
fast ; in other applications a person running, a happy person or a conversation among a

1. A more general film hierarchy considers two additional granularity levels, where a film consists of acts,
an act comprises sequences, and a sequence contains one or more scenes. Our hierarchy stops at the scene
level.

4 3

2 . 2 . BACKGROUND

group of people).
Previous automated camera planning approaches in the literature can be grouped into

two main categories: constraint approaches and cinematographic approaches. Constraint
approaches film a scene (i.e., its objects or background, static or in motion) based only on
the geometry of the scene. Constraints on the camera (position, view angle, zoom, covered
objects or regions) are essentially geometric (e.g., filming a moving character during 20
minutes, without any occlusion of the camera). There are no explicit constraints associated
with actions involving objects in the scene. For instance, in previous approaches we cannot
express a constraint such as "if the person is moving then his legs must remain in the camera
view angle during the motion".

One of the earliest attempt to put these concepts into practice was made by Blinn [10].
His algorithm could find the required camera configuration (position and orientation) start-
ing from some constraints on the content of the images to produce. Later, more sophis-
ticated constraint camera planning systems were proposed. The system developed in [8]
uses camera motions constraints expressed using a system of polynomial equations. The
Cinema system [21] has a procedural interface for specifying camera movements relative to
objects, events, and the general state of an environment. The Virtual Cameraman [32, 42]
provides the user with camera movements satisfying user defined constraints specified in
the image space and/or constraints on the objects of the scene. Bares et al. developed Con-
straintCam, a real-time camera engine for dynamic 3D environments [4], Three classes of
constraints are implemented within ConstraintCam: viewing angle, viewing distance and
occlusion avoidance. CamPlan [28], a camera planning subsystem for polygonal graphics,
uses a genetic algorithm to optimize the camera with respect to a set of image objectives.

The approach in [53] could also be seen as a constraint or geometric approach, although
not explicitly introduced that way. Camera placements are seen as configurations in a
probabilistic roadmap; a camera plan (for example, to navigate in a museum from one point
to another) becomes a trajectory in the roadmap, obtained using probabilistic roadmap
algorithms normally used for articulated bodies (e.g., robots) combined with some post
processing to smooth the view angles and the zoom.

Constraint approaches operate at the frame level and are not appropriate for filming a
complex task (e.g., a moving robot) during which the camera has to constantly adapt to the
context in which the task is being carried out. In other words, they cannot dynamically take

4 4

2 . 2 . BACKGROUND

into account the semantics associated with actions in the task. In fact, for a dynamic han-
dling of the action semantics, we need to use cinematographic camera planning approaches
which operate at the shot level.

At the shot level, rules for composing (or sequencing) shots depending on the type of
action being filmed are specified. This way, a scene can be filmed while taking into account
constraints on actions in addition to geometric constraints. For example, we may want to
specify a rule such as if you are filming a sequence of shots showing one person talking to
another, the faces of both people should remain in the camera view angle. Or, if the end
effector of the SSRMS is aligned with some visual cue on the ISS then we would like to
film it with the cue in view (e.g., near the Canadian flag for example) and thereby make the
astronaut more aware of the current configuration of the robot.

The Camera Planning System (CPS) of [15] is an example of a cinematographic camera
planner. It automatically generates camera positions based on idioms specified in a declar-
ative camera control language (DCCL). The language provides four primitive concepts,
namely, fragments, views, placements, and movement endpoints. By camera placement
we mean a continuous sequence of camera configurations over a period of time (or equiv-
alently, from one point of the scene to another). These quite intuitive primitives are then
combined to specify higher-level constructs such as shots and idioms. An example of a
fragment is a go-by shot which represents a static camera overseeing a given region for a
given period. Using these DCCL primitives, the user can specify idioms indicating how to
film objects of interest. For example, we can specify how to film two people approaching
each other: the camera could show one person advancing at some time; then switch to a
close position where we see both of them, and finally slightly moving away from the target.
The generic aspect of the system comes from the fact that the same scene can be filmed the
same way regardless of the involved characters. Also, one can change the filming of the
scene by specifying a different idiom, without going into the details of the computer graph-
ics, which are filled in automatically through the primitive operators. The approach in [5]
is analogous, with the difference that users can specify visual preferences about how ob-
jects should be filmed. Given such preferences, the system UCAM selects the best camera
placements that satisfy those preferences.

The approach in [27] combines constraint (frame level) and cinematographic (shot
level) approaches to generate more refined films. The algorithm takes as input a geo-

4 5

2 . 3 . N E E D S FOR A C A M E R A P L A N N I N G APPROACH FOR VIEWING ROBOT
M A N I P U L A T I O N TASKS

metric description of the scene (e.g., the object in the scene one would like to see) and
plans the camera positions accordingly, while taking into account cinematographic princi-
ples regarding camera placements. Geometric frame-level constraints are solved using a
contraint-solving technique, in which constraints can relate to the height angle, distance to
the target, and orientation of the camera.

Tomlinson et al. [62] implemented an autonomous cinematography system based on
the autonomous character design work of the Synthetic Characters Group at the MIT Me-
dia Lab. Their system used expressive and user-controlled characters to drive the on-the-fly
selection of shots in a virtual collaborative 3D environment. Friedman et al. [25, 26] im-
plemented a knowledge-based system that allowed users to express cinematography pref-
erences in a specific language and produce automatic animated 3D movies accordingly.
More recently, Jhala and Young [33] developed a camera planning system that mirrors the
film production pipeline in narrative-oriented virtual worlds. In more of finding the best
framing for shots to determine geometrically smooth transitions between them, their sys-
tem exploits the narrative structure and the causal relationships between shots and scene
segments to find better camera configurations.

2.3 Needs for a Camera Planning Approach for Viewing
Robot Manipulation Tasks

All the previous approaches were developed for domains with predefined story scripts
and in which subjects are characters and objects as normally found in movies or video
games. They assume a finite number of primitive filming operators which convey cine-
matographic principles proper to the domain of actors. To illustrate, "Extreme Close Up"
is a primitive consisting of using a camera zoom on the face of a person being filmed. There
are a small number of such primitives [15, 5, 26].

Filming an articulated robot arm introduces additional challenges not explicitly envi-
sioned in these approaches. First of all, the cinematographic principles for filming actors
are different from those of filming a robot task given that the points of interests and types
of actions are different. A specific ontology for filming robot tasks is necessary and it
must include types of meaningful elementary movements for robot arms, relations of those

4 6

2 . 4 . THE AUTOMATIC TASK DEMONSTRATION GENERATOR

elements to tasks and to filming idioms. We initiate this quest for such ontological defini-
tion of camera planning in the domain of articulated robot arms by proposing one for the
SSRMS.

Another particularity of filming robot tasks is that the trajectory, motion and actions
of the robot being filmed are not known in advance. In other words, tasks and underlying
trajectories in our domain are not scripted in advance. As we mentioned, given a task, we
generate a trajectory of the robot accomplishing the task by using a path planner. This tra-
jectory is automatically decomposed into meaningful segments (shots) according to some
heuristics.

Once we have an ontology for the right filming primitives and an on-the-fly decomposi-
tion of a robot trajectory into shots, in principle the previous approaches (like DCCL) could
be easily adapted to film the robot. However, here we opt rather for using LTL [3] as the
language for specifying shot composition rules. The advantage of LTL over the languages
used in previous approaches, such as DCCL, is that LTL has well defined semantics. With
LTL, we can express arbitrary temporal conditions about the order in which objects should
be filmed, which objects should remain in the background until some condition become
true as well as more complex constraints. Another advantage of adopting LTL is that the
underlying TLPlan planning algorithm is far more efficient than the planning systems un-
derlying previous cinematographic approaches. For instance, DCCL was handled using a
variant of UCPOP [15]. TLPlan was shown to outperform such planning systems by several
orders of magnitude [3].

2.4 The Automatic Task Demonstration Generator

The automatic task demonstration generator (ATDG) takes as input start and goal con-
figurations of the SSRMS. Using those two configurations, the ATDG generates a movie
demonstration of the required manipulations in order to bring the SSRMS from its start
configuration to its goal configuration. The top figure in Figure 2.4 illustrates the internal
architecture of the ATDG. The bottom one shows the different steps the data go through in
order to transform the two given configurations into a complete movie demonstration.

First, the ATDG uses a path planning algorithm (i.e., the Flexible Anytime Dynamic
Probabilistic Roadmap (FADPRM) planner [7]), which takes the two given configurations

4 7

2 . 4 . THE AUTOMATIC TASK DEMONSTRATION GENERATOR

Figure 2.4: ATDG architecture

and generates a collision free path between them. This path is then given to the trajectory
parser which separates it into categorized segments. This transforms the continuous tra-
jectory into a succession of scenes, where each scene can be filmed by a specific group of
idioms. The parser looks for uniformity in the movements of the SSRMS. This process is
described in greater detail in the next section.

Once the path is parsed, the camera planner uses TLPlan to find the shots in order to
best convey each scene, while making sure that the whole is pleasing and comprehensive.
To do this, TLPlan uses an idiom database to help it find the best way to film each scene.
In addition to the idiom database, TLPlan applies a set of LTL shot composition rules
to generate a movie that is visually appealing and coherent. TLPlan further applies an
occlusion detector to make sure the SSRMS is visible all the time. Once TLPlan is done,
we are left with a list of shots that is used by the rendering system to create the animation.
The renderer uses both the shots given by TLPlan and the SSRMS trajectory in order to

4 8

2 . 5 . CAMERA PLANNING APPROACH

position the cameras in relation with the SSRMS, generating the final task demonstration.

2.5 Camera Planning Approach

2.5.1 Segmenting the Robot Trajectory into Scenes

In order to divide the animation into short sequences as a human would, we must study
the robotic arm's trajectory. Indeed, it is the only factor that can be used to split the movie
since everything else in the scene is stationary. We implemented two different complemen-
tary ways to proceed with this partitioning task.

Dividing according to elementary movements

The idea here is to define some elementary motions of the robotic arm that the seg-
mentation algorithm is able to recognize in the trajectory. Presently we use the following
elementary motions, based on an intuitive analysis of the different movements of an arm
one wants to recognize.

- Vertical elevation: The arm moves up, due to the elbow joint or the pitch shoulder
joint. This movement occurs when we need to elevate a load to avoid an obstacle, for
example.

- Lateral rotating motion: The movement of the yaw shoulder joint dominates and
causes the arm to move laterally, possibly to transfer to another local region of the
station when no obstacles lay between.

- Static rotation: This movement corresponds to a rotation of the shoulder-elbow seg-
ment, controlled by the roll shoulder joint.

- Wrist movement: As the name indicates, here only the wrists joints are moving sig-
nificantly.

- Rail translation: The arm translates from one point to another along the rectilinear
rail on the ISS. This movement is used when the arm needs to change to a different
work area.

The algorithm used to detect these movements consists of calculating the elementary
variations along each of the robotic arm's 7 degrees of freedom frame by frame and cutting

4 9

2 . 5 . CAMERA PLANNING APPROACH

the trajectory when the nature of the movement changes. We can then film each segment
by selecting and then applying an idiom well suited to the elementary motion.

Dividing according to objects and regions of interest

We also segment the trajectory according to its variation with respect to given obstacles
or visual cues. When the variation reaches a fixed threshold, we have a transition to a new
segment. The lower level implementation invokes the graphics Proximity Query Package
(PQP) [43] to calculate the distances from the arm to given obstacles or cues. In this way we
can also define segmentations of the arm depending on whether the entire arm or selected
parts of the arm move from one zone of interest to another.

2.5.2 Specifying Shots and Idioms

A shot is specified by five components: shot type, camera placement mode, camera
zooming mode, side of the line of interest and length.

- Shot Types: Five shot types are currently defined in the ATDG System: Static, GoBy,
Pan, Track and POV. A Static shot is done from a static camera when the robot is in a
constant position or moving slowly. A GoBy shot has the camera in a static position
showing the robot in movement. For a Pan shot, the camera is in a static position but
doing incremental rotations following the movement of the robot. A Track shot has
the camera following the robot and keeping a constant position relative to it. Finally,
the POV shot has the camera placed directly on the SSRMS, moving with the robot.

- Camera Placements: For each shot type, other than POV, the camera can be placed
in five different ways according to some given line of interest: External, Parallel,
Internal, Apex and External II (Figure 2.5). In the current implementation, the line of
interest is the trajectory along which the center of gravity of the robot is moving; this
is sufficient for filming many typical manoeuvres. POV is treated separately. Since
the camera is directly on the SSRMS, the previously described camera placements
are inapplicable. This attribute is instead used to specify where on the robot arm
the camera is placed (such as on the end effector, on some joint, in the middle of a
segment, etc.).

5 0

2 . 5 . CAMERA PLANNING APPROACH

Line of Interest

External Internal External II

Apex

Figure 2.5: Camera placements

- Zoom modes: For each shot type and camera placement, the zoom of the camera can
be in five different modes: Extreme Close Up, Close Up, Medium View, Full View
and Long View.

- Side: Each shot type other than POV can be taken from either side of the line of
interest or from above. In the case of POV, this attribute is used to tell whether
the camera is forwards or backwards of the SSRMS. Shots from above help achieve
smooth transitions between a shot from one side to a shot from the other side of the
line of interest or can be used when the robot is flanked on both sides by obstacles.

- Length: The length is a fraction of the scene occupied by the shot. The total length
for all shots in a scene must be 1. For instance, if the first shot has a length of 0,25, the
second, a length of 0,5 and the last a length of 0,25, while the scene lasts 2 seconds,
then the first shot will end after half a second, the second will then start and end at
1,5 seconds, and so on.

More shot types, camera placements and zoom modes will be added in the future to
specify a greater variety of shots. We are now in position to explain how idioms are for-
malized. An idiom is specified by describing the sequence of shots composing it. Figure 2.6
shows three examples.

Each idiom consists of an identifier, the scene to which it is applicable, the number of
shots and then the shots. Thus the first idiom is applicable to a translation of the SSRMS
along its mobile base and it contains three shots. The idiom states that a translation can

51

2 . 5 . CAMERA PLANNING APPROACH

(idioml translation 3
(go-by external medium-view 0,25 left)
(go-by parallel full-view 0,5 left)
(pan internal full-view 0,25 left))

(idiom2 translation 3
(static external medium-view 0,25 right)
(static apex medium-view 0,67 right))
(static parallel closeup-view 0,67 right))

(idiom3 effector 3
(pan parallel full-view 0,33 left)
(static parallel closeup-view 0,67 left))

Figure 2.6: Examples of idioms

be filmed by first placing the camera external to the robot using a medium view zoom,
following the SSRMS for a quarter of the whole movement, then changing to a full view
zoom while still following the robot on a parallel course for half the scene and then stopping
and using a pan shot with the camera rotating to follow the robot for the rest of the way,
still at a full view zoom. This is just one of the many ways such a scene could be filmed.
There are other idioms specifying the alternatives.

For instance, idiom2 illustrates another way of filming a translation of the SSRMS along
its mobile base to anchor a new module on the ISS. In this case, we start with a static shot
showing the robot approaching the destination module of the ISS using an External camera
placement to have a good visualization of the destination module; the zoom is medium
to have a good view of the approach. The second shot is also static but with an Apex
placement to show the robot approaching the destination module. The last shot switches to
a Close Up Static view to give a good appreciation of the anchoring operation.

The third idiom describes a sequence of shots for filming the SSRMS's end effector
fixing a new component on the ISS. The first shot is a pan shot following the rotation of the
robot to the anchor point. The last shot is a static shot focusing on the joint at the extremity
of the robot while fixing the new component on the desired target.

Thus for each SSRMS movement type (or scene), we have several idioms (from six
to ten in the current implementation) and each idiom is defined by taking into account
the complexity of the movement, the geometry of the ISS, the visual cues on the ISS and
subjective expectations of the viewer. For example, if the SSRMS is moving along its
mobile base, it is important that the camera shows not only the entire arm but also some
visual cues on the ISS in order to provide situational awareness of the relocation of the

52

2 . 5 . CAMERA PLANNING APPROACH

mobile base. Consequently, the idioms for this manipulation involve shots with a Full or
Long View zoom. In contrast, manipulations involving the end effector require a high
precision, so an Extreme Close Up zoom will be involved.

2.5.3 Specifying Shot Composition Rules

The description of idioms is based on considerations that are local to a scene. Shots
within an idiom are in principle sequenced coherently with respect to the scene, but this
does not guarantee that the sequencing of scenes is coherent too. The role of shot compo-
sition rules is to ensure that selected idioms generate a continuous animation with smooth
transitions between scenes and with some global constraints that must be respected across
the entire film. Such global shot composition rules are expressed in LTL.

As mentioned before, LTL is the language used by TLPlan to specify temporally ex-
tended goals [3]. LTL formulas are interpreted over state sequences [3], In our case, a
state conveys some properties about the current shot, hence LTL formulas are indirectly
interpreted over sequences of shots. In the LTL language, one uses the temporal modalities
next, always, eventual, until, combined with the standard first order connectives,
to express temporal statements. For instance, (next f) , where f is a formula means
that f is true in the next state; (always f) means that f holds on the entire state se-
quence; similarly for the other modalities, they have the intuitive semantics suggested by
their names. Given a planning domain, an initial state and an LTL temporally extended
goal, TLPlan computes a plan, as a sequence of actions, such that the underlying sequence
of states satisfies the goal.

;; line of interest
(always

(and
(forall (?t0 ?p0 ?z0 ?10)

(current-shot ?t0 ?p0 ?z0 ?10 right)
(next (not (exists (?tl ?pl ?zl ?11)

(current-shot ?tl ?pl ?zl ?11 left)))))
(forall (?t0 ?p0 ?z0 ?10)

(current-shot ?t0 ?p0 ?z0 ?10 left)
(next (not (exists (?tl ?pl ?zl ?11)

(current-shot ?tl ?pl ?zl ?11 right)))))))

Figure 2.7: A shot composition rule

Figure 2.7 illustrates an LTL shot composition rule forbidding the selection of two dif-

53

2 . 5 . CAMERA PLANNING APPROACH

ferent sides for two successive shots. This implements a cinematography rule that prevents
crossing the line of interest because it could induce a misunderstanding of the manipulation
performed. This idiom will require TLPlan to insert an intermediate shot in order to satisfy
the requirement.

2.5.4 Planning the Cameras

When searching for a sequence of shots to satisfy a goal, shots are evaluated using
the Occlusion Detector function according to their degree of occlusion. Specifically this
function measures the degree of visibility of the robot within the shot. This is done by
examining each image in the shot and evaluating the number of joints present in the image
and the zoom made on the robot. The quality measure on each image is heuristically defined
b y :

ushot = (NbrjV/NbrjT + SR/ST)/2,

with :
- NbrJV : Number of joints visible in the image
- NbrJT '• Total Number of joints in the robot
- SR : Surface covered by the robot on the image
- ST '• Total Surface of the image

TLPlan calls the Occlusion Detector not only to compute the quality measure on each
shot but also to compute the quality measure on every idiom. The quality measure of an
idiom ai(norn is the average of the quality measures on the shots composing it.

The planning domain is specified using two different kinds of planning operators:
Idiom-Selection and Shot-Specification. The first type of operators conveys idiom-level
constraints. The second conveys shot-level constraints. More specifically, Idiom-Selection
operators select idioms for shots, and Shot-Specification operators select attributes for each
shot composing an idiom. Since the attributes are already specified by the idioms, the role
of this operator is essential to ensure that the shot follows the defined cinematographic rules
and to allow the Occlusion Detector to verify its quality.

Figure 2.9 illustrates an idiom-selection operator. The operator checks whether the
scene already has an idiom associated to it (i.e., (not-planned ?scene)). If no idiom has

54

2 . 5 . CAMERA PLANNING APPROACH

;; Shot selection operator
(add-adl-op
:name ' (apply-shot ?scene ?shot-type ?shot-place

?shot-zoom ?shot-length ?shot-side)
:pre (adl-pre :var-gens ' ((?scene ?idiom)

(planned ?scene ?idiom)
(?nextShot)
(next-shot ?scene ?nextShot)
(?shot-type)
(next-shot-type ?idiom

?nextShot)
(?shot-place)
(next-shot-place ?idiom

?nextShot)
(?shot-zoora)
(next-shot-zoom ?idiom

?nextShot)
(? shot-length)
(next-shot-length ?idiom

?nextShot)
(? shot-side)
(next-shot-side ?idiom

?nextShot)
(?nbrShot) (nb-shot ?scene

TnbrShot)))
:add (adl-add (adl-cond :form '(= ?nextShot

(- ?nbrShot 1))
:lit '(done-plan ?scene))

(adl-cond :form '(not(= ?nextShot
(- TnbrShot 1)))

:lit ' (next-shot ?scene
(+ ?nextShot 1)))

(adl-cond :lit ' (last-shot ?shot-type
?shot-place ?shot-zoom
?shot-length
?shot-side)))

:del (adl-del (adl-cond :var-gens ' ((?nextShot)
(next-shot ?scene

?nextShot))
:lit ' (next-shot ?scene ?

nextShot))
(adl-cond :var-gens ' <(?t ?p ?z ?1 ?s)

(last-shot ?t ?p
?z ?1 ?s))

:lit '(last-shot ?t ?p ?z ?1
?s))))

Figure 2.8: Shot specification operator

55

2 . 5 . CAMERA PLANNING APPROACH

been planned for the scene, the operator will update the current state by adding an idiom
for the scene, updating the number of shots to be planned for this scene (as specified by the
chosen idiom) and will update the next shot to be planned to be the first shot of the idiom.
Figure 2.8 illustrates a shot-specification operator.

During search, the "current" world state in this domain consists of:

1. The "current" scene from a given scene list.

2. The "current" idiom being tested as a candidate for the current scene.

3. The "current" shot in the idiom currently being tested.

;; Idiom selection operator
(add-adl-op
:name '(apply-idiom ?scene ?idiom)
:pre (adl-pre

:var-gens '((?scene) (not-planned ?scene)
(?type) (sc-type ?scene ?type)
(?idiom) (idioms))

:form '(eq? ?type (id-type ?idiom)))
:add (adl-add (adl-cond

:var-gens ' ((?nbrShot)
(gen-nb-shot ?idiom))

:lit '(nb-shot ?scene ?nbrShot))
(adl-cond :lit '(planned ?scene ?idiom))
(adl-cond :lit ' (next-shot ?scene 0)))

:del (adl-del (adl-cond :lit ' (not-planned ?scene))))

Figure 2.9: Idiom selection operator

Intuitively, the search process underlying TLPlan explores the world state space as
follows. On each iteration, TLPlan takes the current scene from the list of scenes and
checks whether an idiom has already been selected to be tested as best candidate for it.
If not, it calls the Idiom-Selection operator and selects an idiom from the list of idioms
associated to the corresponding category of scene. When a current idiom is selected in the
current state, TLPlan takes the list of shots composing it and finds the next unplanned shot
(if all the shots have been planned, then the scene is completed and TLPlan can now move
to the next scene). Then it calls the Shot-Specification operators on the current shot which
calls the Occlusion Detector. If the shot is accepted, then it is added to the list of planned
shots.

56

2 . 5 . CAMERA PLANNING APPROACH

2.5.5 Discussion

We explicitly specify the sequence of shots composing an idiom. Given that an LTL
formula describes a sequence of states (that is, the sequence of states satisfying it), we
could have adopted LTL formulas not just for specifying shot composition rules but also
for describing idioms. For instance, filming a translation scene using idiom 1 or idiom2 in
Figure 2.6 could be specified as described in Figure 2.10.

(define control-idiom-translation
(always

(exists (?scene ?type) (and (current-sc ?scene) (sc-type ?scene ?type))
(implies (?type translation)

(or
(and (not bad-idiom IdO ?scene)

(current-idiom ?scene IdO)
(next (current-shot go-by external medium-view 0,25 left))
(next (next (current-shot go-by parallel full-view 0,5 left)))
(next (next (next (and (current-shot pan internal full-view 0,25 left)

(planned ?scene))))))
(and (not bad-idiom Idl ?scene)

(current-idiom ?scene Idl)
(next (current-shot pan external medium-view 0,33 right))
(next (next (and (current-shot static parallel closeup-view 0,67 right)

(planned ?scene))))))))))

Figure 2.10: Idiom-description LTL formula used to film a translation of the SSRMS

This approach would allow a richer idiom specification language since LTL can express
more general sequences than listing a series of shots. However, with this approach the
size of the search space becomes larger and sophisticated search control would have to be
involved. Indeed, for each scene, the search process would have to consider all possible
shots sequences satisfying the idiom formula. In contrast, with the current approach, search
is only limited to the shot sequences in the idiom specifications. More intelligent ways of
using LTL formulas to specify idioms remain a topic for future research.

We acquired knowledge on the SSRMS through discussions with experts (including
instructors of the SSRMS) and sitting in actual training courses of the SSRMS. The current
idioms take into account only visibility requirements, but there are other constraints that
will have to be integrated to complete the tool, including the various modes of operating the
arm, which involve, among many things, switching between different frames of references
during a manipulation.

57

2 . 6 . EXPERIMENTS

2.6 Experiments

We used a publicly available Scheme version of TLPlan within the ATDG. The Robot
Simulator is in C++. The communication between TLPlan and other components in the
ATDG is done using sockets and through reading and writing in text files. For example,
TLPlan communicates by sockets with the Occlusion Detector to compute at each iteration
the quality measure on shots and idioms. The camera plan is passed to the renderer in text
format.

f
Figure 2.11: Idiom to film the SSRMS anchoring a new module on the ISS

We implemented two different variations of the camera planner. The first version (VI)
delays the check of the quality on shots until a complete sequence of shots composing the
whole film is found; the other version (V2) makes the check on the fly on each idiom as
has been understood so far. In each case, the metrics for the quality of an animation are
the absence of occlusion. Checking occlusions takes time, hence the motivation to verify
whether there is any gain by delaying it. The experiments also include a comparison with
a simplified implementation of a constraint-based approach as in ConstraintCam (CC) [4],

Figure 2.11 shows snapshots generated by ATDG illustrating the anchoring operation
of idiom2 in Figure 2.6. The ISS workspace is specified by almost 85 000 triangles. This
is moderately complex by computer graphics standards. The experiments were performed

5 8

2 . 6 . E X P E R I M E N T S

on a Pentium Dual Core, 2,8 GHZ, with 2G of RAM.

Figure 2.12: Scenarios

The trajectories for the eight scenarios on which we made our experiments are given
in Figure 2.12. Figure 2.13 shows the performance data on the scenarios. The first three
colomns in Figure 2.13 indicate, respectively: the scenario, the number of shots composing
the film and the duration of the film in seconds. The next three columns express the quality
of the movie for each of the methods V1, V2 and CC, in terms of the proportion of shots
without any occlusion of the camera and with all selected elements of the arm visible. This
occlusion-based quality measure could be refined by counting the number of images in
occlusion or by taking into account the proportion of the shot that is occluded. The last
three columns give the planning time for each of the methods.

Scene Properties Visual Quality Planning Time (s)
ScN Nbr Shots Length (s} V1 V2 CC V1 V2 CC

1 2 5.34 0.61 0.64 0.4 0.65 0.87 0.54
2 3 13.42 0.54 0.57 0.37 0.66 0.73 0.45
3 4 7.45 0.71 0.76 0.5 1.04 1.52 1.12
4 8 10.41 0.56 0.62 0.23 1.35 2.12 1.21
5 6 20.21 0.7 0.76 0.43 1.53 1.87 1.3
6 5 8.73 0.81 0.87 0.62 1.42 1.65 0.98
7 11 24.1 0.68 0.73 0.24 2.86 3.76 1.57
8 9 17.2 0.8 0.82 0.45 2.03 2.54 1.24

Figure 2.13: Performance data

As the experiments show, the quality of the demonstrations generated by ATDG are

5 9

2 . 7 . CONCLUSION AND FUTURE W O R K

very good in terms of the number of shots that are not occluded and this is an important
property that we would like our application to have. We also noticed that the film is very
smooth considering it is generated automatically. As it turns out, both versions of ATDG
generate movies of similar qualities, but they differ in the planning time. Delaying occlu-
sion checking turns out to be worthwhile for this experiment.

The results also show that the quality of the path filmed by ATDG was always better
than CC. This is due to the fact that TLPlan works at the level of the idiom, a level higher
than that of a frame (the level to which ConstraintCam applies) and this always ensures a
higher level of quality. We also believe that with a C++ implementation of TLPlan, our
approach would become more efficient. One of the key aspects of our solution is the use of
LTL to specify shot composition rules and generally they are more easily understood than
frame-level constraints. It is important to remember, however, that this is a comparison
with a simplified implementation of the original ConstraintCam.

2.7 Conclusion and Future Work

In this paper, we presented a temporal-logic camera planning approach that brings im-
provements to automatic 3D animation generation techniques along two main dimensions.
First, it uses temporal logics to express cinematographic principles and filming preferences,
a language more expressive and with simpler semantics than previous camera planning lan-
guages. Second, it implements the TLPlan algorithm, a planner more powerful than previ-
ous camera planners in the literature, because with TLPlan, LTL composition rules enable
search pruning.

The new camera planner is implemented within an application of automated planning
for the generation of 3D task demonstrations for an articulated robot arm. Our application
currently concerns the SSRMS deployed on the international space station but the results
are transferable to other telemanipulated robots and to other domains.

So far we have obtained promising results using very simple metrics for the quality of
movies. Adding visual cues and regional constraints is quite straightforward and will be
done in the near future. Before the tool becomes useable in practice, additional metrics
characterizing the different manoeuvres in terms of task and space awareness will have
to be brought in. The definition of these metrics will involve human factor experts and

6 0

2 . 8 . A C K N O W L E D G E M E N T

instructors.

Besides the intended future use of our system to support ground operators, future in-
quiry will also concern the integration of the system into a training simulator to provide
feedback to students by showing them how to accomplish the task. This opens several
interesting research opportunities, including making the generated animation interactive
rather than a continuous video as is currently the case.

Finally, using TLPlan also opens up interesting opportunities for developing efficient
search control knowledge for this particular application domain and for learning such
knowledge. As mentioned above, it would be also interesting to extend the use of LTL
formulas to the specification of idioms.

2.8 Acknowledgement

The work presented herein was supported by the Natural Sciences and Engineering
Research Council (NSERC) of Canada.

61

Chapitre 3

Modele pedagogique dans un simulateur
intelligent pour les operations robotisees

Resume

L'apprentissage par simulation en environnements virtuels est seulement pos-
sible s'il existe un espace probleme bien explicite associe aux differentes taches
a realiser par l'apprenant [1, 63]. Un tel espace permet de bien suivre l'appre-
nant au cours de son apprentissage et de le guider si necessaire. Au fait, le suivi
de la connaissance et de son acquisition par l'apprenant pendant l'apprentissage
ne sont possibles qu'en satisfaisant parfaitement a cette condition [18]. Cepen-
dant, dans des environnements tres complexes, il n'est pas toujours possible de
construire une structure de tache bien explicite. Par exemple, les environnements
traitant de connaissances spatiales ont une multitude de possibilites pour resoudre
une tache donnee. Ceci est le cas dans Roman Tutor ou la tache de manipulation
du SSRMS pour l'emmener d'un endroit a un autre peut s'effectuer selon une
infinite de trajectoires.

Dans 1'article que nous presentons dans ce chapitre, nous montrons que par
l'utilisation du planificateur de trajectoires FADPRM (voir chapitre 1) comme
expert du domaine, il n'est plus necessaire de creer un graphe de taches complexe
et bien explicite. Nous presentons ensuite 1'architecture du modele pedagogique

62

instaure dans Roman Tutor pour supporter l'apprentissage d'un apprenant sur
le simulateur. Nous montrons comment les differentes composantes integrees,
principalement FADPRM et ATDG, sont mises a contribution pour assurer un
suivi et un encadrement efficaces de 1'apprenant.

Pour illustrer, pendant que l'apprenant manipule le robot pour l'execution
de differents taches de manipulations, Roman Tutor fait appel a FADPRM en
arriere plan pour surveiller d'une maniere continue revolution de l'apprenant
dans son apprentissage : Est-t-il en train de suivre les zones desirables ou non ?
S'approche-t-il de la configuration finale ou pas ? Est-ce qu'il existe une famille
de solutions meilleures que celle qu'il est en train de realiser ? La caracteristique
dynamique aide FADPRM a s'ajuster automatiquement aux changements conti-
nuels dans l'environnement (deplacements du robot, deplacements des zones). La
caracteristique anytime va lui permettre de trouver des diagnostics en temps reel
pour un encadrement plus efficace. De plus, Roman Tutor fait appel a ATDG pour
guider l'apprenant s'il se trouve bloque ou s'il commence a effectuer des erreurs
pour lui presenter presque instantanement des videos correctives ou illustrant les
trajectoires solutions qui permettent de completer la tache.

Commentaires

L'article presente dans ce chapitre a ete soumis au journal "IEEE Transactions on
Learning Technology". Une version plus courte de ce travail a ete publiee dans
les actes de "International Conference on Intelligent Tutoring Systems" [56]. Ces
travaux ont ete realises, valides et rediges sous la supervision du Professeur Ro-
ger Nkambou (Universite du Quebec a Montreal), du Professeur Froduald Ka-
banza (Universite de Sherbrooke) et avec les conseils du Professeur Leo Hartman
(Agence spatiale canadienne).

6 3

An Intelligent Simulator for Tele-robotics Training

Khaled Belghith, Froduald Kabanza
Departement d'informatique, Universite de Sherbrooke,

Sherbrooke, Quebec, Canada J1K 2R1
khaled.belghith@usherbrooke.ca, kabanza@usherbrooke.ca

Roger Nkambou
Universite du Quebec a Montreal

Montreal, Quebec H3C 3P8, Canada
nkambou.roger@uqam.ca

Leo Hart man
Canadian Space Agency,

John H. Chapman Space Centre, 6767 Route de l'Aeroport
Saint-Hubert, Quebec J3Y 8Y9

leo.hartman@asc-csa.gc . ca

Abstract

Roman Tutor is a tutoring system that uses sophisticated domain knowledge to
monitor the progress of students and advise them while they are learning how to
operate a space tele-robotic system. It is intended to help train operators of the
Space Station Remote Manipulator System (SSRMS) including astronauts, op-
erators involved in ground-based control of SSRMS and technical support staff.
Currently there is only a single training facility for SSRMS operations and it
is heavily scheduled. The training staff time is in heavy demand for teaching
students, planning training tasks, developing teaching material and new teach-
ing tools. For example, all SSRMS simulation exercises are developed by hand
and this process requires a lot of staff time. Once in orbit ISS astronauts currently
have only simple web-based material for skill development and maintenance. For
long duration space flight astronauts will require sophisticated simulation tools to
maintain skills. Roman Tutor addresses these challenges by providing a sophis-
ticated portable training tool. It incorporates a model of the system operations
curriculum, a kinematic simulation of the robotics equipment and the ISS, a high
performance path planner and an automatic task demonstration generator. For

64

mailto:khaled.belghith@usherbrooke.ca
mailto:kabanza@usherbrooke.ca
mailto:nkambou.roger@uqam.ca
mailto:leo.hartman@asc-csa.gc

1 .1 . INTRODUCTION

each element of the curriculum that the student is supposed to master, Roman
Tutor generates example tasks for the student to accomplish within the simula-
tion environment and then monitors its progression to provide relevant feedback
when needed. Although motivated by the SSRMS application, Roman Tutor re-
mains applicable to any tele-robotics system application.

F

3.1 Introduction

Roman Tutor (RObot MANipulation Tutor) is a simulation-based tutoring system to
support astronauts in learning how to operate the SSRMS, an articulated robot arm mounted
on the International Space Station (ISS). Figure 3.1 includes an image of the SSRMS on
the ISS. Astronauts operate the SSRMS from a robotic workstation located inside one of
the ISS compartments. Figure 3.1 also shows the workstation which has an interface with
three monitors, each of which can be connected to any of the 14 cameras placed at strategic
locations on the exterior of the ISS. Roman Tutor's user interface in Figure 3.2 includes the
most important features of the robotic workstation.

Figure 3.1: SSRMS on the ISS (left) and the robotic workstation (right)

The SSRMS is a key component of the ISS and is used in the assembly, maintenance
and repair of the station, and also for moving payloads from visiting shuttles. Operators
manipulating the SSRMS on orbit receive support from ground operations. Part of this

65

1 .1 . INTRODUCTION

support consists of visualizing and validating maneuvers before they are actually carried
out on the ISS. Operators have in principle rehearsed the maneuvers many times on the
ground prior to the mission, but unexpected changes are frequent during the mission. In
such cases, ground operators may have to generate 3D animations for the new maneuvers
and upload them to the operator on the station. So far, the generation of these 3D animations
are done manually by computer graphic programmers and thus are very time consuming.

SSRMS can be involved in various tasks on the ISS, including moving a load from
one place of the station to another, inspecting the ISS structure (using a camera on the
arm's end effector) and making repairs. These tasks must be carried out very carefully to
avoid collisions with the ISS structure and to maintain safety-operating constraints on the
SSRMS (such as avoiding self-collisions and singularities). At different phases of a given
manipulation, the astronaut must choose a setting of cameras that provides him with the
best visibility while maintaining awareness of his progress on the task. Thus astronauts are
trained not only to operate the arm itself, but also to recognize visual cues on the station
that are crucial in mentally reconstructing the actual working environment from the partial
and restricted views provided by the three monitors, and to select cameras depending on
the task and other parameters.

One challenge in developing a good training simulator is, of course, to build it so that
one can reason about it. This is even more important when the simulator is built for training
purposes [23]. Until now, simulation-based tutoring is possible only if there is an explicit
model or representation of the problem space associated with training tasks. The explicit
representation is required in order to track student actions, to identify if these actions are
still on a path to a solution and to generate relevant tutoring feedback [1, 63]. Knowledge
and model tracing are only possible in these conditions [18]. It is not always possible to de-
velop an explicit comprehensive task structure in complex domains, especially in domains
where spatial knowledge is used, as there are many possible ways to solve a given problem.
The robot manipulation that Roman Tutor focuses on is an example of such a domain. For
each robot manipulation task, there is a combinatorial explosion of possible solutions for
moving SSRMS from one place to another in the ISS environment. Such domains has been
identified as "ill-structured" [60, 24],

Conventional tutoring approaches such as model-tracing [37] or constraint-based mod-
eling [52] are very limited when applied on "ill-structured" domains. A model-tracing

66

1.1 . INTRODUCTION

approach consists of comparing a predefined task model with a student's solution. In the
context of robot manipulations, because of the infinity of solutions we have associated
with each task, designing a task model by hand becomes practically infeasible. Applying
a constraint-based modeling approach in the context of robot manipulations will also face
the same kind of limitations. Here, identifying the constraints associated with robot manip-
ulation tasks can be difficult and very time consuming. Since a huge number of constraints
is required to achieve an adequate level of tutoring assistance [24], the approach becomes
impractical.

To overcome these limitations, we propose a solution to this issue by integrating a
sophisticated path planner FADPRM [7] as a domain expert system to support spatial rea-
soning within the simulator and make model tracing tutoring possible without any explicit
task structure.

l A f i i i Monitor 1

Action Applied to

Q Monitor 3

Movement
Movement
Wove men I
Wove men I
Movement

Scicct Camera Monitor?

W P
W P
W P

Result

[-180.523444 . -1C0.172366 . 168.940609] 8
[-180.489350 . -160.023373 . 16B.9G4245] ,
[-180.407414 ,-159.87S247 . 160.067480]

[-180.407414, -159.875247,168.667400]
| 180.407414. -159.B7S247 . 168.867480]

_ _ _ _ _ _ _ c p 2 i'-:i

Collision Details Proximity Details

Figure 3.2: Roman tutor interface

FADPRM (Flexible Anytime Dynamic PRM path planner) is an extension to the PRM
planning framework [36] to handle regions to which we assign preferences within complex
workspaces. By being flexible in this way, FADPRM not only computes collision free paths
but is also capable of taking into account the placement of cameras on the ISS, the lighting
conditions and other safety constraints on operating the SSRMS. This allows the generation

67

1.1 . INTRODUCTION

of collision-free trajectories in which the robot stays within regions visible through cameras
and in which the manipulation is, therefore, safer and easier. FADPRM also implements a
dynamic strategy to adapt efficiently to dynamic changes in the environment and re-plan on
the fly by exploiting results from previous planning phases. FADPRM also implements an
anytime strategy to provide a correct but likely suboptimal solution very quickly and then
incrementally improve the quality of this solution if more planning time is allowed.

Roman Tutor uses the different capabilities implemented within the FADPRM path
planner to provide useful feedback to a student operating the SSRMS simulation. To illus-
trate, when a student is learning to move a payload with the robot, Roman Tutor invokes
the FADPRM path-planner periodically to check whether there is a path from the current
configuration to the target and provides feedback accordingly. By using FADPRM as a
robot manipulation domain expert, we follow an "expert system approach" to support the
tutoring process within Roman Tutor. This approach has proven successful and has been
used within different well-known intelligent tutoring systems such as SOPHIE I [12] and
GUIDON [16]. But in our case, we are applying it in the context of robot manipulations,
an "ill-structured" domain.

We also developed within Roman Tutor an automatic task demonstration generator
ATDG [34], which generates 3D animations that demonstrate how to perform a given task
with the SSRMS. The ATDG is integrated with the FADPRM path planner and can con-
tribute to ground support of SSRMS operations by generating useful task demonstrations
on the fly that help the student carry out his tasks. ATDG includes a component based on
TLPlan [3] for camera planning and uses Linear Temporal Logic (LTL) as the language for
specifying cinematographic principles and filming preferences. A robot trajectory is first
generated by FADPRM and TLPlan is then called to find the best sequence of camera shots
following the robot on its path.

In the next section, we start by presenting FADPRM and ATDG in detail. We then
describe Roman Tutor's internal architecture and outline its basic functionalities. After
enumerating the tasks on which a student is trained within Roman Tutor, we describe the
approaches followed to provide the tutoring assistance. In a following section, we show
how the use of FADPRM as a domain expert within the simulator helped in providing very
relevant tutoring feedback to the student. We finally conclude with a discussion on related
work.

6 8

1.3. F A D P R M PATH PLANNER

3.2 FADPRM Path Planner

In its traditional form, the path planning problem is to plan a path for a moving body
(typically a robot) from a given start configuration to a given goal configuration in a
workspace containing a set of obstacles. The basic constraint on solution paths is to avoid
collision with obstacles, which we call hereby a hard constraint. There exist numerous
approaches for path planning under this constraint [36, 14, 47, 57, 44]. In order to take
into account the visibility constraints we have in the SSRMS environment, we developed
a new class of flexible path planners FADPRM [7] able to express and take into account
preferences in the navigation of the robot within very complex environments. In addition
to the obstacles the robot must avoid, our approach takes account of desirable and undesir-
able (or dangerous) zones. This will make it possible to take into account the disposition
of cameras on the station. Thus, our planner will try to keep the robot in zones offering
the best possible visibility of progress on the task while trying to avoid zones with reduced
visibility.

The robot free workspace is segmented into zones with each zone having an associated
degree of desirability (dd), that is, a real number in the interval [0 1], depending on the task,
visual cue positions, camera positions and lighting conditions. The closer the dd is to 1,
the more the zone is desirable. Safe corridors are zones with dd near to 1, whereas unsafe
corridors are those with dd in the neighborhood of 0. A zone covering the field of view
of a camera will be assigned a high dd and will have a cone shape ; whereas a zone with
very limited lighting conditions will be considered as an undesirable zone with a dd near 0
and will take an arbitrary polygonal shape. Figure 3.3 illustrates a trajectory of the SSRMS
going through three cameras fields of view (three cones) and avoiding an undesirable zone
(rectangular zone in pale red).

For efficient path planning, we pre-process the robot workspace into a roadmap of
collision-free robot motions in regions with highest desirability degree. More precisely,
the roadmap is a graph such that every node n in the graph is labeled with its corresponding
robot configuration n.q. and its degree of desirability n.dd, which is the average of dd of
zones overlapping with n.q. An edge (n,n') connecting two nodes is also assigned a dd
equal to the average of dd of configurations in the path-segment (n.q,n'.q). The dd of a
path (i.e., a sequence of nodes) is an average of dd of its edges.

69

3 . 2 . FADPRM PATH P L A N N E R

Figure 3.3: SSRMS going through three different cameras fields of view (purple, green and
blue cones) and avoiding an undesirable zone (rectangular zone in pale red)

Following probabilistic roadmap methods (PRM) [58], we build the roadmap by pick-
ing robot configurations probabilistically, with a probability that is biased by the density
of obstacles. A path is then a sequence of collision free edges in the roadmap, connecting
the initial and goal configuration. Following the Anytime Dynamic A* (AD*) approach
[48], to get new paths when the conditions defining safe zones have dynamically changed,
we can quickly re-plan by exploiting the previous roadmap. On the other hand, paths are
computed through incremental improvements so the planner can be stopped at anytime to
provide a collision-free path (i.e., anytime after the first such path has been found) and the
more time it is given, the more the path is optimized to move through desirable zones.

FADPRM works as follows. The input is an initial configuration, a goal configuration,
a 3D model of obstacles in the workspace, a 3D specification of zones with corresponding
dd and a 3D model of the robot. Given this input:

- To find a path connecting the input and goal configuration, we search backward from
the goal towards the initial (current) robot configuration. Backward search instead of
forward search is done because the robot moves and, hence, its current configuration
is not in general the initial configuration; we want to re-compute a path to the same
goal when the environment changes before the goal is reached.

- A probabilistic queue OPEN contains nodes of the frontier of the current roadmap
(i.e., nodes are expanded because they are new or because they have previously been
expanded but are no longer up to date w.r.t. to the desirable path) and a list CLOSED

7 0

1.3. F A D P R M PATH PLANNER

contains non frontier nodes (i.e., nodes already expanded).
Search consists of repeatedly picking a node from OPEN, generating its predecessors

and putting the new ones or out of date ones in OPEN.
The density of a node is the number of nodes in the roadmap with configurations that
are a short distance away (proximity being an empirically set parameter, taking into
account the obstacles in an application domain). The distance estimate to the goal
takes into account the node's dd and the Euclidean distance to the goal. A node n in
OPEN is selected for expansion with probability proportional to :

(1 — (3)/density (n) + f3 * goal — distance — estimate{n)
with 0 < 0 < 1.

This equation implements a balance between fast-solution search and best-solution
search by choosing different values for /3. With j3 near to 0, the choice of a node
to be expanded from OPEN depends only on the density around it. That is, nodes
with lower density will be chosen first, which is the heuristic used in traditional PRM
approaches to guarantee the diffusion of nodes and to accelerate the search for a path
[58]. As (3 approaches 1, the choice of a node to be expanded from OPEN will rather
depend on its estimated distance to the goal. In this case, we are seeking optimality
rather than the speed of finding a solution.

To increase the resolution of the roadmap, a new predecessor is randomly generated
within a small neighborhood radius (that is, the radius is fixed empirically based on
the density of obstacles in the workspace) and added to the list of successors in the
roadmap generated so far. The entire list predecessors is returned.
Collision is delayed: detection of collisions on the edges between the current node
and its predecessors is delayed until a candidate solution is found; if there is a col-
lision, we backtrack. Collisions that have already been detected are stored in the
roadmap to avoid doing them again.
The robot may start executing the first path found.

Concurrently, the path continues being improved by replanning with an increased
value of (3.
Changes in the environment (moving obstacles or changes in dd for zones) cause
updates of the roadmap and replanning.

71

2.4. THE AUTOMATIC TASK DEMONSTRATION GENERATOR

The calculation of a configuration dd and a path dd is a straightforward extension of
collision checking for configurations and path segments. For this, we customized the Prox-
imity Query Package (PQP) [43], The 3D models for the ISS, the SSRMS and zones
are implemented using a customization of Silicon Graphics' Open Inventor. The robot is
modeled using Motion Planning Kit (MPK), that is, an implementation of Sanchez and
Latombe's PRM planner [58].

3.3 The Automatic Task Demonstration Generator

The automatic task demonstration generator (ATDG) [34] takes as input a start and
a goal configuration of the SSRMS. ATDG will generate a movie demonstration of the
required manipulations that bring the SSRMS from the start configuration to the goal con-
figuration. The top figure in Figure 3.4 shows the internal architecture of the ATDG. The
bottom one shows the different steps the data go through in order to transform the two given
configurations into a complete movie demonstration.

First, ATDG calls the FADPRM path planner to generate a collision free path between
the two given configurations. The path is then passed to the trajectory parser which sepa-
rates it into categorized segments. This will turn the continuous trajectory into a succession
of scenes, where each scene can be filmed by a specific group of idioms. An idiom is a
succession of shots that represents a stereotypical way to film a scene category. The parser
looks for uniformity in the movements of the SSRMS to detect and recognize the category
of scenes. Once the path is parsed, a call is made to the camera planner TLPlan to find
the best shots that best convey each scene, while making sure the whole is pleasing and
comprehensive.

The use of TLPlan as a camera planner within ATDG provides two advantages. First
LTL, the language used by TLPlan is more expressive, yet with a simpler defined seman-
tics, than previous camera planning languages such as DCCL [15]. For instance, we can
express arbitrary temporal conditions about the order in which objects should be filmed,
which objects should remain in the background until some condition become true and more
complex constraints that the LTL language can express. Secondly, TLPlan is more pow-
erful than other camera planners presented in the literature such as [15, 5, 26, 33] because
with TLPlan, LTL shot composition rules provide a search pruning capability. In ATDG,

7 2

2.4. THE AUTOMATIC TASK DEMONSTRATION GENERATOR

Figure 3.4: ATDG architecture

each shot in the idiom is distinguished by three key attributes: shot type, camera placement
mode, camera zooming mode.

- Shot Types: five shot types are currently defined in the ATDG System: Static, GoBy,
Pan, Track and Pov. A Static shot for example is done from a static camera when the
robot is in a constant position or moving slowly. Whereas in a Track shot, a camera
follows the robot and keeps a constant distance from it.

- Camera Placements: for each shot type, the camera can be placed in five different
ways according to some given line of interest: External, Parallel, Internal, Apex and
External II. Currently, we take the trajectory of the robot's center of gravity as the
line of interest which allows filming of a number of many typical manoeuvres. For

7 3

2.4. T H E AUTOMATIC TASK DEMONSTRATION GENERATOR

larger coverage of manoeuvres, additional lines of interest will be added later.
- Zoom modes: for each shot type and camera placement, the zoom of the camera can

be in five different modes: Extreme Close up, Close up, Medium View, Full View
and Long View.

Figure 3.5: Idiom to film the SSRMS anchoring a new component on the ISS

Figure 3.5 shows an idiom illustrating the anchoring of a new component on the ISS. It
starts with a Track shot following the robot while moving on the truss. Then, another Track
shot follows that shows the rotation of one joint on the robot to align with the ISS structure.
And finally there is a Static shot focusing on the anchoring operation. In TLPlan, idioms are
specified in the Planning Definition Language (PDDL 3.0). Intuitively, a PDDL operator
specifies preferences about shot types in time and in space depending on the robot manoeu-
ver. Parsing the trajectory of the robot with the successive scenes performed, TLPlan will
try to find a succession of shots that captures the best possible idioms. TLPlan also takes
into account cinematic principles to ensure consistency of the resulting movie. Idioms and
cinematic principles are in fact encoded in the form of temporal logic formulas within the
planner. TLPlan uses also an occlusion detector to make sure the SSRMS is visible all the
time. Once TLPlan is done, we are left with a list of shots that is passed to the rendering
system to create the animation. The renderer uses both the shots given by TLPlan and the
SSRMS trajectory in order to position the cameras in relation with the SSRMS, generating
the final task demonstration.

For each SSRMS movement type (or scene), we have several idioms (from six to ten
in the current implementation) and each idiom is defined by taking into account the com-

7 4

3 . 4 . ROMAN TUTOR ARCHITECTURE AND BASIC FUNCTIONALITIES

plexity of the movement, the geometry of the ISS, the visual cues on the ISS and subjective
expectations of the viewer. For example, if the SSRMS and the mobile base are moving
along the main truss of the ISS, it is important that the camera show not only the entire arm
but also some visual cues on the ISS so the operator can get a sense of situational awareness
for the relocation of the base of the arm. Consequently, the idioms for this manipulation
will involve shots with a Full or Long View zoom. In contrast, movements involving the
end effector require a high precision, so an Extreme Close Up zoom will be involved.

3.4 Roman Tiitor Architecture and Basic Functionalities

3.4.1 Architecture and Main Components

Roman Tutor works with any robot manipulator provided a 3D model of the robot and
its workspace are specified. Roman Tutor's architecture includes the following components
(Figure 3.6): the graphic user interface, the State Reflector, the FADPRM path planner, the
automatic task demonstration generator ATDG, the Tutoring Module and the Simulator
Core with several third-party libraries: Proximity Query Package (PQP) [43], Open Inven-
tor from Silicon Graphics and Motion Planning Kit (MPK) [58].

Figure 3.6: Roman Tutor architecture

7 5

3 . 4 . ROMAN TUTOR ARCHITECTURE AND BASIC FUNCTIONALITIES

As shown in Figure 3.2, Roman Tutor's user interface has three screens (for the three
monitors). The keyboard is used to operate the robot (the SSRMS in our case). In command
mode, one controls the joints directly; in automatic mode, one moves the end-effector,
small increments at a time, relying on inverse kinematics to calculate the joint rotations.
In Figure 3.2, different cameras are selected, displaying the same robot configuration from
different viewpoints. The perspective camera (on the left) can inspect the entire ISS 3D
model. It is used in training tasks aimed at helping a student to develop a mental 3D model
of the ISS even though there is no such camera on the ISS. Normal training uses small
physical models of the ISS for the same purpose.

In Roman Tutor students could carry out several kinds of training tasks that we describe
more formally in the next section. The State Reflector periodically updates the student's
actions (i.e., keyboard inputs) and their effects on the ISS environment (robot configura-
tion, cameras mapped to the monitors, their view angles and the operation mode). It also
monitors lighting conditions.

3.4.2 Training Tasks

Training tasks can be classified as open, recognition, localization, or robot manipula-
tion. Open tasks are those in which the student interacts with the simulator, without any
formally set goal, with minimal assistance configured in the system's preferences (e.g., col-
lision warning and avoidance). Recognition tasks train to recognize the different elements
in the workspace. An example is to show a picture of an element of the ISS and ask the
student to name it and describe its function. Localization tasks train to locate visual cues
or ISS elements and to relate them spatially to other elements. An example is to show a
picture of a visual cue and ask the student to make it visible on the screen using an appro-
priate selection of cameras; or we can ask to name elements that are above another element
shown on the screen.

Robot operation tasks deal with moving the manipulator (avoiding collision and singu-
larities, using the appropriate speed, switching cameras as appropriate and using the right
operation mode at different stages), berthing, or mating. An illustration is to move the arm
from one position to another, with or without a payload. Another example is to inspect an
indicated component of the ISS using a camera on the end-effector. These tasks require

7 6

3 . 4 . ROMAN TUTOR ARCHITECTURE AND BASIC FUNCTIONALITIES

the student to be able to define a corridor in a free workspace for a safe operation of the
robot and follow it. The student must do this based on the task, the location of cameras and
visual cues and the current lighting conditions. Therefore localization and navigation are
important in robot operations. Robot operation tasks are made more or less unpredictable
by dynamically changing the lighting conditions, thus requiring the revalidation of safe
corridors.

3.4.3 Tutoring Approaches in Roman Tutor

The Feedback Generator inside the Tutoring Module (Figure 3.6) periodically checks
the current state to trigger feedback to the student, using rules that are preconditioned on
the current state information and the current goal. These are "teaching" expert rules and can
be as efficient as the available teaching expertise allows. Feedback rules take into account
how long the student has been trying on a subtask and how good or bad he is progressing
on it.

In the context of open, recognition and localization tasks, providing tutoring assistance
seems straight forward. The domain knowledge is well defined: what element or cue of
the ISS to recognize or to localize? what camera to choose and when? etc. Here, we
follow a model-tracing approach and define for each category of tasks a well structured
task model to support the tutoring process. Task models are designed by hand starting from
recommendations provided by human experts and are structured in the form of a graph
encoding if-then rules. The Feedback Generator uses the predefined task graphs to validate
student actions, identify gaps and provide feedback accordingly.

As we stated previously in an early section, the domain of robot manipulations is an
"ill-structured" domain where classical tutoring approaches start to loose efficiency and
show limitations. To overcome these limitations, we choose to follow an "expert system
approach" and use the FADPRM path-planner as a domain expert in our system to support
the tutoring process. In the context of robot manipulation tasks, the Feedback Generator
evaluates student actions by comparing it to the optimal solutions found by FADPRM and
provides useful feedback accordingly. The tutoring process that uses FADPRM as an expert
of the domain knowledge is described in more details in the next section.

One of the very important early results in intelligent tutoring research is the importance

77

3 . 4 . ROMAN TUTOR ARCHITECTURE AND BASIC FUNCTIONALITIES

of the cognitive fidelity of the domain knowledge module. That is, it is important for the
tutor to reason about the problem in the same way that humans do [17]. Approaches for
modeling a domain expert within intelligent tutoring systems can be grouped into three
main categories: black box models, glass box models and cognitive models [55]. The
main difference between these models lies in the cognitive fidelity with which each model
represents the expert domain knowledge. ""

A black box model describes problem states differently than the student. The classic
example of such a system is SOPHIE I [12]. SOPHIE I is a tutor for electronic trou-
bleshooting that used its expert system to evaluate the measurements students were making
in troubleshooting a circuit. The expert system made its decisions only by solving sets of
equations. A glass box model is an intermediate model that reasons in terms of the same
domain constructs as the human expert. However, the model reasons with a different con-
trol structure than the human expert. A classic example of such a system is GUIDON [16],
a tutoring system for medical diagnosis. This system was built around MYCIN, an ex-
pert system for the treatment of bacterial infections. A cognitive approach, on the other
hand, aims to develop a cognitive model of the domain knowledge that captures the way
knowledge is represented in the human mind in order to make the tutor respond to problem-
solving situations in a way very similar to humans. This approach, in contrast to the other
approaches, has as an objective to support cognitively plausible reasoning [55], A good
example for such a tutoring system is SHERLOCK [46], another practice environment for
electronics troubleshooting. SHERLOCK used a procedural domain knowledge represen-
tation based on a cognitive analysis of human skill acquisition.

By taking into account the disposition of cameras on the ISS, FADPRM reasons about
actions in a way very similar to students. Thus, the use of FADPRM as a domain expert in
Roman Tutor results in a tutoring approach that lies in between a glass box approach and a
cognitive approach. Even if we are applying it in the context of an "ill-structured" domain,
we believe that this will guarantee good quality of the tutoring provided to the student, at
least at the same level as the one provided by a glass box model like GUIDON. In the next
section, we describe and evaluate the tutoring provided using FADPRM as an expert of the
domain to a student working on robot manipulation tasks.

7 8

3 . 5 . F A D P R M AS A DOMAIN EXPERT IN ROMAN TUTOR

3.5 FADPRM as a Domain Expert in Roman Tutor

Roman Tutor initiates a robot manipulation task and monitors the student's progress
towards accomplishing it. Students begin the task and can ask Roman Tutor for help or
for a recommendation about what to do next. Students can ask Roman Tutor about how to
avoid a collision with a nearby obstacle, how to go to a desirable location in the workspace
or how to go through a desirable zone. In this situation, the Feedback Generator calls the
ATDG (which calls the FADPRM planner) to compute and show a movie illustrating how
to complete the manipulation task. If the objective is to give the operator a sense of the
task as he will be seeing it from the command and control workstation, then virtual camera
positions will be selected from the 14 cameras on the exterior of the ISS. But if the objective
is to convey some cognitive awareness of the task, then virtual cameras are selected to best
help the operator gain a maximal cognitive awareness.

Using the real time dynamic capability of the FADPRM path planner, the Feedback
Generator monitors the student's activity in the State Reflector to validate incrementally
student's action or sequence of actions, give information about the next relevant action or
sequence of actions. The Feedback Generator regularly evaluates whether the task can be
completed from the current configuration of the manipulator and whether it can be com-
pleted efficiently. At the point at which it discovers that the student would have to backtrack
from the current position or that achieving the task takes more than the time planned for it,
the Feedback Generator will intervene and begin to show the student a more efficient tra-
jectory. Once a better initial trajectory has been demonstrated, the student can take control
and resume the task. This error-prompted turn taking repeats until the task is completed
(Figure 3.7). We see here the importance of having FADPRM as a planner in our system to
guide the operations by the student. By taking into account the disposition of the cameras
on the station, we are assured that the plan shown to the student passes through zones that
are visible from cameras placed in the ISS environment and can then be followed by the
student.

To evaluate the tutoring mechanics we implemented to support a student working on
robot manipulation tasks, we compare the types of feedback we provide in our application
to those provided by a classic intelligent tutoring system SHERLOCK [46] that is known
to be efficient. SHERLOCK is a practice environment for electronics troubleshooting and

79

3 . 5 . F A D P R M AS A DOMAIN EXPERT IN ROMAN TUTOR

S I B ACT*- T « * OFFICUTRIMI MOD* m look EBOM

I S c k a C a m e r a ! |Pe r»pec«ve Q E 3 i M o n i , o r 1 | SetedCamera] jCPI f T | P } | Monitor 2 | S e l c t t C a m e r a] |CP4

fiction ft^piled to

Move men I
Movement
Movement
Movement
Move men l

Select Camera

Result f

(-191.287115 . -93.451881 . 250.204492 J 0
t-191.2871 IS < -93.451681 . 250.201492 |
(-191.287115,-93.451881 ,250.204492 j

[-1 ST .287115 , -93.451 881 . 250.204492 |
[-191.287115,-93.451881 . 250.204-192 |

••|M«nUor3
Proximity Detailc

Figure 3.7: Roman Tutor showing a robot trajectory to the student

provides advice on problem solving steps upon student request. Four types of feedback are
available [17]: (1) advice on what test action to carry out and how, (2) advice on how to
read the outcome of the test, (3) advice on what conclusion can be drawn from the test and
(4) advice on what option to pursue next.

As described earlier, our "FADPRM as a domain expert" tutoring approach provides
feedback not only upon request but also intervenes automatically when it detects errors
or difficulties experienced by the student. Different types of feedback are also available :
(1) advice on what action (or manipulation) to execute and how by showing at each step a
valid path to the goal or by showing a movie computed with ATDG, (2) advice on how to
avoid errors while progressing on a task by showing paths that avoid a nearby obstacle or
by showing movies recorded from the most useful cameras, (3) advice on what conclusion
can be drawn from the errors made by detecting incorrect choices made by the student and
by proposing the right path to follow and (4) advice on what action or sequence of actions
to pursue next in order to reach the goal.

The types of feedback provided by our tutoring approach are at a level of expressiveness
very similar to those provided by SHERLOCK. By using FADPRM as a domain expert
within Roman Tutor and despite the fact that we are working in an "ill-structured" domain,

8 0

3 . 6 . CONCLUSION

we succeeded in achieving a level of quality for the tutoring similar to the one provided by
an ITS with a cognitive representation for the domain expert.

3.6 Conclusion

In this paper, we presented a real-time flexible approach for robot path planning called
FADPRM and showed how it can be used efficiently to provide very helpful feedback to
a student on a robot manipulation training simulator. FADPRM supports spatial reasoning
and makes model tracing tutoring possible without any explicit task structure. By using
FADPRM as a domain expert within the simulator, we showed how to achieve a high quality
level for the tutoring assistance without planning in advance what feedback to give to the
student and without creating a complex task graph to support the tutoring process.

We also detailed the architecture of the intelligent training simulator Roman Tutor in
which FADPRM is integrated. Among other components, Roman Tutor contains an auto-
matic task demonstration generator ATDG used for the on the fly generation of useful task
demonstrations that help the student carry on his manipulation tasks on the simulator.

Roman Tutor's benefits to future training strategies are (1) the simulation of complex
tasks at a low cost (e.g., using inexpensive simulation equipment and with no risk of in-
juries or equipment damage) and (2) the installation anywhere and anytime to provide "just
in time" training. Crew members would be able to use it onboard the ISS, for example, to
study complex maintenance or repair operations. For very long missions, they would be
able to use it to train regularly in order to maintain their skills. In particular Roman Tutor is
able to generate as many training examples as the student wants. This capacity provides im-
portant learning challenges and opportunities that are not possible with the current system
based on a fixed set of manually generated examples. Although motivated by the SSRMS
application, Roman Tutor with its innovative components (FADPRM and ATDG) remains
applicable to any other tele-robotics system application.

3.7 Acknowledgement

The work presented herein was supported by the Natural Sciences and Engineering
Research Council (NSERC) of Canada.

81

Conclusion

Cette these avait pour objectif le developpement d'un simulateur tutoriel intelligent
pour les operations robotisees, appele Roman Tutor, applicable a la manipulation du bras
canadien (SSRMS) sur la station spatiale internationale (SSI). Ce simulateur integre trois
composantes originales. La premiere consiste en un nouveau planificateur de trajectoires
appele FADPRM pour des environnements dynamiques presentant des contraintes dures
et flexibles. En plus de determiner une trajectoire sans collisions pour le robot a travers
les obstacles, FADPRM permet d'ajouter des preferences quant a la navigation de ce der-
nier dans l'environnement de manipulation. La deuxieme composante est un generateur
automatique de demonstrations de taches ATDG. Ce dernier fait appel a FADPRM pour
trouver une trajectoire solution pour une tache de deplacement du robot et a de nouvelles
techniques de planification de la camera du rendu pour filmer la solution obtenue. Enfin,
la troisieme composante integree au sein de Roman Tutor consiste en une modelisation pe-
dagogique implementant des strategies d'intervention pour donner de l'aide a un operateur
manipulant le SSRMS sur Roman Tutor. L'aide a l'apprentissage fait appel d'une part a des
demonstrations de taches generees automatiquement par le ATDG, et d'autre part au plani-
ficateur de trajectoires pour suivre la progression de l'operateur sur sa tache, lui fournir de
l'aide et le corriger au besoin.

Dans le premier chapitre de cette these, nous avons presente un article qui introduit la
nouvelle approche de planification de trajectoires FADPRM que nous avons developpee.
Cet article a ete soumis au journal "International Journal of Robotics Research". La nou-
velle approche FADPRM pour " Flexible Anytime Dynamic PRM" etend les approches
PRM de base pour s'appliquer dans des environnements contenant des regions avec des
degres de desirabilite. Cette nouvelle approche integre les strategies de recherche dyna-
mique et "anytime" pour faire face a des environnements dynamiques, ou les obstacles et

82

CONCLUSION

les zones avec degre de desirabilite peuvent changer en temps reel. La strategic dynamique
permet au planificateur de replanifier efficacement en exploitant les resultats trouves dans
les iterations precedentes. La strategic "anytime" commence par une trajectoire rapidement
calculee avec un degre de desirabilite potentiellement faible qui est ensuite progressivement
augmente si plus de temps de planification est permis.

Dans le cadre de la manipulation du SSRMS sur la SSI, la caracteristique flexible per-
met a FADPRM de prendre en consideration la disposition des cameras sur la station pour
generer des trajectoires solutions en tout point visibles par un operateur sur Roman Tutor.
Les experiences conduites dans l'article ont valide les differentes caracteristiques de FAD-
PRM. Cependant, bien que nous obtenions une meilleure qualite pour les trajectoires ge-
nerees avec un meilleur temps de replanification en comparaison avec les approches PRM
de base, il persiste toutefois un potentiel d'amelioration sur ces deux dimensions. En effet,
les trajectoires necessitent toujours une etape de post-traitement pour les lisser, et dans les
applications en temps reel, nous cherchons toujours a avoir un algorithme de planification
le plus rapide possible. Comme travail futur, nous continuerons done a explorer des moyens
pour ameliorer notre approche en adoptant et en testant de nouvelles alternatives.

L'article introduit dans le deuxieme chapitre presente le generateur automatique de de-
monstrations de tache ATDG. Cet article a ete soumis au journal "International Journal of
Knowledge-Based and Intelligent Engineering Systems". ATDG est implements au sein
de Roman Tutor pour generer des demonstrations de taches de manipulation du SSRMS
sur la SSL ATDG integre une nouvelle approche de planification des cameras qui ap-
porte des ameliorations aux techniques de generation automatique d'animations suivant
deux dimensions principales. Premierement, elle utilise la logique temporelle pour expri-
mer les principes cinematographiques, un langage plus expressif et avec une semantique
plus simple que les anciens langages de planification de cameras. Deuxiemement, elle uti-
lise 1' algorithme TLPlan, un planificateur plus puissant que les planificateurs precedents,
puisque avec TLPlan, les regies de composition LTL permettent un controle efficace de la
recherche.

Nous avons obtenu des resultats tres prometteurs en utilisant des mesures simples pour
la qualite des films generes en comparant avec d'anciennes approches de planification de
cameras usuelles. L'ajout de reperes visuels comme contraintes dans la planification est
assez simple et se fera dans le cadre d'un travail futur. Dans la version actuelle du ATDG,

8 3

CONCLUSION

nous utilisons les formules de logique temporelle dans TLPlan seulement pour encoder les
lois de compositions cinematographiques. Dans un travail futur, nous planifions d'etendre
l'utilisation des formules LTL a la description des idiomes. Cette approche permettra de
beneficier d'un langage plus riche pour la specification des idiomes.

Le troisieme et dernier article de cette these concerne le modele pedagogique imple-
mente au sein de Roman Tutor pour encadrer l'apprentissage de manipulations robotisees.
Cet article a ete soumis au journal "IEEE Transactions on Learning Technology". Nous
y avons montre comment le planificateur de trajectoires FADPRM peut etre efficacement
utilise pour fournir des retroactions incroyablement utiles a un apprenant sur Roman Tu-
tor. En utilisant FADPRM comme un expert du domaine dans le simulateur, et ATDG
comme generateur automatique de demonstrations, nous avons montre qu'on pouvait at-
teindre un haut niveau de qualite dans l'assistance tutorielle sans pour autant planifier a
l'avance quelles retroactions fournir, ni creer au prealable et explicitement un graphe de
taches complexe pour appuyer et guider le processus de tutorat.

Une fois en orbite, les astronautes sur la SSI ne disposent actuellement que de simple
materiel base Web pour le maintien et le developpement de leurs competences relatives a
la manipulation du SSRMS. Pour les missions spatiales de longue duree, les astronautes
auront besoin d'outils de simulation plus sophistiques pour maintenir leurs competences.
Roman Tutor repond a ces besoins en fournissant un outil de formation intelligent et por-
table. II integre, entre autres, un environnement de simulation realiste du SSRMS sur la SSI,
un planificateur de trajectoires efficace qui tient compte des contraintes de visibility sur la
station, et un generateur automatique de demonstrations de taches. Roman Tutor genere
des exemples de taches a accomplir par un apprenant dans 1'environnement de simulation
et surveille sa progression, pour lui fournir des informations pertinentes en cas de besoin.
Bien que motive par l'application du bras canadien sur la SSI, le concept de simulateur
intelligent Roman Tutor avec ses differentes composantes innovatrices dont FADPRM et
ATDG, reste applicable et transferable a tout autre application d'operations robotisees.

84

Bibliographie

[1] R . ANGROS, W.L. JOHNSON, J . RICKEL et A. SCHOLER. « Learning Domain Know-
ledge for Teaching Procedural Skills ». Dans Proceedings of the 1 st International
Conference on Autonomous Agents and Multiagent Systems (AAMAS), pages 1372-
1378, 2002.

[2] D. ARIJON. Grammar of the Film Language. Communication Arts Books, Hastings
House Publichers, New York, 1976.

[3] F. BACCHUS et F. KABANZA. « Using Temporal Logics to Express Search Control
Knowledge for Planning ». Artificial Intelligence, 116(1-2) : 1 2 3 - 1 9 1 , 2000 .

[4] W . H . BARES, J.P. GREGOIRE et J.C. LESTER. « Real-time Constraint-Based Cine-
matography for Complex Interactive 3D Worlds ». Dans Proceedings of 15th National
Conference on Artificial Intelligence (AAAI/IAAI), pages 1101-1106, 1998.

[5] W.H. BARES, L.S. ZETTLEMOYER, D.W. RODRIGUEZ et J.C. LESTER. « Task-
sensitive Cinematography Interfaces for Interactive 3D Learning Environments ».
Dans Proceedings of Intelligent User Interfaces, pages 81-88, 1998.

[6] K . BELGHITH, F. KABANZA et L . HARTMAN. « Using a Randomized Path Planner
to Generate 3D Task Demonstrations of Robot Operations ». Dans Proceedings of the
1 st International Conference on Autonomous and Intelligent Systems (AIS), 2010.

[7] K . BELGHITH, F. KABANZA, L . HARTMAN et R. NKAMBOU. « Anytime Dynamic
Path-planning with Flexible Probabilistic Roadmaps ». Dans Proceedings of IEEE
International Conference on Robotics and Automation (ICRA), pages 2 3 7 2 - 2 3 7 7 ,

2006.

85

BIBLIOGRAPHIE

[8] F. BENHAMOU, F. GOUALARD, E . LANGUENOU et M. CHRISTIE. « Interval
Constraint Solving for Camera Control and Motion Planning ». Journal of ACM
Transactions on Computational Logic, 5(4) :732-767, 2004.

[9] J. P. Van Den BERG et M. H. OVERMARS. « Using Workspace Information as a
Guide to Non-Uniform Sampling in Probabilistic Roadmap Planners ». International
Journal on Robotics Research, 24(12) :1055-1071, 2005.

[10] J. BLINN. « Where Am I? What Am I Looking At? ». Journal IEEE Computer
Graphics and Applications, 8(4) :76-81, 1988.

[11] R. BOHLIN et L. KAVRAKI. « Path Planning Using Lazy PRM ». Dans Proceedings of
IEEE International Conference on Robotics and Automation (ICRA), pages 521-528,
2000.

[12] J.S. BROWN, R. BURTON et F. ZDYBEL. « A Model-Driven Question-Answering
System for Mixed Initiative Computer-Assisted Instruction ». Journal of IEEE
Transactions on Systems, Man and Cybernetics, 3 (3) : 2 4 8 - 2 5 7 , 1973.

[13] B. B U R N S et O . BROCK. « Sampling-Based Motion Planning Using Predictive
Models ». Dans Proceedings of IEEE International Conference on Robotics and
Automation (ICRA), pages 3 1 2 0 - 3 1 2 5 , 2 0 0 5 .

[14] H . CHOSET, K . M . LYNCH, S. HUTCHINSON, G . A . KANTOR, W. BURGARD, L . E .

KAVRAKI et S. THRUN. Principles of Robot Motion : Theory, Algorithms, and
Implementations. MIT Press, Cambridge, 2005.

[15] D . B . CHRISTIANSON, S . E . A N D E R S O N , L . H E , D . H . SALESIN, D . S . W E L D et C o -

hen M.F.. « Declarative Camera Control for Automatic Cinematography ». Dans
Proceedings of the 13th National Conference on Artificial Intelligence (AAAI/IAAI),
pages 148-155, 1996.

[16] W.J. CLANCEY. Tutoring Rules for Guiding a Case Method Dialogue. In D. Sleeman
and J. Brown (Eds.) Intelligent tutoring systems. New York : Academic Press, 1982.

[17] A.T. CORBETT, K.R. KOEDINGER et J.R. ANDERSON. Intelligent Tutoring Systems
(Chapter 37). In : Handbook of Human-Computer Interaction, Second, Completely
Revised Edition in M. Helander, T. K. Landauer, P. Prabhu (Eds). Elsevier Science,
1997.

8 6

BIBLIOGRAPHIE

[18] R . S . CROWLEY, E . LEGOWSKI, O . MEDVEDEVA, E . TSEYTLIN, E . ROH et D . JUKIC.

« An ITS for Medical Classification Problem-Solving : Effects of Tutoring and Re-
presentations ». Dans Proceedings of the 12th International Conference on Artificial
Intelligence in Education, pages 192-199, 2005.

[19] N . CURRIE et B. PEACOCK. « International Space Station Robotic Systems Ope-
rations : A Human Factors Perspective ». Dans Proceedings of Human Factors and
Ergonomics Society Annual Meeting, Aerospace Systems, pages 26-30. Human Fac-
tors and Ergonomics Society, 2002.

[20] T. D E A N et M. BODDY. « An Analysis of Time-Dependent Planning ». Dans
Proceedings of the 14th National Conference on Artificial Intelligence (AAAI), 1988.

[21] S.M. DRUCKER, T.A. GALYEAN et D . ZELTZER. « CINEMA : A System for Pro-
cedural Camera Movements ». Dans Proceedings of Symposium on Interactive 3D
Graphics (SI3D), pages 67-70, 1992.

[22] D. FERGUSON, M . LIKHACHEV et A. STENTZ. « A Guide to Heuristic-based Path-
Planning ». Dans Proceedings of ICAPS Workshop on Planning under uncertainty for
Autonomous Systems, pages 9-18, 2 0 0 5 .

[23] K.D. FORBUS. « Articulate Software for Science and Engineering Education ». Smart
Machines in Education : The Coming Revolution in Educational Technology, pages
2 3 5 - 2 6 7 , 2 0 0 1 .

[24] P. F O U R N I E R - V I G E R , R. N K A M B O U et E . Mephu NGUIFO. Supporting Tutoring
Services in Ill-Defined Domains. In : Nkambou et al. (eds.) Advances in Intelligent
Tutoring Systems. Springer, 2010.

[25] D.A. FRIEDMAN et Y.A. FELDMAN. « Knowledge-Based Cinematography and its
Applications ». Dans Proceedings of the 13th European Conference on Artificial
Intelligence (ECAI), pages 256-262, 2004.

[26] D.A. FRIEDMAN et Y.A. FELDMAN. « Automated Cinematic Reasoning about Ca-
mera Behavior ». Journal of Expert Systems with Applications, 30(4) :694-704, 2006.

[27] N. HALPER, R. HELBING et T. STROTHOTTE. « A Camera Engine for Computer
Games : Managing the Trade-Off Between Constraint Satisfaction and Frame Cohe-
rence ». Journal of Computer Graphics Forum, 20(3), 2001.

87

BIBLIOGRAPHIE

[28] N. HALPER et P. OLIVIER. « CAMPLAN : A Camera Planning Agent ». Dans
Proceedings of Smart Graphics, AAAI Spring Symposium, pages 9 2 - 1 0 0 , 2000 .

[29] P. HART, N . N I L S SON et B. RAFAEL. « A Formal Basis for the Heuristic Determi-
nation of Minimum Cost Paths ». Journal of IEEE Transactions on Systems, Science
and Cybernetics, SSC-4(2) : 100-107, 1968.

[30] D. Hsu, J.C. LATOMBE et H. KURNIAWATI. « On the Probabilistic Foundations
of Probabilistic Roadmap Planning ». International Journal of Robotics Research,
25(7):627-643, 2006.

[31] D. Hsu, G. S A N C H E Z - A N T E et Z. SUN. « Hybrid PRM Sampling with a Cost-
Sensitive Adaptive Strategy ». Dans Proceedings of IEEE International Conference
on Robotics and Automation (ICRA), pages 3885-3891, 2005.

[32] F. JARDILLIER et E. LANGUENOU. « Screen-Space Constraints for Camera Move-
ments : the Virtual Cameraman ». Journal of Computer Graphics Forum, 17(3): 175—
186, 1988 .

[33] A. JHALA et R.M. YOUNG. « A Discourse Planning Approach to Cinematic Ca-
mera Control for Narratives in Virtual Environments ». Dans Proceedings of the 20th
National Conference on Artificial Intelligence (AAAI/IAAI), pages 307-312, 2005.

[34] F. KABANZA, K . BELGHITH, P. BELLEFEUILLE, B . AUDER et L . HARTMAN.

« Planning 3D Task Demonstrations of a Teleoperated Space Robot Arm ». Dans
Proceedings of the 18th International Conference on Automated Planning and
Scheduling (ICAPS), pages 164-173, 2008.

[35] F. KABANZA, R. N K A M B O U et K . BELGHITH. « Path-Planning for Autonomous Trai-
ning on Robot Manipulators in Space ». Dans Proceedings of the 19th International
Joint Conference In Artificial Intelligence (IJCAI), pages 1729-1731, 2005.

[36] L . KAVRAKI, P. SVESTKA, J. C. LATOMBE et M . OVERMARS. « Probabilistic
Roadmaps for Path Planning in High Dimensional Configuration Spaces ». IEEE
Transactions on Robotics and Automation, 12(4) : 5 6 6 - 5 8 0 , 1996.

[37] K . R . KOEDINGER, J .R . ANDERSON, W . H . H A D L E Y et M.A. M A R K . «Intelligent Tu-
toring Goes to School in the Big City ». Intenational Journal of Artificial Intelligence
in Education, 8(9) :30-43, 1997.

8 8

BIBLIOGRAPHIE

[38] S. KOENIG et M. LIKHACHEV. « D*Lite ». Dans Proceedings of the 18th National
Conference on Artificial Intelligence (AAAI/IAAI), pages 476-483, 2002.

[39] S. KOENIG et M. LIKHACHEV. « Adaptive A* ». Dans Proceedings of the 4th
International Conference on Autonomous Agents and Multiagent Systems (AAMAS),
pages 1 3 1 1 - 1 3 1 2 , 2 0 0 5 .

[40] H . KURNIAWATI et D. Hsu. « Workspace Importance Sampling for Probabilistic
Roadmap Planning ». Dans Proceedings of IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 1 6 1 8 - 1 6 2 3 , 2 0 0 4 .

[41] H. KURNIAWATI et D. Hsu. Workspace-Based Connectivity Oracle : An Adap-
tive Sampling Strategy for PRM Planning. Dans S. AKELLA et OTHERS, editeurs,
Proceedings of the 7th International Workshop on the Algorithmic Foundations of
Robotics (WAFR). Springer, 2006.

[42] E . LANGUENOU et L . GRANVILLIERS. « Modelling Camera Control with Constrai-
ned Hypertubes ». Dans Proceedings of the 8th International Conference on Principles
and Practice of Constraint Programming (CP), pages 6 1 8 - 6 3 2 , 2 0 0 2 .

[43] E. LARSEN, S. GOTTSHALK, M.C LIN et D. M A N O C H A . « Fast Proximity Queries
with Swept Sphere Volumes ». Dans Proceedings of IEEE International Conference
on Robotics and Automation (ICRA), pages 3 7 1 9 - 3 7 2 6 , 2 0 0 0 .

[44] S. M. LAVALLE. Planning Algorithms. Cambridge University Press, 2006.

[45] S.M. LAVALLE, M.S. BRANICKY et S.R. LINDEMANN. « On the Relationship bet-
ween Classical Grid Search and Probabilistic Roadmaps ». International Journal of
Robotics Research, 2 3 (7 - 8) : 6 7 3 - 6 9 2 , 2 0 0 4 .

[46] A. LESGOLD, G . E G G A N , S. KATZ et G . RAO. Possibilities for Assessment Using
Computer-Based Apprenticeship Environments. In J. Regian and V. Shute (Eds.)
Cognitive Approaches to Automated Instruction. Hilisdale, NJ : Lawrence Eribaum
Associates, 1992.

[47] M . LIKHACHEV, D . FERGUSON, G . J. GORDON, A . STENTZ et S. THRUN. « A n y -

time Search in Dynamic Graphs ». Artificial Intelligence, 1 7 2 (1 4) : 1613—1643, 2008 .

[48] M . LIKHACHEV, D . I. FERGUSON, G . J. GORDON, A . STENTZ et S. THRUN. « A n y -

time Dynamic A* : An Anytime, Replanning Algorithm ». Dans Proceedings of

89

BIBLIOGRAPHIE

the 15th International Conference on Automated Planning and Scheduling (ICAPS),
pages 262-271,2005.

[49] M. LIKHACHEV, G . G O R D O N et S. THRUN. « ARA* : Anytime A* Search with Pro-
vable Bounds on Sub-Optimality ». Dans Proceedings of the 17th Annual Conference
on Neural Information Processing Systems (NIPS), 2003.

[50] C. LUCAS. Directing for Film and Television. Anchor Press/Doubleday, Garden City
NY, 1985 .

[51] P. MELCHIOR, B . ORSONI, O . LAVIALLE, A. POTY et A. OUSTALOUP. « Conside-
ration of Obstacle Danger Level in Path Planning using A and Fast-Marching Op-
timisation : Comparative Study ». Journal of Signal Processing, 83 (11) : 2 3 8 7 - 2 3 9 6 ,

2 0 0 3 .

[52] A. MITROVIC, M . MAYO, P. SURAWEERA et B. MARTIN. « Contraint-Based Tu-
tors : a Success Story ». Dans Proceedings of the 14th International Conference
on Industrial, Engineering and Other Applications of Applied Intelligent Systems
(IEA/AIE), pages 931-940, 2001.

[53] D. NIEUWENHUISEN et M.H. OVERMARS. « Motion Planning for Camera Move-
ments in Virtual Environments ». Dans Proceedings of IEEE International Conference
on Robotics and Automation (ICRA), pages 3 8 7 0 - 3 8 7 6 , 2 0 0 4 .

[54] N. NILSSON. Principles of Artificial Intelligence. Tioga Publishing Company, 1980.

[55] R. NKAMBOU. Modeling the Domain : An Introduction to the Expert Module. In :
Nkambou et al. (eds.) Advances in intelligent tutoring systems. Springer, 2010.

[56] R. N K A M B O U , K BELGHITH et F. KABANZA. « An Approach to Intelligent Training
on a Robotic Simulator Using an Innovative Path-Planner ». Dans Proceedings of the
8th International Conference on Intelligent Tutoring Systems (ITS), pages 6 4 5 - 6 5 4 ,

2006.

[57] M. SAHA, J . C . LATOMBE, Y. CHANG et F. PRINZ. « Finding Narrow Passages
with Probabilistic Roadmaps : The Small-Step Retraction Method ». Journal of
Autonomous Robots, 19(3) : 3 0 1 - 3 1 9 , 2 0 0 5 .

[58] G. SANCHEZ et J.C. LATOMBE. « A Single-Query Bi-Directional Probabilistic
Roadmap Planner with Lazy Collision Checking ». Dans Proceedings of the 10th
International Symposium on Robotics Research (ISRR), pages 403^417, 2001.

9 0

BIBLIOGRAPHIE

[59] D. SENT et M. OVERMARS. « Motion Planning in Environments with Dangerzones ».
Dans Proceedings of IEEE International Conference on Robotics and Automation
(ICRA), pages 1 4 8 8 - 1 4 9 3 , 2 0 0 1 .

[60] H.A. SIMON. « The Structure of 111 Structured Problems ». Artificial Intelligence,

4(3): 181—201, 1973.

[61] X. SUN, S. KOENIG et W. Y E O H . « Generalized Adaptive A* ». Dans Proceedings
of the 7th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS), pages 469^176, 2008.

[62] B . TOMLINSON, B . BLUMEBERG et D. NAIN. « Expressive Autonomous Cine-
matography for Interactive Virtual Environments ». Dans Proceedings of the 5th
International Conference on Autonomous Agents, pages 3 1 7 - 3 2 4 , 2 0 0 0 .

[63] K. VANLEHN. « The Advantages of Explicity Representing Problem Spaces ». Dans
Proceedings of 9th International Conference on User Modeling (UM), page 3, 2003.

91

